
NetBackup™ Deployment
Guide for Azure Kubernetes
Services (AKS) Cluster

Release 10.1

NetBackup Deployment Guide for Azure Kubernetes
Services (AKS) Cluster

Last updated: 2022-08-30

Legal Notice
Copyright © 2022 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas
Technologies LLC or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

This product may contain third-party software for which Veritas is required to provide attribution
to the third party (“Third-party Programs”). Some of the Third-party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the Third-party Legal Notices document accompanying this
Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by anymeans without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Veritas Technologies LLC SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC
2625 Augustine Drive
Santa Clara, CA 95054

https://www.veritas.com/about/legal/license-agreements

http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

Documentation
Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The latest documentation is available on the Veritas
website:

https://sort.veritas.com/documents

Documentation feedback
Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:

NB.docs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)
Veritas Services andOperations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:NB.docs@veritas.com
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Chapter 1 Introduction to NetBackup on AKS 11

About NetBackup deployment on Azure Kubernetes Services (AKS)
cluster ... 11

Required terminology .. 13
User roles and permissions .. 14
About MSDP Scaleout ... 19
About MSDP Scaleout components .. 20
Limitations in MSDP Scaleout ... 20

Chapter 2 Deployment with environment operators 23

About deployment with the environment operator 23
Prerequisites ... 23
Contents of the TAR file ... 25
Known limitations ... 25

Deploying the operators manually ... 25
Deploying NetBackup and MSDP Scaleout manually 31
Deploying NetBackup and Snapshot Manager manually 36
Configuring the environment.yaml file ... 41
Uninstalling NetBackup environment and the operators 52
Applying security patches ... 54

Chapter 3 Assessing cluster configuration before
deployment .. 59

How does the Config-Checker utility work .. 59
Config-Checker execution and status details 60
How Data-Migration works ... 62
Data-Migration execution and status details 62

Chapter 4 Deploying NetBackup .. 65

Preparing the environment for NetBackup installation on AKS 65
Recommendations of NetBackup deployment on AKS 70
Limitations of NetBackup deployment on AKS 70
About primary server CR and media server CR 71

After installing primary server CR ... 72

Contents

After Installing the media server CR ... 73
Monitoring the status of the CRs .. 73
Updating the CRs ... 76
Deleting the CRs .. 77
Configuring NetBackup IT Analytics for NetBackup deployment 77
Managing NetBackup deployment using VxUpdate 79
Migrating the node pool for primary or media servers 79

Chapter 5 Upgrading NetBackup .. 81

Preparing for NetBackup upgrade .. 81
Upgrading NetBackup operator ... 82
Upgrading Snapshot Manager operator .. 83
Upgrading NetBackup application .. 83
Upgrading Snapshot Manager .. 87
Post-migration tasks ... 88
Upgrade NetBackup during data migration ... 89
Procedure to rollback when upgrade fails .. 89

Chapter 6 Deploying Snapshot Manager 95
Overview .. 95
Prerequisites ... 95
Installing the docker images ... 97

Chapter 7 Migration and upgrade of Snapshot Manager
.. 101

Migration and upgrade of Snapshot Manager 101

Chapter 8 Deploying MSDP Scaleout ... 105
Deploying MSDP Scaleout ... 105
Prerequisites ... 106
Installing the docker images and binaries ... 108
Initializing the MSDP operator ... 109
Configuring MSDP Scaleout .. 110
Using MSDP Scaleout as a single storage pool in NetBackup 112
Configuring the MSDP cloud in MSDP Scaleout 113

Chapter 9 Upgrading MSDP Scaleout ... 115
Upgrading MSDP Scaleout ... 115

Contents6

Chapter 10 Monitoring NetBackup .. 117

Monitoring the application health .. 117
Telemetry reporting ... 119
About NetBackup operator logs ... 120
Expanding storage volumes .. 121
Allocating static PV for Media pods ... 123

Chapter 11 Monitoring MSDP Scaleout .. 127
About MSDP Scaleout status and events ... 127
Monitoring with Azure Container insights ... 129
The Kubernetes resources for MSDP Scaleout and MSDP operator

.. 132

Chapter 12 Monitoring Snapshot Manager deployment 135
Overview .. 135
Logs of Snapshot Manager ... 135
Configuration parameters ... 136

Chapter 13 Managing the Load Balancer service 137

About the Load Balancer service .. 137
Notes for Load Balancer service .. 142
Opening the ports from the Load Balancer service 143

Chapter 14 Performing catalog backup and recovery 145

Backing up a catalog ... 145
Restoring a catalog ... 147

Chapter 15 Managing MSDP Scaleout .. 151
Adding MSDP engines ... 151
Adding data volumes ... 152
Expanding existing data or catalog volumes 153

Manual storage expansion .. 153
MSDP Scaleout scaling recommendations 154
MSDP Cloud backup and disaster recovery 155

About the reserved storage space .. 155
Cloud LSU disaster recovery .. 156

MSDP multi-domain support ... 159
Configuring Auto Image Replication .. 159
About MSDP Scaleout logging and troubleshooting 160

7Contents

Collecting the logs and the inspection information 161

Chapter 16 About MSDP Scaleout maintenance 163

Pausing the MSDP Scaleout operator for maintenance 163
Logging in to the pods ... 163
Reinstalling MSDP Scaleout operator ... 164
Migrating the MSDP Scaleout to another node pool 164

Chapter 17 Uninstalling MSDP Scaleout from AKS 167

Cleaning up MSDP Scaleout ... 167
Cleaning up the MSDP Scaleout operator .. 168

Chapter 18 Uninstalling Snapshot Manager 171

Uninstalling Snapshot Manager from AKS .. 171

Chapter 19 Troubleshooting .. 173

View the list of operator resources .. 174
View the list of product resources ... 175
View operator logs .. 178
View primary logs ... 178
Pod restart failure due to liveness probe time-out 178
Socket connection failure ... 179
Resolving an invalid license key issue ... 180
Resolving an issue where external IP address is not assigned to a

NetBackup server’s load balancer services 181
Resolving the issue where the NetBackup server pod is not scheduled

for long time .. 181
Resolving an issue where the Storage class does not exist 182
Resolving an issue where the primary server or media server

deployment does not proceed ... 183
Resolving an issue of failed probes .. 184
Resolving token issues .. 185
Resolving an issue related to insufficient storage 186
Resolving an issue related to invalid nodepool 186
Resolving a token expiry issue .. 187
Resolve an issue related to KMS database 188
Resolve an issue related to pulling an image from the container registry

.. 188
Resolving an issue related to recovery of data 189
Check primary server status .. 190
Pod status field shows as pending ... 190

Contents8

Ensure that the container is running the patched image 191
Getting EEB information from an image, a running container, or

persistent data ... 195
Resolving the certificate error issue in NetBackup operator pod logs

.. 197
Data migration unsuccessful even after changing the storage class

through the storage yaml file ... 197
Host validation failed on the target host ... 198
Primary pod is in pending state for a long duration 198
Taint, Toleration, and Node affinity related issues in cpServer 199
Operations performed on cpServer in environment.yaml file are not

reflected ... 201
Host mapping conflict in NetBackup .. 202
NetBackup messaging queue broker take more time to start 202
Local connection is getting treated as insecure connection 203
Issue with capacity licensing reporting which takes longer time 203
Backing up data from Primary server's /mnt/nbdata/ directory fails

with primary server as a client ... 204
Primary pod goes in non-ready state ... 204

Appendix A CR template .. 207

Secret .. 207
MSDP Scaleout CR ... 208

9Contents

Contents10

Introduction to NetBackup
on AKS

This chapter includes the following topics:

■ About NetBackup deployment on Azure Kubernetes Services (AKS) cluster

■ Required terminology

■ User roles and permissions

■ About MSDP Scaleout

■ About MSDP Scaleout components

■ Limitations in MSDP Scaleout

About NetBackup deployment on Azure
Kubernetes Services (AKS) cluster

NetBackup provides the product deployment solution on Azure Kubernetes Services
cluster (AKS), in the Azure Cloud. The solution facilitates an orchestrated deployment
of the NetBackup components on AKS.

You can deploy NetBackup on AKS for scaling the capacity of the NetBackup host
to serve a large number of requests concurrently running on the NetBackup primary
server at its peak performance capacity.

This guide provides you two distinct methods of deployment. The first and the
recommended one is by using the environment operators. In this method, you can
deploy the entire NetBackup environment with ease. You can deploy, one primary,
and optionally, one media with one or more replicas, and one MSDP Scaleout with
four to 16 replicas and NetBackup Snapshot Manager. The guide describes a very

1Chapter

comprehensivemethod to deploy, configure, and remove the NetBackup components
using the environment operators.

You can also go for a discrete deployment of the NetBackup components without
using the environment operator. This method is not the recommended method of
deployment.

Supported platforms

Currently we support Azure Kubernetes Service.

About the guide

This guide contains the following sections:

■ Introduction to NetBackup and MSDP Scaleout —preparatory steps to ensure
that your AKS cluster and hardware environment meet the deployment
requirements.

■ Deploying with environment operators—deploy the entire NetBackup environment
primary, media, and MSDP Scaleout servers together in a comprehensive way.
This is the most recommended method of deployment.

■ Assessing cluster configuration before deployment—check the deployment
environment to verify that the environment meets the requirements, before
starting the primary server and media server deployments.

■ Deploying NetBackup—deploying NetBackup without the environment operator.

■ Deploying MSDP Scaleout—deploying MSDP Scaleout without the environment
operator.

■ Deploying Snapshot Manager—deploying Snapshot Manager in Azure
Kubernetes Service cluster environment.

■ Migration and upgrade of Snapshot Manager—migrate Snapshot Manager
registered with NetBackup to Kubernetes Service cluster environment.

■ Monitoring NetBackup—monitor application health, view logs, expand storage
volume and so on.

■ Monitoring MSDP Scaleout—monitor status, alerts, events, Azure container
insights, and so on.

■ Configuring the Load Balancer service—configure the load balancer to access
NetBackup from private IPs.

■ Performing catalog backup and recovery—how to back up the catalog and
recover.

■ ConfiguringMSDPScaleout—addingMSDPScaleout engines and data volumes,
disaster recovery, scaling and so on.

Introduction to NetBackup on AKS
About NetBackup deployment on Azure Kubernetes Services (AKS) cluster

12

■ Maintaining MSDP Scaleout—running maintenance, logging, reinstalling the
operator, and so on.

■ Uninstalling MSDP Scaleout from AKS—uninstall and cleanup the cluster and
the operator.

■ Uninstalling Snapshot Manager—uninstall Snapshot Manager from AKS.

■ Scenarios for troubleshooting.

The intended audience for this document includes backup, cloud, system
administrators, and architects.

Note: NetBackup deployment for AKS offers only English language.

Required terminology
The table describes the important terms for NetBackup deployment on AKS cluster.
For more information visit the link to Kubernetes documentation.

Table 1-1 Important terms

DescriptionTerm

A Pod is a group of one or more containers, with shared storage and
network resources, and a specification for how to run the containers.
For more information on Pods, see Kubernetes Documentation.

Pod

StatefulSet is the workload API object used to manage stateful
applications and it represents a set of Pods with unique, persistent
identities, and stable hostnames. For more information on
StatefulSets, see Kubernetes Documentation.

StatefulSet

Kubernetes jobs ensure that one or more pods execute their
commands and exit successfully. For more information on Jobs, see
Kubernetes Documentation.

Job

A ConfigMap is an API object used to store non-confidential data in
key-value pairs. For more information on ConfigMaps, see Kubernetes
Documentation.

ConfigMap

A Service enables network access to a set of Pods in Kubernetes.
For more information on Service, see Kubernetes Documentation.

Service

A PersistentVolumeClaim (PVC) is a request for storage by a user.
For more information on Persistent Volumes, see Kubernetes
Documentation.

Persistent Volume
Claim

13Introduction to NetBackup on AKS
Required terminology

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Table 1-1 Important terms (continued)

DescriptionTerm

A PersistentVolume (PV) is a piece of storage in the cluster that has
been provisioned by an administrator or dynamically provisioned using
storage classes. For more information on Persistent Volumes, see
Kubernetes Documentation.

Persistent Volume

A Custom Resource (CR) is an extension of the Kubernetes API that
is not necessarily available in a default Kubernetes installation. For
more information on Custom Resources, see Kubernetes
Documentation.

Custom Resource

The CustomResourceDefinition (CRD) API resource lets you define
custom resources. For more information on
CustomResourceDefinitions, see Kubernetes Documentation.

Custom Resource
Definition

A Secret is an object that contains a small amount of sensitive data
such as a password, a token, or a key. Such information might
otherwise be put in a Pod specification or in a container image. For
more information on Secrets, see Kubernetes Documentation.

Secret

A service account provides an identity for processes that run in a Pod.
For more information on configuring the service accounts for Pods,
see Kubernetes Documentation.

ServiceAccount

An RBAC Role or ClusterRole contains rules that represent a set of
permissions. Permissions are purely additive (there are no "deny"
rules). For more information on ClusterRole, see Kubernetes
Documentation.

ClusterRole

A role binding grants the cluster-wide permissions defined in a role
to a user or set of users. For more information on ClusterRoleBinding,
see Kubernetes Documentation.

ClusterRoleBinding

Kubernetes supports multiple virtual clusters backed by the same
physical cluster. These virtual clusters are called namespaces. For
more information on Namespaces, see Kubernetes Documentation.

Namespace

User roles and permissions
Note the following for user authentication:

■ An Administrator must define the custom user credentials by creating a secret;
and then provide the secret name at the time of primary server deployment.

Introduction to NetBackup on AKS
User roles and permissions

14

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

■ A custom user is assigned the role of a NetBackup Security Administrator and
can access the NetBackup Web UI after deployment.

■ A custom user will be persisted during the pods restart or upgrade.

■ For the custom user, you can change only the password after the deployment.
The changed password will be persisted. If the username is changed after the
deployment, an error message will be logged in the Operator pod.

■ You can delete the secret after the primary server deployment. In that case, if
you want to deploy or scale the media servers, you must create a new secret
with the same usernamewhich was used in the primary server CR. The password
can be the same or different. If you change the password, it is also changed in
the primary server pod, and gets persisted.

■ Do not create a local user in the pods (using the kubectl exec or useradd
commands) as this user may or may not be persisted.

■ The Azure Active Directory user is supported through Single Sign-on (SSO).
For the detailed user integration information, refer to the NetBackup
Administrator’s Guide Volume I.

■ An nbitanalyticsadmin user is available in primary server container. This user
is used as Master Server User ID while creating data collector policy for data
collection on NetBackup IT Analytics portal.

■ Service account that is used for this deployment is netbackup-account and it
is defined in the operator_deployment.yaml.

■ NetBackup runs most of the primary server services and daemons as non-root
user (nbsvcusr) and only root and nbsvcusr are supported as a service account
user.

■ ClusterRole named netbackup-role is set in the NetBackup Operator to define
the cluster wide permissions to the resources. This is defined in the
operator_deployment.yaml.

■ Appropriate roles and AKS specific permissions are set to the cluster at the time
of cluster creation.

■ After successful deployment of the primary and media servers, the operator
creates a custom Kubernetes role with name ResourceName-admin whereas
Resource Name is given in primary server or media server CR specification.
The following permissions are provided in the respective namespaces:

15Introduction to NetBackup on AKS
User roles and permissions

Allowed operationsAPI groupResource name

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultConfigMaps

■ Get
■ List

defaultNodes

This role can be assigned to the NetBackup Administrator to view the pods that
were created, and to execute into them. For more information on the access
control, see Kubernetes Access Control Documentation.

Note:One role would be created, only if primary and media servers are in same
namespace with the same resource name prefix.

■ Your AKS cluster must have the RBAC enabled. To view the permissions set
for the AKS cluster, use one of the following methods and verify if enbleRBAC
is set to true:

■ Run the following command:
az resource show -g <resource group name> -n <cluster name>

--resource-type

Microsoft.ContainerService/ManagedClusters --query

properties.enableRBAC

■ Run the az aks list command.

■ You can check the cluster's resource details at resources.azure.com and
verify if enableRBAC is set to true.

Role-based authentication (RBAC)
NetBackup Operator deployment uses a serviceAccount and it must have the
following permissions:

Introduction to NetBackup on AKS
User roles and permissions

16

https://kubernetes.io/docs/reference/access-authn-authz/

Table 1-2

Allowed OperationsAPI GroupResource Name

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultConfigMaps

■ Get
■ List

defaultNodes

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultPersistentVolumeClaims

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultPersistentVolume

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultPods

■ Create
■ Get

defaultPods/exec

■ Get
■ List
■ Watch

defaultSecret

17Introduction to NetBackup on AKS
User roles and permissions

Table 1-2 (continued)

Allowed OperationsAPI GroupResource Name

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

defaultServices

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

appStatefulSet

■ Create
■ Delete
■ Get
■ List

batchJobs

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

netbackup.veritas.comPrimary servers

■ Get
■ Patch
■ Update

netbackup.veritas.comPrimaryServers/status

■ Create
■ Delete
■ Get
■ List
■ Patch
■ Update
■ Watch

netbackup.veritas.comMedia servers

Introduction to NetBackup on AKS
User roles and permissions

18

Table 1-2 (continued)

Allowed OperationsAPI GroupResource Name

■ Get
■ Patch
■ Update

netbackup.veritas.comMediaServers/status

Watchnetbackup.veritas.comSecrets

■ Get
■ Patch
■ Update

netbackup.veritas.comSecrets/status

■ Create
■ Get
■ List
■ Watch

rbac.authorization.k8s.ioRoles

■ Get
■ List

storage.k8s.ioStorageclasses

■ Get
■ List
■ Update
■ Watch

appDeployment

About MSDP Scaleout
MSDP Scaleout is based on MSDP. It empowers MSDP with high resilience and
scalability capabilities to simplify management and reduce total cost of ownership.

It runs on multiple nodes to represent a single storage pool for NetBackup and other
Veritas products to use. You can seamlessly scale out and scale up a MSDP
Scaleout on demand. MSDP Scaleout automatically does failure detection and
repair in the background.

It is deployed separately in NetBackup environment. The deployment process is
with minimal user intervention. The core MSDP services run on each node to expose
the storage optimized services, and manage a part of the cluster level data and
metadata. Each MSDP Scaleout node is called MSDP engine.

See “Deploying MSDP Scaleout ” on page 105.

19Introduction to NetBackup on AKS
About MSDP Scaleout

About MSDP Scaleout components
Following are the MSDP Scaleout components:

■ MDS (MetaData service)
MDS is an independent and stackable service that provides a single system
view of MSDPScaleout. It's an etcd cluster running inside the MDS pods. These
pods run on different AKS nodes. The pod name has a format of
<cr-name>-uss-mds-<1,2...>.
The number of pods that get created depends on the number of MSDP Scaleout
engines in AKS cluster. These pods are controlled by the MSDP operator.

■ 1 or 2 MSDP Scaleout engines: 1 pod

■ 3 or 4 MSDP Scaleout engines: 3 pods

■ 5 or more MSDP Scaleout engines: 5 pods

■ MSDP Scaleout Controller
Controller is a singleton service and the entry point of MSDP Scaleout that
monitors and repairs MSDP Engines. It controls and manages the
application-level business of the MSDP Scaleout. The Deployment object name
has a format of <cr-name>-uss-controller. It is controlled by theMSDP operator.

■ MSDP Scaleout Engine
MSDP Engines provide the ability to write deduplicated data to the storage. The
name of a MSDP engine pod is the corresponding FQDN of the static IP that is
specified in the CR. Each MSDP engine pod has MSDP services such as spad,
spoold, and ocsd running. They are controlled by the MSDP operator.

Limitations in MSDP Scaleout
MSDP Scaleout has the following limitations:

■ It is not fully compliant with Federal Information Processing Standards (FIPS).
The internal services MSDP operator, MSDP Controller, and MDS of a MSDP
Scaleout are not compliant with FIPS.
MSDP is FIPS compliant. For more information, see the NetBackup
Deduplication Guide.

■ Does not support SELinux.

■ Supports only NBCA. Does not support ECA.

■ Does not support availability zones for AKS cluster.

Introduction to NetBackup on AKS
About MSDP Scaleout components

20

For more information about the limitation see Create an Azure Kubernetes
Service (AKS) cluster that uses availability zones topic of the Azure
documentation.

■ Limited AKS node failure tolerance.
Backup and restore can fail if AKS node fails. If MSDP operator detects the
MSDP Scaleout pod failure, it attempts to restart it and perform a repair operation
automatically. The repair operation can be delayed if Azure infrastructure or
Kubernetes do not allow the pod to be restarted.
An Azure volume cannot be attached to two different nodes at the same time.
When the node which Azure volume is attached to fails, MSDP operator cannot
run the same pod with the same Azure volume on another node until the failed
node is repaired or deleted by AKS.
AKS node auto-repair may take more than 20 minutes to finish. In some cases,
it may be necessary to bring the node backup manually.
See Azure Kubernetes Service (AKS) node auto-repair

■ IPv6 is not supported.

21Introduction to NetBackup on AKS
Limitations in MSDP Scaleout

https://docs.microsoft.com/en-us/azure/aks/availability-zones
https://docs.microsoft.com/en-us/azure/aks/availability-zones
https://docs.microsoft.com/en-us/azure/aks/node-auto-repair

Introduction to NetBackup on AKS
Limitations in MSDP Scaleout

22

Deployment with
environment operators

This chapter includes the following topics:

■ About deployment with the environment operator

■ Deploying the operators manually

■ Deploying NetBackup and MSDP Scaleout manually

■ Deploying NetBackup and Snapshot Manager manually

■ Configuring the environment.yaml file

■ Uninstalling NetBackup environment and the operators

■ Applying security patches

About deploymentwith the environment operator
This section describes the deployment of the Veritas NetBackup andMSDPScaleout
on Azure Kubernetes Service in Azure cloud. You can start by deploying the two
environment operators that together manage the NetBackup environment, the
primary server, the media servers, and the MSDP Scaleout storage servers.

Prerequisites
Ensure that the following prerequisites are met before proceeding with the
deployment.

■ A Kubernetes cluster in Azure Kubernetes Service in Azure with multiple nodes.
Using separate node pool is recommended for the NetBackup servers, MSDP

2Chapter

Scaleout deployments and for different media server objects. It is required to
have separate node pool for Snapshot Manager data plane.

■ Taints and tolerations allows you to mark (taint) a node so that no pods can
schedule onto it unless a pod explicitly tolerates the taint. Marking nodes instead
of pods (as in node affinity/anti-affinity) is particularly useful for situations where
most pods in the cluster must avoid scheduling onto the node.
Taints are set on the node pool while creating the node pool in the cluster.
Tolerations are set on the pods.
To use this functionality, user must create the node pool with the following detail:

■ Add a label with certain key value. For example key = nbpool, value =

nbnodes

■ Add a taint with the same key and value which is used for label in above
step with effect as NoSchedule.
For example, key = nbpool, value = nbnodes, effect = NoSchedule

■ Define storage class of AzureFiles and Azure managed disks for primary and
Azure managed disks for media and MSDPX.

■ Access to a container registry that the Kubernetes cluster can access, like an
Azure Kubernetes Service Container Registry.

■ Enable AKS Uptime SLA. AKS Uptime SLA is recommended for a better
resiliency. For information about AKS Uptime SLA and to enable it, see Azure
Kubernetes Service (AKS) Uptime SLA.

■ Install Cert-Manager. You can use the following command to install the
Cert-Manager:
$ kubectl apply -f

https://github.com/jetstack/cert-manager/releases/download/v1.6.0/cert-manager.yaml

For details, see https://cert-manager.io/docs/installation/

■ A workstation or VM running Linux with the following:

■ Configure kubectl to access the cluster.

■ Install Azure CLI to access Azure resources.

■ Configure docker to be able to push images to the container registry.

■ Free space of approximately 8.5GB on the location where you copy and
extract the product installation TAR package file. If using docker locally, there
should be approximately 8GB available on the /var/lib/docker location
so that the images can be loaded to the docker cache, before being pushed
to the container registry.

Deployment with environment operators
About deployment with the environment operator

24

https://docs.microsoft.com/en-us/azure/aks/uptime-sla
https://docs.microsoft.com/en-us/azure/aks/uptime-sla
https://cert-manager.io/docs/installation/

Contents of the TAR file
Download the TAR file from the Veritas download center.

The TAR file contains the following:

Table 2-1 TAR contents

DescriptionItem

These docker image files that are loaded and then copied to
the container registry to run in Kubernetes. They include
NetBackup and MSDP Scaleout application images and the
operator images.

OCI images in the
/images directory

Used to deploy and manage the MSDP Scaleout operator
tasks.

MSDP kubectl plug-in at
/bin/kubectl-msdp

You can edit these to suit your configuration requirements
before installation.

Configuration(.yaml) files at
/operator directory

You can use these as templates to define your NetBackup
environment.

Sample product (.yaml) files
at /samples directory

Readme file.README.md

Known limitations
Here are some known limitations.

■ Changes to the CorePattern which specifies the path used for storing core dump
files in case of a crash are not supported. CorePattern can only be set during
initial deployment.

■ Changes to MSDP Scaleout credential autoDelete, which allows automatic
deletion of credential after use, is not supported. The autoDelete value can only
be set during initial deployment.

Deploying the operators manually
To perform these steps, log on to the Linux workstation or VM where you have
extracted the TAR file.

25Deployment with environment operators
Deploying the operators manually

To deploy the operators

1 Install the MSDP kubectl plug-in at some location which is set in the path
environment variable of your shell. For example, copy the file kubectl-msdp

to/usr/local/bin/.

2 Run the following commands to load each of the product images to the local
docker instance.

$ docker load -i netbackup-main-10.1.tar.gz

$ docker load -i netbackup-operator-10.1.tar.gz

$ docker load -i pdcluster-17.0.tar.gz

$ docker load -i pdde-17.0.tar.gz

$ docker load -i pdk8soptr-17.0.tar.gz

$ docker load -i

netbackup-flexsnap-$(SNAPSHOT_MANAGER_VERSION).tar.gz

Run the command docker image ls to confirm that the product images are
loaded properly to the docker cache.

Deployment with environment operators
Deploying the operators manually

26

3 Run the following commands to re-tag the images to associate them with your
container registry, keep the image name and version same as original:

$ REGISTRY=<example.azurecr.io> (Replace with your own container

registry name)

$ docker tag netbackup/main:10.1 ${REGISTRY}/netbackup/main:10.1

$ docker tag netbackup/operator:10.1

${REGISTRY}/netbackup/operator:10.1

$ docker tag uss-engine:17.0 ${REGISTRY}/uss-engine:17.0

$ docker tag uss-controller:17.0 ${REGISTRY}/uss-controller:17.0

$ docker tag uss-mds:17.0 ${REGISTRY}/uss-mds:17.0

$ docker tag msdp-operator:17.0 ${REGISTRY}/msdp-operator:17.0

$ docker tag veritas/flexsnap-certauth:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-rabbitmq:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT_MANAGER_VERSION}

$ docker tag

veritas/flexsnap-api-gateway:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

$ docker tag

veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

27Deployment with environment operators
Deploying the operators manually

4 Run the following commands to push the images to the container registry.

$ docker push ${REGISTRY}/netbackup/main:10.1

$ docker push ${REGISTRY}/netbackup/operator:10.1

$ docker push ${REGISTRY}/uss-engine:17.0

$ docker push ${REGISTRY}/uss-controller:17.0

$ docker push ${REGISTRY}/uss-mds:17.0

$ docker push ${REGISTRY}/msdp-operator:17.0

$ docker push

${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

5 Create a namespace for deploying the NetBackup and MSDP Scaleout
operators. These instructions use the default netbackup-operator-system
namespace but a custom namespace is also supported, run:

$ kubectl create namespace netbackup-operator-system

Deployment with environment operators
Deploying the operators manually

28

6 Install the MSDP Scaleout operator in the created namespace, using this
command. To run this command you must define a full image name in step 3,
define a storage class for storing logs from the MSDP operator, and define
node selector labels (optional) for scheduling theMSDP operator pod on specific
nodes. See “Prerequisites” on page 23.

$ kubectl msdp init --image ${REGISTRY}/msdp-operator:17.0

--storageclass x --namespace netbackup-operator-system -l

key1=value1

7 To verify that the MSDP Scaleout operator is running, run:

$ kubectl get all --namespace netbackup-operator-system

Here, we are using the namespace created in step 5.

The msdp-operator pod should show status as Running.

8 In this step, configure the namespace, image name, and node selector to use
for the NetBackup operator image by editing the provided configuration yaml
files.

■ (Optional) Perform this step only when using a custom namespace. Edit
the file operator/kustomization.yaml and change `namespace` to your
custom namespace. For example: namespace: my-custom-namespace

■ Edit the file operator/kustomization.yaml and change newName and
newTag. For example:

images:

- name: netbackupoperator

newName: example.com/netbackup/operator

newTag: '10.1'

■ Edit the operator/patches/operator_patch.yaml file to add or remove
node selectors and toleration that control what nodes Kubernetes may
schedule the operator to run on. Use the key value pair same as given
during node pool creation. For example:

nodeSelector:

nbpool: nbnodes

Support node taints by adding pod tolerations equal to the

specified nodeSelectors

For Toleartion NODE_SELECTOR_KEY used as a key and

NODE_SELECTOR_VALUE as a value.

tolerations:

- key: nbpool

29Deployment with environment operators
Deploying the operators manually

operator: "Equal"

value: nbnodes

9 Configure the namespace, image name, and node selector to use for NetBackup
Snapshot Manager operator image by editing the provided configuration yaml
files. Edit the operator/kustomization.yaml file and change newName and
newTag. Also change Snapshot Manager operator’s node selector and
toleration (CONTROL_NODE_KEY and CONTROL_NODE_VALUE).

The value of CONTROL_NODE_KEY and CONTROL_NODE_VALUE should
match with the value of the fields listed in operator/patches/operator_patch.yaml
> nodeSelector (labelKey, labelValue) and tolerations (key, value), so that the
Snapshot Manager operator will also run on the same node as NetBackup
operator. For example:

images:

- name: cloudpointoperator

newName: example.com/veritas/flexsnap-deploy

newTag: '10.1'

patches:

- target:

kind: Deployment

name: flexsnap-operator

patch: |

- op: replace

path: /spec/template/spec/tolerations/0/key

value: nbu-control-pool

- op: replace

path: /spec/template/spec/tolerations/0/value

value: nbupool

- op: replace

path: /spec/template/spec/affinity/nodeAffinity/requiredDuringSchedulingIgnoredDuringExecution/nodeSelectorTerms/0/matchExpressions/0/key

value: nbu-control-pool

- op: replace

path: /spec/template/spec/affinity/nodeAffinity/requiredDuringSchedulingIgnoredDuringExecution/nodeSelectorTerms/0/matchExpressions/0/values/0

value: nbupool

Deployment with environment operators
Deploying the operators manually

30

10 To install the NetBackup and Snapshot Manager operator, run the following
command from the installer's root directory:

$ kubectl apply -k operator

11 To verify if the operators are running, run:

$ kubectl get all --namespace netbackup-operator-system

Verify that pod/netbackup-operator and pod/flexsnap-operator STATUS
is showing as Running.

Deploying NetBackup and MSDP Scaleout
manually

After the operators are deployed, you can deploy the NetBackup andMSDPScaleout
environment.

31Deployment with environment operators
Deploying NetBackup and MSDP Scaleout manually

To deploy NetBackup primary, media, and MSDP Scaleout components:

1 Create a Kubernetes namespace where your new NetBackup environment will
run. Run the command:

kubectl create namespace nb-example

Where, nb-example is the name of the namespace. The Primary, Media, and
MSDP Scaleout application namespace must be different from the one used
by the operators. It is recommended to use two namespaces. One for the
operators, and a second one for the applications.

2 Create a secret to hold the primary server credentials. Those credentials are
configured in the NetBackup primary server, and other resources in the
NetBackup environment use them to communicate with and configure the
primary server. The secret must include fields for `username` and `password`.
If you are creating the secret by YAML, the type should be opaque or basic-auth.
For example:

apiVersion: v1

kind: Secret

metadata:

name: primary-credentials

namespace: nb-example

type: kubernetes.io/basic-auth

stringData:

username: nbuser

password: p@ssw0rd

You can also use this command to create a secret.

