# NetBackup<sup>™</sup> Deployment Guide for Azure Kubernetes Services (AKS) Cluster

Release 10.1



## NetBackup Deployment Guide for Azure Kubernetes Services (AKS) Cluster

Last updated: 2022-08-30

### Legal Notice

Copyright © 2022 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas Technologies LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This product may contain third-party software for which Veritas is required to provide attribution to the third party ("Third-party Programs"). Some of the Third-party Programs are available under open source or free software licenses. The License Agreement accompanying the Software does not alter any rights or obligations you may have under those open source or free software licenses. Refer to the Third-party Legal Notices document accompanying this Veritas product or available at:

#### https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Veritas Technologies LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Veritas Technologies LLC SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq. "Commercial Computer Software and Commercial Computer Software Documentation," as applicable, and any successor regulations, whether delivered by Veritas as on premises or hosted services. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.

Veritas Technologies LLC 2625 Augustine Drive Santa Clara, CA 95054 http://www.veritas.com

### **Technical Support**

Technical Support maintains support centers globally. All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policies. For information about our support offerings and how to contact Technical Support, visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support agreement administration team for your region as follows:

| Worldwide (except Japan) | CustomerCare@veritas.com       |
|--------------------------|--------------------------------|
| Japan                    | CustomerCare_Japan@veritas.com |

## Documentation

Make sure that you have the current version of the documentation. Each document displays the date of the last update on page 2. The latest documentation is available on the Veritas website:

https://sort.veritas.com/documents

## Documentation feedback

Your feedback is important to us. Suggest improvements or report errors or omissions to the documentation. Include the document title, document version, chapter title, and section title of the text on which you are reporting. Send feedback to:

NB.docs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

## Veritas Services and Operations Readiness Tools (SORT)

Veritas Services and Operations Readiness Tools (SORT) is a website that provides information and tools to automate and simplify certain time-consuming administrative tasks. Depending on the product, SORT helps you prepare for installations and upgrades, identify risks in your datacenters, and improve operational efficiency. To see what services and tools SORT provides for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT\_Data\_Sheet.pdf

## Contents

| Chapter 1 | Introduction to NetBackup on AKS                                                                                                                                                                                                                                       | 11                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|           | <ul> <li>About NetBackup deployment on Azure Kubernetes Services (AKS) cluster</li> <li>Required terminology</li> <li>User roles and permissions</li> <li>About MSDP Scaleout</li> <li>About MSDP Scaleout components</li> <li>Limitations in MSDP Scaleout</li> </ul> | 13<br>14<br>19<br>20                                                             |
| Chapter 2 | Deployment with environment operators                                                                                                                                                                                                                                  | 23                                                                               |
|           | About deployment with the environment operator                                                                                                                                                                                                                         | 23<br>25<br>25<br>25<br>25<br>31<br>36<br>31<br>26<br>25<br>25<br>25<br>25<br>25 |
| Chapter 3 | Assessing cluster configuration before deployment                                                                                                                                                                                                                      | 59                                                                               |
|           | How does the Config-Checker utility work<br>Config-Checker execution and status details<br>How Data-Migration works<br>Data-Migration execution and status details                                                                                                     | 59<br>60<br>62                                                                   |
| Chapter 4 | Deploying NetBackup                                                                                                                                                                                                                                                    | 65                                                                               |
|           | Preparing the environment for NetBackup installation on AKS<br>Recommendations of NetBackup deployment on AKS<br>Limitations of NetBackup deployment on AKS<br>About primary server CR and media server CR<br>After installing primary server CR                       | 70<br>70<br>71                                                                   |

|           | After Installing the media server CR<br>Monitoring the status of the CRs<br>Updating the CRs<br>Deleting the CRs<br>Configuring NetBackup IT Analytics for NetBackup deployment<br>Managing NetBackup deployment using VxUpdate<br>Migrating the node pool for primary or media servers | 73<br>76<br>77<br>77<br>79 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Chapter 5 | Upgrading NetBackup                                                                                                                                                                                                                                                                     | 81                         |
|           | Preparing for NetBackup upgrade                                                                                                                                                                                                                                                         | 81                         |
|           | Upgrading NetBackup operator                                                                                                                                                                                                                                                            |                            |
|           | Upgrading Snapshot Manager operator                                                                                                                                                                                                                                                     |                            |
|           | Upgrading NetBackup application                                                                                                                                                                                                                                                         |                            |
|           | Upgrading Snapshot Manager                                                                                                                                                                                                                                                              |                            |
|           | Post-migration tasks                                                                                                                                                                                                                                                                    |                            |
|           | Upgrade NetBackup during data migration<br>Procedure to rollback when upgrade fails                                                                                                                                                                                                     |                            |
| Chapter 6 | Deploying Snapshot Manager                                                                                                                                                                                                                                                              | 95                         |
|           | Overview                                                                                                                                                                                                                                                                                |                            |
|           | Prerequisites                                                                                                                                                                                                                                                                           | 95                         |
|           | Installing the docker images                                                                                                                                                                                                                                                            |                            |
| Chapter 7 | Migration and upgrade of Snapshot Manager                                                                                                                                                                                                                                               |                            |
|           | Migration and upgrade of Snapshot Manager                                                                                                                                                                                                                                               |                            |
|           |                                                                                                                                                                                                                                                                                         |                            |
| Chapter 8 | Deploying MSDP Scaleout                                                                                                                                                                                                                                                                 | 105                        |
|           | Deploying MSDP Scaleout                                                                                                                                                                                                                                                                 | 105                        |
|           | Prerequisites                                                                                                                                                                                                                                                                           |                            |
|           | Installing the docker images and binaries                                                                                                                                                                                                                                               |                            |
|           | Initializing the MSDP operator                                                                                                                                                                                                                                                          |                            |
|           | Configuring MSDP Scaleout<br>Using MSDP Scaleout as a single storage pool in NetBackup                                                                                                                                                                                                  |                            |
|           | Configuring the MSDP cloud in MSDP Scaleout                                                                                                                                                                                                                                             |                            |
| Chapter 9 | Upgrading MSDP Scaleout                                                                                                                                                                                                                                                                 | 115                        |
| -         | Upgrading MSDP Scaleout                                                                                                                                                                                                                                                                 |                            |
|           |                                                                                                                                                                                                                                                                                         |                            |

| Chapter 10 | Monitoring NetBackup                                        | 117 |
|------------|-------------------------------------------------------------|-----|
|            | Monitoring the application health                           | 117 |
|            | Telemetry reporting                                         |     |
|            | About NetBackup operator logs                               |     |
|            | Expanding storage volumes                                   | 121 |
|            | Allocating static PV for Media pods                         | 123 |
| Chapter 11 | Monitoring MSDP Scaleout                                    | 127 |
|            | About MSDP Scaleout status and events                       | 127 |
|            | Monitoring with Azure Container insights                    | 129 |
|            | The Kubernetes resources for MSDP Scaleout and MSDP operato |     |
|            |                                                             | 132 |
| Chapter 12 | Monitoring Snapshot Manager deployment                      | 135 |
|            | Overview                                                    | 135 |
|            | Logs of Snapshot Manager                                    |     |
|            | Configuration parameters                                    |     |
| Chapter 13 | Managing the Load Balancer service                          | 137 |
|            | About the Load Balancer service                             | 137 |
|            | Notes for Load Balancer service                             |     |
|            | Opening the ports from the Load Balancer service            | 143 |
| Chapter 14 | Performing catalog backup and recovery                      | 145 |
|            | Backing up a catalog                                        | 145 |
|            | Restoring a catalog                                         |     |
| Chapter 15 | Managing MSDP Scaleout                                      | 151 |
|            | Adding MSDP engines                                         | 151 |
|            | Adding data volumes                                         |     |
|            | Expanding existing data or catalog volumes                  | 153 |
|            | Manual storage expansion                                    | 153 |
|            | MSDP Scaleout scaling recommendations                       | 154 |
|            | MSDP Cloud backup and disaster recovery                     | 155 |
|            | About the reserved storage space                            |     |
|            | Cloud LSU disaster recovery                                 |     |
|            | MSDP multi-domain support                                   | 159 |
|            | Configuring Auto Image Replication                          |     |
|            | About MSDP Scaleout logging and troubleshooting             | 160 |

|            | Collecting the logs and the inspection information                       | 161 |
|------------|--------------------------------------------------------------------------|-----|
| Chapter 16 | About MSDP Scaleout maintenance                                          | 163 |
|            | Pausing the MSDP Scaleout operator for maintenance                       | 163 |
|            | Logging in to the pods                                                   |     |
|            | Reinstalling MSDP Scaleout operator                                      | 164 |
|            | Migrating the MSDP Scaleout to another node pool                         |     |
| Chapter 17 | Uninstalling MSDP Scaleout from AKS                                      | 167 |
|            | Cleaning up MSDP Scaleout                                                | 167 |
|            | Cleaning up the MSDP Scaleout operator                                   |     |
| Chapter 18 | Uninstalling Snapshot Manager                                            | 171 |
|            | Uninstalling Snapshot Manager from AKS                                   | 171 |
| Chapter 19 | Troubleshooting                                                          | 173 |
|            | View the list of operator resources                                      | 174 |
|            | View the list of product resources                                       |     |
|            | View operator logs                                                       | 178 |
|            | View primary logs                                                        | 178 |
|            | Pod restart failure due to liveness probe time-out                       | 178 |
|            | Socket connection failure                                                |     |
|            | Resolving an invalid license key issue                                   | 180 |
|            | Resolving an issue where external IP address is not assigned to a        |     |
|            | NetBackup server's load balancer services                                | 181 |
|            | Resolving the issue where the NetBackup server pod is not scheduled      |     |
|            | for long time                                                            | 181 |
|            | Resolving an issue where the Storage class does not exist                | 182 |
|            | Resolving an issue where the primary server or media server              |     |
|            | deployment does not proceed                                              | 183 |
|            | Resolving an issue of failed probes                                      | 184 |
|            | Resolving token issues                                                   | 185 |
|            | Resolving an issue related to insufficient storage                       | 186 |
|            | Resolving an issue related to invalid nodepool                           | 186 |
|            | Resolving a token expiry issue                                           | 187 |
|            | Resolve an issue related to KMS database                                 | 188 |
|            | Resolve an issue related to pulling an image from the container registry | 400 |
|            | Deschving on issue valated to receive of data                            |     |
|            | Resolving an issue related to recovery of data                           |     |
|            | Check primary server status                                              |     |
|            | Pod status field shows as pending                                        | 190 |

|            | Ensure that the container is running the patched image               | 191 |
|------------|----------------------------------------------------------------------|-----|
|            | persistent data                                                      | 195 |
|            | Resolving the certificate error issue in NetBackup operator pod logs |     |
|            |                                                                      | 197 |
|            | Data migration unsuccessful even after changing the storage class    |     |
|            | through the storage yaml file                                        |     |
|            | Host validation failed on the target host                            | 198 |
|            | Primary pod is in pending state for a long duration                  | 198 |
|            | Taint, Toleration, and Node affinity related issues in cpServer      | 199 |
|            | Operations performed on cpServer in environment.yaml file are not    |     |
|            | reflected                                                            | 201 |
|            | Host mapping conflict in NetBackup                                   | 202 |
|            | NetBackup messaging queue broker take more time to start             | 202 |
|            | Local connection is getting treated as insecure connection           | 203 |
|            | Issue with capacity licensing reporting which takes longer time      | 203 |
|            | Backing up data from Primary server's /mnt/nbdata/ directory fails   |     |
|            | with primary server as a client                                      | 204 |
|            | Primary pod goes in non-ready state                                  |     |
|            |                                                                      |     |
| Appendix A | CR template                                                          | 207 |
|            | Secret                                                               | 207 |
|            | MSDP Scaleout CR                                                     |     |
|            |                                                                      |     |

10 | Contents

# Chapter

# Introduction to NetBackup on AKS

This chapter includes the following topics:

- About NetBackup deployment on Azure Kubernetes Services (AKS) cluster
- Required terminology
- User roles and permissions
- About MSDP Scaleout
- About MSDP Scaleout components
- Limitations in MSDP Scaleout

## About NetBackup deployment on Azure Kubernetes Services (AKS) cluster

NetBackup provides the product deployment solution on Azure Kubernetes Services cluster (AKS), in the Azure Cloud. The solution facilitates an orchestrated deployment of the NetBackup components on AKS.

You can deploy NetBackup on AKS for scaling the capacity of the NetBackup host to serve a large number of requests concurrently running on the NetBackup primary server at its peak performance capacity.

This guide provides you two distinct methods of deployment. The first and the recommended one is by using the environment operators. In this method, you can deploy the entire NetBackup environment with ease. You can deploy, one primary, and optionally, one media with one or more replicas, and one MSDP Scaleout with four to 16 replicas and NetBackup Snapshot Manager. The guide describes a very

comprehensive method to deploy, configure, and remove the NetBackup components using the environment operators.

You can also go for a discrete deployment of the NetBackup components without using the environment operator. This method is not the recommended method of deployment.

#### Supported platforms

Currently we support Azure Kubernetes Service.

#### About the guide

This guide contains the following sections:

- Introduction to NetBackup and MSDP Scaleout —preparatory steps to ensure that your AKS cluster and hardware environment meet the deployment requirements.
- Deploying with environment operators—deploy the entire NetBackup environment primary, media, and MSDP Scaleout servers together in a comprehensive way. This is the most recommended method of deployment.
- Assessing cluster configuration before deployment—check the deployment environment to verify that the environment meets the requirements, before starting the primary server and media server deployments.
- Deploying NetBackup—deploying NetBackup without the environment operator.
- Deploying MSDP Scaleout—deploying MSDP Scaleout without the environment operator.
- Deploying Snapshot Manager—deploying Snapshot Manager in Azure Kubernetes Service cluster environment.
- Migration and upgrade of Snapshot Manager—migrate Snapshot Manager registered with NetBackup to Kubernetes Service cluster environment.
- Monitoring NetBackup—monitor application health, view logs, expand storage volume and so on.
- Monitoring MSDP Scaleout—monitor status, alerts, events, Azure container insights, and so on.
- Configuring the Load Balancer service—configure the load balancer to access NetBackup from private IPs.
- Performing catalog backup and recovery—how to back up the catalog and recover.
- Configuring MSDP Scaleout—adding MSDP Scaleout engines and data volumes, disaster recovery, scaling and so on.

- Maintaining MSDP Scaleout—running maintenance, logging, reinstalling the operator, and so on.
- Uninstalling MSDP Scaleout from AKS—uninstall and cleanup the cluster and the operator.
- Uninstalling Snapshot Manager—uninstall Snapshot Manager from AKS.
- Scenarios for troubleshooting.

The intended audience for this document includes backup, cloud, system administrators, and architects.

Note: NetBackup deployment for AKS offers only English language.

## **Required terminology**

The table describes the important terms for NetBackup deployment on AKS cluster. For more information visit the link to Kubernetes documentation.

| Term                       | Description                                                                                                                                                                                                                               |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pod                        | A Pod is a group of one or more containers, with shared storage and<br>network resources, and a specification for how to run the containers.<br>For more information on Pods, see Kubernetes Documentation.                               |  |
| StatefulSet                | StatefulSet is the workload API object used to manage stateful applications and it represents a set of Pods with unique, persistent identities, and stable hostnames. For more information on StatefulSets, see Kubernetes Documentation. |  |
| Job                        | Kubernetes jobs ensure that one or more pods execute their commands and exit successfully. For more information on Jobs, see Kubernetes Documentation.                                                                                    |  |
| ConfigMap                  | A ConfigMap is an API object used to store non-confidential data in key-value pairs. For more information on ConfigMaps, see Kubernetes Documentation.                                                                                    |  |
| Service                    | A Service enables network access to a set of Pods in Kubernetes.<br>For more information on Service, see Kubernetes Documentation.                                                                                                        |  |
| Persistent Volume<br>Claim | A PersistentVolumeClaim (PVC) is a request for storage by a user.<br>For more information on Persistent Volumes, see Kubernetes<br>Documentation.                                                                                         |  |

 Table 1-1
 Important terms

| Term                          | Description                                                                                                                                                                                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Persistent Volume             | A PersistentVolume (PV) is a piece of storage in the cluster that has<br>been provisioned by an administrator or dynamically provisioned using<br>storage classes. For more information on Persistent Volumes, see<br>Kubernetes Documentation.                             |
| Custom Resource               | A Custom Resource (CR) is an extension of the Kubernetes API that<br>is not necessarily available in a default Kubernetes installation. For<br>more information on Custom Resources, see Kubernetes<br>Documentation.                                                       |
| Custom Resource<br>Definition | The CustomResourceDefinition (CRD) API resource lets you define custom resources. For more information on CustomResourceDefinitions, see Kubernetes Documentation.                                                                                                          |
| Secret                        | A Secret is an object that contains a small amount of sensitive data<br>such as a password, a token, or a key. Such information might<br>otherwise be put in a Pod specification or in a container image. For<br>more information on Secrets, see Kubernetes Documentation. |
| ServiceAccount                | A service account provides an identity for processes that run in a Pod.<br>For more information on configuring the service accounts for Pods,<br>see Kubernetes Documentation.                                                                                              |
| ClusterRole                   | An RBAC Role or ClusterRole contains rules that represent a set of permissions. Permissions are purely additive (there are no "deny" rules). For more information on ClusterRole, see Kubernetes Documentation.                                                             |
| ClusterRoleBinding            | A role binding grants the cluster-wide permissions defined in a role<br>to a user or set of users. For more information on ClusterRoleBinding,<br>see Kubernetes Documentation.                                                                                             |
| Namespace                     | Kubernetes supports multiple virtual clusters backed by the same<br>physical cluster. These virtual clusters are called namespaces. For<br>more information on Namespaces, see Kubernetes Documentation.                                                                    |

 Table 1-1
 Important terms (continued)

## User roles and permissions

Note the following for user authentication:

 An Administrator must define the custom user credentials by creating a secret; and then provide the secret name at the time of primary server deployment.

- A custom user is assigned the role of a NetBackup Security Administrator and can access the NetBackup Web UI after deployment.
- A custom user will be persisted during the pods restart or upgrade.
- For the custom user, you can change only the password after the deployment. The changed password will be persisted. If the username is changed after the deployment, an error message will be logged in the Operator pod.
- You can delete the secret after the primary server deployment. In that case, if you want to deploy or scale the media servers, you must create a new secret with the same username which was used in the primary server CR. The password can be the same or different. If you change the password, it is also changed in the primary server pod, and gets persisted.
- Do not create a local user in the pods (using the kubectl exec or useradd commands) as this user may or may not be persisted.
- The Azure Active Directory user is supported through Single Sign-on (SSO).
   For the detailed user integration information, refer to the NetBackup Administrator's Guide Volume I.
- An nbitanalyticsadmin user is available in primary server container. This user is used as Master Server User ID while creating data collector policy for data collection on NetBackup IT Analytics portal.
- Service account that is used for this deployment is netbackup-account and it is defined in the operator\_deployment.yaml.
- NetBackup runs most of the primary server services and daemons as non-root user (nbsvcusr) and only root and nbsvcusr are supported as a service account user.
- ClusterRole named netbackup-role is set in the NetBackup Operator to define the cluster wide permissions to the resources. This is defined in the operator\_deployment.yaml.
- Appropriate roles and AKS specific permissions are set to the cluster at the time of cluster creation.
- After successful deployment of the primary and media servers, the operator creates a custom Kubernetes role with name ResourceName-admin whereas Resource Name is given in primary server or media server CR specification. The following permissions are provided in the respective namespaces:

| Resource name | API group | Allowed operations                                                                                                  |
|---------------|-----------|---------------------------------------------------------------------------------------------------------------------|
| ConfigMaps    | default   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| Nodes         | default   | ■ Get<br>■ List                                                                                                     |

This role can be assigned to the NetBackup Administrator to view the pods that were created, and to execute into them. For more information on the access control, see Kubernetes Access Control Documentation.

**Note:** One role would be created, only if primary and media servers are in same namespace with the same resource name prefix.

- Your AKS cluster must have the RBAC enabled. To view the permissions set for the AKS cluster, use one of the following methods and verify if enbleRBAC is set to true:
  - Run the following command:

```
az resource show -g <resource group name> -n <cluster name>
--resource-type
Microsoft.ContainerService/ManagedClusters --query
properties.enableRBAC
```

- Run the az aks list command.
- You can check the cluster's resource details at resources.azure.com and verify if enableRBAC is set to true.

## **Role-based authentication (RBAC)**

NetBackup Operator deployment uses a serviceAccount and it must have the following permissions:

| Resource Name          | API Group | Allowed Operations                                                                                                  |
|------------------------|-----------|---------------------------------------------------------------------------------------------------------------------|
| ConfigMaps             | default   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| Nodes                  | default   | <ul><li>Get</li><li>List</li></ul>                                                                                  |
| PersistentVolumeClaims | default   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| PersistentVolume       | default   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| Pods                   | default   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| Pods/exec              | default   | <ul><li>Create</li><li>Get</li></ul>                                                                                |
| Secret                 | default   | <ul><li>Get</li><li>List</li><li>Watch</li></ul>                                                                    |

Table 1-2

#### 18 | Introduction to NetBackup on AKS User roles and permissions

| Resource Name         | API Group             | Allowed Operations                                                                                                  |
|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| Services              | default               | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| StatefulSet           | арр                   | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| Jobs                  | batch                 | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> </ul>                                               |
| Primary servers       | netbackup.veritas.com | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |
| PrimaryServers/status | netbackup.veritas.com | <ul><li>Get</li><li>Patch</li><li>Update</li></ul>                                                                  |
| Media servers         | netbackup.veritas.com | <ul> <li>Create</li> <li>Delete</li> <li>Get</li> <li>List</li> <li>Patch</li> <li>Update</li> <li>Watch</li> </ul> |

Table 1-2(continued)

| Resource Name       | API Group                 | Allowed Operations                                                   |
|---------------------|---------------------------|----------------------------------------------------------------------|
| MediaServers/status | netbackup.veritas.com     | <ul><li>Get</li><li>Patch</li><li>Update</li></ul>                   |
| Secrets             | netbackup.veritas.com     | Watch                                                                |
| Secrets/status      | netbackup.veritas.com     | <ul><li>Get</li><li>Patch</li><li>Update</li></ul>                   |
| Roles               | rbac.authorization.k8s.io | <ul> <li>Create</li> <li>Get</li> <li>List</li> <li>Watch</li> </ul> |
| Storageclasses      | storage.k8s.io            | <ul><li>Get</li><li>List</li></ul>                                   |
| Deployment          | арр                       | <ul> <li>Get</li> <li>List</li> <li>Update</li> <li>Watch</li> </ul> |

Table 1-2(continued)

## **About MSDP Scaleout**

MSDP Scaleout is based on MSDP. It empowers MSDP with high resilience and scalability capabilities to simplify management and reduce total cost of ownership.

It runs on multiple nodes to represent a single storage pool for NetBackup and other Veritas products to use. You can seamlessly scale out and scale up a MSDP Scaleout on demand. MSDP Scaleout automatically does failure detection and repair in the background.

It is deployed separately in NetBackup environment. The deployment process is with minimal user intervention. The core MSDP services run on each node to expose the storage optimized services, and manage a part of the cluster level data and metadata. Each MSDP Scaleout node is called MSDP engine.

See "Deploying MSDP Scaleout" on page 105.

## **About MSDP Scaleout components**

Following are the MSDP Scaleout components:

MDS (MetaData service)

MDS is an independent and stackable service that provides a single system view of MSDP Scaleout. It's an etcd cluster running inside the MDS pods. These pods run on different AKS nodes. The pod name has a format of **<cr-name>-uss-mds-<1,2...>**.

The number of pods that get created depends on the number of MSDP Scaleout engines in AKS cluster. These pods are controlled by the MSDP operator.

- 1 or 2 MSDP Scaleout engines: 1 pod
- 3 or 4 MSDP Scaleout engines: 3 pods
- 5 or more MSDP Scaleout engines: 5 pods
- MSDP Scaleout Controller

Controller is a singleton service and the entry point of MSDP Scaleout that monitors and repairs MSDP Engines. It controls and manages the application-level business of the MSDP Scaleout. The Deployment object name has a format of **<cr-name>-uss-controller**. It is controlled by the MSDP operator.

MSDP Scaleout Engine

MSDP Engines provide the ability to write deduplicated data to the storage. The name of a MSDP engine pod is the corresponding FQDN of the static IP that is specified in the CR. Each MSDP engine pod has MSDP services such as spad, spoold, and ocsd running. They are controlled by the MSDP operator.

## **Limitations in MSDP Scaleout**

MSDP Scaleout has the following limitations:

- It is not fully compliant with Federal Information Processing Standards (FIPS). The internal services MSDP operator, MSDP Controller, and MDS of a MSDP Scaleout are not compliant with FIPS.
   MSDP is FIPS compliant. For more information, see the *NetBackup Deduplication Guide*.
- Does not support SELinux.
- Supports only NBCA. Does not support ECA.
- Does not support availability zones for AKS cluster.

For more information about the limitation see Create an Azure Kubernetes Service (AKS) cluster that uses availability zones topic of the Azure documentation.

• Limited AKS node failure tolerance.

Backup and restore can fail if AKS node fails. If MSDP operator detects the MSDP Scaleout pod failure, it attempts to restart it and perform a repair operation automatically. The repair operation can be delayed if Azure infrastructure or Kubernetes do not allow the pod to be restarted.

An Azure volume cannot be attached to two different nodes at the same time. When the node which Azure volume is attached to fails, MSDP operator cannot run the same pod with the same Azure volume on another node until the failed node is repaired or deleted by AKS.

AKS node auto-repair may take more than 20 minutes to finish. In some cases, it may be necessary to bring the node backup manually. See Azure Kubernetes Service (AKS) node auto-repair

IPv6 is not supported.

22 | Introduction to NetBackup on AKS Limitations in MSDP Scaleout

## Chapter

# Deployment with environment operators

This chapter includes the following topics:

- About deployment with the environment operator
- Deploying the operators manually
- Deploying NetBackup and MSDP Scaleout manually
- Deploying NetBackup and Snapshot Manager manually
- Configuring the environment.yaml file
- Uninstalling NetBackup environment and the operators
- Applying security patches

## About deployment with the environment operator

This section describes the deployment of the Veritas NetBackup and MSDP Scaleout on Azure Kubernetes Service in Azure cloud. You can start by deploying the two environment operators that together manage the NetBackup environment, the primary server, the media servers, and the MSDP Scaleout storage servers.

## Prerequisites

Ensure that the following prerequisites are met before proceeding with the deployment.

A Kubernetes cluster in Azure Kubernetes Service in Azure with multiple nodes.
 Using separate node pool is recommended for the NetBackup servers, MSDP

Scaleout deployments and for different media server objects. It is required to have separate node pool for Snapshot Manager data plane.

 Taints and tolerations allows you to mark (taint) a node so that no pods can schedule onto it unless a pod explicitly *tolerates* the taint. Marking nodes instead of pods (as in node affinity/anti-affinity) is particularly useful for situations where most pods in the cluster must avoid scheduling onto the node.

Taints are set on the node pool while creating the node pool in the cluster. Tolerations are set on the pods.

To use this functionality, user must create the node pool with the following detail:

- Add a label with certain key value. For example key = nbpool, value = nbnodes
- Add a taint with the same key and value which is used for label in above step with effect as *NoSchedule*.
  - For example, key = nbpool, value = nbnodes, effect = NoSchedule
- Define storage class of AzureFiles and Azure managed disks for primary and Azure managed disks for media and MSDPX.
- Access to a container registry that the Kubernetes cluster can access, like an Azure Kubernetes Service Container Registry.
- Enable AKS Uptime SLA. AKS Uptime SLA is recommended for a better resiliency. For information about AKS Uptime SLA and to enable it, see Azure Kubernetes Service (AKS) Uptime SLA.
- Install Cert-Manager. You can use the following command to install the Cert-Manager:

```
$ kubectl apply -f
https://github.com/jetstack/cert-manager/releases/download/v1.6.0/cert-manager.yaml
For details, see https://cert-manager.io/docs/installation/
```

- A workstation or VM running Linux with the following:
  - Configure kubect1 to access the cluster.
  - Install Azure CLI to access Azure resources.
  - Configure docker to be able to push images to the container registry.
  - Free space of approximately 8.5GB on the location where you copy and extract the product installation TAR package file. If using docker locally, there should be approximately 8GB available on the /var/lib/docker location so that the images can be loaded to the docker cache, before being pushed to the container registry.

## Contents of the TAR file

Download the TAR file from the Veritas download center.

The TAR file contains the following:

#### Table 2-1TAR contents

| Item                                               | Description                                                                                                                                                                                            |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCI images in the /images directory                | These docker image files that are loaded and then copied to<br>the container registry to run in Kubernetes. They include<br>NetBackup and MSDP Scaleout application images and the<br>operator images. |
| MSDP kubectl plug-in at<br>/bin/kubectl-msdp       | Used to deploy and manage the MSDP Scaleout operator tasks.                                                                                                                                            |
| Configuration(.yaml) files at /operator directory  | You can edit these to suit your configuration requirements before installation.                                                                                                                        |
| Sample product (.yaml) files at /samples directory | You can use these as templates to define your NetBackup environment.                                                                                                                                   |
| README.md                                          | Readme file.                                                                                                                                                                                           |

## **Known limitations**

Here are some known limitations.

- Changes to the CorePattern which specifies the path used for storing core dump files in case of a crash are not supported. CorePattern can only be set during initial deployment.
- Changes to MSDP Scaleout credential autoDelete, which allows automatic deletion of credential after use, is not supported. The autoDelete value can only be set during initial deployment.

## Deploying the operators manually

To perform these steps, log on to the Linux workstation or VM where you have extracted the TAR file.

#### To deploy the operators

- 1 Install the MSDP kubectl plug-in at some location which is set in the path environment variable of your shell. For example, copy the file kubectl-msdp to/usr/local/bin/.
- **2** Run the following commands to load each of the product images to the local docker instance.

```
$ docker load -i netbackup-main-10.1.tar.gz
$ docker load -i netbackup-operator-10.1.tar.gz
$ docker load -i pdcluster-17.0.tar.gz
$ docker load -i pdde-17.0.tar.gz
$ docker load -i pdk8soptr-17.0.tar.gz
$ docker load -i
netbackup-flexsnap-$(SNAPSHOT_MANAGER_VERSION).tar.gz
```

Run the command docker image 1s to confirm that the product images are loaded properly to the docker cache.

```
Run the following commands to re-tag the images to associate them with your
container registry, keep the image name and version same as original:
$ REGISTRY=<example.azurecr.io> (Replace with your own container
registry name)
$ docker tag netbackup/main:10.1 ${REGISTRY}/netbackup/main:10.1
$ docker tag netbackup/operator:10.1
${REGISTRY}/netbackup/operator:10.1
$ docker tag uss-engine:17.0 ${REGISTRY}/uss-engine:17.0
$ docker tag uss-controller:17.0 ${REGISTRY}/uss-controller:17.0
$ docker tag uss-mds:17.0 ${REGISTRY}/uss-mds:17.0
$ docker tag msdp-operator:17.0 ${REGISTRY}/msdp-operator:17.0
$ docker tag veritas/flexsnap-certauth:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-rabbitmg:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT MANAGER VERSION}
$ docker tag
veritas/flexsnap-api-gateway:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-fluentd:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT MANAGER VERSION}
$ docker tag
veritas/flexsnap-datamover:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-nginx:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-idm:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-mongodb:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-core:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT MANAGER VERSION}
$ docker tag veritas/flexsnap-deploy:${SNAPSHOT MANAGER VERSION}
${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT MANAGER VERSION}
```

3

4

```
Run the following commands to push the images to the container registry.
$ docker push ${REGISTRY}/netbackup/main:10.1
$ docker push ${REGISTRY}/netbackup/operator:10.1
$ docker push ${REGISTRY}/uss-engine:17.0
$ docker push ${REGISTRY}/uss-controller:17.0
$ docker push ${REGISTRY}/uss-mds:17.0
$ docker push ${REGISTRY}/msdp-operator:17.0
$ docker push
${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT MANAGER VERSION}
```

5 Create a namespace for deploying the NetBackup and MSDP Scaleout operators. These instructions use the default *netbackup-operator-system* namespace but a custom namespace is also supported, run:

```
$ kubectl create namespace netbackup-operator-system
```

6 Install the MSDP Scaleout operator in the created namespace, using this command. To run this command you must define a full image name in step 3, define a storage class for storing logs from the MSDP operator, and define node selector labels (optional) for scheduling the MSDP operator pod on specific nodes. See "Prerequisites" on page 23.

```
$ kubectl msdp init --image ${REGISTRY}/msdp-operator:17.0
--storageclass x --namespace netbackup-operator-system -l
key1=value1
```

7 To verify that the MSDP Scaleout operator is running, run:

\$ kubectl get all --namespace netbackup-operator-system

Here, we are using the namespace created in step 5.

The **msdp-operator** pod should show status as *Running*.

