
Veritas NetBackup™
DataStore SDK
Programmer's Guide for
XBSA 1.1.0

Release 9.1

NetBackup™ DataStore SDK Programmer's Guide
for XBSA 1.1.0

Last updated: 2021-06-06

Legal Notice
Copyright © 2021 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas
Technologies LLC or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

This product may contain third-party software for which Veritas is required to provide attribution
to the third party (“Third-party Programs”). Some of the Third-party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the Third-party Legal Notices document accompanying this
Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Veritas Technologies LLC SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC
2625 Augustine Drive
Santa Clara, CA 95054

https://www.veritas.com/about/legal/license-agreements

http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

Documentation
Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The latest documentation is available on the Veritas
website:

https://sort.veritas.com/documents

Documentation feedback
Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:

NB.docs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)
Veritas Services and Operations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:NB.docs@veritas.com
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Chapter 1 Introduction to NetBackup XBSA 8

About Introduction to NetBackup XBSA .. 8
What is NetBackup XBSA? .. 8
What does NetBackup XBSA do? .. 9
Terminology .. 9
Important concepts ... 10
Resources .. 11

Chapter 2 How to set up the SDK .. 12

System requirements .. 12
Installing the SDK ... 13

Installation requirements .. 13
Installation instructions for UNIX platforms 13
Installation instructions for Windows platforms 14

Uninstalling the SDK ... 14
Configuration ... 15
Description of the XBSA SDK package ... 15
Library files ... 15
Header files ... 16

Chapter 3 Using the NetBackup XBSA interface 17

Getting help with the API .. 17
NetBackup XBSA data structures .. 17

Object data ... 18
Object descriptors .. 18
Query descriptors ... 20
Buffers ... 21

NetBackup XBSA environment .. 24
Environment variable definitions .. 25
Extended environment variable definitions 27

XBSA sessions and transactions ... 33
Sessions .. 33
Transactions ... 34

Creating a NetBackup XBSA application ... 38

Contents

Initiating a session .. 38
Backup - creating an object .. 40
Query - finding an object descriptor .. 49
Restore - retrieving an object’s data ... 52
Delete - deleting an object or image ... 63
Media IDs - obtaining media IDs .. 66
Logging and NetBackup .. 67
Client in a cluster .. 68
Performance considerations ... 69

Chapter 4 How to build an XBSA application 70

Getting help .. 70
Flags and defines ... 70
How to build in debug mode ... 71
How to debug the application .. 71
Static libraries .. 71
Dynamic libraries .. 72
End-user configuration .. 72

Chapter 5 How to run a NetBackup XBSA application 73

About How to run a NetBackup XBSA application 73
Creating a NetBackup policy ... 73
Running a NetBackup XBSA application 74
Backups and restores initiated by NetBackup (through a script)

... 75
Backups and restores from the command line 75

Chapter 6 API reference .. 76

Error messages ... 76
Function calls .. 78

Conventions .. 80
Function specifications .. 80

BSABeginTxn .. 80
BSACreateObject ... 81
BSADeleteObject ... 84
BSAEndData ... 86
BSAEndTxn .. 87
BSAGetData ... 87
BSAGetEnvironment ... 89
BSAGetLastError ... 90
BSAGetNextQueryObject ... 91

5Contents

BSAGetObject ... 92
BSAInit ... 94
BSAQueryApiVersion .. 96
BSAQueryObject .. 97
BSAQueryServiceProvider ... 98
BSASendData ... 99
BSATerminate .. 100
NBBSAAddToMultiObjectRestoreList .. 101
NBBSADeleteImage .. 102
NBBSAEndGetMultipleObjects .. 103
NBBSAFreeJobInfo ... 104
NBBSAGetEnv ... 105
NBBSAGetErrorString ... 106
NBBSAGetJobId ... 106
NBBSAGetJobInfo .. 108
NBBSAGetMediaIds .. 111
NBBSAGetMultipleObjects ... 113
NBBSAGetServerError .. 114
NBBSALogMsg .. 115
NBBSASetEnv ... 116
NBBSAUpdateEnv .. 117
NBBSAValidateFeatureId ... 117

Type definitions .. 118
Enumerated types ... 119
Data structures ... 122

Chapter 7 Process flow and troubleshooting 130

About Process flow and troubleshooting .. 130
Backup ... 130

Stream backup process flow description 131
Restore .. 133

Stream restore process flow description 134

Chapter 8 How to use the sample files .. 136

What the sample files do .. 136
Sample programs ... 136
Sample scripts ... 138

Description of sample files .. 138
How to build the sample programs ... 139

6Contents

Chapter 9 Support and updates .. 141

About Support and updates .. 141

Appendix A Register authorized locations 142

Registering authorized locations used by a NetBackup database
script-based policy .. 142

Index .. 145

7Contents

Introduction to NetBackup
XBSA

This chapter includes the following topics:

■ About Introduction to NetBackup XBSA

■ What is NetBackup XBSA?

■ What does NetBackup XBSA do?

■ Terminology

■ Important concepts

■ Resources

About Introduction to NetBackup XBSA
The applications or the facilities that need data storage management for backup or
archive purposes can use the NetBackup XBSA application programming interface
(API). The XBSA API creates a backup or an archive application that communicates
with NetBackup.

What is NetBackup XBSA?
XBSA is an Open Group Technical Standard that defines a Backup Services API
(XBSA). The XBSA specification consists of source procedure calls, type definitions,
data structures, and return codes. The client applications use these to be able to
use a backup service, NetBackup, and to store and manage data.

The NetBackup XBSA is an API to NetBackup developed to the XBSA specifications.
The NetBackup XBSA interface has extended the XBSA specifications to make it

1Chapter

easier to use and enhance performance when used with NetBackup. Exceptions
are noted throughout the document.

See “Resources” on page 11.

NetBackup XBSA is provided as a Software Developers Kit (SDK) that includes the
header files and the libraries that are required to create an XBSA application.

What does NetBackup XBSA do?
The NetBackup XBSA interface allows an XBSA application to create, query, retrieve,
and delete data objects using NetBackup for data storage. The operations on the
objects use the rules and the policies that NetBackup defines and enforces.
Examples of these rules and policies include the type of media the objects are
stored on, the number of copies, the retention policies, the scheduled operations,
and so on.

Objects are created and retrieved as a stream of data. Each object also has a set
of attributes that are used to describe the object. These attributes include a CopyId,
created by the NetBackup XBSA interface, that uniquely defines the object. The
XBSA application specifies and uses other attributes to describe the object. When
an object is retrieved, it is returned as a data stream and the XBSA application
restores it to its original form.

An XBSA application can also query the NetBackup XBSA interface for the objects
that it owns. This query is based on a subset of the attributes that were specified.
The result of a query is a list of objects and their attributes. It can also be an empty
list.

Objects can also be deleted when the XBSA application no longer needs them.
Deleting an object prevents it from being retrieved or queried but does not
necessarily delete the data. When the actual data gets deleted is a function of
NetBackup.

Terminology
The fundamental terms necessary to understand this NetBackup XBSA are described
in the following table.

9Introduction to NetBackup XBSA
What does NetBackup XBSA do?

Table 1-1 XBSA Terms

DefinitionTerm

Application-specific software that uses the NetBackup XBSA API to
request NetBackup services. Typically, an XBSA application is tightly
bound to a user application (such as a DBMS) or an operating system
service (such as a file system).

XBSA application

The NetBackup software that communicates with NetBackup to carry
out the functions that are defined by this specification.

NetBackup XBSA
interface

The NetBackup XBSA environment is the environment that exists
between the NetBackup XBSA interface and the XBSA application. A
NetBackup XBSA session defines this environment. NetBackup XBSA
environment variables are used to pass specific NetBackup information
between the XBSA application and the NetBackup XBSA interface.
Setting platform environment variables (such as getenv or setenv)
has no effect on the NetBackup XBSA environment.

NetBackup XBSA
environment

A NetBackup XBSA session is a logical connection between an XBSA
application and NetBackup XBSA interface. A session begins with a
call to BSAInit() and ends with a call to BSATerminate(). Nested
sessions are not supported.

NetBackup XBSA
session

The NetBackup XBSA API uses an object-based paradigm. Every data
object visible and transferred at the NetBackup XBSA interface is a
NetBackup XBSA object. The XBSA application defines the objects
that it backs up and restores.

NetBackup XBSA
object

Important concepts
To get the most out of using the NetBackup XBSA interface, a working knowledge
of NetBackup is required. When the XBSA application controls NetBackup concepts,
such as policy, schedule, time-outs, and multiplexing, it can be more robust and
perform better in a NetBackup environment. Other items, like storage units,
determine where the data gets stored and that can affect the XBSA application.

Note: The NetBackup XBSA interface does not provide an interface for managing
the configuration, media, jobs, and so on. These types of operations must be done
through other NetBackup command line or graphical users interface.

10Introduction to NetBackup XBSA
Important concepts

Resources
The NetBackup XBSA API specification is based on the Open Group Technical
Standard for Systems Management: Backup Services API (XBSA) Document
Number: C425. More information on this standard can be found at the following
URL:

http://archive.opengroup.org/publications/archive/CDROM/c425.pdf

11Introduction to NetBackup XBSA
Resources

archive.opengroup.org/publications/archive/CDROM/c425.pdf

How to set up the SDK
This chapter includes the following topics:

■ System requirements

■ Installing the SDK

■ Uninstalling the SDK

■ Configuration

■ Description of the XBSA SDK package

■ Library files

■ Header files

System requirements
The following items are needed before setting up the SDK.

■ Supported systems. See the Database Agent Compatibility list for NetBackup
Enterprise Server for a list of platforms that are supported with XBSA. This list
is available at the following URL:
http://www.netbackup.com/compatibility

■ ANSI-compatible compiler

■ To develop an application, you need NetBackup, a DataStore License Key, and
the NetBackup DataStore SDK installed.

■ To run an application, you need a NetBackup client installed (on the client running
the XBSA application) and the DataStore License Key (on the NetBackup server).

2Chapter

http://www.netbackup.com/compatibility

Installing the SDK
The NetBackup for DataStore SDK is released on a separate CD from the rest of
NetBackup. You must have this CD to install the SDK. When the SDK is installed,
the files should be moved to the environment where the development of the XBSA
application is to be done.

Installation requirements
The following items are required before you install the SDK:

■ NetBackup 9.1 server software is installed and operational on the server where
the SDK is to be installed.

■ Adequate disk space (approximately 20 M) on the server must be present to
receive the software.

Installation instructions for UNIX platforms
To install the SDK on UNIX platforms

1 Log on as the root user on the computer.

If you are already logged on, but are not the root user, execute the following
command.

su - root

2 Verify that a registered and valid license key resides on the master server.

To view or add license keys, perform one of the following:

■ Run the following command:

/usr/openv/netbackup/bin/admincmd/get_license_key

If you run the get_license_key command from the master server, it returns
the correct information by default.
If you run the get_license_key command from the media server, specify
the master server’s host name as the computer you are querying. If you do
not specify the master server’s host name, the command returns licensing
information about the media server.

■ Open the NetBackup Administration Console and choose Help > License
Keys.

3 Insert the NetBackup DataStore SDK CD-ROM into the drive.

13How to set up the SDK
Installing the SDK

4 Change the working directory to the CD-ROM directory.

cd /CD_mount_point

5 Load and install the software by executing the install script.

./install

A prompt appears asking if the package is correct.

Answer y.

The SDK files are extracted into the directory
install_path/openv/netbackup/sdk.

The file version_dstore is extracted into the directory
install_path/openv/share.

Installation instructions for Windows platforms
To install the SDK on Windows platforms

1 Insert the CD-ROM into the drive.

■ On systems with Autoplay enabled for CD-ROM drives, the install program
starts automatically.

■ On the systems that have Autoplay disabled, click the Start option and
chooseRun. Type D:\Autorun\AutoRunI.exe, where D:\ is your CD-ROM
drive.