$ kubectl create secret generic primary-credentials --namespace

nb-example --from-literal=username='nbuser'

--from-literal=password='p@ssw0rd'

Deployment with environment operators
Deploying NetBackup and MSDP Scaleout manually

32

3 Create a KMS DB secret to hold Host Master Key ID (`HMKID`), Host Master
Key passphrase (`HMKpassphrase`), Key Protection Key ID (`KPKID`), and
Key Protection Key passphrase (`KPKpassphrase`) for NetBackup Key
Management Service. If creating the secret by YAML, the type should be
opaque. For example:

apiVersion: v1

kind: Secret

metadata:

name: example-key-secret

namespace: nb-example

type: Opaque

stringData:

HMKID: HMKID

HMKpassphrase: HMKpassphrase

KPKID: KPKID

KPKpassphrase: KPKpassphrase

You can also create a secret using kubectl from the command line:

$ kubectl create secret generic example-key-secret --namespace

nb-namespace --from-literal=HMKID="HMKID"

--from-literal=HMKpassphrase="HMKpassphrase"

--from-literal=KPKID="KPKID"

--from-literal=KPKpassphrase="KPKpassphrase"

For more details on NetBackup deduplication engine credential rules, see:
https://www.veritas.com/content/support/en_US/article.100048511

33Deployment with environment operators
Deploying NetBackup and MSDP Scaleout manually

https://www.veritas.com/content/support/en_US/article.100048511

4 Create a secret to hold the MSDP Scaleout credentials for the storage server.
The secret must include fields for `username` and `password` and must be
located in the same namespace as the Environment resource. If creating the
secret by YAML, the type should be _opaque_ or _basic-auth_. For example:

apiVersion: v1

kind: Secret

metadata:

name: msdp-secret1

namespace: nb-example

type: kubernetes.io/basic-auth

stringData:

username: nbuser

password: p@ssw0rd

You can also create a secret using kubectl from the command line:

$ kubectl create secret generic msdp-secret1 --namespace

nb-example --from-literal=username='nbuser'

--from-literal=password='p@ssw0rd'

Note: You can use the same secret for the primary server credentials (from
step 2) and the MSDP Scaleout credentials, so the following step is optional.
However, to use the primary server secret in an MSDP Scaleout, you must set
the `credential.autoDelete` property to false. The sample file includes an
example of setting the property. The default value is true, in which case the
secret may be deleted before all parts of the environment have finished using
it.

Deployment with environment operators
Deploying NetBackup and MSDP Scaleout manually

34

5 (Optional) Create a secret to hold the KMS key details. Specify KMS Key only
if the KMS Key Group does not already exist and you need to create.

Note:When reusing storage from previous deployment, the KMS Key Group
and KMS Key may already exist. In this case, provide KMS Key Group only.

If creating the secret by YAML, the type should be _opaque_. For example:

apiVersion: v1

kind: Secret

metadata:

name: example-key-secret

namespace: nb-example

type: Opaque

stringData:

username: nbuser

passphrase: 'test passphrase'

You can also create a secret using kubectl from the command line:

$ kubectl create secret generic example-key-secret --namespace

nb-example --from-literal=username="nbuser"

--from-literal=passphrase="test passphrase"

You may need this key for future data recovery. After you have successfully
deployed and saved the key details. It is recommended that you delete this
secret and the corresponding key info secret.

6 Configure the samples/environment.yaml file according to your requirements.
This file defines a primary server, media servers, and scale out MSDP Scaleout
storage servers. See “Configuring the environment.yaml file” on page 41. for
details.

7 Apply the environment yaml file, using the same application namespace created
in step 1.

$ kubectl apply --namespace nb-example --filename environment.yaml

Use this command to verify the new environment resource in your cluster:

$ kubectl get --namespace nb-example environments

The output should look like:

NAME AGE

environment-sample 2m

35Deployment with environment operators
Deploying NetBackup and MSDP Scaleout manually

After a few minutes, NetBackup finishes starting up on the primary server, and
then the media servers and MSDP Scaleout storage servers you configured
in the environment resource start appearing. Run:

$ kubectl get --namespace nb-example

all,environments,primaryservers,mediaservers,msdpscaleouts

The output should show:

■ All pod status as Ready and Running

NAME READY STATUS

pod/dedupe1-uss-controller- 1/1 Running

pod/dedupe1-uss-mds-1 1/1 Running

■ For msdpscaleout SIZE = READY, for example: 4=4.

NAME SIZE READY

msdpscaleout.msdp.veritas.com/dedupe1 4 4

■ environment.netbackup should show STATUS as Success

NAME STATUS

environment.netbackup.veritas.com/environment-sample Success

8 To start using your newly deployed environment sign-in to NetBackup web UI.
Open a web browser and navigate to
https://<primaryserver>/webui/login URL.

The primary server is the host name or IP address of the NetBackup primary
server.

You can retrieve the primary server's hostname by using the command:

$ kubectl describe primaryserver.netbackup.veritas.com/<primary

server CR name>--namespace <namespace_name>

Refer to Deploying MSDP Scaleout from the guide NetBackup™ Deployment
Guide for Azure Kubernetes Services (AKS) Cluster

Deploying NetBackup and Snapshot Manager
manually

After the operators are deployed as mentioned in the following section, you can
deploy the NetBackup and Snapshot Manager environment:

See “Deploying the operators manually ” on page 25.

Deployment with environment operators
Deploying NetBackup and Snapshot Manager manually

36

https://sort.veritas.com/DocPortal/pdf/156136648-156139658-1
https://sort.veritas.com/DocPortal/pdf/156136648-156139658-1

To deploy NetBackup primary, media and Snapshot Manager components

1 Create a Kubernetes namespace where your new NetBackup environment will
run. Run the following command:

kubectl create namespace nb-example

Where, nb-example is the name of the namespace. The Primary, Media, and
Snapshot Manager application namespace must be different from the one used
by the operators. It is recommended to use two namespaces. One for the
operators, and a second one for the applications.

2 Create a secret to hold the Snapshot Manager credentials. The secret must
include fields for username and password. If you are creating the secret by
YAML, the type should be opaque or basic-auth.

For example:

apiVersion: v1

stringData:

password: p@ssw0rd

username: cpuser

kind: Secret

metadata:

name: cp-creds

namespace: ns-155

type: Opaque

You can also use this command to create a secret.

kubectl create secret generic cp-credentials --namespace

nb-example --from-literal=username='cpuser'

--from-literal=password='p@ssw0rd'

37Deployment with environment operators
Deploying NetBackup and Snapshot Manager manually

3 Configure the samples/environment.yaml file according to your requirements.
This file defines a primary server, media servers, and Snapshot Manager
servers. See “Configuring the environment.yaml file” on page 41. for details.

Deployment with environment operators
Deploying NetBackup and Snapshot Manager manually

38

4 Apply the environment.yaml file, using the same application namespace
created in the above step.

kubectl apply --namespace nb-example --filename environment.yaml

Use this command to verify the new environment resource in your cluster:

kubectl get --namespace nb-example environments

After a few minutes, NetBackup finishes starting up the primary server, media
servers and Snapshot Manager servers in the sequence that you configured
in the environment resource.

Run the following command:

kubectl get --namespace nb-example

all,environments,primaryservers,mediaservers, cpservers

The output would be displayed as follows:

azureuser@demo-vm-aks:~$ kubectl get all,environments,

primaryservers,mediaservers,cpservers -n nb-namespace

NAME READY STATUS RESTARTS AGE

pod/environment-sample-primary-0 1/1 Running 0 2h

pod/flexsnap-agent-66d59855d4-kdkvh 1/1 Running 0 2h

pod/flexsnap-api-gateway-7c7f75ddc-nlgrq 1/1 Running 0 2h

pod/flexsnap-certauth-b84c985f6-tq5jx 1/1 Running 0 2h

pod/flexsnap-coordinator-597fc94884-bph2l 1/1 Running 0 2h

pod/flexsnap-fluentd-26wfl 1/1 Running 0 2h

pod/flexsnap-fluentd-7kg96 1/1 Running 0 2h

pod/flexsnap-fluentd-9h7sq 1/1 Running 0 2h

pod/flexsnap-fluentd-9zzth 1/1 Running 0 2h

pod/flexsnap-fluentd-collector-6dbfcc74f-tmxdh 1/1 Running 0 2h

pod/flexsnap-fluentd-n7r6s 1/1 Running 0 2h

pod/flexsnap-fluentd-stfsz 1/1 Running 0 2h

pod/flexsnap-idm-6ccb4cc695-kwnxj 1/1 Running 0 2h

pod/flexsnap-listener-58f5dc744c-hvdh5 1/1 Running 0 2h

pod/flexsnap-mongodb-7c7dbd9486-gdf28 1/1 Running 0 2h

pod/flexsnap-nginx-66cf654846-pdczx 1/1 Running 0 2h

pod/flexsnap-notification-69fb444b85-4fq5l 1/1 Running 0 2h

pod/flexsnap-rabbitmq-0 1/1 Running 0 2h

pod/flexsnap-scheduler-6665cbf757-cwq87 1/1 Running 0 2h

pod/media1-media-0 1/1 Running 0 2h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/environment-sample-primary LoadBalancer 10.0.218.235 10.244.204.203 13781:

30748/TCP,13782:32042/TCP,1556:31727/TCP,443:30843/TCP,8443:32041/TCP,22:31321/TCP 2h

39Deployment with environment operators
Deploying NetBackup and Snapshot Manager manually

service/flexsnap-api-gateway ClusterIP 10.0.156.177 <none> 8472/TCP 2h

service/flexsnap-certauth ClusterIP 10.0.172.41 <none> 9000/TCP 2h

service/flexsnap-fluentd-service ClusterIP 10.0.126.162 <none> 24224/TCP 2h

service/flexsnap-idm ClusterIP 10.0.145.64 <none> 8452/TCP 2h

service/flexsnap-mongodb ClusterIP 10.0.21.233 <none> 27017/TCP 2h

service/flexsnap-nginx LoadBalancer 10.0.34.60 10.244.204.201 443:32306/

TCP,5671:30740/TCP 2h

service/flexsnap-rabbitmq ClusterIP 10.0.125.225 <none> 5671/TCP

service/media1-media-0 LoadBalancer 10.0.170.169 10.244.204.202 13782:30292/

TCP,1556:31976/TCP 2h

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

daemonset.apps/flexsnap-fluentd 6 6 6 6 6 <none> 2h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/flexsnap-agent 1/1 1 1 2h

deployment.apps/flexsnap-api-gateway 1/1 1 1 2h

deployment.apps/flexsnap-certauth 1/1 1 1 2h

deployment.apps/flexsnap-coordinator 1/1 1 1 2h

deployment.apps/flexsnap-fluentd-collector 1/1 1 1 2h

deployment.apps/flexsnap-idm 1/1 1 1 2h

deployment.apps/flexsnap-listener 1/1 1 1 2h

deployment.apps/flexsnap-mongodb 1/1 1 1 2h

deployment.apps/flexsnap-nginx 1/1 1 1 2h

deployment.apps/flexsnap-notification 1/1 1 1 2h

deployment.apps/flexsnap-scheduler 1/1 1 1 2h

NAME DESIRED CURRENT READY AGE

replicaset.apps/flexsnap-agent-66d59855d4 1 1 1 2h

replicaset.apps/flexsnap-api-gateway-7c7f75ddc 1 1 1 2h

replicaset.apps/flexsnap-certauth-b84c985f6 1 1 1 2h

replicaset.apps/flexsnap-coordinator-597fc94884 1 1 1 2h

replicaset.apps/flexsnap-fluentd-collector-6dbfcc74f 1 1 1 2h

replicaset.apps/flexsnap-idm-6ccb4cc695 1 1 1 2h

replicaset.apps/flexsnap-listener-58f5dc744c 1 1 1 2h

replicaset.apps/flexsnap-mongodb-7c7dbd9486 1 1 1 2h

replicaset.apps/flexsnap-nginx-66cf654846 1 1 1 2h

replicaset.apps/flexsnap-notification-69fb444b85 1 1 1 2h

replicaset.apps/flexsnap-scheduler-6665cbf757 1 1 1 2h

NAME READY AGE

statefulset.apps/environment-sample-primary 1/1 2h

statefulset.apps/flexsnap-rabbitmq 1/1 2h

statefulset.apps/media1-media 1/1 2h

Deployment with environment operators
Deploying NetBackup and Snapshot Manager manually

40

NAME READY AGE STATUS

environment.netbackup.veritas.com/

environment-sample 3/3 2h Success

NAME TAG AGE STATUS

primaryserver.netbackup.veritas.com/

environment-sample 10.1.0 2h Success

NAME TAG AGE PRIMARY SERVER STATUS

mediaserver.netbackup.veritas.com/

media1 10.1.0 2h primary.

example.veritas.com Success

NAME TAG AGE STATUS

cpserver.netbackup.veritas.com/

cpserver-1 10.1.0 2h Success

Configuring the environment.yaml file
The environment.yaml file lets you configure the primary server, media servers,
scale out MSDP Scaleout storage and Snapshot Manager servers. The file contains
five sections, the first section contains parameters that are applicable to all the
servers, rest of the sections are one each for the primary, media, MSDP Scaleout
and Snapshot Manager servers.

The following configurations apply to all the components:

Table 2-2 Common environment parameters

DescriptionParameter

Specify the name of the environment in your cluster.name:
environment-sample

Specify the namespace where all the NetBackup resources are
managed. If not specified here, then it will be the current
namespace when you run the command kubectl apply -f
on this file.

namespace: example-ns

Specify a container registry that the cluster has access.
NetBackup images are pushed to this registry.

containerRegistry:
example.azurecr.io

41Deployment with environment operators
Configuring the environment.yaml file

Table 2-2 Common environment parameters (continued)

DescriptionParameter

This tag is used for all images in the environment. Specifying
a `tag` value on a sub-resource affects the images for that
sub-resource only. For example, if you apply an EEB that affects
only primary servers, you might set the `primary.tag` to the
custom tag of that EEB. The primary server runs with that image,
but the media servers and MSDP scaleouts continue to run
images tagged `10.1`. Beware that the values that look like
numbers are treated as numbers in YAML even though this field
needs to be a string; quote this to avoid misinterpretation.

tag: 10.1

List the license keys that are shared among all the
sub-resources. Licenses specified in a sub-resource are
appended to this list and applied only to the sub-resource.

licenseKeys:

Specify whether the NetBackup operator attempts to reconcile
the differences between this YAML specification and the current
Kubernetes cluster state. Only set it to true during maintenance.

paused: false

This controls whether certain configuration restrictions are
checked or enforced during setup. Other allowed values are
skip and dryrun.

configCheckMode: default

Specify the path to use for storing core files in case of a crash.corePattern:
/corefiles/core.%e.%p.%t

Specify the annotations to be added for the network load
balancer

loadBalancerAnnotations:
service.
beta.kubernetes.io/
azure-load- balancer-
internal-subnet:

example-subnet

The following section describes Snapshot Manager related parameters. You may
also deploy without any Snapshot Manager. In that case, remove the cpServer
section entirely from the configuration file.

Deployment with environment operators
Configuring the environment.yaml file

42

Table 2-3 Snapshot Manager parameters

DescriptionParameter

This specifies Snapshot Manager configurations.

Currently only single instance of Snapshot Manager deployment
is supported. It is also possible to have no Snapshot Managers
configured; in this case, delete the cpServer section itself or
define it as an empty list as follows:

cpServer: []

cpServer:

-name

(Optional) Specify a container registry that the cluster has access.
Snapshot Manager images are pushed to this registry which
overrides the one defined inCommon environment parameters
table above.

containerRegistry

(Optional) This tag overrides the one defined in Common
environment parameters table above. The Snapshot Manager
images are shipped with tags different from the NetBackup
primary, media, and MSDP images.

tag:

This defines the credentials for Snapshot Manager. It refers to a
secret in the same namespace as this environment resource with
values for username and password.

credential:secretName

Annotations to be provided to the network load balancer. All AKS
networkLoadBalancer annotations are supported. For Snapshot
Manager, the default value for the Azure-load-balancer-internal
annotation is true. Uncomment annotations to specify additional
media-server specific annotations. These values are merged with
the values provided in the loadBalancerAnnotations. The
duplicate values provided here, override the corresponding values
in the loadBalancerAnnotations.

networkLoadBalancer:
annotations

IP address to be assigned to the network load balancer.networkLoadBalancer:
ipaddr

FQDN to be assigned to the network load balancer.networkLoadBalancer:
fqdn

Size for log volume.log.capacity

Storage class for log volume. It must be a file share-based storage
class.

log.storageClassName

Size for data volume.data.capacity

Storage class for data volume.data.storageClassName

43Deployment with environment operators
Configuring the environment.yaml file

Table 2-3 Snapshot Manager parameters (continued)

DescriptionParameter

Name of the control plane node pool.controlPlane.nodePool

Label and taint key of the control plane.controlPlane.labelKey

Label and taint value of the control plane.controlPlane.labeValue

Name of the data plane node pool.dataPlane.nodePool

Label and taint key of the data plane.dataPlane.labelKey

Label and taint value of the data plane.dataPlane.labelValue

The following configurations apply to the primary server. The values specified in
the following table can override the values specified in the table above.

Table 2-4 Environment parameters for the primary server

DescriptionParagraph

Specifies whether the NetBackup operator
attempts to reconcile the differences between
this YAML specification and the current
Kubernetes cluster state. Set it to true only
during maintenance. This applies only to the
environment object. To pause reconciliation
of the managed primary server, for example,
you must set spec.primary.paused.
Settingspec.paused:true ceases updates
to the managed resources, including updates
to their `paused` status. Entries in the media
servers and MSDP scaleouts lists also
support the `paused` field. The default value
is false.

paused: false

Specifies attributes specific to the primary
server resources. Every environment has
exactly one primary server, so this section
cannot be left blank.

primary

Set resourceNamePrefix to control the name
of the primary server. The default value is the
same as the environment's name.

name: primary-name

Deployment with environment operators
Configuring the environment.yaml file

44

Table 2-4 Environment parameters for the primary server (continued)

DescriptionParagraph

To use a different image tag specifically for
the primary server, uncomment this value and
provide the desired tag. This overrides the
tag specified in the common section.

tag: 10.1-special

Specify a key and value that identifies nodes
where the primary server pod runs.

Note: This labelKey and labelValue must
be the same label key:value pair used during
node pool creation which would be used as
a toleration for primary server.

nodeSelector:

labelKey: kubernetes.io/os

labelValue: linux

Uncomment the annotations to specify
additional primary server-specific annotations.
These values are merged with the values
given in the loadBalancerAnnotations above.
Any duplicate values given here override the
corresponding values above.

Next, specify the hostname and IP address
of the primary server.

networkLoadBalancer:

annotations: service.beta. kubernetes.io /
azure-load- balancer-internal- subnet:
example- subnet

ipList:
- ipAddr: 4.3.2.1
fqdn: primary.example.com

This determines the credentials for the
primary server. Media servers use these
credentials to register themselves with the
primary server.

credSecretName: primary-credential-secret

If using NetBackup IT Analytics, uncomment
this and provide the SSH public key. IT
Analytics uses this to access the primary
server.

itAnalyticsPublicKey: ssh-rsaxxx

45Deployment with environment operators
Configuring the environment.yaml file

Table 2-4 Environment parameters for the primary server (continued)

DescriptionParagraph

Secret name which contains the Host Master
Key ID (HMKID), Host Master Key
passphrase (HMKpassphrase), Key
Protection Key ID (KPKID) and Key Protection
Key passphrase (KPKpassphrase) for
NetBackup Key Management Service. The
secret should be 'Opaque', and can be
created either using a YAML or the following
example command: kubectl create
secret generic kms-secret
--namespace nb-namespace
--from-literal=HMKID="HMK@ID"
--from-literal=HMKpassphrase="HMK@passphrase"
--from-literal=KPKID="KPK@ID"
--from-literal=KPKpassphrase="KPK@passphrase"

kmsDBSecret: kms-secret

To specify additional license keys that are
applied only to the primary server,
uncomment this and provide the license
key(s). In this example, the primary server
would have the "X" license key defined in the
previous section, followed by this "Y" key.

licenseKeys:

This storage applies to the primary server for
the NetBackup catalog, log and data volumes.
The primary server catalog volume must be
at least 100 Gi.

catalog:

capacity: 100Gi

storageClassName: standard

Log volume must be at least 30Gi.log:

capacity: 30Gi

storageClassName: standard

The primary server data volume must be at
least 30Gi.

Note: This storage applies to primary server
data volume.

data:

capacity: 30Gi

storageClassName: standard

The following section describes the media server configurations. If you do not have
a media server either remove this section from the configuration file entirely, or
define it as an empty list.

Deployment with environment operators
Configuring the environment.yaml file

46

Table 2-5 Media server related parameters

Descriptionparameters

This specifies media server configurations.
This is given as a list of media servers, but
most environments will have just one, with
multiple replicas. It's also possible to have
zero media servers; in that case, either
remove the media servers section entirely, or
define it as an empty list: mediaServers: []

mediaServers:

- name: media1

Specifies the number of replicas of this media
server. Minimum number of supported
replicas is 1.

replicas: 1

To use a different image tag specifically for
the media servers, uncomment this value and
provide the desired tag. This overrides the
tag specified above in the common table.

tag: 10.1-special

Specify a key and value that identifies nodes
where media-server pods will run.

Note: This labelKey and labelValue must
be the same label key:value pair used during
node pool creation which would be used as
a toleration for media server.

nodeSelector:

labelKey: kubernetes.io/os

labelValue: linux

This storage applies to the media server data
volumes.

The minimum data size for a media server is
50 Gi.

data:

capacity: 50Gi

storageClassName:managed-premium-nbux

This storage applies to the media server log
volumes.

Log volumes must be at least 30Gi.

log

capacity: 30Gi

storageClassName:managed-premium-nbux

47Deployment with environment operators
Configuring the environment.yaml file

Table 2-5 Media server related parameters (continued)

Descriptionparameters

Uncomment annotations to specify additional
media-server specific annotations. These
values are merged with the values given in
the loadBalancerAnnotations. The duplicate
values given here, override the corresponding
values in the loadBalancerAnnotations.

The number of entries in the IP list should
match the replica count specified above.

networkLoadBalancer:

annotations: - service.beta.kubernetes.io/
azure-load-balancer -internal-subnet:
example-subnet

ipList:

ipAddr: 4.3.2.2

fqdn: media1-1.example.com

ipAddr: 4.3.2.3

fqdn: media1-2.example.com

The following section describes MSDP-related parameters. You may also deploy
without any MSDP scaleouts. In that case, remove the msdpScaleouts section
entirely from the configuration file.

Table 2-6 MSDP Scaleout related parameters

DescriptionParameter

This specifies MSDPScaleout configurations.
This is given as a list, but it would be rare to
need more than one scaleout deployment in
a single environment. Use the `replicas`
property below to scale out. It's also possible
to have zero MSDP scaleouts; in that case,
either remove the msdpScaleouts section
entirely, or define it to an empty list:
msdpScaleouts: []

msdpScaleouts:

- name: dedupe1

This tag overrides the one defined in the table
1-3. It is necessary because the MSDP
Scaleout images are shipped with tags
different from the NetBackup primary and
media images.

tag: '17.0'

This is the scaleout size of this MSDP
Scaleout component. It is a required value,
and it must be between 4 and 16 inclusive.

Note: Scale-down of the MSDP Scaleout
replicas after deployment is not supported.

replicas: 4

Deployment with environment operators
Configuring the environment.yaml file

48

Table 2-6 MSDP Scaleout related parameters (continued)

DescriptionParameter

These are the IP addresses and host names
of the MSDP Scaleout servers. The number
of the entries should match the number of the
replicas specified above.

serviceIPFQDNs:

ipAddr: 1.2.3.4

fqdn: dedupe1-1.example.com

ipAddr: 1.2.3.5

fqdn: dedupe1-2.example.com

ipAddr: 1.2.3.6

fqdn: dedupe1-3.example.com

ipAddr: 1.2.3.7

fqdn: dedupe1-4.example.com

Specifies the initial key group and key secret
to be used for KMS encryption. When reusing
storage from a previous deployment, the key
group and key secret may already exist. In
this case, provide the keyGroup only.

kms:

keyGroup: example-key-group

Specify keySecret only if the key group does
not already exist and needs to be created.
The secret type should be Opaque, and you
can create the secret either using a YAML or
the following command:

kubectl create secret generic
example-key-secret --namespace
nb-namespace
--from-literal=username="devuser"
--from-literal=passphrase="test
passphrase"

keySecret:

example-key-secret

For MSDP scaleouts, the default value for the
Azure-load-balancer-internal annotation is
`false`, which may cause the MSDP Scaleout
services in this Environment to be accessible
publicly. To make sure that they use private
IP addresses, specify `true` here or in the
loadBalancerAnnotations above in Table 1-3.

loadBalancerAnnotations:

service.beta.kubernetes .io/azure-load-
balancer-internal: true

49Deployment with environment operators
Configuring the environment.yaml file

Table 2-6 MSDP Scaleout related parameters (continued)

DescriptionParameter

This defines the credentials for the MSDP
Scaleout server. It refers to a secret in the
same namespace as this environment
resource. Secret can be either of type
'Basic-auth' or 'Opaque'. You can create
secrets using a YAML or by using the
following command:kubectl create
secret generic <msdp-secret1>
--namespace <nb-namespace>
--from-literal=username=<"devuser">
--from-literal=password=<"Y@123abCdEf">

credential:

secretName: msdp-secret1

Optional parameter. Default value is true.
When set to true, the MSDP Scaleout
operator deletes the MSDP secret after using
it. In such case, the MSDP and primary
secrets must be distinct. To use the same
secret for both MSDP scaleouts and the
primary server, set autoDelete to false.

autoDelete: false

This storage applies to MSDP Scaleout to
store the catalog and metadata. The catalog
size may only be increased for capacity
expansion. Expanding the existing catalog
volumes cause short downtime of the
engines. Recommended size is 1/100 of
backend data capacity.

catalog:

capacity: 1Gi

storageClassName: standard

This specifies the data storage for this MSDP
Scaleout resource. Youmay increase the size
of a volume or add more volumes to the end
of the list, but do not remove or re-order
volumes. Maximum 16 volumes are allowed.
Appending new data volumes or expanding
existing ones will cause short downtime of
the Engines. Recommended volume size is
5Gi-32Ti.

dataVolumes:

capacity: 5Gi

storageClassName: standard

Specifies log volume size used to provision
Persistent Volume Claim for Controller and
MDS Pods. In most cases, 5-10 Gi capacity
should be big enough for one MDS or
Controller Pod to use.

log:

capacity: 20Gi

storageClassName: standard

Deployment with environment operators
Configuring the environment.yaml file

50

Table 2-6 MSDP Scaleout related parameters (continued)

DescriptionParameter

Specify a key and value that identifies nodes
where MSDP Scaleout pods will run.

nodeSelector:

labelKey: kubernetes.io/os

labelValue: linux

Edit restricted parameters post deployment
Do not change these parameters post initial deployment. Changing these parameters
may result in an inconsistent deployment.

Table 2-7 Edit restricted parameters post deployment

DescriptionParameter

Specifies the prefix name for the primary, media, and MSDP
Scaleout server resources.

name

51Deployment with environment operators
Configuring the environment.yaml file

Table 2-7 Edit restricted parameters post deployment (continued)

DescriptionParameter

The values against ipAddr, fqdn and
loadBalancerAnnotations against following fields should
not be changed post initial deployment. This is applicable for
primary, media, and MSDP Scaleout servers. For example:

- The loadBalancerAnnotations for loadBalancerAnnotations:
service.beta.kubernetes.io/azure-load-balancer
-internal-subnet: example-subnet service.beta.kubernetes.io/
azure-load-balancer -internal:

##~#apos;true##~#apos;

- The IP and FQDNs values defined for Primary,
Media and MSDPScaleout ipList:

- ipAddr: 4.3.2.1 fqdn: primary.example.com
ipList:

- ipAddr: 4.3.2.2 fqdn: media1-1.example.com
- ipAddr: 4.3.2.3

fqdn: media1-2.example.com serviceIPFQDNs:
- ipAddr: 1.2.3.4

fqdn: dedupe1-1.example.com - ipAddr: 1.2.3.5

fqdn: dedupe1-2.example.com

- ipAddr: 1.2.3.6 fqdn: dedupe1-3.example.com
- ipAddr: 1.2.3.7

fqdn: dedupe1-4.example.com

ipAddr, fqdn and

loadBalancerAnnotations

Uninstalling NetBackup environment and the
operators

You can uninstall the NetBackup primary, media, and MSDP Scaleout environment
and the operators as required. You need to uninstall the NetBackup environment
before you uninstall the operators.

Note: Replace the environment custom resource names as per your configuration
in the steps below.

Deployment with environment operators
Uninstalling NetBackup environment and the operators

52

To uninstall the NetBackup environment

1 To remove the environment components from the application namespace, run:

$ kubectl delete

environment.netbackup.veritas.com/environment-sample --namespace

<namespce_name>

2 Wait for all the pods, services and resources to be terminated. To confirm, run

$ kubectl get --namespace <namespce_name>

all,environments,primaryservers,mediaservers,msdpscaleouts

You should get a message that no resources were found in the nb-example
namespace.

3 To identify and delete any outstanding persistent volume claims, run the
following:

$ kubectl get pvc --namespace <namespce_name>

$ kubectl delete pvc <pvc-name>

4 To locate and delete any persistent volumes created by the deployment, run:

$ kubectl get pv

$ kubectl delete pv <pv-name> --grace-period=0 --force

Note: Certain storage drivers may cause physical volumes to get stuck in the
terminating state. To resolve this issue, remove the finalizer, using the
command: $ kubectl patch pv <pv-name> -p

'{"metadata":{"finalizers":null}}

5 To delete the application namespace, run:

$ kubectl delete ns <namespace name>

To uninstall the operators

1 To uninstall the NetBackup operator run the following command from the
installation directory.

$ kubectl delete -k operator

2 To uninstall the MSDP Scaleout operator and remove the operator's
namespace, run.

$ kubectl msdp delete --namespace <namespace name>

53Deployment with environment operators
Uninstalling NetBackup environment and the operators

Note: Do not remove the MSDP Scaleout operator first as it may corrupt the
NetBackup operator.

To uninstall NetBackup operator and Snapshot Manager

� To uninstall the NetBackup operator and Snapshot Manager operator and
remove the operator's namespace, run the following ommand:

$ kubectl delete -k operator

Applying security patches
This section describes how to apply security patches for operator and application
images.

In the instructions below, we assume that the operators were deployed to the
netbackup-operator-system namespace (the default namespace suggested by the
deployment script), and that an environment resource named nb-envwas deployed
to a namespace named nb-example.

Although it is not necessary to manually shut down NetBackup primary server or
media servers, it's still a good idea to quiesce scheduling so that no jobs get
interrupted while pods are taken down and restarted.

Prepare the images
To prepare the images to apply patches

1 Unpack the tar file on a system where docker is able to push to the container
registry, and kubectl can access the cluster.

2 Decide on a unique tag value to use for MSDP Scaleout images. The unique
tag should be in version-postfix format, For example, 17.0-update1. Set
the DD_TAG environment variable accordingly and run deploy.sh:

DD_TAG=17.0-update1 ./deploy.sh

3 In the menu that appears, select option 1 to install the operators.

4 Enter the fully qualified domain name of the container registry.

For example: exampleacr.azurecr.io.

When the script prompts to load images, answer yes.

Deployment with environment operators
Applying security patches

54

5 When the script prompts to tag and push images, wait. Open another terminal
window and re-tag the MSDP Scaleout images as:

docker tag msdp-operator:17.0 msdp-operator:17.0-update1

docker tag uss-controller:17.0 uss-controller:17.0-update1

docker tag uss-engine:17.0 uss-engine:17.0-update1

docker tag uss-mds:17.0 uss-mds:17.0-update1

6 Return to the deploy script and when prompted, enter yes to tag and push the
images. Wait for the images to be pushed, and then the script will pause to
ask another question. The remaining questions are not required, so press
Ctrl+c to exit the deploy script.

Update the NetBackup operator
1 Get the image ID of the existing NetBackup operator container and record it

for later. Run:

kubectl get pod -n netbackup-operator-system -l

nb-control-plane=nb-controller-manager -o jsonpath --template

"{.items[*].status.containerStatuses[?(@.name=='netbackup-operator')].imageID}{'\n'}"

The command prints the name of the image and includes the SHA-256 hash
identifying the image. For example:

exampleacr.azurecr.io/netbackup/operator@sha256:59d4d46d82024a1ab6353
33774c8e19eb5691f3fe988d86ae16a0c5fb636e30c

2 To restart the NetBackup operator, run:

pod=$(kubectl get pod -n netbackup-operator-system -l

nb-control-plane=nb-controller-manager -o jsonpath --template

'{.items[*].metadata.name}')

kubectl delete pod -n netbackup-operator-system $pod

3 Re-run the kubectl command from earlier to get the image ID of the NetBackup
operator. Confirm that it's different from what it was before the update.

55Deployment with environment operators
Applying security patches

Update the MSDP Scaleout operator
1 Get the image ID of the existing MSDP Scaleout operator container and save

it for later use. Run:

kubectl get pods -n netbackup-operator-system -l

control-plane=controller-manager -o jsonpath --template

"{.items[*].status.containerStatuses[?(@.name=='manager')].imageID}{'\n'}"

2 Re-initialize the MSDP Scaleout operator using the new image.

kubectl msdp init -n netbackup-operator-system --image

exampleacr.azurecr.io/msdp-operator:17.0-update1

3 Re-run the kubectl command from earlier to get the image ID of the MSDP
Scaleout operator. Confirm that it's different from what it was before the update.