- 8 In this step, configure the namespace, image name, and node selector to use for the NetBackup operator image by editing the provided configuration yaml files.
  - (Optional) Perform this step only when using a custom namespace. Edit the file operator/kustomization.yaml and change `namespace` to your custom namespace. For example: namespace: my-custom-namespace
  - Edit the file operator/kustomization.yaml and change newName and newTag. For example:

```
images:
    - name: netbackupoperator
    newName: example.com/netbackup/operator
    newTag: '10.1'
```

 Edit the operator/patches/operator\_patch.yaml file to add or remove node selectors and toleration that control what nodes Kubernetes may schedule the operator to run on. Use the key value pair same as given during node pool creation. For example:

```
nodeSelector:
    nbpool: nbnodes
    # Support node taints by adding pod tolerations equal to the
specified nodeSelectors
    # For Toleartion NODE_SELECTOR_KEY used as a key and
NODE_SELECTOR_VALUE as a value.
tolerations:
    - key: nbpool
```

30 Deployment with environment operators Deploying the operators manually

> operator: "Equal" value: nbnodes

9 Configure the namespace, image name, and node selector to use for NetBackup Snapshot Manager operator image by editing the provided configuration yaml files. Edit the operator/kustomization.yaml file and change newName and newTag. Also change Snapshot Manager operator's node selector and toleration (CONTROL\_NODE\_KEY and CONTROL\_NODE\_VALUE).

The value of CONTROL\_NODE\_KEY and CONTROL\_NODE\_VALUE should match with the value of the fields listed in operator/patches/operator\_patch.yaml > nodeSelector (labelKey, labelValue) and tolerations (key, value), so that the Snapshot Manager operator will also run on the same node as NetBackup operator. For example:

```
images:
- name: cloudpointoperator
  newName: example.com/veritas/flexsnap-deploy
  newTag: '10.1'
patches:
- target:
    kind: Deployment
    name: flexsnap-operator
  patch: |
    - op: replace
      path: /spec/template/spec/tolerations/0/key
      value: nbu-control-pool
    - op: replace
      path: /spec/template/spec/tolerations/0/value
      value: nbupool
    - op: replace
      path: /spec/template/spec/affinity/nodeAffinity/requiredDuringSchedulin
      value: nbu-control-pool
    - op: replace
      path: /spec/template/spec/affinity/nodeAffinity/requiredDuringSchedulin
      value: nbupool
```

- **10** To install the NetBackup and Snapshot Manager operator, run the following command from the installer's root directory:
  - \$ kubectl apply -k operator
- **11** To verify if the operators are running, run:
  - \$ kubectl get all --namespace netbackup-operator-system

Verify that pod/netbackup-operator and pod/flexsnap-operator STATUS is showing as *Running*.

# Deploying NetBackup and MSDP Scaleout manually

After the operators are deployed, you can deploy the NetBackup and MSDP Scaleout environment.

#### To deploy NetBackup primary, media, and MSDP Scaleout components:

1 Create a Kubernetes namespace where your new NetBackup environment will run. Run the command:

kubectl create namespace *nb-example* 

Where, *nb-example* is the name of the namespace. The Primary, Media, and MSDP Scaleout application namespace must be different from the one used by the operators. It is recommended to use two namespaces. One for the operators, and a second one for the applications.

2 Create a secret to hold the primary server credentials. Those credentials are configured in the NetBackup primary server, and other resources in the NetBackup environment use them to communicate with and configure the primary server. The secret must include fields for `username` and `password`. If you are creating the secret by YAML, the type should be opaque or basic-auth. For example:

```
apiVersion: v1
kind: Secret
metadata:
    name: primary-credentials
    namespace: nb-example
    type: kubernetes.io/basic-auth
    stringData:
    username: nbuser
    password: p@ssw0rd
```

#### You can also use this command to create a secret.

```
$ kubectl create secret generic primary-credentials --namespace
nb-example --from-literal=username='nbuser'
--from-literal=password='p@ssw0rd'
```

3 Create a KMS DB secret to hold Host Master Key ID (`HMKID`), Host Master Key passphrase (`HMKpassphrase`), Key Protection Key ID (`KPKID`), and Key Protection Key passphrase (`KPKpassphrase`) for NetBackup Key Management Service. If creating the secret by YAML, the type should be \_\_opaque\_. For example:

```
apiVersion: v1
kind: Secret
metadata:
name: example-key-secret
namespace: nb-example
type: Opaque
stringData:
HMKID: HMKID
HMKpassphrase: HMKpassphrase
KPKID: KPKID
KPKpassphrase: KPKpassphrase
```

#### You can also create a secret using kubectl from the command line:

\$ kubectl create secret generic example-key-secret --namespace nb-namespace --from-literal=HMKID="HMKID" --from-literal=HMKpassphrase="HMKpassphrase" --from-literal=KPKID="KPKID" --from-literal=KPKpassphrase="KPKpassphrase"

For more details on NetBackup deduplication engine credential rules, see: https://www.veritas.com/content/support/en\_US/article.100048511 4 Create a secret to hold the MSDP Scaleout credentials for the storage server. The secret must include fields for `username` and `password` and must be located in the same namespace as the Environment resource. If creating the secret by YAML, the type should be \_opaque\_ or \_basic-auth\_. For example:

```
apiVersion: v1
kind: Secret
metadata:
    name: msdp-secret1
    namespace: nb-example
    type: kubernetes.io/basic-auth
    stringData:
    username: nbuser
    password: p@ssw0rd
```

You can also create a secret using kubectl from the command line:

```
$ kubectl create secret generic msdp-secret1 --namespace
nb-example --from-literal=username='nbuser'
--from-literal=password='p@ssw0rd'
```

**Note:** You can use the same secret for the primary server credentials (from step 2) and the MSDP Scaleout credentials, so the following step is optional. However, to use the primary server secret in an MSDP Scaleout, you must set the `credential.autoDelete` property to *false*. The sample file includes an example of setting the property. The default value is *true*, in which case the secret may be deleted before all parts of the environment have finished using it.

**5** (Optional) Create a secret to hold the KMS key details. Specify KMS Key only if the KMS Key Group does not already exist and you need to create.

**Note:** When reusing storage from previous deployment, the KMS Key Group and KMS Key may already exist. In this case, provide KMS Key Group only.

If creating the secret by YAML, the type should be \_opaque\_. For example:

```
apiVersion: v1
kind: Secret
metadata:
    name: example-key-secret
    namespace: nb-example
    type: Opaque
    stringData:
    username: nbuser
    passphrase: 'test passphrase'
```

You can also create a secret using kubectl from the command line:

```
$ kubectl create secret generic example-key-secret --namespace
nb-example --from-literal=username="nbuser"
--from-literal=passphrase="test passphrase"
```

You may need this key for future data recovery. After you have successfully deployed and saved the key details. It is recommended that you delete this secret and the corresponding key info secret.

- 6 Configure the samples/environment.yaml file according to your requirements. This file defines a primary server, media servers, and scale out MSDP Scaleout storage servers. See "Configuring the environment.yaml file" on page 41. for details.
- 7 Apply the environment yaml file, using the same application namespace created in step 1.

\$ kubect1 apply --namespace nb-example --filename environment.yaml

Use this command to verify the new environment resource in your cluster:

\$ kubectl get --namespace nb-example environments

The output should look like:

NAME AGE environment-sample 2m After a few minutes, NetBackup finishes starting up on the primary server, and then the media servers and MSDP Scaleout storage servers you configured in the environment resource start appearing. Run:

\$ kubectl get --namespace nb-example

all, environments, primaryservers, mediaservers, msdpscaleouts

The output should show:

All pod status as Ready and Running

| NAME                        | READY | STATUS  |
|-----------------------------|-------|---------|
| pod/dedupe1-uss-controller- | 1/1   | Running |
| pod/dedupe1-uss-mds-1       | 1/1   | Running |

• For msdpscaleout SIZE = READY, for example: 4=4.

| NAME                                  | SIZE | READY |
|---------------------------------------|------|-------|
| msdpscaleout.msdp.veritas.com/dedupe1 | 4    | 4     |

environment.netbackup should show STATUS as Success

| NAME                                                 | STATUS  |
|------------------------------------------------------|---------|
| environment.netbackup.veritas.com/environment-sample | Success |

**8** To start using your newly deployed environment sign-in to NetBackup web UI. Open a web browser and navigate to

https://<primaryserver>/webui/login URL.

The primary server is the host name or IP address of the NetBackup primary server.

You can retrieve the primary server's hostname by using the command:

\$ kubectl describe primaryserver.netbackup.veritas.com/<primary
server CR name>--namespace <namespace name>

Refer to **Deploying MSDP Scaleout** from the guide NetBackup<sup>™</sup> Deployment Guide for Azure Kubernetes Services (AKS) Cluster

# Deploying NetBackup and Snapshot Manager manually

After the operators are deployed as mentioned in the following section, you can deploy the NetBackup and Snapshot Manager environment:

See "Deploying the operators manually" on page 25.

#### To deploy NetBackup primary, media and Snapshot Manager components

1 Create a Kubernetes namespace where your new NetBackup environment will run. Run the following command:

kubectl create namespace *nb-example* 

Where, *nb-example* is the name of the namespace. The Primary, Media, and Snapshot Manager application namespace must be different from the one used by the operators. It is recommended to use two namespaces. One for the operators, and a second one for the applications.

2 Create a secret to hold the Snapshot Manager credentials. The secret must include fields for username and password. If you are creating the secret by YAML, the type should be opaque or basic-auth.

For example:

```
apiVersion: v1
stringData:
password: p@ssw0rd
username: cpuser
kind: Secret
metadata:
name: cp-creds
namespace: ns-155
type: Opaque
```

#### You can also use this command to create a secret.

```
kubectl create secret generic cp-credentials --namespace
nb-example --from-literal=username='cpuser'
--from-literal=password='p@ssw0rd'
```

38 | Deployment with environment operators Deploying NetBackup and Snapshot Manager manually

> 3 Configure the samples/environment.yaml file according to your requirements. This file defines a primary server, media servers, and Snapshot Manager servers. See "Configuring the environment.yaml file" on page 41. for details.

#### Deployment with environment operators | 39 Deploying NetBackup and Snapshot Manager manually

4 Apply the environment.yaml file, using the same application namespace created in the above step.

kubectl apply --namespace nb-example --filename environment.yaml

Use this command to verify the new environment resource in your cluster:

kubectl get --namespace nb-example environments

After a few minutes, NetBackup finishes starting up the primary server, media servers and Snapshot Manager servers in the sequence that you configured in the environment resource.

Run the following command:

kubectl get --namespace nb-example all, environments, primary servers, mediaservers, cpservers

#### The output would be displayed as follows:

| azureuser@demo-vm-aks:~\$ kubectl get all,enviror  | nments, |         |        |
|----------------------------------------------------|---------|---------|--------|
| primaryservers, mediaservers, cpservers -n nb-name | espace  |         |        |
| NAME                                               | READY   | STATUS  | RESTAR |
| pod/environment-sample-primary-0                   | 1/1     | Running | 0      |
| pod/flexsnap-agent-66d59855d4-kdkvh                | 1/1     | Running | 0      |
| pod/flexsnap-api-gateway-7c7f75ddc-nlgrq           | 1/1     | Running | 0      |
| pod/flexsnap-certauth-b84c985f6-tq5jx              | 1/1     | Running | 0      |
| pod/flexsnap-coordinator-597fc94884-bph21          | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-26wfl                         | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-7kg96                         | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-9h7sq                         | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-9zzth                         | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-collector-6dbfcc74f-tmxdh     | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-n7r6s                         | 1/1     | Running | 0      |
| pod/flexsnap-fluentd-stfsz                         | 1/1     | Running | 0      |
| pod/flexsnap-idm-6ccb4cc695-kwnxj                  | 1/1     | Running | 0      |
| pod/flexsnap-listener-58f5dc744c-hvdh5             | 1/1     | Running | 0      |
| pod/flexsnap-mongodb-7c7dbd9486-gdf28              | 1/1     | Running | 0      |
| pod/flexsnap-nginx-66cf654846-pdczx                | 1/1     | Running | 0      |
| pod/flexsnap-notification-69fb444b85-4fq51         | 1/1     | Running | 0      |
| pod/flexsnap-rabbitmq-0                            | 1/1     | Running | 0      |
| pod/flexsnap-scheduler-6665cbf757-cwq87            | 1/1     | Running | 0      |
| pod/medial-media-0                                 | 1/1     | Running | 0      |
|                                                    |         |         |        |

NAME TYPE CLUSTER-IP EXTERN service/environment-sample-primary LoadBalancer 10.0.218.235 10.244 30748/TCP,13782:32042/TCP,1556:31727/TCP,443:30843/TCP,84

| service/flexsnap-api-gateway Cluster                 |                                  | rIP    | 10.0.156    | .177        | <none></none>   |               |      |
|------------------------------------------------------|----------------------------------|--------|-------------|-------------|-----------------|---------------|------|
| service/flexsnap-certauth Cluster                    |                                  | rIP    | 10.0.172.41 |             | 1 <none></none> |               |      |
| service/flexsnap-fluentd-service                     |                                  | Cluste | rIP         | 10.0.126    | .162            | <none></none> |      |
| service/flexsnap-idm                                 |                                  | Cluste | rIP         | 10.0.145.64 |                 | <none></none> |      |
| service/flexsnap-mongodb                             |                                  | Cluste | rIP         | 10.0.21.    | 233             | <none></none> |      |
| <pre>service/flexsnap-nginx</pre>                    |                                  | LoadBa | lancer      | 10.0.34.    | 60              | 10.244        | .204 |
| service/flexsnap-rabbitmq                            |                                  | Cluste | rIP         | 10.0.125    | .225            | <none></none> |      |
| service/medial-media-0                               |                                  | LoadBa | lancer      | 10.0.170    | .169            | 10.244        | .204 |
| NAME                                                 | DES                              | SIRED  | CURRENT     | READY       | UP              | -TO-DATE      | AV   |
| daemonset.apps/flexsnap-fluentd                      | 6                                |        | 6           | 6           | 6               |               | 6    |
| NAME                                                 |                                  |        | READY       | UP-TO-D     | ATE             | AVAILAB:      | LE   |
| deployment.apps/flexsnap-agent                       |                                  |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-api-gate                    | eway                             |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-certaut                     | h                                |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-coordina                    |                                  |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-fluentd                     | -coll                            | lector | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-idm                         | deployment.apps/flexsnap-idm 1/1 |        | 1           |             | 1               |               |      |
| deployment.apps/flexsnap-listener 1/1                |                                  | 1      |             | 1           |                 |               |      |
| deployment.apps/flexsnap-mongodb                     |                                  |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-nginx                       |                                  |        | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-notifica                    | atior                            | ı      | 1/1         | 1           |                 | 1             |      |
| deployment.apps/flexsnap-schedule                    | er                               |        | 1/1         | 1           |                 | 1             |      |
| NAME                                                 |                                  |        |             | DESIR       | ED              | CURRENT       | RE   |
| replicaset.apps/flexsnap-agent-6                     | 6d598                            | 355d4  |             | 1           |                 | 1             | 1    |
| replicaset.apps/flexsnap-api-gateway-7c7f75ddc       |                                  |        | 1           |             | 1               | 1             |      |
| replicaset.apps/flexsnap-certauth-b84c985f6          |                                  |        | 1           |             | 1               | 1             |      |
| replicaset.apps/flexsnap-coordinator-597fc94884      |                                  |        | 1           |             | 1               | 1             |      |
| replicaset.apps/flexsnap-fluentd-collector-6dbfcc74f |                                  |        | f 1         |             | 1               | 1             |      |
| replicaset.apps/flexsnap-idm-6ccb4cc695              |                                  |        | 1           |             | 1               | 1             |      |
| replicaset.apps/flexsnap-listener-58f5dc744c         |                                  |        | 1           |             | 1               | 1             |      |
| replicaset.apps/flexsnap-mongodb-7c7dbd9486          |                                  | 1      |             | 1           | 1               |               |      |
| replicaset.apps/flexsnap-nginx-66cf654846            |                                  | 1      |             | 1           | 1               |               |      |
| replicaset.apps/flexsnap-notification-69fb444b85     |                                  | 1      |             | 1           | 1               |               |      |
| replicaset.apps/flexsnap-scheduler-6665cbf757        |                                  | 1      |             | 1           | 1               |               |      |
|                                                      |                                  |        |             |             |                 |               |      |

| NAME                                                   | READY | AGE |
|--------------------------------------------------------|-------|-----|
| <pre>statefulset.apps/environment-sample-primary</pre> | 1/1   | 2h  |
| statefulset.apps/flexsnap-rabbitmq                     | 1/1   | 2h  |
| statefulset.apps/medial-media                          | 1/1   | 2h  |

#### Deployment with environment operators | 41 Configuring the environment.yaml file

| NAME                                                       | READY  | AGE | STATUS                          |
|------------------------------------------------------------|--------|-----|---------------------------------|
| environment.netbackup.veritas.com/<br>environment-sample   | 3/3    | 2h  | Success                         |
| NAME                                                       | TAG    | AGE | STATUS                          |
| primaryserver.netbackup.veritas.com/<br>environment-sample | 10.1.0 | 2h  | Success                         |
| NAME                                                       | TAG    | AGE | PRIMARY SERVER                  |
| <pre>mediaserver.netbackup.veritas.com/ media1</pre>       | 10.1.0 | 2h  | primary.<br>example.veritas.com |
| NAME                                                       | TAG    | AGE | STATUS                          |
| cpserver.netbackup.veritas.com/<br>cpserver-1              | 10.1.0 | 2h  | Success                         |

## Configuring the environment.yaml file

The environment.yaml file lets you configure the primary server, media servers, scale out MSDP Scaleout storage and Snapshot Manager servers. The file contains five sections, the first section contains parameters that are applicable to all the servers, rest of the sections are one each for the primary, media, MSDP Scaleout and Snapshot Manager servers.

The following configurations apply to all the components:

| Parameter                                | Description                                                                                                                                                                               |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| name:<br>environment-sample              | Specify the name of the environment in your cluster.                                                                                                                                      |
| namespace: example-ns                    | Specify the namespace where all the NetBackup resources are managed. If not specified here, then it will be the current namespace when you run the command kubectl apply -f on this file. |
| containerRegistry:<br>example.azurecr.io | Specify a container registry that the cluster has access.<br>NetBackup images are pushed to this registry.                                                                                |

 Table 2-2
 Common environment parameters

42 | Deployment with environment operators Configuring the environment.yaml file

| Parameter                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tag: <b>10.1</b>                                                                                                           | This tag is used for all images in the environment. Specifying<br>a 'tag' value on a sub-resource affects the images for that<br>sub-resource only. For example, if you apply an EEB that affects<br>only primary servers, you might set the 'primary.tag' to the<br>custom tag of that EEB. The primary server runs with that image,<br>but the media servers and MSDP scaleouts continue to run<br>images tagged '10.1'. Beware that the values that look like<br>numbers are treated as numbers in YAML even though this field<br>needs to be a string; quote this to avoid misinterpretation. |
| licenseKeys:                                                                                                               | List the license keys that are shared among all the<br>sub-resources. Licenses specified in a sub-resource are<br>appended to this list and applied only to the sub-resource.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| paused: <b>false</b>                                                                                                       | Specify whether the NetBackup operator attempts to reconcile<br>the differences between this YAML specification and the current<br>Kubernetes cluster state. Only set it to true during maintenance.                                                                                                                                                                                                                                                                                                                                                                                              |
| configCheckMode: default                                                                                                   | This controls whether certain configuration restrictions are checked or enforced during setup. Other allowed values are skip and dryrun.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| corePattern:<br>/corefiles/core.%e.%p.%t                                                                                   | Specify the path to use for storing core files in case of a crash.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| loadBalancerAnnotations:<br>service.<br>beta.kubernetes.io/<br>azure-load- balancer-<br>internal-subnet:<br>example-subnet | Specify the annotations to be added for the network load balancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Table 2-2 Common environment parameters (continued)

The following section describes Snapshot Manager related parameters. You may also deploy without any Snapshot Manager. In that case, remove the cpServer section entirely from the configuration file.

| Parameter                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cpServer:                           | This specifies Snapshot Manager configurations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -name                               | Currently only single instance of Snapshot Manager deployment<br>is supported. It is also possible to have no Snapshot Managers<br>configured; in this case, delete the cpServer section itself or<br>define it as an empty list as follows:<br>cpServer: []                                                                                                                                                                                                                                                   |
| containerRegistry                   | ( <i>Optional</i> ) Specify a container registry that the cluster has access.<br>Snapshot Manager images are pushed to this registry which<br>overrides the one defined in <b>Common environment parameters</b><br>table above.                                                                                                                                                                                                                                                                                |
| tag:                                | ( <i>Optional</i> ) This tag overrides the one defined in <b>Common</b><br><b>environment parameters</b> table above. The Snapshot Manager<br>images are shipped with tags different from the NetBackup<br>primary, media, and MSDP images.                                                                                                                                                                                                                                                                    |
| credential:secretName               | This defines the credentials for Snapshot Manager. It refers to a secret in the same namespace as this environment resource with values for username and password.                                                                                                                                                                                                                                                                                                                                             |
| networkLoadBalancer:<br>annotations | Annotations to be provided to the network load balancer. All AKS networkLoadBalancer annotations are supported. For Snapshot Manager, the default value for the Azure-load-balancer-internal annotation is <b>true</b> . Uncomment annotations to specify additional media-server specific annotations. These values are merged with the values provided in the <b>loadBalancerAnnotations</b> . The duplicate values provided here, override the corresponding values in the <b>loadBalancerAnnotations</b> . |
| networkLoadBalancer:<br>ipaddr      | IP address to be assigned to the network load balancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| networkLoadBalancer:<br>fqdn        | FQDN to be assigned to the network load balancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| log.capacity                        | Size for log volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| log.storageClassName                | Storage class for log volume. It must be a file share-based storage class.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| data.capacity                       | Size for data volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| data.storageClassName               | Storage class for data volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 2-3Snapshot Manager parameters

44 | Deployment with environment operators Configuring the environment.yaml file

| Parameter              | Description                                 |
|------------------------|---------------------------------------------|
| controlPlane.nodePool  | Name of the control plane node pool.        |
| controlPlane.labelKey  | Label and taint key of the control plane.   |
| controlPlane.labeValue | Label and taint value of the control plane. |
| dataPlane.nodePool     | Name of the data plane node pool.           |
| dataPlane.labelKey     | Label and taint key of the data plane.      |
| dataPlane.labelValue   | Label and taint value of the data plane.    |

#### Table 2-3 Snapshot Manager parameters (continued)

The following configurations apply to the primary server. The values specified in the following table can override the values specified in the table above.

| Paragraph          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| paused: false      | Specifies whether the NetBackup operator<br>attempts to reconcile the differences between<br>this YAML specification and the current<br>Kubernetes cluster state. Set it to <i>true</i> only<br>during maintenance. This applies only to the<br>environment object. To pause reconciliation<br>of the managed primary server, for example,<br>you must set spec.primary.paused.<br>Setting spec.paused:true ceases updates<br>to the managed resources, including updates<br>to their `paused` status. Entries in the media<br>servers and MSDP scaleouts lists also<br>support the `paused` field. The default value<br>is <i>false</i> . |
| primary            | Specifies attributes specific to the primary<br>server resources. Every environment has<br>exactly one primary server, so this section<br>cannot be left blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| name: primary-name | Set resourceNamePrefix to control the name<br>of the primary server. The default value is the<br>same as the environment's name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 Table 2-4
 Environment parameters for the primary server

| Paragraph                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tag: 10.1-special                                                                                                                                         | To use a different image tag specifically for<br>the primary server, uncomment this value and<br>provide the desired tag. This overrides the<br>tag specified in the common section.                                                                                                                        |
| nodeSelector:<br>labelKey: kubernetes.io/os<br>labelValue: linux                                                                                          | Specify a key and value that identifies nodes<br>where the primary server pod runs.<br><b>Note:</b> This <b>labelKey</b> and <b>labelValue</b> must<br>be the same label key:value pair used during<br>node pool creation which would be used as<br>a toleration for primary server.                        |
| <pre>networkLoadBalancer:<br/>annotations: service.beta. kubernetes.io /<br/>azure-load- balancer-internal- subnet:<br/>example- subnet<br/>ipList:</pre> | Uncomment the annotations to specify<br>additional primary server-specific annotations<br>These values are merged with the values<br>given in the loadBalancerAnnotations above<br>Any duplicate values given here override the<br>corresponding values above.<br>Next, specify the hostname and IP address |
| credSecretName: primary-credential-secret                                                                                                                 | This determines the credentials for the primary server. Media servers use these credentials to register themselves with the primary server.                                                                                                                                                                 |
| itAnalyticsPublicKey: <b>ssh-rsaxxx</b>                                                                                                                   | If using NetBackup IT Analytics, uncomment<br>this and provide the SSH public key. IT<br>Analytics uses this to access the primary<br>server.                                                                                                                                                               |

 Table 2-4
 Environment parameters for the primary server (continued)

46 | Deployment with environment operators Configuring the environment.yaml file

| Paragraph                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kmsDBSecret: <b>kms-secret</b>                                          | Secret name which contains the Host Master<br>Key ID (HMKID), Host Master Key<br>passphrase (HMKpassphrase), Key<br>Protection Key ID (KPKID) and Key Protection<br>Key passphrase (KPKpassphrase) for<br>NetBackup Key Management Service. The<br>secret should be 'Opaque', and can be<br>created either using a YAML or the following<br>example command: kubectl create<br>secret generic kms-secret<br>namespace nb-namespace<br>from-literal=HMKID="HMK@ID"<br>-from-literal=KPKID="KPK@ID"<br>-from-literal=KPKID="KPK@passphrase |
| licenseKeys:                                                            | To specify additional license keys that are<br>applied only to the primary server,<br>uncomment this and provide the license<br>key(s). In this example, the primary server<br>would have the "X" license key defined in the<br>previous section, followed by this "Y" key.                                                                                                                                                                                                                                                              |
| catalog:<br>capacity: <i>100Gi</i><br>storageClassName: <b>standard</b> | This storage applies to the primary server fo<br>the NetBackup catalog, log and data volumes<br>The primary server catalog volume must be<br>at least 100 Gi.                                                                                                                                                                                                                                                                                                                                                                            |
| log:<br>capacity: <b>30Gi</b><br>storageClassName: <b>standard</b>      | Log volume must be at least 30Gi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| data:<br>capacity: <b>30Gi</b>                                          | The primary server data volume must be at least 30Gi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| storageClassName: standard                                              | <b>Note:</b> This storage applies to primary serve data volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Table 2-4 | Environment parameters for the primary server (continued) |
|-----------|-----------------------------------------------------------|
|-----------|-----------------------------------------------------------|

The following section describes the media server configurations. If you do not have a media server either remove this section from the configuration file entirely, or define it as an empty list.

| parameters                                                                      | Description                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mediaServers:<br>- name: media1                                                 | This specifies media server configurations.<br>This is given as a list of media servers, but<br>most environments will have just one, with<br>multiple replicas. It's also possible to have<br>zero media servers; in that case, either<br>remove the media servers section entirely, or<br>define it as an empty list: mediaServers: [] |
| replicas: 1                                                                     | Specifies the number of replicas of this media server. Minimum number of supported replicas is 1.                                                                                                                                                                                                                                        |
| tag: 10.1-special                                                               | To use a different image tag specifically for<br>the media servers, uncomment this value and<br>provide the desired tag. This overrides the<br>tag specified above in the common table.                                                                                                                                                  |
| nodeSelector:<br>labelKey: <i>kubernetes.io/os</i><br>labelValue: <i>linux</i>  | Specify a key and value that identifies nodes<br>where media-server pods will run.<br><b>Note:</b> This <b>labelKey</b> and <b>labelValue</b> must<br>be the same label key:value pair used during<br>node pool creation which would be used as<br>a toleration for media server.                                                        |
| data:<br>capacity: <i>50Gi</i><br>storageClassName: <i>managed-premium-nbux</i> | This storage applies to the media server data volumes.<br>The minimum data size for a media server is 50 Gi.                                                                                                                                                                                                                             |
| log<br>capacity: <i>30Gi</i><br>storageClassName: <i>managed-premium-nbux</i>   | This storage applies to the media server log volumes.<br>Log volumes must be at least 30Gi.                                                                                                                                                                                                                                              |

 Table 2-5
 Media server related parameters

| parameters                                                                                            | Description                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| networkLoadBalancer:                                                                                  | Uncomment annotations to specify additional                                                                                                                                           |
| annotations: - service.beta.kubernetes.io/<br>azure-load-balancer -internal-subnet:<br>example-subnet | media-server specific annotations. These<br>values are merged with the values given in<br>the loadBalancerAnnotations. The duplicate<br>values given here, override the corresponding |
| ipList:                                                                                               | values in the loadBalancerAnnotations.                                                                                                                                                |
| ipAddr: 4.3.2.2                                                                                       | The number of entries in the IP list should                                                                                                                                           |
| fqdn: media1-1.example.com                                                                            | match the replica count specified above.                                                                                                                                              |
| ipAddr: 4.3.2.3                                                                                       |                                                                                                                                                                                       |
| fqdn: media1-2.example.com                                                                            |                                                                                                                                                                                       |

**Table 2-5**Media server related parameters (continued)

The following section describes MSDP-related parameters. You may also deploy without any MSDP scaleouts. In that case, remove the msdpScaleouts section entirely from the configuration file.

| Table 2-6 | MSDP Scaleout related | parameters |
|-----------|-----------------------|------------|
|-----------|-----------------------|------------|

| Parameter                         | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| msdpScaleouts:<br>- name: dedupe1 | This specifies MSDP Scaleout configurations.<br>This is given as a list, but it would be rare to<br>need more than one scaleout deployment in<br>a single environment. Use the `replicas`<br>property below to scale out. It's also possible<br>to have zero MSDP scaleouts; in that case,<br>either remove the msdpScaleouts section<br>entirely, or define it to an empty list:<br>msdpScaleouts: [] |
| tag: '17.0'                       | This tag overrides the one defined in the table<br>1-3. It is necessary because the MSDP<br>Scaleout images are shipped with tags<br>different from the NetBackup primary and<br>media images.                                                                                                                                                                                                         |
| replicas: 4                       | This is the scaleout size of this MSDP<br>Scaleout component. It is a required value,<br>and it must be between 4 and 16 inclusive.<br><b>Note:</b> Scale-down of the MSDP Scaleout<br>replicas after deployment is not supported.                                                                                                                                                                     |

| Parameter                                                                                             | Description                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| serviceIPFQDNs:                                                                                       | These are the IP addresses and host names                                                                                                                                                                                                                                                                                                |  |
| ipAddr: 1.2.3.4                                                                                       | of the MSDP Scaleout servers. The numbe<br>of the entries should match the number of th                                                                                                                                                                                                                                                  |  |
| fqdn: dedupe1-1.example.com                                                                           | replicas specified above.                                                                                                                                                                                                                                                                                                                |  |
| ipAddr: 1.2.3.5                                                                                       |                                                                                                                                                                                                                                                                                                                                          |  |
| fqdn: dedupe1-2.example.com                                                                           |                                                                                                                                                                                                                                                                                                                                          |  |
| ipAddr: 1.2.3.6                                                                                       |                                                                                                                                                                                                                                                                                                                                          |  |
| fqdn: dedupe1-3.example.com                                                                           |                                                                                                                                                                                                                                                                                                                                          |  |
| ipAddr: 1.2.3.7                                                                                       |                                                                                                                                                                                                                                                                                                                                          |  |
| fqdn: dedupe1-4.example.com                                                                           |                                                                                                                                                                                                                                                                                                                                          |  |
| kms:<br>keyGroup: <i>example-key-group</i>                                                            | Specifies the initial key group and key secret<br>to be used for KMS encryption. When reusing<br>storage from a previous deployment, the key<br>group and key secret may already exist. In<br>this case, provide the keyGroup only.                                                                                                      |  |
| keySecret:<br><i>example-key-secret</i>                                                               | Specify keySecret only if the key group does<br>not already exist and needs to be created.<br>The secret type should be Opaque, and you<br>can create the secret either using a YAML or<br>the following command:<br>kubectl create secret generic<br>example-key-secretnamespace<br>nb-namespace<br>from-literal=username="devuser"     |  |
|                                                                                                       | from-literal=passphrase="test<br>passphrase"                                                                                                                                                                                                                                                                                             |  |
| loadBalancerAnnotations:<br>service.beta.kubernetes .io/azure-load-<br>balancer-internal: <i>true</i> | For MSDP scaleouts, the default value for the<br>Azure-load-balancer-internal annotation is<br>`false`, which may cause the MSDP Scaleout<br>services in this Environment to be accessible<br>publicly. To make sure that they use private<br>IP addresses, specify `true` here or in the<br>loadBalancerAnnotations above in Table 1-3. |  |

 Table 2-6
 MSDP Scaleout related parameters (continued)

50 | Deployment with environment operators Configuring the environment.yaml file

| Parameter                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| credential:<br>secretName: <i>msdp-secret1</i>                            | This defines the credentials for the MSDP<br>Scaleout server. It refers to a secret in the<br>same namespace as this environment<br>resource. Secret can be either of type<br>'Basic-auth' or 'Opaque'. You can create<br>secrets using a YAML or by using the<br>following command:kubectl create<br>secret generic <msdp-secret1><br/>namespace <nb-namespace><br/>from-literal=username=&lt;"devuser"&gt;<br/>from-literal=username=&lt;"devuser"&gt;</nb-namespace></msdp-secret1> |
| autoDelete: false                                                         | Optional parameter. Default value is true.<br>When set to true, the MSDP Scaleout<br>operator deletes the MSDP secret after using<br>it. In such case, the MSDP and primary<br>secrets must be distinct. To use the same<br>secret for both MSDP scaleouts and the<br>primary server, set autoDelete to false.                                                                                                                                                                         |
| catalog:<br>capacity: <i>1Gi</i><br>storageClassName: <i>standard</i>     | This storage applies to MSDP Scaleout to<br>store the catalog and metadata. The catalog<br>size may only be increased for capacity<br>expansion. Expanding the existing catalog<br>volumes cause short downtime of the<br>engines. Recommended size is 1/100 of<br>backend data capacity.                                                                                                                                                                                              |
| dataVolumes:<br>capacity: <i>5Gi</i><br>storageClassName: <i>standard</i> | This specifies the data storage for this MSDP<br>Scaleout resource. You may increase the size<br>of a volume or add more volumes to the end<br>of the list, but do not remove or re-order<br>volumes. Maximum 16 volumes are allowed.<br>Appending new data volumes or expanding<br>existing ones will cause short downtime of<br>the Engines. Recommended volume size is<br>5Gi-32Ti.                                                                                                 |
| log:<br>capacity: <i>20Gi</i><br>storageClassName: <i>standard</i>        | Specifies log volume size used to provision<br>Persistent Volume Claim for Controller and<br>MDS Pods. In most cases, 5-10 Gi capacity<br>should be big enough for one MDS or<br>Controller Pod to use.                                                                                                                                                                                                                                                                                |

 Table 2-6
 MSDP Scaleout related parameters (continued)

| Table 2-6 MSDP Scaleout related p | parameters (continued) |
|-----------------------------------|------------------------|
|-----------------------------------|------------------------|

| Parameter                         | Description                                   |
|-----------------------------------|-----------------------------------------------|
| nodeSelector:                     | Specify a key and value that identifies nodes |
| labelKey: <i>kubernetes.io/os</i> | where MSDP Scaleout pods will run.            |
| labelValue: <i>linux</i>          |                                               |

#### Edit restricted parameters post deployment

Do not change these parameters post initial deployment. Changing these parameters may result in an inconsistent deployment.