2 Follow the prompts throughout the wizard.

Uninstalling the SDK
The NetBackup for DataStore SDK is delivered in native packaging format. Remove
the NetBackup for DataStore SDK by executing the native command appropriate
for your operating system:

■ AIX: installp -u VRTSnbsds

■ HP-UX: swremove VRTSnbsds

■ Linux: rpm -e VRTSnbsds

■ Solaris: pkgrm VRTSnbsds

Windows: On the Control Panel, select Programs and Features. Select Veritas
NetBackup - DataStore, then click Remove.

14How to set up the SDK
Uninstalling the SDK

Configuration
Creating an XBSA application using the NetBackup XBSA SDK should require a
minimum of setup. The SDK is installed as read only in the NetBackup directory.
The files that are used should be moved to the development environment of the
application.

The sample directory provides a Makefile for UNIX platforms and one for Windows
platforms. They create valid executables for the sample programs, but they should
only be used as guides. The developers should use the compile options and libraries
that are optimal for their application. The XBSA libraries and header files themselves
do not require any special options.

Description of the XBSA SDK package
The NetBackup SDK contains the libraries with the XBSA interfaces for each of the
platforms that the SDK supports. Header files are required to compile an XBSA
application. The SDK is installed in the NetBackup directory, either
/usr/openv/netbackup/sdk/DataStore/XBSA on UNIX or
install_directory\VERITAS\NetBackup\sdk\DataStore\XBSA on Windows.
This directory contains all of the files necessary to build an XBSA application.

The package contains the following directories.

Table 2-1 SDK/DataStore/XBSA Directories

DescriptionDirectory

Contains sample programs and scripts.samples

Contains the library files for each supported system.lib

Contains the header files.include

Library files
The NetBackup XBSA SDK contains the archive libraries for each of the systems.
Installed with the NetBackup client is an XBSA shared object library. This allows
the developer to choose the method of binding for each application. Both of these
libraries contain all XBSA functions and all external references.

The XBSA libraries are found in the directory
/usr/openv/netbackup/sdk/DataStore/XBSA/lib. In this directory is a directory
for each hardware type. Within each of these directories is a directory for each
supported operating system level. For UNIX operating systems, there is the

15How to set up the SDK
Configuration

libxbsa.a library. For the Windows operating systems, there is both an xbsa.lib

and a xbsas.lib. The xbsa.lib was generated when creating the xbsa.dll and
xbsas.lib is a full static library.

Header files
Two header files are released with the SDK. These should be used when you
compile the XBSA application. These header files are found in the
/usr/openv/netbackup/sdk/DataStore/XBSA/include directory.

Table 2-2 Header Files

DescriptionFile

Header file that contains the XBSA defined structures.xbsa.h

Header file that contains NetBackup specific definitions for the
NetBackup XBSA interface.

nbbsa.h

16How to set up the SDK
Header files

Using the NetBackup
XBSA interface

This chapter includes the following topics:

■ Getting help with the API

■ NetBackup XBSA data structures

■ NetBackup XBSA environment

■ XBSA sessions and transactions

■ Creating a NetBackup XBSA application

Getting help with the API
While working with the API, you can obtain reference information about the XBSA
functions.

See “Error messages” on page 76.

Sample applications are included with XBSA.

See “What the sample files do” on page 136.

NetBackup XBSA data structures
This section describes the XBSA data structures and explains how the NetBackup
XBSA interface and the XBSA application use them for creating and manipulating
XBSA objects.

3Chapter

Object data
NetBackup XBSA object data contains the actual data entity that is archived or
backed up by an XBSA application. The NetBackup XBSA API supports only one
type of object data, which is a variable-length, unstructured and uninterpreted
byte-stream.

To a specific XBSA application, however, the XBSA object data can contain an
internal structure that reflects the data of the application objects that the XBSA
application has archived or backed up. In this context, the XBSA object data can
contain one of the following examples: a UNIX file system, a UNIX directory, a file,
a document, a disk image, a data stream, or a memory dump.

Through the NetBackup XBSA interface, object data can be stored, retrieved, or
deleted, but not searched or modified. Since the object data can be stored on slow
(or offline) media, it is generally not advisable for an XBSA application to store
metadata in object data, especially the information that can influence a data-retrieval
decision.

However, the metadata of an XBSA object, that is stored in the catalog, can be
replicated in its object data if it enhances the performance of the object restore.
This is an XBSA application implementation decision.

Object descriptors
A NetBackup XBSA object has a BSA_ObjectDescriptor, that contains cataloging
information and optional application-specific object metadata. Cataloging information
is capable of interpretation and searching by the NetBackup XBSA interface.
Application-specific object metadata is not interpretable by the NetBackup XBSA
interface but it can be retrieved and interpreted by an application. Using an object’s
objectName or its assigned copyId identifier, the corresponding
BSA_ObjectDescriptor and object data can be retrieved through the NetBackup
XBSA interface.

A BSA_ObjectDescriptor consists of a collection of object attributes. The basic data
types used for XBSA object attributes are:

■ Fixed-length character strings

■ Hierarchical character strings (with a specified delimiter, and a length limit on
the overall string)

■ Enumerations

■ Integers (with a specified range limit)

■ Date-time (in a standard C TM structure) format and precision; for example,
yyyymmddhhmm)

18Using the NetBackup XBSA interface
NetBackup XBSA data structures

The attributes are shown in the following table:

Table 3-1 BSA_ObjectDescriptor Attributes

SearchableData TypeAttribute

Yes(consisting of two parts)objectOwner

[fixed-length character string]bsa_ObjectOwner

[hierarchical character string]app_ObjectOwner

Yes(consisting of two parts)objectName

[fixed-length character string]objectSpaceName

[hierarchical character string]pathName

Yes[date-time]createTime

Yes[enumeration]copyType

No64-bit unsigned integercopyId

No64-bit unsigned integerrestoreOrder

No[fixed-length character string]resourceType

Yes[enumeration]objectType

Yes[enumeration]objectStatus

No[fixed-length character string]objectDescription

No[64-bit unsigned integer]estimatedSize

No[fixed-length byte string]objectInfo

Each NetBackup XBSA object is a copy of certain application object(s):

■ To preserve the semantics of the use of each copy within the
BSA_ObjectDescriptor, each NetBackup XBSA object has a copyType of either
backup or archive. The NetBackup XBSA interface recognizes the copyType
so that the two types of objects can be managed differently and accessed
separately.

Note: It is up to the XBSA application to manage these types differently, as the
NetBackup XBSA interface only keeps track of the type of the object.

19Using the NetBackup XBSA interface
NetBackup XBSA data structures

■ Each NetBackup XBSA object also has an objectStatus of either most_recent
or not_most_recent.

■ To capture an application object's type information, the corresponding NetBackup
XBSA object can have a resourceType (for example, "filesystem") and a possible
resource-specific BSA_ObjectType (for example, BSA_ObjectType_FILE).

An XBSA application can search for a NetBackup XBSA object within a certain
search scope (for example, among objects in a certain objectSpaceName). It
qualifies the search on the value of the appropriate searchable attributes.

On the other hand, non-searchable, application-specific attributes can be provided
by an XBSA application for storage in the BSA_ObjectDescriptor, but the NetBackup
XBSA interface does not interpret these attributes. They are stored in the NetBackup
XBSA object attributes objectInfo, resourceType, and objectDescription.

The objectInfo field defaults to a character string. It can also be used to store binary
data by using the NBBSA_OBJINFO_LEN XBSA environment variable.

Through these descriptor attributes, application-specific metadata can be stored in
the catalog. Then, this metadata can be efficiently retrieved without retrieving the
actual object data that is stored in the repository. An XBSA application can use
these attributes to maintain inter-object relationships and dependencies. Some
consideration should be given as to how much data is stored in the NetBackup
Catalog. The amount of metadata that is stored with a few large objects can be
larger than the amount that is stored for a million small objects.

Query descriptors
A BSA_QueryDescriptor is the structure that is used in the query process to find
an individual or set of objects. It contains those fields from the object descriptor that
are searchable. When a query is performed, the enumeration fields must be
specified. If they are unknown, they all allow an "ANY" enumeration. You must also
specify the objectName.pathName. Wildcards are allowed for this field and "/*" is
a valid pathname for querying. The other strings in the descriptor can be empty
strings, but they are still used for comparison to find an object descriptor that
matches the query descriptor. If these fields are unknown, wildcards are allowed
here also. The start (createTime_from) and end (createTime_to) dates are not
required.

The attributes of the BSA_QueryDescriptor are shown in the following table:

Table 3-2 BSA_QueryDescriptor Attributes

Data TypeAttribute

(consisting of two parts)objectOwner

20Using the NetBackup XBSA interface
NetBackup XBSA data structures

Table 3-2 BSA_QueryDescriptor Attributes (continued)

Data TypeAttribute

[fixed-length character string]bsa_objectOwner

[hierarchical character string]app_objectOwner

(consisting of two parts)objectName

[fixed-length character string]objectSpaceName

[hierarchical character string]pathName

[date-time]createTime_from

[date-time]createTime_to

[enumeration]CopyType

[enumeration]objectType

[enumeration]objectStatus

Note: The createTime_from and createTime_to fields are not part of the XBSA
specification for the BSA_QueryDescriptor structure. The NetBackup XBSA interface
uses two reserved fields from the BSA_QueryDescriptor structure to allow this
information to be used (if available) for the query. These fields are not required,
although if the XBSA application can specify these dates, it can, in some instances,
greatly speed up query time.

Buffers
The XBSA application allocates all of the buffers that the NetBackup XBSA interface
uses. The NetBackup XBSA interface fills data into the buffers, but never allocates
any memory that is passed back to the XBSA application. This process simplifies
buffer allocation and deletion since the XBSA application is solely responsible.

The API uses several conventions that let the NetBackup XBSA interface influence
how buffers are allocated and provide an interface with the ability to reserve private
sections in certain buffers.

Buffer size
When API calls specify the size of the buffer as a separate parameter, the interface
uses the following convention to signal that a buffer is not large enough and provides
the XBSA application with a way to determine the correct size.

21Using the NetBackup XBSA interface
NetBackup XBSA data structures

The parameter that specifies the size is a pointer, so that the NetBackup XBSA
interface can alter the parameter. The size is always in bytes. If the size is adequate
and a valid buffer is given, the NetBackup XBSA interface copies the requested
data into the buffer and sets the actual size in the size parameter.

If the size is inadequate, the NetBackup XBSA interface does not copy the data
into the buffer. It sets the size parameter to the actual size of the data to be copied
and returns from the function call with BSA_RC_BUFFER_TOO_SMALL. This
allows the XBSA application to allocate a buffer of adequate size and to call the
function again.

The functions that use this convention are BSAGetEnvironment(), NBBSAGetEnv()
and BSAQueryServiceProvider().

Private buffer space
When function calls use the BSA_DataBlock32 structure, a convention lets the
NetBackup XBSA interface reserve certain portions of the buffer for its own use.
The NetBackup XBSA interface can reserve the following areas:

A contiguous area starting at offset 0 (that is, the start of the buffer)Header

A contiguous area that ends at the end of the buffer (that is, the tail of
the buffer)

Trailer

The area that is reserved for the XBSA application is as follows:

A contiguous area that lies in between the Header and TrailerData Segment

To make this preference known to the XBSA application, the NetBackup XBSA
interface can set certain parameters in the BSA_DataBlock32 structure when a
data transfer is initiated. Specifically, when the XBSA application issues either the
BSACreateObject() call or the BSAGetObject() call, the BSA_DataBlock32 structure
is used for passing the preference of the NetBackup XBSA interface. The parameters
set by the NetBackup XBSA interface are described in the following table:

Table 3-3 Parameters in the BSA.DATABlock32 Structure

PreferenceParameter

The interface has no restrictions on the buffer length. No trailer
portion is required.

bufferLen == 0

22Using the NetBackup XBSA interface
NetBackup XBSA data structures

Table 3-3 Parameters in the BSA.DATABlock32 Structure (continued)

PreferenceParameter

The interface accepts the buffers that are at least bufferLen bytes
in length (minimum length). It also accepts larger buffers. For a
BSASendData() call, the interface accepts a trailer that is as least
as large as: trailerBytes >= (bufferLen - numBytes - headerBytes)
For a BSAGetData() call, the interface returns a trailer that is not
larger than: trailerBytes <= (bufferLen - numBytes - headerBytes)

bufferLen != 0

The interface has no restrictions on the length of the data portion
of the buffer.

numBytes == 0

The interface accepts (for a BSASendData() call), or returns (for a
BSAGetData() call), a data segment that does not exceed numBytes
bytes.

numBytes != 0

The interface only accepts or returns buffers with no header.headerBytes == 0

The length of the header portion of the buffers that are accepted
or returned by the interface is headerBytes bytes.

headerBytes != 0

Not usedbufferPtr

Subsequent calls to BSAGetData() or BSASendData() must adhere to the
preferences that are specified by the NetBackup XBSA interface.