Update the primary server or media servers
1 Look at the list of pods in the application namespace and identify the pod or

pods to update. The primary-server pod's name typically end with "primary-0"
and media-server pods end with "media-0", "media-1", etc. Hereafter, pod will
be referred to as $pod. Run:

kubectl get pods -n nb-example

2 Get the image ID of the existing NetBackup container and record it for later.
Run:

kubectl get pods -n nb-example $pod -o jsonpath --template

"{.status.containerStatuses[*].imageID}{'\n'}"

3 Look at the list of StatefulSets in the application namespace and identify the
one that corresponds to the pod or pods to be updated. The name is typically
the same as the pod, but without the number at the end. For example, a pod
named nb-primary-0 is associated with statefulset nb-primary. Hereafter the
statefulset will be referred to as $set. Run:

kubectl get statefulsets -n nb-example

4 Restart the statefulset. Run:

kubectl rollout restart -n nb-example statefulset $set

The pod or pods associated with the statefulset are terminated and be
re-created. It may take several minutes to reach the "Running" state.

5 Once the pods are running, re-run the kubectl command from step 2 to get the
image ID of the new NetBackup container. Confirm that it's different from what
it was before the update.

Deployment with environment operators
Applying security patches

56

Update the MSDP Scaleout containers
1 Look at the list of pods in the application namespace and identify the pods to

update. The controller pod have "uss-controller" in its name, the MDS pods
have "uss-mds" in their names, and the engine pods are be named like their
fully qualified domain names. Run:

kubectl get pods -n nb-example

2 Get the image IDs of the existing MSDP Scaleout containers and record them
for later. All the MDS pods use the same image, and all the engine pods use
the same image, so it's only necessary to get three image IDs, one for each
type of pod.

kubectl get pods -n nb-example $engine $controller $mds -o

jsonpath --template "{range

.items[*]}{.status.containerStatuses[*].imageID}{'\n'}{end}"

3 Edit the Environment resource and change the spec.msdpScaleouts[*].tag
values to the new tag used earlier in these instructions.

kubectl edit environment -n nb-example nb-env

...

spec:

...

msdpScaleouts:

- ...

tag: "17.0-update1"

4 Save the file and close the editor. The MSDP Scaleout pods are terminated
and re-created. It may take several minutes for all the pods to reach the
"Running" state.

5 Run kubectl get pods, to check the list of pods and note the new name of
the uss-controller pod. Then, once the pods are all ready, re-run the kubectl
command above to get the image IDs of the new MSDP Scaleout containers.
Confirm that they're different from what they were before the update.

57Deployment with environment operators
Applying security patches

Deployment with environment operators
Applying security patches

58

Assessing cluster
configuration before
deployment

This chapter includes the following topics:

■ How does the Config-Checker utility work

■ Config-Checker execution and status details

■ How Data-Migration works

■ Data-Migration execution and status details

How does the Config-Checker utility work
The Config-Checker utility performs checks on the deployment environment to verify
that the environment meets the requirements, before starting the primary server
and media server deployments.

How does the Config-Checker works:

■ RetainReclaimPolicy check:
This check verifies that the storage classes used for PVC creation in the CR
have reclaim policy as Retain. The check fails if any of the storage classes do
not have the Retain reclaim policy.
Persistent Volumes Reclaiming

■ MinimumVolumeSize check:
This check verifies that the PVC storage capacity meets the minimum required
volume size for each volume in the CR. The check fails if any of the volume
capacity sizes does not meet the requirements.

3Chapter

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

Following are the minimum volume size requirements:

■ Primary server:

■ Catalog volume size: 100Gi

■ Log volume size: 30Gi

■ Data volume size: 30Gi

■ Media server:

■ Data volume size: 50Gi

■ Log volume size: 30Gi

■ Provisioner check:
This check verifies that the provisioner type used in defining the storage class
is Azure disk, for the volumes in Media servers. If not the config-checker will
fail. This check verifies that the provisioner type used in defining the storage
class is not Azure files for the volumes in Media servers. That is data and log
volumes in case of Media server.

■ Volume expansion check: This check verifies the storage class name given
for Primary server log, data and catalog volume and for Media server data and
log volumes has AllowVolumeExpansion = true. If config check fails with this
check then it gives a warning message and continues with deployment of
NetBackup media and primary servers.

Config-Checker execution and status details
Note the following points.

■ Config-Checker is executed as a separate job in Kubernetes cluster for both
the primary server and media server CRs respectively. Each job creates a pod
in the cluster. Config-checker creates the pod in the operator namespace.

Note: Config-checker pod gets deleted after 4 hours.

■ Execution summary of the Config-Checker can be retrieved from the
Config-Checker pod logs using the kubectl logs <configchecker-pod-name>

-n <operator-namespace> command.
This summary can also be retrieved from the operator pod logs using the kubectl
logs <operator-pod-name> -n <operator-namespace> command.

■ Following are the Config-Checker modes that can be specified in the Primary
and Media CR:

Assessing cluster configuration before deployment
Config-Checker execution and status details

60

■ Default: This mode executes the Config-Checker. If the execution is
successful, the Primary and Media CRs deployment is started.

■ Dryrun: This mode only executes the Config-Checker to verify the
configuration requirements but does not start the CR deployment.

■ Skip: This mode skips the Config-Checker execution of Config-Checker and
directly start the deployment of the respective CR.

■ Status of the Config-Checker can be retrieved from the primary server andmedia
server CRs by using the kubectl describe <PrimaryServer/MediaServer>

<CR name> -n <namespace> command.
For example, kubectl describe primaryservers environment-sample -n

test

■ Following are the Config-Checker statuses:

■ Success: Indicates that all the mandatory config checks have successfully
passed.

■ Failed: Indicates that some of the config checks have failed.

■ Running: Indicates that the Config-Checker execution is in progress.

■ Skip: Indicates that the Config-Checker is not executed because the
configcheckmode specified in the CR is skipped.

■ If the Config-Checker execution status is Failed, you can check the
Config-Checker job logs using kubectl logs <configchecker-pod-name> -n

<operator-namespace>. Review the error codes and error messages pertaining
to the failure and update the respective CR with the correct configuration details
to resolve the errors.
For more information about the error codes, refer to NetBackup™Status Codes
Reference Guide.

■ If Config-Checker ran in dryrun mode and if user wants to run Config-Checker
again with same values in Primary or Media server YAML as provided earlier,
then user needs to delete respective CR of Primary or Media server. And then
apply it again.

■ If it is primary server CR, delete primary server CR using the kubectl delete

-f <environment.yaml> command.
Or
If it is media server CR, edit the Environment CR by removing the media
server section in the environment.yaml file. Before removing the
mediaServer section, you must save the content and note the location of
the content. After removing section apply environment CR using kubectl

apply -f <environment.yaml> command.

61Assessing cluster configuration before deployment
Config-Checker execution and status details

https://www.veritas.com/docs/DOC5332
https://www.veritas.com/docs/DOC5332

■ Apply the CR again. Add the required data which was deleted earlier at
correct location, save it and apply the yaml using kubectl apply -f

<environment.yaml> command.

How Data-Migration works
Data migration job kicks-in whenever there is any change in the storage class name
of the primary server’s catalog, log and data volumes.

■ Migration job is used to perform data transfer of Primary server’s file system
data from Azure disks to Azure premium files for existing NetBackup
deployments.

■ If user is deploying NetBackup for the first time, then it is considered as fresh
installation and the user can directly utilize the Azure premium files for Primary
server’s catalog volume. Primary server log and data volume supports azure
disks only.

■ For existing NetBackup deployments, migration job would copy Primary server’s
old Azure disk catalog volume to new azure file volumes, except nbdb data,
nbdb data will be copied to new azure disks based data volume. Logs can be
migrated to new azure disk log volume.

■ To invoke the migration job, the Azure premium files storage class must be
provided in the environment.yaml file for catalog volume. User can also provide
new azure disks storage class for log volume and new azure disk based data
volume must be provided in environment.yaml.

■ The migration status is updated to Success in primary server CRD post
successful data migration.

Note: Migration will take longer time based on catalog data size.

Data-Migration execution and status details
Data migration is carried out in form of job in NetBackup Kubernetes cluster for
only the primary server CR. There will be a migration job per primary volume for
data migration which will be part of NetBackup environment namespace. Each job
creates a pod in the cluster.

■ Execution summary of the Data migration can be retrieved from the migration
pod logs using the following command:

Assessing cluster configuration before deployment
How Data-Migration works

62

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

This summary can also be retrieved from the operator pod logs using the
following command:
kubectl logs <netbackup-operator-pod-name> -n

<netbackup-environment-namespace>

■ Status of the data migration can be retrieved from the primary server CR by
using the following command:
kubectl describe <PrimaryServer> <CR name> -n

<netbackup-environment-namespace>

Following are the data migration statuses:

■ Success: Indicates all necessary conditions for the migration of the Primary
server are passed.

■ Failed: Indicates some or all necessary conditions for the migration the
Primary server are failed.

■ Running: Indicates migration is in running state for the Primary server.

■ If the Data migration execution status is failed, you can check the migration job
logs using the following command:
kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

Review the error codes and error messages pertaining to the failure and update
the primary server CR with the correct configuration details to resolve the errors.
For more information about the error codes, refer toNetBackup™Status Codes
Reference Guide.

63Assessing cluster configuration before deployment
Data-Migration execution and status details

Assessing cluster configuration before deployment
Data-Migration execution and status details

64

Deploying NetBackup
This chapter includes the following topics:

■ Preparing the environment for NetBackup installation on AKS

■ Recommendations of NetBackup deployment on AKS

■ Limitations of NetBackup deployment on AKS

■ About primary server CR and media server CR

■ Monitoring the status of the CRs

■ Updating the CRs

■ Deleting the CRs

■ Configuring NetBackup IT Analytics for NetBackup deployment

■ Managing NetBackup deployment using VxUpdate

■ Migrating the node pool for primary or media servers

Preparing the environment for NetBackup
installation on AKS

Refer to this section to prepare your host system and Azure Kubernetes cluster for
NetBackup installation.

AKS-specific requirements
Use the following checklist to prepare the AKS for installation.

■ Your Azure Kubernetes cluster must be created with appropriate network and
configuration settings.
Supported Kubernetes cluster version is 1.21.x and later.

4Chapter

■ While creating the cluster, assign appropriate roles and permissions.
Concepts - Access and identity in Azure Kubernetes Services (AKS) - Azure
Kubernetes Service | Microsoft Docs

■ Use an existing Azure container registry or create a new one. Your Kubernetes
cluster must be able to access this registry to pull the images from the container
registry. For more information on the Azure container registry, see Azure
Container Registry documentation.

■ A dedicated node pool for NetBackup must be created with manual scaling or
Autoscaling enabled in Azure Kubernetes cluster. The autoscaling feature allows
your node pool to scale dynamically by provisioning and de-provisioning the
nodes as required automatically.
The following table lists the node configuration for the primary andmedia servers.

D16ds v4Node type

P30Disk type

16vCPU

64 GiBRAM

1 TBTotal disk size per node (TiB)

1Number of disks/node

4 TBSmall (4 nodes)Cluster storage size

8 TBMedium (8 nodes)

16 TBLarge (16 nodes)

■ Another dedicated node pool must be created for Snapshot Manager (if it has
to be deployed) with auto scaling enabled.
Following is the minimum configuration required for Snapshot Manager data
plane node pool:

B4msNode type

8 GBRAM

Minimum 1 with auto scaling enabled.Number of nodes

6 (system) + 4 (static pods) + RAM*2
(dynamic) = 26 pods or more

Maximum pods per node

Deploying NetBackup
Preparing the environment for NetBackup installation on AKS

66

https://docs.microsoft.com/en-us/azure/aks/concepts-identity
https://docs.microsoft.com/en-us/azure/aks/concepts-identity
https://docs.microsoft.com/en-us/azure/container-registry/
https://docs.microsoft.com/en-us/azure/container-registry/

Following are the different scenario's on how the NetBackup Snapshot Manager
calculates the number of job which can run at a given point in time, based on
the above mentioned formula:

■ For 2 CPU's and 8 GB RAM node configuration:

More than 2 CPU'sCPU

8 GBRAM

6 (system) + 4 (static pods) + 8*2 =
16 (dynamic pods) = 26 or more

Maximum pods per node

Minimum number =1 and Maximum
= 3

Autoscaling enabled

Note: Above configuration will run 8 jobs per node at once.

■ For 2/4/6 CPU's and 16 GB RAM node configuration:

More than 2/4/6 CPU'sCPU

16 GBRAM

6 (system) + 4 (Static pods) +
16*2=32 (Dynamic pods) = 42 or
more

Maximum pods per node

Minimum number =1 and Maximum
= 3

Autoscaling enabled

Note: Above configuration will run 16 jobs per node at once.

■ All the nodes in the node pool must be running the Linux operating system.

■ Taints and tolerations allows you to mark (taint) a node so that no pods can
schedule onto it unless a pod explicitly tolerates the taint. Marking nodes instead
of pods (as in node affinity/anti-affinity) is particularly useful for situations where
most pods in the cluster must avoid scheduling onto the node.
Taints are set on the node pool while creating the node pool in the cluster.
Tolerations are set on the pods.
To use this functionality, user must create the node pool with the following detail:

■ Add a label with certain key value. For example key = nbpool, value =

nbnodes

67Deploying NetBackup
Preparing the environment for NetBackup installation on AKS

■ Add a taint with the same key and value which is used for label in above
step with effect as NoSchedule.
For example, key = nbpool, value = nbnodes, effect = NoSchedule

Provide these details in the operator yaml as follows. To update the toleration
and node selector for operator pod,
Edit the operator/patch/operator_patch.yaml file. Provide the same
label key:value in node selector section and in toleration sections. For
example,

nodeSelector:

nbpool: nbnodes

Support node taints by adding pod tolerations equal to the specified nodeSelectors

For Toleartion NODE_SELECTOR_KEY used as a key and NODE_SELECTOR_VALUE as a value.

tolerations:

- key: nbpool

operator: "Equal"

value: nbnodes

Update the same label key:value as labelKey and labelValue in
nodeselector section in environment.yaml file.

■ If you want to use static public IPs, private IPs and fully qualified domain names
for the load balancer service, the public IP addresses, private IP addresses and
FQDNs must be created in AKS before deployment.

■ If you want to bind the load balancer service IPs to a specific subnet, the subnet
must be created in AKS and its name must be updated in the annotations key
in the networkLoadBalancer section of the custom resource (CR).
For more information on the network configuration for a load balancer service,
refer to the How-to-Guide section of the Azure documentation.
For more information on managing the load balancer service, See “About the
Load Balancer service” on page 137.

■ Create a storage class with Managed disc storage type with
file.csi.azure.com and allows volume expansion. It must be in LRS category
with Premium SSD. It is recommended that the storage class has , Retain
reclaim. Such storage class can be used for primary server as it supports Azure
premium files storage only for catalog volume.
For more information on Azure premium files, see Azure Files CSI driver.
For example,

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

name: {{ custome-storage-class-name }}

Deploying NetBackup
Preparing the environment for NetBackup installation on AKS

68

https://docs.microsoft.com/en-us/azure/aks/internal-lb
https://docs.microsoft.com/en-us/azure/aks/azure-files-csi#prerequsites

provisioner: file.csi.azure.com

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: WaitForFirstConsumer

parameters:

storageaccounttype: Premium_LRS

protocol: nfs

■ Create a storage class with Managed disc storage type with
allowVolumeExpansion = true and ReclaimPolicy=Retain. This storage
class will be used for Primary server data and log volume. Media server storage
details support azure disks only.

■ Customer’s Azure subscription should have Network Contributor role.
For more information, see Azure built-in roles.

Host-specific requirements
Use the following checklist to address the prerequisites on the system that you want
to use as a NetBackup host that connects to the AKS cluster.

■ Linux operating system: For a complete list of compatible Linux operating
systems, refer to the Software Compatibility List (SCL) at:
NetBackup Compatibility List for all Versions
https://sort.veritas.com/netbackup

■ Install Docker on the host to install NetBackup container images through tar,
and start the container service.
https://docs.docker.com/engine/install/

■ Prepare the host to manage the AKS cluster.

■ Install Azure CLI.
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux/

■ Install Kubernetes CLI
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

■ Log in to the Azure environment to access the Kubernetes cluster by running
this command on Azure CLI:
az login –identity

az account set --subscription <subscriptionID>

az aks get-credentials --resource-group

<resource_group_name> --name <cluster_name>

■ Log in to the container registry:
az acr login -n <container-registry-name>

69Deploying NetBackup
Preparing the environment for NetBackup installation on AKS

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#classic-network-contributor%22Classic
https://www.veritas.com/content/support/en_US/article.100040093
https://sort.veritas.com/netbackup
https://docs.docker.com/engine/install/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

Recommendations of NetBackup deployment on
AKS

Note the following recommendations:

■ Use Azure Premium storage for data volume in media server CR.

■ Use Azure Standard storage for log volume in media server CR.

■ For primary server catalog volume, use Azure premium files as storage type
and for media server volumes, use managed-disk as storage type.

■ Do not delete the disk linked to PV used in primary server and media server CR
deployment. This may lead to data loss.

■ Ensure that in one cluster, only one NetBackup operator instance is running.

■ Do not edit any Kubernetes resource created as part of primary server and
media server custom resource. Update is supported through custom resource
update only.

■ Detailed primary server custom resource deployment and media server custom
resource deployment logs are retrieved from NetBackup operator pod logs using
the kubectl logs <netbackup-operator-pod-name> -c netbackup-operator

-n <netbackup operator-namespace> command .

■ Deploy primary server custom resource and media server custom resource in
same namespace.

■ Ensure that you follow the symbolic link and edit the actual persisted version of
the file, if you want to edit a file having a symbolic link in the primary server or
media server.

■ Do not skip the Config-Checker utility execution during NetBackup upgrade or
data migration.

■ Specify different block storage based volume to obtain good performance when
the nbdeployutil utility does not perform well on Azure premium files based
volumes.

Limitations of NetBackup deployment on AKS
Note the following limitations:

■ (Applicable only for media servers) A storage class that has the storage type
as Azure file is not supported. When the Config-Checker runs the validation
for checking the storage type, the Config-Checker job fails if it detects the storage
type as Azure file. But if the Config-Checker is skipped then this validation is

Deploying NetBackup
Recommendations of NetBackup deployment on AKS

70

not run, and there can be issues in the deployment. There is no workaround
available for this limitation. You must clean up the PVCs and CRs and reapply
the CRs.

■ Only NFS is supported as the protocol while performing data migration with Azure
premium files.

■ Media server scale down is not supported. Certain workloads that require media
server affinity for the clients would not work.

■ External Certificate Authority (ECA) is not supported.

■ In case of load balancer service updating the CR with dynamic IP address to
static IP address and vice versa is not allowed.

■ Media server pods as NetBackup storage targets are not supported. For example,
NetBackup storage targets like AdvancedDisk and so on are not supported on
the media server pods.

■ As per Microsoft, since the NFS file share is in Premium account, the minimum
file share size is 100GB. If you create a PVC with a small storage size, the
following error message is displayed:
"failed to create file share ... size (5)...".

■ The IP displayed is of POD IP. NetBackup installing on container takes the IP
address of POD as configured IP. Even logs would have POD IP reference at
many places.

About primary server CR and media server CR
Primary server custom resource is used to deploy the NetBackup primary server
and media server custom resource is used to deploy the NetBackup media server.

■ After the operator is installed, update the custom resource YAMLs to deploy the
primary server and media server CRs located in the samples folder.

■ The primary server CRD and media server CRD are located in
operator_deployment.yaml in the operator folder where the package is
extracted.

■ Name used in the primary server and media server CRs must not be same. In
the primary server CR the Name should not contain the wordmedia and in the
media server CR the Name should not contain the word primary.

Note: After deployment, you cannot change the Name in primary server and
media server CR.

71Deploying NetBackup
About primary server CR and media server CR

https://docs.microsoft.com/en-us/azure/aks/azure-files-csi#create-a-deployment-with-an-nfs-backed-file-share

■ Before the CRs can be deployed, the utility called Config-Checker is executed
that performs checks on the environment to ensure that it meets the basic
deployment requirements. The config-check is done according to the
configCheckMode and paused values provided in the custom resource YAML.
See “How does the Config-Checker utility work” on page 59.

■ You can deploy the primary server and media server CRs in same namespace.

■ Use the storage class that has the storage type as Azure premium files for
the catalog volumes in the primary server CR, and the storage type as Azure
disk for the data and log volumes in the media server CR and primary server
CR.

■ During fresh installation of the NetBackup servers, the value for keep logs up
to under log retention configuration is set based on the log storage capacity
provided in the primary server CR inputs. You may change this value if required.
To update logs retention configuration, refer the steps mentioned in NetBackup™
Logging Reference Guide.

■ The NetBackup deployment sets the value as per the formula.
Size of logs PVC/PV * 0.8 = Keep logs up value By default, the default value
is set to 24GB.
For example: If the user configures the storage size in the CR as 40GB
(instead of the default 30GB) then the default value for that option become
32GB automatically based on the formula.

Note: This value will get automatically updated to the value of bp.conf file
on volume expansion.

■ Deployment details of primary server and media server can be observed from
the operator pod logs using the following command:
kubectl logs <operator-pod-name> -c netbackup-operator -n

<operator-namespace>

After installing primary server CR
Note the following points:

■ The primary server CR will create a pod, a statefulset, a load balancer service,
a configmap, a persistent volume claim for log volume, and a persistent volume
claim for catalog volume.

■ Initially pod will be in not ready state (0/1) when installation is going on in the
background. Check the pod logs for installation progress using the following
command:

Deploying NetBackup
About primary server CR and media server CR

72

https://www.veritas.com/content/support/en_US/doc/86063237-152914327-0/v45138009-152914327
https://www.veritas.com/content/support/en_US/doc/86063237-152914327-0/v45138009-152914327

kubectl logs <primary-pod-name> -n <namespace>

Primary server can be considered as successfully installed and running when
the primary server pod’s state is ready (1/1) and the Statefulset is ready (1/1).

■ You can access the NetBackup webUI using the primary server hostname
that was specified in the primary server CR status in Primary server details
section.
For example, if the primary server hostname is nbu-primary, then you can
access the webUI at https://nbu-primary/webui/login.

After Installing the media server CR
Note the following points:

■ Themedia server CRwill create a pod, a statefulset, a configmap, a loadbalancer
service, a persistent volume claim for data volume, and a persistent volume
claim for log volume.

■ Initially pod will be in not ready state (0/1) when installation is going in the
background. Check the pod logs for installation progress using the following
command:
kubectl logs <media-pod-name> -n <namespace>

Media server can be considered as successfully installed and running when the
media server pod’s state is ready (1/1), and the Statefulset is ready (1/1), for
each replica count.

■ Details of media server name for each replica can be obtained frommedia server
CR status by running the following command:
kubectl describe <MediaServer_cr_name> -n <namespace>

Monitoring the status of the CRs
You can view the status and other details of the primary server and media server
CRs using the following commands:

■ kubectl get <PrimaryServer/MediaServer> -n <namespace> or

■ kubectl describe <PrimaryServer/MediaServer> <CR name> -n

<namespace>

Following table describes the primary server CR andmedia server CR status fields:

73Deploying NetBackup
Monitoring the status of the CRs

Table 4-1

DescriptionField / ValueSection

Name of the primary server that should
be used to access the web UI.

Host NamePrimary Server
Details

Only one
hostname and IP
address for the
respective primary
server.

IP address to access the primary
server.

IP

This indicates that the NetBackup
primary server version is installed.

Version

Name of the media server.Host NameMedia Server
Details

Number of
hostname and IP
address is equal
to the replica
count mentioned
CR spec.

IP address to access themedia server.IP

This indicates that the NetBackup
media server version is installed.

Version

Statefulset name of the respective
server.

Resource NameAttributes

Name of the primary server or media
server deployed.

Primary/Media server name

Indicates the status of the config
checker as passed, failed, or skipped.
For more information on the
Config-Checker, See “How does the
Config-Checker utility work”
on page 59.

Config checker status

Represents the SHA key fingerprint of
the NetBackup primary server.

Note: SHAFingerprint represents the
SHA256 CA certificate fingerprint of
the primary server.

SHA Fingerprint

Deploying NetBackup
Monitoring the status of the CRs

74

Table 4-1 (continued)

DescriptionField / ValueSection

A code assigned to an error
encountered during the CR
deployment or during the config-check
operation. For more information on the
error, refer to the NetBackup Status
Code Reference Guide.

CodeError Details

Message that describes the respective
error code.

Message

Current state of the custom resource,
from one of the following:

■ Success: Indicates that the
deployment of Primary/Media
Custom Resource (CR) is
successful. However, this does not
mean that the installation of the
NetBackup primary/media servers
is successful. The primary or media
server StatefulSets and/or the pods
might or might not be in a ready
state, irrespective of that the
Primary/Media CR state will show
as Success.

■ Paused: Indicates that the
reconciler is in paused state and
deployment of a CR is paused.

■ Failed: Indicates that the
deployment of a CR failed with
errors. However this does not
mean failed installation of the
NetBackup Server. Errors can be
analyzed from the Operator logs or
CR describe.

■ Running: Indicates that the CR
deployment is in progress and the
resources are getting created.

Success /Paused /Failed
/Running

State

The events like INIT, FAILOVER and
UPGRADE are logged in here.

The details of these events can also
be added.

INIT/FAILOVER/UPGRADEEvents

75Deploying NetBackup
Monitoring the status of the CRs

Updating the CRs
After the successful deployment of the primary server and media server CRs, you
can update the values of only selected specs by editing the respective environment
custom resource.

Note: Updating the Kubernetes resources (pod, configmap, services, statefulset
etc) created for the CRs is not recommended.

Following tables describe the specs that can be edited for each CR.

Table 4-2 Primary server CR

DescriptionSpec

Specify True or False as a value, to temporarily stop the
respective CR controller.

True: Stop the controller.

False: Resume the controller.

paused

Specify default, dryrun or skip as a value.

See “Config-Checker execution and status details”
on page 60.

configCheckMode

Catalog, log and data volume storage capacity can be
updated.

capacity

Table 4-3 Media server CR

DescriptionSpec

Specify True or False as a value, to temporarily stop the
respective CR controller.

True: Stop the controller.

False: Resume the controller.

paused

Represents the replica count of the media server. Media
server count can be scaled up by incrementing the replica
count. Reducing the replica count is not supported.

replicas

Specify default, dryrun or skip as a value.

See “Config-Checker execution and status details”
on page 60.

configCheckMode

Deploying NetBackup
Updating the CRs

76

Table 4-3 Media server CR (continued)

DescriptionSpec

Catalog, log and data volume storage capacity can be
updated.

capacity

If you edit any other fields, the deployment can go into an inconsistent state.

Deleting the CRs
If you must delete any of the CRs for a valid reason such as for the troubleshooting
purpose, or because any of the specs provided were incorrect; you can reinstall
the deleted CR after resolving the issues.

Note: Once installed, deleting a CR is not recommended as it will stop the
deployment and NetBackup will not work.

Notes:

■ Deleting a CR will delete all its child resources like pod, statefulset, services,
configmaps, config checker job, config checker pod.

■ Deleting operator with kubectl delete -k <operator_folder_path> will
delete the CRs and its resources except the PVC.

■ Persistent volume claim (PVC) will not be deleted upon deleting a CR so that
the data is retained in the volumes. Then if you create a new CR with the same
name as the deleted one, the existing PVC with that same name will be
automatically linked to the newly created pods.

■ Do not delete /mnt/nbdata, /mnt/nblogs and /mnt/nbdb folders manually from
primary server and media pods. The NetBackup deployment will go into an
inconsistent state and will also result in data loss.

ConfiguringNetBackup ITAnalytics for NetBackup
deployment

NetBackup IT Analytics can be configured to use with NetBackup primary server
in this Kubernetes environment. NetBackup IT Analytics can be configured at the
time of primary server deployment or user can update the primary server CR to
configure NetBackup IT Analytics.

77Deploying NetBackup
Deleting the CRs

To configure NetBackup IT Analytics for NetBackup deployment

1 Using the ssh-keygen command, generates public key and private key on
NetBackup IT Analytics data collector.

NetBackup IT Analytics data collector uses passwordless ssh login.

2 Update the primary server CR, copy public key generated in previous steps to
“itAnalyticsPublicKey” section in spec.

■ Apply the primary server CR changes using kubectl apply -f

environment.yaml -n <namespace>.
On successfully deployment of primary server CR, describe the primary
server CR using kubectl describe PrimaryServer

<primary-server-name> -n <namespace>

■ In status section, verify It Analytics Configured is set to true.
For more information, refer to the NetBackup™ Web UI Administrator's
Guide.

3 Create and copy NetBackup API key from NetBackup web UI.

4 On NetBackup IT Analytics portal:

■ Navigate to Admin > Collector Administration > Select respective data
collector > Add policy > Veritas NetBackup > Add.

■ Add required options, specify the NetBackup API in the API Key field, and
then click OK.

■ Select newly added primary server from NetBackup Master Servers and
provide nbitanalyticsadmin as Master Server User ID.

■ Provide privateKey=<path-of-private-key>|password=<passphrase>
as Master Server Password and Repeat Password whereas
<path-of-private-key> is the private key created using ssh-keygen in earlier
steps and <passphrase> is the passphrase used while creating private
key via ssh-keygen.

■ Provide appropriate data to data collector policy fields and select collection
method as SSH or WMI protocol to NetBackup Master Server.

Configuring the primary server with NetBackup IT Analytics tools is supported only
once from primary server CR.

For more information about IT Analytics data collector policy, see Add a Veritas
NetBackup Data Collector policy and for more information about adding NetBackup
Primary Servers within the Data Collector policy, see Add/Edit NetBackup Master
Servers within the Data Collector policy.

Deploying NetBackup
Configuring NetBackup IT Analytics for NetBackup deployment

78

https://www.veritas.com/content/support/en_US/doc/138617403-138789759-0/v136359302-138789759
https://www.veritas.com/content/support/en_US/doc/138617403-138789759-0/v136359302-138789759
https://www.veritas.com/content/support/en_US/doc/140248394-147630817-0/pgfId-1036093-147630817
https://www.veritas.com/content/support/en_US/doc/140248394-147630817-0/pgfId-1036093-147630817
https://www.veritas.com/content/support/en_US/doc/140248394-147630817-0/pgfId-1092289-147630817
https://www.veritas.com/content/support/en_US/doc/140248394-147630817-0/pgfId-1092289-147630817

To change the already configured public key

1 Execute the following command in the primary server pod:

kubectl exec -it -n <namespace> <primaryServer-pod-name> --

/bin/bash

2 Copy the new public keys in the
/home/nbitanalyticsadmin/.ssh/authorized_keys and
/mnt/nbdata/.ssh/nbitanalyticsadmin_keys files.

3 Restart the sshd service using the systemctl restart sshd command.

ManagingNetBackupdeployment usingVxUpdate
VxUpdate package is not shipped with the NetBackup deployment package. You
must download and add it in NetBackup primary server.

To manage NetBackup deployment using VxUpdate

1 Download the required VxUpdate package on the docker-host used to interact
with AKS cluster.

2 Copy the VxUpdate package to primary server pod using the kubectl cp

<path-vxupdate.sja>

<primaryServerNamespace>/<primaryServer-pod-name>:<path-on-primary-pod>

command.

3 After VxUpdate package is available on primary server Pod, add it to NetBackup
repository using any one of the following:

■ Select the VxUpdate package from the NetBackup web UI.

■ Execute the following command in the primary server pod:
kubectl exec -it -n <primaryserver-namespace>

<primaryServer-pod-name> -- bash

And run the following command:
nbrepo -a <vxupdate-package-path-on-PrimaryPod>

After adding the VxUpdate package to nbrepo, this package is persisted even
after pod restarts.

Migrating the node pool for primary or media
servers

You can migrate the node pool for primary or media servers.

79Deploying NetBackup
Managing NetBackup deployment using VxUpdate

To migrate the node pool for primary or media servers

1 Edit environment CR object using the the following command:

kubectl edit environment <environmentCR_name> -n <namespace>

2 Change the node selector labelKey and lableValue to new values for
primary/media server.

3 Save the environment CR.

This will change the statefulset for respective NetBackup server replica to 0 for
respective server. This will terminate the pods. After successful migration, statefulset
replicas will be set to original value.

Deploying NetBackup
Migrating the node pool for primary or media servers

80

Upgrading NetBackup
This chapter includes the following topics:

■ Preparing for NetBackup upgrade

■ Upgrading NetBackup operator

■ Upgrading Snapshot Manager operator

■ Upgrading NetBackup application

■ Upgrading Snapshot Manager

■ Post-migration tasks

■ Upgrade NetBackup during data migration

■ Procedure to rollback when upgrade fails

Preparing for NetBackup upgrade

Note: Ensure that you go through this section carefully before starting with the
upgrade procedure.