 Table 2-7
 Edit restricted parameters post deployment

| Parameter | Description                                                                           |
|-----------|---------------------------------------------------------------------------------------|
| name      | Specifies the prefix name for the primary, media, and MSDP Scaleout server resources. |

| Parameter                                   | Description                                                                                                                                                                                                                 |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ipAddr, fqdn and<br>loadBalancerAnnotations | The values against ipAddr, fqdn and<br>loadBalancerAnnotations against following fields should<br>not be changed post initial deployment. This is applicable for<br>primary, media, and MSDP Scaleout servers. For example: |  |
|                                             | - The loadBalancerAnnotations for loadBalancer<br>service.beta.kubernetes.io/azure-load-balancer<br>-internal-subnet: example-subnet service.beta.<br>azure-load-balancer -internal:                                        |  |
|                                             | <pre>##~#apos;true##~#apos;<br/>- The IP and FQDNs values defined for Primary,<br/>Media and MSDPScaleout ipList:</pre>                                                                                                     |  |
|                                             | - ipAddr: 4.3.2.1 fqdn: primary.example.<br>ipList:                                                                                                                                                                         |  |
|                                             | <pre>- ipAddr: 4.3.2.2 fqdn: medial-1.example<br/>- ipAddr: 4.3.2.3</pre>                                                                                                                                                   |  |
|                                             | fqdn: medial-2.example.com serviceIPFQDNs:<br>- ipAddr: 1.2.3.4                                                                                                                                                             |  |
|                                             | fqdn: dedupe1-1.example.com - ipAddr: 1.2.                                                                                                                                                                                  |  |
|                                             | fqdn: dedupel-2.example.com<br>- ipAddr: 1.2.3.6 fqdn: dedupel-3.example<br>- ipAddr: 1.2.3.7                                                                                                                               |  |
|                                             | fqdn: dedupe1-4.example.com                                                                                                                                                                                                 |  |

| Table 2-7 | Edit restricted parameters post deployment (continued) |
|-----------|--------------------------------------------------------|
|-----------|--------------------------------------------------------|

# Uninstalling NetBackup environment and the operators

You can uninstall the NetBackup primary, media, and MSDP Scaleout environment and the operators as required. You need to uninstall the NetBackup environment before you uninstall the operators.

**Note:** Replace the environment custom resource names as per your configuration in the steps below.

### Deployment with environment operators 53 Uninstalling NetBackup environment and the operators

#### To uninstall the NetBackup environment

**1** To remove the environment components from the application namespace, run:

```
$ kubectl delete
environment.netbackup.veritas.com/environment-sample --namespace
<namespace name>
```

2 Wait for all the pods, services and resources to be terminated. To confirm, run

```
$ kubectl get --namespace <namespace_name>
all,environments,primaryservers,mediaservers,msdpscaleouts
```

You should get a message that no resources were found in the *nb-example* namespace.

- **3** To identify and delete any outstanding persistent volume claims, run the following:
  - \$ kubectl get pvc --namespace <namespce name>
  - \$ kubectl delete pvc <pvc-name>
- **4** To locate and delete any persistent volumes created by the deployment, run:

```
$ kubectl get pv
```

\$ kubectl delete pv <pv-name> --grace-period=0 --force

**Note:** Certain storage drivers may cause physical volumes to get stuck in the terminating state. To resolve this issue, remove the finalizer, using the command: \$ kubectl patch pv <pv-name> -p
'{"metadata":{"finalizers":null}}

{"metadata":{"linalizers":null}}

**5** To delete the application namespace, run:

\$ kubectl delete ns <namespace name>

#### To uninstall the operators

1 To uninstall the NetBackup operator run the following command from the installation directory.

\$ kubectl delete -k operator

**2** To uninstall the MSDP Scaleout operator and remove the operator's namespace, run.

```
$ kubectl msdp delete --namespace <namespace name>
```

**Note:** Do not remove the MSDP Scaleout operator first as it may corrupt the NetBackup operator.

#### To uninstall NetBackup operator and Snapshot Manager

To uninstall the NetBackup operator and Snapshot Manager operator and remove the operator's namespace, run the following ommand:

\$ kubectl delete -k operator

### Applying security patches

This section describes how to apply security patches for operator and application images.

In the instructions below, we assume that the operators were deployed to the *netbackup-operator-system* namespace (the default namespace suggested by the deployment script), and that an environment resource named *nb-env* was deployed to a namespace named *nb-example*.

Although it is not necessary to manually shut down NetBackup primary server or media servers, it's still a good idea to quiesce scheduling so that no jobs get interrupted while pods are taken down and restarted.

#### Prepare the images

#### To prepare the images to apply patches

- 1 Unpack the tar file on a system where docker is able to push to the container registry, and kubectl can access the cluster.
- 2 Decide on a unique tag value to use for MSDP Scaleout images. The unique tag should be in version-postfix format, For example, 17.0-update1. Set the DD\_TAG environment variable accordingly and run deploy.sh:

DD TAG=17.0-update1 ./deploy.sh

- **3** In the menu that appears, select option **1** to install the operators.
- **4** Enter the fully qualified domain name of the container registry.

For example: exampleacr.azurecr.io.

When the script prompts to load images, answer yes.

**5** When the script prompts to tag and push images, wait. Open another terminal window and re-tag the MSDP Scaleout images as:

```
docker tag msdp-operator:17.0 msdp-operator:17.0-update1
docker tag uss-controller:17.0 uss-controller:17.0-update1
docker tag uss-engine:17.0 uss-engine:17.0-update1
docker tag uss-mds:17.0 uss-mds:17.0-update1
```

6 Return to the deploy script and when prompted, enter *yes* to tag and push the images. Wait for the images to be pushed, and then the script will pause to ask another question. The remaining questions are not required, so press Ctrl+c to exit the deploy script.

#### Update the NetBackup operator

1 Get the image ID of the existing NetBackup operator container and record it for later. Run:

```
kubectl get pod -n netbackup-operator-system -l
nb-control-plane=nb-controller-manager -o jsonpath --template
"{.items[*].status.containerStatuses[?(@.name='netbackup-operator')].imageID}{'\n'}"
```

The command prints the name of the image and includes the SHA-256 hash identifying the image. For example:

exampleacr.azurecr.io/netbackup/operator @sha256:59d4d46d82024a1ab6353 33774c8e19eb5691f3fe988d86ae16a0c5fb636e30c

2 To restart the NetBackup operator, run:

```
pod=$(kubectl get pod -n netbackup-operator-system -l
nb-control-plane=nb-controller-manager -o jsonpath --template
'{.items[*].metadata.name}')
```

kubectl delete pod -n netbackup-operator-system \$pod

**3** Re-run the kubectl command from earlier to get the image ID of the NetBackup operator. Confirm that it's different from what it was before the update.

#### Update the MSDP Scaleout operator

**1** Get the image ID of the existing MSDP Scaleout operator container and save it for later use. Run:

```
kubectl get pods -n netbackup-operator-system -l
control-plane=controller-manager -o jsonpath --template
"{.items[*].status.containerStatuses[?(@.name=='manager')].imageID}{'\n'}"
```

2 Re-initialize the MSDP Scaleout operator using the new image.

```
kubectl msdp init -n netbackup-operator-system --image
exampleacr.azurecr.io/msdp-operator:17.0-update1
```

**3** Re-run the kubect1 command from earlier to get the image ID of the MSDP Scaleout operator. Confirm that it's different from what it was before the update.

#### Update the primary server or media servers

1 Look at the list of pods in the application namespace and identify the pod or pods to update. The primary-server pod's name typically end with "primary-0" and media-server pods end with "media-0", "media-1", etc. Hereafter, pod will be referred to as \$pod. Run:

kubectl get pods -n nb-example

2 Get the image ID of the existing NetBackup container and record it for later. Run:

```
kubectl get pods -n nb-example $pod -o jsonpath --template
"{.status.containerStatuses[*].imageID}{'\n'}"
```

**3** Look at the list of StatefulSets in the application namespace and identify the one that corresponds to the pod or pods to be updated. The name is typically the same as the pod, but without the number at the end. For example, a pod named nb-primary-0 is associated with statefulset nb-primary. Hereafter the statefulset will be referred to as \$set. Run:

kubectl get statefulsets -n nb-example

4 Restart the statefulset. Run:

kubectl rollout restart -n nb-example statefulset \$set

The pod or pods associated with the statefulset are terminated and be re-created. It may take several minutes to reach the "Running" state.

**5** Once the pods are running, re-run the kubectl command from step 2 to get the image ID of the new NetBackup container. Confirm that it's different from what it was before the update.

#### Update the MSDP Scaleout containers

1 Look at the list of pods in the application namespace and identify the pods to update. The controller pod have "uss-controller" in its name, the MDS pods have "uss-mds" in their names, and the engine pods are be named like their fully qualified domain names. Run:

kubectl get pods -n nb-example

2 Get the image IDs of the existing MSDP Scaleout containers and record them for later. All the MDS pods use the same image, and all the engine pods use the same image, so it's only necessary to get three image IDs, one for each type of pod.

kubectl get pods -n nb-example \$engine \$controller \$mds -o
jsonpath --template "{range
.items[\*]}{.status.containerStatuses[\*].imageID}{'\n'}{end}"

3 Edit the Environment resource and change the spec.msdpScaleouts[\*].tag values to the new tag used earlier in these instructions.

kubectl edit environment -n nb-example nb-env

```
...
spec:
...
msdpScaleouts:
- ...
tag: "17.0-update1"
```

- 4 Save the file and close the editor. The MSDP Scaleout pods are terminated and re-created. It may take several minutes for all the pods to reach the "Running" state.
- 5 Run kubectl get pods, to check the list of pods and note the new name of the uss-controller pod. Then, once the pods are all ready, re-run the kubectl command above to get the image IDs of the new MSDP Scaleout containers. Confirm that they're different from what they were before the update.

58 | Deployment with environment operators Applying security patches

Chapter

## Assessing cluster configuration before deployment

This chapter includes the following topics:

- How does the Config-Checker utility work
- Config-Checker execution and status details
- How Data-Migration works
- Data-Migration execution and status details

## How does the Config-Checker utility work

The Config-Checker utility performs checks on the deployment environment to verify that the environment meets the requirements, before starting the primary server and media server deployments.

How does the Config-Checker works:

RetainReclaimPolicy check:

This check verifies that the storage classes used for PVC creation in the CR have reclaim policy as **Retain**. The check fails if any of the storage classes do not have the **Retain** reclaim policy. Persistent Volumes Reclaiming

MinimumVolumeSize check:

This check verifies that the PVC storage capacity meets the minimum required volume size for each volume in the CR. The check fails if any of the volume capacity sizes does not meet the requirements.

Following are the minimum volume size requirements:

- Primary server:
  - Catalog volume size: 100Gi
  - Log volume size: 30Gi
  - Data volume size: 30Gi
- Media server:
  - Data volume size: 50Gi
  - Log volume size: 30Gi

#### Provisioner check:

This check verifies that the provisioner type used in defining the storage class is **Azure disk**, for the volumes in Media servers. If not the config-checker will fail. This check verifies that the provisioner type used in defining the storage class is not **Azure files** for the volumes in Media servers. That is data and log volumes in case of Media server.

Volume expansion check: This check verifies the storage class name given for Primary server log, data and catalog volume and for Media server data and log volumes has AllowVolumeExpansion = true. If config check fails with this check then it gives a warning message and continues with deployment of NetBackup media and primary servers.

## **Config-Checker execution and status details**

Note the following points.

 Config-Checker is executed as a separate job in Kubernetes cluster for both the primary server and media server CRs respectively. Each job creates a pod in the cluster. Config-checker creates the pod in the operator namespace.

Note: Config-checker pod gets deleted after 4 hours.

 Execution summary of the Config-Checker can be retrieved from the Config-Checker pod logs using the kubectl logs <configchecker-pod-name> -n <operator-namespace> command.

This summary can also be retrieved from the operator pod logs using the <code>kubectl logs <operator-pod-name> -n <operator-namespace> command.</code>

 Following are the Config-Checker modes that can be specified in the Primary and Media CR:

- Default: This mode executes the Config-Checker. If the execution is successful, the Primary and Media CRs deployment is started.
- Dryrun: This mode only executes the Config-Checker to verify the configuration requirements but does not start the CR deployment.
- Skip: This mode skips the Config-Checker execution of Config-Checker and directly start the deployment of the respective CR.
- Status of the Config-Checker can be retrieved from the primary server and media server CRs by using the kubectl describe <PrimaryServer/MediaServer>
   <CR name> -n <namespace> command.

For example, kubectl describe primaryservers environment-sample -n test

- Following are the Config-Checker statuses:
  - Success: Indicates that all the mandatory config checks have successfully passed.
  - Failed: Indicates that some of the config checks have failed.
  - Running: Indicates that the Config-Checker execution is in progress.
  - Skip: Indicates that the Config-Checker is not executed because the configcheckmode specified in the CR is skipped.
- If the Config-Checker execution status is Failed, you can check the Config-Checker job logs using kubectl logs <configchecker-pod-name> -n <operator-namespace>. Review the error codes and error messages pertaining to the failure and update the respective CR with the correct configuration details to resolve the errors.

For more information about the error codes, refer to NetBackup™ Status Codes Reference Guide.

- If Config-Checker ran in dryrun mode and if user wants to run Config-Checker again with same values in Primary or Media server YAML as provided earlier, then user needs to delete respective CR of Primary or Media server. And then apply it again.
  - If it is primary server CR, delete primary server CR using the kubectl delete -f <environment.yaml> command.

Or

If it is media server CR, edit the Environment CR by removing the media server section in the environment.yaml file. Before removing the **mediaServer** section, you must save the content and note the location of the content. After removing section apply environment CR using kubectl apply -f <environment.yaml> command.

 Apply the CR again. Add the required data which was deleted earlier at correct location, save it and apply the yaml using kubectl apply -f <environment.yaml> command.

## **How Data-Migration works**

Data migration job kicks-in whenever there is any change in the storage class name of the primary server's catalog, log and data volumes.

- Migration job is used to perform data transfer of Primary server's file system data from Azure disks to Azure premium files for existing NetBackup deployments.
- If user is deploying NetBackup for the first time, then it is considered as fresh
  installation and the user can directly utilize the Azure premium files for Primary
  server's catalog volume. Primary server log and data volume supports azure
  disks only.
- For existing NetBackup deployments, migration job would copy Primary server's old Azure disk catalog volume to new azure file volumes, except nbdb data, nbdb data will be copied to new azure disks based data volume. Logs can be migrated to new azure disk log volume.
- To invoke the migration job, the Azure premium files storage class must be provided in the environment.yaml file for catalog volume. User can also provide new azure disks storage class for log volume and new azure disk based data volume must be provided in environment.yaml.
- The migration status is updated to Success in primary server CRD post successful data migration.

Note: Migration will take longer time based on catalog data size.

## **Data-Migration execution and status details**

Data migration is carried out in form of **job** in NetBackup Kubernetes cluster for only the primary server CR. There will be a migration job per primary volume for data migration which will be part of NetBackup environment namespace. Each job creates a pod in the cluster.

 Execution summary of the Data migration can be retrieved from the migration pod logs using the following command: kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

This summary can also be retrieved from the operator pod logs using the following command:

kubectl logs <netbackup-operator-pod-name> -n
<netbackup-environment-namespace>

 Status of the data migration can be retrieved from the primary server CR by using the following command:

kubectl describe <PrimaryServer> <CR name> -n
<netbackup-environment-namespace>
Following are the data migration statuses:

- Success: Indicates all necessary conditions for the migration of the Primary server are passed.
- Failed: Indicates some or all necessary conditions for the migration the Primary server are failed.
- Running: Indicates migration is in running state for the Primary server.
- If the Data migration execution status is failed, you can check the migration job logs using the following command:

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

Review the error codes and error messages pertaining to the failure and update the primary server CR with the correct configuration details to resolve the errors. For more information about the error codes, refer to  $NetBackup^{TM}$  Status Codes Reference Guide.

64 Assessing cluster configuration before deployment Data-Migration execution and status details

## Chapter

## **Deploying NetBackup**

This chapter includes the following topics:

- Preparing the environment for NetBackup installation on AKS
- Recommendations of NetBackup deployment on AKS
- Limitations of NetBackup deployment on AKS
- About primary server CR and media server CR
- Monitoring the status of the CRs
- Updating the CRs
- Deleting the CRs
- Configuring NetBackup IT Analytics for NetBackup deployment
- Managing NetBackup deployment using VxUpdate
- Migrating the node pool for primary or media servers

# Preparing the environment for NetBackup installation on AKS

Refer to this section to prepare your host system and Azure Kubernetes cluster for NetBackup installation.

#### **AKS-specific requirements**

Use the following checklist to prepare the AKS for installation.

 Your Azure Kubernetes cluster must be created with appropriate network and configuration settings.

Supported Kubernetes cluster version is 1.21.x and later.

- While creating the cluster, assign appropriate roles and permissions.
   Concepts Access and identity in Azure Kubernetes Services (AKS) Azure Kubernetes Service | Microsoft Docs
- Use an existing Azure container registry or create a new one. Your Kubernetes cluster must be able to access this registry to pull the images from the container registry. For more information on the Azure container registry, see Azure Container Registry documentation.
- A dedicated node pool for NetBackup must be created with manual scaling or Autoscaling enabled in Azure Kubernetes cluster. The autoscaling feature allows your node pool to scale dynamically by provisioning and de-provisioning the nodes as required automatically.

The following table lists the node configuration for the primary and media servers.

| Node type                      |                  | D16ds v4 |
|--------------------------------|------------------|----------|
| Disk type                      |                  | P30      |
| vCPU                           |                  | 16       |
| RAM                            | 64 GiB           |          |
| Total disk size per node (TiB) |                  | 1 TB     |
| Number of disks/node           |                  | 1        |
| Cluster storage size           | Small (4 nodes)  | 4 TB     |
|                                | Medium (8 nodes) | 8 TB     |
|                                | Large (16 nodes) | 16 TB    |

 Another dedicated node pool must be created for Snapshot Manager (if it has to be deployed) with auto scaling enabled.
 Following is the minimum configuration required for Snapshot Manager data plane node pool:

| Node type             | B4ms                                                                |
|-----------------------|---------------------------------------------------------------------|
| RAM                   | 8 GB                                                                |
| Number of nodes       | Minimum 1 with auto scaling enabled.                                |
| Maximum pods per node | 6 (system) + 4 (static pods) + RAM*2<br>(dynamic) = 26 pods or more |

Following are the different scenario's on how the NetBackup Snapshot Manager calculates the number of job which can run at a given point in time, based on the above mentioned formula:

■ For 2 CPU's and 8 GB RAM node configuration:

| CPU                   | More than 2 CPU's                                                      |
|-----------------------|------------------------------------------------------------------------|
| RAM                   | 8 GB                                                                   |
| Maximum pods per node | 6 (system) + 4 (static pods) + 8*2 =<br>16 (dynamic pods) = 26 or more |
| Autoscaling enabled   | Minimum number =1 and Maximum = 3                                      |

Note: Above configuration will run 8 jobs per node at once.

• For 2/4/6 CPU's and 16 GB RAM node configuration:

| CPU                   | More than 2/4/6 CPU's                                                    |
|-----------------------|--------------------------------------------------------------------------|
| RAM                   | 16 GB                                                                    |
| Maximum pods per node | 6 (system) + 4 (Static pods) +<br>16*2=32 (Dynamic pods) = 42 or<br>more |
| Autoscaling enabled   | Minimum number =1 and Maximum = 3                                        |

Note: Above configuration will run 16 jobs per node at once.

- All the nodes in the node pool must be running the Linux operating system.
- Taints and tolerations allows you to mark (taint) a node so that no pods can schedule onto it unless a pod explicitly *tolerates* the taint. Marking nodes instead of pods (as in node affinity/anti-affinity) is particularly useful for situations where most pods in the cluster must avoid scheduling onto the node.
   Taints are set on the node pool while creating the node pool in the cluster.
   Tolerations are set on the pods.

To use this functionality, user must create the node pool with the following detail:

Add a label with certain key value. For example key = nbpool, value = nbnodes

#### 68 | Deploying NetBackup Preparing the environment for NetBackup installation on AKS

 Add a taint with the same key and value which is used for label in above step with effect as NoSchedule.

For example, key = nbpool, value = nbnodes, effect = NoSchedule Provide these details in the operator yaml as follows. To update the toleration and node selector for operator pod,

Edit the <code>operator/patch/operator\_patch.yaml</code> file. Provide the same label key:value in node selector section and in toleration sections. For example,

```
nodeSelector:
```

```
nbpool: nbnodes
```

# Support node taints by adding pod tolerations equal to the specified n
# For Toleartion NODE\_SELECTOR\_KEY used as a key and NODE\_SELECTOR\_VALUE
tolerations:
 - key: nbpool
 operator: "Equal"

```
value: nbnodes
```

Update the same label key:value as labelKey and labelValue in nodeselector section in environment.yaml file.

- If you want to use static public IPs, private IPs and fully qualified domain names for the load balancer service, the public IP addresses, private IP addresses and FQDNs must be created in AKS before deployment.
- If you want to bind the load balancer service IPs to a specific subnet, the subnet must be created in AKS and its name must be updated in the **annotations** key in the **networkLoadBalancer** section of the custom resource (CR).
   For more information on the network configuration for a load balancer service, refer to the *How-to-Guide* section of the Azure documentation.
   For more information on managing the load balancer service, See "About the Load Balancer service" on page 137.
- Create a storage class with Managed disc storage type with file.csi.azure.com and allows volume expansion. It must be in LRS category with Premium SSD. It is recommended that the storage class has, Retain reclaim. Such storage class can be used for primary server as it supports Azure premium files storage only for catalog volume.

For more information on Azure premium files, see Azure Files CSI driver. For example,

```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
   name: {{ custome-storage-class-name }}
```

```
provisioner: file.csi.azure.com
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
parameters:
  storageaccounttype: Premium_LRS
  protocol: nfs
```

 Create a storage class with Managed disc storage type with allowVolumeExpansion = true and ReclaimPolicy=Retain. This storage class will be used for Primary server data and log volume. Media server storage details support azure disks only.

Customer's Azure subscription should have Network Contributor role.
 For more information, see Azure built-in roles.

#### Host-specific requirements

Use the following checklist to address the prerequisites on the system that you want to use as a NetBackup host that connects to the AKS cluster.

- Linux operating system: For a complete list of compatible Linux operating systems, refer to the Software Compatibility List (SCL) at: NetBackup Compatibility List for all Versions https://sort.veritas.com/netbackup
- Install Docker on the host to install NetBackup container images through tar, and start the container service. https://docs.docker.com/engine/install/
- Prepare the host to manage the AKS cluster.
  - Install Azure CLI. https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux/
  - Install Kubernetes CLI https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
  - Log in to the Azure environment to access the Kubernetes cluster by running this command on Azure CLI:

```
# az login -identity
# az account set --subscription <subscriptionID>
# az aks get-credentials --resource-group
<resource_group_name> --name <cluster_name>
```

- Log in to the container registry:
  - # az acr login -n <container-registry-name>

# Recommendations of NetBackup deployment on AKS

Note the following recommendations:

- Use Azure Premium storage for data volume in media server CR.
- Use Azure Standard storage for log volume in media server CR.
- For primary server catalog volume, use Azure premium files as storage type and for media server volumes, use managed-disk as storage type.
- Do not delete the disk linked to PV used in primary server and media server CR deployment. This may lead to data loss.
- Ensure that in one cluster, only one NetBackup operator instance is running.
- Do not edit any Kubernetes resource created as part of primary server and media server custom resource. Update is supported through custom resource update only.
- Detailed primary server custom resource deployment and media server custom resource deployment logs are retrieved from NetBackup operator pod logs using the kubectl logs <netbackup-operator-pod-name> -c netbackup-operator -n <netbackup operator-namespace> command.
- Deploy primary server custom resource and media server custom resource in same namespace.
- Ensure that you follow the symbolic link and edit the actual persisted version of the file, if you want to edit a file having a symbolic link in the primary server or media server.
- Do not skip the Config-Checker utility execution during NetBackup upgrade or data migration.
- Specify different block storage based volume to obtain good performance when the nbdeployutil utility does not perform well on Azure premium files based volumes.

## Limitations of NetBackup deployment on AKS

Note the following limitations:

 (Applicable only for media servers) A storage class that has the storage type as Azure file is not supported. When the Config-Checker runs the validation for checking the storage type, the Config-Checker job fails if it detects the storage type as Azure file. But if the Config-Checker is skipped then this validation is not run, and there can be issues in the deployment. There is no workaround available for this limitation. You must clean up the PVCs and CRs and reapply the CRs.

- Only NFS is supported as the protocol while performing data migration with Azure premium files.
- Media server scale down is not supported. Certain workloads that require media server affinity for the clients would not work.
- External Certificate Authority (ECA) is not supported.
- In case of load balancer service updating the CR with dynamic IP address to static IP address and vice versa is not allowed.
- Media server pods as NetBackup storage targets are not supported. For example, NetBackup storage targets like AdvancedDisk and so on are not supported on the media server pods.
- As per Microsoft, since the NFS file share is in Premium account, the minimum file share size is 100GB. If you create a PVC with a small storage size, the following error message is displayed:

"failed to create file share ... size (5)...".

 The IP displayed is of POD IP. NetBackup installing on container takes the IP address of POD as configured IP. Even logs would have POD IP reference at many places.

## About primary server CR and media server CR

Primary server custom resource is used to deploy the NetBackup primary server and media server custom resource is used to deploy the NetBackup media server.

- After the operator is installed, update the custom resource YAMLs to deploy the primary server and media server CRs located in the samples folder.
- The primary server CRD and media server CRD are located in operator\_deployment.yaml in the operator folder where the package is extracted.
- Name used in the primary server and media server CRs must not be same. In the primary server CR the Name should not contain the word media and in the media server CR the Name should not contain the word primary.

**Note:** After deployment, you cannot change the **Name** in primary server and media server CR.

- Before the CRs can be deployed, the utility called Config-Checker is executed that performs checks on the environment to ensure that it meets the basic deployment requirements. The config-check is done according to the configCheckMode and paused values provided in the custom resource YAML. See "How does the Config-Checker utility work" on page 59.
- You can deploy the primary server and media server CRs in same namespace.
- Use the storage class that has the storage type as Azure premium files for the catalog volumes in the primary server CR, and the storage type as Azure disk for the data and log volumes in the media server CR and primary server CR.
- During fresh installation of the NetBackup servers, the value for keep logs up to under log retention configuration is set based on the log storage capacity provided in the primary server CR inputs. You may change this value if required. To update logs retention configuration, refer the steps mentioned in NetBackup™ Logging Reference Guide.
  - The NetBackup deployment sets the value as per the formula.
     Size of logs PVC/PV \* 0.8 = Keep logs up value By default, the default value is set to 24GB.

For example: If the user configures the storage size in the CR as 40GB (instead of the default 30GB) then the default value for that option become 32GB automatically based on the formula.

Note: This value will get automatically updated to the value of bp.conf file on volume expansion.

 Deployment details of primary server and media server can be observed from the operator pod logs using the following command:

```
kubectl logs <operator-pod-name> -c netbackup-operator -n
<operator-namespace>
```

### After installing primary server CR

Note the following points:

- The primary server CR will create a pod, a statefulset, a load balancer service, a configmap, a persistent volume claim for log volume, and a persistent volume claim for catalog volume.
- Initially pod will be in not ready state (0/1) when installation is going on in the background. Check the pod logs for installation progress using the following command:

kubectl logs <primary-pod-name> -n <namespace>

Primary server can be considered as successfully installed and running when the primary server pod's state is **ready (1/1)** and the Statefulset is **ready (1/1)**.

 You can access the NetBackup webUI using the primary server hostname that was specified in the primary server CR status in Primary server details section.

For example, if the primary server hostname is **nbu-primary**, then you can access the webUI at *https://nbu-primary/webui/login*.

## After Installing the media server CR

Note the following points:

- The media server CR will create a pod, a statefulset, a configmap, a loadbalancer service, a persistent volume claim for data volume, and a persistent volume claim for log volume.
- Initially pod will be in not ready state (0/1) when installation is going in the background. Check the pod logs for installation progress using the following command:

kubectl logs <media-pod-name> -n <namespace>

Media server can be considered as successfully installed and running when the media server pod's state is **ready (1/1)**, and the Statefulset is **ready (1/1)**, for each replica count.

 Details of media server name for each replica can be obtained from media server CR status by running the following command:

kubectl describe <MediaServer cr name> -n <namespace>

## Monitoring the status of the CRs

You can view the status and other details of the primary server and media server CRs using the following commands:

- kubectl get <PrimaryServer/MediaServer> -n <namespace>Of
- kubectl describe <PrimaryServer/MediaServer> <CR name> -n <namespace>

Following table describes the primary server CR and media server CR status fields:

74 | Deploying NetBackup Monitoring the status of the CRs

#### Table 4-1

| Section                                                                              | Field / Value             | Description                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary Server<br>Details                                                            | Host Name                 | Name of the primary server that should be used to access the web UI.                                                                                                                            |
| Only one<br>hostname and IP<br>address for the<br>respective primary<br>server.      | IP                        | IP address to access the primary server.                                                                                                                                                        |
|                                                                                      | Version                   | This indicates that the NetBackup primary server version is installed.                                                                                                                          |
| Media Server                                                                         | Host Name                 | Name of the media server.                                                                                                                                                                       |
| Details<br>Number of                                                                 | IP                        | IP address to access the media server.                                                                                                                                                          |
| hostname and IP<br>address is equal<br>to the replica<br>count mentioned<br>CR spec. | Version                   | This indicates that the NetBackup media server version is installed.                                                                                                                            |
| Attributes                                                                           | Resource Name             | Statefulset name of the respective server.                                                                                                                                                      |
|                                                                                      | Primary/Media server name | Name of the primary server or media server deployed.                                                                                                                                            |
|                                                                                      | Config checker status     | Indicates the status of the config<br>checker as passed, failed, or skipped.<br>For more information on the<br>Config-Checker, See "How does the<br>Config-Checker utility work"<br>on page 59. |
|                                                                                      | SHA Fingerprint           | Represents the SHA key fingerprint of the NetBackup primary server.<br>Note: SHAFingerprint represents the                                                                                      |
|                                                                                      |                           | SHA256 CA certificate fingerprint of the primary server.                                                                                                                                        |

## Deploying NetBackup | 75 Monitoring the status of the CRs

| Section       | Field / Value                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Details | Code                             | A code assigned to an error<br>encountered during the CR<br>deployment or during the config-chec<br>operation. For more information on th<br>error, refer to the <i>NetBackup Status</i><br><i>Code Reference Guide</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Message                          | Message that describes the respectiv error code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| State         | Success /Paused /Failed /Running | Current state of the custom resource from one of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                  | <ul> <li>Success: Indicates that the deployment of Primary/Media Custom Resource (CR) is successful. However, this does not mean that the installation of the NetBackup primary/media server is successful. The primary or media server StatefulSets and/or the pod might or might not be in a ready state, irrespective of that the Primary/Media CR state will show as Success.</li> <li>Paused: Indicates that the reconciler is in paused state and deployment of a CR is paused.</li> <li>Failed: Indicates that the deployment of a CR failed with errors. However this does not mean failed installation of the NetBackup Server. Errors can be analyzed from the Operator logs of CR describe.</li> <li>Running: Indicates that the CR deployment is in progress and th resources are getting created.</li> </ul> |
| Events        | INIT/FAILOVER/UPGRADE            | The events like INIT, FAILOVER and UPGRADE are logged in here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                  | The details of these events can also be added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

(continued)

## Updating the CRs

After the successful deployment of the primary server and media server CRs, you can update the values of only selected specs by editing the respective environment custom resource.

**Note:** Updating the Kubernetes resources (pod, configmap, services, statefulset etc) created for the CRs is not recommended.