The NetBackup XBSA interface can write anything into the header and trailer area
of the actual buffer, as specified by the bufferPtr parameter in the BSA_DataBlock32
structure.

The NetBackup XBSA interface has a buffer size limit of 1 Gigabyte.

Note: For NetBackup XBSA Version 1.1.0, there are no header or trailer
requirements. The XBSA specifications define the format that is documented here
and can be used in the future by NetBackup.

Use of BSA_DataBlock32 in BSASendData()
For BSASendData(), all parameters in the BSA_DataBlock32 structure are set by
the XBSA application and adhere to the NetBackup XBSA interface preferences or
the function fails with a BSA_RC_INVALID_DATABLOCK error. The NetBackup
XBSA interface is not allowed to change any of the parameters.

The buffers that are passed by BSASendData() must be full. This means that
numBytes must be equal to bufferLen. The buffer for the last BSASendData() call
for an object does not need to be full.

23Using the NetBackup XBSA interface
NetBackup XBSA data structures

Use of BSA_DataBlock32 in BSAGetData()
For BSAGetData(), all parameters in the BSA_DataBlock32 structure must be set
by the XBSA application and adhere to the NetBackup XBSA interface preferences
or the function fails with a BSA_RC_INVALID_DATABLOCK error. The NetBackup
XBSA interface changes the numBytes parameter setting to the actual number of
bytes copied into the data segment. NetBackup is not allowed to change any of the
other parameters.

Shared memory

Note: The passing of data in shared memory blocks between the XBSA application
and the NetBackup XBSA interface is not supported for NetBackup XBSA Version
1.1.0.

The BSA_DataBlock32 structure contains fields to allow the use of shared memory
blocks for passing data between an XBSA application and the NetBackup XBSA
interface. The shareId and shareOffset fields of the BSA_DataBlock32 structure
are used to define shared memory buffers. The NetBackup XBSA interface version
1.1.0 does not use these fields.

NetBackup XBSA environment
The NetBackup XBSA environment is created when an XBSA application calls
BSAInit() to initiate a session. This environment only exists between the NetBackup
XBSA interface and the XBSA application. The XBSA environment variables are
used to pass specific NetBackup information in both directions between the XBSA
application and the NetBackup XBSA interface. The environment variables are
generally set or modified by the XBSA application, but the NetBackup XBSA interface
creates and modifies some variables to pass information back to the XBSA
application. Setting platform environment variables (getenv or setenv) has no effect
on the NetBackup XBSA environment.

There are restrictions when some of the variables can be set or modified. Most of
them can be set on the call to BSAInit(), which initiates a session. Some can also
be modified within a session but outside of a transaction. And a few can be modified
within a transaction. These limitations are outlined in the following descriptions for
each of the variables.

Each XBSA environment variable is defined as a keyword that is followed by an
"=" and followed by a null-terminated value. No spaces are allowed around the "=".
"BSA_API_VERSION=1.1.0" is valid while "BSA_API_VERSION = 1.1.0" is not.

The functions used to create, modify, and view these environment variables are:

24Using the NetBackup XBSA interface
NetBackup XBSA environment

■ BSAInit()

■ BSAGetEnvironment()

■ NBBSAUpdateEnv()

■ NBBSASetEnv()

■ NBBSAGetEnv()

See “Function specifications” on page 80.

Environment variable definitions
The following XBSA environment variables are defined as part of the XBSA
specification and are accepted by the NetBackup XBSA interface.

Table 3-4 XBSA Environment Variables

FormatDescriptionVariable Name

A string containing 3 numeric
elements, (version, issue,
level) separated by periods.

Mandatory. Specifies the
version of the specification
that the calling XBSA
application requires.
BSAQueryApiVersion() can
retrieve the value of the
current NetBackup XBSA
interface.

BSA_API_VERSION

A single ASCII character.Optional. The delimiter that
is used in hierarchical
character strings (default "/").

BSA_DELIMITER

A hierarchical character
string with 3 fields.

Optional. Identifies the XBSA
implementation.
BSAQueryServiceProvider()
can retrieve this value.

BSA_SERVICE_PROVIDER

A string containing a host
name.

Optional. Identifies a specific
host system for the
NetBackup server.

BSA_SERVICE_HOST

In addition to the environment variables that are defined in the XBSA specification,
the following NetBackup XBSA environment variables are defined as part of this
specification. These are specific to NetBackup and are not relevant to other XBSA
implementations. See the NetBackup System Administrator's Guide, Volume I, for
a more complete definition of the NetBackup policy, schedule, and logging. The
NetBackup environment variables all are prefaced with "NB."

25Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332

Table 3-5 NetBackup Environment Variables

FormatDescriptionVariable Name

A string containing a host name.Optional. Identifies a specific host
system for the NetBackup client.

NBBSA_CLIENT_HOST

A string containing the policy type.Optional. Specifies a specific policy
type.

NBBSA_DB_TYPE

An integer value.Optional. Specifies a specific
NetBackup licensed feature within the
DataStore policy type.

NBBSA_FEATURE_ID

A string containing a keyword value <=
100 characters.

Optional. Specifies the NetBackup
Keyword field for this image.

NBBSA_KEYWORD

A string containing a single directory
name.

Optional. Identifies the name of
directory that contains the log files of
the XBSA application.

NBBSA_LOG_DIRECTORY

A string containing the group.Optional. This variable is used to define
the object group owner of an object
being created.

NBBSA_OBJECT_GROUP

A string containing the owner.Optional. This variable is used to define
the object owner of an object being
created.

NBBSA_OBJECT_OWNER

An integer value <= 256.Optional. If this variable is set before an
XBSA object is created, the objectInfo
field is considered to be this length and
the object is considered binary.

NBBSA_OBJINFO_LEN

A string containing a NetBackup policy
name.

Optional. Identifies a specific
NetBackup policy to be used.

NBBSA_POLICY

A string containing a NetBackup
schedule name.

Optional. Identifies a specific
NetBackup XBSA schedule to be used.

NBBSA_SCHEDULE

An integer value between 0 and 4.Optional. This variable can be set to
cause the group of an object to be
something other than the logon user
creating the object.

NBBSA_USE_OBJECT_GROUP

An integer value between 0 and 4.Optional. This variable can be set to
cause the owner of an object to be
something other than the logon user
creating the object.

NBBSA_USE_OBJECT_OWNER

26Using the NetBackup XBSA interface
NetBackup XBSA environment

The following XBSA environment variables are set by the NetBackup XBSA interface
from values in the NetBackup configuration files. These environment variables are
used to pass required information from NetBackup to the XBSA application.
Descriptions of these NetBackup configuration values can be found in the NetBackup
System Administrator's Guide, Volume I.

Table 3-6 XBSA Environment Variables for NetBackup Configuration Values

FormatDescriptionVariable Name

An integer value between 0 and 9.The verbose level of the database
logs.

NBBSA_VERBOSE_LEVEL

An integer value.The NetBackup multiplexing value.NBBSA_MULTIPLEXING

An integer value in bytes.The NetBackup server buffer size
value.

NBBSA_SERVER_BUFFSIZE

An integer value in seconds.The NetBackup
MEDIA_MOUNT_TIMEOUT value.

NBBSA_MEDIA_MOUNT_TIMEOUT

An integer value in seconds.The NetBackup
CLIENT_READ_TIMEOUT value.
This value can be modified by the
XBSA application.

NBBSA_CLIENT_READ_TIMEOUT

Extended environment variable definitions
Table 3-7 Extended Environment Variables

Extended DescriptionVariable Name

BSA_API_VERSION specifies the version of the XBSA specification. The
XBSA application sets it as the version that the XBSA application requires.
This value is required to be in the environmental variable list in the call to
BSAInit(), where it is verified as a supported version of the NetBackup XBSA
interface.

The current value of BSA_API_VERSION that is supported by the NetBackup
XBSA interface can be retrieved with a call to BSAQueryApiVersion().

Once BSA_API_VERSION has been set in the XBSA environment, it cannot
be changed by calls to NBBSAUpdateEnv() or NBBSASetEnv().

The version that is supported for this feature pack is "1.1.0."

BSA_API_VERSION

27Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

BSA_DELIMITER is the delimiter used in hierarchical character strings. The
NetBackup XBSA interface sets this XBSA environment variable.

This feature pack uses the "/" delimiter. This value can be retrieved by
BSAQueryServiceProvider().

BSA_DELIMITER

BSA_SERVICE_HOST identifies the host system for the NetBackup server.
If this variable is not provided, the currently configured server for the
NetBackup client is used.

See the NetBackup System Administrator's Guide, Volume I, for information
on how to use the bp.conf configuration file to specify the NetBackup
servers.

This XBSA environment variable can be set by the XBSA application by
BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but cannot be set or
modified after a transaction has begun.

BSA_SERVICE_HOST

BSA_SERVICE_PROVIDER identifies the XBSA implementation. The
NetBackup XBSA interface sets this XBSA environment variable.

It is defined as: Veritas/NetBackup/1.1.0.

BSAQueryServiceProvider() can also retrieve this value.

BSA_SERVICE_PROVIDER

NBBSA_CLIENT_HOST identifies a specific host system as the NetBackup
client. If this variable is not provided, the host on which the XBSA application
is running is the client.

This variable is useful for queries and restores when restoring the data that
was backed up from a host other than the host where the data was restored.
For backups, if the NBBSA_CLIENT_HOST is logically different from the
client host where the backup is being initiated from, this results in an error,
as you cannot create objects from another host.

This XBSA environment variable can be set by the XBSA application by
BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but cannot be set or
modified after a transaction has begun.

NBBSA_CLIENT_HOST

28Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_CLIENT_READ_TIMEOUT is used to determine or reset the
NetBackup CLIENT_READ_TIMEOUT value.

The NetBackup XBSA interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject(). After BSACreateObject(),
the NBBSA_CLIENT_READ_TIMEOUT value can be reset by the XBSA
application by NBBSAUpdateEnv() or NBBSASetEnv(). Setting it at any other
time has no effect.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup System Administrator's Guide for Windows, Volume I, for more
information about CLIENT_READ_TIMEOUT.

NBBSA_CLIENT_READ_TIMEOUT

NBBSA_DB_TYPE is an internal string representation of a NetBackup policy
type. This is generally only used for NetBackup internal agents, but in certain
instances it can be set up for external use. If this variable is not specified, it
defaults to the SDK default of DataStore policy type. If this variable is used,
the NBBSA_FEATURE_ID must also be specified.

NBBSA_DB_TYPE

NBBSA_FEATURE_ID identifies a specific NetBackup licensed feature to
be used for the session. If this variable is not provided, the default DataStore
feature ID is used. In general, this environment variable does not need to
be set, but it allows an application, working with NetBackup product
management, to use a specific NetBackup license.

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but cannot be set or modified after a transaction has
begun.

NBBSA_FEATURE_ID

NBBSA_KEYWORD allows the XBSA application to specify a NetBackup
keyword. This keyword is typically used to group images together and can
speed up a search. If this variable is specified for a backup transaction, the
keyword is stored with the image. If it is specified before a query or restore
transaction, the keyword is used to help in the search process.

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but cannot be set or modified after a transaction has
begun.

NBBSA_KEYWORD

29Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_LOG_DIRECTORY identifies the name of the directory that contains
the log files of the NetBackup XBSA interface and possibly for the XBSA
application. This directory is located in /usr/openv/netbackup/logs on
UNIX andinstall_directory\VERITAS\NetBackup\Logson Windows.
If it is not specified, the directory name is exten_client.