During upgrade, ensure that the following sequence of upgrade is followed:

■ Upgrade MSDP operator

■ Upgrade NetBackup operator

■ Upgrade NetBackup application

In case the above sequence is not followed, user may face data loss.

5Chapter

Preparing for NetBackup upgrade

1 Take a backup of all the NetBackup jobs and ensure that all the jobs are
suspended.

2 Take a catalog backup.

See “Backing up a catalog” on page 145.

3 Copy DRPackages files (packages) located at /mnt/nblogs/DRPackages/
from the pod to the host machine from where AKS cluster is accessed.

Run the following command:

kubectl cp

<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages

<Path_where_to_copy_on_host_machine>

4 Preserve the data of /mnt/nbdata and /mnt/nblogs on host machine by
creating tar and copying it using the following command:

kubectl cp

<primary-pod-namespace>/<primary-pod-name>:<tar_file_name>

<path_on_host_machine_where_to_preserve_the_data>

5 Preserve the environment CR object using the following command and operator
directory that is used to deploy the NetBackup operator:

kubectl -n <namespace> get environment.netbackup.veritas.com

<environment name> -o yaml > environment.yaml

Note: Ensure that you upgrade MSDP operator first.

6 In case of existing NetBackup deployments with Azure disks, change the
storage class for catalog and log data of primary server to trigger data migration.
For more information on changing the storage class, refer to the AKS-specific
requirements sub-section of the following section:

See “Preparing the environment for NetBackup installation on AKS” on page 65.

Upgrading NetBackup operator
Ensure that all the steps mentioned in the following section are performed before
performing the upgrade of NetBackup operator:

See “Preparing for NetBackup upgrade” on page 81.

Upgrading NetBackup
Upgrading NetBackup operator

82

Upgrading the NetBackup operator

1 Push the new operator images, NetBackup main image to container registry
with different tags.

2 Update the new image name and tag in images section in kustomization.yaml
file in operator folder available in the new package folder.

3 Update the node selector and tolerations in operator_patch.yaml file in
operator/patches folder in the new package folder.

4 To upgrade the operator, apply the new image changes using the following
command:

kubectl apply -k <operator folder name>

After applying the changes, new NetBackup operator pod will start in operator
namespace and run successfully.

Upgrading Snapshot Manager operator
Ensure that all the steps mentioned in the following section are performed before
performing the upgrade of Snapshot Manager operator:

See “Preparing for NetBackup upgrade” on page 81.

Upgrading the Snapshot Manager operator

1 Push the new operator images, Snapshot Manager main image to container
registry with different tags.

2 Update the new image name and tag in images.cloudpointoperator section
in kustomization.yaml file in operator folder available in the new package
folder.

3 Update the node selector and tolerations in operator_patch.yaml file in
operator/patches folder in the new package folder.

4 To upgrade the operator, apply the new image changes using the following
command:

kubectl apply -k <operator folder name>

After applying the changes, new Snapshot manager operator pod will start in
operator namespace and run successfully.

Upgrading NetBackup application
Ensure that all the steps mentioned in the following section are performed before
performing the upgrade of NetBackup application:

83Upgrading NetBackup
Upgrading Snapshot Manager operator

See “Preparing for NetBackup upgrade” on page 81.

Ensure that the following server upgrade sequence is followed:

■ Primary server: Upgrade and verify it is successfully upgraded

■ MSDP server: Upgrade and verify it is successfully upgraded

■ Media server: Upgrade and verify it is successfully upgraded

Upgrading NetBackup
Upgrading NetBackup application

84

Upgrading the NetBackup application

1 To upgrade the primary server and media server, edit the environment.yaml

from the new package. Copy all the fields from the preserved environment CR
environment.yaml which can be obtained from the the following section:

See “Preparing for NetBackup upgrade” on page 81.

To update the primary server, update tagwith new image tag in primary section
in new environment.yaml file.

To update the media server, update tag with new image tag inmediaServers
section in new environment.yaml file.

Update the storageClassName for catalog volume for primary server in Storage
subsection of primary section in environment.yaml file.

Update the details of data volume for primary server in environment.yaml file.
Storage class should be of Azure managed disk storage type.

For example,

Kind: Environment

...

Spec:

primary:

tag: "newtag"

mediaServers:

tag: "newtag"

Apply the changes using the following command:

kubectl apply -f <environment.yaml>

Primary server and media server pods would start with new container images
respectively.

Note:Upgrade the PrimaryServer first and then change the tag for MediaServer
to upgrade. If this sequence is not followed then deployment may go into
inconsistent state

Note: MediaServer version should be same or lower than the PrimaryServer
version after upgrade. Otherwise the deployment may go into inconsistent
state.

85Upgrading NetBackup
Upgrading NetBackup application

2 At the time of upgrade, primary server and media server status would be
changed toRunning. Once upgrade is completed, the status would be changed
to Success again.

Perform the following if upgrade fails in between for primary server or media
server

1 Check the installation logs using the following command:

kubectl logs <PrimaryServer-pod-name/MediaServer-pod-name> -n

<PrimaryServer/MediaServer-CR-namespace>

2 If required, check the NetBackup logs by performing exec into the pod using
the following command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>

<PrimaryServer/MediaServer-pod-name> -- bash

3 Fix the issue and restart the pod by deleting the respective pod with the
following command:

kubectl delete < PrimaryServer/MediaServer-pod-name > -n

<PrimaryServer/MediaServer-CR-namespace>

4 New pod would be created and upgrade process will be restarted for the
respective NetBackup server.

5 Data migration jobs create the pods that run before deployment of primary
server. Data migration pod exist after migration for one hour only if data
migration job failed. The logs for data migration execution can be checked
using the following command:

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

User can copy the logs to retain them even after job pod deletion using the
following command:

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace> > jobpod.log

Note: Downgrade of NetBackup servers is not supported. If this is done, there are
chances of inconsistent state of NetBackup deployment.

Upgrading NetBackup
Upgrading NetBackup application

86

Upgrading Snapshot Manager
Edit the tag field in the CR to upgrade Snapshot Manager using environment CR.
MODIFY event will be sent to Snapshot Manager operator which will trigger upgrade
workflow.

To upgrade Snapshot Manager

1 Update the variables appropriately:

NB_VERSION=10.1.0

OPERATOR_NAMESPACE="netbackup-operator-system"

ENVIRONMENT_NAMESPACE="ns-155"

NB_DIR=/home/azureuser/VRTSk8s-netbackup-${NB_VERSION}/

2 Edit the operator/kustomization.yaml file as follows:

KUSTOMIZE_FILE=${NB_DIR}operator/kustomization.yaml nano

$KUSTOMIZE_FILE

Update the newName and newTag under cloudpointoperator.

3 Upgrade the operator using the following command:

cd $NB_DIR kubectl apply -k operator sleep 20s

4 Check (Wait for) if the operator is upgraded and running:

kubectl describe pod $(kubectl get pods -n $OPERATOR_NAMESPACE |

grep flexsnap-operator | awk '{printf $1" " }') | grep Image:

kubectl get all -n $OPERATOR_NAMESPACE

5 Once the operator is upgraded successfully and it is running, update the
cpServer.tag in environment.yaml file as follows:

nano ${NB_DIR}environment.yaml

6 Apply environment.yaml file to start upgrading Snapshot Manager services
using the following command:

kubectl apply -f ${NB_DIR}environment.yaml -n

$ENVIRONMENT_NAMESPACE

7 Check upgrade logs in flexsnap-operator using the following command:

kubectl logs -f $(kubectl get pods -n $OPERATOR_NAMESPACE | grep

flexsnap-operator | awk '{printf $1" " }')

8 Check Snapshot Manager status using the following command:

kubectl get cpserver -n $ENVIRONMENT_NAMESPACE

87Upgrading NetBackup
Upgrading Snapshot Manager

Post-migration tasks
After migration, if the name is changed to , then perform the following steps for
Linux and Windows on-host agent renews and then perform the plugin level
discovery:

For Linux:

■ Edit the /etc/flexsnap.conf file for migrated .
For example,

[root@prashant-encrypt-vm flexsnap]# cat /etc/flexsnap.conf

[global]

target = nbuxqa-alphaqa-10-250-172-172.vxindia.veritas.com

hostid = azure-vm-b5c2b769-256a-4488-a71d-f809ce0fec5d

[agent]

id = agent.c2ec74c967e043aaae5818e50a939556

■ Perform the Linux on-host agent renew using the following command:
/opt/VRTScloudpoint/bin/flexsnap-agent--renew--token <auth_token>

■ Restart linux on-host agent using the following command:
sudo systemctl restart flexsnap-core.service

For Windows:

■ Edit the \etc\flexsnap.conf file for migrated .
For example,

[global]

target = nbuxqa-alphaqa-10-250-172-172.vxindia.veritas.com

hostid = azure-vm-427a67a0-6f91-4a35-abb0-635e099fe9ad

[agent]

id = agent.3e2de0bf17d54ed0b54d4b33530594d8

■ Perform the Windows on-host agent renew using the following command:
"c:\ProgramFiles\Veritas\CloudPoint\flexsnap-agent.exe"--renew--token

<auth_token>

Upgrading NetBackup
Post-migration tasks

88

Upgrade NetBackup during data migration
Ensure that all the steps mentioned for data migration in in the following section
are performed before upgrading to the latest NetBackup or installing the latest :

See the section called “AKS-specific requirements” on page 65.

■ User must have deployed NetBackupon Azure with Azure disks as its storage
class.
While upgrading to latest NetBackup, data migration would happen only if existing
storage class has been changed. The existing catalog data of primary server
will be migrated (copied) from Azure disks to Azure premium files. Also new
data volume would be created on Azure disks for NetBackup database. If
storageClassName is changed for log, migration from azure disk to azure disk
will trigger for logs.

■ Fresh NetBackup deployment: If user is deploying NetBackup for the first time,
then Azure premium files will be used for primary server's catalog and Azure
diskswill be used for log and data volume for any backup and restore operation.

Procedure to rollback when upgrade fails

Note: The rollback procedure in this section can be performed only after assuming
that the customer has taken catalog backup before performing the upgrade.

Perform the following steps to rollback from upgrade failure and install the
NetBackup version prior to upgrade

1 Delete the environment CR object using the following command and wait until
all the underlying resources are cleaned up:

kubectl delete environment.netbackup.veritas.com <environment

name> -n <namespace>

For example, primary server CR, media server CR, MSDP CR and their
underlined resources.

2 Delete the new operator which is deployed during upgrade using the following
command:

kubectl delete -k <new-operator-directory>

This will delete the new operator and new CRDs.

89Upgrading NetBackup
Upgrade NetBackup during data migration

3 Apply the NetBackup operator directory which was preserved (the directory
which was used to install operator before upgrade) using the following
command:

kubectl apply -k <operator_directory>

4 Get names of PV attached to primary server PVC (data, catalog and log) using
the following command:

kubectl get pvc -n <namespace> -o wide

5 Delete the primary server PVC (data, catalog and log) using the following
command:

kubectl delete pvc <pvc-name> -n <namespace>

6 Delete the PV linked to primary server PVC using the following command:

kubectl delete pv <pv-name> command

7 Edit the preserved environment.yaml file (from older version of NetBackup
package directory) and remove keySecret section fromMSDPScaleout section.
Also change the CR spec paused: false to paused: true for every object in
MSDP Scaleout and media servers section.

8 Apply the edited environment.yaml file using the following command:

kubectl apply -f <environment.yaml>

9 After the primary server pod is in ready state (1/1), change the CR spec from
paused: false to paused: true in environment.yaml file of the primary server
section and reapply the environment.yaml using the following command:

kubectl apply -f environment.yaml -n <namespace>

10 Exec into the primary server pod using the following command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>

<primary-pod-name> -- /bin/bash

■ Increase the debug logs level on primary server.

■ Create a DRPackages directory at the persisted location using mkdir

/mnt/nblogs/DRPackages folder.

■ Change ownership of the DRPackages folder to service user using the
following command:
chown nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages

Upgrading NetBackup
Procedure to rollback when upgrade fails

90

11 Copy the earlier copied DR files to primary pod at /mnt/nblogs/DRPackages
using the following command:

kubectl cp <Path_of_DRPackages_on_host_machine>

<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages

12 Execute the following steps in the primary server pod:

■ Change ownership of the files in /mnt/nblogs/DRPackages using the
following command:
chown nbsvcusr:nbsvcusr <filename>

■ Deactivate NetBackup health probes using the following command:
/opt/veritas/vxapp-manage/nbu-health deactivate

■ Stop the NetBackup services using the following command:
/usr/openv/netbackup/bin/bp.kill_all

■ Execute the following command:
nbhostidentity -import -infile

/mnt/nblogs/DRPackages/<filename>.drpkg

■ Restart all the NetBackup services using the following command:
/usr/openv/netbackup/bin/bp.start

13 Verify if the security settings are enabled.

14 Add respective media server entry in host properties using
NetBackupAdministration Console as follows:

Navigate to NetBackup Management > Host properties > Master Server > Add
Additional server and add media server.

15 Restart the NetBackup services in primary server pod and external media
server as follows:

■ Exec into the primary server pod using command:
kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>

<primary-pod-name> -- /bin/bash

■ Run the following command to stop all the services:
/usr/openv/netbackup/bin/bp.kill_all

After stopping all the services, restart the services using the following
command:
/usr/openv/netbackup/bin/bp.start_all

■ Run the following command to stop all the NetBackup services:
/usr/openv/netbackup/bin/bp.kill_all

91Upgrading NetBackup
Procedure to rollback when upgrade fails

After stopping all the services, restart the NetBackup services using the
following command:
/usr/openv/netbackup/bin/bp.start_all

16 Configure a storage unit on external media server that is used during catalog
backup.

17 Perform catalog recovery from NetBackup Administration Console.

For more information, refer to the VeritasTM NetBackup Troubleshooting Guide

18 Exec into the primary server pod using the following command:

kubectl exec -it -n <PrimaryServer/MediaServer-CR-namespace>

<primary-pod-name> -- /bin/bash

■ Stop the NetBackup services using the following command:
/usr/openv/netbackup/bin/bp.kill_all

■ Start the NetBackup services using the following command:
/usr/openv/netbackup/bin/bp.start_all

■ Activate NetBackup health probes using the following command:
/opt/veritas/vxapp-manage/nbu-health activate

19 Restart the NetBackup operator pod, where user must delete the pod using
the following command:

kuebctl delete <operator-pod-name> -n <namespace>

Kubernetes will start new pod after deletion.

20 Pause the reconciler for primary, media servers, and msdp scaleouts in the
following sequence:

■ Change CR spec paused: true to paused: false in environment.yaml file
of the primary section and re-apply environment.yaml file using the
following command:
kubectl apply -f environment.yaml -n <namespace>

Wait till primary server is in ready state.

■ Change CR spec paused: true to paused: false in environment.yaml file
of the msdp scaleouts section and re-apply environment.yaml file using
the following command:
kubectl apply -f environment.yaml -n <namespace>

Wait till primary server is in ready state.

■ Change CR spec paused: true to paused: false in environment.yaml file
of the media servers section and re-apply environment.yaml file using the
following command:

Upgrading NetBackup
Procedure to rollback when upgrade fails

92

kubectl apply -f environment.yaml -n <namespace>

Wait till primary server is in ready state.

21 Verify the rollback is successful by performing backups and recovery jobs.

93Upgrading NetBackup
Procedure to rollback when upgrade fails

Upgrading NetBackup
Procedure to rollback when upgrade fails

94

Deploying Snapshot
Manager

This chapter includes the following topics:

■ Overview

■ Prerequisites

■ Installing the docker images

Overview
You must deploy Snapshot Manager solution in your Azure Kubernetes Service
Cluster environment. AKS must be created with appropriate network and
configuration settings. Before you deploy the solution, ensure that your environment
meets the requirements.

See “Prerequisites” on page 95.

Prerequisites
A working Azure Kubernetes cluster (AKS cluster)
■ Azure Kubernetes cluster

■ Your Azure Kubernetes cluster must be created with appropriate network
and configuration settings.
Supported Azure Kubernetes cluster version is 1.21.x and later.

■ Availability zone for AKS cluster must be disabled.

■ Two storage classes with the following configurations is required:

6Chapter

LogDataStorage class field

file.csi.azure.comdisk.csi.azure.comprovisioner

Premium_LRSPremium_LRSstorageaccounttype

RetainRetainreclaimPolicy

TrueTrueallowVolumeExpansion

■ A Kubernetes Secret that contains the Snapshot Manager credentials is
required.

■ Azure container registry (ACR)
Use existing ACR or create a new one. Your Kubernetes cluster must be able
to access this registry to pull the images from.

■ Node Pool
Youmust have a dedicated node pool for Snapshot Manager created. The Azure
autoscaling allows your node pool to scale dynamically as required.
It is recommended that you set the minimum node number to 1 or more to bypass
some limitations in AKS.
User must enable system managed identity on the control node pool and add
appropriate role for Snapshot Manager to operate.

■ Client machine to access AKS cluster

■ A separate computer that can access and manage your AKS cluster and
ACR.

■ It must have Linux operating system.

■ It must have Docker daemon, the Kubernetes command-line tool (kubectl),
and Azure CLI installed.
The Docker storage size must be more than 6 GB. The version of kubectl
must be v1.19.x or later. The version of Azure CLI must meet the AKS cluster
requirements.

■ If AKS is a private cluster, see Create a private Azure Kubernetes Service
cluster.

■ Static Internal IPs
If the internal IPs are used, reserve the internal IPs (avoid the IPs that are
reserved by other systems) for Snapshot Manager and add DNS records for all
of them in your DNS configuration.
The Azure static public IPs can be used but is not recommended.

Deploying Snapshot Manager
Prerequisites

96

https://docs.microsoft.com/en-us/azure/aks/private-clusters#options-for-connecting-to-the-private-cluster%22
https://docs.microsoft.com/en-us/azure/aks/private-clusters#options-for-connecting-to-the-private-cluster%22

If Azure static public IPs are used, create them in the node resource group for
the AKS cluster. A DNS name must be assigned to each static public IP. The
IPs must be in the same location of the AKS cluster.

Installing the docker images
The Snapshot Manager package
netbackup-flexsnap-$(SNAPSHOT_MANAGER_VERSION).tar.gz for Kubernetes
includes the following:

■ A docker image for Snapshot Manager operator

■ 10 docker images for Snapshot Manager: flexsnap-certauth, flexsnap-rabbitmq,
flexsnap-api, flexsnap-fluentd, flexsnap-datamover, flexsnap-nginx, flexsnap-idm,
flexsnap-mongodb, flexsnap-core, flexsnap-deploy

To install the docker images

1 Download netbackup-flexsnap-$(SNAPSHOT_MANAGER_VERSION).tar.gz

from the Veritas site.

2 Load the docker images to your docker storage.

docker load -i

netbackup-flexsnap-$(SNAPSHOT_MANAGER_VERSION).tar.gz

97Deploying Snapshot Manager
Installing the docker images

3 Tag the images.

$ docker tag veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

$ docker tag

veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

$ docker tag veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

Deploying Snapshot Manager
Installing the docker images

98

4 Push the images.

$ docker push

${REGISTRY}/veritas/flexsnap-certauth:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-rabbitmq:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-api-gateway:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-fluentd:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-datamover:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-nginx:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-idm:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-mongodb:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-core:${SNAPSHOT_MANAGER_VERSION}

$ docker push

${REGISTRY}/veritas/flexsnap-deploy:${SNAPSHOT_MANAGER_VERSION}

Configure Snapshot Manager

After you push the docker images to Azure container registry, then initialize Snapshot
Manager (flexsnap) operator and configure Snapshot Manager. The Snapshot
Manager operator starts with NetBackup operator. For more information, refer to
the following section:

See “Deploying the operators manually ” on page 25.

99Deploying Snapshot Manager
Installing the docker images

Configure Snapshot Manager

1 Create (or use existing) a dedicated namespace for Snapshot Manager to run:

kubectl create ns <sample-namespace>

2 Create a Snapshot Manager Secret. The Secret is used in CR.

kubectl create secret generic cp-creds

--from-literal=username='admin' --from-literal=password='Cloudpoint@123' -n

$ENVIRONMENT_NAMESPACE

See “Deploying NetBackup and Snapshot Manager manually” on page 36.

3 Edit the cpServer CR section of the environment.yaml file in the text editor.

See “Configuring the environment.yaml file” on page 41.

4 Apply the CR file to the AKS cluster:

kubectl apply -f <sample-cr-yaml>

5 Monitor the configuration process:

kubectl get all -n <namespace> -o wide

6 Verify the status by running the following command:

kubectl get cpservers -n <sample-namespace>

Deploying Snapshot Manager
Installing the docker images

100

Migration and upgrade of
Snapshot Manager

This chapter includes the following topics:

■ Migration and upgrade of Snapshot Manager

Migration and upgrade of Snapshot Manager
Migrating Snapshot Manager
Users can manually migrate Snapshot Manager registered with NetBackup to
Kubernetes Service cluster environment by performing the following steps:

1. Disable Snapshot Manager from NetBackup.

2. Stop services on the Snapshot Manager VM.

3. Create and attach a disk to the VM which will be used as PV for mongoDB:

■ Copy contents from /cloudpoint/mongodb to the new disk .

■ Copy flexsnap.conf and bp.conf configuration files to the VM from where
cluster is accessible.

■ Detach the disk from VM and move it to cluster resources group (RG):
MC_<clusterRG>_<cluster name>_<cluster_region>

■ From VM perform the following steps:

■ Create configuration maps using the following command:
kubectl create cm agentconf --from-file=<path to

flexsnap.conf > -n <application namespace>

kubectl create cm nbuconf --from-file=<path to bp.conf> -n

<application namespace>

7Chapter

■ Create Snapshot Manager Secrets using the following command:
kubectl create secret generic cp-creds

--from-literal=username='<username>'

--from-literal=password='<password>'

■ Create mongodb Persistent Volume and Persistent Volume Claim as
follows:

mongodb pv:

apiVersion: v1

kind: PersistentVolume

metadata:

name: pv-azuredisk

spec:

capacity:

storage: <Size of the disk>

accessModes:

- ReadWriteOnce

persistentVolumeReclaimPolicy: Retain

storageClassName: <Storage class name>

csi:

driver: disk.csi.azure.com

readOnly: false

volumeHandle: <Resource ID of the disk>

volumeAttributes:

fsType: <FS type>

mongodb-pvc:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: mongo-persistent-storage-flexsnap-mongodb-0

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: <Disk size>

volumeName: pv-azuredisk

storageClassName: managed-csi

Migration and upgrade of Snapshot Manager
Migration and upgrade of Snapshot Manager

102

4. Edit the environment.yaml file to upgrade NetBackup (primary/media/MSDP)
and add section for Snapshot Manager as follows:

cpServer:

- name: cp-cluster-deployment

containerRegistry: acr.azurecr.io

credential:

secretName: cp-creds

networkLoadBalancer:

annotations:

service.beta.kubernetes.io/azure-load-balancer-internal: "true"

ipAddr: 1.2.3.4

fqdn: cpserver.example.com

storage:

log:

capacity: 10Gi

storageClassName: standard

data:

capacity: <Disk size mentioned in mongodb pv>

storageClassName: <<Storage class name mentioned in mongodb pv>

nodeSelector:

controlPlane:

nodepool: cpcontrol1

labelKey: cp-node-label

labelValue: cpcontrol1

dataPlane:

nodepool: cpdata1

labelKey: cp-node-label

labelValue: cpdata1

5. Apply the environment.yaml file using the following command:

kubectl apply -f <path to environment.yaml>

6. Re-register the Snapshot Manger from WebUI if the Snapshot Manager name
(fqdn/ip) is same as VM deployment.

Updating/Upgrading Snapshot Manager
■ Update:

User can update few parameters on the existing deployed Snapshot Manager
by making changes in the cpServer section of environment.yaml file and apply
it.

103Migration and upgrade of Snapshot Manager
Migration and upgrade of Snapshot Manager

Only log size and data size fields can be changed in cpServer section of CR.
For update operation to work, set the value of allowVolumeExpansion
parameter to true in the storage classes used.

■ Upgrade:
If there is a change in the cpServer tag, then it would be considered as a
Snapshot Manager upgrade. For upgrade only few parameters related to
Snapshot Manager can be modified.

The following table lists the parameters that can be modified during update/upgrade
of Snapshot Manager:

Edit during upgradeEdit during updateParameters

NoNoresourceNamePrefix

YesNotag

YesNocontainerRegistry

NoNocredential: secretName

YesNonetworkLoadBalancer:
annotations

NoNonetworkLoadBalancer: fqdn

YesNonetworkLoadBalancer: ipAddr

YesYesdata.capacity

NoNodata.storageClassName

YesYeslog.capacity

NoNolog.storageClassName

YesNocpServer.NodeSelector.ControlPlane

YesNocpServer.NodeSelector.DataPlane

Migration and upgrade of Snapshot Manager
Migration and upgrade of Snapshot Manager

104

DeployingMSDPScaleout
This chapter includes the following topics:

■ Deploying MSDP Scaleout

■ Prerequisites

■ Installing the docker images and binaries

■ Initializing the MSDP operator

■ Configuring MSDP Scaleout

■ Using MSDP Scaleout as a single storage pool in NetBackup

■ Configuring the MSDP cloud in MSDP Scaleout

Deploying MSDP Scaleout
Youmust deploy MSDP Scaleout solution in your Azure Kubernetes Service Cluster
environment. AKS must be created with appropriate network and configuration
settings.

You can have multiple MSDP Scaleout deployments in the same AKS cluster.
Ensure that each MSDP Scaleout deployment runs in a dedicated namespace on
a dedicated node pool.

Before you deploy the solution, ensure that your environment meets the
requirements.

See “Prerequisites” on page 106.

8Chapter

Table 8-1 MSDP Scaleout deployment steps

DescriptionTaskStep

See “Installing the docker images and
binaries” on page 108.

Install the docker images and
binaries.

Step 1

See “Initializing the MSDP operator”
on page 109.

Initialize MSDP operator.Step 2

See “Configuring MSDP Scaleout”
on page 110.

Configuring MSDP Scaleout.Step 3

See “Using MSDP Scaleout as a
single storage pool in NetBackup”
on page 112.

Use MSDP Scaleout as a single
storage pool in NetBackup.

Step 4

See “Cleaning up MSDP Scaleout” on page 167.

See “Cleaning up the MSDP Scaleout operator” on page 168.

Prerequisites
A working Azure Kubernetes cluster (AKS cluster)
■ Azure Kubernetes cluster

■ Your Azure Kubernetes cluster must be created with appropriate network
and configuration settings.
Supported Azure Kubernetes cluster version is 1.21.x and later.

■ Availability zone for AKS cluster must be disabled.

■ At least one storage class is backed with Azure disk CSI storage driver
"disk.csi.azure.com", and allows volume expansion. It must be in LRS
category with Premium SSD. For example, the built-in storage class
"managed-csi-premium". It is recommended that the storage class has
"Retain" reclaim.

■ Cert-Manager must be installed.

■ A Kubernetes Secret that contains the MSDP credentials is required.
See “ Secret” on page 207.

■ Enable AKS Uptime SLA.
AKS Uptime SLA is recommended for a better resiliency.
For information about AKS Uptime SLA and to enable it, see Azure
Kubernetes Service (AKS) Uptime SLA.

Deploying MSDP Scaleout
Prerequisites

106

https://docs.microsoft.com/en-us/azure/aks/uptime-sla
https://docs.microsoft.com/en-us/azure/aks/uptime-sla

■ Azure container registry (ACR)
Use existing ACR or create a new one. Your Kubernetes cluster must be able
to access this registry to pull the images from.

■ Node Pool
You must have a dedicated node pool for MSDP Scaleout created. Azure
availability zone must be disabled.
The Azure autoscaling allows your node pool to scale dynamically as required.
If Azure autoscaling is not enabled, ensure the node number is not less than
MSDP Scaleout size.
It is recommended that you set the minimum node number to 1 or more to bypass
some limitations in AKS.

■ Client machine to access AKS cluster

■ A separate computer that can access and manage your AKS cluster and
ACR.

■ It must have Linux operating system.

■ It must have Docker daemon, the Kubernetes command-line tool (kubectl),
and Azure CLI installed.
The Docker storage size must be more than 6 GB. The version of kubectl
must be v1.19.x or later. The version of Azure CLI must meet the AKS cluster
requirements.

■ If AKS is a private cluster, see Create a private Azure Kubernetes Service
cluster.

■ Static Internal IPs
If the internal IPs are used, reserve the internal IPs (avoid the IPs that are
reserved by other systems) for MSDP Scaleout and add DNS records for all of
them in your DNS configuration.
The Azure static public IPs can be used but is not recommended.
If Azure static public IPs are used, create them in the node resource group for
the AKS cluster. A DNS name must be assigned to each static public IP. The
IPs must be in the same location of the AKS cluster.

Existing NetBackup environment
MSDP Scaleout connects to the existing NetBackup environment with the required
network ports 1556 and 443. The NetBackup primary server should be 10.0 or later.
The NetBackup environment can be anywhere, locally or remotely. It may or may
not be in AKS cluster. It may or may not be in the same AKS cluster.

If the NetBackup servers are on Azure cloud, besides the NetBackup configuration
requirements, the following settings are recommended. They are not MSDP-specific

107Deploying MSDP Scaleout
Prerequisites

https://docs.microsoft.com/en-us/azure/aks/private-clusters#options-for-connecting-to-the-private-cluster%22
https://docs.microsoft.com/en-us/azure/aks/private-clusters#options-for-connecting-to-the-private-cluster%22

requirements, they just help your NetBackup environment run smoothly on Azure
cloud.

■ Add the following in /usr/openv/netbackup/bp.conf

HOST_HAS_NAT_ENDPOINTS = YES

■ Tune sysctl parameters as follows:

net.ipv4.tcp_keepalive_time=120

net.ipv4.ip_local_port_range = 14000 65535

net.core.somaxconn = 1024

Tune the max open files to 1048576 if you run concurrent jobs.

Installing the docker images and binaries
The MSDP package VRTSpddek.tar.gz for Kubernetes includes the following:

■ A docker image for MSDP operator

■ 3 docker images for MSDP Scaleout: uss-controller, uss-mds, and uss-engine

■ A kubectl plugin: kubectl-msdp

To install the docker images and binaries

1 Download VRTSpddek.tar.gz from the Veritas site.

2 Load the docker images to your docker storage.

tar -zxvf VRTSpddek.tar.gz

ls VRTSpddek-*/images/*.tar.gz|xargs -i docker load -i {}

Deploying MSDP Scaleout
Installing the docker images and binaries

108

3 Copy MSDP kubectl plugin to a directory from where you access AKS host.
This directory can be configured in the PATH environment variable so that
kubectl can load kubectl-msdp as a plugin automatically.

For example,

cp ./VRTSpddek-*/bin/kubectl-msdp /usr/local/bin/

4 Push the docker images to the ACR. Keep the image name and version same
as original.

docker login <your-acr-url>

for image in msdp-operator uss-mds uss-controller uss-engine; do \

docker image tag $image:<version> <your-acr-url>/$image:<version>; \

docker push <your-acr-url>/$image:<version>; \

done

Initializing the MSDP operator
Run the following command to initialize MSDP operator.

kubectl msdp init -i <acr-url>/msdp-operator:<version> -s

<storage-class-name> [-l agentpool=<nodepool-name>]

You can use the following init command options.

Table 8-2 init command options

DescriptionOption

MSDP operator images on your ACR.-i

The storage class name.-s

Node selector of the MSDP operator.

By default, each node pool has a unique label with key-value
pair agentpool=<nodepool-name>. If you have assigned a
different and cluster-wise unique label for the node pool, you can
use that instead of agentpool.

-l

Core pattern of the operator pod.

Default value: "/core/core.%e.%p.%t"

-c

Enable debug-level logging in MSDP operator.-d

109Deploying MSDP Scaleout
Initializing the MSDP operator

Table 8-2 init command options (continued)

DescriptionOption

The maximum number of days to retain the old log files.

Range: 1-365

Default value: 28

-a

The maximum number of old log files to retain.

Range: 1-20

Default value: 20

-u

Namespace scope for this request.

Default value: msdp-operator-system

-n

Generate MSDP operator CRD YAML.-o

Help for the init command.-h

This command installs Custom Resource Definitions (CRD)
msdpscaleouts.msdp.veritas.com and deploys MSDP operator in the Kubernetes
environment. MSDP operator runs with Deployment Kubernetes workload type with
single replica size in the default namespace msdp-operator-system.

MSDP operator also exposes the following services:

■ Webhook service
The webhook service is consumed by Kubernetes api-server to mutate and
validate the user inputs and changes of the MSDP CR for the MSDP Scaleout
configuration.

■ Metrics service
Themetric service is consumed by Kubernetes/AKS for Azure Container Insight
integration.

You can deploy only one MSDP operator instance in an AKS cluster.