Following tables describe the specs that can be edited for each CR.

| Spec            | Description                                                                                       |
|-----------------|---------------------------------------------------------------------------------------------------|
| paused          | Specify <i>True</i> or <i>False</i> as a value, to temporarily stop the respective CR controller. |
|                 | True: Stop the controller.                                                                        |
|                 | False: Resume the controller.                                                                     |
| configCheckMode | Specify default, dryrun or skip as a value.                                                       |
|                 | See "Config-Checker execution and status details" on page 60.                                     |
| capacity        | Catalog, log and data volume storage capacity can be updated.                                     |

Table 4-2Primary server CR

#### Table 4-3Media server CR

| Spec            | Description                                                                                                                                                           |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| paused          | Specify <i>True</i> or <i>False</i> as a value, to temporarily stop the respective CR controller.                                                                     |  |
|                 | True: Stop the controller.                                                                                                                                            |  |
|                 | False: Resume the controller.                                                                                                                                         |  |
| replicas        | Represents the replica count of the media server. Media server count can be scaled up by incrementing the replica count. Reducing the replica count is not supported. |  |
| configCheckMode | Specify <i>default</i> , <i>dryrun</i> or <i>skip</i> as a value.                                                                                                     |  |
|                 | See "Config-Checker execution and status details" on page 60.                                                                                                         |  |

| Spec     | Description                                                   |
|----------|---------------------------------------------------------------|
| capacity | Catalog, log and data volume storage capacity can be updated. |

Table 4-3Media server CR (continued)

If you edit any other fields, the deployment can go into an inconsistent state.

## **Deleting the CRs**

If you must delete any of the CRs for a valid reason such as for the troubleshooting purpose, or because any of the specs provided were incorrect; you can reinstall the deleted CR after resolving the issues.

**Note:** Once installed, deleting a CR is not recommended as it will stop the deployment and NetBackup will not work.

Notes:

- Deleting a CR will delete all its child resources like pod, statefulset, services, configmaps, config checker job, config checker pod.
- Deleting operator with kubectl delete -k <operator\_folder\_path> will delete the CRs and its resources except the PVC.
- Persistent volume claim (PVC) will not be deleted upon deleting a CR so that the data is retained in the volumes. Then if you create a new CR with the same name as the deleted one, the existing PVC with that same name will be automatically linked to the newly created pods.
- Do not delete /mnt/nbdata, /mnt/nblogs and /mnt/nbdb folders manually from primary server and media pods. The NetBackup deployment will go into an inconsistent state and will also result in data loss.

# Configuring NetBackup IT Analytics for NetBackup deployment

NetBackup IT Analytics can be configured to use with NetBackup primary server in this Kubernetes environment. NetBackup IT Analytics can be configured at the time of primary server deployment or user can update the primary server CR to configure NetBackup IT Analytics.

### To configure NetBackup IT Analytics for NetBackup deployment

1 Using the ssh-keygen command, generates public key and private key on NetBackup IT Analytics data collector.

NetBackup IT Analytics data collector uses passwordless ssh login.

- 2 Update the primary server CR, copy public key generated in previous steps to "itAnalyticsPublicKey" section in spec.
  - Apply the primary server CR changes using kubectl apply -f environment.yaml -n <namespace>.

On successfully deployment of primary server CR, describe the primary server CR using kubectl describe PrimaryServer <primary-server-name> -n <namespace>

- In status section, verify It Analytics Configured is set to true.
   For more information, refer to the NetBackup<sup>™</sup> Web UI Administrator's Guide.
- 3 Create and copy NetBackup API key from NetBackup web UI.
- 4 On NetBackup IT Analytics portal:
  - Navigate to Admin > Collector Administration > Select respective data collector > Add policy > Veritas NetBackup > Add.
  - Add required options, specify the NetBackup API in the API Key field, and then click OK.
  - Select newly added primary server from NetBackup Master Servers and provide nbitanalyticsadmin as Master Server User ID.
  - Provide privateKey=<path-of-private-key>|password=<passphrase> as Master Server Password and Repeat Password whereas
     <path-of-private-key> is the private key created using ssh-keygen in earlier steps and <passphrase> is the passphrase used while creating private key via ssh-keygen.
  - Provide appropriate data to data collector policy fields and select collection method as SSH or WMI protocol to NetBackup Master Server.

Configuring the primary server with NetBackup IT Analytics tools is supported only once from primary server CR.

For more information about IT Analytics data collector policy, see Add a Veritas NetBackup Data Collector policy and for more information about adding NetBackup Primary Servers within the Data Collector policy, see Add/Edit NetBackup Master Servers within the Data Collector policy.

## Deploying NetBackup | 79 Managing NetBackup deployment using VxUpdate |

### To change the already configured public key

1 Execute the following command in the primary server pod:

kubectl exec -it -n <namespace> <primaryServer-pod-name> -/bin/bash

- 2 Copy the new public keys in the /home/nbitanalyticsadmin/.ssh/authorized\_keys and /mnt/nbdata/.ssh/nbitanalyticsadmin\_keys files.
- **3** Restart the sshd service using the systemctl restart sshd command.

## Managing NetBackup deployment using VxUpdate

VxUpdate package is not shipped with the NetBackup deployment package. You must download and add it in NetBackup primary server.

### To manage NetBackup deployment using VxUpdate

- Download the required VxUpdate package on the docker-host used to interact with AKS cluster.
- 2 Copy the VxUpdate package to primary server pod using the kubectl cp <path-vxupdate.sja> <primaryServerNamespace>/<primaryServer-pod-name>:<path-on-primary-pod> command.
- **3** After VxUpdate package is available on primary server Pod, add it to NetBackup repository using any one of the following:
  - Select the VxUpdate package from the NetBackup web UI.
  - Execute the following command in the primary server pod:

kubectl exec -it -n <primaryserver-namespace>
<primaryServer-pod-name> -- bash
And run the following command:

nbrepo -a <vxupdate-package-path-on-PrimaryPod>

After adding the VxUpdate package to  $\tt nbrepo,$  this package is persisted even after pod restarts.

# Migrating the node pool for primary or media servers

You can migrate the node pool for primary or media servers.

### To migrate the node pool for primary or media servers

1 Edit environment CR object using the the following command:

kubectl edit environment <environmentCR name> -n <namespace>

- 2 Change the node selector **labelKey** and **lableValue** to new values for primary/media server.
- **3** Save the environment CR.

This will change the statefulset for respective NetBackup server replica to 0 for respective server. This will terminate the pods. After successful migration, statefulset replicas will be set to original value.

## Chapter

# **Upgrading NetBackup**

This chapter includes the following topics:

- Preparing for NetBackup upgrade
- Upgrading NetBackup operator
- Upgrading Snapshot Manager operator
- Upgrading NetBackup application
- Upgrading Snapshot Manager
- Post-migration tasks
- Upgrade NetBackup during data migration
- Procedure to rollback when upgrade fails

## Preparing for NetBackup upgrade

**Note:** Ensure that you go through this section carefully before starting with the upgrade procedure.

During upgrade, ensure that the following sequence of upgrade is followed:

- Upgrade MSDP operator
- Upgrade NetBackup operator
- Upgrade NetBackup application

In case the above sequence is not followed, user may face data loss.

#### Preparing for NetBackup upgrade

- 1 Take a backup of all the NetBackup jobs and ensure that all the jobs are suspended.
- 2 Take a catalog backup.

See "Backing up a catalog" on page 145.

**3** Copy DRPackages files (packages) located at /mnt/nblogs/DRPackages/ from the pod to the host machine from where AKS cluster is accessed.

Run the following command:

```
kubectl cp
<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages
<Path_where_to_copy_on_host_machine>
```

4 Preserve the data of /mnt/nbdata and /mnt/nblogs on host machine by creating tar and copying it using the following command:

```
kubectl cp
<primary-pod-namespace>/<primary-pod-name>:<tar_file_name>
<path_on_host_machine_where_to_preserve_the_data>
```

5 Preserve the environment CR object using the following command and operator directory that is used to deploy the NetBackup operator:

```
kubectl -n <namespace> get environment.netbackup.veritas.com
<environment name> -o yaml > environment.yaml
```

Note: Ensure that you upgrade MSDP operator first.

**6** In case of existing NetBackup deployments with Azure disks, change the storage class for catalog and log data of primary server to trigger data migration. For more information on changing the storage class, refer to the *AKS-specific requirements* sub-section of the following section:

See "Preparing the environment for NetBackup installation on AKS" on page 65.

## Upgrading NetBackup operator

Ensure that all the steps mentioned in the following section are performed before performing the upgrade of NetBackup operator:

See "Preparing for NetBackup upgrade" on page 81.

#### Upgrading the NetBackup operator

- 1 Push the new operator images, NetBackup main image to container registry with different tags.
- 2 Update the new image name and tag in images section in kustomization.yaml file in operator folder available in the new package folder.
- **3** Update the node selector and tolerations in <code>operator\_patch.yaml</code> file in <code>operator/patches</code> folder in the new package folder.
- **4** To upgrade the operator, apply the new image changes using the following command:

kubectl apply -k <operator folder name>

After applying the changes, new NetBackup operator pod will start in operator namespace and run successfully.

## **Upgrading Snapshot Manager operator**

Ensure that all the steps mentioned in the following section are performed before performing the upgrade of Snapshot Manager operator:

See "Preparing for NetBackup upgrade" on page 81.

#### Upgrading the Snapshot Manager operator

- 1 Push the new operator images, Snapshot Manager main image to container registry with different tags.
- 2 Update the new image name and tag in images.cloudpointoperator section in kustomization.yaml file in operator folder available in the new package folder.
- **3** Update the node selector and tolerations in <code>operator\_patch.yaml</code> file in <code>operator/patches</code> folder in the new package folder.
- **4** To upgrade the operator, apply the new image changes using the following command:

kubectl apply -k <operator folder name>

After applying the changes, new Snapshot manager operator pod will start in operator namespace and run successfully.

## **Upgrading NetBackup application**

Ensure that all the steps mentioned in the following section are performed before performing the upgrade of NetBackup application:

See "Preparing for NetBackup upgrade" on page 81.

Ensure that the following server upgrade sequence is followed:

- Primary server: Upgrade and verify it is successfully upgraded
- MSDP server: Upgrade and verify it is successfully upgraded
- Media server: Upgrade and verify it is successfully upgraded

#### Upgrading the NetBackup application

1 To upgrade the primary server and media server, edit the environment.yaml from the new package. Copy all the fields from the preserved environment CR environment.yaml which can be obtained from the the following section:

See "Preparing for NetBackup upgrade" on page 81.

To update the primary server, update tag with new image tag in primary section in new environment.yaml file.

To update the media server, update **tag** with new image tag in **mediaServers** section in new environment.yaml file.

Update the **storageClassName** for catalog volume for primary server in Storage subsection of primary section in environment.yaml file.

Update the details of data volume for primary server in environment.yaml file. Storage class should be of Azure managed disk storage type.

#### For example,

```
Kind: Environment
...
Spec:
  primary:
   tag: "newtag"
  mediaServers:
   tag: "newtag"
```

Apply the changes using the following command:

kubectl apply -f <environment.yaml>

Primary server and media server pods would start with new container images respectively.

**Note:** Upgrade the PrimaryServer first and then change the tag for MediaServer to upgrade. If this sequence is not followed then deployment may go into inconsistent state

**Note:** MediaServer version should be same or lower than the PrimaryServer version after upgrade. Otherwise the deployment may go into inconsistent state.

2 At the time of upgrade, primary server and media server status would be changed to *Running*. Once upgrade is completed, the status would be changed to *Success* again.

## Perform the following if upgrade fails in between for primary server or media server

**1** Check the installation logs using the following command:

```
kubectl logs <PrimaryServer-pod-name/MediaServer-pod-name> -n
<PrimaryServer/MediaServer-CR-namespace>
```

**2** If required, check the NetBackup logs by performing exec into the pod using the following command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>
<PrimaryServer/MediaServer-pod-name> -- bash

**3** Fix the issue and restart the pod by deleting the respective pod with the following command:

```
kubectl delete < PrimaryServer/MediaServer-pod-name > -n
<PrimaryServer/MediaServer-CR-namespace>
```

- 4 New pod would be created and upgrade process will be restarted for the respective NetBackup server.
- **5** Data migration jobs create the pods that run before deployment of primary server. Data migration pod exist after migration for one hour only if data migration job failed. The logs for data migration execution can be checked using the following command:

```
kubectl logs <migration-pod-name> -n
<netbackup-environment-namespace>
```

User can copy the logs to retain them even after job pod deletion using the following command:

```
kubectl logs <migration-pod-name> -n
<netbackup-environment-namespace> > jobpod.log
```

**Note:** Downgrade of NetBackup servers is not supported. If this is done, there are chances of inconsistent state of NetBackup deployment.

## **Upgrading Snapshot Manager**

Edit the **tag** field in the CR to upgrade Snapshot Manager using environment CR. MODIFY event will be sent to Snapshot Manager operator which will trigger upgrade workflow.

#### To upgrade Snapshot Manager

**1** Update the variables appropriately:

NB\_VERSION=10.1.0 OPERATOR\_NAMESPACE="netbackup-operator-system" ENVIRONMENT NAMESPACE="ns-155"

NB DIR=/home/azureuser/VRTSk8s-netbackup-\${NB VERSION}/

2 Edit the operator/kustomization.yaml file as follows:

KUSTOMIZE\_FILE=\${NB\_DIR}operator/kustomization.yaml nano \$KUSTOMIZE FILE

Update the newName and newTag under cloudpointoperator.

**3** Upgrade the operator using the following command:

cd \$NB DIR kubectl apply -k operator sleep 20s

4 Check (Wait for) if the operator is upgraded and running:

```
kubectl describe pod $(kubectl get pods -n $OPERATOR_NAMESPACE |
grep flexsnap-operator | awk '{printf $1" " }') | grep Image:
kubectl get all -n $OPERATOR NAMESPACE
```

5 Once the operator is upgraded successfully and it is running, update the cpServer.tag in environment.yaml file as follows:

nano \${NB DIR}environment.yaml

6 Apply environment.yaml file to start upgrading Snapshot Manager services using the following command:

```
kubectl apply -f ${NB_DIR}environment.yaml -n
$ENVIRONMENT NAMESPACE
```

7 Check upgrade logs in **flexsnap-operator** using the following command:

kubectl logs -f \$(kubectl get pods -n \$OPERATOR\_NAMESPACE | grep flexsnap-operator | awk '{printf \$1" " }')

8 Check Snapshot Manager status using the following command:

kubectl get cpserver -n \$ENVIRONMENT\_NAMESPACE

## **Post-migration tasks**

After migration, if the name is changed to , then perform the following steps for Linux and Windows on-host agent renews and then perform the plugin level discovery:

#### For Linux:

Edit the /etc/flexsnap.conf file for migrated.
 For example,

```
[root@prashant-encrypt-vm flexsnap]# cat /etc/flexsnap.conf
[global]
target = nbuxqa-alphaqa-10-250-172-172.vxindia.veritas.com
hostid = azure-vm-b5c2b769-256a-4488-a71d-f809ce0fec5d
```

```
[agent]
id = agent.c2ec74c967e043aaae5818e50a939556
```

- Perform the Linux on-host agent renew using the following command: /opt/VRTScloudpoint/bin/flexsnap-agent--renew--token <auth\_token>
- Restart linux on-host agent using the following command: sudo systemctl restart flexsnap-core.service

#### For Windows:

Edit the \etc\flexsnap.conf file for migrated.
 For example,

```
[global]
target = nbuxqa-alphaqa-10-250-172-172.vxindia.veritas.com
hostid = azure-vm-427a67a0-6f91-4a35-abb0-635e099fe9ad
[agent]
```

```
id = agent.3e2de0bf17d54ed0b54d4b33530594d8
```

Perform the Windows on-host agent renew using the following command:

"c:\ProgramFiles\Veritas\CloudPoint\flexsnap-agent.exe"--renew--token
<auth token>

## **Upgrade NetBackup during data migration**

Ensure that all the steps mentioned for data migration in in the following section are performed before upgrading to the latest NetBackup or installing the latest :

See the section called "AKS-specific requirements" on page 65.

User must have deployed NetBackupon Azure with Azure disks as its storage class.

While upgrading to latest NetBackup, data migration would happen only if existing storage class has been changed. The existing catalog data of primary server will be migrated (copied) from Azure disks to Azure premium files. Also new data volume would be created on Azure disks for NetBackup database. If **storageClassName** is changed for log, migration from azure disk to azure disk will trigger for logs.

 Fresh NetBackup deployment: If user is deploying NetBackup for the first time, then Azure premium files will be used for primary server's catalog and Azure disks will be used for log and data volume for any backup and restore operation.

## Procedure to rollback when upgrade fails

**Note:** The rollback procedure in this section can be performed only after assuming that the customer has taken catalog backup before performing the upgrade.

Perform the following steps to rollback from upgrade failure and install the NetBackup version prior to upgrade

1 Delete the environment CR object using the following command and wait until all the underlying resources are cleaned up:

kubectl delete environment.netbackup.veritas.com <environment name> -n <namespace>

For example, primary server CR, media server CR, MSDP CR and their underlined resources.

2 Delete the new operator which is deployed during upgrade using the following command:

kubectl delete -k <new-operator-directory>

This will delete the new operator and new CRDs.

**3** Apply the NetBackup operator directory which was preserved (the directory which was used to install operator before upgrade) using the following command:

```
kubectl apply -k <operator directory>
```

4 Get names of PV attached to primary server PVC (data, catalog and log) using the following command:

kubectl get pvc -n <namespace> -o wide

**5** Delete the primary server PVC (data, catalog and log) using the following command:

kubectl delete pvc <pvc-name> -n <namespace>

6 Delete the PV linked to primary server PVC using the following command:

kubectl delete pv <pv-name> command

- 7 Edit the preserved environment.yaml file (from older version of NetBackup package directory) and remove **keySecret** section from MSDP Scaleout section. Also change the CR spec *paused: false* to *paused: true* for every object in MSDP Scaleout and media servers section.
- 8 Apply the edited environment.yaml file using the following command:

kubectl apply -f <environment.yaml>

9 After the primary server pod is in ready state (1/1), change the CR spec from paused: false to paused: true in environment.yaml file of the primary server section and reapply the environment.yaml using the following command:

kubectl apply -f environment.yaml -n <namespace>

**10** Exec into the primary server pod using the following command:

```
kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>
<primary-pod-name> -- /bin/bash
```

- Increase the debug logs level on primary server.
- Create a DRPackages directory at the persisted location using mkdir /mnt/nblogs/DRPackages folder.
- Change ownership of the DRPackages folder to service user using the following command:

chown nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages

**11** Copy the earlier copied DR files to primary pod at /mnt/nblogs/DRPackages using the following command:

kubectl cp <Path\_of\_DRPackages\_on\_host\_machine>
<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages

- **12** Execute the following steps in the primary server pod:
  - Change ownership of the files in /mnt/nblogs/DRPackages using the following command:

chown nbsvcusr:nbsvcusr <filename>

- Deactivate NetBackup health probes using the following command: /opt/veritas/vxapp-manage/nbu-health deactivate
- Stop the NetBackup services using the following command: /usr/openv/netbackup/bin/bp.kill\_all
- Execute the following command: nbhostidentity -import -infile /mnt/nblogs/DRPackages/<filename>.drpkg
- Restart all the NetBackup services using the following command: /usr/openv/netbackup/bin/bp.start
- **13** Verify if the security settings are enabled.
- **14** Add respective media server entry in host properties using NetBackupAdministration Console as follows:

Navigate to NetBackup Management > Host properties > Master Server > Add Additional server and add media server.

- **15** Restart the NetBackup services in primary server pod and external media server as follows:
  - Exec into the primary server pod using command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>
<primary-pod-name> -- /bin/bash

• Run the following command to stop all the services:

/usr/openv/netbackup/bin/bp.kill\_all

After stopping all the services, restart the services using the following command:

/usr/openv/netbackup/bin/bp.start\_all

 Run the following command to stop all the NetBackup services: /usr/openv/netbackup/bin/bp.kill\_all After stopping all the services, restart the NetBackup services using the following command:

/usr/openv/netbackup/bin/bp.start\_all

- **16** Configure a storage unit on external media server that is used during catalog backup.
- **17** Perform catalog recovery from NetBackup Administration Console.

For more information, refer to the Veritas™ NetBackup Troubleshooting Guide

**18** Exec into the primary server pod using the following command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>
<primary-pod-name> -- /bin/bash

- Stop the NetBackup services using the following command: /usr/openv/netbackup/bin/bp.kill\_all
- Start the NetBackup services using the following command: /usr/openv/netbackup/bin/bp.start\_all
- Activate NetBackup health probes using the following command: /opt/veritas/vxapp-manage/nbu-health activate
- **19** Restart the NetBackup operator pod, where user must delete the pod using the following command:

kuebctl delete <operator-pod-name> -n <namespace>

Kubernetes will start new pod after deletion.

- **20** Pause the reconciler for primary, media servers, and msdp scaleouts in the following sequence:
  - Change CR spec paused: true to paused: false in environment.yaml file of the primary section and re-apply environment.yaml file using the following command:

kubectl apply -f environment.yaml -n <namespace>
Wait till primary server is in ready state.

 Change CR spec paused: true to paused: false in environment.yaml file of the msdp scaleouts section and re-apply environment.yaml file using the following command:

kubectl apply -f environment.yaml -n <namespace>
Wait till primary server is in ready state.

 Change CR spec paused: true to paused: false in environment.yaml file of the media servers section and re-apply environment.yaml file using the following command: kubectl apply -f environment.yaml -n <namespace>
Wait till primary server is in ready state.

21 Verify the rollback is successful by performing backups and recovery jobs.

94 | Upgrading NetBackup Procedure to rollback when upgrade fails

Chapter

# Deploying Snapshot Manager

This chapter includes the following topics:

- Overview
- Prerequisites
- Installing the docker images

## **Overview**

You must deploy Snapshot Manager solution in your Azure Kubernetes Service Cluster environment. AKS must be created with appropriate network and configuration settings. Before you deploy the solution, ensure that your environment meets the requirements.

See "Prerequisites" on page 95.

## **Prerequisites**

## A working Azure Kubernetes cluster (AKS cluster)

- Azure Kubernetes cluster
  - Your Azure Kubernetes cluster must be created with appropriate network and configuration settings.
     Supported Azure Kubernetes cluster version is 1.21.x and later.
  - Availability zone for AKS cluster must be disabled.
  - Two storage classes with the following configurations is required:

| Storage class field  | Data               | Log                |
|----------------------|--------------------|--------------------|
| provisioner          | disk.csi.azure.com | file.csi.azure.com |
| storageaccounttype   | Premium_LRS        | Premium_LRS        |
| reclaimPolicy        | Retain             | Retain             |
| allowVolumeExpansion | True               | True               |

- A Kubernetes Secret that contains the Snapshot Manager credentials is required.
- Azure container registry (ACR)

Use existing ACR or create a new one. Your Kubernetes cluster must be able to access this registry to pull the images from.

Node Pool

You must have a dedicated node pool for Snapshot Manager created. The Azure autoscaling allows your node pool to scale dynamically as required.

It is recommended that you set the minimum node number to 1 or more to bypass some limitations in AKS.

User must enable system managed identity on the control node pool and add appropriate role for Snapshot Manager to operate.

- Client machine to access AKS cluster
  - A separate computer that can access and manage your AKS cluster and ACR.
  - It must have Linux operating system.
  - It must have Docker daemon, the Kubernetes command-line tool (kubectl), and Azure CLI installed.

The Docker storage size must be more than 6 GB. The version of kubectl must be v1.19.x or later. The version of Azure CLI must meet the AKS cluster requirements.

- If AKS is a private cluster, see Create a private Azure Kubernetes Service cluster.
- Static Internal IPs

If the internal IPs are used, reserve the internal IPs (avoid the IPs that are reserved by other systems) for Snapshot Manager and add DNS records for all of them in your DNS configuration.

The Azure static public IPs can be used but is not recommended.

If Azure static public IPs are used, create them in the node resource group for the AKS cluster. A DNS name must be assigned to each static public IP. The IPs must be in the same location of the AKS cluster.

## Installing the docker images

#### The Snapshot Manager package

netbackup-flexsnap-\$(SNAPSHOT\_MANAGER\_VERSION).tar.gz for Kubernetes
includes the following:

- A docker image for Snapshot Manager operator
- 10 docker images for Snapshot Manager: flexsnap-certauth, flexsnap-rabbitmq, flexsnap-api, flexsnap-fluentd, flexsnap-datamover, flexsnap-nginx, flexsnap-idm, flexsnap-mongodb, flexsnap-core, flexsnap-deploy

#### To install the docker images

- 1 Download netbackup-flexsnap-\$(SNAPSHOT\_MANAGER\_VERSION).tar.gz from the Veritas site.
- 2 Load the docker images to your docker storage.

```
docker load -i
netbackup-flexsnap-$(SNAPSHOT MANAGER VERSION).tar.gz
```

#### 3 Tag the images.

\$ docker tag veritas/flexsnap-fluentd:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-fluentd:\${SNAPSHOT MANAGER VERSION}

\$ docker tag

veritas/flexsnap-datamover:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-datamover:\${SNAPSHOT MANAGER VERSION}

\$ docker tag veritas/flexsnap-nginx:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-nginx:\${SNAPSHOT\_MANAGER\_VERSION}

\$ docker tag veritas/flexsnap-idm:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-idm:\${SNAPSHOT\_MANAGER\_VERSION}

\$ docker tag veritas/flexsnap-mongodb:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-mongodb:\${SNAPSHOT MANAGER VERSION}

\$ docker tag veritas/flexsnap-core:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-core:\${SNAPSHOT\_MANAGER\_VERSION}

\$ docker tag veritas/flexsnap-deploy:\${SNAPSHOT\_MANAGER\_VERSION}
\${REGISTRY}/veritas/flexsnap-deploy:\${SNAPSHOT\_MANAGER\_VERSION}

#### Deploying Snapshot Manager | 99 Installing the docker images |

#### 4 Push the images.

```
$ docker push
${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT MANAGER VERSION}
$ docker push
${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT MANAGER VERSION}
```

#### **Configure Snapshot Manager**

After you push the docker images to Azure container registry, then initialize Snapshot Manager (flexsnap) operator and configure Snapshot Manager. The Snapshot Manager operator starts with NetBackup operator. For more information, refer to the following section:

See "Deploying the operators manually " on page 25.

### **Configure Snapshot Manager**

1 Create (or use existing) a dedicated namespace for Snapshot Manager to run:

kubectl create ns <sample-namespace>

2 Create a Snapshot Manager Secret. The Secret is used in CR.

```
kubectl create secret generic cp-creds
--from-literal=username='admin' --from-literal=password='Cloudpoint@123' -n
$ENVIRONMENT NAMESPACE
```

See "Deploying NetBackup and Snapshot Manager manually" on page 36.

**3** Edit the cpServer CR section of the environment.yaml file in the text editor.

See "Configuring the environment.yaml file" on page 41.

4 Apply the CR file to the AKS cluster:

kubectl apply -f <sample-cr-yaml>

**5** Monitor the configuration process:

kubectl get all -n <namespace> -o wide

**6** Verify the status by running the following command:

kubectl get cpservers -n <sample-namespace>

# Chapter

# Migration and upgrade of Snapshot Manager

This chapter includes the following topics:

Migration and upgrade of Snapshot Manager

## **Migration and upgrade of Snapshot Manager**

## Migrating Snapshot Manager

Users can manually migrate Snapshot Manager registered with NetBackup to Kubernetes Service cluster environment by performing the following steps:

- 1. Disable Snapshot Manager from NetBackup.
- 2. Stop services on the Snapshot Manager VM.
- 3. Create and attach a disk to the VM which will be used as PV for mongoDB:
  - Copy contents from /cloudpoint/mongodb to the new disk .
  - Copy flexsnap.conf and bp.conf configuration files to the VM from where cluster is accessible.
  - Detach the disk from VM and move it to cluster resources group (RG): MC <clusterRG> <cluster name> <cluster region>
  - From VM perform the following steps:
    - Create configuration maps using the following command: kubectl create cm agentconf --from-file=<path to flexsnap.conf > -n <application namespace> kubectl create cm nbuconf --from-file=<path to bp.conf> -n <application namespace>

102 | Migration and upgrade of Snapshot Manager Migration and upgrade of Snapshot Manager

- Create mongodb Persistent Volume and Persistent Volume Claim as follows:

```
mongodb pv:
apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-azuredisk
spec:
 capacity:
    storage: <Size of the disk>
 accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: <Storage class name>
 csi:
    driver: disk.csi.azure.com
    readOnly: false
    volumeHandle: <Resource ID of the disk>
    volumeAttributes:
      fsType: <FS type>
```

#### mongodb-pvc:

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: mongo-persistent-storage-flexsnap-mongodb-0
spec:
   accessModes:
    - ReadWriteOnce
   resources:
      requests:
      storage: <Disk size>
   volumeName: pv-azuredisk
   storageClassName: managed-csi
```

4. Edit the environment.yaml file to upgrade NetBackup (primary/media/MSDP) and add section for Snapshot Manager as follows:

```
cpServer:
  - name: cp-cluster-deployment
    containerRegistry: acr.azurecr.io
    credential:
      secretName: cp-creds
    networkLoadBalancer:
      annotations:
        service.beta.kubernetes.io/azure-load-balancer-internal: "true"
      ipAddr: 1.2.3.4
      fqdn: cpserver.example.com
    storage:
     log:
        capacity: 10Gi
        storageClassName: standard
      data:
        capacity: <Disk size mentioned in mongodb pv>
        storageClassName: <<Storage class name mentioned in mongodb pv>
    nodeSelector:
      controlPlane:
        nodepool: cpcontrol1
        labelKey: cp-node-label
        labelValue: cpcontrol1
      dataPlane:
        nodepool: cpdata1
        labelKey: cp-node-label
        labelValue: cpdata1
```

5. Apply the environment.yaml file using the following command:

kubectl apply -f <path to environment.yaml>

 Re-register the Snapshot Manger from WebUI if the Snapshot Manager name (fqdn/ip) is same as VM deployment.

## Updating/Upgrading Snapshot Manager

Update:

User can update few parameters on the existing deployed Snapshot Manager by making changes in the **cpServer** section of <code>environment.yaml</code> file and apply it.

Only **log size** and **data size** fields can be changed in **cpServer** section of CR. For update operation to work, set the value of **allowVolumeExpansion** parameter to **true** in the storage classes used.

Upgrade:

If there is a change in the **cpServer** tag, then it would be considered as a Snapshot Manager upgrade. For upgrade only few parameters related to Snapshot Manager can be modified.

The following table lists the parameters that can be modified during update/upgrade of Snapshot Manager:

| Parameters                          | Edit during update | Edit during upgrade |
|-------------------------------------|--------------------|---------------------|
| resourceNamePrefix                  | No                 | No                  |
| tag                                 | No                 | Yes                 |
| containerRegistry                   | No                 | Yes                 |
| credential: secretName              | No                 | No                  |
| networkLoadBalancer:<br>annotations | No                 | Yes                 |
| networkLoadBalancer: fqdn           | No                 | No                  |
| networkLoadBalancer: ipAddr         | No                 | Yes                 |
| data.capacity                       | Yes                | Yes                 |
| data.storageClassName               | No                 | No                  |
| log.capacity                        | Yes                | Yes                 |
| log.storageClassName                | No                 | No                  |
| cpServer.NodeSelector.ControlPlane  | No                 | Yes                 |
| cpServer.NodeSelector.DataPlane     | No                 | Yes                 |

# Chapter

# **Deploying MSDP Scaleout**

This chapter includes the following topics:

- Deploying MSDP Scaleout
- Prerequisites
- Installing the docker images and binaries
- Initializing the MSDP operator
- Configuring MSDP Scaleout
- Using MSDP Scaleout as a single storage pool in NetBackup
- Configuring the MSDP cloud in MSDP Scaleout

## **Deploying MSDP Scaleout**

You must deploy MSDP Scaleout solution in your Azure Kubernetes Service Cluster environment. AKS must be created with appropriate network and configuration settings.

You can have multiple MSDP Scaleout deployments in the same AKS cluster. Ensure that each MSDP Scaleout deployment runs in a dedicated namespace on a dedicated node pool.

Before you deploy the solution, ensure that your environment meets the requirements.

See "Prerequisites" on page 106.

| Step   | Task                                                     | Description                                                                  |
|--------|----------------------------------------------------------|------------------------------------------------------------------------------|
| Step 1 | Install the docker images and binaries.                  | See "Installing the docker images and binaries" on page 108.                 |
| Step 2 | Initialize MSDP operator.                                | See "Initializing the MSDP operator" on page 109.                            |
| Step 3 | Configuring MSDP Scaleout.                               | See "Configuring MSDP Scaleout" on page 110.                                 |
| Step 4 | Use MSDP Scaleout as a single storage pool in NetBackup. | See "Using MSDP Scaleout as a single storage pool in NetBackup" on page 112. |

Table 8-1MSDP Scaleout deployment steps

See "Cleaning up MSDP Scaleout" on page 167.

See "Cleaning up the MSDP Scaleout operator" on page 168.

## **Prerequisites**

## A working Azure Kubernetes cluster (AKS cluster)

- Azure Kubernetes cluster
  - Your Azure Kubernetes cluster must be created with appropriate network and configuration settings.
     Supported Azure Kubernetes cluster version is 1.21.x and later.
  - Availability zone for AKS cluster must be disabled.
  - At least one storage class is backed with Azure disk CSI storage driver "disk.csi.azure.com", and allows volume expansion. It must be in LRS category with Premium SSD. For example, the built-in storage class "managed-csi-premium". It is recommended that the storage class has "Retain" reclaim.
  - Cert-Manager must be installed.
  - A Kubernetes Secret that contains the MSDP credentials is required. See "Secret" on page 207.
  - Enable AKS Uptime SLA.

AKS Uptime SLA is recommended for a better resiliency. For information about AKS Uptime SLA and to enable it, see Azure Kubernetes Service (AKS) Uptime SLA. Azure container registry (ACR)

Use existing ACR or create a new one. Your Kubernetes cluster must be able to access this registry to pull the images from.

Node Pool

You must have a dedicated node pool for MSDP Scaleout created. Azure availability zone must be disabled.

The Azure autoscaling allows your node pool to scale dynamically as required. If Azure autoscaling is not enabled, ensure the node number is not less than MSDP Scaleout size.

It is recommended that you set the minimum node number to 1 or more to bypass some limitations in AKS.

- Client machine to access AKS cluster
  - A separate computer that can access and manage your AKS cluster and ACR.
  - It must have Linux operating system.
  - It must have Docker daemon, the Kubernetes command-line tool (kubectl), and Azure CLI installed.

The Docker storage size must be more than 6 GB. The version of kubectl must be v1.19.x or later. The version of Azure CLI must meet the AKS cluster requirements.

- If AKS is a private cluster, see Create a private Azure Kubernetes Service cluster.
- Static Internal IPs

If the internal IPs are used, reserve the internal IPs (avoid the IPs that are reserved by other systems) for MSDP Scaleout and add DNS records for all of them in your DNS configuration.

The Azure static public IPs can be used but is not recommended.

If Azure static public IPs are used, create them in the node resource group for the AKS cluster. A DNS name must be assigned to each static public IP. The IPs must be in the same location of the AKS cluster.

## **Existing NetBackup environment**

MSDP Scaleout connects to the existing NetBackup environment with the required network ports 1556 and 443. The NetBackup primary server should be 10.0 or later. The NetBackup environment can be anywhere, locally or remotely. It may or may not be in AKS cluster. It may or may not be in the same AKS cluster.

If the NetBackup servers are on Azure cloud, besides the NetBackup configuration requirements, the following settings are recommended. They are not MSDP-specific

requirements, they just help your NetBackup environment run smoothly on Azure cloud.

Add the following in /usr/openv/netbackup/bp.conf

```
HOST HAS NAT ENDPOINTS = YES
```

Tune sysctl parameters as follows:

```
net.ipv4.tcp_keepalive_time=120
net.ipv4.ip_local_port_range = 14000 65535
net.core.somaxconn = 1024
```

Tune the max open files to 1048576 if you run concurrent jobs.

## Installing the docker images and binaries

The MSDP package VRTSpddek.tar.gz for Kubernetes includes the following:

- A docker image for MSDP operator
- 3 docker images for MSDP Scaleout: uss-controller, uss-mds, and uss-engine
- A kubectl plugin: kubectl-msdp

#### To install the docker images and binaries

- **1 Download** VRTSpddek.tar.gz from the Veritas site.
- 2 Load the docker images to your docker storage.