All debug messages from the NetBackup XBSA interface and from function
NBBSALogMsg() go to a dated log file in this directory.

This value can be set by the XBSA application by BSAInit(). It may not be
modified after the call to BSAInit().

NBBSA_LOG_DIRECTORY

NBBSA_MEDIA_MOUNT_TIMEOUT is used to determine the NetBackup
MEDIA_MOUNT_TIMEOUT value.

The NetBackup XBSA interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject().

NBBSA_MEDIA_MOUNT_TIMEOUT cannot be modified by the XBSA
application.

See the NetBackup System Administrator's Guide, Volume I, for more
information about MEDIA_MOUNT_TIMEOUT.

NBBSA_MEDIA_MOUNT_TIMEOUT

NBBSA_MULTIPLEXING the number of streams that NetBackup has been
configured to accept at one time.

The NetBackup XBSA interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject(). The XBSA application
cannot modify NBBSA_MULTIPLEXING.

See the NetBackup System Administrator's Guide, Volume I, for more
information about multiplexing.

NBBSA_MULTIPLEXING

NBBSA_OBJECT_GROUP can be used with variable
NBBSA_USE_OBJECT_GROUP to define the group ownership of an object.
When NBBSA_USE_OBJECT_GROUP = VxENV_OWNER, the name that
is defined in this string becomes the group owner of an object that is created.
This group should be a valid group name on the client.

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv(). It can be modified within a transaction and each
object that is created within one transaction can have a different group.

NBBSA_OBJECT_GROUP

30Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_OBJECT_OWNER can be used with variable
NBBSA_USE_OBJECT_OWNER to define the ownership of an object. When
NBBSA_USE_OBJECT_OWNER = VxENV_OWNER, the name that is
defined in this string becomes the owner of an object that is created. This
owner should be a valid user name on the client.

This value can be set by the VxBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv(). It can be modified within a transaction and each
object that is created within one transaction can have a different owner.

NBBSA_OBJECT_OWNER

NBBSA_OBJINFO_LEN is used by BSACreateObject() to allow the objectInfo
field of the object descriptor to contain non-ASCII values. If this variable is
not specified, the objectInfo field is treated as a NULL terminated character
string. You do not have to specify this variable for a query or restore
transaction.

The XBSA application can modify this value at any time during a backup
transaction using BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv(). If the
length of the objectInfo field is different for each object, it can be changed
before each BSACreateObject() call.

NBBSA_OBJINFO_LEN

NBBSA_POLICY identifies a specific NetBackup policy to be used for the
transaction. If this variable is not provided, the NetBackup configuration is
used to find the default policy. For backups, if a policy is configured in
NetBackup on the client, that policy is used for the backup. For queries,
restores, and deletes, the configured policy is not used.

See the NetBackup System Administrator's Guide, Volume I, for information
on how to create and configure a NetBackup policy.

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but cannot be set or modified after a transaction has
begun.

NBBSA_POLICY

NBBSA_SCHEDULE identifies a specific NetBackup schedule to be used.
If this variable is not provided, the NetBackup configuration is used to find
the default schedule to use. For backups, if a schedule is configured in
NetBackup on the client, that schedule is used for the backup. For queries,
restores, and deletes, the configured schedule is not used.

See the NetBackup System Administrator's Guide, Volume I, for information
on how to create and configure a NetBackup schedule.

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but cannot be set or modified after a transaction has
begun.

NBBSA_SCHEDULE

31Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_SERVER_BUFFSIZE the NetBackup configured size of the

NET_BUFFER_SZ. This variable can be used by the XBSA application to
help improve performance.

The NetBackup XBSA interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject(). The XBSA application
cannot modify NBBSA_SERVER_BUFFSIZE.

See the NetBackup System Administrator's Guide, Volume I, for more
information about setting the buffer size.

NBBSA_SERVER_BUFFSIZE

NBBSA_USE_OBJECT_GROUP lets the agent define the group owner of
objects that are created with VxBSACreateObject(). The default group of an
object is the logon user of the process creating the object (not the primary
group of the logon user, but the actual logon user). This variable allows the
agent to specify the ownership as follows.

VxLOGIN_USER 0 - Default, group field is set to the logon user

VxLOGIN_GROUP 1 - Group field is set to the primary group of the logon
user

VxBSA_OWNER 2 - Group field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Group field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Group field is set to value of NBBSA_GROUP_OWNER
variable

This value may be set by the BSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but may not be set or modified after a transaction
has begun.

NBBSA_USE_OBJECT_GROUP

32Using the NetBackup XBSA interface
NetBackup XBSA environment

http://www.veritas.com/docs/DOC5332

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_USE_OBJECT_OWNER allows the agent to define the owner of
objects that are created with BSACreateObject(). The default ownership of
an object is the logon user of the process creating the object. This variable
allows the agent to specify the ownership as:

VxLOGIN_USER 0 - Default, owner field is set to the logon user

VxBSA_OWNER 2 - Owner field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Owner field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Owner field is set to value of NBBSA_OBJECT_OWNER
variable

This value can be set by the XBSA application by BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but cannot be set or modified after a transaction has
begun.

NBBSA_USE_OBJECT_OWNER

NBBSA_VERBOSE_LEVEL is the verbose level of the NetBackup debug
logs. The verbose level can be configured through the Backup, Archive, and
Restore interface or the NetBackup Administration Console.

This value can be useful if the XBSA application, using NBBSALogMsg(),
wants to log different levels of messages to the NetBackup XBSA logs based
on the verbose level that is configured in NetBackup.

The NetBackup XBSA interface originally sets this value in BSAInit(). The
XBSA application can reset this environment variable, using NBBSASetEnv()
or NBBSAUpdateEnv(), if it wants to change the level of logging.

NBBSA_VERBOSE_LEVEL

XBSA sessions and transactions
All operations for NetBackup must be in an XBSA session. Each session can contain
one or more transactions. This section defines how the XBSA sessions are defined
and what is allowed in each transaction.

Sessions
To use most of the NetBackup XBSA API calls, it is necessary for an XBSA
application to set up a session with the NetBackup XBSA interface by invoking the
BSAInit() call. The functions BSAQueryApiVersion() and BSAQueryServiceProvider()
can be invoked before calling BSAInit(). These functions are used to determine the
current version of the API used by the NetBackup XBSA interface and a string

33Using the NetBackup XBSA interface
XBSA sessions and transactions

describing the provider of the NetBackup XBSA interface, respectively, and are not
dependent on being within a session.

Initialization and termination
A BSAInit() call initiates a session. This call sets up a session with the NetBackup
XBSA interface and creates a context, defined by handle, for the caller to be used
in subsequent calls. The XBSA environment is set up within that context and remains
in place until the session is terminated. Nested sessions are not permitted.

A BSATerminate() call terminates a session, which releases any resources that are
acquired during the NetBackup XBSA session. If BSATerminate() is called within
a transaction, the transaction is aborted.

Authentication
In NetBackup XBSA Version 1.1.0, all authentication and security is handled by
NetBackup based on the logon user. The logon user of the session that created
the object determines the object ownership. To query or restore an object, the logon
user doing the request must be the same user who created the object or a root
administrator.

Note: NetBackup XBSA Version 1.1.0 does not validate the objectOwner and
SecurityToken parameters of BSAInit(). The objectOwner fields, bsa_objectOwner
and app_objectOwner, can be specified and are stored with an object, but the logon
user who created the object determines the official ownership of an object. This
user, or a root admin, are the only users who can query or restore this object.

Transactions
Within each session, an XBSA application can make a sequence of calls (for
example, to backup some objects, to query the set of objects it has backed up, or
to restore objects). These calls must be grouped into a transaction by invoking
BSABeginTxn() at the beginning of the group of calls and invoking BSAEndTxn()
at the end. The latter either commits the transaction or aborts it.

If a transaction is aborted either by a BSAEndTxn() or BSATerminate() call, then
the effect of all of the calls that are made within the transaction is nullified. If a
transaction is committed, then the effect of all the calls within the transaction is
made permanent.

Within a single session, transactions cannot be nested and cannot overlap.
Transactions are categorized into the following types:

34Using the NetBackup XBSA interface
XBSA sessions and transactions

■ NetBackup XBSA object modification transactions - in which NetBackup XBSA
objects may be created or deleted.

■ NetBackup XBSA object retrieval transactions - in which NetBackup XBSA
objects can only be queried and/or retrieved. This type of transaction provides
no functional benefit for the calling XBSA application, and is only included for
completeness.

The type of a transaction is established by the first create/delete/retrieve operation
performed. Attempts to mix operations in a transaction result in a
BSA_RC_INVALID_CALL_SEQUENCE error. The permissible call sequences are
defined later in this chapter.

Once a transaction starts, many of the XBSA environment variables can no longer
be reset. BSA_SERVICE_HOST, NBBSA_CLIENT_HOST, NBBSA_POLICY, and
NBBSA_SCHEDULE cannot be modified within a transaction. If these need to be
modified, the XBSA application must exit the transaction, make the variable changes,
and start a new transaction.

Backup transaction
An XBSA application can create a NetBackup XBSA object in a backup transaction.
The first BSACreateObject() call defines the backup transaction. The
BSACreateObject() function takes as input an object descriptor that has all of the
XBSA attributes of the object. After the BSACreateObject() call, the object's data
is passed to NetBackup in buffers using a sequence of BSASendData() calls. When
all data has been sent, the object is completed with a BSAEndData() call. Multiple
objects may be created in one transaction, although BSAEndData() must be called
before the next BSACreateObject() is called.

The NetBackup XBSA interface treats backup and archive transactions the same.
The XBSA application performs any extra operations that can be associated with
an archival. The XBSA application is also responsible for any other backup types
such as an incremental backup. The NetBackup archive and incremental backups
do not apply to the NetBackup XBSA interface. All of the information that is required
to restore an object needs to be contained in the object descriptor or object data.

Within a backup transaction, query, delete, and restore operations are not allowed.

Restore transaction
The Restore transaction is similar to Backup transaction, except that the data flow
is reversed. The restore transaction is defined by a call to BSAGetObject().

To restore an XBSA object, the NetBackup XBSA interface needs to know the
copyId of that object. The copyId can be obtained from a catalog that is maintained

35Using the NetBackup XBSA interface
XBSA sessions and transactions

by the XBSA application or from a previous BSAQueryObject() call. Query operations
can be mixed in with restore operations to get this data.

The BSAGetObject() call is used to initiate the restore of an object. It takes as input
an object descriptor that contains the copyId of the object to be restored. Then, a
series of BSAGetData() calls are used to get data for the object in buffers. The
BSAEndData() call signals the end of getting data for the object. It is up to the XBSA
application to recreate the object being restored using the object descriptor and
data. When restoring multiple objects, the XBSA application must get all data for
an object and call BSAEndData() before it calls BSAGetObject() to start restoring
the next object.

Within a restore transaction, it is permissible to have BSAQueryObject() and
BSAGetNextQueryObject() calls. This lets the XBSA application intermix restore
operations with BSAQueryObject() and BSAGetNextQueryObject() calls to restore
multiple objects within one transaction. Backup and delete operations are not allowed
within a restore transaction.

It should be noted that the use of transactions for restore operations does not
provide any functional benefit to the XBSA application but is required for
completeness. If a restore is aborted with a call to BSAEndTxn() or BSATerminate()
before the restore has completed, the NetBackup XBSA interface frees the
NetBackup resources. It is up to the XBSA application to leave the object being
restored in a consistent state.

Delete transaction
An XBSA application can delete a NetBackup XBSA object using the
BSADeleteObject() call. BSADeleteObject() takes a copyId as a parameter and
marks that object to be deleted. The actual delete of an object does not take place
until the BSAEndTxn() call commits the transaction, so a query within a delete
transaction can return an object to be deleted. An XBSA application can delete an
NetBackup image that contains one or more objects using the NBBSADeleteImage()
call. NBBSADeleteImage() takes a copyId of any one of the objects in the image
as a parameter. Unlike BSADeleteObject(), the deletion of the image takes place
during the NBBSADeleteImage() call. If objects were backed up to a tape device,
the data is not deleted as part of this transaction. When all images on a tape have
been deleted or expired, NetBackup frees the tape to be reused.