Run the following command to check the MSDP operator status.

kubectl -n msdp-operator-system get pods -o wide

Configuring MSDP Scaleout
After you push the docker images to ACR and initialize MSDP operator, configure
MSDP Scaleout.

Deploying MSDP Scaleout
Configuring MSDP Scaleout

110

To configure MSDP Scaleout

1 Create a dedicated namespace for MSDP Scaleout to run.

kubectl create ns <sample-namespace>

2 Create an MSDP Scaleout Secret. The Secret is used in CR.

kubectl apply -f <secret-yaml-file>

See “ Secret” on page 207.

3 Display the custom resource (CR) template.

kubectl msdp show -c

4 Save the CR template.

kubectl msdp show -c -f <file path>

5 Edit the CR file in the text editor.

6 Apply the CR file to the AKS cluster.

Caution: Add MSDP_SERVER = <first Engine FQDN> in
/usr/openv/netbackup/bp.conf file on the NetBackup primary server before
applying the CR YAML.

kubectl apply -f <sample-cr-yaml>

111Deploying MSDP Scaleout
Configuring MSDP Scaleout

7 Monitor the configuration progress.

kubectl get all -n <namespace> -o wide

In the STATUS column, if the readiness state for the controller, MDS and
engine pods are all Running, it means that the configuration has completed
successfully.

In the READINESS GATES column for engines, 1/1 indicates that the engine
configuration has completed successfully.

8 If you specified spec.autoRegisterOST.enabled: true in the CR, when the
MSDP engines are configured, the MSDP operator automatically registers the
storage server, a default disk pool, and a default storage unit in the NetBackup
primary server.

A field ostAutoRegisterStatus in the Status section indicates the registration
status. If ostAutoRegisterStatus.registered is True, it means that the
registration has completed successfully.

You can run the following command to check the status:

kubectl get msdpscaleouts.msdp.veritas.com -n <sample-namespace>

You can find the storage server, the default disk pool, and storage unit on the
Web UI of the NetBackup primary server.

Using MSDP Scaleout as a single storage pool in
NetBackup

If you did not enable automatic registration of the storage server (autoRegisterOST)
in the CR, you can configure it manually using the NetBackup Web UI.

See “ MSDP Scaleout CR” on page 208.

Deploying MSDP Scaleout
Using MSDP Scaleout as a single storage pool in NetBackup

112

To use MSDP Scaleout as a single storage pool in NetBackup

1 Follow the OpenStorage wizard with storage type PureDisk to create the
storage server using the first Engine FQDN.

MSDP storage server credentials are defined in the Secret resource.

For more information, see Create a Cloud storage, OpenStorage, or
AdvancedDisk storage server topic of the NetBackup Web UI Administrator's
Guide.

2 Follow the MSDP wizard to create the disk pool.

For more information, see Create a disk pool topic of the NetBackup Web UI
Administrator's Guide.

3 Follow the MSDP wizard to the storage unit.

For more information, see Create a disk pool topic of the NetBackup Web UI
Administrator's Guide.

You can use MSDP Scaleout like the legacy single-node MSDP.

Configuring the MSDP cloud in MSDP Scaleout
After you configure the local LSU, you can also configure MSDP cloud in MSDP
Scaleout.

For more information about MSDP cloud support, see theNetBackup Deduplication
Guide.

113Deploying MSDP Scaleout
Configuring the MSDP cloud in MSDP Scaleout

Deploying MSDP Scaleout
Configuring the MSDP cloud in MSDP Scaleout

114

UpgradingMSDPScaleout
This chapter includes the following topics:

■ Upgrading MSDP Scaleout

Upgrading MSDP Scaleout
You can upgrade the MSDP Scaleout solution to the latest version in your AKS
environment.

To upgrade MSDP Scaleout

1 Install the new kubectl plug-in and push the new docker images to your
container registry.

See “Installing the docker images and binaries” on page 108.

2 Run the following command to upgrade the MSDP operator.

kubectl msdp init -i <new-operator-image> -s <storage-class-name>

-l agentpool=<nodepool-name> -n <operator-namespace>

All the options except -i option must be same as earlier when the operator
was deployed initially.

9Chapter

3 Run the following command to change the spec.version in the existing CR
resources.

kubectl edit msdpscaleout <cr-name>

Wait for a few minutes. MSDP operator upgrades all the pods and other MSDP
Scaleout resources automatically.

Note: If you use the environment operator for the MSDP Scaleout deployment,
change the version string for MSDP Scaleout in the environment operator CR
only. Do not change the version string in the MSDP Scaleout CR.

4 Upgrade process restarts the pods. The NetBackup jobs are interrupted during
the process.

Upgrade NetBackup 10.0 or 10.0.0.1 to NetBackup 10.1

After you upgrade NetBackup 10.0 (or 10.0.0.1) to NetBackup 10.1 or MSDP
Scaleout to 17.0, if you find the storage server not supporting Instant Access
capability onWeb UI, or if you fail to select MSSQL recovery point to create MSSQL
Instant Access on Web UI, then perform the following steps manually to refresh the
Instant Access capability in NetBackup.

1. Login to NetBackup primary server.

2. Execute the following commands to refresh the MSDP capabilities on
NetBackup primary server:

nbdevconfig -getconfig

nbdevconfig -setconfig

For example,

/usr/openv/netbackup/bin/admincmd/nbdevconfig -getconfig -stype

PureDisk -storage_server [storage server] >

/tmp/tmp_pd_config_file

/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig

-storage_server [storage server] -stype PureDisk -configlist

/tmp/tmp_pd_config_file

3. Restart the NetBackup Web Management Console service (nbwmc) on
NetBackup primary server.

For example,

/usr/openv/netbackup/bin/nbwmc terminate

/usr/openv/netbackup/bin/nbwmc start

Upgrading MSDP Scaleout
Upgrading MSDP Scaleout

116

Monitoring NetBackup
This chapter includes the following topics:

■ Monitoring the application health

■ Telemetry reporting

■ About NetBackup operator logs

■ Expanding storage volumes

■ Allocating static PV for Media pods

Monitoring the application health
Kubernetes Liveness and Readiness probes are used to monitor and control the
health of the NetBackup primary server and media server pods. The probes
collectively also called as health probes, keep checking the availability and readiness
of the pods, and take designated actions in case of any issues. The kubelet uses
liveness probes to know when to restart a container, and readiness probes to know
when a container is ready. For more information, refer to the Kubernetes
documentation.

Configure Liveness, Readiness and Startup Probes | Kubernetes

The health probes monitor the following for the NetBackup deployment:

■ Mount directories are present for the data/catalog at /mnt/nbdata and the log
volume at /mnt/nblogs.

■ bp.conf is present at /usr/openv/netbackup

■ NetBackup services are running as expected.

Following table describes the actions and time intervals configured for the probes:

10Chapter

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Table 10-1

Media server
(seconds)

Primary
server
(seconds)

Probe nameDescriptionAction

60120ReadinessProbeThis is the delay
that tells kubelet to
wait for a given
number of seconds
before performing
the first probe.

Initial delay

90300Liveness Probe

3030ReadinessProbeThis action
specifies that
kubelet should
perform a probe
every given
number of
seconds.

Periodic
execution time

9090Liveness Probe

11ReadinessProbeThis action
specifies that
kubelet should
retry the probe for
given number of
times in case a
probe fails, and
then restart a
container.

Threshold for
failure retries

55Liveness Probe

Heath probes are run using the nbu-health command. If you want to manually run
the nbu-health command, the following options are available:

■ Disable
This option disables the health check that will mark pod as not ready (0/1).

■ Enable
This option enables the already disabled health check in the pod. This marks
the pod in ready state(1/1) again if all the NetBackup health checks are passed.

■ Deactivate
This option deactivates the health probe functionality in pod. Pod remains in
ready state(1/1). This will avoid pod restarts due to health probes like liveness,
readiness probe failure. This is the temporary step and not recommended to
use in usual case.

■

Monitoring NetBackup
Monitoring the application health

118

■ Activate
This option activates the health probe functionality that has been deactivated
earlier using the deactivate option.

You can manually disable or enable the probes if required. For example, if for any
reason you need to exec into the pod and restart the NetBackup services, the health
probes should be disabled before restarting the services, and then they should be
enabled again after successfully restarting the NetBackup services. If you do not
disable the health probes during this process, the pod may restart due to the failed
health probes.

Note: It is recommended to disable the health probes only temporarily for
troubleshooting purposes. When the probes are disabled, the web UI is not
accessible in case of the primary server pod, and the media server pods cannot be
scaled up. Then the health probes must be enabled again to successfully run
NetBackup.

To disable or enable the health probes

1 Execute the following command in the Primary or media server pod as required:

kubectl exec -it -n <namespace> <primary/media-server-pod-name>

-- /bin/bash

2 To disable the probes, run the /opt/veritas/vxapp-manage/nbu-health

disable command. Then the pod goes into the not ready (0/1) state.

3 To enable the probes, run the "/opt/veritas/vxapp-manage/nbu-health

enable" command. Then the pod will be back into the ready (1/1) state.

You can check pod events in case of probe failures to get more details using
the kubectl describe <primary/media-pod-name> -n <namesapce>

command.

Telemetry reporting
Telemetry reporting entries for the NetBackup deployment on AKS are indicated
with the AKS based deployments text.

■ By default, the telemetry data is saved at the /var/veritas/nbtelemetry/

location. The default location will not persisted during the pod restarts.

■ If you want to save telemetry data to persisted location, then execute the kubectl
exec -it -n <namespace> <primary/media_server_pod_name> - /bin/bash

command in the pod using the and execute telemetry command using

119Monitoring NetBackup
Telemetry reporting

/usr/openv/netbackup/bin/nbtelemetrywith --dataset-path=DESIRED_PATH
option.

■ Exec into the primary server pod using the following command:
kubectl exec -it -n <namespace> <primary/media_server_pod_name>

-- /bin/bash

■ Execute telemetry command using
/usr/openv/netbackup/bin/nbtelemetry with
--dataset-path=DESIRED_PATH

Note: Here DESIRED_PATH must be /mnt/nbdata or /mnt/nblogs.

About NetBackup operator logs
Note the following about the NetBackup operator logs.

■ NetBackup operator logs can be checked using the operator pod logs using the
kubectl logs <Netbackup-operator-pod-name> -c netbackup-operator

-n <netbackup-opertaor-namespace> command.

■ NetBackup operator provides different log levels that can be changed before
deployment of NetBackup operator.
The following log levels are provided:

■ -1 - Debug

■ 0 - Info

■ 1 - Warn

■ 2 - Error
By default, the log level is 0.
It is recommended to use 0, 1, or 2 log level depending on your requirement.
Before you deploy NetBackup operator, you can change the log levels using
operator_patch.yaml.
After deployment if user changes operator log level, to reflect it, user has to
perform the following steps:

■ Apply the operator changes using the kubectl apply -k

<operator-folder> command.

■ Restart the operator pod. Delete the pod using the kubectl delete

pod/<netbackup-opertaor-pod-name> -n <namespace> command.
Kubernetes will recreate the NetBackup operator pod again after deletion.

Monitoring NetBackup
About NetBackup operator logs

120

■ Config-Checker jobs that run before deployment of primary server and media
server creates the pod. The logs for config checker executions can be checked
using the kubectl logs <configchecker-pod-name> -n

<netbackup-operator-namespace> command.

■ Installation logs of NetBackup primary server and media server can be retrieved
using any of the following methods:

■ Run the kubectl logs <PrimaryServer/MediaServer-Pod-Name> -n

<PrimaryServer/MediaServer namespace> command.

■ Execute the following command in the primary server/media server pod and
check the /mnt/nblogs/setup-server.log file:
kubectl exec -it <PrimaryServer/MediaServer-Pod-Name> -n

<PrimaryServer/MediaServer-namespace> -- bash

■ Data migration jobs create the pods that run before deployment of primary
server. The logs for data migration execution can be checked using the following
command:
kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

■ Execute the following respective commands to check the event logs that shows
deployment logs for PrimaryServer and MediaServer:

■ For primary server: kubectl describe PrimaryServer <PrimaryServer

name> -n <PrimaryServer-namespace>

■ For media server: kubectl describe MediaServer<MediaServername>

-n<MediaServer-namespace>

Expanding storage volumes
You can update storage capacity of already created persistent volume claim for
primary server and media server. Expanding storage volume for particular replica
of respective CR object is not supported. In case of media server user needs to
update volumes for all the replicas of particular media server object.

To expand storage capacity of catalog volume in primary server

1 Edit the environment custom resource using the kubectl edit Environment

<environmentCR_name> -n <namespace> command.

2 Update storage capacity for respective volume in storage subsection of primary
section.

3 Save the changes.

121Monitoring NetBackup
Expanding storage volumes

PVC will expands as per the new size and it will be available to volume mounts in
primaryServer pod.

To expand volume of data and log volumes for primary and media server

1 Edit the environment custom resource using the kubectl edit Environment

<environmentCR_name> -n <namespace> command.

2 To pause the reconciler of the particular custom resource, change the paused:
false value to paused: true in the primaryServer or mediaServer section and
save the changes. In case of multiple media server objects change Paused
value to true for respective media server object only.

3 Edit StatefulSet of primary server or particular media server object using
thekubectl edit <statfulset name> -n <namespace> command, change
replica count to 0 and wait for all pods to terminate for the particular CR object.

4 Update all the persistent volume claim which expects capacity resize with the
kubectl edit pvc <pvcName> -n <namespace> command. In case of
particular media server object, resize respective PVC with expected storage
capacity for all its replicas.

5 Update the respective custom resource section using the kubectl edit

Environment <environmentCR_name> -n <namespace> commandwith updated
storage capacity for respective volume and change paused: false. Save updated
custom resource.

To update the storage details for respective volume, add storage section with
specific volume and its capacity in respective primaryServer or mediaServer
section in environment CR.

Earlier terminated pod and StatefulSet must get recreated and running
successfully. Pod should get linked to respective persistent volume claim and
data must have been persisted.

6 Run the kubectl get pvc -n <namespace> command and check for capacity
column in result to check the persistent volume claim storage capacity is
expanded.

7 (Optional) Update the log retention configuration for NetBackup depending on
the updated storage capacity.

For more information, refer to the NetBackup™ Administrator's Guide,

Volume I

Monitoring NetBackup
Expanding storage volumes

122

Allocating static PV for Media pods
When you want to use a disk with specific performance parameters, you can
statically create the PV and PVC. You must allocate static PV and PVC before
deploying the NetBackup server for the first time.

To allocate static PV for Media pods

1 Create storage class in cluster as per recommendations.

See “How does the Config-Checker utility work” on page 59. for storage class
recommendation.

This newly created storage class name is used while creating PV and PVC's
and should be mentioned for Catalog, Log, Data volume in the environment
CR in mediaServer section at the time of deployment.

For more information on creating storage class, see Create a custom storage
class.

For example,

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

name: managed-premium-retain

provisioner: disk.csi.azure.com

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: Immediate

parameters:

storageaccounttype: Premium_LRS

kind: Managed

2 Calculate number of disks required.

The following persistent volumes are required by Media pods:

■ Data and Log volume disk per replica of media server.

Use the following format to form PVC names.

For media server

■ data-<resourceNamePrefix_of_media>-media-<media server replica
number. Count starts from 0>

■ logs-<resourceNamePrefix_of_media>-media-<media server replica number.
Count starts from 0>

123Monitoring NetBackup
Allocating static PV for Media pods

https://docs.microsoft.com/en-us/azure/aks/azure-disk-csi#create-a-custom-storage-class
https://docs.microsoft.com/en-us/azure/aks/azure-disk-csi#create-a-custom-storage-class

For this scenario, you must create total 8
disks, 8 PV and 8 PVCs.

6 disks, 6 PV and 6 PVCs for media
server.

Following will be the names for media
server volumes

For data:

■ data-testmedia-media-0
■ data-testmedia-media-1
■ data-testmedia-media-10
■ data-testmedia-media-2

For log:

■ logs-testmedia-media-0
■ logs-testmedia-media-1
■ logs-testmedia-media-2

If user wants to deploy a media
server with replica count 3.

Names of the Media PVC
assuming
resourceNamePrefix_of_media is
testmedia.

Example
1

For this scenario, you must create 12
disks, 12 PV and 12 PVCs

10 disks, 10 PV and 10 PVCs for media
server.

Following will be the names for media
server volumes

For data:

■ data-testmedia-media-0
■ data-testmedia-media-1
■ data-testmedia-media-2
■ data-testmedia-media-3
■ data-testmedia-media-4

For log:

■ logs-testmedia-media-0
■ logs-testmedia-media-1
■ logs-testmedia-media-2
■ logs-testmedia-media-3
■ logs-testmedia-media-4

If user wants to deploy a media
server with replica count 5

Names of the Media PVC
assuming
resourceNamePrefix_of_media is
testmedia.

Example
2

3 Create required number of Azure disks and save the ID of newly created disk.

For more information, see Azure Disk - Static

Monitoring NetBackup
Allocating static PV for Media pods

124

https://docs.microsoft.com/en-us/azure/aks/azure-disk-volume

4 Create PVs for each disk and link the PVCs to respective PVs.

To create the PVs, specify the created storage class and diskURI (ID of the
disk received in step 3). The PV must be created using the claimRef field and
provide PVC name for its corresponding namespace.

For example, if you are creating PV for catalog volume, storage required is
128GB, diskName is primary_catalog_pv and namespace is test. PVC named
catalog-testprimary-primary-0 is linked to this PV when PVC is created in
the namespace test.

apiVersion: v1

kind: PersistentVolume

metadata:

name: catalog

spec:

capacity:

storage: 128Gi

accessModes:

- ReadWriteOnce

azureDisk:

kind: Managed

diskName: primary_catalog_pv

diskURI: /subscriptions/3247febe-4e28-467d-a65c-10ca69bcd74b/

resourcegroups/MC_NBU-k8s-network_xxxxxx_eastus/providers/Microsoft.Compute/disks/deepak_s_pv

claimRef:

apiVersion: v1

kind: PersistentVolumeClaim

name: catalog-testprimary-primary-0

namespace: test

125Monitoring NetBackup
Allocating static PV for Media pods

5 Create PVC with correct PVC name (step 2), storage class and storage.

For example,

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: catalog-testprimary-primary-0

namespace: test

spec:

storageClassName: "managed-premium-retain"

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 128Gi

6 Deploy the Operator.

7 Use previously created storage class names for the volumes in mediaServers
section in environment CR spec and deploy environment CR.

Monitoring NetBackup
Allocating static PV for Media pods

126

Monitoring MSDP
Scaleout

This chapter includes the following topics:

■ About MSDP Scaleout status and events

■ Monitoring with Azure Container insights

■ The Kubernetes resources for MSDP Scaleout and MSDP operator

About MSDP Scaleout status and events
The MSDP Scaleout CR status includes the readiness state, the storage space
utilization (via PersistentVolumeClaim) of each Controller, MDS, and Engine pod.

In the initial configuration of MSDP Scaleout, the readiness state of each pod
changes from "false" to "true" in the first few minutes. When the state of all the pods
changes to "true", it indicates MSDP Scaleout is ready for use.

You can check the storage space utilization routinely to plan MSDP Scaleout
autoscaling before the storage space runs out.

11Chapter

To check the MSDP Scaleout status and events

1 Check the status and the events under the namespace for MSDP Scaleout.

kubectl -n <sample-namespace> describe msdpscaleout

<sample-cr-name>

2 Check the MSDP Scaleout events.

kubectl -n <sample-namespace> get events

[--sort-by='{.lastTimestamp}']

3 Check the storage space utilization.

kubectl -n <sample-namespace> get msdpscaleout <sample-cr-name>

-o json

Example of the of the status format:

kubectl -n sample-cr-namespace get msdpscaleout sample-cr -o json

{

"controllers": [

{

"apiVersions": [

"1.0"

],

"name": "msdp-aks-demo-uss-controller",

"nodeName": "aks-nodepool1-25250377-vmss000002",

"productVersion": "15.1-0159",

"pvc": [

{

"pvcName": "msdp-aks-demo-uss-controller-log",

"stats": {

"availableBytes": "10125.98Mi",

"capacityBytes": "10230.00Mi",

"percentageUsed": "1.02%",

"usedBytes": "104.02Mi"

}

}

],

"ready": "True"

}

],

"engines": [

{

"ip": "x.x.x.x",

"name": "msdppods1.westus2.cloudapp.azure.com",

Monitoring MSDP Scaleout
About MSDP Scaleout status and events

128

"nodeName": "aks-nodepool1-25250377-vmss000003",

"pvc": [

{

"pvcName": "msdppods1.westus2.cloudapp.azure.com-catalog",

"stats": {

"availableBytes": "20293.80Mi",

"capacityBytes": "20470.00Mi",

"percentageUsed": "0.86%",

"usedBytes": "176.20Mi"

}

},

{

"pvcName": "msdppods1.westus2.cloudapp.azure.com-data-0",

"stats": {

"availableBytes": "30457.65Mi",

"capacityBytes": "30705.00Mi",

"percentageUsed": "0.81%",

"usedBytes": "247.35Mi"

}

}

],

"ready": "True"

},

......

Monitoring with Azure Container insights
You can use Azure Container insights to collect Prometheus metrics to monitor
pods in MSDP Scaleout.

To configure Azure Container insights

1 Enable Azure Container insights.

See Azure documentation.

2 Download the template ConfigMap YAML file and save it as
container-azm-ms-agentconfig.yaml.

129Monitoring MSDP Scaleout
Monitoring with Azure Container insights

https://docs.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-enable-existing-clusters

3 Add the YAML file with the following sample configuration:

prometheus-data-collection-settings: |-

[prometheus_data_collection_settings.cluster]

interval = "1m"

fieldpass = ["msdpoperator_reconcile_total",

"msdpoperator_reconcile_failed",

"msdpoperator_operator_run",

"msdpoperator_diskFreeLess5GBEngines_total",

"msdpoperator_diskFreeMiBytesInEngine",

"msdpoperator_diskFreeLess10GBClusters_total",

"msdpoperator_totalDiskFreePercentInCluster",

"msdpoperator_diskFreePercentInEngine",

"msdpoperator_pvcFreePercentInCluster",

"msdpoperator_unhealthyEngines_total",

"msdpoperator_createdPods_total"]

monitor_kubernetes_pods = true

Add the namespace of MSDP operator in the follow list.

It's "msdp-operator-system" by default.

monitor_kubernetes_pods_namespaces =

["msdp-operator-system"]

Table 11-1 lists the Prometheus metrics that MSDP Scaleout supports.

Monitoring MSDP Scaleout
Monitoring with Azure Container insights

130

4 Apply the ConfigMap.

kubectl apply -f container-azm-ms-agentconfig.yaml

The configuration change takes a few minutes and all omsagent pods in the
cluster restart.

The default namespace of prometheus metrics is prometheus.

5 Add alert rules for the integrated metrics.

Add related log query, add new alert rule for the selected query, and alert
group/action for it.

For example,

If the free space size of the MSDP Scaleout engines is lower than 1 GB in past
5 minutes, alert the users.

Log query:

InsightsMetrics

| where Name == "msdpoperator_diskFreeMiBytesInEngine"

| where Namespace == "prometheus"

| where TimeGenerated > ago(5m)

| where Val <= 1000000

| where Val > 0

If multiple MSDP Scaleouts are deployed in the same AKS cluster, use the
filter to search the results. For example, search the MSDP engines with the
free space size lower than 1GB in the namespace sample-cr-namespace

Log query:

InsightsMetrics

| where Name == "msdpoperator_diskFreeMiBytesInEngine"

| where Namespace == "prometheus"

| where TimeGenerated > ago(5m)

| where Val <= 1000000

| where Val > 0

| extend Tags = parse_json(Tags)

| where Tags.msdpscalout_ns == "sample-cr-namespace"

MSDP Scaleout supports the following Prometheus metrics:

131Monitoring MSDP Scaleout
Monitoring with Azure Container insights

Table 11-1 Supported Prometheus metrics list in MSDP Scaleout

DescriptionFiltersTypeMetrics

The total of the reconcile loops
msdp-operator run.

N/ACountermsdpoperator_reconcile_total

The total of the reconcile loops
msdp-operator failed to run.

N/ACountermsdpoperator_reconcile_failed

The total of the running operator.N/ACountermsdpoperator_operator_run

The checked number of the
engines which have free spaces
lower than 5GB.

InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_diskFreeLess
5GBEngines_total

The free space of current engine
in MiBytes.

InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_diskFreeMi
BytesInEngine

The checked number of the
msdpscaleout apps which have
free spaces lower than 10GB.

InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_diskFreeLess
10GBClusters_total

The percent of the msdpscaleout
apps that have free spaces. For
example, 0.95 means 95%

InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_totalDiskFree
PercentInCluster

The percent of the current
engines, which have free
spaces.

InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_diskFree
PercentInEngine

The percent of the used PVC,
which have free spaces.

InsightsMetrics.Tags.msdpscalout_ns,
InsightsMetrics.Tags.component

Gaugemsdpoperator_pvcFree
PercentInCluster

The total of unhealthy engines.InsightsMetrics.Tags.msdpscalout_nsGaugemsdpoperator_unhealthy
Engines_total

The total of created
msdpscaleout pods.

InsightsMetrics.Tags.msdpscalout_ns,
InsightsMetrics.Tags.component

Gaugemsdpoperator_createdPods
_total

TheKubernetes resources forMSDPScaleout and
MSDP operator

Do not change or delete the Kubernetes resources that MSDP deployment has
created.

■ Run the following command to find all the namespaced resources:

Monitoring MSDP Scaleout
The Kubernetes resources for MSDP Scaleout and MSDP operator

132

kubectl api-resources --verbs=list --namespaced=true -o name |

xargs -n 1 -i bash -c 'if ! echo {} |grep -q events; then kubectl

get --show-kind --show-labels --ignore-not-found -n <cr or operator

namespace> {}; fi'

■ Run the following command to find commonly used namespace resources:
kubectl get pod,svc,deploy,rs,pvc -n <cr or operator namespace>

-o wide

■ Run the following command to find the Kubernetes cluster level resources that
belong to the CR:
kubectl api-resources --verbs=list --namespaced=false -o name |

xargs -n 1 -i bash -c 'kubectl get --show-kind --show-labels

--ignore-not-found {} |grep [msdp-operator|<cr-name>]'

133Monitoring MSDP Scaleout
The Kubernetes resources for MSDP Scaleout and MSDP operator

Monitoring MSDP Scaleout
The Kubernetes resources for MSDP Scaleout and MSDP operator

134

Monitoring Snapshot
Manager deployment

This chapter includes the following topics:

■ Overview

■ Logs of Snapshot Manager

■ Configuration parameters

Overview
The status of Snapshot Manager deployment can be verified by using the following
command:

kubectl describe cpserver -n $ENVIRONMENT_NAMESPACE

This displays the status of deployment as follows:

DescriptionStatus

Deployment is in progress.Running

Deployment has failed.Failed

Deployment is successful.Success

Logs of Snapshot Manager
Fluent log collector service collects the logs from various services in Snapshot
Manager at one shared storage. To read these services, exec into
flexsnap-fluend-collector pod.

12Chapter

Run the kubectl command as follows:

kubectl exec –it <flexsnap-fluend-collector pod_name> bash –n

$ENVIRONMENT_NAMESPACE

You can find the Snapshot Manager log files under /cloudpoint/logs/ folder.

Configuration parameters
■ Any configuration related parameter that must be added in

/cloudpoint/flexsnap.conf file can be added in flexsnap-conf configmap
by editing it as follows:
kubectl edit configmap flexsnap-conf -n $ENVIRONMENT_NAMESPACE

For example, for changing the log level from info to debug, add the following:
[logging]

level = debug

■ Any configuration related parameter which needs to be added in
/cloudpoint/openv/netbackup/bp.conf file can be added in nbuconf

configmap by editing it as follows:
kubectl edit configmap nbuconf -n $ENVIRONMENT_NAMESPACE

Monitoring Snapshot Manager deployment
Configuration parameters

136

Managing the Load
Balancer service

This chapter includes the following topics:

■ About the Load Balancer service

■ Notes for Load Balancer service

■ Opening the ports from the Load Balancer service

About the Load Balancer service
Key features of the Load Balancer service:

■ Load balancer services are created in primary server and media server
deployment that lets you access the NetBackup application from public domains.

■ In primary server or media server CR spec, networkLoadBalancer section is
used for handling the IP address and DNS name allocation for load balancer
services. This section combines to sub fields type, annotations, and ipList
whereas these fields are optional. If ipList is provided in CR spec, IP address
count must match the replica count in case of media server CR whereas in case
of primary server CR, only one IP address needs to be mentioned.

■ In CR yaml, networkLoadBalancer is an optional field. If not defined in CR yaml,
by default value of type is Private and services are added with annotations
service.beta.kubernetes.io/azure-load-balancer-internal: "true".
In this case, by default internal load balancer is selected for deployment.

■ If networkLoadBalancer section is not defined, by default internal load balancer
with dynamic IP address allocation are done. In this case, DNS names for the
services can be obtained from HostName in CR status using the kubectl

describe <CR name> -n <namespace> command.

13Chapter

■ Whenever, HostName in CR status is not in FQDN format, you must add
entry of hostname and its corresponding IP address in /etc/host to access
the primary server and its corresponding IP address in hosts file of computer
accessing the primary server. Hosts file is present at the following location:

■ For Linux: /etc/hosts

■ For Windows: c:\Windows\System32\Drivers\etc\hosts

■ In case of media server, FQDN per media server replica is generated using
resourceName mentioned in media server CR and listed under status
attributes media server-name of the media server CR.

■ In this deployment, it is recommended to use internal load balancer using type
as Private with static IP allocation and DNS name allocation.
For details about internal load balancer, see Microsoft documentation.
However, if type is public, then external load balancer is used and for more
details to create and use public loadbalancer, see Microsoft documentation.

■ The networkLoadBalancer section can be used to provide static IP address and
DNS name allocation to the loadbalancer services. For more information to
create and use static loadbalancer, see Microsoft documentation.
Static IP addresses and FQDN if used must be created before being used. Refer
below sections for different allowed scenarios.

■ Case 1: Internal load balancer with static IP address allocation

■ Example: In Primary section in environment CR

networkLoadBalancer:

ipList:

- ipAddr: 10.123.45.123

In media server section in environment CR

networkLoadBalancer:

ipList:

- ipAddr: 10.123.45.124

- ipAddr: 10.123.45.125

In this case, number of IP addresses for primary server should be one,
and for media server, the number of IP addresses should match with the
replica count mentioned in CR spec. Dynamically created FQDN
mentioned in CR status attribute is used directly as DNS name for
primary/media server services.

■ Example: In primary CR

Managing the Load Balancer service
About the Load Balancer service

138

https://docs.microsoft.com/en-us/azure/aks/internal-lb
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/static-ip

In this case, the number of IP addresses for primary server should be
one, and for media server, it should match with the replica count
mentioned in CR spec. IP address and DNS namementioned in CR spec
is used as DNS name for primary/media server services.

networkLoadBalancer:

ipList:

- ipAddr: 10.123.45.123

fqdn: abc.eastus.cloudapp.azure.com

In media server section in environment CR

networkLoadBalancer:

ipList:

- fqdn: xyz.eastus.cloudapp.azure.com

ipAddr: 10.123.45.124

- fqdn: pqr.eastus.cloudapp.azure.com

ipAddr: 10.123.45.125

■ Case 2: Internal load balancer and dynamic IP address allocation

■ Example: In primary/media CR
In this case, IP address and DNS name are allocated dynamically and
internal load balancer is used. User needs to add entry of Hostname
(FQDN) mentioned in CR status attribute and IP address allocated to
load balancer service in /etc/hosts location on Linux machine. While
c:\Windows\System32\Drivers\etc\hosts location on Windows
computer to access primary server webUI.

■ Case 3: Internal load balancer for different subnet with dynamic IP
In this case, IP addresses for load balancer service are allocated dynamically.
The subnet mentioned in annotations is bound to internal load balancer
service.

■ Example: In primary CR

networkLoadBalancer:

annotations:

- service.beta.kubernetes.io/

azure-load-balancer-internal-subnet: "apps-subnet"

Media CR

networkLoadBalancer:

annotations:

139Managing the Load Balancer service
About the Load Balancer service

- service.beta.kubernetes.io/

azure-load-balancer-internal-subnet: "apps-subnet"

■ Case 4: Internal load balancer for different subnet with static IP
In this case, load balancer service gets assigned with the static IP addresses
mentioned in the ipList, DNS name is generated dynamically, and gets
bound to the subnet given in the annotations.

■ Example: In primary section in environment CR,

networkLoadBalancer:

annotations:

- service.beta.kubernetes.io/azure-load-balancer-

internal-subnet: apps-subnet

ipList:

- ipAddr: 10.123.45.123

Media server section in environment CR

networkLoadBalancer:

annotations:

- service.beta.kubernetes.io/azure-load-balancer-

internal-subnet: apps-subnet

ipList:

- ipAddr: 10.123.45.125

- ipAddr: 10.123.45.124

■ Case 5: Pre-allocation of static IP address and FQDN from resource group
In this case, it is required to provide the network resource group in
annotations. This resource group is the resource group of load balancer
public IPs that are in the same resource group as the cluster infrastructure
(node resource group). This static FQDN and IP address must be valid in
case of pod failure or upgrades scenarios as well.
In case user wants to use public load balancer, add type: Public in
networkLoadBalancer section in primary and media server section in
environment CR.