```
tar -zxvf VRTSpddek.tar.gz
ls VRTSpddek-*/images/*.tar.gz|xargs -i docker load -i {}
```

3 Copy MSDP kubectl plugin to a directory from where you access AKS host. This directory can be configured in the PATH environment variable so that kubectl can load kubectl-msdp as a plugin automatically.

#### For example,

cp ./VRTSpddek-\*/bin/kubectl-msdp /usr/local/bin/

4 Push the docker images to the ACR. Keep the image name and version same as original.

```
docker login <your-acr-url>
for image in msdp-operator uss-mds uss-controller uss-engine; do \
    docker image tag $image:<version> <your-acr-url>/$image:<version>; \
    docker push <your-acr-url>/$image:<version>; \
done
```

# Initializing the MSDP operator

Run the following command to initialize MSDP operator.

kubectl msdp init -i <acr-url>/msdp-operator:<version> -s
<storage-class-name> [-l agentpool=<nodepool-name>]

You can use the following init command options.

| Option | Description                                                                                                                                                                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -i     | MSDP operator images on your ACR.                                                                                                                                                                                                                                                                     |
| -s     | The storage class name.                                                                                                                                                                                                                                                                               |
| -1     | Node selector of the MSDP operator.<br>By default, each node pool has a unique label with key-value<br>pair <i>agentpool=<nodepool-name></nodepool-name></i> . If you have assigned a<br>different and cluster-wise unique label for the node pool, you can<br>use that instead of <i>agentpool</i> . |
| -c     | Core pattern of the operator pod.<br>Default value: "/core/core.%e.%p.%t"                                                                                                                                                                                                                             |
| -d     | Enable debug-level logging in MSDP operator.                                                                                                                                                                                                                                                          |

Table 8-2init command options

| Option | Description                                             |
|--------|---------------------------------------------------------|
| -a     | The maximum number of days to retain the old log files. |
|        | Range: 1-365                                            |
|        | Default value: 28                                       |
| -u     | The maximum number of old log files to retain.          |
|        | Range: 1-20                                             |
|        | Default value: 20                                       |
| -n     | Namespace scope for this request.                       |
|        | Default value: msdp-operator-system                     |
| -0     | Generate MSDP operator CRD YAML.                        |
| -h     | Help for the init command.                              |

#### **Table 8-2**init command options (continued)

This command installs Custom Resource Definitions (CRD)

msdpscaleouts.msdp.veritas.com and deploys MSDP operator in the Kubernetes environment. MSDP operator runs with Deployment Kubernetes workload type with single replica size in the default namespace msdp-operator-system.

MSDP operator also exposes the following services:

Webhook service

The webhook service is consumed by Kubernetes api-server to mutate and validate the user inputs and changes of the MSDP CR for the MSDP Scaleout configuration.

Metrics service

The metric service is consumed by Kubernetes/AKS for Azure Container Insight integration.

You can deploy only one MSDP operator instance in an AKS cluster.

Run the following command to check the MSDP operator status.

kubectl -n msdp-operator-system get pods -o wide

# **Configuring MSDP Scaleout**

After you push the docker images to ACR and initialize MSDP operator, configure MSDP Scaleout.

#### Deploying MSDP Scaleout | 111 Configuring MSDP Scaleout |

#### To configure MSDP Scaleout

1 Create a dedicated namespace for MSDP Scaleout to run.

kubectl create ns <sample-namespace>

2 Create an MSDP Scaleout Secret. The Secret is used in CR.

kubectl apply -f <secret-yaml-file>

See "Secret" on page 207.

**3** Display the custom resource (CR) template.

kubectl msdp show -c

**4** Save the CR template.

kubectl msdp show -c -f <file path>

- 5 Edit the CR file in the text editor.
- 6 Apply the CR file to the AKS cluster.

**Caution:** Add MSDP\_SERVER = <first Engine FQDN> in /usr/openv/netbackup/bp.conf file on the NetBackup primary server before applying the CR YAML.

kubectl apply -f <sample-cr-yaml>

7 Monitor the configuration progress.

kubectl get all -n <namespace> -o wide

In the **STATUS** column, if the readiness state for the controller, MDS and engine pods are all **Running**, it means that the configuration has completed successfully.

In the **READINESS GATES** column for engines, 1/1 indicates that the engine configuration has completed successfully.

8 If you specified spec.autoRegisterOST.enabled: true in the CR, when the MSDP engines are configured, the MSDP operator automatically registers the storage server, a default disk pool, and a default storage unit in the NetBackup primary server.

A field **ostAutoRegisterStatus** in the Status section indicates the registration status. If **ostAutoRegisterStatus.registered** is **True**, it means that the registration has completed successfully.

You can run the following command to check the status:

kubectl get msdpscaleouts.msdp.veritas.com -n <sample-namespace>

You can find the storage server, the default disk pool, and storage unit on the Web UI of the NetBackup primary server.

# Using MSDP Scaleout as a single storage pool in NetBackup

If you did not enable automatic registration of the storage server (autoRegisterOST) in the CR, you can configure it manually using the NetBackup Web UI.

See "MSDP Scaleout CR" on page 208.

### To use MSDP Scaleout as a single storage pool in NetBackup

1 Follow the OpenStorage wizard with storage type **PureDisk** to create the storage server using the first Engine FQDN.

MSDP storage server credentials are defined in the Secret resource.

For more information, see *Create a Cloud storage*, *OpenStorage*, *or AdvancedDisk storage server* topic of the *NetBackup Web UI Administrator's Guide*.

2 Follow the MSDP wizard to create the disk pool.

For more information, see *Create a disk pool* topic of the *NetBackup Web UI Administrator's Guide*.

3 Follow the MSDP wizard to the storage unit.

For more information, see *Create a disk pool* topic of the *NetBackup Web UI Administrator's Guide*.

You can use MSDP Scaleout like the legacy single-node MSDP.

# **Configuring the MSDP cloud in MSDP Scaleout**

After you configure the local LSU, you can also configure MSDP cloud in MSDP Scaleout.

For more information about MSDP cloud support, see the *NetBackup Deduplication Guide*.

114 | Deploying MSDP Scaleout Configuring the MSDP cloud in MSDP Scaleout

Chapter

# Upgrading MSDP Scaleout

This chapter includes the following topics:

Upgrading MSDP Scaleout

# **Upgrading MSDP Scaleout**

You can upgrade the MSDP Scaleout solution to the latest version in your AKS environment.

## To upgrade MSDP Scaleout

1 Install the new **kubectl** plug-in and push the new docker images to your container registry.

See "Installing the docker images and binaries" on page 108.

2 Run the following command to upgrade the MSDP operator.

kubectl msdp init -i <new-operator-image> -s <storage-class-name>
-l agentpool=<nodepool-name> -n <operator-namespace>

All the options except -i option must be same as earlier when the operator was deployed initially.

**3** Run the following command to change the spec.version in the existing CR resources.

kubectl edit msdpscaleout <cr-name>

Wait for a few minutes. MSDP operator upgrades all the pods and other MSDP Scaleout resources automatically.

**Note:** If you use the environment operator for the MSDP Scaleout deployment, change the version string for MSDP Scaleout in the environment operator CR only. Do not change the version string in the MSDP Scaleout CR.

**4** Upgrade process restarts the pods. The NetBackup jobs are interrupted during the process.

### Upgrade NetBackup 10.0 or 10.0.0.1 to NetBackup 10.1

After you upgrade NetBackup 10.0 (or 10.0.0.1) to NetBackup 10.1 or MSDP Scaleout to 17.0, if you find the storage server not supporting Instant Access capability on Web UI, or if you fail to select MSSQL recovery point to create MSSQL Instant Access on Web UI, then perform the following steps manually to refresh the Instant Access capability in NetBackup.

- 1. Login to NetBackup primary server.
- 2. Execute the following commands to refresh the MSDP capabilities on NetBackup primary server:

```
nbdevconfig -getconfig
nbdevconfig -setconfig
```

### For example,

```
/usr/openv/netbackup/bin/admincmd/nbdevconfig -getconfig -stype
PureDisk -storage_server [storage server] >
/tmp/tmp_pd_config_file
```

```
/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig
-storage_server [storage server] -stype PureDisk -configlist
/tmp/tmp_pd_config_file
```

3. Restart the NetBackup Web Management Console service (nbwmc) on NetBackup primary server.

### For example,

/usr/openv/netbackup/bin/nbwmc terminate

```
/usr/openv/netbackup/bin/nbwmc start
```

# Chapter 10

# Monitoring NetBackup

This chapter includes the following topics:

- Monitoring the application health
- Telemetry reporting
- About NetBackup operator logs
- Expanding storage volumes
- Allocating static PV for Media pods

# Monitoring the application health

Kubernetes Liveness and Readiness probes are used to monitor and control the health of the NetBackup primary server and media server pods. The probes collectively also called as health probes, keep checking the availability and readiness of the pods, and take designated actions in case of any issues. The kubelet uses liveness probes to know when to restart a container, and readiness probes to know when a container is ready. For more information, refer to the Kubernetes documentation.

Configure Liveness, Readiness and Startup Probes | Kubernetes

The health probes monitor the following for the NetBackup deployment:

- Mount directories are present for the data/catalog at /mnt/nbdata and the log volume at /mnt/nblogs.
- bp.conf is present at /usr/openv/netbackup
- NetBackup services are running as expected.

Following table describes the actions and time intervals configured for the probes:

118 | Monitoring NetBackup Monitoring the application health

| Action                                                                                                                                                           | Description                                                                                                     | Probe name      | Primary<br>server<br>(seconds) | Media server<br>(seconds) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|---------------------------|
| Initial delay This                                                                                                                                               | This is the delay                                                                                               | Readiness Probe | 120                            | 60                        |
|                                                                                                                                                                  | that tells kubelet to<br>wait for a given<br>number of seconds<br>before performing<br>the first probe.         | Liveness Probe  | 300                            | 90                        |
| Periodic                                                                                                                                                         | time This action<br>specifies that<br>kubelet should<br>perform a probe<br>every given<br>number of<br>seconds. | Readiness Probe | 30                             | 30                        |
| execution time                                                                                                                                                   |                                                                                                                 | Liveness Probe  | 90                             | 90                        |
| Threshold for                                                                                                                                                    |                                                                                                                 | Readiness Probe | 1                              | 1                         |
| ailure retries specifies that<br>kubelet should<br>retry the probe for<br>given number of<br>times in case a<br>probe fails, and<br>then restart a<br>container. | Liveness Probe                                                                                                  | 5               | 5                              |                           |

Heath probes are run using the nbu-health command. If you want to manually run the nbu-health command, the following options are available:

Disable

This option disables the health check that will mark pod as not ready (0/1).

Enable

This option enables the already disabled health check in the pod. This marks the pod in ready state(1/1) again if all the NetBackup health checks are passed.

Deactivate

This option deactivates the health probe functionality in pod. Pod remains in ready state(1/1). This will avoid pod restarts due to health probes like liveness, readiness probe failure. This is the temporary step and not recommended to use in usual case.

#### Monitoring NetBackup | 119 Telemetry reporting |

#### Activate

This option activates the health probe functionality that has been deactivated earlier using the **deactivate** option.

You can manually disable or enable the probes if required. For example, if for any reason you need to exec into the pod and restart the NetBackup services, the health probes should be disabled before restarting the services, and then they should be enabled again after successfully restarting the NetBackup services. If you do not disable the health probes during this process, the pod may restart due to the failed health probes.

**Note:** It is recommended to disable the health probes only temporarily for troubleshooting purposes. When the probes are disabled, the web UI is not accessible in case of the primary server pod, and the media server pods cannot be scaled up. Then the health probes must be enabled again to successfully run NetBackup.

### To disable or enable the health probes

1 Execute the following command in the Primary or media server pod as required:

kubectl exec -it -n <namespace> <primary/media-server-pod-name>
-- /bin/bash

- 2 To disable the probes, run the /opt/veritas/vxapp-manage/nbu-health disable command. Then the pod goes into the not ready (0/1) state.
- **3** To enable the probes, run the "/opt/veritas/vxapp-manage/nbu-health enable" command. Then the pod will be back into the ready (1/1) state.

You can check pod events in case of probe failures to get more details using the kubectl describe <primary/media-pod-name> -n <namesapce> command.

# **Telemetry reporting**

Telemetry reporting entries for the NetBackup deployment on AKS are indicated with the **AKS based deployments** text.

- By default, the telemetry data is saved at the /var/veritas/nbtelemetry/ location. The default location will not persisted during the pod restarts.
- If you want to save telemetry data to persisted location, then execute the kubectl exec -it -n <namespace> <primary/media\_server\_pod\_name> - /bin/bash command in the pod using the and execute telemetry command using

/usr/openv/netbackup/bin/nbtelemetry With --dataset-path=DESIRED\_PATH option.

- Exec into the primary server pod using the following command: kubectl exec -it -n <namespace> <primary/media\_server\_pod\_name> -- /bin/bash
- Execute telemetry command using /usr/openv/netbackup/bin/nbtelemetry with --dataset-path=DESIRED\_PATH

Note: Here DESIRED PATH must be /mnt/nbdata or /mnt/nblogs.

# About NetBackup operator logs

Note the following about the NetBackup operator logs.

- NetBackup operator logs can be checked using the operator pod logs using the kubectl logs <Netbackup-operator-pod-name> -c netbackup-operator -n <netbackup-opertaor-namespace> command.
- NetBackup operator provides different log levels that can be changed before deployment of NetBackup operator.

The following log levels are provided:

- -1 Debug
- 0 Info
- 1 Warn
- 2 Error

By default, the log level is 0.

It is recommended to use 0, 1, or 2 log level depending on your requirement. Before you deploy NetBackup operator, you can change the log levels using <code>operator\_patch.yaml</code>.

After deployment if user changes operator log level, to reflect it, user has to perform the following steps:

- Apply the operator changes using the kubectl apply -k
   <operator-folder> command.
- Restart the operator pod. Delete the pod using the kubectl delete pod/<netbackup-opertaor-pod-name> -n <namespace> command.
   Kubernetes will recreate the NetBackup operator pod again after deletion.

- Config-Checker jobs that run before deployment of primary server and media server creates the pod. The logs for config checker executions can be checked using the kubectl logs <configchecker-pod-name> -n <netbackup-operator-namespace> command.
- Installation logs of NetBackup primary server and media server can be retrieved using any of the following methods:
  - Run the kubectl logs <PrimaryServer/MediaServer-Pod-Name> -n
     <PrimaryServer/MediaServer namespace> command.
  - Execute the following command in the primary server/media server pod and check the /mnt/nblogs/setup-server.log file: kubectl exec -it <PrimaryServer/MediaServer-Pod-Name> -n <PrimaryServer/MediaServer-namespace> -- bash
- Data migration jobs create the pods that run before deployment of primary server. The logs for data migration execution can be checked using the following command:

```
kubectl logs <migration-pod-name> -n
<netbackup-environment-namespace>
```

- Execute the following respective commands to check the event logs that shows deployment logs for PrimaryServer and MediaServer:
  - For primary server: kubectl describe PrimaryServer <PrimaryServer name> -n <PrimaryServer-namespace>
  - For media server: kubectl describe MediaServer<MediaServername>
     -n<MediaServer-namespace>

# Expanding storage volumes

You can update storage capacity of already created persistent volume claim for primary server and media server. Expanding storage volume for particular replica of respective CR object is not supported. In case of media server user needs to update volumes for all the replicas of particular media server object.

## To expand storage capacity of catalog volume in primary server

- 1 Edit the environment custom resource using the kubectl edit Environment <environmentCR\_name> -n <namespace> command.
- 2 Update storage capacity for respective volume in **storage** subsection of **primary** section.
- 3 Save the changes.

PVC will expands as per the new size and it will be available to volume mounts in primaryServer pod.

### To expand volume of data and log volumes for primary and media server

- 1 Edit the environment custom resource using the kubectl edit Environment <environmentCR\_name> -n <namespace> command.
- 2 To pause the reconciler of the particular custom resource, change the *paused: false* value to *paused: true* in the primaryServer or mediaServer section and save the changes. In case of multiple media server objects change Paused value to true for respective media server object only.
- 3 Edit StatefulSet of primary server or particular media server object using thekubectl edit <statfulset name> -n <namespace> command, change replica count to 0 and wait for all pods to terminate for the particular CR object.
- 4 Update all the persistent volume claim which expects capacity resize with the kubectl edit pvc <pvcName> -n <namespace> command. In case of particular media server object, resize respective PVC with expected storage capacity for all its replicas.
- 5 Update the respective custom resource section using the kubectl edit Environment <environmentCR\_name> -n <namespace> command with updated storage capacity for respective volume and change *paused: false*. Save updated custom resource.

To update the storage details for respective volume, add storage section with specific volume and its capacity in respective primaryServer or mediaServer section in environment CR.

Earlier terminated pod and StatefulSet must get recreated and running successfully. Pod should get linked to respective persistent volume claim and data must have been persisted.

- 6 Run the kubectl get pvc -n <namespace> command and check for capacity column in result to check the persistent volume claim storage capacity is expanded.
- 7 (Optional) Update the log retention configuration for NetBackup depending on the updated storage capacity.

For more information, refer to the NetBackup™ Administrator's Guide, Volume I

# Allocating static PV for Media pods

When you want to use a disk with specific performance parameters, you can statically create the PV and PVC. You must allocate static PV and PVC before deploying the NetBackup server for the first time.

### To allocate static PV for Media pods

1 Create storage class in cluster as per recommendations.

See "How does the Config-Checker utility work" on page 59. for storage class recommendation.

This newly created storage class name is used while creating PV and PVC's and should be mentioned for Catalog, Log, Data volume in the environment CR in mediaServer section at the time of deployment.

For more information on creating storage class, see Create a custom storage class.

For example,

```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
    name: managed-premium-retain
provisioner: disk.csi.azure.com
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: Immediate
parameters:
    storageaccounttype: Premium_LRS
    kind: Managed
```

2 Calculate number of disks required.

The following persistent volumes are required by Media pods:

Data and Log volume disk per replica of media server.

Use the following format to form PVC names.

For media server

- data-<resourceNamePrefix\_of\_media>-media-<media server replica number. Count starts from 0>
- logs-<resourceNamePrefix\_of\_media>-media-<media server replica number. Count starts from 0>

| Example<br>1 | If user wants to deploy a media server with replica count 3.                               | For this scenario, you must create total 8 disks, 8 PV and 8 PVCs.                                                                                                         |  |
|--------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ;            | Names of the Media PVC<br>assuming<br>resourceNamePrefix_of_media is<br><b>testmedia</b> . | 6 disks, 6 PV and 6 PVCs for media server.                                                                                                                                 |  |
|              |                                                                                            | Following will be the names for media server volumes                                                                                                                       |  |
|              |                                                                                            | For data:                                                                                                                                                                  |  |
|              |                                                                                            | <ul> <li>data-testmedia-media-0</li> <li>data-testmedia-media-1</li> <li>data-testmedia-media-10</li> <li>data-testmedia-media-2</li> </ul>                                |  |
|              |                                                                                            | For log:                                                                                                                                                                   |  |
|              |                                                                                            | <ul><li>logs-testmedia-media-0</li><li>logs-testmedia-media-1</li><li>logs-testmedia-media-2</li></ul>                                                                     |  |
| Example<br>2 | If user wants to deploy a media server with replica count 5                                | For this scenario, you must create 12 disks, 12 PV and 12 PVCs                                                                                                             |  |
|              | Names of the Media PVC<br>assuming<br>resourceNamePrefix_of_media is<br>testmedia.         | 10 disks, 10 PV and 10 PVCs for media server.                                                                                                                              |  |
|              |                                                                                            | Following will be the names for media server volumes                                                                                                                       |  |
|              |                                                                                            | For data:                                                                                                                                                                  |  |
|              |                                                                                            | <ul> <li>data-testmedia-media-0</li> <li>data-testmedia-media-1</li> <li>data-testmedia-media-2</li> <li>data-testmedia-media-3</li> <li>data-testmedia-media-4</li> </ul> |  |
|              |                                                                                            | For log:                                                                                                                                                                   |  |
|              |                                                                                            | <ul> <li>logs-testmedia-media-0</li> <li>logs-testmedia-media-1</li> <li>logs-testmedia-media-2</li> <li>logs-testmedia-media-3</li> <li>logs-testmedia-media-4</li> </ul> |  |
| Create       | required number of Azure disks                                                             | and save the ID of newly created disk.                                                                                                                                     |  |

For more information, see Azure Disk - Static

3

4 Create PVs for each disk and link the PVCs to respective PVs.

To create the PVs, specify the created storage class and diskURI (ID of the disk received in step 3). The PV must be created using the **claimRef** field and provide PVC name for its corresponding namespace.

For example, if you are creating PV for catalog volume, storage required is 128GB, diskName is **primary\_catalog\_pv** and namespace is **test**. PVC named **catalog-testprimary-primary-0** is linked to this PV when PVC is created in the namespace test.

```
apiVersion: v1
     kind: PersistentVolume
     metadata:
        name: catalog
           spec:
               capacity:
                       storage: 128Gi
               accessModes:
                       - ReadWriteOnce
               azureDisk:
                        kind: Managed
                        diskName: primary catalog pv
                        diskURI: /subscriptions/3247febe-4e28-467d-a65c-
resourcegroups/MC NBU-k8s-network xxxxxx eastus/providers/Microsoft.Compu
               claimRef:
                          apiVersion: v1
                          kind: PersistentVolumeClaim
                          name: catalog-testprimary-primary-0
                          namespace: test
```

5 Create PVC with correct PVC name (step 2), storage class and storage.For example,

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: catalog-testprimary-primary-0
namespace: test
spec:
storageClassName: "managed-premium-retain"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 128Gi
```

- 6 Deploy the Operator.
- 7 Use previously created storage class names for the volumes in mediaServers section in environment CR spec and deploy environment CR.

# Chapter

# Monitoring MSDP Scaleout

This chapter includes the following topics:

- About MSDP Scaleout status and events
- Monitoring with Azure Container insights
- The Kubernetes resources for MSDP Scaleout and MSDP operator

# About MSDP Scaleout status and events

The MSDP Scaleout CR status includes the readiness state, the storage space utilization (via PersistentVolumeClaim) of each Controller, MDS, and Engine pod.

In the initial configuration of MSDP Scaleout, the readiness state of each pod changes from "false" to "true" in the first few minutes. When the state of all the pods changes to "true", it indicates MSDP Scaleout is ready for use.

You can check the storage space utilization routinely to plan MSDP Scaleout autoscaling before the storage space runs out.

#### To check the MSDP Scaleout status and events

1 Check the status and the events under the namespace for MSDP Scaleout.

```
kubectl -n <sample-namespace> describe msdpscaleout
<sample-cr-name>
```

2 Check the MSDP Scaleout events.

```
kubectl -n <sample-namespace> get events
[--sort-by='{.lastTimestamp}']
```

3 Check the storage space utilization.

```
kubectl -n <sample-namespace> get msdpscaleout <sample-cr-name>
-o json
```

kubectl -n sample-cr-namespace get msdpscaleout sample-cr -o json

#### Example of the of the status format:

```
{
 "controllers": [
    {
      "apiVersions": [
       "1.0"
      ],
      "name": "msdp-aks-demo-uss-controller",
      "nodeName": "aks-nodepool1-25250377-vmss000002",
      "productVersion": "15.1-0159",
      "pvc": [
        {
          "pvcName": "msdp-aks-demo-uss-controller-log",
          "stats": {
            "availableBytes": "10125.98Mi",
            "capacityBytes": "10230.00Mi",
            "percentageUsed": "1.02%",
            "usedBytes": "104.02Mi"
          }
        }
      ],
      "ready": "True"
    }
 ],
 "engines": [
    {
      "ip": "x.x.x.x",
      "name": "msdppods1.westus2.cloudapp.azure.com",
```

```
"nodeName": "aks-nodepool1-25250377-vmss000003",
 "pvc": [
   {
      "pvcName": "msdppods1.westus2.cloudapp.azure.com-catalog",
      "stats": {
        "availableBytes": "20293.80Mi",
        "capacityBytes": "20470.00Mi",
        "percentageUsed": "0.86%",
        "usedBytes": "176.20Mi"
     }
    },
    {
      "pvcName": "msdppods1.westus2.cloudapp.azure.com-data-0",
      "stats": {
        "availableBytes": "30457.65Mi",
        "capacityBytes": "30705.00Mi",
        "percentageUsed": "0.81%",
        "usedBytes": "247.35Mi"
     }
   }
 ],
 "ready": "True"
},
. . . . . .
```

# Monitoring with Azure Container insights

You can use Azure Container insights to collect Prometheus metrics to monitor pods in MSDP Scaleout.

### To configure Azure Container insights

1 Enable Azure Container insights.

See Azure documentation.

2 Download the template ConfigMap YAML file and save it as container-azm-ms-agentconfig.yaml.

**3** Add the YAML file with the following sample configuration:

```
prometheus-data-collection-settings: |-
[prometheus data collection settings.cluster]
interval = "1m"
fieldpass = ["msdpoperator reconcile total",
             "msdpoperator reconcile failed",
             "msdpoperator operator run",
             "msdpoperator diskFreeLess5GBEngines total",
             "msdpoperator diskFreeMiBytesInEngine",
             "msdpoperator diskFreeLess10GBClusters total",
             "msdpoperator totalDiskFreePercentInCluster",
             "msdpoperator diskFreePercentInEngine",
             "msdpoperator pvcFreePercentInCluster",
             "msdpoperator unhealthyEngines total",
             "msdpoperator createdPods total"]
monitor kubernetes pods = true
# Add the namespace of MSDP operator in the follow list.
It's "msdp-operator-system" by default.
monitor kubernetes pods namespaces =
["msdp-operator-system"]
```

Table 11-1 lists the Prometheus metrics that MSDP Scaleout supports.

#### Monitoring MSDP Scaleout | 131 Monitoring with Azure Container insights |

4 Apply the ConfigMap.

kubectl apply -f container-azm-ms-agentconfig.yaml

The configuration change takes a few minutes and all omsagent pods in the cluster restart.

The default namespace of prometheus metrics is prometheus.

**5** Add alert rules for the integrated metrics.

Add related log query, add new alert rule for the selected query, and alert group/action for it.

For example,

If the free space size of the MSDP Scaleout engines is lower than 1 GB in past 5 minutes, alert the users.

Log query:

InsightsMetrics

```
| where Name == "msdpoperator_diskFreeMiBytesInEngine"
| where Namespace == "prometheus"
| where TimeGenerated > ago(5m)
| where Val <= 1000000
| where Val > 0
```

If multiple MSDP Scaleouts are deployed in the same AKS cluster, use the filter to search the results. For example, search the MSDP engines with the free space size lower than 1GB in the namespace **sample-cr-namespace** 

#### Log query:

```
InsightsMetrics
| where Name == "msdpoperator_diskFreeMiBytesInEngine"
| where Namespace == "prometheus"
| where TimeGenerated > ago(5m)
| where Val <= 1000000
| where Val <= 0
| extend Tags = parse_json(Tags)
| where Tags.msdpscalout ns == "sample-cr-namespace"</pre>
```

MSDP Scaleout supports the following Prometheus metrics:

#### 132 | Monitoring MSDP Scaleout The Kubernetes resources for MSDP Scaleout and MSDP operator

| _                                               |         |                                                                        |                                                                                               |
|-------------------------------------------------|---------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Metrics                                         | Туре    | Filters                                                                | Description                                                                                   |
| msdpoperator_reconcile_total                    | Counter | N/A                                                                    | The total of the reconcile loops msdp-operator run.                                           |
| msdpoperator_reconcile_failed                   | Counter | N/A                                                                    | The total of the reconcile loops msdp-operator failed to run.                                 |
| msdpoperator_operator_run                       | Counter | N/A                                                                    | The total of the running operator.                                                            |
| msdpoperator_diskFreeLess<br>5GBEngines_total   | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The checked number of the engines which have free spaces lower than 5GB.                      |
| msdpoperator_diskFreeMi<br>BytesInEngine        | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The free space of current engine in MiBytes.                                                  |
| msdpoperator_diskFreeLess<br>10GBClusters_total | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The checked number of the msdpscaleout apps which have free spaces lower than 10GB.           |
| msdpoperator_totalDiskFree<br>PercentInCluster  | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The percent of the msdpscaleout<br>apps that have free spaces. For<br>example, 0.95 means 95% |
| msdpoperator_diskFree<br>PercentInEngine        | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The percent of the current engines, which have free spaces.                                   |
| msdpoperator_pvcFree<br>PercentInCluster        | Gauge   | InsightsMetrics.Tags.msdpscalout_ns,<br>InsightsMetrics.Tags.component | The percent of the used PVC, which have free spaces.                                          |
| msdpoperator_unhealthy<br>Engines_total         | Gauge   | InsightsMetrics.Tags.msdpscalout_ns                                    | The total of unhealthy engines.                                                               |
| msdpoperator_createdPods<br>_total              | Gauge   | InsightsMetrics.Tags.msdpscalout_ns,<br>InsightsMetrics.Tags.component | The total of created msdpscaleout pods.                                                       |

# Table 11-1

I-1 Supported Prometheus metrics list in MSDP Scaleout

# The Kubernetes resources for MSDP Scaleout and MSDP operator

Do not change or delete the Kubernetes resources that MSDP deployment has created.

Run the following command to find all the namespaced resources:

kubectl api-resources --verbs=list --namespaced=true -o name |
xargs -n 1 -i bash -c 'if ! echo {} |grep -q events; then kubectl
get --show-kind --show-labels --ignore-not-found -n <cr or operator
namespace> {}; fi'

Run the following command to find commonly used namespace resources:

kubectl get pod,svc,deploy,rs,pvc -n <cr or operator namespace>
-o wide

 Run the following command to find the Kubernetes cluster level resources that belong to the CR:

kubectl api-resources --verbs=list --namespaced=false -o name |
xargs -n 1 -i bash -c 'kubectl get --show-kind --show-labels
--ignore-not-found {} |grep [msdp-operator|<cr-name>]'

134 | Monitoring MSDP Scaleout The Kubernetes resources for MSDP Scaleout and MSDP operator

Chapter

1Z

# Monitoring Snapshot Manager deployment

This chapter includes the following topics:

- Overview
- Logs of Snapshot Manager
- Configuration parameters

# **Overview**

The status of Snapshot Manager deployment can be verified by using the following command:

kubectl describe cpserver -n \$ENVIRONMENT NAMESPACE

This displays the status of deployment as follows:

| Status  | Description                |
|---------|----------------------------|
| Running | Deployment is in progress. |
| Failed  | Deployment has failed.     |
| Success | Deployment is successful.  |

# Logs of Snapshot Manager

Fluent log collector service collects the logs from various services in Snapshot Manager at one shared storage. To read these services, exec into flexsnap-fluend-collector pod.

Run the kubectl command as follows:

```
kubectl exec -it <flexsnap-fluend-collector pod_name> bash -n
$ENVIRONMENT NAMESPACE
```

You can find the Snapshot Manager log files under /cloudpoint/logs/ folder.