Within a delete transaction, it is permissible to embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA application to intermix delete
operations with BSAQueryObject() and BSAGetNextQueryObject() calls to delete
multiple objects or images within one transaction. Backup and restore operations
are not allowed within a delete transaction.

36Using the NetBackup XBSA interface
XBSA sessions and transactions

Note: For NetBackup XBSA Version 1.1.0, BSADeleteObject() has a limitation that
there can only be one object in a NetBackup image for the delete to work. This
means that when the object was created, it was the only object created in the
transaction. If there are multiple objects, BSADeleteObject() returns a
BSA_RC_SUCCESS status, but the object still exists. To delete a NetBackup image
containing multiple objects, use NBBSADeleteImage().

NetBackup takes care of deleting objects with the retention period setting that is
part of the configuration of a NetBackup schedule. In general, due to the way the
data is stored on tape and other media, deleting individual objects has limited value.

Query transaction
An XBSA application can query for NetBackup XBSA objects that have been created
in a query transaction. The BSAQueryObject() call is used to query the NetBackup
catalog for NetBackup XBSA objects. Since retention of NetBackup XBSA objects
is a function of NetBackup there is no guarantee that the call to BSAQueryObject()
returns any objects.

The query is based on a subset of the object descriptor attributes, contained in a
query descriptor. All fields in the query descriptor must be populated and the query
searches for the objects that match all fields. Each of the fields has a wildcard or
'ANY' value that can be used. If you leave a field blank, it only matches the objects
that also have blanks in that field.

The result of a query can return object descriptors, but never XBSA object data. If
a query finds multiple object descriptors, BSAQueryObject() returns the first object
descriptor and the remaining objects can be retrieved one at a time by using a
succession of BSAGetNextQueryObject() calls.

It should be noted that the use of transactions for query operations does not provide
any functional benefit to the XBSA application but it is required for completeness.
As noted in the other transaction types, queries can be embedded in restore and
delete transactions.

Media IDs transaction
An XBSA application can obtain the media IDs of a NetBackup image that contains
one or more objects using the NBBSAGetMediaIds() call. NBBSAGetMediaIds()
takes a copyId of any one of the objects in the image as a parameter.
NBBSAGetMediaIds() returns a null character delimited text string that contains
the media IDs associated with a NetBackup image in the buffer supplied as a
parameter. The list of media IDs is terminated with an empty string. This is called
a double null terminated string.

37Using the NetBackup XBSA interface
XBSA sessions and transactions

Examples are as follows:

■ Image with two media IDs: MediaId1\0MediaId2\0\0

■ Image with one media ID: MediaId3\0\0

Within a media ID transaction, you can embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This lets the XBSA application intermix the media
ID operations with BSAQueryObject() and BSAGetNextQueryObject() calls to obtain
the media IDs for multiple images within one transaction. Backup and restore
operations are not allowed within a media ID transaction.

Creating a NetBackup XBSA application
This section contains information on initiating an XBSA session, using XBSA objects,
logging, running an XBSA application in a clustered environment, and hints for
getting the best performance out of the NetBackup XBSA interface.

Initiating a session
A session is initiated with a call to BSAInit(). One of the parameters of BSAInit() is
the list of environment variables that is used to set up the XBSA environment
between the XBSA application and the NetBackup XBSA interface. The only variable
that is required by the NetBackup XBSA interface is BSA_API_VERSION. BSAInit()
validates that the XBSA application uses a supported version. Other environmental
variables can be included to increase flexibility of the application or to override
values from the NetBackup configuration. But if these variables are not set, there
are defaults from the configuration that are used.

Using these environment variables does not allow the XBSA application to bypass
the NetBackup configuration, only to change from the default. All hosts, policies,
schedules, and so on that are used must still be defined in the NetBackup
configuration in order for the transactions to work. See the NetBackup System
Administrator's Guide, Volume I, for more information on how to configure
NetBackup.

The XBSA application should allow the XBSA environment variables to be set from
run time values. These values can be obtained from parameters or from system
environment variables. This allows the maximum flexibility for the application.

See “About How to run a NetBackup XBSA application” on page 73.

Some of the XBSA environment variables must be specified in the call to BSAInit()
and cannot be changed within the session. Others can be set or modified within
the session which gives the XBSA application maximum flexibility.

More information is available for the individual variables.

38Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

See “NetBackup XBSA environment” on page 24.

Modifying the XBSA environment within a session
The XBSA environment is created when the session is initiated. A couple of the
variables, like BSA_API_VERSION and NBBSA_LOG_DIRECTORY, cannot be
changed once the session has started. Many of the other variables can still be
modified. If the XBSA application is going to set BSA_SERVICE_HOST,
NBBSA_CLIENT_HOST, NBBSA_POLICY, or NBBSA_SCHEDULE, this needs to
be done outside of a transaction, either before the first transaction or between
transactions.

Once within a session, the XBSA environment can be updated with either
NBBSASetEnv() or NBBSAUpdateEnv(). These are extensions to the XBSA
specification. NBBSASetEnv() is used to set an individual XBSA environment
variable and NBBSAUpdateEnv() updates the entire XBSA environment.

Session example
The following example sets up a session and begins a transaction. It sets up the
XBSA environment, a BSA_ObjectOwner structure, and a BSA_SecurityToken.
The security token is NULL because the NetBackup XBSA interface does not use
this security method. The session is initiated by a BSAInit() call that returns a
BSA_Handle. This handle is then used when a transaction begins and for all XBSA
function calls within the session. Within the session, the XBSA environment is
modified to change the NBBSA_CLIENT_HOST. Lastly a transaction is started.

BSA_Handle BsaHandle;

BSA_Obje ctOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

/ * Allocate memory for the XBSA environment variable array. */

envx[0] = malloc(40);

envx[1] = malloc(40);

/ * Populate the XBSA environment variables for this session.

* Normally the BSA_SERVICE_HOST would not be hard coded like this but

* would be retrieved via a parameter or environment variable.

*/

39Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

envx[2] = NULL;

/ * The NetBackup XBSA Interface does not use the security token. */

security_tokenPtr = NULL;

/ * Populate the object owner structure. */

strcpy(BsaObjectOwner.bsa_ObjectOwner,"XBSA Client");

strcpy(BsaObjectOwner.app_ObjectOwner,"XBSA App");

/ * Initialize an XBSA session. */

status = BSAInit(&BsaHandle,NULL,&BsaObjectOwner,envx);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrString);

printf("ERROR: BSAInit failed with error: %s\n", ErrString);

exit(status);

}

/ * Set the hostname of the client for the next transaction. */

NBBSASetEnv(BsaHandle, "NBBSA_CLIENT_HOST", "client_host");

/ * Begin a transaction. If it fails, terminate the session. */

status = BSABeginTxn(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSABeginTxn failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Backup - creating an object
Once the application has started a transaction, it can start a backup. A backup
transaction is identified by the first BSACreateObject() call. BSACreateObject()
starts the process of backing up an object. Once the object has been created,

40Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

multiple BSASendData() calls are used to send the data associated with an object.
This object is then completed with a BSAEndData() call.

The ability to pass data in buffers allows an XBSA application to use any buffering
technique that is appropriate to ensure consistency or to improve performance.
When data is passed in buffers, all the data for one object must be passed, in the
proper sequence, before any other operation is started.

Creating an object
An object descriptor defines an XBSA object. The XBSA application defines the
attributes of the object so that the application knows how to restore the object. For
example, if the XBSA application wants to implement an incremental type of backup,
sufficient information needs to be kept in the object descriptor to identify if the object
is full or incremental and any other information that is required to restore the object.

The following fields of an object descriptor are user-defined and need to be defined
by the XBSA application before the descriptor is passed to BSACreateObject().

See “Object descriptors” on page 18. for more definitions of the
BSA_ObjectDescriptor.

The fields that are defined as strings can be empty strings, except for the pathName,
which must have a valid path. The fields that are enumerations cannot have the
ANY value. The estimatedSize field must have a value greater than zero if the object
has data and zero if there is no data. It is good practice to have the estimated size
field be as accurate as possible, but it does not affect how NetBackup stores the
object.

The following are the required BSA.ObjectDescriptor fields:

objectOwner

bsa_objectOwner

app_objectOwner

objectName

pathName

objectSpaceName

copyType

resourceType

objectType

objectDescription

estimatedSize

objectInfo

The NetBackup XBSA interface populates the other fields in the object descriptor.

41Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

The other structure that is required before creating an object is the BSA_DataBlock32
structure. The structure does not need to be populated because BSACreateObject()
populates the select fields with values that define how the data needs to be passed
in buffers.

See “Buffers” on page 21. for more information.

Those are the two parameters to BSACreateObject(). The BSACreateObject()
function creates the object and prepares NetBackup to be able to accept data. This
includes mounting a tape if that is required. When BSACreateObject() has
successfully created the object and returns, the object descriptor has the copyId
field populated. This is the unique identifier that is associated with this object. If the
XBSA application is going to keep any information about an object in an application
catalog, this copyId should be a key value. It can be used to restore or delete this
object.

There are four environmental variables that are created during BSACreateObject().
These are NBBSA_CLIENT_READ_TIMEOUT,
NBBSA_MEDIA_MOUNT_TIMEOUT, NBBSA_MULTIPLEXING, and
NBBSA_SERVER_BUFFSIZE. These variables are part of the NetBackup
configuration and can be used to determine if the XBSA application is successful.
The NBBSA_CLIENT_READ_TIMEOUT and NBBSA_MEDIA_MOUNT_TIMEOUT
values can be reset by the XBSA application if it knows it needs to override the
default NetBackup configuration.

NBBSA_CLIENT_READ_TIMEOUT is the amount of time, in seconds, the
NetBackup server waits for data to be received. If the time between when the
NetBackup server starts the backup and the time the transmission of data starts
exceeds this time-out value, the backup job fails. This ensures that a hung or failed
process on the client does not cause the job to wait, and take up resources,
indefinitely. If the XBSA application knows that it takes longer than this to prepare
the data to be sent, reset this value to a higher value.

NBBSA_MEDIA_MOUNT_TIMEOUT is the amount of time the NetBackup client
waits for the media to be mounted. If the time between when the NetBackup server
starts the backup and the time the media is mounted exceeds this time-out value,
the XBSA interface returns a fail condition.

NBBSA_MULTIPLEXING is the number of streams that can be accepted by
NetBackup. This value cannot be changed, but if the XBSA application is processing
multiple streams, it should be evaluated to ensure that NetBackup accepts all of
the streams that are being sent.

NBBSA_SERVER_BUFFSIZE is the size configured for NET_BUFF_SZ. This value
cannot be changed but, if the XBSA application has the ability to modify the size
of the buffers it uses, these could be modified to enhance performance of the transfer
of data.

42Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

If everything is OK so far, data can be sent to the NetBackup XBSA interface by
buffers by BSASendData(). The buffers are defined by the BSA_DataBlock32
structure. The key fields to set are the numBytes, which contains the number of
bytes being sent, bufferLen, which contains the length of the buffer in bytes, and
bufferPtr, which is a pointer to the buffer. The number of bytes must equal the buffer
length except for the last buffer, which can be only partially full. BSASendData()
can be called any number of times to pass all the data from an object.

Once all data has been sent, BSAEndData() must be called to signal to the
NetBackup XBSA interface that the object is complete.

If multiple objects are to be created, this whole process can be repeated multiple
times. The most efficient way to create multiple objects is to repeat this within one
transaction. It is also possible to create multiple objects by creating one object per
transaction and doing multiple transactions.

Once all objects for a transaction have been created, the transaction is completed
with BSAEndTxn(). BSAEndTxn() can either commit or abort the transaction. If the
transaction is aborted, all objects that were created in the transaction are not saved.
If the transaction is committed, the object(s) are saved in the NetBackup catalog
and can at a future point be restored. The BSATerminate() function also acts as an
abort to the transaction.