■ Example: In primary CR,

networkLoadBalancer:

type: Public

annotations:

- service.beta.kubernetes.io/azure-load-balancer-

resource-group:<name of network resource-group>

ipList:

Managing the Load Balancer service
About the Load Balancer service

140

- fqdn: primary.eastus.cloudapp.azure.com

ipAddr: 40.123.45.123

Media server section in environment CR -

networkLoadBalancer:

annotations:

- service.beta.kubernetes.io/azure-load-balancer-

resource-group: ""<name of network resource-group>""

ipList:

- fqdn: media-1.eastus.cloudapp.azure.com

ipAddr: 40.123.45.123

- fqdn: media-2.eastus.cloudapp.azure.com

ipAddr: 40.123.45.124

Preferred annotations
Table 13-1 Preferred annotations

DescriptionValueAnnotations

Specify whether the load balancer should
be internal.

Added by default when type is selected
as Private in load balancer service
annotations.

true or falseservice.beta.kubernetes.io/
azure-load-balancer- internal

Specify which subnet the internal load
balancer should be bound to.

Name of the
subnet

service.beta.kubernetes.io/
azure-load-balancer-
internal-subnet

Specify the resource group of load
balancer public IPs that are not in the
same resource group as the cluster
infrastructure (node resource group).

Name of the
resource group

service.beta.kubernetes.io/
azure-load-balancer
-resource-group

Default ports used in the Load Balancer service
■ Primary server:

■ 1556
Used as bidirectional port. Primary server to/frommedia servers and primary
server to/from client require this TCP port for communication.

■ 8443
Used to inbound to java nbwmc on the primary server.

141Managing the Load Balancer service
About the Load Balancer service

■ 443
Used to inbound to vnet proxy tunnel on the primary server. Also, this is used
Nutanix workload, communication from primary server to the deduplication
media server.

■ 13781
The MQBroker is listening on TCP port 13781. NetBackup client hosts -
typically located behind a NAT gateway - be able to connect to the message
queue broker (MQBroker) on the primary server.

■ 13782
Used by primary server for bpcd process.

■ Port 22
Used by NetBackup IT Analytics data collector for data collection.

■ Media server:

■ 1556
Used as bidirectional port. Primary server to/frommedia servers and primary
server to/from client require this TCP port for communication.

■ 13782
Used by media server for bpcd process.

Notes for Load Balancer service
Note the following points:

■ After deployment of primary server or media server, updating the DNS name,
IP address and subnet through CR is not allowed.

■ If mistakenly user has added wrong values:

■ User wants to update IP address and subnet, you must delete the CR and
update the CR yaml and reapply it.

■ User wants to update the DNS name, you must delete the respective CR
and delete the respective PVC and PV as well.

Note: Be caution while performing this step, this may lead to data loss.

■ Before using the DNS and its respective IP address in CR yaml, you can verify
the IP address and its DNS resolution using nslookup.

■ In case of media server scaleout, ensure that the number of IP addresses
mentioned in IPList in networkLoadBalancer section matches the replica count.

Managing the Load Balancer service
Notes for Load Balancer service

142

■ If nslookup is done for loadbalancer IP inside the container, it returns the DNS
in the form of <svc name>.<namespace_name>.svc.cluster.local. This is
Kubernetes behavior. Outside the pod, the loadbalancer service IP address is
resolved to the configured DNS. The nbbptestconnection command inside
the pods can provide a mismatch in DNS names, which can be ignored.

Opening the ports from the Load Balancer service
In this deployment, most of the required ports are already opened from the
NetBackup primary and media server load balancer services by default.

■ If you want to use a specific workload and that needs specific ports, you must
add those ports in the port specification of the load balancer service.

■ In case of media server, you must add custom ports in the load balancer service
of all the replicas. In case of scaling up the media server, user needs to explicitly
add newly added custom ports in respective newly created load balancer
services.

■ In case custom ports are added in the load balancer service and the same load
balancer service is deleted or created again, you must add respective custom
ports again in the load balancer service specification.

For all three scenarios, perform the steps given in this section.

To open the ports from the Load Balancer service

1 Run the kubectl get service -n <namespace> command.

This command lists all the services available in given namespace.

2 Edit the required primary or media load balancer service using kubectl edit

service <service-name> -n <namespace> command.

For example:

■ For primary server load balancer service:

■ Service name starts withName of primary server like <Name>-primary.
Edit the service with the kubectl edit service <Name>-primary -n

<namespace> command.

■ For media server load balancer service:

■ Each replica of media server has its own load balancer service with
name <Name>-media-<ordinal number>. For example, replica 2 of
media server has a load balancer service with name <Name>-media-1.

143Managing the Load Balancer service
Opening the ports from the Load Balancer service

■ You must modify service for specific replica with the kubectl edit

service <Name>-media-<replica-ordinal number> -n <namespace>

command.

Note: The load balancer service with name Name used in primary sever and
media server specification must be unique.

3 Add entry for new port in ports array in specification field of the service. For
example, if user want to add 111 port, then add the following entry in ports
array in specification field.

name: custom-111

port: 111

protocol: TCP

targetPort: 111

4 Save the changes.

The service is updated and the new port is listed in ports list of the respective
service when you run the kubectl get service -n <namespace> command.

Managing the Load Balancer service
Opening the ports from the Load Balancer service

144

Performing catalog backup
and recovery

This chapter includes the following topics:

■ Backing up a catalog

■ Restoring a catalog

Backing up a catalog
You can backup a catalog.

To backup a catalog

1 Exec into the primary server pod using the following command:

kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash

2 Create a directory DRPackages at persisted location using mkdir

/mnt/nblogs/DRPackages.

3 Change ownership of DRPackages folder to service user using chown

nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages.

4 Set the passphrase to be used at time of catalog recovery.

■ Open NetBackup Administrator Console (Java UI).

■ Navigate to Security Management > Global Security Setting > Disaster
Recovery.

■ In Encryption for Disaster Recovery section, add the passphrase, confirm
passphrase, and save it.

14Chapter

5 Add respective external media server entry in host properties through
NetBackup Management > Host properties > Master Server > Add
Additional server.

Note: It is recommended to use an external media server for catalog backup
and recovery.

6 Exec into the primary server pod using the following command:

kuebctl exec -it -n <namespace> <primaryserver pod name> -- bash

Set the KMS_CONFIG_IN_CATALOG_BKUP configuration option to 1 in
/usr/openv/netbackup/bp.conf file of primary server to include the KMS
configuration as part of the disaster recovery package during catalog backup.

7 Restart the NetBackup services in primary and external media server.

■ Exec into the primary server pod using the following command:
kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash

■ Deactivate NetBackup health probes using the
/opt/veritas/vxapp-manage/nbu-health deactivate command.

■ Run the /usr/openv/netbackup/bin/bp.kill_all command. After
stopping all services restart the services using the
/usr/openv/netbackup/bin/bp.start_all command.

■ Activate NetBackup health probes using the
/opt/veritas/vxapp-manage/nbu-health activate command.

■ Run the /usr/openv/netbackup/bin/bp.kill_all command. After
stopping all services restart the services using the
/usr/openv/netbackup/bin/bp.start_all command on the external
media server.

8 Configure storage unit on earlier added external media server.

For more information, refer to the NetBackup™ Administrator's Guide,Volume
I

Note: It is recommended to use AdvancedDisk or BasicDisk storage unit.

Performing catalog backup and recovery
Backing up a catalog

146

9 Configure NetBackup catalog backup policy.

Add package path as /mnt/nblogs/DRPackages while configuring the catalog
backup policy.

10 Run the catalog backup job.

Restoring a catalog
You can restore a catalog.

To restore a catalog

1 Copy DRPackages files (packages) located at /mnt/nblogs/DRPackages/
from the pod to the host machine from where Azure Kubernetes Service cluster
is accessed.

Run the kubectl cp

<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages

<Path_where_to_copy_on_host_machine> command.

2 Preserve the data of /mnt/nbdata and /mnt/nblogs on host machine by
creating tar and copying it using the kubectl cp

<primary-pod-namespace>/<primary-pod-name>:<tar_file_name>

<path_on_host_machine_where_to_preserve_the_data> command.

3 Change CR spec from paused: false to paused: true in primary, mediaServers,
and msdpScaleouts sections in environment.yaml and re-apply yaml using
the kubectl apply -f environment.yaml -n <namespace> command.

4 Change replica count to 0 in primary server’s statefulset using the kubectl

edit statefulset <primary-server-statefulset-name> -n <namespace>

command.

5 Get names of PV attached to primary server PVC (catalog, log and data) using
the kubectl get pvc -n <namespace> -o wide command.

6 Delete primary server PVC (catalog, log and data) using the kubectl delete

pvc <pvc-name> -n <namespace> command.

7 Delete the PV linked to primary server PVC using the kubectl delete pv

<pv-name> command.

8 Change CR spec paused: true to paused: false in primary server section in
environment.yaml and reapply yaml with the kubectl apply -f

environment.yaml -n <namespace> command.

147Performing catalog backup and recovery
Restoring a catalog

9 After the primary server pod is in ready state, change CR spec from paused:
false to paused: true in primary server section in environment.yaml and reapply
yaml with the kubectl apply -f environment.yaml -n <namespace>

command.

10 Execute the kubectl exec -it -n <namespace> <primary-pod-name> --

/bin/bash command in the primary server pod.

■ Increase the debug logs level on primary server.

■ Create a directory DRPackages at persisted location using mkdir

/mnt/nblogs/DRPackages.

■ Change ownership of the DRPackages folder to service user using the chown
nbsvcusr:nbsvcusr /mnt/nblogs/DRPackages command.

11 Copy earlier copied DR files to primary pod at /mnt/nblogs/DRPackages using
the kubectl cp <Path_of_DRPackages_on_host_machine>

<primary-pod-namespace>/<primary-pod-name>:/mnt/nblogs/DRPackages

command.

12 Execute the following steps in the primary server pod.

■ Change ownership of files in /mnt/nblogs/DRPackages using the chown

nbsvcusr:nbsvcusr <file-name> command.

■ Deactivate NetBackup health probes using the
/opt/veritas/vxapp-manage/nbu-health deactivate command.

■ Stop the NetBackup services using
/usr/openv/netbackup/bin/bp.kill_all.

■ Execute the nbhostidentity -import -infile

/mnt/nblogs/DRPackages/<filename>.drpkg command.

■ Restart all the NetBackup services using
/usr/openv/netbackup/bin/bp.start_all.

13 Verify security settings are back.

14 Add respective media server entry in host properties using NetBackup
Administration Console.

■ Navigate toNetBackupManagement > Host properties >Master Server
> Add Additional server and add media server.

15 Restart the NetBackup services in primary server pod and external media
server.

■ Execute the following command in the primary server pod:
kubectl exec -it -n <namespace> <primary-pod-name> -- /bin/bash

Performing catalog backup and recovery
Restoring a catalog

148

■ Run the /usr/openv/netbackup/bin/bp.kill_all command. After
stopping all services restart the same using the
/usr/openv/netbackup/bin/bp.start_all command.

■ Run the /usr/openv/netbackup/bin/bp.kill_all command. After
stopping all services restart the services using the
/usr/openv/netbackup/bin/bp.start_all command on the external
media server.

16 Configure a storage unit on external media server that is used during catalog
backup.

17 Perform catalog recovery from NetBackup Administration Console.

For more information, refer to the NetBackup Troubleshooting Guide.

18 Execute the kubectl exec -it -n <namespace> <primary-pod-name> --

/bin/bash command in the primary server pod.

■ Stop the NetBackup services using the
/usr/openv/netbackup/bin/bp.kill_all command.

■ Start NetBackup services using the
/usr/openv/netbackup/bin/bp.start_all command.

■ Activate NetBackup health probes using the
/opt/veritas/vxapp-manage/nbu-health activate command.

19 Change CR spec from paused: true to paused: false in primary, mediaServers,
and msdpScaleouts sections in environment.yaml and re-apply yaml using
the kubectl apply -f environment.yaml -n <namespace> command.

20 To configure NetBackup IT Analytics refer to the following topic.

See “Configuring NetBackup IT Analytics for NetBackup deployment”
on page 77.

149Performing catalog backup and recovery
Restoring a catalog

https://www.veritas.com/content/support/en_US/doc/15179611-148872028-0/id-SF970148111-148872028

Performing catalog backup and recovery
Restoring a catalog

150

ManagingMSDPScaleout
This chapter includes the following topics:

■ Adding MSDP engines

■ Adding data volumes

■ Expanding existing data or catalog volumes

■ MSDP Scaleout scaling recommendations

■ MSDP Cloud backup and disaster recovery

■ MSDP multi-domain support

■ Configuring Auto Image Replication

■ About MSDP Scaleout logging and troubleshooting

Adding MSDP engines
You can add new MSDP engines by updating the CR. You can add maximum 16
MSDP engines.

Prerequisites:

■ Allocate new static IP/FQDN pairs in the same node resource group.

■ The node number must not be less than the MSDP Scaleout size that you plan
to change.

■ CR YAML file of MSDP Scaleout

To add the MSDP engines by updating the CR YAML file

1 Open the CR YAML file to edit.

2 Append the new IP/FQDN pairs in the spec.serviceIPFQDNs field.

15Chapter

3 Update the spec.size field to increase the cluster size accordingly.

4 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

To add the MSDP engines using the kubectl command directly

� Run the following command to append the IP/FQDN pairs in the
spec.serviceIPFQDNs field and increase the cluster size in spec.size field.

kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>

[-o json | yaml]

The MSDP Scaleout services are not interrupted when MSDP engines are added.

Adding data volumes
You can add the data volumes by updating the CR.

To add the data volumes by updating the CR YAML file

1 Open the CR YAML file to edit.

2 Append the new data volume specifications in the spec.dataVolumes field.

3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

To add the MSDP engine using the kubectl command directly

� Run the following command to append new data volume specifications in the
spec.dataVolumes field.

kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>

[-o json | yaml]

In the MSDP engine pod, the first data volume is mounted on
/msdp/data/dp1/pdvol. Nth data volume is mounted on
/msdp/data/dp1/${N-1}pdvol. For example, 2nd data volume is mounted on
/msdp/data/dp1/1pdvol.

Each MSDP engine can support up to 16 data volumes.

It is recommended that you use the same data volume size if you add multiple
volumes.

Note: Due to some Kubernetes restrictions, MSDP operator restarts the engine
pods for attaching the existing and new volumes, which can cause the short
downtime of the services.

Managing MSDP Scaleout
Adding data volumes

152

Expanding existing data or catalog volumes
You can expand the existing data or catalog volumes by updating the CR.

To expand the data or catalog volumes by updating the CR YAML file

1 Open the CR YAML file to edit.

2 Increase the requested storage size in the spec.dataVolumes field or in the
spec.catalogVolume field.

3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

To expand the data or catalog volumes using the kubectl command directly

� Run the following command to increase the requested storage size in the
spec.dataVolumes field or in the spec.catalogVolume field..

kubectl -n <sample-namespace> edit msdpscaleout <your-cr-name>

[-o json | yaml]

Sometimes Azure disk CSI driver may not respond the volume expansion request
promptly. In this case, the operator retries the request by adding 1 byte to the
requested volume size to trigger the volume expansion again. If it is successful,
the actual volume capacity could be slightly larger than the requested size.

Due to the limitation of Azure disk CSI storage driver, the engine pods need to be
restarted for resizing the existing volumes. This can cause the short downtime of
the services.

MSDP Scaleout does not support the following:

■ Cannot shrink the volume size.

■ Cannot change the existing data volumes other than for storage expansion.

■ Cannot expand the log volume size. You can do it manually. See “Manual storage
expansion” on page 153.

■ Cannot expand the data volume size for MDS pods. You can do it manually.
See “Manual storage expansion” on page 153.

Manual storage expansion
You also can manually expand storage size by expanding PVC size.

To expand the data or catalog volumes

1 Open the CR YAML file to edit.

2 Configure spec.paused: true.

153Managing MSDP Scaleout
Expanding existing data or catalog volumes

3 Apply new CR YAML to stop MSDP operator from reconciling and repairing
the pods automatically.

kubectl apply -f <your-cr-yaml>

4 Patch the corresponding PVCs.

kubectl patch pvc <pvc-name> --type merge --patch '{"spec":

{"resources": {"requests": {"storage": "<requested-size>"}}}}'

-n <sample-namespace>

5 Specify spec.paused: false in the CR.

6 Apply new CR YAML to recover MSDP operator to continue to reconcile and
repair the pods automatically.

kubectl apply -f <your-cr-yaml>

Note: If you add new MSDP Engines later, the new Engines will respect the CR
specification only. Your manual changes would not be respected by the new Engines.

MSDP Scaleout scaling recommendations
Following are the scaling recommendations for the MSDP Scaleout:

■ Allocate the data volumes of the similar sizes for MSDP to have better load
balancing performance.

■ Each data volume size is more than 4 TB.

■ Have multiple data volumes for each engine to gain better throughput.

■ Split a bigger backup policy to smaller ones
In most cases, one backup job goes to oneMSDP engine at the same time even
if multistream is enabled for the backup policy. If the current MSDP engine,
which is taking a backup job hits the high space watermark, the following backup
data would be sent to a second MSDP engine. If the backup data is too big for
up to 2MSDP engines to persist, the backup job fails. WhenmoreMSDP engines
are added, the backup jobs may not be evenly balanced on each MSDP engine
at the first a few hours or days. If the situation keeps longer beyond your
expectation, consider to re-plan the backup policies, by splitting a bigger backup
policy to two smaller ones, to help MSDP Scaleout to balance the new backup
jobs more faster.

■ After scaling up, the memory and CPU of the existing node pool may not meet
the performance requirements anymore. In this case, you can addmore memory
and CPU by upgrading to the higher instance type to improve the existing node
pool performance or create another node pool with higher instance type and

Managing MSDP Scaleout
MSDP Scaleout scaling recommendations

154

update the node-selector for the CR accordingly. If you create another node
pool, the new node-selector does not take effect until you manually delete the
pods and deployments from the old node pool, or delete the old node pool
directly to have the pods re-scheduled to the new node pool.

■ Ensure that each AKS node supports mounting the number of data volumes
plus 5 of the data disks.
For example, if you have 16 data volumes for each engine, then each your AKS
node should support mounting at least 21 data disks. The additional 5 data disks
are for the potential MDS pod, Controller pod or MSDP operator pod to run on
the same node with MSDP engine.

MSDP Cloud backup and disaster recovery
For information about MSDP cloud backup and disaster recovery, seeMSDPCloud
section of the NetBackup Deduplication Guide.

Note: In case of disaster recovery of NetBackup environment (that is, primary,
media and MSDP), perform the primary catalog recovery first and then proceed
with MSDP disaster recovery steps. See “Backing up a catalog” on page 145.

About the reserved storage space
About 1 TB storage space is reserved by default on each MSDP engine for each
cloud LSU.

The 1 TB storage space is selected from one of the data volumes of every engine.
It requires each engine at least has one data volume, which has more than 1 TB
available storage space, when a cloud LSU is to be configured. Otherwise, the
configuration of the cloud LSU fails.

155Managing MSDP Scaleout
MSDP Cloud backup and disaster recovery

Cloud LSU disaster recovery
Scenario 1: MSDP Scaleout and its data is lost and the NetBackup primary
server remains unchanged and works well

1 Redeploy MSDP Scaleout on a AKS cluster by using the same CR parameters
and NetBackup re-issue token.

2 When MSDP Scaleout is up and running, re-use the cloud LSU on NetBackup
primary server.

/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig

-storage_server <STORAGESERVERNAME> -stype PureDisk -configlist

<configuration file>

Credentials, bucket name, and sub bucket name must be the same as the
recovered Cloud LSU configuration in the previousMSDPScaleout deployment.

Configuration file template:

V7.5 "operation" "reuse-lsu-cloud" string

V7.5 "lsuName" "LSUNAME" string

V7.5 "lsuCloudUser" "XXX" string

V7.5 "lsuCloudPassword" "XXX" string

V7.5 "lsuCloudAlias" "<STORAGESERVERNAME_LSUNAME>" string

V7.5 "lsuCloudBucketName" "XXX" string

V7.5 "lsuCloudBucketSubName" "XXX" string

V7.5 "lsuKmsServerName" "XXX" string

If the LSU cloud alias does not exist, you can use the following command to
add it.

/usr/openv/netbackup/bin/admincmd/csconfig cldinstance -as -in

<instance-name> -sts <storage-server-name> -lsu_name <lsu-name>

Managing MSDP Scaleout
MSDP Cloud backup and disaster recovery

156

3 On the first MSDP Engine of MSDP Scaleout, run the following command for
each cloud LSU:

sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/cacontrol --catalog

clouddr <LSUNAME>

4 Restart the MSDP services in the MSDP Scaleout.

Option 1: Manually delete all the MSDP engine pods.

kubectl delete pod <sample-engine-pod> -n <sample-cr-namespace>

Option 2: Stop MSDP services in each MSDP engine pod. MSDP service starts
automatically.

kubectl exec <sample-engine-pod> -n <sample-cr-namespace> -c

uss-engine -- /usr/openv/pdde/pdconfigure/pdde stop

157Managing MSDP Scaleout
MSDP Cloud backup and disaster recovery

Scenario 2: MSDP Scaleout and its data is lost and the NetBackup primary
server was destroyed and is re-installed

1 Redeploy MSDPScaleout on an AKS cluster by using the same CR parameters
and new NetBackup token.

2 When MSDP Scaleout is up and running, reuse the cloud LSU on NetBackup
primary server.

/usr/openv/netbackup/bin/admincmd/nbdevconfig -setconfig

-storage_server <STORAGESERVERNAME> -stype PureDisk -configlist

<configuration file>

Credentials, bucket name, and sub bucket name must be the same as the
recovered Cloud LSU configuration in previous MSDP Scaleout deployment.

Configuration file template:

V7.5 "operation" "reuse-lsu-cloud" string

V7.5 "lsuName" "LSUNAME" string

V7.5 "lsuCloudUser" "XXX" string

V7.5 "lsuCloudPassword" "XXX" string

V7.5 "lsuCloudAlias" "<STORAGESERVERNAME_LSUNAME>" string

V7.5 "lsuCloudBucketName" "XXX" string

V7.5 "lsuCloudBucketSubName" "XXX" string

V7.5 "lsuKmsServerName" "XXX" string

If KMS is enabled, setup KMS server and import the KMS keys.

If the LSU cloud alias does not exist, you can use the following command to
add it.

/usr/openv/netbackup/bin/admincmd/csconfig cldinstance -as -in

<instance-name> -sts <storage-server-name> -lsu_name <lsu-name>

3 On the first MSDP Engine of MSDP Scaleout, run the following command for
each cloud LSU:

sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/cacontrol --catalog

clouddr <LSUNAME>

4 Restart the MSDP services in the MSDP Scaleout.

Option 1: Manually delete all the MSDP engine pods.

kubectl delete <sample-engine-pod> -n <sample-cr-namespace>

Option 2: Stop MSDP services in each MSDP engine pod.

kubectl exec <sample-engine-pod> -n <sample-cr-namespace> -c

uss-engine -- /usr/openv/pdde/pdconfigure/pdde stop

Managing MSDP Scaleout
MSDP Cloud backup and disaster recovery

158

5 Create disk pool for the cloud LSU on NetBackup server.

6 Do two-phase image importing.

See the NetBackup Administrator's Guide, Volume I

For information about other DR scenarios, see NetBackup Deduplication Guide.

MSDP multi-domain support
AnMSDP storage server is configured in a NetBackupmedia server. The NetBackup
media servers and clients in the NetBackup domain can use this storage server.
By default, the NetBackup media servers and clients cannot directly use an MSDP
storage server from another NetBackup domain. For example, NetBackup media
servers or clients cannot backup data to an MSDP storage server from another
NetBackup domain.

To use anMSDP storage server from another NetBackup domain, theMSDP storage
server must have multiple MSDP users. Then NetBackup media servers or clients
can use the MSDP storage server from another NetBackup domain by using a
different MSDP user. Multiple NetBackup domains can use the sameMSDP storage
server but each NetBackup domain must use a different MSDP user to access that
MSDP storage server.

For more information, See NetBackup Deduplication Guide.

When you add a new MSDP user, the command spauser must be executed in the
first MSDP engine of MSDP Scaleout, not on any of the NetBackup servers.

Ensure that you run MSDP commands with non-root user msdpsvc after logging
into an engine pod.

For example, sudo -E -u msdpsvc /usr/openv/pdde/pdcr/bin/spauser

Configuring Auto Image Replication
The backups that are generated in one NetBackup domain can be replicated to
storage in one or more target NetBackup domains. This process is referred to as
Auto Image Replication (A.I.R.).

You can configure Auto Image Replication in NetBackup, which is using MSDP
Scaleout storage servers.

159Managing MSDP Scaleout
MSDP multi-domain support

To configure Auto Image Replication

1 Logon to the NetBackup Web UI of both replication source and target domain.

2 Add each other NetBackup's primary server as trusted primary server.

For more information, see the NetBackup Web UI Administrator’s Guide.

3 In the replication source domain, get the MSDP_SERVER name from the
NetBackup Web UI.

Navigate to Storage > Storage configuration > Storage servers.

4 Add MSDP_SERVER in the primary server of replication target domain. Login
to the target primary server and run the following command:

echo "MSDP_SERVER = <Source MSDP server name>" >>

/usr/openv/netbackup/bp.conf

5 Get the token from the target domain NetBackup Web UI.

Navigate to Security > Token. In the Create token window, enter the token
name and other required details. Click Create.

For more information, see the NetBackup Web UI Administrator’s Guide.

6 Add replication targets for the disk pool in replication source domain.

In the Disk pools tab, click on the disk pool link.

Click Add to add the replication target.

7 In the Add replication targets window:

■ Select the replication target primary server.

■ Provide the target domain token.

■ Select the target volume.

■ Provide the target storage credentials.

Click Add.

About MSDP Scaleout logging and
troubleshooting

■ AKS troubleshooting
See AKS troubleshooting page of Azure documentation.

■ Logs and core dumps files in MSDP Scaleout
MSDP Operator, Controller, and MDS pod logs are stored in /log location of the
pods.

Managing MSDP Scaleout
About MSDP Scaleout logging and troubleshooting

160

https://docs.microsoft.com/en-us/azure/aks/troubleshooting

■ Collect the logs and inspection information
You can collect the logs and inspection information for MSDP Scaleout for
troubleshooting purpose.
See “Collecting the logs and the inspection information” on page 161.

Collecting the logs and the inspection information
You can collect the logs and inspection information for MSDP Scaleout for
troubleshooting purpose.

Run the command kubectl msdp collect-logs

For example, kubectl msdp collect-logs -o <output path> [-n <MSDP

operator namespace>] [-c <MSDP applications namespace(s)>]

Table 15-1 collect-logs command options

DescriptionOption

Comma-separated namespaces of MSDP applications.

Note: If not specified, it collects MSDP applications of all
namespaces.

-c

Output format of logs/core files/MSDP history files.

Available options:

targz: Copy logs/core files/MSDP history files from containers
and compress them by tar/gzip.

raw: Copy logs/core files/MSDP history files from containers as
same format in the containers.

Default value: targz

-f

Namespace of MSDP operator.

Default value: msdp-operator-system

-n

Output path of the log file.-o

161Managing MSDP Scaleout
About MSDP Scaleout logging and troubleshooting

Managing MSDP Scaleout
About MSDP Scaleout logging and troubleshooting

162

About MSDP Scaleout
maintenance

This chapter includes the following topics:

■ Pausing the MSDP Scaleout operator for maintenance

■ Logging in to the pods

■ Reinstalling MSDP Scaleout operator

■ Migrating the MSDP Scaleout to another node pool

Pausing the MSDP Scaleout operator for
maintenance

For maintenance purpose, if you want the operator to stop reconciling the resources
of one CR but do not affect the resources of the other CRs, you can pause the
MSDP Scaleout operator.

To pause the MSDP Scaleout operator

1 Specify spec.paused: true in the CR.

2 Run kubectl apply -f <sample CR YAML>.

Do not forcibly delete the deployment resource of MSDP Scaleout operator.

Logging in to the pods
You can log in to the pods for the maintenance purpose.

To log in to the pod, run the kubectl executable file.

16Chapter

Run MSDP commands with non-root user msdpsvc after logging in to an engine
pod.

For example, sudo -E -u msdpsvc <command>

The MSDP Scaleout services in an engine pods are running with non-root user
msdpsvc. If you run the MSDP Scaleout services or commands with the root user,
MSDP Scaleout may stop working due to file permissions issues.

Reinstalling MSDP Scaleout operator
When you undeploy MSDP Scaleout operator, the MSDP Scaleout CRD is removed
from the AKS cluster. It also deletes all the existing MSDP Scaleout on the AKS
cluster. The PVC for the operator logs is also deleted. However, the MSDP Scaleout
critical data and metadata is not deleted.

To reinstall MSDP Scaleout operator

1 Run the following command to delete the MSDP Scaleout operator:

kubectl msdp delete [-k] [-n <sample-operator-namespace>]

2 Run the following command to redeploy the operator.

kubectl msdp init -i <your-acr-url>/msdp-operator:<version> -s

<storage-class-name> -l agentpool=<nodepool-name> [-n

<sample-operator-namespace>]

3 If the reclaim policy of the storage class is Retain, run the following command
to restart the existing MSDP Scaleout. MSDP Scaleout starts with the existing
data/metadata.

kubectl apply -f <your-cr-yaml>

Migrating the MSDP Scaleout to another node
pool

You can migrate an existing MSDP Scaleout on another node pool in case of the
Kubernetes infrastructure issues.

To migrate the MSDP Scaleout to another node pool

1 Ensure that no job running related to MSDP Scaleout that is going to migrate.

2 Update the node selector value spec.nodeSelector to the new node in the
CR YAML file.

About MSDP Scaleout maintenance
Reinstalling MSDP Scaleout operator

164

3 Apply new CR YAML to update the CR in the Kubernetes environment.

kubectl apply -f <your-cr-yaml>

Note: All affected pods or other Kubernetes workload objects must be restarted
for the change to take effect.

4 After the CR YAML file update, existing pods are terminated and restarted one
at a time, and the pods are re-scheduled for the new node pool automatically.

Note: Controller pods are temporarily unavailable when the MDS pod restarts.
Do not delete pods manually.

5 Run the following command to change MSDP Scaleout operator to the new
node pool:

kubectl msdp init -i <your-acr-url>/msdp-operator:<version> -s

<storage-class-name> -l agentpool=<new-nodepool-name>

6 If node selector does not match any existing nodes at the time of change, you
see the message on the console.

If auto scaling for node is enabled, it may resolve automatically as the new
nodes are made available to the cluster. If invalid node selector is provided,
pods may go in the pending state after the update. In that case, run the
command above again.

Do not delete the pods manually.

165About MSDP Scaleout maintenance
Migrating the MSDP Scaleout to another node pool

About MSDP Scaleout maintenance
Migrating the MSDP Scaleout to another node pool

166

Uninstalling MSDP
Scaleout from AKS

This chapter includes the following topics:

■ Cleaning up MSDP Scaleout

■ Cleaning up the MSDP Scaleout operator

Cleaning up MSDP Scaleout
When you uninstall the MSDP Scaleout deployment from AKS, the MSDP engines,
MSDP MDS servers, and the data is deleted from the cluster. The data is lost and
cannot be recovered.

17Chapter

To clean up MSDP Scaleout from AKS

1 Delete the MSDP Scaleout CR.

kubectl delete -f <sample-cr-yaml>

When an MSDP Scaleout CR is deleted, the critical MSDP data and metadata
is not deleted. Youmust delete it manually. If you delete the CRwithout cleaning
up the data and metadata, you can re-apply the same CR YAML file to restart
MSDP Scaleout again by reusing the existing data.

2 If your storage class is with the Retain policy, you must write down the PVs
that are associated with the CR PVCs for deletion in the Kubernetes cluster
level.

kubectl get

pod,svc,deploy,rs,ds,pvc,secrets,certificates,issuers,cm,sa,role,rolebinding

-n <sample-namespace> -o wide

kubectl get clusterroles,clusterrolebindings,pv -o wide

--show-labels|grep <sample-cr-name>

3 Delete all resources under the namespace where MSDP CR is deployed.

kubectl delete namespace <namespace>

4 If your storage class is with the Retain policy, you must delete the Azure disks
on Azure portal or using the Azure CLI.

az disk delete -g $RESOURCE_GROUP --name $AZURE_DISK --yes

See “Deploying MSDP Scaleout ” on page 105.

See “Reinstalling MSDP Scaleout operator” on page 164.