# **Configuration parameters**

 Any configuration related parameter that must be added in /cloudpoint/flexsnap.conf file can be added in flexsnap-conf configmap by editing it as follows:

kubectl edit configmap flexsnap-conf -n \$ENVIRONMENT\_NAMESPACE
For example, for changing the log level from info to debug, add the following:
[logging]

level = debug

 Any configuration related parameter which needs to be added in /cloudpoint/openv/netbackup/bp.conf file can be added in nbuconf configmap by editing it as follows:

kubectl edit configmap nbuconf -n \$ENVIRONMENT NAMESPACE

Chapter

# Managing the Load Balancer service

This chapter includes the following topics:

- About the Load Balancer service
- Notes for Load Balancer service
- Opening the ports from the Load Balancer service

# About the Load Balancer service

Key features of the Load Balancer service:

- Load balancer services are created in primary server and media server deployment that lets you access the NetBackup application from public domains.
- In primary server or media server CR spec, networkLoadBalancer section is used for handling the IP address and DNS name allocation for load balancer services. This section combines to sub fields type, annotations, and ipList whereas these fields are optional. If ipList is provided in CR spec, IP address count must match the replica count in case of media server CR whereas in case of primary server CR, only one IP address needs to be mentioned.
- In CR yaml, networkLoadBalancer is an optional field. If not defined in CR yaml, by default value of type is **Private** and services are added with annotations service.beta.kubernetes.io/azure-load-balancer-internal: "true".
   In this case, by default internal load balancer is selected for deployment.
- If networkLoadBalancer section is not defined, by default internal load balancer with dynamic IP address allocation are done. In this case, DNS names for the services can be obtained from HostName in CR status using the kubect1

describe <CR name> -n <namespace> command.

- Whenever, HostName in CR status is not in FQDN format, you must add entry of hostname and its corresponding IP address in /etc/host to access the primary server and its corresponding IP address in hosts file of computer accessing the primary server. Hosts file is present at the following location:
  - For Linux: /etc/hosts
  - For Windows: c:\Windows\System32\Drivers\etc\hosts
- In case of media server, FQDN per media server replica is generated using resourceName mentioned in media server CR and listed under status attributes media server-name of the media server CR.
- In this deployment, it is recommended to use internal load balancer using type as **Private** with static IP allocation and DNS name allocation.
   For details about internal load balancer, see Microsoft documentation.
   However, if type is **public**, then external load balancer is used and for more details to create and use public loadbalancer, see Microsoft documentation.
- The networkLoadBalancer section can be used to provide static IP address and DNS name allocation to the loadbalancer services. For more information to create and use static loadbalancer, see Microsoft documentation.
   Static IP addresses and FQDN if used must be created before being used. Refer below sections for different allowed scenarios.
  - Case 1: Internal load balancer with static IP address allocation
    - Example: In Primary section in environment CR

```
networkLoadBalancer:
ipList:
- ipAddr: 10.123.45.123
```

In media server section in environment CR

```
networkLoadBalancer:
    ipList:
        - ipAddr: 10.123.45.124
        - ipAddr: 10.123.45.125
```

In this case, number of IP addresses for primary server should be one, and for media server, the number of IP addresses should match with the replica count mentioned in CR spec. Dynamically created FQDN mentioned in CR status attribute is used directly as DNS name for primary/media server services.

Example: In primary CR

In this case, the number of IP addresses for primary server should be one, and for media server, it should match with the replica count mentioned in CR spec. IP address and DNS name mentioned in CR spec is used as DNS name for primary/media server services.

```
networkLoadBalancer:
ipList:
- ipAddr: 10.123.45.123
fqdn: abc.eastus.cloudapp.azure.com
```

In media server section in environment CR

```
networkLoadBalancer:
    ipList:
        - fqdn: xyz.eastus.cloudapp.azure.com
        ipAddr: 10.123.45.124
        - fqdn: pqr.eastus.cloudapp.azure.com
        ipAddr: 10.123.45.125
```

- Case 2: Internal load balancer and dynamic IP address allocation
  - Example: In primary/media CR
     In this case, IP address and DNS name are allocated dynamically and internal load balancer is used. User needs to add entry of Hostname (FQDN) mentioned in CR status attribute and IP address allocated to

load balancer service in /etc/hosts location on Linux machine. While c:\Windows\System32\Drivers\etc\hosts location on Windows computer to access primary server webUI.

- Case 3: Internal load balancer for different subnet with dynamic IP In this case, IP addresses for load balancer service are allocated dynamically. The subnet mentioned in annotations is bound to internal load balancer service.
  - Example: In primary CR

```
networkLoadBalancer:
annotations:
- service.beta.kubernetes.io/
azure-load-balancer-internal-subnet: "apps-subnet"
```

## Media CR

networkLoadBalancer:
annotations:

- service.beta.kubernetes.io/ azure-load-balancer-internal-subnet: "apps-subnet"

- Case 4: Internal load balancer for different subnet with static IP In this case, load balancer service gets assigned with the static IP addresses mentioned in the *ipList*, DNS name is generated dynamically, and gets bound to the subnet given in the annotations.
  - Example: In primary section in environment CR,

```
networkLoadBalancer:
  annotations:
    - service.beta.kubernetes.io/azure-load-balancer-
internal-subnet: apps-subnet
  ipList:
    - ipAddr: 10.123.45.123
```

#### Media server section in environment CR

```
networkLoadBalancer:
    annotations:
    - service.beta.kubernetes.io/azure-load-balancer-
internal-subnet: apps-subnet
    ipList:
    - ipAddr: 10.123.45.125
    - ipAddr: 10.123.45.124
```

- Case 5: Pre-allocation of static IP address and FQDN from resource group In this case, it is required to provide the network resource group in annotations. This resource group is the resource group of load balancer public IPs that are in the same resource group as the cluster infrastructure (node resource group). This static FQDN and IP address must be valid in case of pod failure or upgrades scenarios as well.
   In case user wants to use public load balancer, add type: Public in networkLoadBalancer section in primary and media server section in environment CR.
  - Example: In primary CR,

```
networkLoadBalancer:
  type: Public
  annotations:
   - service.beta.kubernetes.io/azure-load-balancer-
resource-group:<name of network resource-group>
  ipList:
```

#### Managing the Load Balancer service | 141 About the Load Balancer service |

- fqdn: primary.eastus.cloudapp.azure.com
ipAddr: 40.123.45.123

#### Media server section in environment CR -

networkLoadBalancer:

```
annotations:
  - service.beta.kubernetes.io/azure-load-balancer-
resource-group: ""<name of network resource-group>""
  ipList:
  - fqdn: media-1.eastus.cloudapp.azure.com
   ipAddr: 40.123.45.123
  - fqdn: media-2.eastus.cloudapp.azure.com
   ipAddr: 40.123.45.124
```

# **Preferred annotations**

| Table 13-1 | Preferred annotations |
|------------|-----------------------|
|------------|-----------------------|

| Annotations                                                            | Value                      | Description                                                                                                                                                  |
|------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| service.beta.kubernetes.io/<br>azure-load-balancer- internal           | true or false              | Specify whether the load balancer should be internal.                                                                                                        |
|                                                                        |                            | Added by default when type is selected<br>as <b>Private</b> in load balancer service<br>annotations.                                                         |
| service.beta.kubernetes.io/<br>azure-load-balancer-<br>internal-subnet | Name of the subnet         | Specify which subnet the internal load balancer should be bound to.                                                                                          |
| service.beta.kubernetes.io/<br>azure-load-balancer<br>-resource-group  | Name of the resource group | Specify the resource group of load<br>balancer public IPs that are not in the<br>same resource group as the cluster<br>infrastructure (node resource group). |

# Default ports used in the Load Balancer service

- Primary server:
  - 1556

Used as bidirectional port. Primary server to/from media servers and primary server to/from client require this TCP port for communication.

8443

Used to inbound to java nbwmc on the primary server.

142 | Managing the Load Balancer service Notes for Load Balancer service

443

Used to inbound to vnet proxy tunnel on the primary server. Also, this is used Nutanix workload, communication from primary server to the deduplication media server.

13781

The MQBroker is listening on TCP port 13781. NetBackup client hosts typically located behind a NAT gateway - be able to connect to the message queue broker (MQBroker) on the primary server.

13782

Used by primary server for bpcd process.

- Port 22
   Used by NetBackup IT Analytics data collector for data collection.
- Media server:
  - 1556

Used as bidirectional port. Primary server to/from media servers and primary server to/from client require this TCP port for communication.

13782

Used by media server for bpcd process.

# Notes for Load Balancer service

Note the following points:

- After deployment of primary server or media server, updating the DNS name, IP address and subnet through CR is not allowed.
- If mistakenly user has added wrong values:
  - User wants to update IP address and subnet, you must delete the CR and update the CR yaml and reapply it.
  - User wants to update the DNS name, you must delete the respective CR and delete the respective PVC and PV as well.

**Note:** Be caution while performing this step, this may lead to data loss.

- Before using the DNS and its respective IP address in CR yaml, you can verify the IP address and its DNS resolution using nslookup.
- In case of media server scaleout, ensure that the number of IP addresses mentioned in IPList in networkLoadBalancer section matches the replica count.

If nslookup is done for loadbalancer IP inside the container, it returns the DNS in the form of <svc name>.<namespace\_name>.svc.cluster.local. This is Kubernetes behavior. Outside the pod, the loadbalancer service IP address is resolved to the configured DNS. The nbbptestconnection command inside the pods can provide a mismatch in DNS names, which can be ignored.

# **Opening the ports from the Load Balancer service**

In this deployment, most of the required ports are already opened from the NetBackup primary and media server load balancer services by default.

- If you want to use a specific workload and that needs specific ports, you must add those ports in the port specification of the load balancer service.
- In case of media server, you must add custom ports in the load balancer service of all the replicas. In case of scaling up the media server, user needs to explicitly add newly added custom ports in respective newly created load balancer services.
- In case custom ports are added in the load balancer service and the same load balancer service is deleted or created again, you must add respective custom ports again in the load balancer service specification.

For all three scenarios, perform the steps given in this section.

### To open the ports from the Load Balancer service

1 Run the kubectl get service -n <namespace> command.

This command lists all the services available in given namespace.

2 Edit the required primary or media load balancer service using kubectl edit service <service-name> -n <namespace> command.

For example:

- For primary server load balancer service:
  - Service name starts with Name of primary server like <Name>-primary.
     Edit the service with the kubectl edit service <Name>-primary -n <namespace> command.
- For media server load balancer service:
  - Each replica of media server has its own load balancer service with name <Name>-media-<ordinal number>. For example, replica 2 of media server has a load balancer service with name <Name>-media-1.

 You must modify service for specific replica with the kubectl edit service <Name>-media-<replica-ordinal number> -n <namespace> command.

**Note:** The load balancer service with name **Name** used in primary sever and media server specification must be unique.

**3** Add entry for new port in ports array in specification field of the service. For example, if user want to add 111 port, then add the following entry in ports array in specification field.

```
name: custom-111
port: 111
protocol: TCP
targetPort: 111
```

4 Save the changes.

The service is updated and the new port is listed in ports list of the respective service when you run the kubectl get service -n <namespace> command.

# Chapter 14

# Performing catalog backup and recovery

This chapter includes the following topics:

- Backing up a catalog
- Restoring a catalog

## Backing up a catalog

You can backup a catalog.

#### To backup a catalog

1 Exec into the primary server pod using the following command:

kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash

- 2 Create a directory DRPackages at persisted location using mkdir /mnt/nblogs/DRPackages.
- 3 Change ownership of DRPackages folder to service user using chown nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages.
- 4 Set the passphrase to be used at time of catalog recovery.
  - Open NetBackup Administrator Console (Java UI).
  - Navigate to Security Management > Global Security Setting > Disaster Recovery.
  - In Encryption for Disaster Recovery section, add the passphrase, confirm passphrase, and save it.

5 Add respective external media server entry in host properties through NetBackup Management > Host properties > Master Server > Add Additional server.

**Note:** It is recommended to use an external media server for catalog backup and recovery.

6 Exec into the primary server pod using the following command:

kuebctl exec -it -n <namespace> <primaryserver pod name> -- bash

Set the **KMS\_CONFIG\_IN\_CATALOG\_BKUP** configuration option to 1 in /usr/openv/netbackup/bp.conf file of primary server to include the KMS configuration as part of the disaster recovery package during catalog backup.

- 7 Restart the NetBackup services in primary and external media server.
  - Exec into the primary server pod using the following command:
     kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash
  - Deactivate NetBackup health probes using the /opt/veritas/vxapp-manage/nbu-health deactivate command.
  - Run the /usr/openv/netbackup/bin/bp.kill\_all command. After stopping all services restart the services using the /usr/openv/netbackup/bin/bp.start\_all command.
  - Activate NetBackup health probes using the /opt/veritas/vxapp-manage/nbu-health activate command.
  - Run the /usr/openv/netbackup/bin/bp.kill\_all command. After stopping all services restart the services using the /usr/openv/netbackup/bin/bp.start\_all command on the external media server.
- 8 Configure storage unit on earlier added external media server.

For more information, refer to the *NetBackup*<sup>™</sup> Administrator's Guide, Volume I

Note: It is recommended to use AdvancedDisk or BasicDisk storage unit.

9 Configure NetBackup catalog backup policy.

Add package path as /mnt/nblogs/DRPackages while configuring the catalog backup policy.

**10** Run the catalog backup job.

## **Restoring a catalog**

You can restore a catalog.

#### To restore a catalog

1 Copy DRPackages files (packages) located at /mnt/nblogs/DRPackages/ from the pod to the host machine from where Azure Kubernetes Service cluster is accessed.

Run the kubectl cp
<primary-pod-name>i/mnt/nblogs/DRPackages
<Path where to copy on host machine> command.

2 Preserve the data of /mnt/nbdata and /mnt/nblogs on host machine by creating tar and copying it using the kubectl cp

<primary-pod-namespace>/<primary-pod-name>:<tar\_file\_name> <path\_on\_host\_machine\_where\_to\_preserve\_the\_data> command.

- 3 Change CR spec from *paused: false* to *paused: true* in primary, mediaServers, and msdpScaleouts sections in environment.yaml and re-apply yaml using the kubectl apply -f environment.yaml -n <namespace> command.
- 4 Change replica count to 0 in primary server's statefulset using the kubectl edit statefulset <primary-server-statefulset-name> -n <namespace> command.
- 5 Get names of PV attached to primary server PVC (catalog, log and data) using the kubectl get pvc -n <namespace> -o wide command.
- 6 Delete primary server PVC (catalog, log and data) using the kubectl delete pvc <pvc-name> -n <namespace> command.
- 7 Delete the PV linked to primary server PVC using the kubectl delete pv rame> command.
- 8 Change CR spec paused: true to paused: false in primary server section in environment.yaml and reapply yaml with the kubectl apply -f environment.yaml -n <namespace> command.

- **9** After the primary server pod is in ready state, change CR spec from *paused: false* to *paused: true* in primary server section in environment.yaml and reapply yaml with the kubectl apply -f environment.yaml -n <namespace> command.
- **10** Execute the kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash command in the primary server pod.
  - Increase the debug logs level on primary server.
  - Create a directory DRPackages at persisted location using mkdir /mnt/nblogs/DRPackages.
  - Change ownership of the DRPackages folder to service user using the chown nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages command.
- 11 Copy earlier copied DR files to primary pod at /mnt/nblogs/DRPackages using
   the kubectl cp <Path\_of\_DRPackages\_on\_host\_machine>
   <primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages
   command.
- **12** Execute the following steps in the primary server pod.
  - Change ownership of files in /mnt/nblogs/DRPackages using the chown nbsvcusr:nbsvcusr <file-name> command.
  - Deactivate NetBackup health probes using the /opt/veritas/vxapp-manage/nbu-health deactivate command.
  - Stop the NetBackup services using /usr/openv/netbackup/bin/bp.kill\_all.
  - Execute the nbhostidentity -import -infile /mnt/nblogs/DRPackages/<filename>.drpkg command.
  - Restart all the NetBackup services using /usr/openv/netbackup/bin/bp.start all.
- 13 Verify security settings are back.
- **14** Add respective media server entry in host properties using NetBackup Administration Console.
  - Navigate to NetBackup Management > Host properties > Master Server
     > Add Additional server and add media server.
- **15** Restart the NetBackup services in primary server pod and external media server.
  - Execute the following command in the primary server pod: kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash

- Run the /usr/openv/netbackup/bin/bp.kill\_all command. After stopping all services restart the same using the /usr/openv/netbackup/bin/bp.start\_all command.
- Run the /usr/openv/netbackup/bin/bp.kill\_all command. After stopping all services restart the services using the /usr/openv/netbackup/bin/bp.start\_all command on the external media server.
- **16** Configure a storage unit on external media server that is used during catalog backup.
- **17** Perform catalog recovery from NetBackup Administration Console.

For more information, refer to the NetBackup Troubleshooting Guide.

- **18** Execute the kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash command in the primary server pod.
  - Stop the NetBackup services using the /usr/openv/netbackup/bin/bp.kill\_all command.
  - Start NetBackup services using the /usr/openv/netbackup/bin/bp.start all command.
  - Activate NetBackup health probes using the /opt/veritas/vxapp-manage/nbu-health activate command.
- **19** Change CR spec from *paused: true* to *paused: false* in primary, mediaServers, and msdpScaleouts sections in environment.yaml and re-apply yaml using the kubectl apply -f environment.yaml -n <namespace> command.
- **20** To configure NetBackup IT Analytics refer to the following topic.

See "Configuring NetBackup IT Analytics for NetBackup deployment" on page 77.

150 | Performing catalog backup and recovery Restoring a catalog

# Chapter 15

# Managing MSDP Scaleout

This chapter includes the following topics:

- Adding MSDP engines
- Adding data volumes
- Expanding existing data or catalog volumes
- MSDP Scaleout scaling recommendations
- MSDP Cloud backup and disaster recovery
- MSDP multi-domain support
- Configuring Auto Image Replication
- About MSDP Scaleout logging and troubleshooting

# Adding MSDP engines

You can add new MSDP engines by updating the CR. You can add maximum 16 MSDP engines.

Prerequisites:

- Allocate new static IP/FQDN pairs in the same node resource group.
- The node number must not be less than the MSDP Scaleout size that you plan to change.
- CR YAML file of MSDP Scaleout

#### To add the MSDP engines by updating the CR YAML file

- 1 Open the CR YAML file to edit.
- 2 Append the new IP/FQDN pairs in the **spec.serviceIPFQDNs** field.

- 3 Update the spec.size field to increase the cluster size accordingly.
- 4 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

#### To add the MSDP engines using the kubectl command directly

Run the following command to append the IP/FQDN pairs in the **spec.serviceIPFQDNs** field and increase the cluster size in **spec.size** field.

```
kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>
[-o json | yaml]
```

The MSDP Scaleout services are not interrupted when MSDP engines are added.

## Adding data volumes

You can add the data volumes by updating the CR.

#### To add the data volumes by updating the CR YAML file

- Open the CR YAML file to edit.
- 2 Append the new data volume specifications in the **spec.dataVolumes** field.
- 3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

#### To add the MSDP engine using the kubectl command directly

Run the following command to append new data volume specifications in the **spec.dataVolumes** field.

```
kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>
[-o json | yaml]
```

In the MSDP engine pod, the first data volume is mounted on

/msdp/data/dp1/pdvol. Nth data volume is mounted on
/msdp/data/dp1/\${N-1}pdvol. For example, 2nd data volume is mounted on
/msdp/data/dp1/1pdvol.

Each MSDP engine can support up to 16 data volumes.

It is recommended that you use the same data volume size if you add multiple volumes.

**Note:** Due to some Kubernetes restrictions, MSDP operator restarts the engine pods for attaching the existing and new volumes, which can cause the short downtime of the services.

# Expanding existing data or catalog volumes

You can expand the existing data or catalog volumes by updating the CR.

#### To expand the data or catalog volumes by updating the CR YAML file

- **1** Open the CR YAML file to edit.
- 2 Increase the requested storage size in the **spec.dataVolumes** field or in the **spec.catalogVolume** field.
- 3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

To expand the data or catalog volumes using the kubectl command directly

Run the following command to increase the requested storage size in the **spec.dataVolumes** field or in the **spec.catalogVolume** field.

```
kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>
[-o json | yaml]
```

Sometimes Azure disk CSI driver may not respond the volume expansion request promptly. In this case, the operator retries the request by adding 1 byte to the requested volume size to trigger the volume expansion again. If it is successful, the actual volume capacity could be slightly larger than the requested size.

Due to the limitation of Azure disk CSI storage driver, the engine pods need to be restarted for resizing the existing volumes. This can cause the short downtime of the services.

MSDP Scaleout does not support the following:

- Cannot shrink the volume size.
- Cannot change the existing data volumes other than for storage expansion.
- Cannot expand the log volume size. You can do it manually. See "Manual storage expansion" on page 153.
- Cannot expand the data volume size for MDS pods. You can do it manually. See "Manual storage expansion" on page 153.

#### Manual storage expansion

You also can manually expand storage size by expanding PVC size.

#### To expand the data or catalog volumes

- 1 Open the CR YAML file to edit.
- 2 Configure spec.paused: true.

**3** Apply new CR YAML to stop MSDP operator from reconciling and repairing the pods automatically.

kubectl apply -f <your-cr-yaml>

4 Patch the corresponding PVCs.

```
kubectl patch pvc <pvc-name> --type merge --patch '{"spec":
{"resources": {"requests": {"storage": "<requested-size>"}}}'
-n <sample-namespace>
```

- **5** Specify spec.paused: false in the CR.
- **6** Apply new CR YAML to recover MSDP operator to continue to reconcile and repair the pods automatically.

kubectl apply -f <your-cr-yaml>

**Note:** If you add new MSDP Engines later, the new Engines will respect the CR specification only. Your manual changes would not be respected by the new Engines.

# **MSDP Scaleout scaling recommendations**

Following are the scaling recommendations for the MSDP Scaleout:

- Allocate the data volumes of the similar sizes for MSDP to have better load balancing performance.
- Each data volume size is more than 4 TB.
- Have multiple data volumes for each engine to gain better throughput.
- Split a bigger backup policy to smaller ones

In most cases, one backup job goes to one MSDP engine at the same time even if multistream is enabled for the backup policy. If the current MSDP engine, which is taking a backup job hits the high space watermark, the following backup data would be sent to a second MSDP engine. If the backup data is too big for up to 2 MSDP engines to persist, the backup job fails. When more MSDP engines are added, the backup jobs may not be evenly balanced on each MSDP engine at the first a few hours or days. If the situation keeps longer beyond your expectation, consider to re-plan the backup policies, by splitting a bigger backup policy to two smaller ones, to help MSDP Scaleout to balance the new backup jobs more faster.

 After scaling up, the memory and CPU of the existing node pool may not meet the performance requirements anymore. In this case, you can add more memory and CPU by upgrading to the higher instance type to improve the existing node pool performance or create another node pool with higher instance type and update the node-selector for the CR accordingly. If you create another node pool, the new node-selector does not take effect until you manually delete the pods and deployments from the old node pool, or delete the old node pool directly to have the pods re-scheduled to the new node pool.

 Ensure that each AKS node supports mounting the number of data volumes plus 5 of the data disks.

For example, if you have 16 data volumes for each engine, then each your AKS node should support mounting at least 21 data disks. The additional 5 data disks are for the potential MDS pod, Controller pod or MSDP operator pod to run on the same node with MSDP engine.

## **MSDP Cloud backup and disaster recovery**

For information about MSDP cloud backup and disaster recovery, see MSDP Cloud section of the *NetBackup Deduplication Guide*.

**Note:** In case of disaster recovery of NetBackup environment (that is, primary, media and MSDP), perform the primary catalog recovery first and then proceed with MSDP disaster recovery steps. See "Backing up a catalog" on page 145.

#### About the reserved storage space

About 1 TB storage space is reserved by default on each MSDP engine for each cloud LSU.

The 1 TB storage space is selected from one of the data volumes of every engine. It requires each engine at least has one data volume, which has more than 1 TB available storage space, when a cloud LSU is to be configured. Otherwise, the configuration of the cloud LSU fails.

#### Cloud LSU disaster recovery

Scenario 1: MSDP Scaleout and its data is lost and the NetBackup primary server remains unchanged and works well

- 1 Redeploy MSDP Scaleout on a AKS cluster by using the same CR parameters and NetBackup re-issue token.
- 2 When MSDP Scaleout is up and running, re-use the cloud LSU on NetBackup primary server.

/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig -storage\_server <STORAGESERVERNAME> -stype PureDisk -configlist <configuration file>

Credentials, bucket name, and sub bucket name must be the same as the recovered Cloud LSU configuration in the previous MSDP Scaleout deployment.

Configuration file template:

- V7.5 "operation" "reuse-lsu-cloud" string
- V7.5 "lsuName" "LSUNAME" string
- V7.5 "lsuCloudUser" "XXX" string
- V7.5 "lsuCloudPassword" "XXX" string
- V7.5 "lsuCloudAlias" "<STORAGESERVERNAME LSUNAME>" string
- V7.5 "lsuCloudBucketName" "XXX" string
- V7.5 "lsuCloudBucketSubName" "XXX" string
- V7.5 "lsuKmsServerName" "XXX" string

# If the LSU cloud alias does not exist, you can use the following command to add it.

/usr/openv/netbackup/bin/admincmd/csconfig cldinstance -as -in
<instance-name> -sts <storage-server-name> -lsu name <lsu-name>

**3** On the first MSDP Engine of MSDP Scaleout, run the following command for each cloud LSU:

sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/cacontrol --catalog
clouddr <LSUNAME>

4 Restart the MSDP services in the MSDP Scaleout.

Option 1: Manually delete all the MSDP engine pods.

kubectl delete pod <sample-engine-pod> -n <sample-cr-namespace>

Option 2: Stop MSDP services in each MSDP engine pod. MSDP service starts automatically.

kubectl exec <sample-engine-pod> -n <sample-cr-namespace> -c
uss-engine -- /usr/openv/pdde/pdconfigure/pdde stop

# Scenario 2: MSDP Scaleout and its data is lost and the NetBackup primary server was destroyed and is re-installed

- 1 Redeploy MSDP Scaleout on an AKS cluster by using the same CR parameters and new NetBackup token.
- 2 When MSDP Scaleout is up and running, reuse the cloud LSU on NetBackup primary server.

```
/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig
-storage_server <STORAGESERVERNAME> -stype PureDisk -configlist
<configuration file>
```

Credentials, bucket name, and sub bucket name must be the same as the recovered Cloud LSU configuration in previous MSDP Scaleout deployment.

Configuration file template:

```
V7.5 "operation" "reuse-lsu-cloud" string
V7.5 "lsuName" "LSUNAME" string
V7.5 "lsuCloudUser" "XXX" string
V7.5 "lsuCloudPassword" "XXX" string
V7.5 "lsuCloudAlias" "<STORAGESERVERNAME_LSUNAME>" string
V7.5 "lsuCloudBucketName" "XXX" string
V7.5 "lsuCloudBucketSubName" "XXX" string
V7.5 "lsuCloudBucketSubName" "XXX" string
V7.5 "lsuKmsServerName" "XXX" string
```

If KMS is enabled, setup KMS server and import the KMS keys.

If the LSU cloud alias does not exist, you can use the following command to add it.

/usr/openv/netbackup/bin/admincmd/csconfig cldinstance -as -in
<instance-name> -sts <storage-server-name> -lsu name <lsu-name>

**3** On the first MSDP Engine of MSDP Scaleout, run the following command for each cloud LSU:

sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/cacontrol --catalog
clouddr <LSUNAME>

4 Restart the MSDP services in the MSDP Scaleout.

Option 1: Manually delete all the MSDP engine pods.

kubectl delete <sample-engine-pod> -n <sample-cr-namespace>

Option 2: Stop MSDP services in each MSDP engine pod.

kubectl exec <sample-engine-pod> -n <sample-cr-namespace> -c
uss-engine -- /usr/openv/pdde/pdconfigure/pdde stop

- 5 Create disk pool for the cloud LSU on NetBackup server.
- 6 Do two-phase image importing.

See the NetBackup Administrator's Guide, Volume I

For information about other DR scenarios, see NetBackup Deduplication Guide.

## **MSDP** multi-domain support

An MSDP storage server is configured in a NetBackup media server. The NetBackup media servers and clients in the NetBackup domain can use this storage server. By default, the NetBackup media servers and clients cannot directly use an MSDP storage server from another NetBackup domain. For example, NetBackup media servers or clients cannot backup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup data to an MSDP storage server from another NetBackup domain.

To use an MSDP storage server from another NetBackup domain, the MSDP storage server must have multiple MSDP users. Then NetBackup media servers or clients can use the MSDP storage server from another NetBackup domain by using a different MSDP user. Multiple NetBackup domains can use the same MSDP storage server but each NetBackup domain must use a different MSDP user to access that MSDP storage server.

For more information, See NetBackup Deduplication Guide.

When you add a new MSDP user, the command spauser must be executed in the first MSDP engine of MSDP Scaleout, not on any of the NetBackup servers.

Ensure that you run MSDP commands with non-root user **msdpsvc** after logging into an engine pod.

For example, sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/spauser

## **Configuring Auto Image Replication**

The backups that are generated in one NetBackup domain can be replicated to storage in one or more target NetBackup domains. This process is referred to as Auto Image Replication (A.I.R.).

You can configure Auto Image Replication in NetBackup, which is using MSDP Scaleout storage servers.

#### To configure Auto Image Replication

- 1 Logon to the NetBackup Web UI of both replication source and target domain.
- 2 Add each other NetBackup's primary server as trusted primary server.

For more information, see the NetBackup Web UI Administrator's Guide.

3 In the replication source domain, get the MSDP\_SERVER name from the NetBackup Web UI.

Navigate to Storage > Storage configuration > Storage servers.

**4** Add MSDP\_SERVER in the primary server of replication target domain. Login to the target primary server and run the following command:

echo "MSDP\_SERVER = <Source MSDP server name>" >>
/usr/openv/netbackup/bp.conf

5 Get the token from the target domain NetBackup Web UI.

Navigate to **Security > Token**. In the **Create token** window, enter the token name and other required details. Click **Create**.

For more information, see the NetBackup Web UI Administrator's Guide.

6 Add replication targets for the disk pool in replication source domain.

In the **Disk pools** tab, click on the disk pool link.

Click **Add** to add the replication target.

- 7 In the Add replication targets window:
  - Select the replication target primary server.
  - Provide the target domain token.
  - Select the target volume.
  - Provide the target storage credentials.

Click Add.

# About MSDP Scaleout logging and troubleshooting

- AKS troubleshooting See AKS troubleshooting page of Azure documentation.
- Logs and core dumps files in MSDP Scaleout MSDP Operator, Controller, and MDS pod logs are stored in */log* location of the pods.

 Collect the logs and inspection information
 You can collect the logs and inspection information for MSDP Scaleout for troubleshooting purpose.
 See "Collecting the logs and the inspection information" on page 161.

#### Collecting the logs and the inspection information

You can collect the logs and inspection information for MSDP Scaleout for troubleshooting purpose.

Run the command kubectl msdp collect-logs

For example, kubect1 msdp collect-logs -o <output path> [-n <MSDP
operator namespace>] [-c <MSDP applications namespace(s)>]

| Option | Description                                                                                    |
|--------|------------------------------------------------------------------------------------------------|
| -c     | Comma-separated namespaces of MSDP applications.                                               |
|        | <b>Note:</b> If not specified, it collects MSDP applications of all namespaces.                |
| -f     | Output format of logs/core files/MSDP history files.                                           |
|        | Available options:                                                                             |
|        | targz: Copy logs/core files/MSDP history files from containers and compress them by tar/gzip.  |
|        | raw: Copy logs/core files/MSDP history files from containers as same format in the containers. |
|        | Default value: targz                                                                           |
| -n     | Namespace of MSDP operator.                                                                    |
|        | Default value: msdp-operator-system                                                            |
| -0     | Output path of the log file.                                                                   |

Table 15-1 collect-logs command options

162 | Managing MSDP Scaleout About MSDP Scaleout logging and troubleshooting

Chapter

# About MSDP Scaleout maintenance

This chapter includes the following topics:

- Pausing the MSDP Scaleout operator for maintenance
- Logging in to the pods
- Reinstalling MSDP Scaleout operator
- Migrating the MSDP Scaleout to another node pool

# Pausing the MSDP Scaleout operator for maintenance

For maintenance purpose, if you want the operator to stop reconciling the resources of one CR but do not affect the resources of the other CRs, you can pause the MSDP Scaleout operator.

#### To pause the MSDP Scaleout operator

- **1** Specify spec.paused: true in the CR.
- 2 Run kubectl apply -f <sample CR YAML>.

Do not forcibly delete the deployment resource of MSDP Scaleout operator.

# Logging in to the pods

You can log in to the pods for the maintenance purpose.

To log in to the pod, run the  ${\tt kubectl}$  executable file.

Run MSDP commands with non-root user **msdpsvc** after logging in to an engine pod.

For example, sudo -E -u msdpsvc <command>

The MSDP Scaleout services in an engine pods are running with non-root user **msdpsvc**. If you run the MSDP Scaleout services or commands with the root user, MSDP Scaleout may stop working due to file permissions issues.

# **Reinstalling MSDP Scaleout operator**

When you undeploy MSDP Scaleout operator, the MSDP Scaleout CRD is removed from the AKS cluster. It also deletes all the existing MSDP Scaleout on the AKS cluster. The PVC for the operator logs is also deleted. However, the MSDP Scaleout critical data and metadata is not deleted.