NetBackup object ownership
Default behavior

When the NetBackup XBSA interface is used to create an object, by default the
owner of the object is the logon user of the process that created the object. The
default group of the object is also the logon user, not the primary group of the logon
user, but the exact same name as the logon user name. The permissions of the
file are set to 600, or ‘rw- - - - - - -’, which is read/write for owner and no access
permissions for anyone else. This requires that the user restoring an object be an
administrator or the same user that created the object. The XBSA objectOwner
fields are saved in the NetBackup catalog with the object, but they are kept as
attributes of the object and are not used for security purposes.

Ownership options

Using the XBSA environmental variables NBBSA_USE_OBJECT_OWNER,
NBBSA_USE_OBJECT_GROUP, NBBSA_OBJECT_OWNER, and
NBBSA_GROUP_OWNER, an agent can change the default owner. These variables
allow the XBSA agent to be able to specify who owns the objects.

43Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Note: Specifying object ownership only works when creating objects using
BSACreateObject(). Accessing the objects by BSAQueryObject() and
BSAGetObject() is dependent on the logon process having permissions to access
the objects. So if user_Y creates an object with an object owner of user_X, then
user_X or an administrator (root) can access and restore the object, but user_Y
cannot.

Object owner

To specify the owner of an object, the XBSA environment variable
NBBSA_USE_OBJECT_OWNER needs to be set. There are four values that this
variable can be set to. These values are defined in nbbsa.h.

/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the logon user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the logon user */

#define VxBSA_OWNER 2 /* owner/group field is set to \

objectDescriptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to \

objectDescriptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of \

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_OWNER variable wasn’t set.

VxLOGIN_GROUP does not apply to object ownership.

VxBSA_OWNER sets the object owner to the value stored in the objectDescriptor
field objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field must
be a valid user name without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner is still stored as an attribute of the object and a
query must correctly specify this field in the query descriptor to successfully find
the object.

VxAPP_OWNER sets the object owner to the value stored in the objectDescriptor
field objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field must
be a valid user name without any spaces in the name. The value in
objectOwner.app_ObjectOwner is still stored as an attribute of the object and a
query needs to correctly specify this field in the query descriptor to successfully
find the object.

VxENV_OWNER sets the object owner to the value of the XBSA environmental
variable NBBSA_OBJECT_OWNER. The value stored in the

44Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

NBBSA_OBJECT_OWNER must be a valid user name without any spaces in the
name.

The variables NBBSA_USE_OBJECT_OWNER and NBBSA_OBJECT_OWNER
can be changed within a transaction so that an XBSA agent can set different
ownerships of each object in a transaction.

Object group

An XBSA agent can also change the group ownership of an object. When the group
ownership is set by one of these options, other than the default, the permissions
on the object are set to 660, or 'rw - rw- - - -', which is read/write for owner and
group. This allows any user in the specified group to access and restore the object.

To specify the group of an object, the XBSA environment variable
NBBSA_USE_OBJECT_GROUP needs to be set. There are five values that this
variable can be set to. These values are defined in nbbsa.h.

/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the logon user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the logon user */

#define VxBSA_OWNER 2 /* owner/group field is set to \

objectDescriptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to \

objectDescriptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of \

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_GROUP variable was not set. The group name is the same
name as the owner field, whether that is the logon user or a user name defined by
one of the other options, and the permissions of the object will be 600, owner
read/write only.

VxLOGIN_GROUP sets the group field to the primary group of the logon user.

VxBSA_OWNER sets the object group to the value stored in the objectDescriptor
field objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field must
be a valid user name without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner still is stored as an attribute of the object and a
query must correctly specify this field in the query descriptor to successfully find
the object.

VxAPP_OWNER sets the object group to the value stored in the objectDescriptor
field objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field must
be a valid user name without any spaces in the name. The value in

45Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

objectOwner.app_ObjectOwner is still stored as an attribute of the object and a
query must correctly specify this field in the query descriptor to successfully find
the object.

VxENV_OWNER sets the object group to the value of the XBSA environmental
variable NBBSA_OBJECT_GROUP. The value stored in the
NBBSA_OBJECT_GROUP must be a valid user name without any spaces in the
name.

The variables NBBSA_USE_OBJECT_GROUP and NBBSA_OBJECT_GROUP
can be changed within a transaction so that an XBSA agent can set different group
ownerships of each object in a transaction.

Creating an empty object
You can create an XBSA object without any associated data. This is created in
much the same way as an object with data with two differences. The
estimatedSize.left and estimatedSize.right fields need to be zero so that the
NetBackup XBSA interface knows that the object is going to be empty. After the
BSACreateObject() call, the XBSA application calls BSAEndData() to end the object.
If estimatedSize is set to zero and BSASendData() is called, this results in an error.

Backup example
The following example goes through the process of creating an object. It is assumed
the transaction has already been started). The BSA_ObjectDescriptor is populated
with the values that are associated with the object. Then the DataBlock32 structure
is created to receive any restrictions put on the data by the NetBackup Interface.
BSACreateObject() is then called to create the object and start the backup process.
Once the object is created, this example sends one buffer of data with the
BSASendData() call. After the last BSASendData() call, the object is completed
with a BSAEndTxn(), which commits the object.

This example only creates one object and only sends one buffer of data. In general,
objects take multiple buffers and a transaction can create multiple objects.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 DataBuffSz;

BSA_UInt32 Size;

char *envx[5];

char DataBuff[512];

char ErrorString[512];

46Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Populate object descriptor of the first object to be backed up. */

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

strcpy(object_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

strcpy(object_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(object_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(object_desc->objectName.objectSpaceName, "");

strcpy(object_desc->resourceType, "Sample");

strcpy(object_desc->objectDescription,"Sample description of Obj 1");

strcpy(object_desc->objectInfo,"Object 1");

object_desc->copyType = BSA_CopyType_BACKUP;

object_desc->estimatedSize.left = 0;

object_desc->estimatedSize.right = 100;

object_desc->objectType = BSA_ObjectType_FILE;

/ * Initialize the BSA_DataBlock32 structure. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

memset(data_block, 0x00, sizeof(BSA_DataBlock32));

/ * Create sample object. If object cannot be created, terminate session. */

status = BSACreateObject(BsaHandle, object_desc, data_block);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSACreateObject failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

47Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

/ * For the purposes of this sample, we will assume that the data in the *

* DataBuff buffer has been populated from reading the data from the object *

* being backed up. */

strcpy(DataBuff, "This is the sample data that is contained in the sample object that

is being backed up for the purposes of showing how data can be backed up and

restored.");

DataBuffSz = strlen(DataBuff);

/ * BSACreateObject sets values in the BSA_DataBlock32 to indicate *

* header and trailer requirements. The NetBackup implementation has *

* no such requirements and are not checked here. Set the other *

* fields of the data_block for the BSASendData call. */

data_block->bufferLen = 512;

data_block->bufferPtr = DataBuff;

data_block->numBytes = DataBuffSz;

/ * Send the data to be backed up. In normal implementations, BSASendData *

* would be in a loop reading the data into the buffer and then sending it *

* until all the data of the object has been sent. */

status = BSASendData(BsaHandle, data_block);

if (status == BSA_RC_SUCCESS) {

printf("Bytes backed up: %d\n", data_block->numBytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSASendData failed with error: %s\n", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * All data has been sent for the object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData failed with error: %s", ErrorString);

48Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the backup transaction and commit the object. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Query - finding an object descriptor
The XBSA application can query the NetBackup XBSA interface for XBSA objects
that have been created. The BSAQueryObject() call is used to query the NetBackup
catalog for these objects. The query is based on a subset of the object descriptor
attributes, contained in a query descriptor. If the result of the query is multiple object
descriptors, BSAQueryObject() returns the first (most recent) object and the rest
can be retrieved one object descriptor at a time by using a succession of
BSAGetNextQueryObject() calls.

Querying for an object
When querying for an object, the object attributes that the XBSA application is
querying for are contained in a query descriptor. This query descriptor is made up
of strings and enumerations. They are evaluated against the objects stored in the
NetBackup catalog for objects that match all fields. Each field of the query descriptor
must be populated. If a string field is populated with an empty string or NULL, it
only matches objects that also have an empty string for that field. Wildcards and
'ANY' enumerations allow the XBSA application to search for objects that have
some fields that are unknown.

There are two fields that are not part of the XBSA specifications but can be very
useful. The createTime_from and createTime_to fields limit the search to the time
period between these dates. These are optional fields, the default is to search all
objects, but can greatly speed up the search when the NetBackup catalog is very
large.

49Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

When doing the query, the XBSA application only returns objects that are owned
by the logon user running the query, unless that user is a root admin. NetBackup
XBSA Version 1.1.0 uses the logon user as the object owner. The objectOwner
field is considered an attribute and is not used for security.

The query, by default, also only returns objects that were created on the hostname
from which the query is being run. If the XBSA application needs to find an object
that was created from a different host, the NBBSA_CLIENT_HOST environment
variable must be set to the hostname from which the object was created. This
variable can only be set before a transaction begins. If the application is looking for
objects from multiple hosts, the application needs to do queries in separate
transactions.

Query example
Here is an example of a query. It starts with populating a query descriptor, which
identifies what objects are being searched for. Then it makes the initial query

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

memset(query_desc, 0x00, sizeof(BSA_QueryDescriptor);

query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_ANY;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

50Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

strcpy(query_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

/ * Begin searching for objects matching the query criteria. BSAQueryObject() *

* returns the first (most recent) object found. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else if (status == BSA_RC_NO_MATCH) {

sprintf(msg, "WARNING: BSAQueryObject() did not find an object matching the

query");

NBBSALogMsg(BsaHandle, MSWARNING, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

/ * Continue searching for other objects which match the query criteria. *

* BSAGetNextQueryObject() should return BSA_RC_NO_MORE_DATA when there *

* are not more objects. */

while ((status = BSAGetNextQueryObject(BsaHandle, object_desc)) == BSA_RC_SUCCESS) {

printf("CopyId: %d.%d\n", object_desc->copyId.left, object_desc->copyId.right);

}

if (status != BSA_RC_NO_MORE_DATA) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetNextQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

51Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

/ * End the query transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are *

* equivalent as there is nothing to commit or abort. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

Restore - retrieving an object’s data
Another type of transaction is a restore transaction. A restore transaction is identified
by the first BSAGetObject() call. A difference from a backup transaction is that there
can also be BSAQueryObject() calls within a restore transaction, which is useful to
get the object descriptor of the object the XBSA application is restoring.
BSAGetObject() starts the process of retrieving an object. Once the object has been
retrieved, multiple BSAGetData() calls are used to retrieve the data associated with
an object. The last BSAGetData() call returns BSA_NO_MORE_DATA that signals
that the NetBackup XBSA interface has completed sending the data. The
BSAEndData() call then releases all of the resources.

Restoring an object
When restoring an XBSA object, the logon user must be the owner of the XBSA
object or a root admin. (The owner of an object is the logon user of the process that
created the object.) If a different user tries to restore the object, the NetBackup
XBSA interface returns a BSA_RC_OBJECT_NOT_FOUND error. This error could
also be returned if the host on which the restore is being done is different from the
host which backed up the object.

See “Redirected restore to a different client” on page 53.

The XBSA application is responsible for recreating the object. The NetBackup XBSA
interface sends a stream of data to the XBSA application. It is up to the XBSA
application to ensure that the correct permissions exist for restoring the object,
recreating all attributes, and so on. If any of these attributes are stored in the object
descriptor of the XBSA object, the object descriptor needs to be retrieved with a
BSAQueryObject() call. The call to BSAGetObject() does not populate the object
attributes.

52Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

To restore an XBSA object, the NetBackup XBSA interface needs to have an object
descriptor that contains the copyId of the object being restored. This copyId can be
obtained from either a query process or from information stored by the XBSA
application. It is permissible to mix query operations in a restore transaction.

The other structure that is required before restoring an object is the
BSA_DataBlock32 structure. The structure does not need to be populated as
BSAGetObject() populates select fields with values that define how the data buffers
are used.

See “Buffers” on page 21.