Cleaning up the MSDP Scaleout operator
You can delete the MSDP Scaleout operator to remove all related resources about
MSDP Scaleout operator. The MSDP Scaleout operator and logs are deleted.

Uninstalling MSDP Scaleout from AKS
Cleaning up the MSDP Scaleout operator

168

To clean up MSDP Scaleout operator from AKS

1 If your storage class is with Retain policy, write down the PVs that are
associated with the Operator PVCs for deletion in the Kubernetes cluster level.

kubectl get

pod,svc,deploy,rs,ds,pvc,secrets,certificates,issuers,cm,sa,role,rolebinding

-n <sample-operator-namespace> -o wide

kubectl get clusterroles,clusterrolebindings,pv -o wide

--show-labels

2 Delete the MSDP Scaleout operator.

kubectl msdp delete [-n <sample-operator-namespace>].

■ -k: Delete all resources of MSDP Scaleout operator except the namespace.

■ -n: Namespace scope for this request.
Default value: msdp-operator-system

3 If your storage class is with the Retain policy, you must delete the Azure disks
on Azure portal or using the Azure CLI.

az disk delete -g $RESOURCE_GROUP --name $AZURE_DISK --yes

See “Deploying MSDP Scaleout ” on page 105.

See “Reinstalling MSDP Scaleout operator” on page 164.

169Uninstalling MSDP Scaleout from AKS
Cleaning up the MSDP Scaleout operator

Uninstalling MSDP Scaleout from AKS
Cleaning up the MSDP Scaleout operator

170

Uninstalling Snapshot
Manager

This chapter includes the following topics:

■ Uninstalling Snapshot Manager from AKS

Uninstalling Snapshot Manager from AKS
When you uninstall Snapshot Manager from AKS, the Snapshot Manager related
services are deleted from the cluster.

Following commands can be used to remove and disable the Snapshot Manager
from NetBackup:

ENVIRONMENT_NAMESPACE="ns-155"

Make sure the flexsnap-operator pod is running and ready.

Comment out / remove cpServer part from environment.yaml then apply it.

kubectl apply -f environment.yaml -n $ENVIRONMENT_NAMESPACE sleep

10s

18Chapter

Uninstalling Snapshot Manager
Uninstalling Snapshot Manager from AKS

172

Troubleshooting
This chapter includes the following topics:

■ View the list of operator resources

■ View the list of product resources

■ View operator logs

■ View primary logs

■ Pod restart failure due to liveness probe time-out

■ Socket connection failure

■ Resolving an invalid license key issue

■ Resolving an issue where external IP address is not assigned to a NetBackup
server’s load balancer services

■ Resolving the issue where the NetBackup server pod is not scheduled for long
time

■ Resolving an issue where the Storage class does not exist

■ Resolving an issue where the primary server or media server deployment does
not proceed

■ Resolving an issue of failed probes

■ Resolving token issues

■ Resolving an issue related to insufficient storage

■ Resolving an issue related to invalid nodepool

■ Resolving a token expiry issue

19Chapter

■ Resolve an issue related to KMS database

■ Resolve an issue related to pulling an image from the container registry

■ Resolving an issue related to recovery of data

■ Check primary server status

■ Pod status field shows as pending

■ Ensure that the container is running the patched image

■ Getting EEB information from an image, a running container, or persistent data

■ Resolving the certificate error issue in NetBackup operator pod logs

■ Data migration unsuccessful even after changing the storage class through the
storage yaml file

■ Host validation failed on the target host

■ Primary pod is in pending state for a long duration

■ Taint, Toleration, and Node affinity related issues in cpServer

■ Operations performed on cpServer in environment.yaml file are not reflected

■ Host mapping conflict in NetBackup

■ NetBackup messaging queue broker take more time to start

■ Local connection is getting treated as insecure connection

■ Issue with capacity licensing reporting which takes longer time

■ Backing up data from Primary server's /mnt/nbdata/ directory fails with primary
server as a client

■ Primary pod goes in non-ready state

View the list of operator resources
To view all the operator resources, execute the following command on Kubernetes
cluster:

$ kubectl get all -n netbackup-operator-system

The output should be something like this:

NAME READY STATUS RESTARTS AGE

pod/msdp-operator- 2/2 Running 0 3h6m

Troubleshooting
View the list of operator resources

174

controller-manager-65d8fd7c4d-whqpm

pod/netbackup-operator- 2/2 Running 0 93m

controller-manager-55d6bf59c8-vltmp

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/msdp-operator- ClusterIP 10.96.144.99 <none> 8443/TCP 3h6m

controller-manager-

metrics-service

service/msdp-operator- ClusterIP 10.96.74.75 <none> 443/TCP 3h6m

webhook-service

service/netbackup- ClusterIP 10.96.104.94 <none> 8443/TCP 93m

operator-controller

-manager-metrics-service

service/netbackup- ClusterIP 10.96.210.26 <none> 443/TCP 93m

operator-webhook-service

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/msdp- 1/1 1 1 3h6m

operator-controller-manager

deployment.apps/netbackup 1/1 1 1 93m

-operator-controller-manager

NAME DESIRED CURRENT READY AGE

replicaset.apps/msdp- 1 1 1 3h6m

operator-controller-

manager-65d8fd7c4d

replicaset.apps/netbackup- 1 1 1 93m

operator-controller-manager-

55d6bf59c8

Verify that both pods display Running in the Status column and both deployments
display 2/2 in the Ready column.

View the list of product resources
To view the list of product resources run the following command:

175Troubleshooting
View the list of product resources

$ kubectl get --namespace <namespace>

all,environments,primaryservers,mediaservers,msdpscaleouts

The output should look like the following:

NAME READY STATUS RESTARTS AGE

pod/dedupe1-uss-controller

-79d554f8cc-598pr 1/1 Running 0 68m

pod/dedupe1-uss-mds-1 1/1 Running 0 75m

pod/dedupe1-uss-mds-2 1/1 Running 0 74m

pod/dedupe1-uss-mds-3 1/1 Running 0 71m

pod/media1-media-0 1/1 Running 0 53m

pod/environment-sample

-primary-0 1/1 Running 0 86m

pod/x10-240-0-12.veritas

.internal 1/1 Running 0 68m

pod/x10-240-0-13.veritas

.internal 2/2 Running 0 64m

pod/x10-240-0-14.veritas

.internal 2/2 Running 0 61m

pod/x10-240-0-15.veritas

.internal 2/2 Running 0 59m

NAME TYPE CLUSTER-IP PORT(S) AGE

service/dedupe1-

uss-controller ClusterIP 10.1.109.118 10100/TCP 68m

service/dedupe1-

uss-mds ClusterIP None 2379/TCP,2380/TCP 75m

service/dedupe1-

uss-mds-client ClusterIP 10.1.5.208 2379/TCP 75m

service/media1-

media-0 LoadBalancer 10.1.121.115 13782:30648/TCP,

1556:30248/TCP 54m

service/

environment-

sample-primary LoadBalancer 10.1.206.39 13781:30246/TCP,

13782:30498/TCP,

1556:31872/TCP,

443:30049/TCP,

Troubleshooting
View the list of product resources

176

8443:32032/TCP,

22:31511/TCP 87m

service/

x10-240-0-12

-veritas-internal LoadBalancer 10.1.44.188 10082:31199/TCP 68m

service/

x10-240-0-13

-veritas-internal LoadBalancer 10.1.21.176 10082:32439/TCP, 68m

service/

x10-240-0-14 10102:30284/TCP

-veritas-internal LoadBalancer 10.1.25.99 10082:31810/TCP, 68m

service/

x10-240-0-15 10102:31755/TCP

-veritas-internal LoadBalancer 10.1.185.135 10082:31664/TCP, 68m

10102:31811/TCP

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/dedupe1

-uss-controller 1/1 1 1 68m

NAME DESIRED CURRENT READY AGE

replicaset.apps/dedupe1-uss

-controller-79d554f8cc 1 1 1 68m

NAME READY AGE

statefulset.apps/media1-media 1/1 53m

statefulset.apps/environment

-sample-primary 1/1 86m

NAME TAG AGE STATUS

primaryserver.netbackup

.veritas.com/environment

-sample 10.1 88m Success

NAME TAG AGE PRIMARY SERVER STATUS

mediaserver.netbackup. x10-240-0-10

veritas.com/media1 10.1 54m .veritas.internal Success

NAME AGE TAG SIZE READY

msdpscaleout.msdp.

veritas.com/dedupe1 75m 17.0 4 4

177Troubleshooting
View the list of product resources

NAME READY AGE STATUS

environment.netbackup.

veritas.com/

environment-sample 3/3 88m Success

An environment is deployed successfully if all pods and environment CR display
status as "Success".

View operator logs
If environment deployment status is not successful, check operator logs for errors.

Command for MSDP Scaleout operator logs

$ kubectl logs pod/msdp-operator-controller-manager-65d8fd7c4d-whqpm

manager -n netbackup-operator-system-c manager

Command for NetBackup operator logs

$ kubectl logs

pod/netbackup-operator-controller-manager-55d6bf59c8-vltmp

netbackup-operator -n netbackup-operator-system

View primary logs
To view primary server logs execute the following command to get a shell to the
running container.

$ kubectl exec --stdin --tty pod/<primary-server-pod-name> -n

<namespace> -- /bin/bash

Once in the primary server shell prompt, to see the list of logs, run:

ls /usr/openv/logs/

Pod restart failure due to liveness probe time-out
As part of liveness probe for primary and media pods, a health script runs inside
the container to check the NetBackup health status.

When there is an issue with a container related to a full disk, CPU, or memory
pressure, the liveness probe gets timed out because of no response from the health
script. As a result, the Pod does not restart.

To resolve this issue, restart the Pod manually. Delete the Pod using the kubectl

delete pod/<podname> -n <namespace> command.

Troubleshooting
View operator logs

178

The Pod is deleted and Kubernetes creates another Pod.

Socket connection failure
Socket connection failure can happen because of the following reasons:

■ Long processing delays

■ Azure connection reset (default 4 minutes)

■ Load on CPU or Memory pressure

■ IO saturation and throttling under load

If there are problems with the TCP stacks on the hosts, network between the hosts,
or unusual long processing delays, then the connection may drop and the TCP
stack on the host is unaware of the situation.

The following error is displayed in the web UI under job details:

db_FLISTsend failed: unexpected message received (43)

*** - Error bptm (pid=14599) get_string() failed,

Connection reset by peer (104), network read error

*** - Info bptm (pid=14599) EXITING with status 42 <----------

*** - Info nbux-systest-media-1 (pid=14599)

StorageServer=PureDisk:nbux-systest-media-1;

Report=PDDO Stats for (nbux-systest-media-1):

scanned: 4195521 KB, CR sent: 171002 KB, CR sent over FC: 0 KB,

dedup: 95.9%, cache disabled, where dedup space saving:6.6%,

compression space saving:89.3%

*** - Info bpbkar (pid=19109) done. status: 42: network read failed

To resolve this issue, update the sysctl.conf values for NetBackup servers
deployed on the AKS cluster.

NetBackup image sets following values in sysctl.conf during AKS deployment:

■ net.ipv4.tcp_keepalive_time = 180

■ net.ipv4.tcp_keepalive_intvl = 10

■ net.ipv4.tcp_keepalive_probes = 20

■ net.ipv4.ip_local_port_range = 14000 65535

These settings are persisted at the location /mnt/nbdata/etc/sysctl.conf.

There are two ways to modify these values:

179Troubleshooting
Socket connection failure

■ Modify the value in both /etc/sysctl.conf and
/mnt/nbdata/etc/sysctl.conf and run the sysctl -p command to load the
modified values.

■ Modify the values in /mnt/nbdata/etc/sysctl.conf and restart the pod. The
new values are reflected after the pod restart.

If external media servers are used, perform the steps in the following order:

1. Add the following in /usr/openv/netbackup/bp.conf:

HOST_HAS_NAT_ENDPOINTS = YES

2. Add the following sysctl configuration values in etc/sysctl.conf on external
media servers to avoid any socket connection issues:

■ net.ipv4.tcp_keepalive_time = 180

■ net.ipv4.tcp_keepalive_intvl = 10

■ net.ipv4.tcp_keepalive_probes = 20

■ net.ipv4.ip_local_port_range = 14000 65535

■ net.core.somaxconn = 4096

3. Save the setting using the sysctl -p command.

Resolving an invalid license key issue
The NetBackup is not installed because the license key is invalid.

Pod remains in running state for long time and the installation log at
/mnt/nblogs/setup-server.log displays the following error:

ERROR: No valid license key for NetBackup Server or Enterprise Server

When you deploy NetBackup for the first time, perform the steps for primary CR
and media CR.

To resolve an invalid license key issue for Primary CR

1 Get the configmap name created for primary CR or media CR using the
following command:

kubectl get configmap -n <namespace>

2 Edit the license key stored in configmap using the following command:

kubectl edit configmap <primary-configmap-name> -n <namespace>

3 Update value for ENV_NB_LICKEY key in the configmap with correct license
key and save.

Troubleshooting
Resolving an invalid license key issue

180

4 Delete respective primary/media pod using the following command:

kubectl delete pod<primary-pod-name> -n <namespace>

New pod is auto created with updated license key value.

5 Edit environment CR with updated license key and save using the following
command:

kubectl edit environments.netbackup.veritas.com -n <namespace>

Resolving an issue where external IP address is
not assigned to a NetBackup server’s load
balancer services

The issue can be because of one of the following reasons:

■ The resourcePrefixName mentioned in custom resource is not unique and
valid.

■ The static IP is provided in networkLoadBalancer section in CR but it is not
created in AKS.

■ The subnet or resource group is mentioned in annotations of
networkLoadBalancer section in CR spec, the IP address is not available in
given subnet or resource group.

■ The RBAC permissions in your cluster for the given subnet or resource group
are not assigned properly for allocating IP addresses.

To resolve an issue where external IP address is not assigned to a NetBackup
server’s load balancer services

1 Check the event logs of load balancer service using the kubectl describe

service <svc-name> -n <namespace> command for detailed error information.

2 Run the kubectl edit Environment <environmentCR-name> -n

<namespace> command.

3 Depending on the output of the command and the reason for the issue, perform
the required steps and update the environment CR to resolve the issue.

Resolving the issue where the NetBackup server
pod is not scheduled for long time

The NetBackup server (primary server and media server) pods are stuck in Pending
state. The issue can be because of one of the following reasons:

181Troubleshooting
Resolving an issue where external IP address is not assigned to a NetBackup server’s load balancer services

■ Insufficient resource allocation.

■ Persistent volume claims are not bound to persistent volume.

■ NetBackup server pods have the anti-affinity rule added.

As a result, primary server and media server pods are scheduled on different nodes.
If nodes are not available, pod remains in pending state with event logs indicating
nodes are scaling up, if auto scaling is configured in cluster.

To resolve the issue where the NetBackup server pod is not scheduled for
long time

1 Check the pod event details for more information about the error using kubectl
describe <PrimaryServer/MediaServer_Pod_Name> -n <namespace>

command.

2 Depending on the output of the command and the reason for the issue, perform
the required steps and update the environment CR to resolve the issue.

Resolving an issue where the Storage class does
not exist

The Config-Checker checks if the storage class name given in primary server/media
server CR is available in the cluster.

The following error is displayed:

Error: ERROR Storage class with the <storageClassName> name does not exist.

After fixing this error, primary server or media server CR does not require any
changes. In this case, NetBackup operator reconciler loop is invoked after every
10 hours. If you want to reflect the changes and invoke the NetBackup operator
reconciler loop immediately, delete and reapply the primary server or media server
CR.

Troubleshooting
Resolving an issue where the Storage class does not exist

182

To resolve an issue where the Storage class does not exist

1 Create storage class with the same name given in primary server or media
server CR with ReclaimPolicy as Retain in the cluster.

To create storage class, refer to the following link:

Azure Kubernetes Service storage classes

In this scenario, no change in primary server or media server CR is required.
As a result, reconciler loop is not invoked immediately.

2 To invoke the reconciler loop again, delete the respective CR.

If it is primary server CR, use the kubectl delete -f <environment.yaml>

command, or if it is media server CR, edit the Environment CR by removing
the media server section in the environment.yaml.

Note: To reuse the mediaServer section information, you must save it and
apply the yaml again with the new changes using the kubectl apply -f

<environment.yaml> command.

3 Apply the CR again.

If it is primary server CR then reapply it using the kubectl apply -f

<environment.yaml> command or if it is media server CR, addmediaServer
section that was deleted earlier with required data in environment.yaml and
reapply it using the kubectl apply -f <environment.yaml> command.

Resolving an issue where the primary server or
media server deployment does not proceed

primary server or media server deployment does not proceed even if
configcheckmode = default in primary server or media server CR spec and no
other child resources are created. It is possible that the Config-Checker job has
failed some of the configuration checks.

183Troubleshooting
Resolving an issue where the primary server or media server deployment does not proceed

https://docs.microsoft.com/en-us/azure/aks/concepts-storage#storage-classes

To resolve an issue where the primary server or media server deployment
does not proceed

1 Check the status of Config-CheckerConfigcheckerstatusmentioned in primary
server or media server CR status using the kubectl describe

<PrimaryServer/MediaServer> <CR name> -n <namespace> command.

If the state is failed, check the Config-Checker pod logs.

2 Retrieve the Config-Checker pod logs using the kubectl logs

<config-checker-pod-name> -n <operator-namespace> command.

Config-Checker pod name can be in the following format:

<serverType>-configchecker-<configcheckermode>-randomID, for example
if its Config-Checker for primary server with configcheckermode = default,
pod name is primary-configcehcker-default-dhg34.

3 Depending on the error in the pod logs, perform the required steps and edit
the environment CR to resolve the issue.

4 Data migration jobs create the pods that run before deployment of primary
server. Data migration pod exist after migration for one hour only if data
migration job failed. The logs for data migration execution can be checked
using the following command:

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace>

User can copy the logs to retain them even after job pod deletion using the
following command:

kubectl logs <migration-pod-name> -n

<netbackup-environment-namespace> > jobpod.log

Resolving an issue of failed probes
If pod is not in ready state for log time, the kubectl describe pod/<podname> -n

<namespace> command displays the following errors:

■ Readiness probe failed: The readiness of

the external dependencies is not set.

Server setup is still in progress.

■ Liveness probe failed: bpps command did

not list nbwmc process. nbwmc is not alive.

The Primary server is unhealthy.

Troubleshooting
Resolving an issue of failed probes

184

To resolve an issue of failed probes

1 If you are deploying NetBackup on Azure Kubernetes Service Cluster for the
first time, check the installation logs for detailed error.

Use any of the following methods:

■ Execute the following command in the respective primary server or media
server pod and check the logs in /mnt/nblogs/setup-server.logs:
kubectl exec -it -n <namespace> <pod-name> -- /bin/bash

■ Run the kubectl logs pod/<podname> -n <namespace> command.

2 Check pod events for obtaining more details for probe failure using the following
command:

kubectl describe pod/<podname> -n <namespace>

Kubernetes will automatically try to resolve the issue by restarting the pod after
liveness probe times out.

3 Depending on the error in the pod logs, perform the required steps or contact
technical support.

Resolving token issues
Media server installation log displays the following error in
/mnt/nblogs/setup-server.logs:

nbcertcmd: The -getCertificate operation

failed for server <primaryServerName>,

EXIT STATUS 5940: Reissue token is mandatory,

please provide a reissue token

NetBackup media server and NetBackup primary server were in running state.
Media server persistent volume claim or media server pod is deleted. In this case,
reinstallation of respective media server can cause the issue.

To resolve token issues

1 Open the NetBackup webUI using primary server hostname given in the primary
server CR status.

2 Navigate to Security > Host Mappings.

3 ClickActions > Allow auto reissue certificate for the respective media server
name.

185Troubleshooting
Resolving token issues

4 Delete data and logs PVC for respective media server only using the kubectl
delete pvc <pvc-name> -n <namespace> command.

The persisted data is deleted.

5 Delete respective media server pod using kubectl delete <pod-name> -n

<namespace> command.

New media server pod and new PVCs for the same media server are created.

Resolving an issue related to insufficient storage
Setup-server.logs of NetBackup primary server displays an error.

Insufficient storage on the node can cause this issue. Minimum hardware
requirements for NetBackup may not be completed. During fresh deployment of
primary server, the following error is displayed in /mnt/nblogs/setup-server.logs:

DBSPAWN ERROR: -86

Not enough memory to start

To resolve an issue related to insufficient storage

1 Create a new nodepool with the hardware specifications as mentioned in the
NetBackup Deployment on AKS Administrator's Guide.

2 Run the kubectl get nodes command to ensure that the nodes from the
newly created nodepool are used in your cluster.

3 Delete the primary server CR using the kubectl delete -f

<environment.yaml> command.

4 Update nodeSelector spec in primary section and apply the environment.yaml
again using the kubectl apply -f <environment.yaml> command.

Resolving an issue related to invalid nodepool
Invalid nodepool is mentioned in primary server or media server CR nodeSelector
spec. Due to this, primary server or media server pod fails to schedule.

The following error is displayed:

Error: Did not match Pod’s node affinity/selector.

To resolve an issue related to invalid nodepool

1 If you are deploying NetBackup on Azure Kubernetes Service Cluster for the
first time, delete the respective CR.

Troubleshooting
Resolving an issue related to insufficient storage

186

If it is primary server CR:

■ Delete it using the kubectl delete -f <environment.yaml> command.

■ Update the node selector in primary server section in environment.yaml

and apply it again using the kubectl apply -f <environment.yaml>

command.

2 For media server CR: Delete the media server CR by removing the
mediaServer section in the environment.yaml and save the changes.

Note: Ensure that you copy spec information of the media server CR. The spec
information is used to reapply the media server CR.

3 Apply the new changes using the kubectl apply -f <environment.yaml>

command.

4 Add the mediaServer section, update the nodeSelector, and reapply the
environment.yaml using the kubectl apply -f <environment.yaml>

command.

Resolving a token expiry issue
While creating a newmedia pod, token may expire, and installation of media server
is not completed. The installation logs at /mnt/nblogs/setup-server.logs display
an error on the respective media server.

EXIT STATUS 5934: The token has expired.

To resolve a token expiry issue

1 Edit the environment server CR using the kubectl edit environment

<environment-CR-name> -n <namespace> command.

2 In the mediaServer section, reduce the replica count.

For example, if media pod with name xyz-media-2 has the token expired issue
and the replica was originally 3, then change the replica count to 2. Save the
changes. The extra pods are deleted and statefulset displays new replica count
in ready state (2/2).

187Troubleshooting
Resolving a token expiry issue

3 Edit the media server CR using the kubectl edit MediaServer

<mediaServer-CR-name> -n <namespace> command.

4 Increase replica count to original replica count.

As given in the example, change the replica count to 3. This creates additional
media pods and reissues the token for newly added media server.

Resolve an issue related to KMS database
Installation logs at /mnt/nblogs/setup-server.logs display an error message
with other details. In this scenario, you must configure KMS manually.

Error: Failed to create KMS database

To resolve this issue, execute the following command in the primary server pod:

kubectl exec -it -n <namespace> <primary-server-pod-name> -- /bin/bash

Refer the NetBackup Security and Encryption Guide for configure KMS manually:

For other troubleshooting issue related to KMS, refer the NetBackup Troubleshooting
Guide.

Resolve an issue related to pulling an image from
the container registry

Primary or media server failed to deploy with ImagePullBackOff error. If the pod
Status field displays ImagePullBackOff, it means that the pod could not start
because Kubernetes cannot pull a container image. A misspelled registry or image
name or image registry being not reachable can cause a ImagePullBackOff status.

Run the $ k get all -n netbackup-operator-system command.

The output should look like:

NAME READY STATUS RESTARTS AGE

pod/msdp-operator

-controller-manager-

65d8fd7c4d-bsgms 2/2 Running 0 7m9s

pod/netbackup-operator

-controller-manager-

5df6f58b9b-6ftt9 1/2 ImagePullBackOff 0 13s

For additional details, use the following command:

Troubleshooting
Resolve an issue related to KMS database

188

https://www.veritas.com/content/support/en_US/doc/21733320-146139160-0/v21634773-146139160
https://www.veritas.com/content/support/en_US/doc/15179611-148872028-0/v141196362-148872028
https://www.veritas.com/content/support/en_US/doc/15179611-148872028-0/v141196362-148872028

$ kubectl describe pod/<pod_name> -n netbackup-operator-system

Resolve this issue using any of the following methods:

■ Check if image name and tag are correct. If not, edit and update the environment
CR using the kubectl edit environment <environment CR-name> -n

<namespace> command with correct image name and tag, and then save the
changes.

■ Check if the user is authorized and has permissions to access the Azure
container registry.

Resolving an issue related to recovery of data
If a PVC is deleted or the namespace where primary or media server is deployed,
is deleted or deployment setup is uninstalled, and you want to recover the previous
data, attach the primary server and media server PVs to its corresponding PVCs.

In case of recovering data from PV, you must use the same environment CR specs
that are used at the time of previous deployment. If any spec field is modified, data
recovery may not be possible.

To resolve an issue related to recovery of data

1 Run the kubectl get PV command.

2 From the output list, note down PV names and its corresponding claim (PVC
name and namespace) that are relevant from previous deployment point of
view.

3 Set claim ref for the PV to null using the kubectl patch pv <pv name> -p

'{"spec":{"claimRef": null}}' command.

For example, kubectl patch pv

pvc-4df282e2-b65b-49b8-8d90-049a27e60953 -p '{"spec":{"claimRef":

null}}'

4 Run the kubectl get PV command and verify bound state of PVs isAvailable.

189Troubleshooting
Resolving an issue related to recovery of data

5 For the PV to be claimed by specific PVC, add the claimref spec field with
PVC name and namespace using the kubectl patch pv <pv-name> -p

'{"spec":{"claimRef": {"apiVersion": "v1", "kind":

"PersistentVolumeClaim", "name": "<Name of claim i.e. PVC name>",

"namespace": "<namespace of pvc>"}}}' command.

For example,

kubectl patch pv <pv-name> -p '{"spec":{"claimRef": {"apiVersion":

"v1", "kind": "PersistentVolumeClaim", "name":

"data-testmedia-media-0", "namespace": "test"}}}'

While adding claimRef add correct PVC names and namespace to respective
PV. Mapping should be as it was before deletion of the namespace or deletion
of PVC.

6 Deploy environment CR that deploys the primary server and media server CR
internally.

Check primary server status
Check the primary server custom resource status, with the command:

$ kubectl get primaryserver.netbackup.veritas.com/environment-sample

-n <namespace>

NAME TAG AGE STATUS

environment-sample 10.0 3h1m Failed

If the output shows STATUS as Failed as in the example above, check the primary
pod log for errors with the command:

$ kubectl logs pod/environment-sample-primary-0 -n <namespace>

Pod status field shows as pending
If the pod Status field shows Pending state, it indicates that Kubernetes is not able
to schedule the pod. To check use the following command:

$ kubectl get all -n netbackup-operator-system

The output is something like:

NAME READY STATUS RESTARTS AGE

pod/msdp-operator-

controller-manager-

65d8fd7c4d-bsgms 2/2 Running 0 12m

Troubleshooting
Check primary server status

190

pod/netbackup-

operator-controller-

manager-6c9dc8d87f

-pq8mr 0/2 Pending 0 15s

For more details use the following pod describe command:

$ kubectl describe

pod/netbackup-operator-controller-manager-6c9dc8d87f-pq8mr -n

netbackup-operator-system

The output is something like:

Type Reason Age Message

---- ------ ---- -------

Warning FailedScheduling 56s (x3 over 2m24s) 0/4 nodes are

available:1 node(s)

had taint {node-

role.kubernetes.

io/master: }, that

the pod didn't

tolerate, 3 node(s)

didn't match

Pod's node

affinity/selector.

To resolve this issue verify the nodeSelector settings in the
operator/patch/operator_patch.yaml file.

Ensure that the container is running the patched
image

There are three copies of the container image present in the Kubernetes environment
during deployment or patching.

The first image copy is created on a local docker instance during image load
operation. To check this copy, perform the following:

191Troubleshooting
Ensure that the container is running the patched image

1 Run:

$ docker load -i images/pdk8soptr-17.0.tar.gz

Sample output:

Loaded image: msdp-operator:17.0

2 Taking the image name from step 1, run:

$ docker image ls | grep msdp-operator

Sample output:

msdp-operator 17.0 353d2bd50105 2 days ago 480 MB

3 Taking the value from step 2, run:

$ docker inspect 353d2bd50105 | jq .[].Id

"sha256:353d2bd50105cbc3c61540e10cf32a152432d5173bb6318b8e"

The second copy is created in Azure Container Registry (ACR). To check this copy,
perform the following:

1 Keep the image name and version same as original, run:

$ docker image tag msdp-operator:17.0

testregistry.azurecr.io/msdp-operator:17.0

2 Run:

$ docker image ls | grep msdp-operator

Sample output:

msdp-operator 17.0 353d2bd50105 2 days ago 480 MB

tregistry.azurecr.io/msdp-operator 17.0 353d2bd50105 2 days ago 480 MB

3 To push the image to the registry, run:

$ docker push testregistry.azurecr.io/msdp-operator

The push refers to a repository [testregistry.azurecr.io/msdp-operator]

0a504041c925: Layer already exists

17.0: digest:

sha256:d294f260813599562eb5ace9e0acd91d61b7dbc53c3 size:

2622

Troubleshooting
Ensure that the container is running the patched image

192

4 To verify local image digest after the push operation, run:

$ docker inspect 353d2bd50105 | jq .[].RepoDigests

Sample output:

[

"testregistry.azurecr.io/msdp-operator@sha256:

d294f260813599562eb5ace9e0acd91d61b7dbc53c3"

]

5 To verify image presence in the registry, run:

$ az acr repository list --name testregistry

Sample output:

[

"msdp-operator",

]

6 To verify image digest in registry, run:

$ az acr repository show -n testregistry --image

msdp-operator:17.0

Sample output:

{

"changeableAttributes": {

"deleteEnabled": true,

"listEnabled": true,

"readEnabled": true,

"writeEnabled": true

},

"createdTime": "2022-02-01T13:43:26.6809388Z",

"digest": "sha256:d294f260813599562eb5ace9e0acd91d61b7dbc53c3",

"lastUpdateTime": "2022-02-01T13:43:26.6809388Z",

"name": "17.0",

"signed": false

}

The third copy is located on a Kubernetes node running the container after it is
pulled from the registry. To check this copy, do the following:

193Troubleshooting
Ensure that the container is running the patched image

1 Run;

$ kubectl get nodes -o wide

NAME STATUS VERSION INTERNAL-IP OS-IMAGE

aks-agentpool-7601-vmss000 Ready v1.21.7 10.240.0.4 Ubuntu 18.04.6 LTS

2 Use kubectl debug to run a container on the node:

$ kubectl debug node/aks-nodepool1-7601-vmss000-it

--image=mcr.microsoft.com/aks/fundamental/base-ubuntu:v0.0.11

root@aks-agentpool-7601-vmss000:/#

3 You can interact with the node session from the privileged container:

chroot /host

4 Verify the presence of the image:

/usr/local/bin/crictl image | grep msdp

Sample output:

testregistry.azurecr.io/msdp-operator 17.0 353d2bd50105c 182MB

5 Verify the image ID on the Kubernetes node, run:

/usr/local/bin/crictl inspecti 353d2bd50105c | jq .[].id

Sample output

"sha256:353d2bd50105cbc3c61540e10cf32a152432d5173bb6318b8e"

null

6 Verify the image digest on the Kubernetes node, run:

/usr/local/bin/crictl inspecti 353d2bd50105c | jq .[].repoDigests

Sample output

[

"testregistry.azurecr.io/msdp-operator@sha256:

d294f260813599562eb5ace9e0acd91d61b7dbc53c3"

]

null

Troubleshooting
Ensure that the container is running the patched image

194

How to make sure that you are running the correct image
Use the steps given above to identify image ID and Digest and compare with values
obtained from the registry and the Kubernetes node running the container.

Note:MSDPScaleout images (uss-engine, uss-mds, uss-controller, msdp-operator)
use IfNotPresent imagePullPolicy. A unique image tag is required in order for a
Kubernetes node to pull an updated image.

Getting EEB information from an image, a running
container, or persistent data

To view the list of installed EEBs, run the nbbuilder script provided in the EEB file
archive.

$ bash nbbuilder.sh -registry_name testregistry.azurecr.io

-list_installed_eebs -nb_src_tag=10.1-2 -msdp_src_tag=17.0-2

Sample output:

Wed Feb 2 20:48:13 UTC 2022: Listing strings for EEBs

installed in testregistry.azurecr.io/netbackup/main:10.1-2.