#### To reinstall MSDP Scaleout operator

1 Run the following command to delete the MSDP Scaleout operator:

kubectl msdp delete [-k] [-n <sample-operator-namespace>]

2 Run the following command to redeploy the operator.

```
kubectl msdp init -i <your-acr-url>/msdp-operator:<version> -s
<storage-class-name> -l agentpool=<nodepool-name> [-n
<sample-operator-namespace>]
```

3 If the reclaim policy of the storage class is **Retain**, run the following command to restart the existing MSDP Scaleout. MSDP Scaleout starts with the existing data/metadata.

kubectl apply -f <your-cr-yaml>

# Migrating the MSDP Scaleout to another node pool

You can migrate an existing MSDP Scaleout on another node pool in case of the Kubernetes infrastructure issues.

#### To migrate the MSDP Scaleout to another node pool

- 1 Ensure that no job running related to MSDP Scaleout that is going to migrate.
- 2 Update the node selector value **spec.nodeSelector** to the new node in the CR YAML file.

3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

**Note:** All affected pods or other Kubernetes workload objects must be restarted for the change to take effect.

4 After the CR YAML file update, existing pods are terminated and restarted one at a time, and the pods are re-scheduled for the new node pool automatically.

**Note:** Controller pods are temporarily unavailable when the MDS pod restarts. Do not delete pods manually.

**5** Run the following command to change MSDP Scaleout operator to the new node pool:

kubectl msdp init -i <your-acr-url>/msdp-operator:<version> -s
<storage-class-name> -l agentpool=<new-nodepool-name>

6 If node selector does not match any existing nodes at the time of change, you see the message on the console.

If auto scaling for node is enabled, it may resolve automatically as the new nodes are made available to the cluster. If invalid node selector is provided, pods may go in the pending state after the update. In that case, run the command above again.

Do not delete the pods manually.

166 | About MSDP Scaleout maintenance Migrating the MSDP Scaleout to another node pool

Chapter

17

# Uninstalling MSDP Scaleout from AKS

This chapter includes the following topics:

- Cleaning up MSDP Scaleout
- Cleaning up the MSDP Scaleout operator

# **Cleaning up MSDP Scaleout**

When you uninstall the MSDP Scaleout deployment from AKS, the MSDP engines, MSDP MDS servers, and the data is deleted from the cluster. The data is lost and cannot be recovered.

#### To clean up MSDP Scaleout from AKS

1 Delete the MSDP Scaleout CR.

kubectl delete -f <sample-cr-yaml>

When an MSDP Scaleout CR is deleted, the critical MSDP data and metadata is not deleted. You must delete it manually. If you delete the CR without cleaning up the data and metadata, you can re-apply the same CR YAML file to restart MSDP Scaleout again by reusing the existing data.

2 If your storage class is with the **Retain** policy, you must write down the PVs that are associated with the CR PVCs for deletion in the Kubernetes cluster level.

```
kubectl get
pod,svc,deploy,rs,ds,pvc,secrets,certificates,issuers,cm,sa,role,rolebinding
-n <sample-namespace> -o wide
kubectl get clusterroles,clusterrolebindings,pv -o wide
--show-labels|grep <sample-cr-name>
```

3 Delete all resources under the namespace where MSDP CR is deployed.

kubectl delete namespace <namespace>

4 If your storage class is with the **Retain** policy, you must delete the Azure disks on Azure portal or using the Azure CLI.

az disk delete -g \$RESOURCE GROUP --name \$AZURE DISK --yes

See "Deploying MSDP Scaleout" on page 105.

See "Reinstalling MSDP Scaleout operator" on page 164.

# **Cleaning up the MSDP Scaleout operator**

You can delete the MSDP Scaleout operator to remove all related resources about MSDP Scaleout operator. The MSDP Scaleout operator and logs are deleted.

#### To clean up MSDP Scaleout operator from AKS

1 If your storage class is with **Retain** policy, write down the PVs that are associated with the Operator PVCs for deletion in the Kubernetes cluster level.

```
kubectl get
pod,svc,deploy,rs,ds,pvc,secrets,certificates,issuers,cm,sa,role,rolebinding
-n <sample-operator-namespace> -o wide
kubectl get clusterroles,clusterrolebindings,pv -o wide
--show-labels
```

2 Delete the MSDP Scaleout operator.

kubectl msdp delete [-n <sample-operator-namespace>].

- -k: Delete all resources of MSDP Scaleout operator except the namespace.
- -n: Namespace scope for this request.
   Default value: msdp-operator-system
- **3** If your storage class is with the **Retain** policy, you must delete the Azure disks on Azure portal or using the Azure CLI.

az disk delete -g \$RESOURCE GROUP --name \$AZURE DISK --yes

See "Deploying MSDP Scaleout" on page 105.

See "Reinstalling MSDP Scaleout operator" on page 164.

170 | Uninstalling MSDP Scaleout from AKS Cleaning up the MSDP Scaleout operator

Chapter

# Uninstalling Snapshot Manager

This chapter includes the following topics:

Uninstalling Snapshot Manager from AKS

# **Uninstalling Snapshot Manager from AKS**

When you uninstall Snapshot Manager from AKS, the Snapshot Manager related services are deleted from the cluster.

Following commands can be used to remove and disable the Snapshot Manager from NetBackup:

```
ENVIRONMENT_NAMESPACE="ns-155"

# Make sure the flexsnap-operator pod is running and ready.

# Comment out / remove cpServer part from environment.yaml then apply it.

kubectl apply -f environment.yaml -n $ENVIRONMENT_NAMESPACE sleep

10s
```

172 Uninstalling Snapshot Manager Uninstalling Snapshot Manager from AKS

# Chapter 19

# Troubleshooting

This chapter includes the following topics:

- View the list of operator resources
- View the list of product resources
- View operator logs
- View primary logs
- Pod restart failure due to liveness probe time-out
- Socket connection failure
- Resolving an invalid license key issue
- Resolving an issue where external IP address is not assigned to a NetBackup server's load balancer services
- Resolving the issue where the NetBackup server pod is not scheduled for long time
- Resolving an issue where the Storage class does not exist
- Resolving an issue where the primary server or media server deployment does not proceed
- Resolving an issue of failed probes
- Resolving token issues
- Resolving an issue related to insufficient storage
- Resolving an issue related to invalid nodepool
- Resolving a token expiry issue

- Resolve an issue related to KMS database
- Resolve an issue related to pulling an image from the container registry
- Resolving an issue related to recovery of data
- Check primary server status
- Pod status field shows as pending
- Ensure that the container is running the patched image
- Getting EEB information from an image, a running container, or persistent data
- Resolving the certificate error issue in NetBackup operator pod logs
- Data migration unsuccessful even after changing the storage class through the storage yaml file
- Host validation failed on the target host
- Primary pod is in pending state for a long duration
- Taint, Toleration, and Node affinity related issues in cpServer
- Derations performed on cpServer in environment.yaml file are not reflected
- Host mapping conflict in NetBackup
- NetBackup messaging queue broker take more time to start
- Local connection is getting treated as insecure connection
- Issue with capacity licensing reporting which takes longer time
- Backing up data from Primary server's /mnt/nbdata/ directory fails with primary server as a client
- Primary pod goes in non-ready state

### View the list of operator resources

To view all the operator resources, execute the following command on Kubernetes cluster:

\$ kubectl get all -n netbackup-operator-system

The output should be something like this:

| NAME      | READY     | STATUS | RESTARTS | AGE |      |
|-----------|-----------|--------|----------|-----|------|
| pod/msdp- | operator- | 2/2    | Running  | 0   | 3h6m |

#### Troubleshooting | 175 View the list of product resources |

controller-manager-65d8fd7c4d-whqpm pod/netbackup-operator-2/2 Running 0 93m controller-manager-55d6bf59c8-vltmp NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/msdp-operator-ClusterIP 10.96.144.99 <none> 8443/TCP 3h6m controller-managermetrics-service service/msdp-operator-ClusterIP 10.96.74.75 <none> 443/TCP 3h6m webhook-service service/netbackup-ClusterIP 10.96.104.94 <none> 8443/TCP 93m operator-controller -manager-metrics-service service/netbackup-ClusterIP 10.96.210.26 <none> 443/TCP 93m operator-webhook-service NAME UP-TO-DATE AVAILABLE READY AGE deployment.apps/msdp-1/1 1 1 3h6m operator-controller-manager deployment.apps/netbackup 1 1/11 93m -operator-controller-manager NAME CURRENT DESIRED READY AGE replicaset.apps/msdp-1 3h6m 1 1 operator-controllermanager-65d8fd7c4d replicaset.apps/netbackup-1 1 1 93m operator-controller-manager-55d6bf59c8

Verify that both pods display **Running** in the Status column and both deployments display **2/2** in the **Ready** column.

### View the list of product resources

To view the list of product resources run the following command:

\$ kubectl get --namespace <namespace>

all, environments, primary servers, mediaservers, msdpscaleouts

#### The output should look like the following:

| NAME                       |                | READY            | STATUS     |     | RESTARTS             | AGE  |     |
|----------------------------|----------------|------------------|------------|-----|----------------------|------|-----|
| pod/dedupe1-uss-controller |                |                  |            |     |                      |      |     |
| -79d554f8cc-598pr          |                | 1/1              | Running    |     | 0                    | 68m  |     |
| pod/dedupel-uss-mds-1      |                | 1/1              | Runnin     | g   | 0                    | 75m  |     |
| pod/dedupe1-uss-mds-2      |                | 1/1              | Runnin     | g   | 0                    | 74m  |     |
| pod/dedupe1-uss-mds-3      |                | 1/1              | Running    |     | 0                    | 71m  |     |
| pod/medial-media-          | 0              | 1/1              | Running    |     | 0                    | 53m  |     |
| pod/environment-s          | ample          |                  |            |     |                      |      |     |
| -primary-0                 |                | 1/1              | Runnin     | g   | 0                    | 86m  |     |
| pod/x10-240-0-12.          | veritas        |                  |            |     |                      |      |     |
| .internal                  |                | 1/1              | Runnin     | g   | 0                    | 68m  |     |
| pod/x10-240-0-13.          | veritas        |                  |            |     |                      |      |     |
| .internal                  |                | 2/2              | Runnin     | g   | 0                    | 64m  |     |
| pod/x10-240-0-14.          | veritas        |                  |            |     |                      |      |     |
| .internal                  |                | 2/2              | Runnin     | g   | 0                    | 61m  |     |
| pod/x10-240-0-15.          | veritas        |                  |            |     |                      |      |     |
| .internal                  |                | 2/2              | /2 Running |     | ng 0 59n             |      |     |
|                            |                |                  |            |     |                      |      |     |
| NAME                       | TYPE           | CLUSTER          | -IP        | POF | RT(S)                |      | AGE |
| service/dedupe1-           |                |                  |            |     |                      |      |     |
| uss-controller             | ClusterIP      | 10.1.10          | 9.118      | 101 | LOO/TCP              |      | 68m |
| service/dedupe1-           |                |                  |            |     |                      |      |     |
| uss-mds                    | ClusterIP      | None             |            | 237 | 9/TCP <b>,</b> 2380  | /TCP | 75m |
| service/dedupe1-           |                |                  |            |     |                      |      |     |
| uss-mds-client             | ClusterIP      | 10.1.5.          | 208        | 237 | 9/TCP                |      | 75m |
| service/medial-            |                |                  |            |     |                      |      |     |
| media-0                    | LoadBalancer   | 10.1.12          | 1.115      | 137 | 782:30648/T          | CP,  |     |
|                            |                | 1556             | :30248/    | TCP | 54m                  |      |     |
| service/                   |                |                  |            |     |                      |      |     |
| environment-               |                |                  |            |     |                      |      |     |
| sample-primary             | LoadBalancer   | 10.1.20          | 6.39       | 137 | 781 <b>:</b> 30246/T | CP,  |     |
|                            | 1378           | 13782:30498/TCP, |            |     |                      |      |     |
|                            |                |                  |            |     |                      |      |     |
| 1556:31872/TCP,            |                |                  |            |     |                      |      |     |
|                            | 443:30049/TCP, |                  |            |     |                      |      |     |

# Troubleshooting | 177 View the list of product resources

8443:32032/TCP,

22:31511/TCP 87m

| service/                                    |                  |     |
|---------------------------------------------|------------------|-----|
| x10-240-0-12                                |                  |     |
| -veritas-internal LoadBalancer 10.1.44.188  | 10082:31199/TCP  | 68m |
| service/                                    |                  |     |
| x10-240-0-13                                |                  |     |
| -veritas-internal LoadBalancer 10.1.21.176  | 10082:32439/TCP, | 68m |
| service/                                    |                  |     |
| x10-240-0-14                                | 10102:30284/TCP  |     |
| -veritas-internal LoadBalancer 10.1.25.99   | 10082:31810/TCP, | 68m |
| service/                                    |                  |     |
| x10-240-0-15                                | 10102:31755/TCP  |     |
| -veritas-internal LoadBalancer 10.1.185.135 | 10082:31664/TCP, | 68m |
|                                             | 10102:31811/TCP  |     |

| NAME                                                        | READY | UP-I  | O-DATE | AVAILA   | BLE   | AGE    |
|-------------------------------------------------------------|-------|-------|--------|----------|-------|--------|
| deployment.apps/dedupe1<br>-uss-controller                  | 1/1   | 1     |        | 1        |       | 68m    |
| NAME                                                        | DESIR | ED CU | JRRENT | READY    | AGE   |        |
| replicaset.apps/dedupe1-uss                                 |       |       |        |          |       |        |
| -controller-79d554f8cc                                      | 1     | 1     |        | 1        | 68m   |        |
| NAME                                                        | READY | AGE   |        |          |       |        |
| statefulset.apps/medial-media                               | 1/1   | 53m   |        |          |       |        |
| statefulset.apps/environment                                |       |       |        |          |       |        |
| -sample-primary                                             | 1/1   | 8 6m  |        |          |       |        |
|                                                             |       |       |        |          |       |        |
| NAME                                                        | TAG   | AGE   | STATUS |          |       |        |
| <pre>primaryserver.netbackup .veritas.com/environment</pre> |       |       |        |          |       |        |
| -sample                                                     | 10.1  | 88m   | Succes | 9        |       |        |
| Sampie                                                      | 10.1  | 00111 | Bucceb | 0        |       |        |
| NAME                                                        | TAG   | AGE   | PRIMAR | Y SERVER | ST.   | ATUS   |
| mediaserver.netbackup.                                      |       |       | x10-24 | 0-0-10   |       |        |
| veritas.com/medial                                          | 10.1  | 54m   | .verit | as.inter | nal S | uccess |
|                                                             |       |       |        |          |       |        |
| NAME                                                        | AGE   | TAG   | SIZE   | READY    |       |        |
| msdpscaleout.msdp.                                          | 75    | 17 0  | 4      | 4        |       |        |
| veritas.com/dedupe1                                         | 75m   | 17.0  | 4      | 4        |       |        |

| NAME                   | READY | AGE | STATUS  |
|------------------------|-------|-----|---------|
| environment.netbackup. |       |     |         |
| veritas.com/           |       |     |         |
| environment-sample     | 3/3   | 88m | Success |

An environment is deployed successfully if all pods and environment CR display status as "Success".

## **View operator logs**

If environment deployment status is not successful, check operator logs for errors.

Command for MSDP Scaleout operator logs

```
$ kubectl logs pod/msdp-operator-controller-manager-65d8fd7c4d-whqpm
manager -n netbackup-operator-system-c manager
```

Command for NetBackup operator logs

```
$ kubectl logs
pod/netbackup-operator-controller-manager-55d6bf59c8-vltmp
netbackup-operator -n netbackup-operator-system
```

## View primary logs

To view primary server logs execute the following command to get a shell to the running container.

```
$ kubectl exec --stdin --tty pod/<primary-server-pod-name> -n
<namespace> -- /bin/bash
```

Once in the primary server shell prompt, to see the list of logs, run:

```
ls /usr/openv/logs/
```

## Pod restart failure due to liveness probe time-out

As part of liveness probe for primary and media pods, a health script runs inside the container to check the NetBackup health status.

When there is an issue with a container related to a full disk, CPU, or memory pressure, the liveness probe gets timed out because of no response from the health script. As a result, the Pod does not restart.

To resolve this issue, restart the Pod manually. Delete the Pod using the kubectl delete pod/<podname> -n <namespace> command.

The Pod is deleted and Kubernetes creates another Pod.

## Socket connection failure

Socket connection failure can happen because of the following reasons:

- Long processing delays
- Azure connection reset (default 4 minutes)
- Load on CPU or Memory pressure
- IO saturation and throttling under load

If there are problems with the TCP stacks on the hosts, network between the hosts, or unusual long processing delays, then the connection may drop and the TCP stack on the host is unaware of the situation.

The following error is displayed in the web UI under job details:

```
db_FLISTsend failed: unexpected message received (43)
*** - Error bptm (pid=14599) get_string() failed,
Connection reset by peer (104), network read error
*** - Info bptm (pid=14599) EXITING with status 42 <-----
*** - Info nbux-systest-media-1 (pid=14599)
StorageServer=PureDisk:nbux-systest-media-1;
Report=PDDO Stats for (nbux-systest-media-1):
scanned: 4195521 KB, CR sent: 171002 KB, CR sent over FC: 0 KB,
dedup: 95.9%, cache disabled, where dedup space saving:6.6%,
compression space saving:89.3%
*** - Info bpbkar (pid=19109) done. status: 42: network read failed</pre>
```

To resolve this issue, update the <code>sysctl.conf</code> values for NetBackup servers deployed on the AKS cluster.

NetBackup image sets following values in sysctl.conf during AKS deployment:

- net.ipv4.tcp\_keepalive\_time = 180
- net.ipv4.tcp\_keepalive\_intvl = 10
- net.ipv4.tcp\_keepalive\_probes = 20
- net.ipv4.ip\_local\_port\_range = 14000 65535

These settings are persisted at the location /mnt/nbdata/etc/sysctl.conf.

There are two ways to modify these values:

- Modify the value in both /etc/sysctl.conf and /mnt/nbdata/etc/sysctl.conf and run the sysctl -p command to load the modified values.
- Modify the values in /mnt/nbdata/etc/sysctl.conf and restart the pod. The new values are reflected after the pod restart.

If external media servers are used, perform the steps in the following order:

1. Add the following in /usr/openv/netbackup/bp.conf:

#### HOST\_HAS\_NAT\_ENDPOINTS = YES

- 2. Add the following sysctl configuration values in etc/sysctl.conf on external media servers to avoid any socket connection issues:
  - net.ipv4.tcp\_keepalive\_time = 180
  - net.ipv4.tcp\_keepalive\_intvl = 10
  - net.ipv4.tcp\_keepalive\_probes = 20
  - net.ipv4.ip\_local\_port\_range = 14000 65535
  - net.core.somaxconn = 4096
- 3. Save the setting using the sysctl -p command.

# Resolving an invalid license key issue

The NetBackup is not installed because the license key is invalid.

Pod remains in running state for long time and the installation log at /mnt/nblogs/setup-server.log displays the following error:

ERROR: No valid license key for NetBackup Server or Enterprise Server

When you deploy NetBackup for the first time, perform the steps for primary CR and media CR.

#### To resolve an invalid license key issue for Primary CR

1 Get the configmap name created for primary CR or media CR using the following command:

kubectl get configmap -n <namespace>

2 Edit the license key stored in configmap using the following command:

kubectl edit configmap <primary-configmap-name> -n <namespace>

**3** Update value for **ENV\_NB\_LICKEY** key in the configmap with correct license key and save.

Resolving an issue where external IP address is not assigned to a NetBackup server's load balancer services

**4** Delete respective primary/media pod using the following command:

kubectl delete pod<primary-pod-name> -n <namespace>

New pod is auto created with updated license key value.

**5** Edit environment CR with updated license key and save using the following command:

kubectl edit environments.netbackup.veritas.com -n <namespace>

## Resolving an issue where external IP address is not assigned to a NetBackup server's load balancer services

The issue can be because of one of the following reasons:

- The resourcePrefixName mentioned in custom resource is not unique and valid.
- The static IP is provided in networkLoadBalancer section in CR but it is not created in AKS.
- The subnet or resource group is mentioned in annotations of networkLoadBalancer section in CR spec, the IP address is not available in given subnet or resource group.
- The RBAC permissions in your cluster for the given subnet or resource group are not assigned properly for allocating IP addresses.

## To resolve an issue where external IP address is not assigned to a NetBackup server's load balancer services

- 1 Check the event logs of load balancer service using the kubectl describe service <svc-name> -n <namespace> command for detailed error information.
- 2 Run the kubectl edit Environment <environmentCR-name> -n <namespace> command.
- **3** Depending on the output of the command and the reason for the issue, perform the required steps and update the environment CR to resolve the issue.

## Resolving the issue where the NetBackup server pod is not scheduled for long time

The NetBackup server (primary server and media server) pods are stuck in Pending state. The issue can be because of one of the following reasons:

- Insufficient resource allocation.
- Persistent volume claims are not bound to persistent volume.
- NetBackup server pods have the anti-affinity rule added.

As a result, primary server and media server pods are scheduled on different nodes. If nodes are not available, pod remains in pending state with event logs indicating nodes are scaling up, if auto scaling is configured in cluster.

## To resolve the issue where the NetBackup server pod is not scheduled for long time

- 1 Check the pod event details for more information about the error using kubectl describe <PrimaryServer/MediaServer\_Pod\_Name> -n <namespace> command.
- **2** Depending on the output of the command and the reason for the issue, perform the required steps and update the environment CR to resolve the issue.

## Resolving an issue where the Storage class does not exist

The Config-Checker checks if the storage class name given in primary server/media server CR is available in the cluster.

The following error is displayed:

Error: ERROR Storage class with the <storageClassName> name does not exist.

After fixing this error, primary server or media server CR does not require any changes. In this case, NetBackup operator reconciler loop is invoked after every 10 hours. If you want to reflect the changes and invoke the NetBackup operator reconciler loop immediately, delete and reapply the primary server or media server CR.

#### Troubleshooting | 183

Resolving an issue where the primary server or media server deployment does not proceed

#### To resolve an issue where the Storage class does not exist

1 Create storage class with the same name given in primary server or media server CR with ReclaimPolicy as **Retain** in the cluster.

To create storage class, refer to the following link:

Azure Kubernetes Service storage classes

In this scenario, no change in primary server or media server CR is required. As a result, reconciler loop is not invoked immediately.

2 To invoke the reconciler loop again, delete the respective CR.

If it is primary server CR, use the <code>kubectl delete -f <environment.yaml></code> command, or if it is media server CR, edit the Environment CR by removing the media server section in the <code>environment.yaml</code>.

Note: To reuse the mediaServer section information, you must save it and apply the yaml again with the new changes using the kubectl apply -f <environment.yaml> command.

3 Apply the CR again.

If it is primary server CR then reapply it using the <code>kubectl apply -f</code> <environment.yaml> command or if it is media server CR, add mediaServer section that was deleted earlier with required data in <code>environment.yaml</code> and reapply it using the <code>kubectl apply -f</code> <environment.yaml> command.

## Resolving an issue where the primary server or media server deployment does not proceed

primary server or media server deployment does not proceed even if **configcheckmode = default** in primary server or media server CR spec and no other child resources are created. It is possible that the Config-Checker job has failed some of the configuration checks.

## To resolve an issue where the primary server or media server deployment does not proceed

1 Check the status of Config-Checker Configcheckerstatus mentioned in primary server or media server CR status using the kubectl describe <PrimaryServer/MediaServer> <CR name> -n <namespace> command.

If the state is **failed**, check the Config-Checker pod logs.

2 Retrieve the Config-Checker pod logs using the kubectl logs <config-checker-pod-name> -n <operator-namespace> command.

Config-Checker pod name can be in the following format:

<serverType>-configchecker-<configcheckermode>-randomID, for example
if its Config-Checker for primary server with configcheckermode = default,
pod name is primary-configcehcker-default-dhg34.

- **3** Depending on the error in the pod logs, perform the required steps and edit the environment CR to resolve the issue.
- 4 Data migration jobs create the pods that run before deployment of primary server. Data migration pod exist after migration for one hour only if data migration job failed. The logs for data migration execution can be checked using the following command:

kubectl logs <migration-pod-name> -n
<netbackup-environment-namespace>

User can copy the logs to retain them even after job pod deletion using the following command:

kubectl logs <migration-pod-name> -n
<netbackup-environment-namespace> > jobpod.log

### Resolving an issue of failed probes

If pod is not in ready state for log time, the kubectl describe pod/<podname> -n <namespace> command displays the following errors:

 Readiness probe failed: The readiness of the external dependencies is not set.

Server setup is still in progress.

 Liveness probe failed: bpps command did not list nbwmc process. nbwmc is not alive.

The Primary server is unhealthy.

#### To resolve an issue of failed probes

1 If you are deploying NetBackup on Azure Kubernetes Service Cluster for the first time, check the installation logs for detailed error.

Use any of the following methods:

Execute the following command in the respective primary server or media server pod and check the logs in /mnt/nblogs/setup-server.logs:

kubectl exec -it -n <namespace> <pod-name> -- /bin/bash

- Run the kubectl logs pod/<podname> -n <namespace> command.
- 2 Check pod events for obtaining more details for probe failure using the following command:

kubectl describe pod/<podname> -n <namespace>

Kubernetes will automatically try to resolve the issue by restarting the pod after liveness probe times out.

3 Depending on the error in the pod logs, perform the required steps or contact technical support.

### **Resolving token issues**

Media server installation log displays the following error in

```
/mnt/nblogs/setup-server.logs:
```

```
nbcertcmd: The -getCertificate operation
failed for server <primaryServerName>,
EXIT STATUS 5940: Reissue token is mandatory,
please provide a reissue token
```

NetBackup media server and NetBackup primary server were in running state. Media server persistent volume claim or media server pod is deleted. In this case, reinstallation of respective media server can cause the issue.

#### To resolve token issues

- 1 Open the NetBackup web UI using primary server hostname given in the primary server CR status.
- 2 Navigate to Security > Host Mappings.
- 3 Click Actions > Allow auto reissue certificate for the respective media server name.

**4** Delete data and logs PVC for respective media server only using the kubectl delete pvc <pvc-name> -n <namespace> command.

The persisted data is deleted.

5 Delete respective media server pod using kubectl delete <pod-name> -n <namespace> command.

New media server pod and new PVCs for the same media server are created.

### Resolving an issue related to insufficient storage

Setup-server.logs of NetBackup primary server displays an error.

Insufficient storage on the node can cause this issue. Minimum hardware requirements for NetBackup may not be completed. During fresh deployment of primary server, the following error is displayed in /mnt/nblogs/setup-server.logs:

DBSPAWN ERROR: -86 Not enough memory to start

#### To resolve an issue related to insufficient storage

- 1 Create a new nodepool with the hardware specifications as mentioned in the NetBackup Deployment on AKS Administrator's Guide.
- 2 Run the kubectl get nodes command to ensure that the nodes from the newly created nodepool are used in your cluster.
- 3 Delete the primary server CR using the kubectl delete -f <environment.yaml> command.
- 4 Update nodeSelector spec in primary section and apply the environment.yaml again using the kubectl apply -f <environment.yaml> command.

### Resolving an issue related to invalid nodepool

Invalid nodepool is mentioned in primary server or media server CR nodeSelector spec. Due to this, primary server or media server pod fails to schedule.

The following error is displayed:

Error: Did not match Pod's node affinity/selector.

#### To resolve an issue related to invalid nodepool

1 If you are deploying NetBackup on Azure Kubernetes Service Cluster for the first time, delete the respective CR.

If it is primary server CR:

- Delete it using the kubectl delete -f <environment.yaml> command.
- Update the node selector in primary server section in environment.yaml and apply it again using the kubectl apply -f <environment.yaml> command.
- 2 For media server CR: Delete the media server CR by removing the mediaServer section in the environment.yaml and save the changes.

**Note:** Ensure that you copy spec information of the media server CR. The spec information is used to reapply the media server CR.

- 3 Apply the new changes using the kubectl apply -f <environment.yaml> command.
- 4 Add the mediaServer section, update the nodeSelector, and reapply the environment.yaml using the kubectl apply -f <environment.yaml> command.

### Resolving a token expiry issue

While creating a new media pod, token may expire, and installation of media server is not completed. The installation logs at /mnt/nblogs/setup-server.logs display an error on the respective media server.

EXIT STATUS 5934: The token has expired.

#### To resolve a token expiry issue

- Edit the environment server CR using the kubectl edit environment <environment-CR-name> -n <namespace> command.
- 2 In the mediaServer section, reduce the replica count.

For example, if media pod with name xyz-media-2 has the token expired issue and the replica was originally 3, then change the replica count to 2. Save the changes. The extra pods are deleted and statefulset displays new replica count in ready state (2/2).

- **3** Edit the media server CR using the kubectl edit MediaServer <mediaServer-CR-name> -n <namespace> command.
- 4 Increase replica count to original replica count.

As given in the example, change the replica count to 3. This creates additional media pods and reissues the token for newly added media server.

### Resolve an issue related to KMS database

Installation logs at /mnt/nblogs/setup-server.logs display an error message with other details. In this scenario, you must configure KMS manually.

Error: Failed to create KMS database

To resolve this issue, execute the following command in the primary server pod:

kubectl exec -it -n <namespace> <primary-server-pod-name> -- /bin/bash

Refer the NetBackup Security and Encryption Guide for configure KMS manually:

For other troubleshooting issue related to KMS, refer the NetBackup Troubleshooting Guide.

## Resolve an issue related to pulling an image from the container registry

Primary or media server failed to deploy with **ImagePullBackOff** error. If the pod Status field displays **ImagePullBackOff**, it means that the pod could not start because Kubernetes cannot pull a container image. A misspelled registry or image name or image registry being not reachable can cause a **ImagePullBackOff** status.

Run the \$ k get all -n netbackup-operator-system command.

The output should look like:

|                        | NAME         | READY | STATUS           | RESTARTS | AGE  |
|------------------------|--------------|-------|------------------|----------|------|
| pod/msdp-operator      |              |       |                  |          |      |
| -control               | Ler-manager- |       |                  |          |      |
| 65d8fd7c               | 1d-bsgms     | 2/2   | Running          | 0        | 7m9s |
|                        |              |       |                  |          |      |
| pod/netbackup-operator |              |       |                  |          |      |
| -control               | Ler-manager- |       |                  |          |      |
| 5df6f58b               | 9b-6ftt9     | 1/2   | ImagePullBackOff | 0        | 13s  |
|                        |              |       |                  |          |      |

For additional details, use the following command:

\$ kubectl describe pod/<pod name> -n netbackup-operator-system

Resolve this issue using any of the following methods:

- Check if image name and tag are correct. If not, edit and update the environment CR using the kubectl edit environment <environment CR-name> -n <namespace> command with correct image name and tag, and then save the changes.
- Check if the user is authorized and has permissions to access the Azure container registry.

### Resolving an issue related to recovery of data

If a PVC is deleted or the namespace where primary or media server is deployed, is deleted or deployment setup is uninstalled, and you want to recover the previous data, attach the primary server and media server PVs to its corresponding PVCs.

In case of recovering data from PV, you must use the same environment CR specs that are used at the time of previous deployment. If any spec field is modified, data recovery may not be possible.

#### To resolve an issue related to recovery of data

- 1 Run the kubectl get PV command.
- 2 From the output list, note down PV names and its corresponding claim (PVC name and namespace) that are relevant from previous deployment point of view.
- 3 Set claim ref for the PV to null using the kubectl patch pv <pv name> -p
  '{"spec":{"claimRef": null}}' command.

For example, kubectl patch pv
pvc-4df282e2-b65b-49b8-8d90-049a27e60953 -p '{"spec":{"claimRef":
null}}'

4 Run the kubectl get PV command and verify bound state of PVs is Available.

5 For the PV to be claimed by specific PVC, add the claimref spec field with PVC name and namespace using the kubectl patch pv <pv-name> -p '{"spec":{"claimRef": {"apiVersion": "v1", "kind": "PersistentVolumeClaim", "name": "<Name of claim i.e. PVC name>", "namespace": "<namespace of pvc>"}}' command.

#### For example,

```
kubectl patch pv <pv-name> -p '{"spec":{"claimRef": {"apiVersion":
    "v1", "kind": "PersistentVolumeClaim", "name":
    "data-testmedia-media-0", "namespace": "test"}}}'
```

While adding claimRef add correct PVC names and namespace to respective PV. Mapping should be as it was before deletion of the namespace or deletion of PVC.

6 Deploy environment CR that deploys the primary server and media server CR internally.

### Check primary server status

Check the primary server custom resource status, with the command:

```
$ kubectl get primaryserver.netbackup.veritas.com/environment-sample
-n <namespace>
```

NAME TAG AGE STATUS environment-sample 10.0 3h1m Failed

If the output shows STATUS as *Failed* as in the example above, check the primary pod log for errors with the command:

\$ kubectl logs pod/environment-sample-primary-0 -n <namespace>

### Pod status field shows as pending

If the pod Status field shows Pending state, it indicates that Kubernetes is not able to schedule the pod. To check use the following command:

\$ kubectl get all -n netbackup-operator-system

The output is something like:

| NAME                | READY | STATUS  | RESTARTS | AGE |
|---------------------|-------|---------|----------|-----|
| pod/msdp-operator-  |       |         |          |     |
| controller-manager- |       |         |          |     |
| 65d8fd7c4d-bsgms    | 2/2   | Running | 0        | 12m |

## Troubleshooting | 191 Ensure that the container is running the patched image

pod/netbackupoperator-controllermanager-6c9dc8d87f -pq8mr 0/2 Pending 0 15s

#### For more details use the following pod describe command:

```
$ kubectl describe
pod/netbackup-operator-controller-manager-6c9dc8d87f-pq8mr -n
netbackup-operator-system
```

#### The output is something like:

| Туре    | Reason           | Age                 | Message                                                                                                                                        |
|---------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                  |                     |                                                                                                                                                |
| Warning | FailedScheduling | 56s (x3 over 2m24s) | <pre>available:1 node(s) had taint {node- role.kubernetes. io/master: }, that the pod didn't tolerate, 3 node(s) didn't match Pod's node</pre> |
|         |                  |                     | affinity/selector.                                                                                                                             |

To resolve this issue verify the nodeSelector settings in the <code>operator/patch/operator\_patch.yaml file.</code>

## Ensure that the container is running the patched image

There are three copies of the container image present in the Kubernetes environment during deployment or patching.