The restore is initiated with a call to BSAGetObject() with this object descriptor and
data block as parameters. This function starts the process of retrieving the object.
If BSAGetObject() returns with good status, BSAGetData() can retrieve the object
data from the NetBackup XBSA interface by buffers. The buffers are defined by the
BSA_DataBlock32 structure. It is the responsibility of the XBSA application to
allocate the buffers. BSAGetObject() fills the buffers with data and sets the numBytes
field of the BSA_DataBlock32 with the number of bytes in the buffer. When the last
buffer of data for the object has been passed, BSAGetObject() returns
BSA_NO_MORE_DATA. BSAEndData() should then be called to signal to the
NetBackup XBSA interface that the object is restored and that it can free up the
resources. The NetBackup XBSA interface requires that all data for an object is
retrieved or the return status of the NetBackup server would be an error status.
This does not affect the XBSA application, but may affect how a user of the
application interprets the results of the restore.

After the object(s) have been restored, the transaction should be closed. From the
NetBackup XBSA interface point of view, a committed or aborted transactions are
handled the same, as there is nothing for NetBackup to commit.

Redirected restore to a different client
One specific type of restore that deserves special notice is what is considered a
redirected restore to a different client. An XBSA object is stored within NetBackup
with a specific client from which it was backed up. The default is to assume that
the object is being restored to the same client. If the hostname that is initiating the
restore is different from the hostname on which the object was backed up, the
NBBSA_CLIENT_HOST environment variable needs to be set.

The NBBSA_CLIENT_HOST must be set, before entering the transaction, to the
hostname on which the object was backed up. If this variable has not been specified,
the NetBackup XBSA interface cannot find the object.

53Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Restore example
Here is an example of a restore. It assumes that the object descriptor has been
populated with the copyId of the object either from a query or the XBSA application
having stored this information.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_UInt32 EnvBufSz = 512;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

char ErrorString[512];

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Get the object. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

status = BSAGetObject(BsaHandle, object_desc, data_block);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * The application is responsible for recreating the file or other object *

54Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

/ * type that is being restored using the information that is stored in the *

/ * object_descriptor. This sample prints the results to the screen. */

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

/ * Initialize the data_block structure. */

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/ * Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/ * Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s", restore_location);

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

/ * The last BSAGetData() that returns BSA_RC_NO_MORE_DATA may have data *

* in the buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s\n", restore_location);

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

55Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

BSATerminate(BsaHandle);

exit(status);

}

/ * Done retrieving data. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are *

/ * equivalent as there is nothing to commit or abort for a restore transaction. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSATerminate(BsaHandle);

exit(status);

}

Multiple object restore
If multiple objects are going to be restored in one session or transaction, the XBSA
agent should consider using the NBBSAGetMultipleObjects function call. This is a
NetBackup extension to the XBSA interface to optimize the retrieval of objects in
a NetBackup environment. This is especially useful when retrieving many small
objects.

The reason this provides a performance improvement is that each NetBackup
restore operation creates a NetBackup job, which acquires resources and then
frees them up when the job is complete. Each BSAGetObject call translates into
one NetBackup job. The initial time required to start a NetBackup job and establish
communication are minimal, especially when compared to the time to transfer large
amounts of data. But if the objects are small and numerous, this overhead per object

56Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

is noticeable. It is also possible on heavily loaded NetBackup systems that
successive BSAGetObject calls may get queued up behind other NetBackup jobs
and resource requests. Any of these could cause performance issues if the separate
objects are all part of one restore.

To address this behavior of NetBackup, we have added a multiple object restore
interface to the XBSA interface. This is an extension of the XBSA specification to
enhance performance for the NetBackup XBSA applications. The use of this interface
is not required and does not provide functionality on objects that are not available
through the interfaces defined by XBSA.

Requirements

■ To do a multiple object restore, the XBSA application needs to have created
the objects in ways that allow this and there are restrictions on how the objects
can be retrieved.

■ All of the objects that are to be restored within a multiple object restore must be
part of the same NetBackup image, which means that the objects were created
in one transaction. This can be verified by checking that each object being
restored has the same copyId.right.

■ The objects must be retrieved in the same order that they were created. Some
objects in the image can be skipped, but the objects being retrieved must be
ordered in a way that do not cause the media to have to position backwards.
The ordering of objects can be determined by verifying that the copyId.left for
each object is in ascending order.

■ While not all objects in an image need to be retrieved, all objects in the list
created by NBBSAAddToMultiObjectRestoreList must be retrieved in the order
in which they are listed. Objects cannot be skipped or added.

■ Each object in the list is retrieved with BSAGetObject followed by successive
BSAGetData calls to retrieve all of the data. All of the data for an object must
be retrieved before moving on to the next object.

Functions and use

There are three new functions provided as part of the XBSA interface that can be
used to do multiple object restores.

■ NBBSAAddToMultiObjectRestoreList takes an object descriptor and it to a
descriptor list. This function is called for each object that is to be retrieved as
part of one restore job. It is highly recommended to use this function to create
the list because it allows the XBSA interface to be in charge of memory allocation
and deletion.

■ NBBSAGetMultipleObjects starts the multiple object restore job. It takes the list
of descriptors built by NBBSAAddToMultiObjectRestoreList and submits a
request to restore all objects.

57Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

■ NBBSAEndGetMultipleObjects ends the multiple object restore job. This function
cleans up the memory from the object list and allows the application to COMMIT
or ABORT the restore, which has no real effect on the data.

The process is very similar to the single object restores. First, all objectDescriptors
to be retrieved are added to a list using the NBBSAAddToMultiObjectRestoreList.
The objectDescriptors can be generated from BSAQueryObject or populated by
the application. Once the list is ready, a call to NBBSAGetMultipleObjects initiates
the restore process. Then, each object is retrieved using the standard BSAGetObject,
BSAGetData, and BSAEndData function calls. The difference is that BSAGetObject
knows it is part of a larger restore job. After all objects have been retrieved,
NBBSAEndGetMultipleObjects is called to end the restore process. The transaction
can then be ended. If an object is skipped or not all data is retrieved, the entire job
fails.

Multiple object restore example
Here is an example of a multiple object restore. Examples of BSAQueryObject and
BSAGetObject are included elsewhere in this document, so this example bypasses
some of the error handling associated with those calls.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

BSA_ObjectDescriptor *object_desc_current;

NBBSA_DESCRIPT_LIST *object_list = NULL;

NBBSA_DESCRIPT_LIST *object_list_current;

BSA_UInt32 EnvBufSz = 512;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

char ErrorString[512];

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

58Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

BSABeginTxn(BsaHandle);

/* Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_MOST_RECENT;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "BSA Client");

strcpy(query_desc->objectOwner.app_ObjectOwner, "BSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

/* Search for an object matching the query criteria. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Start building the objectList by adding the object descriptor to the list. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Search for a second object. */

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object2");

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

59Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

/* Add the second object descriptor to the objectList. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Start the multiple object restore by passing in the object list. The object list

* will be evaluated and the restore job will be started.

*/

status = NBBSAGetMultipleObjects(BsaHandle, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAGetMultipleObjects () failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Create a pointer to the object list in order to keep track of the current object

* being restored. A list created by the application could also be used.

* Point the object descriptor at the first object

*/

object_list_current = object_list;

object_desc_current = object_list_current->Descriptor;

/* Get the first object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

60Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the first object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Set the object descriptor to the next object in the list. */

object_list_current = object_list_current->next;

if (object_list_current == NULL) {

/* handle end of objects condition */

}

61Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

object_desc_current = object_list_current->Descriptor;

if (object_desc_current == NULL) {

/* handle error condition */

}

/* Get the next object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the second object. */

62Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* End the multiple object restore transaction. Set any references to objects

* in the object list to NULL as the memory associated to the list has been freed.

*/

status = NBBSAEndGetMultipleObjects(BsaHandle, BSA_Vote_COMMIT, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAEndGetMultipleObjects() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

object_list_current = NULL;

object_desc_current = NULL;

/* End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are

* equivalent as there is nothing to commit or abort for a restore transaction.

*/

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

Delete - deleting an object or image
Deleting a NetBackup XBSA object is done with the BSADeleteObject() function.
BSADeleteObject() does not always delete the object specified, even if it returns a
success status. The only objects that can be deleted using BSADeleteObject() are
objects in which there was only one object created per transaction.

63Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Based on those limitations, the BSADeleteObject() function is pretty straightforward.
It takes a copyId as its parameter and deletes this object. Multiple objects can be
deleted in one transaction and it is permissible to have query operations within a
delete transaction. The object is not deleted until the transaction is committed, so
these query operations in a delete transaction can return a deleted object.

Deleting a NetBackup image is done with the NBBSADeleteImage() function.
NBBSADeleteImage() deletes an entire image that can contain one or more objects
created per transaction.

The NBBSADeleteImage() function takes a copyId of any object contained in the
image as its parameter and deletes the entire image. Multiple images can be deleted
in one transaction and it is permissible to have query operations within a delete
transaction. Unlike BSADeleteObject(), the deletion of the image takes place during
the NBBSADeleteImage() call.

Note: Deletion only removes an entry from the NetBackup catalog and not from
the storage media. NetBackup allows media to be imported to recreate all of the
images that are stored on them, and doing so may cause a deleted object or image
to reappear.

Delete example
This delete example is very simple. It assumes that the copyId has been populated
from a previous query or from information stored by the XBSA application. It then
deletes one object and commits the transaction that does the delete of the object.
In another transaction, an entire image is deleted.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_ObjectDescriptor *object_desc;

BSA_ObjectDescriptor *object_desc2;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

64Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

BSABeginTxn(BsaHandle);

/ * Delete the object from NetBackup. */

status = BSADeleteObject(BsaHandle, object_desc->copyId);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSADeleteObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the delete transaction, commit will delete the object */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSATerminate(BsaHandle);

exit(status);

}

BSABeginTxn(BsaHandle);

/* Delete an image from NetBackup. It may contain multiple objects. */

status = NBBSADeleteImage(BsaHandle, object_desc2->copyId);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(statuGetSs, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSADeleteImage() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete Image");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/* The deletion of the image has occurred during the NBBSADeleteImage() call */

65Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete Image");

BSATerminate(BsaHandle);

exit(status);

}

Media IDs - obtaining media IDs
Obtaining the Media IDs for a NetBackup image is done with the
NBBSAGetMediaIds() function. NBBSAGetMediaIds () gets all of the Media IDs
associated with an image that contains one or more objects. The
NBBSAGetMediaIds () function takes a copyId of any object contained in the image
as one of its parameters. The Media IDs for multiple images can be obtained in one
transaction and you can have query operations within a Media ID transaction.

Media ID example
This Media ID example assumes that the copyId has been populated from a previous
query or from information stored by the XBSA application.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

char buffer[100];

char *p;

BSA_UInt32 buffer_len;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

66Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

buffer_len = 100;

status = NBBSAGetMediaIds(BsaHandle, object_desc->copyId, &buffer_len, buffer);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAGetMediaIds() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Media Ids");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

p = buffer;

while (*p != '\0') {

printf("Media Id = %s\n", p);

p = p + (strlen(p) + 1);

}

printf("Buffer size used = %d\n", str_len);

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Media Ids");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

}

Logging and NetBackup
NetBackup has a log directory that contains the debug logs for the various processes
that make up the NetBackup server and/or client. There is a configurable verbose
level that controls how much information is logged to these debug logs. This verbose
level is a value from 0 to 5, with 0 indicating minimal logging and 5 being debug.
These logs are used by NetBackup support to help solve customer problems. The
log directory is located at /usr/openv/netbackup/logs on UNIX systems and
install directory/Veritas/NetBackup/logs on Windows. Within this directory
are directories for the different processes such as bprd, bpbrm, and so on. One log
file gets created for each day, and NetBackup automatically cleans up old files from
this directory. The NetBackup XBSA interface by default logs to the directory
exten_client.

67Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

With NetBackup 9.1, some of the NetBackup services use Unified Logging (VxUL).
Those include scheduler components: nbjm, nbpem and nbrb. For more details on
VxUL, please see the NetBackup Troubleshooting Guide and the NetBackup Logging
Reference Guide. The NetBackup XBSA interface does not currently use VxUL.