EEB_NetBackup_10.1Beta6_PET3980928_SET3992004_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992021_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992022_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992023_EEB1

EEB_NetBackup_10.1Beta6_PET3992020_SET3992019_EEB2

EEB_NetBackup_10.1Beta6_PET3980928_SET3992009_EEB2

EEB_NetBackup_10.1Beta6_PET3980928_SET3992016_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992017_EEB1

Wed Feb 2 20:48:13 UTC 2022: End

Wed Feb 2 20:48:13 UTC 2022: Listing strings for EEBs

installed in testregistry.azurecr.io/uss-controller:17.0-2.

EEB_MSDP_17.0_PET3980928_SET3992007_EEB1

EEB_MSDP_17.0_PET3992020_SET3992019_EEB2

EEB_MSDP_17.0_PET3980928_SET3992010_EEB2

Wed Feb 2 20:48:14 UTC 2022: End

Wed Feb 2 20:48:14 UTC 2022: Listing strings for EEBs

installed in testregistry.azurecr.io/uss-engine:17.0-2.

EEB_MSDP_17.0_PET3980928_SET3992006_EEB1

EEB_MSDP_17.0_PET3980928_SET3992023_EEB1

EEB_MSDP_17.0_PET3992020_SET3992019_EEB2

195Troubleshooting
Getting EEB information from an image, a running container, or persistent data

EEB_MSDP_17.0_PET3980928_SET3992009_EEB2

EEB_MSDP_17.0_PET3980928_SET3992010_EEB2

EEB_MSDP_17.0_PET3980928_SET3992018_EEB1

Wed Feb 2 20:48:14 UTC 2022: End

Wed Feb 2 20:48:14 UTC 2022: Listing strings for EEBs

installed in testregistry.azurecr.io/uss-mds:17.0-2.

EEB_MSDP_17.0_PET3980928_SET3992008_EEB1

EEB_MSDP_17.0_PET3992020_SET3992019_EEB2

EEB_MSDP_17.0_PET3980928_SET3992010_EEB2

Wed Feb 2 20:48:15 UTC 2022: End

Alternatively, if the nbbuilder script is not available, you can view the installed
EEBs by executing the following command:

$ docker run --rm <image_name>:<image_tag> cat

/usr/openv/pack/pack.summary

Sample output:

EEB_NetBackup_10.1Beta6_PET3980928_SET3992004_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992021_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992022_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992023_EEB1

EEB_NetBackup_10.1Beta6_PET3992020_SET3992019_EEB2

EEB_NetBackup_10.1Beta6_PET3980928_SET3992009_EEB2

EEB_NetBackup_10.1Beta6_PET3980928_SET3992016_EEB1

EEB_NetBackup_10.1Beta6_PET3980928_SET3992017_EEB1

To view all EEBs installed in a running container, run:

$ kubectl exec --stdin --tty <primary-pod-name> -n <namespace> --

cat /usr/openv/pack/pack.summary

Note: The pack directory may be located in different locations in the uss-*

containers. For example: /uss-controller/pack , /uss-mds/pack,

/uss-proxy/pack.

To view a list of installed data EEBs from a running container, run:

$ kubectl exec --stdin --tty <primary-pod-name> -n <namespace> --

cat /mnt/nbdata/usr/openv/pack/pack.summary

Troubleshooting
Getting EEB information from an image, a running container, or persistent data

196

Resolving the certificate error issue in NetBackup
operator pod logs

Following error is displayed in NetBackup operator pod logs when the primary server
certificate is changed:

ERROR controller-runtime.manager.controller.environment

Error defining desired resource {"reconciler group": "netbackup.veritas.com",

"reconciler kind": "Environment", "name": "test-delete", "namespace": "netbackup-environment",

"Type": "MSDPScaleout", "Resource": "dedupe1", "error": "Unable to get primary host UUID:

Get \"https://nbux-10-244-33-24.vxindia.veritas.com:1556/netbackup/config/hosts\":

x509: certificate signed by unknown authority (possibly because of \"crypto/rsa:

verification error\" while trying to verify candidate authority certificate \"nbatd\")"}

To resolve this issue, restart the NetBackup operator by deleting the NetBackup
operator pod using the following command:

kubectl delete <Netbackup-operator-pod-name> -n <namespace>

Datamigration unsuccessful even after changing
the storage class through the storage yaml file

To resolve the data migration unsuccessful issue

1 Check if the previous/older migration PVC is still present.

2 Check if an existing migration job is in pending/running state.

3 Migration will not be triggered if storage class name is not changed for volumes
(catalog) of primary server.

4 Check if the updated storage yaml file is set to use any other storage class
other than Azure premium files for catalog.

5 Check if the protocol version for catalog storage class is set to NFS to allow
successful migration.

197Troubleshooting
Resolving the certificate error issue in NetBackup operator pod logs

6 Check if the status of migration reported by the migration pod in the logs is
other than MigrationStatus: Passed.

7 Ensure that the User's Azure subscription has Classic Network Contributor
role which is also a pre-requisite for migration/upgrade.

Note: If reconciler is called while migration PVC exists the invocation will be
failed, customers must wait for the completion of a migration job if an existing
migration job is running and they can also monitor the migration job pods to
check if there are any issues with the migration job. In order to resolve any
problems encountered during existing migration job pod they may choose to
delete the migration job pod manually. If the migration job pod does not exist,
then customer may delete the migration PVC.

Host validation failed on the target host
The following error message is displayed when host mapping conflicts with
NetBackup:

Error in log: ..exited with status 7659: Connection cannot be

established because the host validation failed on the target host

In Kubernetes deployment, communication to pod happens through multiple layers
that is, load balancer, nodes and pod. In certain setups during communication host
may get associated with certain IP and that gets changed in course of time. That
IP may get associated with some different pod and can cause conflict. The host
mapping entries is in the form of :ffff:<ip address>.

To resolve this conflict issue

1 To verify the conflict entries, see Mappings for Approval tab section of
NetBackup™ Security and Encryption Guide.

2 Remove the entries that are not valid.

For more information, seeRemoving host ID to host namemappings section
of NetBackup™ Security and Encryption Guide

Primary pod is in pending state for a long duration
Primary pod and Operator pod have pod anti-affinity set.

Troubleshooting
Host validation failed on the target host

198

To resolve the issue of long duration pending state of primary pod

1 Verify if Operator pod and Primary pod are scheduled to same node using the
following commands:

kubectl get all -n <primary pod namespace> -o wide

kubectl get all -n <operator pod namespace> -o wide

2 If it is allocated to same node then create new node with same node selector
given in CR for primary server.

3 Delete the Primary pod which is in pending state.

The newly created Primary pod must not be in pending state now.

Taint, Toleration, and Node affinity related issues
in cpServer

The cpServer control pool pod is in pending state
If one of the following cpServer control pool pod is in pending state, then perform
the steps that follow:

flexsnap-agent, flexsnap-api-gateway, flexsnap-certauth,

flexsnap-coordinator, flexsnap-idm, flexsnap-nginx,

flexsnap-notification, flexsnap-scheduler, flexsnap-, flexsnap-,

flexsnap-fluentd-, flexsnap-fluentd

1. Obtain the pending pod's toleration and affinity status using the following
command:

kubectl get pods <pod name>

2. Check if the node-affinity and tolerations of pod are matching with:

■ fields listed in cpServer.nodepool.controlpool or primary.nodeselector
in the environment.yaml file.

■ taint and label of node pool, mentioned in
cpServer.nodeselector.controlpool or primary.nodeselector in the
environment.yaml file.

If all the above fields are correct and matching and still the control pool pod is in
pending state, then the issue may be due to all the nodes in nodepool running at
maximum capacity and cannot accommodate new pods. In such case the noodpool
must be scaled properly.

199Troubleshooting
Taint, Toleration, and Node affinity related issues in cpServer

The cpServer data pool pod is in pending state
If one of the following cpServer data pool pod is in pending state, then perform the
steps that follow:

flexsnap-listener,flexsnap-workflow,flexsnap-datamover

1. Obtain the pending pod's toleration and affinity status using the following
command:

kubectl get pods <pod name>

2. Check if the node-affinity and tolerations of pod are matching with:

■ fields listed in cpServer.nodepool.datapool in the environment.yaml

file.

■ taint and label of node pool, mentioned in cpServer.nodeselector.datapool
in the environment.yaml file.

If all the above fields are correct and matching and still the control pool pod is in
pending state, then the issue may be due to all the nodes in nodepool running at
maximum capacity and cannot accommodate new pods. In such case the noodpool
must be scaled properly.

The Snapshot Manager operator (flexsnap-operator) pod
is in pending state
1. Obtain the pending pod's toleration and affinity status using the following

command:

kubectl get pods <pod name>

2. Check if the node-affinity and tolerations of pod are matching with:

■ fields listed in operator/kustomization.yaml file.

■ taint and label of node pool, mentioned in above values.

If all the above fields are correct and matching and still the control pool pod is in
pending state, then the issue may be due to all the nodes in nodepool running at
maximum capacity and cannot accommodate new pods. In such case the noodpool
must be scaled properly.

Nodes configured with incorrect taint and label
If the nodes are configured with incorrect taint and label values, the the user can
edit them using the following command:

az aks nodepool update \ --resource-group <resource_group> \

--cluster-name <cluster_name> \ --name <nodepool_name> \ --node-taints

<key>=<value>:<effect> \ --no-wait

Troubleshooting
Taint, Toleration, and Node affinity related issues in cpServer

200

az aks nodepool update \ --resource-group <resource_group> \

--cluster-name <cluster_name> \ --name <cluster_name> \ --labels

<key>=<value>

Operations performed on cpServer in
environment.yaml file are not reflected

Operations such as add/remove/comment/uncomment performed on cpServer in
environment.yaml file are not reflected even after applying them. The reasons
and solutions for the same are as follow:

■ Check if the action is reflected in cpServer CRO by using the following command:
kubectl describe cpserver n $ENVIRONMENT_NAMESPACE

If changes are not reflected then , check environment operator logs and if
changes are reflected then follow the next steps.

■ Check if the flexsnap operator is running by using the following command:
kubectl get pods -n $OPERATOR_NAMESPACE | grep flexsnap-operator

| awk '{printf $1" " }

■ The flexsnap operator is running and is already processing the event (Update,
Upgrade, Create, Delete).

■ To check logs of running operator, use the following command:
kubectl logs -f $(kubectl get pods -n $OPERATOR_NAMESPACE |

grep flexsnap-operator | awk '{printf $1" " }')

■ If you still want to go ahead with new action, you can stop the processing of
the current event so that the new events are processed. To do so delete the
flexsnap operator pod using the following command:
kubectl delete pod $(kubectl get pods -n $OPERATOR_NAMESPACE |

grep flexsnap-operator | awk '{printf $1" " }')

This will re-create the flexsnap-operator pod which will be ready to serve
new events.

Note: The newly created pod might have missed the event which was
performed before re-creation of pod. In this case you may have to reapply
environment.yaml.

201Troubleshooting
Operations performed on cpServer in environment.yaml file are not reflected

Host mapping conflict in NetBackup
The following error message is displayed due to host mapping conflict in NetBackup:

..exited with status 7659: Connection cannot be established because

the host validation failed on the target host

In kubernetes deployment, communication to pod goes through multiple layers that
is, load balancer, nodes and pod. In certain setups during communication host may
get associated with certain IP and would be changed. That IP may get associated
with some different pod and which causes conflict. The host mapping entries is in
the form of "::ffff:<ip address>"

To resolve the issue of host mapping conflict in NetBackup

1 To resolve the conflict issue, refer to Mappings for Approval tab section of the
Veritas NetBackup™ Security and Encryption Guide.

2 To remove the entries that are not valid, refer to Removing host ID to host
name mappings section of the Veritas NetBackup™ Security and Encryption
Guide.

NetBackup messaging queue broker take more
time to start

This issue is due to nbmqbroker service taking more time to start.

To resolve this issue, perform the following steps

1 Exec into the respective Primary Server pod using the following command:

kubectl exec -it <pod-name> -n <namespace> -- /bin/bash

2 Check the nbmqbroker service logs which are in /usr/openv/mqbroker/logs/
folder.

If the value of checking service start status count: is more than the 75 then
nbmqbroker would take more time to start.

3 Stop the nbmqbroker service using the following command:

/usr/openv/mqbroker/bin/nbmqbroker stop

4 Open the /usr/openv/mqbroker/bin/nbmqbroker file.

Troubleshooting
Host mapping conflict in NetBackup

202

https://www.veritas.com/content/support/en_US/doc/21733320-127424841-0/v126691152-127424841
https://www.veritas.com/content/support/en_US/doc/21733320-127424841-0/v126691125-127424841
https://www.veritas.com/content/support/en_US/doc/21733320-127424841-0/v126691125-127424841

5 Increase the value of total_time and sleep_duration and save the file.

6 Start the mqbroker service using the following command:

/usr/openv/mqbroker/bin/nbmqbroker start

If the Primary Server pod gets restarted then the user must perform the same
above steps to increase the values of total_time and sleep_duration, as these
values will not get persisted after pod restart.

Local connection is getting treated as insecure
connection

The following error message is displayed when un-necessary audit events are get
logged only when reverse dns lookup is enabled for primary and media Load
Balancer service:

Host 'eaebbef2-57bc-483b-8146-1f6616622276' is trying to connect to

host '<serverName>.abc.com'. The connection is dropped, because the

host '<serverName>.abc.com' now appears to be NetBackup 8.0 or earlier

Primary and media servers are referred with multiple IP's inside the pod (pod
IP/LoadBalancer IP). With reverse name lookup of IP enabled, NetBackup treats
the local connection as remote insecure connection.

To resolve the audit events issue, disable the reverse name lookup of primary and
media Load Balancer IP.

Issue with capacity licensing reporting which
takes longer time

The nbdeployutil utility does not performwell on EFS or Azure files based volumes.
Specify different block storage based volume to get good performance.

203Troubleshooting
Local connection is getting treated as insecure connection

To resolve the issue, perform the following:

1 For running report manually, pass --parentdir /mnt/nbdb/<FOLDER_NAME>

to nbdeployutil command.

2 For changing parentdir to scheduled capacity reporting, provide a custom
value in nbdeployutilconfig.txt file.

3 Create/Edit the nbdeployutilconfig.txt file located at
/usr/openv/var/global/ by adding the following entry:

[NBDEPLOYUTIL_INCREMENTAL]

PARENTDIR=/mnt/nbdb/<FOLDER_NAME>

Backing up data from Primary server's
/mnt/nbdata/ directory fails with primary server
as a client

Backing up data from Primary server's /mnt/nbdata/ directory fails with primary
server as a client.

From NetBackup version 10.1 onwards, the /mnt/nbdata directory would be on
Azure file share. The /mnt/nbdata directory of primary server is mounted using
the NFS protocol.

Hence for backing up the data from /mnt/nbdata directory, change the policy
attribute for such policies.

To resolve this issue, enable the Follow NFS check box in policy attribute.

Primary pod goes in non-ready state
When jobs are running and if failover or upgrade of NetBackup primary server is
triggered then primary pod may go in non-ready state. To confirm the issue,

■ Exec into primary pod by running the following command:
kubectl exec -it <primary_pod_name> -n <namespace> -- bash

■ Open the logs using the cat /mnt/nblogs/setup-server.log command and
verify the last lines:

Softlink /mnt/nbdata/usr/openv/netbackup/db/rb.db does not exist or broken.

Error: Issue detected while validating soft links, restarting the pod may fix this.

NetBackup health check disabled.

Troubleshooting
Backing up data from Primary server's /mnt/nbdata/ directory fails with primary server as a client

204

To resolve this issue, delete the corrupted database and correct symlink as follows:

1. Exec into primary pod by running the following command:

kubectl exec -it <primary_pod_name> -n <namespace> – bash

2. In primary pod run the following commands in order:

/opt/veritas/vxapp-manage/nbu-health disable

bp.kill_all

mv -f /mnt/nbdata/usr/openv/netbackup/db/rb.db /mnt/nbdb/usr/openv/netbackup/db/rb.db

ln -sf /mnt/nbdb/usr/openv/netbackup/db/rb.db /mnt/nbdata/usr/openv/netbackup/db/rb.db

chown -h nbsvcusr:nbsvcusr /mnt/nbdata/usr/openv/netbackup/db/rb.db

bp.start_all

/opt/veritas/vxapp-manage/nbu-health enable

205Troubleshooting
Primary pod goes in non-ready state

Troubleshooting
Primary pod goes in non-ready state

206

CR template
This appendix includes the following topics:

■ Secret

■ MSDP Scaleout CR

Secret
The Secret is the Kubernetes security component that stores the MSDP credentials
that are required by the CR YAML.

The secret is used to store the MSDP credential, which is required

by the CR YAML as follows.

This part should be created separately and not be part of CR Template.

The secret should have a "username" and a "password" key-pairs with the

corresponding username and password values.

Please follow MSDP guide for the rules of the credential.

https://www.veritas.com/content/support/en_US/article.100048511

The pattern is "^[\\w!$+\\-,.:;=?@[\\]`{}\\|~]{1,62}$"

We can create the secret directly via kubectl command:

kubectl create secret generic sample-secret --namespace

sample-namespace \

--from-literal=username=<username> --from-literal=password=<password>

Alternatively, we can create the secret with a YAML file in the

following format.

apiVersion: v1

kind: Secret

metadata:

name: sample-secret

The namespace needs to be present.

namespace: sample-namespace

AAppendix

stringData:

Please follow MSDP guide for the credential characters and length.

https://www.veritas.com/content/support/en_US/article.100048511

The pattern is "^[\\w!$+\\-,.:;=?@[\\]`{}\\|~]{1,62}$"

username: xxxx

password: xxxxxx

MSDP Scaleout CR
■ The CR name must be less than 40 characters.

■ The MSDP credentials stored in the Secret must match MSDP credential rules.
See Deduplication Engine credentials for NetBackup

■ MSDP CR cannot be deployed in the namespace of MSDP operator. It must be
in a separate namespace.

■ You cannot reorder the IP/FQDN list. You can update the list by appending the
information.

■ You cannot change the storage class name. The storage class must be backed
with Azure disk CSI storage driver "disk.csi.azure.com".

■ You cannot change the data volume list other than for storage expansion. It is
append-only and storage expansion only. Up to 16 data volumes are supported.

■ Like the data volumes, the catalog volume can be changed for storage expansion
only.

■ You cannot change or expand the size of the log volume by changing the MSDP
CR.

■ You cannot enable NBCA after the configuration.

■ Once KMS and the OST registration parameters set, you cannot change them.

■ You cannot change the core pattern.

MSDP Scaleout CR template:

The MSDPScaleout CR YAML

apiVersion: msdp.veritas.com/v1

kind: MSDPScaleout

metadata:

The CR name should not be longer than 40 characters.

name: sample-app

The namespace needs to be present for the CR to be created in.

It's not allowed to deploy the CR in the same namespace with MSDP

operator.

CR template
MSDP Scaleout CR

208

https://www.veritas.com/content/support/en_US/article.100048511

namespace: sample-namespace

spec:

Your ACR URL where the docker images can be pulled from by the

AKS cluster on demand

The allowed length is in range 1-255

It's optional for BYO. The code does nt check the presence or

validation.

User needs to specify it correctly if it's needed.

containerRegistry: sample.azurecr.io

#

The MSDP version string. It's the tag of the MSDP docker images.

The allowed length is in range 1-64

version: "sample-version-string"

#

Size defines the number of Engine instances in MSDP Scaleout.

The allowed size is between 1-16

size: 4

#

The IP and FQDN pairs are used by the Engine Pods to expose the MSDP

services.

The IP and FQDN in one pair should match each other correctly.

They must be pre-allocated.

The item number should match the number of Engine instances.

They're not allowed to be changed or re-ordered. New items can be

appended for scaling out.

The first FQDN is used to configure the storage server in NetBackup,

automatically if autoRegisterOST is enabled,

or manually by the user if not.

serviceIPFQDNs:

The pattern is IPv4 or IPv6 format

- ipAddr: "sample-ip1"

The pattern is FQDN format. `^[a-z][a-z0-9-.]{1,251}[a-z0-9]$`

fqdn: "sample-fqdn1"

- ipAddr: "sample-ip2"

fqdn: "sample-fqdn2"

- ipAddr: "sample-ip3"

fqdn: "sample-fqdn3"

- ipAddr: "sample-ip4"

fqdn: "sample-fqdn4"

#

Optional annotations to be added in the LoadBalancer services for the

Engine IPs.

In case we run the Engines on private IPs, we need to add some

209CR template
MSDP Scaleout CR

customized annotations to the LoadBalancer services.

See https://docs.microsoft.com/en-us/azure/aks/internal-lb

It's optional. It's not needed in most cases if we're

with public IPs.

loadBalancerAnnotations:

service.beta.kubernetes.io/azure-load-balancer-internal: "true"

#

SecretName is the name of the secret which stores the MSDP credential.

AutoDelete, when true, will automatically delete the secret specified

by SecretName after the

initial configuration. If unspecified, AutoDelete defaults to true.

When true, SkipPrecheck will skip webhook validation of the MSDP

credential. It is only used in data re-use

scenario (delete CR and re-apply with pre-existing data) as the

secret will not take effect in this scenario. It

can't be used in other scenarios. If unspecified, SkipPrecheck

defaults to false.

credential:

The secret should be pre-created in the same namespace which has

the MSDP credential stored.

The secret should have a "username" and a "password" key-pairs

with the corresponding username and password values.

Please follow MSDP guide for the rules of the credential.

https://www.veritas.com/content/support/en_US/article.100048511

A secret can be created directly via kubectl command or with the

equivalent YAML file:

kubectl create secret generic sample-secret --namespace

sample-namespace \

--from-literal=username=<username> --from-literal=password=

<password>

secretName: sample-secret

Optional

Default is true

autoDelete: true

Optional

Default is false.

Should be specified only in data re-use scenario (aka delete and

re-apply CR with pre-existing data)

skipPrecheck: false

#

Paused is used for maintenance only. In most cases you don't need

to specify it.

When it's specified, MSDP operator stops reconciling the corresponding

CR template
MSDP Scaleout CR

210

MSDP-X (aka the CR).

Optional.

Default is false

paused: false

#

The storage classes for logVolume, catalogVolume and dataVolumes should

be:

- Backed with Azure disk CSI driver "disk.csi.azure.com" with the

managed disks, and allow volume

expansion.

- The Azure in-tree storage driver "kubernetes.io/azure-disk" is not

supported. You need to explicitly

enable the Azure disk CSI driver when configuring your AKS cluster,

or use k8s version v1.21.x which

has the Azure disk CSI driver built-in.

- In LRS category.

- At least Standard SSD for dev/test, and Premium SSD or Ultra Disk

for production.

- The same storage class can be used for all the volumes.

-

#

LogVolume is the volume specification which is used to provision a

volume of an MDS or Controller

Pod to store the log files and core dump files.

It's not allowed to be changed.

In most cases, 5-10 GiB capacity should be big enough for one MDS or

Controller Pod to use.

logVolume:

storageClassName: sample-azure-disk-sc1

resources:

requests:

storage: 5Gi

#

CatalogVolume is the volume specification which is used to provision a

volume of an MDS or Engine

Pod to store the catalog and metadata. It's not allowed to be changed

unless for capacity expansion.

Expanding the existing catalog volumes expects short downtime of the

Engines.

Please note the MDS Pods don't respect the storage request in

CatalogVolume, instead they provision the

volumes with the minimal capacity request of 500MiB.

catalogVolume:

211CR template
MSDP Scaleout CR

storageClassName: sample-azure-disk-sc2

resources:

requests:

storage: 600Gi

#

DataVolumes is a list of volume specifications which are used to

provision the volumes of

an Engine Pod to store the MSDP data.

The items are not allowed to be changed or re-ordered unless for

capacity expansion.

New items can be appended for adding more data volumes to each

Engine Pod.

Appending new data volumes or expanding the existing data volumes

expects short downtime of the Engines.

The allowed item number is in range 1-16. To allow the other MSDP-X

Pods (e.g. Controller, MDS) running

on the same node, the item number should be no more than "<the maximum

allowed volumes on the node> - 5".

The additional 5 data disks are for the potential one MDS Pod, one

Controller Pod or one MSDP operator Pod

to run on the same node with one MSDP Engine.

dataVolumes:

- storageClassName: sample-azure-disk-sc3

resources:

requests:

storage: 8Ti

- storageClassName: sample-azure-disk-sc3

resources:

requests:

storage: 8Ti

#

NodeSelector is used to schedule the MSDPScaleout Pods on the specified

nodes.

Optional.

Default is empty (aka all available nodes)

nodeSelector:

e.g.

agentpool: nodepool2

sample-node-label1: sampel-label-value1

sample-node-label2: sampel-label-value2

#

NBCA is the specification for MSDP-X to enable NBCA SecComm

for the Engines.

CR template
MSDP Scaleout CR

212

Optional.

nbca:

The master server name

The allowed length is in range 1-255

masterServer: sample-master-server-name

The CA SHA256 fingerprint

The allowed length is 95

cafp: sample-ca-fp

The NBCA authentication/reissue token

The allowed length is 16

For security consideration, a token with maximum 1 user allowed and

valid for 1 day should be sufficient.

token: sample-auth-token

#

KMS includes the parameters to enable KMS for the Engines.

We support to enable KMS in init or post configuration.

We don't support to change the parameters once they have been set.

Optional.

kms:

As either the NetBackup KMS or external KMS (EKMS) is configured or

registered on NetBackup master server, then used by

MSDP by calling the NetBackup API, kmsServer is the NetBackup master

server name.

kmsServer: sample-master-server-name

keyGroup: sample-key-group-name

#

autoRegisterOST includes the parameter to enable or disable the

automatic registration of

the storage server, the default disk pool and storage unit when MSDP-X

configuration finishes.

autoRegisterOST:

If it is true, and NBCA is enabled, the operator would register the

storage server,

disk pool and storage unit on the NetBackup primary server, when the

MSDP CR is deployed.

The first Engine FQDN is the storage server name.

The default disk pool is in format "default_dp_<firstEngineFQDN>".

The default storage unit is in format "default_stu_<firstEngineFQDN>".

The default maximum concurrent jobs for the STU is 240.

In the CR status, field "ostAutoRegisterStatus.registered" with value

True, False or Unknown indicates the registration state.

It's false by default.

Note: Please don't enable it unless with NB_9.1.2_0126+.

213CR template
MSDP Scaleout CR

enabled: true

#

CorePattern is the core pattern of the nodes where the MSDPScaleout

Pods are running.

It's path-based. A default core path "/core/core.%e.%p.%t" will be

used if not specified.

In most cases, you don't need to specify it.

It's not allowed to be changed.

Optional.

corePattern: /sample/core/pattern/path

#

tcpKeepAliveTime sets the namespaced sysctl parameter

net.ipv4.tcp_keepalive_time in Engine Pods.

It's in seconds.

The minimal allowed value is 60 and the maximum allowed value is 1800.

A default value 120 is used if not specified. Set it to 0 to disable

the option.

It's not allowed to change unless in maintenance mode (Paused=true),

and the change will not apply until the Engine Pods get restarted

For AKS deployment in P release, please leave it unspecified or specify

it with a value smaller than 240.

tcpKeepAliveTime: 120

#

TCPIdleTimeout is used to change the default value for Azure Load

Balancer rules and Inbound NAT rules.

It's in minutes.

The minimal allowed value is 4 and the maximum allowed value is 30.

A default value 30 minutes is used if not specified. Set it to 0 to

disable the option.

It's not allowed to change unless in maintenance mode (Paused=true),

and the change will not apply

until the Engine Pods and the LoadBalancer services get recreated.

For AKS deployment in P release, please leave it unspecified or specify

it with a value larger than 4.

tcpIdleTimeout: 30

CR template
MSDP Scaleout CR

214

	NetBackup™ Deployment Guide for Azure Kubernetes Services (AKS) Cluster
	Contents
	1. Introduction to NetBackup on AKS
	About NetBackup deployment on Azure Kubernetes Services (AKS) cluster
	Required terminology
	User roles and permissions
	About MSDP Scaleout
	About MSDP Scaleout components
	Limitations in MSDP Scaleout

	2. Deployment with environment operators
	About deployment with the environment operator
	Prerequisites
	Contents of the TAR file
	Known limitations

	Deploying the operators manually
	Deploying NetBackup and MSDP Scaleout manually
	Deploying NetBackup and Snapshot Manager manually
	Configuring the environment.yaml file
	Uninstalling NetBackup environment and the operators
	Applying security patches

	3. Assessing cluster configuration before deployment
	How does the Config-Checker utility work
	Config-Checker execution and status details
	How Data-Migration works
	Data-Migration execution and status details

	4. Deploying NetBackup
	Preparing the environment for NetBackup installation on AKS
	Recommendations of NetBackup deployment on AKS
	Limitations of NetBackup deployment on AKS
	About primary server CR and media server CR
	After installing primary server CR
	After Installing the media server CR

	Monitoring the status of the CRs
	Updating the CRs
	Deleting the CRs
	Configuring NetBackup IT Analytics for NetBackup deployment
	Managing NetBackup deployment using VxUpdate
	Migrating the node pool for primary or media servers

	5. Upgrading NetBackup
	Preparing for NetBackup upgrade
	Upgrading NetBackup operator
	Upgrading Snapshot Manager operator
	Upgrading NetBackup application
	Upgrading Snapshot Manager
	Post-migration tasks
	Upgrade NetBackup during data migration
	Procedure to rollback when upgrade fails

	6. Deploying Snapshot Manager
	Overview
	Prerequisites
	Installing the docker images

	7. Migration and upgrade of Snapshot Manager
	Migration and upgrade of Snapshot Manager

	8. Deploying MSDP Scaleout
	Deploying MSDP Scaleout
	Prerequisites
	Installing the docker images and binaries
	Initializing the MSDP operator
	Configuring MSDP Scaleout
	Using MSDP Scaleout as a single storage pool in NetBackup
	Configuring the MSDP cloud in MSDP Scaleout

	9. Upgrading MSDP Scaleout
	Upgrading MSDP Scaleout

	10. Monitoring NetBackup
	Monitoring the application health
	Telemetry reporting
	About NetBackup operator logs
	Expanding storage volumes
	Allocating static PV for Media pods

	11. Monitoring MSDP Scaleout
	About MSDP Scaleout status and events
	Monitoring with Azure Container insights
	The Kubernetes resources for MSDP Scaleout and MSDP operator

	12. Monitoring Snapshot Manager deployment
	Overview
	Logs of Snapshot Manager
	Configuration parameters

	13. Managing the Load Balancer service
	About the Load Balancer service
	Notes for Load Balancer service
	Opening the ports from the Load Balancer service

	14. Performing catalog backup and recovery
	Backing up a catalog
	Restoring a catalog

	15. Managing MSDP Scaleout
	Adding MSDP engines
	Adding data volumes
	Expanding existing data or catalog volumes
	Manual storage expansion

	MSDP Scaleout scaling recommendations
	MSDP Cloud backup and disaster recovery
	About the reserved storage space
	Cloud LSU disaster recovery

	MSDP multi-domain support
	Configuring Auto Image Replication
	About MSDP Scaleout logging and troubleshooting
	Collecting the logs and the inspection information

	16. About MSDP Scaleout maintenance
	Pausing the MSDP Scaleout operator for maintenance
	Logging in to the pods
	Reinstalling MSDP Scaleout operator
	Migrating the MSDP Scaleout to another node pool

	17. Uninstalling MSDP Scaleout from AKS
	Cleaning up MSDP Scaleout
	Cleaning up the MSDP Scaleout operator

	18. Uninstalling Snapshot Manager
	Uninstalling Snapshot Manager from AKS

	19. Troubleshooting
	View the list of operator resources
	View the list of product resources
	View operator logs
	View primary logs
	Pod restart failure due to liveness probe time-out
	Socket connection failure
	Resolving an invalid license key issue
	Resolving an issue where external IP address is not assigned to a NetBackup server’s load balancer services
	Resolving the issue where the NetBackup server pod is not scheduled for long time
	Resolving an issue where the Storage class does not exist
	Resolving an issue where the primary server or media server deployment does not proceed
	Resolving an issue of failed probes
	Resolving token issues
	Resolving an issue related to insufficient storage
	Resolving an issue related to invalid nodepool
	Resolving a token expiry issue
	Resolve an issue related to KMS database
	Resolve an issue related to pulling an image from the container registry
	Resolving an issue related to recovery of data
	Check primary server status
	Pod status field shows as pending
	Ensure that the container is running the patched image
	Getting EEB information from an image, a running container, or persistent data
	Resolving the certificate error issue in NetBackup operator pod logs
	Data migration unsuccessful even after changing the storage class through the storage yaml file
	Host validation failed on the target host
	Primary pod is in pending state for a long duration
	Taint, Toleration, and Node affinity related issues in cpServer
	Operations performed on cpServer in environment.yaml file are not reflected
	Host mapping conflict in NetBackup
	NetBackup messaging queue broker take more time to start
	Local connection is getting treated as insecure connection
	Issue with capacity licensing reporting which takes longer time
	Backing up data from Primary server's /mnt/nbdata/ directory fails with primary server as a client
	Primary pod goes in non-ready state

	A. CR template
	Secret
	MSDP Scaleout CR