The first image copy is created on a local docker instance during image load operation. To check this copy, perform the following:

#### 192 | Troubleshooting Ensure that the container is running the patched image

**1** Run:

\$ docker load -i images/pdk8soptr-17.0.tar.gz

#### Sample output:

Loaded image: msdp-operator:17.0

2 Taking the image name from step 1, run:

\$ docker image ls | grep msdp-operator

Sample output:

msdp-operator 17.0 353d2bd50105 2 days ago 480 MB

**3** Taking the value from step 2, run:

\$ docker inspect 353d2bd50105 | jq .[].Id

"sha256:353d2bd50105cbc3c61540e10cf32a152432d5173bb6318b8e"

The second copy is created in Azure Container Registry (ACR). To check this copy, perform the following:

**1** Keep the image name and version same as original, run:

```
$ docker image tag msdp-operator:17.0
testregistry.azurecr.io/msdp-operator:17.0
```

2 Run:

\$ docker image ls | grep msdp-operator

#### Sample output:

```
msdp-operator 17.0 353d2bd50105 2 days ago 480 MB
tregistry.azurecr.io/msdp-operator 17.0 353d2bd50105 2 days ago 480 MB
```

**3** To push the image to the registry, run:

\$ docker push testregistry.azurecr.io/msdp-operator

The push refers to a repository [testregistry.azurecr.io/msdp-operator] 0a504041c925: Layer already exists

```
17.0: digest:
sha256:d294f260813599562eb5ace9e0acd91d61b7dbc53c3 size:
2622
```

4 To verify local image digest after the push operation, run:

```
$ docker inspect 353d2bd50105 | jq .[].RepoDigests
```

Sample output:

```
[
  "testregistry.azurecr.io/msdp-operator@sha256:
d294f260813599562eb5ace9e0acd91d61b7dbc53c3"
]
```

5 To verify image presence in the registry, run:

```
$ az acr repository list --name testregistry
```

Sample output:

```
[ "msdp-operator",
]
```

#### 6 To verify image digest in registry, run:

```
$ az acr repository show -n testregistry --image
msdp-operator:17.0
```

#### Sample output:

```
{
   "changeableAttributes": {
    "deleteEnabled": true,
    "listEnabled": true,
    "readEnabled": true,
    "writeEnabled": true
   },
   "createdTime": "2022-02-01T13:43:26.6809388Z",
   "digest": "sha256:d294f260813599562eb5ace9e0acd91d61b7dbc53c3",
   "lastUpdateTime": "2022-02-01T13:43:26.6809388Z",
   "name": "17.0",
   "signed": false
  }
}
```

The third copy is located on a Kubernetes node running the container after it is pulled from the registry. To check this copy, do the following:

#### 194 | Troubleshooting Ensure that the container is running the patched image

#### 1 Run;

```
$ kubectl get nodes -o wide
NAME STATUS VERSION INTERNAL-IP OS-IMAGE
aks-agentpool-7601-vmss000 Ready v1.21.7 10.240.0.4 Ubuntu 18.04.6 LTS
```

#### 2 Use kubectl debug to run a container on the node:

```
$ kubectl debug node/aks-nodepool1-7601-vmss000-it
--image=mcr.microsoft.com/aks/fundamental/base-ubuntu:v0.0.11
root@aks-agentpool-7601-vmss000:/#
```

#### 3 You can interact with the node session from the privileged container:

chroot /host

4 Verify the presence of the image:

/usr/local/bin/crictl image | grep msdp

Sample output:

testregistry.azurecr.io/msdp-operator 17.0 353d2bd50105c 182MB

#### 5 Verify the image ID on the Kubernetes node, run:

/usr/local/bin/crictl inspecti 353d2bd50105c | jq .[].id

#### Sample output

```
"sha256:353d2bd50105cbc3c61540e10cf32a152432d5173bb6318b8e"
null
```

#### 6 Verify the image digest on the Kubernetes node, run:

```
/usr/local/bin/crictl inspecti 353d2bd50105c | jq .[].repoDigests
```

#### Sample output

```
[
   "testregistry.azurecr.io/msdp-operator@sha256:
d294f260813599562eb5ace9e0acd91d61b7dbc53c3"
]
null
```

#### How to make sure that you are running the correct image

Use the steps given above to identify image ID and Digest and compare with values obtained from the registry and the Kubernetes node running the container.

**Note:** MSDP Scaleout images (uss-engine, uss-mds, uss-controller, msdp-operator) use IfNotPresent imagePullPolicy. A unique image tag is required in order for a Kubernetes node to pull an updated image.

## Getting EEB information from an image, a running container, or persistent data

To view the list of installed EEBs, run the nbbuilder script provided in the EEB file archive.

\$ bash nbbuilder.sh -registry\_name testregistry.azurecr.io -list installed eebs -nb src tag=10.1-2 -msdp src tag=17.0-2

#### Sample output:

```
Wed Feb 2 20:48:13 UTC 2022: Listing strings for EEBs
installed in testregistry.azurecr.io/netbackup/main:10.1-2.
EEB NetBackup 10.1Beta6 PET3980928 SET3992004 EEB1
EEB NetBackup 10.1Beta6 PET3980928 SET3992021 EEB1
EEB NetBackup 10.1Beta6 PET3980928 SET3992022 EEB1
EEB NetBackup 10.1Beta6 PET3980928 SET3992023 EEB1
EEB NetBackup 10.1Beta6 PET3992020 SET3992019 EEB2
EEB NetBackup 10.1Beta6 PET3980928 SET3992009 EEB2
EEB NetBackup 10.1Beta6 PET3980928 SET3992016 EEB1
EEB NetBackup 10.1Beta6 PET3980928 SET3992017 EEB1
Wed Feb 2 20:48:13 UTC 2022: End
Wed Feb 2 20:48:13 UTC 2022: Listing strings for EEBs
installed in testregistry.azurecr.io/uss-controller:17.0-2.
EEB MSDP 17.0 PET3980928 SET3992007 EEB1
EEB MSDP 17.0 PET3992020 SET3992019 EEB2
EEB MSDP 17.0 PET3980928 SET3992010 EEB2
Wed Feb 2 20:48:14 UTC 2022: End
Wed Feb 2 20:48:14 UTC 2022: Listing strings for EEBs
installed in testregistry.azurecr.io/uss-engine:17.0-2.
EEB MSDP 17.0 PET3980928 SET3992006 EEB1
EEB MSDP 17.0 PET3980928 SET3992023 EEB1
EEB MSDP 17.0 PET3992020 SET3992019 EEB2
```

EEB\_MSDP\_17.0\_PET3980928\_SET3992009\_EEB2 EEB\_MSDP\_17.0\_PET3980928\_SET3992010\_EEB2 EEB\_MSDP\_17.0\_PET3980928\_SET3992018\_EEB1 Wed Feb 2 20:48:14 UTC 2022: End Wed Feb 2 20:48:14 UTC 2022: Listing strings for EEBs installed in testregistry.azurecr.io/uss-mds:17.0-2. EEB\_MSDP\_17.0\_PET3980928\_SET3992008\_EEB1 EEB\_MSDP\_17.0\_PET3992020\_SET3992019\_EEB2 EEB\_MSDP\_17.0\_PET3980928\_SET3992010\_EEB2 Wed Feb 2 20:48:15 UTC 2022: End

Alternatively, if the nbbuilder script is not available, you can view the installed EEBs by executing the following command:

```
$ docker run --rm <image_name>:<image_tag> cat
/usr/openv/pack/pack.summary
```

#### Sample output:

```
EEB_NetBackup_10.1Beta6_PET3980928_SET3992004_EEB1
EEB_NetBackup_10.1Beta6_PET3980928_SET3992021_EEB1
EEB_NetBackup_10.1Beta6_PET3980928_SET3992022_EEB1
EEB_NetBackup_10.1Beta6_PET3980928_SET3992023_EEB1
EEB_NetBackup_10.1Beta6_PET3980928_SET3992019_EEB2
EEB_NetBackup_10.1Beta6_PET3980928_SET3992009_EEB2
EEB_NetBackup_10.1Beta6_PET3980928_SET3992016_EEB1
EEB_NetBackup_10.1Beta6_PET3980928_SET3992017_EEB1
```

#### To view all EEBs installed in a running container, run:

```
$ kubectl exec --stdin --tty <primary-pod-name> -n <namespace> --
cat /usr/openv/pack/pack.summary
```

Note: The pack directory may be located in different locations in the uss-\* containers. For example: /uss-controller/pack , /uss-mds/pack, /uss-proxy/pack.

#### To view a list of installed data EEBs from a running container, run:

```
$ kubectl exec --stdin --tty <primary-pod-name> -n <namespace> --
cat /mnt/nbdata/usr/openv/pack/pack.summary
```

## Resolving the certificate error issue in NetBackup operator pod logs

Following error is displayed in NetBackup operator pod logs when the primary server certificate is changed:

ERROR controller-runtime.manager.controller.environment Error defining desired resource {"reconciler group": "netbackup.veritas.com", "reconciler kind": "Environment", "name": "test-delete", "namespace": "netbac "Type": "MSDPScaleout", "Resource": "dedupe1", "error": "Unable to get primar Get \"https://nbux-10-244-33-24.vxindia.veritas.com:1556/netbackup/config/hos x509: certificate signed by unknown authority (possibly because of \"crypto/r verification error\" while trying to verify candidate authority certificate \

To resolve this issue, restart the NetBackup operator by deleting the NetBackup operator pod using the following command:

kubectl delete <Netbackup-operator-pod-name> -n <namespace>

## Data migration unsuccessful even after changing the storage class through the storage yaml file

#### To resolve the data migration unsuccessful issue

- 1 Check if the previous/older migration PVC is still present.
- 2 Check if an existing migration job is in pending/running state.
- 3 Migration will not be triggered if storage class name is not changed for volumes (catalog) of primary server.
- 4 Check if the updated storage yaml file is set to use any other storage class other than Azure premium files for catalog.
- 5 Check if the protocol version for catalog storage class is set to NFS to allow successful migration.

- 6 Check if the status of migration reported by the migration pod in the logs is other than *MigrationStatus: Passed*.
- 7 Ensure that the User's Azure subscription has **Classic Network Contributor** role which is also a pre-requisite for migration/upgrade.

**Note:** If reconciler is called while migration PVC exists the invocation will be failed, customers must wait for the completion of a migration job if an existing migration job is running and they can also monitor the migration job pods to check if there are any issues with the migration job. In order to resolve any problems encountered during existing migration job pod they may choose to delete the migration job pod manually. If the migration job pod does not exist, then customer may delete the migration PVC.

### Host validation failed on the target host

The following error message is displayed when host mapping conflicts with NetBackup:

Error in log: ..exited with status 7659: Connection cannot be established because the host validation failed on the target host

In Kubernetes deployment, communication to pod happens through multiple layers that is, load balancer, nodes and pod. In certain setups during communication host may get associated with certain IP and that gets changed in course of time. That IP may get associated with some different pod and can cause conflict. The host mapping entries is in the form of :ffff:<ip>iddress>.

#### To resolve this conflict issue

- 1 To verify the conflict entries, see **Mappings for Approval tab** section of *NetBackup*<sup>™</sup> *Security and Encryption Guide*.
- 2 Remove the entries that are not valid.

For more information, see **Removing host ID to host name mappings** section of *NetBackup*<sup>™</sup> *Security and Encryption Guide* 

### Primary pod is in pending state for a long duration

Primary pod and Operator pod have pod anti-affinity set.

#### To resolve the issue of long duration pending state of primary pod

1 Verify if Operator pod and Primary pod are scheduled to same node using the following commands:

kubectl get all -n <primary pod namespace> -o wide kubectl get all -n <operator pod namespace> -o wide

- 2 If it is allocated to same node then create new node with same node selector given in CR for primary server.
- 3 Delete the Primary pod which is in pending state.

The newly created Primary pod must not be in pending state now.

## Taint, Toleration, and Node affinity related issues in cpServer

#### The cpServer control pool pod is in pending state

If one of the following cpServer control pool pod is in pending state, then perform the steps that follow:

```
flexsnap-agent, flexsnap-api-gateway, flexsnap-certauth,
flexsnap-coordinator, flexsnap-idm, flexsnap-nginx,
flexsnap-notification, flexsnap-scheduler, flexsnap-, flexsnap-,
flexsnap-fluentd-, flexsnap-fluentd
```

1. Obtain the pending pod's toleration and affinity status using the following command:

kubectl get pods <pod name>

- 2. Check if the node-affinity and tolerations of pod are matching with:
  - fields listed in cpServer.nodepool.controlpool or primary.nodeselector in the environment.yaml file.
  - taint and label of node pool, mentioned in cpServer.nodeselector.controlpool or primary.nodeselector in the environment.yaml file.

If all the above fields are correct and matching and still the control pool pod is in pending state, then the issue may be due to all the nodes in nodepool running at maximum capacity and cannot accommodate new pods. In such case the noodpool must be scaled properly.

#### The cpServer data pool pod is in pending state

If one of the following cpServer data pool pod is in pending state, then perform the steps that follow:

flexsnap-listener, flexsnap-workflow, flexsnap-datamover

1. Obtain the pending pod's toleration and affinity status using the following command:

kubectl get pods <pod name>

- 2. Check if the node-affinity and tolerations of pod are matching with:
  - fields listed in cpServer.nodepool.datapool in the environment.yaml file.
  - taint and label of node pool, mentioned in cpServer.nodeselector.datapool in the environment.yaml file.

If all the above fields are correct and matching and still the control pool pod is in pending state, then the issue may be due to all the nodes in nodepool running at maximum capacity and cannot accommodate new pods. In such case the noodpool must be scaled properly.

## The Snapshot Manager operator (flexsnap-operator) pod is in pending state

1. Obtain the pending pod's toleration and affinity status using the following command:

kubectl get pods <pod name>

- 2. Check if the node-affinity and tolerations of pod are matching with:
  - fields listed in operator/kustomization.yaml file.
  - taint and label of node pool, mentioned in above values.

If all the above fields are correct and matching and still the control pool pod is in pending state, then the issue may be due to all the nodes in nodepool running at maximum capacity and cannot accommodate new pods. In such case the noodpool must be scaled properly.

#### Nodes configured with incorrect taint and label

If the nodes are configured with incorrect taint and label values, the the user can edit them using the following command:

```
az aks nodepool update \ --resource-group <resource_group> \
--cluster-name <cluster_name> \ --name <nodepool_name> \ --node-taints
<key>=<value>:<effect> \ --no-wait
```

```
az aks nodepool update \ --resource-group <resource_group> \
--cluster-name <cluster_name> \ --name <cluster_name> \ --labels
<key>=<value>
```

## Operations performed on cpServer in environment.yaml file are not reflected

Operations such as add/remove/comment/uncomment performed on cpServer in environment.yaml file are not reflected even after applying them. The reasons and solutions for the same are as follow:

- Check if the action is reflected in cpServer CRO by using the following command: kubectl describe cpserver n \$ENVIRONMENT\_NAMESPACE
   If changes are not reflected then, check environment operator logs and if changes are reflected then follow the next steps.
- Check if the flexsnap operator is running by using the following command: kubectl get pods -n \$OPERATOR\_NAMESPACE | grep flexsnap-operator | awk '{printf \$1" "}
- The flexsnap operator is running and is already processing the event (Update, Upgrade, Create, Delete).
  - To check logs of running operator, use the following command: kubectl logs -f \$(kubectl get pods -n \$OPERATOR\_NAMESPACE | grep flexsnap-operator | awk '{printf \$1" " }')
  - If you still want to go ahead with new action, you can stop the processing of the current event so that the new events are processed. To do so delete the flexsnap operator pod using the following command:

```
kubectl delete pod $ (kubectl get pods -n $OPERATOR_NAMESPACE |
grep flexsnap-operator | awk '{printf $1" " }')
This will re-create the flexsnap-operator pod which will be ready to serve
new events.
```

**Note:** The newly created pod might have missed the event which was performed before re-creation of pod. In this case you may have to reapply environment.yaml.

## Host mapping conflict in NetBackup

The following error message is displayed due to host mapping conflict in NetBackup:

..exited with status 7659: Connection cannot be established because the host validation failed on the target host  $\$ 

In kubernetes deployment, communication to pod goes through multiple layers that is, load balancer, nodes and pod. In certain setups during communication host may get associated with certain IP and would be changed. That IP may get associated with some different pod and which causes conflict. The host mapping entries is in the form of "::ffff:<ip address>"

#### To resolve the issue of host mapping conflict in NetBackup

- 1 To resolve the conflict issue, refer to Mappings for Approval tab section of the *Veritas NetBackup*<sup>™</sup> *Security and Encryption Guide*.
- 2 To remove the entries that are not valid, refer to Removing host ID to host name mappings section of the *Veritas NetBackup™ Security and Encryption Guide*.

## NetBackup messaging queue broker take more time to start

This issue is due to nbmqbroker service taking more time to start.

#### To resolve this issue, perform the following steps

1 Exec into the respective Primary Server pod using the following command:

kubectl exec -it <pod-name> -n <namespace> -- /bin/bash

2 Check the nbmqbroker service logs which are in /usr/openv/mqbroker/logs/ folder.

If the value of **checking service start status count:** is more than the 75 then **nbmqbroker** would take more time to start.

**3** Stop the nbmqbroker service using the following command:

/usr/openv/mqbroker/bin/nbmqbroker stop

4 Open the /usr/openv/mqbroker/bin/nbmqbroker file.

- 5 Increase the value of total\_time and sleep\_duration and save the file.
- 6 Start the mqbroker service using the following command:

/usr/openv/mqbroker/bin/nbmqbroker start

If the Primary Server pod gets restarted then the user must perform the same above steps to increase the values of **total\_time** and **sleep\_duration**, as these values will not get persisted after pod restart.

## Local connection is getting treated as insecure connection

The following error message is displayed when un-necessary audit events are get logged only when reverse dns lookup is enabled for primary and media Load Balancer service:

Host 'eaebbef2-57bc-483b-8146-1f6616622276' is trying to connect to host '<serverName>.abc.com'. The connection is dropped, because the host '<serverName>.abc.com' now appears to be NetBackup 8.0 or earlier

Primary and media servers are referred with multiple IP's inside the pod (pod IP/LoadBalancer IP). With reverse name lookup of IP enabled, NetBackup treats the local connection as remote insecure connection.

To resolve the audit events issue, disable the reverse name lookup of primary and media Load Balancer IP.

## Issue with capacity licensing reporting which takes longer time

The nbdeployutil utility does not perform well on EFS or Azure files based volumes. Specify different block storage based volume to get good performance.

#### To resolve the issue, perform the following:

- 1 For running report manually, pass --parentdir /mnt/nbdb/<FOLDER\_NAME>
   to nbdeployutil command.
- 2 For changing parentdir to scheduled capacity reporting, provide a custom value in nbdeployutilconfig.txt file.
- 3 Create/Edit the nbdeployutilconfig.txt file located at /usr/openv/var/global/ by adding the following entry:

[NBDEPLOYUTIL\_INCREMENTAL] PARENTDIR=/mnt/nbdb/<FOLDER NAME>

# Backing up data from Primary server's /mnt/nbdata/ directory fails with primary server as a client

Backing up data from Primary server's /mnt/nbdata/ directory fails with primary server as a client.

From NetBackup version 10.1 onwards, the /mnt/nbdata directory would be on Azure file share. The /mnt/nbdata directory of primary server is mounted using the NFS protocol.

Hence for backing up the data from /mnt/nbdata directory, change the policy attribute for such policies.

To resolve this issue, enable the Follow NFS check box in policy attribute.

### Primary pod goes in non-ready state

When jobs are running and if failover or upgrade of NetBackup primary server is triggered then primary pod may go in non-ready state. To confirm the issue,

- Exec into primary pod by running the following command: kubectl exec -it <primary pod name> -n <namespace> -- bash
- Open the logs using the cat /mnt/nblogs/setup-server.log command and verify the last lines:

Softlink /mnt/nbdata/usr/openv/netbackup/db/rb.db does not exist or broken. Error: Issue detected while validating soft links, restarting the pod may fix NetBackup health check disabled. To resolve this issue, delete the corrupted database and correct symlink as follows:

1. Exec into primary pod by running the following command:

kubectl exec -it <primary\_pod\_name> -n <namespace> - bash

- 2. In primary pod run the following commands in order:
  - # /opt/veritas/vxapp-manage/nbu-health disable

```
# bp.kill_all
```

- # mv -f /mnt/nbdata/usr/openv/netbackup/db/rb.db /mnt/nbdb/usr/openv/netb
- # ln -sf /mnt/nbdb/usr/openv/netbackup/db/rb.db /mnt/nbdata/usr/openv/net
- # chown -h nbsvcusr:nbsvcusr /mnt/nbdata/usr/openv/netbackup/db/rb.db
- # bp.start\_all
- # /opt/veritas/vxapp-manage/nbu-health enable

206 | Troubleshooting Primary pod goes in non-ready state

## Appendix

## **CR** template

This appendix includes the following topics:

- Secret
- MSDP Scaleout CR

### Secret

The Secret is the Kubernetes security component that stores the MSDP credentials that are required by the CR YAML.

```
# The secret is used to store the MSDP credential, which is required
by the CR YAML as follows.
# This part should be created separately and not be part of CR Template.
# The secret should have a "username" and a "password" key-pairs with the
corresponding username and password values.
# Please follow MSDP guide for the rules of the credential.
   https://www.veritas.com/content/support/en US/article.100048511
#
   The pattern is "^[\\w!$+\\-, .:;=?@[\\]`{}\\|~]{1,62}$"
#
# We can create the secret directly via kubectl command:
  kubectl create secret generic sample-secret --namespace
#
sample-namespace \
    --from-literal=username=<username> --from-literal=password=<password>
#
# Alternatively, we can create the secret with a YAML file in the
following format.
apiVersion: v1
kind: Secret
metadata:
  name: sample-secret
  # The namespace needs to be present.
  namespace: sample-namespace
```

stringData:

```
# Please follow MSDP guide for the credential characters and length.
# https://www.veritas.com/content/support/en_US/article.100048511
# The pattern is "^[\\w!$+\\-,.:;=?@[\\]`{}\\|~]{1,62}$"
username: xxxx
password: xxxxxx
```

## **MSDP Scaleout CR**

- The CR name must be less than 40 characters.
- The MSDP credentials stored in the Secret must match MSDP credential rules. See Deduplication Engine credentials for NetBackup
- MSDP CR cannot be deployed in the namespace of MSDP operator. It must be in a separate namespace.
- You cannot reorder the IP/FQDN list. You can update the list by appending the information.
- You cannot change the storage class name. The storage class must be backed with Azure disk CSI storage driver "disk.csi.azure.com".
- You cannot change the data volume list other than for storage expansion. It is append-only and storage expansion only. Up to 16 data volumes are supported.
- Like the data volumes, the catalog volume can be changed for storage expansion only.
- You cannot change or expand the size of the log volume by changing the MSDP CR.
- You cannot enable NBCA after the configuration.
- Once KMS and the OST registration parameters set, you cannot change them.
- You cannot change the core pattern.

#### MSDP Scaleout CR template:

```
# The MSDPScaleout CR YAML
apiVersion: msdp.veritas.com/v1
kind: MSDPScaleout
metadata:
    # The CR name should not be longer than 40 characters.
    name: sample-app
    # The namespace needs to be present for the CR to be created in.
    # It's not allowed to deploy the CR in the same namespace with MSDP
operator.
```

```
namespace: sample-namespace
spec:
  # Your ACR URL where the docker images can be pulled from by the
AKS cluster on demand
  # The allowed length is in range 1-255
  # It's optional for BYO. The code does nt check the presence or
validation.
  # User needs to specify it correctly if it's needed.
  containerRegistry: sample.azurecr.io
  # The MSDP version string. It's the tag of the MSDP docker images.
  # The allowed length is in range 1-64
  version: "sample-version-string"
  #
  # Size defines the number of Engine instances in MSDP Scaleout.
  # The allowed size is between 1-16
  size: 4
  # The IP and FQDN pairs are used by the Engine Pods to expose the MSDP
services.
  # The IP and FQDN in one pair should match each other correctly.
  # They must be pre-allocated.
  # The item number should match the number of Engine instances.
  # They're not allowed to be changed or re-ordered. New items can be
appended for scaling out.
  # The first FQDN is used to configure the storage server in NetBackup,
automatically if autoRegisterOST is enabled,
  # or manually by the user if not.
  serviceIPFODNs:
    # The pattern is IPv4 or IPv6 format
  - ipAddr: "sample-ip1"
    # The pattern is FQDN format. `^[a-z][a-z0-9-.]{1,251}[a-z0-9]$`
    fqdn: "sample-fqdn1"
  - ipAddr: "sample-ip2"
    fqdn: "sample-fqdn2"
  - ipAddr: "sample-ip3"
    fqdn: "sample-fqdn3"
  - ipAddr: "sample-ip4"
    fqdn: "sample-fqdn4"
  #
  # Optional annotations to be added in the LoadBalancer services for the
Engine IPs.
  # In case we run the Engines on private IPs, we need to add some
```

customized annotations to the LoadBalancer services.

# See https://docs.microsoft.com/en-us/azure/aks/internal-lb

# It's optional. It's not needed in most cases if we're
with public IPs.

# loadBalancerAnnotations:

# service.beta.kubernetes.io/azure-load-balancer-internal: "true"
#

# SecretName is the name of the secret which stores the MSDP credential.

 $\ensuremath{\texttt{\#}}$  AutoDelete, when true, will automatically delete the secret specified by SecretName after the

# initial configuration. If unspecified, AutoDelete defaults to true.

# When true, SkipPrecheck will skip webhook validation of the MSDP credential. It is only used in data re-use

# scenario (delete CR and re-apply with pre-existing data) as the secret will not take effect in this scenario. It

 $\ensuremath{\#}$  can't be used in other scenarios. If unspecified, SkipPrecheck defaults to false.

credential:

 $\ensuremath{\#}$  The secret should be pre-created in the same namespace which has the MSDP credential stored.

# The secret should have a "username" and a "password" key-pairs with the corresponding username and password values.

# Please follow MSDP guide for the rules of the credential.

# https://www.veritas.com/content/support/en US/article.100048511

# A secret can be created directly via kubectl command or with the equivalent YAML file:

# kubectl create secret generic sample-secret --namespace
sample-namespace \

# --from-literal=username<<username> --from-literal=password= <password>

secretName: sample-secret

# Optional

# Default is true

autoDelete: true

# Optional

# Default is false.

# Should be specified only in data re-use scenario (aka delete and re-apply CR with pre-existing data)

skipPrecheck: false

#

# Paused is used for maintenance only. In most cases you don't need to specify it.

# When it's specified, MSDP operator stops reconciling the corresponding

```
MSDP-X (aka the CR).
  # Optional.
  # Default is false
  # paused: false
  # The storage classes for logVolume, catalogVolume and dataVolumes should
be:
      - Backed with Azure disk CSI driver "disk.csi.azure.com" with the
  #
managed disks, and allow volume
  #
        expansion.
      - The Azure in-tree storage driver "kubernetes.io/azure-disk" is not
  #
supported. You need to explicitly
  #
        enable the Azure disk CSI driver when configuring your AKS cluster,
or use k8s version v1.21.x which
      has the Azure disk CSI driver built-in.
  #
      - In LRS category.
  #
  #
      - At least Standard SSD for dev/test, and Premium SSD or Ultra Disk
for production.
  #
      - The same storage class can be used for all the volumes.
  #
  # LogVolume is the volume specification which is used to provision a
volume of an MDS or Controller
  # Pod to store the log files and core dump files.
  # It's not allowed to be changed.
  # In most cases, 5-10 GiB capacity should be big enough for one MDS or
Controller Pod to use.
  logVolume:
    storageClassName: sample-azure-disk-sc1
    resources:
      requests:
        storage: 5Gi
  #
  # CatalogVolume is the volume specification which is used to provision a
volume of an MDS or Engine
  # Pod to store the catalog and metadata. It's not allowed to be changed
unless for capacity expansion.
  # Expanding the existing catalog volumes expects short downtime of the
Engines.
  # Please note the MDS Pods don't respect the storage request in
CatalogVolume, instead they provision the
  # volumes with the minimal capacity request of 500MiB.
```

catalogVolume:

```
storageClassName: sample-azure-disk-sc2
   resources:
      requests:
        storage: 600Gi
  #
  # DataVolumes is a list of volume specifications which are used to
provision the volumes of
  # an Engine Pod to store the MSDP data.
  # The items are not allowed to be changed or re-ordered unless for
capacity expansion.
  # New items can be appended for adding more data volumes to each
Engine Pod.
  # Appending new data volumes or expanding the existing data volumes
expects short downtime of the Engines.
  # The allowed item number is in range 1-16. To allow the other MSDP-X
Pods (e.g. Controller, MDS) running
  # on the same node, the item number should be no more than "<the maximum
allowed volumes on the node> - 5".
  # The additional 5 data disks are for the potential one MDS Pod, one
Controller Pod or one MSDP operator Pod
  # to run on the same node with one MSDP Engine.
 dataVolumes:
    - storageClassName: sample-azure-disk-sc3
      resources:
        requests:
          storage: 8Ti
    - storageClassName: sample-azure-disk-sc3
      resources:
        requests:
          storage: 8Ti
  # NodeSelector is used to schedule the MSDPScaleout Pods on the specified
nodes.
  # Optional.
  # Default is empty (aka all available nodes)
 nodeSelector:
    # e.g.
    # agentpool: nodepool2
    sample-node-label1: sampel-label-value1
    sample-node-label2: sampel-label-value2
  #
  # NBCA is the specification for MSDP-X to enable NBCA SecComm
for the Engines.
```

```
# Optional.
  nbca:
    # The master server name
    # The allowed length is in range 1-255
   masterServer: sample-master-server-name
    # The CA SHA256 fingerprint
    # The allowed length is 95
    cafp: sample-ca-fp
    # The NBCA authentication/reissue token
    # The allowed length is 16
    # For security consideration, a token with maximum 1 user allowed and
valid for 1 day should be sufficient.
    token: sample-auth-token
  #
  # KMS includes the parameters to enable KMS for the Engines.
  # We support to enable KMS in init or post configuration.
  # We don't support to change the parameters once they have been set.
  # Optional.
  kms:
    # As either the NetBackup KMS or external KMS (EKMS) is configured or
registered on NetBackup master server, then used by
    # MSDP by calling the NetBackup API, kmsServer is the NetBackup master
server name.
    kmsServer: sample-master-server-name
    keyGroup: sample-key-group-name
  #
  # autoRegisterOST includes the parameter to enable or disable the
automatic registration of
  # the storage server, the default disk pool and storage unit when MSDP-X
configuration finishes.
  autoRegisterOST:
    # If it is true, and NBCA is enabled, the operator would register the
storage server,
    # disk pool and storage unit on the NetBackup primary server, when the
MSDP CR is deployed.
    # The first Engine FQDN is the storage server name.
    # The default disk pool is in format "default dp <firstEngineFQDN>".
    # The default storage unit is in format "default stu <firstEngineFQDN>".
    # The default maximum concurrent jobs for the STU is 240.
    # In the CR status, field "ostAutoRegisterStatus.registered" with value
True, False or Unknown indicates the registration state.
    # It's false by default.
    # Note: Please don't enable it unless with NB 9.1.2 0126+.
```

enabled: true

# CorePattern is the core pattern of the nodes where the MSDPScaleout Pods are running.

# It's path-based. A default core path "/core/core.%e.%p.%t" will be used if not specified.

# In most cases, you don't need to specify it.

# It's not allowed to be changed.

# Optional.

# corePattern: /sample/core/pattern/path

#

#

# tcpKeepAliveTime sets the namespaced sysctl parameter

net.ipv4.tcp\_keepalive\_time in Engine Pods.

# It's in seconds.

# The minimal allowed value is 60 and the maximum allowed value is 1800. # A default value 120 is used if not specified. Set it to 0 to disable the option.

# It's not allowed to change unless in maintenance mode (Paused=true), and the change will not apply until the Engine Pods get restarted

# For AKS deployment in P release, please leave it unspecified or specify it with a value smaller than 240.

# tcpKeepAliveTime: 120

#

# TCPIdleTimeout is used to change the default value for Azure Load Balancer rules and Inbound NAT rules.

# It's in minutes.

# The minimal allowed value is 4 and the maximum allowed value is 30.

# A default value 30 minutes is used if not specified. Set it to 0 to disable the option.

# It's not allowed to change unless in maintenance mode (Paused=true), and the change will not apply

# until the Engine Pods and the LoadBalancer services get recreated.

 $\ensuremath{\texttt{\#}}$  For AKS deployment in P release, please leave it unspecified or specify it with a value larger than 4.

# tcpIdleTimeout: 30