The NetBackup XBSA interface allows the XBSA application to log in a manner
consistent with other NetBackup processes. By using the NBBSALogMsg() function,
the XBSA application logs messages to the same file as the NetBackup XBSA
interface. This can cause some confusion for the developer at first, especially at
high debug levels, but lets the application see what causes the errors and it could
help NetBackup support see what the XBSA application is doing. The log messages
contain a timestamp along with the process ID, which is useful when there are
multiple processes going at once.

The log message also contains a debug level. The different error levels used by
NetBackup are defined in nbbsa.h. One of these values should be used in the
msgType parameter of NBBSALogMsg(). While there are no hard definitions of
when to use each of these values, using these values may help if NetBackup support
or engineering is ever involved in looking at a debug log.

#define MSINFO 4

#define MSWARNING 8

#define MSERROR 16

#define MSCRITICAL 32

The XBSA application is not required to log information to the NetBackup logs. If
the XBSA application is the backup portion of another application or database, it
may make more sense to log information to a place consistent with the rest of the
application.

Client in a cluster
Running an XBSA application in a clustered environment is a valid mode of
operation. The key thing about running in a cluster is to ensure that the client name
used when an object is created is the same as the client name used when the object
is being queried or retrieved. To ensure that the same client name is used, the
XBSA application should use the virtual name of the clients in the cluster. The best
way to do this would be to use the NBBSA_CLIENT_HOST variable and set it to
the virtual name for both creating and retrieving an object. The virtual name needs
to be the client name that is configured in the NetBackup policy. Another option is
to configure the virtual name as the default NetBackup client name. Configuring in
this way causes other NetBackup jobs, such as the file system backups, to use this
virtual name also, which may not be desired. If neither of these options is used by
the XBSA application, the XBSA interface uses the default client name, which is

68Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

the physical address of the client. The objects are created successfully, but if the
query or retrieval is done from a different node in the cluster, the object is not found.

Performance considerations
For the most part, the performance of the NetBackup XBSA interface with the XBSA
application is dependent on how NetBackup is configured and how fast the XBSA
application sends or receives data. It is important that the developers of an XBSA
application have some understanding of NetBackup to get the most out of it. Most
of that is determined by any individual implementation. But there are areas where
the application can make a difference in performance.

Here are some hints to help you get the most out of the NetBackup XBSA interface.

■ Use copyId if you know it. If the XBSA application has the ability to know or keep
the copyId for further reference, this is the most efficient method of getting the
object for restore.

■ Specify dates when doing a query. If start and end dates are not specified when
doing a query, the NetBackup XBSA interface may need to search through the
entire NetBackup catalog to find the object. Specifying dates allows it to narrow
its search.

■ Limit use of wildcards when doing a query. Wildcards, including the "ANY" value
of the enumeration types, cause more overhead searching and can also cause
large portions of the NetBackup catalog to be searched. This is especially true
of the pathName. Wildcards can be very useful, but from a performance
perspective they are harmful.

■ Use OBJECT_STATUS_MOST_RECENT. If the XBSA application knows that
a pathName is unique, or that it is searching for only the most recent copy of
that object, set the objectStatus of the query descriptor to
OBJECT_STATUS_MOST_RECENT. This lets NetBackup stop searching once
one copy has been found.

■ Unless the images are very large, create multiple objects per transaction rather
than one object per transaction when there are multiple objects being created.
Every transaction creates a NetBackup job that must be scheduled, open sockets,
mount tapes, and so on. For large objects, this overhead is dwarfed by the time
it takes to backup the data. On the other hand if there are many small objects,
this overhead becomes significant. Note that when creating multiple objects with
one transaction, there is no mechanism in the NetBackup XBSA interface to
delete a single object. However, the entire NetBackup image can be deleted by
calling NBBSADeleteImage().

69Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

How to build an XBSA
application

This chapter includes the following topics:

■ Getting help

■ Flags and defines

■ How to build in debug mode

■ How to debug the application

■ Static libraries

■ Dynamic libraries

■ End-user configuration

Getting help
Included in the NetBackup DataStore SDK are XBSA sample files that can be used
as a basis for creating an application. Included are both source files and Makefiles.
See “What the sample files do” on page 136. The Makefiles included in the sample
directory can be used as a basis for setting up an environment for creating an XBSA
application.

Flags and defines
There are no specific flags or defines that need to be used to compile using the
NetBackup XBSA interface. You should be able to use any values to make your
application compile efficiently.

4Chapter

How to build in debug mode
There is no compile level debug mode built into the XBSA libraries or header files.
The NetBackup Verbose level controls the debug messages.

How to debug the application
Debugging an XBSA application is best done through the log files generated by
NetBackup. This assumes that the XBSA application itself compiles and does not
have any known run-time errors.

See Logging and NetBackup for more information on this topic. You should also
see the Logging section in the NetBackup System Administrator's Guide, Volume
I. The NetBackup Verbose level controls the amount of debug messages that are
sent to the logs.

One of the advantages of debugging in this way is that it ties in with the NetBackup
logging that is going on for the other NetBackup processes. In many cases, it can
be a configuration issue that is causing a failure rather than a problem in the
NetBackup XBSA interface or the XBSA application.

Static libraries
The example Makefiles have example entries for using static libraries for your XBSA
application. These entries include the path to the static archive library, libxbsa.a,
along with the system libraries that are also required to be included.

For the UNIX platforms, (from Makefile.unix) see the following example:

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.32/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6.32/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE4.4.73/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-ppc64le/IBMpSeriesRedHat3.10.0/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-ppc64le/IBMpSeriesSuSE4.4.21/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-s390x/IBMzSeriesRedHat2.6.32/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-s390x/IBMzSeriesSuSE4.4.73/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa64.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris_x86_10_64/libxbsa.a -lintl -lsocket

-lnsl -ldl -ladm

For the Windows platforms, see the following example:

71How to build an XBSA application
How to build in debug mode

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

Dynamic libraries
The example Makefiles have example entries for using dynamic libraries for your
XBSA application.

For the UNIX platforms, (from Makefile.unix) see the following example:

Use one of these LIBS to bind dynamically

LIBS = -L/usr/openv/lib -lxbsa -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa64 -lnbclientcST -lnbbasecST

For the Windows platforms, (from Makefile.nt) see the following example:

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

The dynamic shared object libraries are installed with the NetBackup client on any
supported client platform. Similar to the static libraries, there is a libxbsa.so or a
libxbsa64.so. On UNIX platforms, the libraries are installed to /usr/openv/lib.
On Windows platforms, the libraries are installed on
install_directory\netbackup\bin.

End-user configuration
After an XBSA application has been created and installed on a NetBackup client,
a NetBackup policy and schedule must be configured through the NetBackup GUI
or command line. See “About How to run a NetBackup XBSA application”
on page 73.

72How to build an XBSA application
Dynamic libraries

How to run a NetBackup
XBSA application

This chapter includes the following topics:

■ About How to run a NetBackup XBSA application

About How to run a NetBackup XBSA application
After an XBSA application has been created, it can be used in a NetBackup
environment to store and retrieve data. To use an XBSA application, at least one
"DataStore" policy with the appropriate schedules needs to be defined. A
configuration can have a single policy that includes all clients or there can be many
policies, some of which include only one client.

This manual only contains a brief description of configuring a DataStore policy.
More information on creating policies and configuring NetBackup can be found in
the NetBackup System Administrator's Guide for UNIX, Volume I, or NetBackup
System Administrator's Guide for Windows, Volume I.

Creating a NetBackup policy
A NetBackup policy defines the backup criteria for a specific group of one or more
clients. These criteria include:

■ storage unit and media to use

■ backup schedules

■ script files to be executed on the clients

■ clients to be backed up

5Chapter

http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332
http://www.veritas.com/docs/DOC5332

Selecting a storage unit
Each policy sends the data to a defined storage unit. The storage units must have
already been defined and one needs to be selected for the DataStore policy.

Adding new schedules
Each policy has its own set of schedules. These schedules control initiation of
automatic backups and also specify when user operations can be initiated.

An XBSA application requires each policy to have at least an application backup
schedule. To satisfy this requirement, an application backup schedule named
Default-Application-Backup is automatically created when you configure a new
DataStore policy. The backup window for an application backup schedule must
encompass the time period during which all of the NetBackup DataStore jobs,
scheduled and unscheduled, occur. This is necessary because the application
backup schedule starts processes that are required for all of the XBSA application
backups, including those started automatically.

If the user wants NetBackup to initiate the XBSA application, an automatic backup
schedule is also required. An automatic backup schedule specifies the dates and
times when NetBackup automatically starts backups by running the XBSA scripts
in the order that they appear in the Files list. If there is more than one client in the
DataStore policy, the XBSA scripts are executed on each client.

Adding script files to the files list
Each policy has a Files list. When a DataStore policy is configured, the Files list is
a list of script(s) that are executed when the backup is initiated. That script is
executed as a user-directed backup. The script should contain any commands that
are required to prepare the application for a backup, including setting up an
environment, halting processes, and so on, along with calling the XBSA application
with the parameters that are required to execute the backup operations.

Adding new clients
Each policy also has a list of NetBackup clients. This list should contain all clients
on which the XBSA application is going to run.

Running a NetBackup XBSA application
Once configured, backups and restores can be run either from the XBSA application
or through jobs scheduled through NetBackup. NetBackup can run backups and
restores indirectly through the XBSA application by executing scripts that contain
the XBSA application backup or restore commands.

74How to run a NetBackup XBSA application
About How to run a NetBackup XBSA application

Backups and restores initiated by NetBackup (through a script)
The XBSA application can be initiated through NetBackup. This lets the XBSA
application be treated like the rest of the system environment when creating and
scheduling backup windows and other resource considerations. Backup and restore
operations through NetBackup are done through scripts. When a DataStore policy
is configured, the Files list is a script that is to be executed when the backup or
restore is initiated. That script is executed as a user-directed backup. These scripts
should contain any commands that are required to prepare the application for a
backup or restore, including setting up an environment, halting processes, and so
on, along with calling the XBSA application with the parameters that are required
to execute the backup or restore operations.

Note: All scripts must be stored and run locally. One recommendation is that scripts
should not be world-writable. Scripts are not allowed to be run from network or
remote locations. Any script that is created and saved in the NetBackup db_ext

(UNIX) or dbext (Windows) location needs to be protected during a NetBackup
uninstall.

For more information about registering authorized locations and scripts, review the
knowledge base article:

http://www.veritas.com/docs/000126002

See “Registering authorized locations used by a NetBackup database script-based
policy” on page 142.

There is no ability to browse for backups. The Files list is a script to be executed,
not a list of objects that can be restored. It is up to these scripts to determine what
needs to be backed up or conversely what XBSA objects need to be restored. In
this regard, the XBSA application needs to be fairly intelligent or allow options that
can be specified to give the script the ability to be intelligent.

Backups and restores from the command line
The NetBackup XBSA application can also be initiated from the command line to
run a backup or restore. Commands included in the backup or restore scripts can
also be run directly from the command line. The XBSA application connects to
NetBackup through the XBSA interface and a NetBackup job is started. For backups,
a backup window must be open in the application backup schedule.

75How to run a NetBackup XBSA application
About How to run a NetBackup XBSA application

http://www.veritas.com/docs/000126002

API reference
This chapter includes the following topics:

■ Error messages

■ Function calls

■ Function specifications

■ Type definitions

Error messages
The following table lists the possible return codes for the NetBackup XBSA functions.
The descriptions for each individual function lists the valid return codes that are
valid for that function.

The return code BSA_RC_SUCCESS is returned on successful completion by all
NetBackup XBSA function calls.

Table 6-1 Error Messages for NetBackup XBSA Functions

MeaningReturn Code NameValue

The function succeeded.BSA_RC_SUCCESS0x00

System detected error,
operation aborted.

BSA_RC_ABORT_SYSTEM_ERROR0x03

There was an authentication
failure.

BSA_RC_AUTHENTICATION_FAILURE0x04

The sequence of API calls is
incorrect.

BSA_RC_INVALID_CALL_SEQUENCE0x05

6Chapter

Table 6-1 Error Messages for NetBackup XBSA Functions (continued)

MeaningReturn Code NameValue

The handle used to associate
this call with a previous
BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE0x06

The value specified for vote is
invalid.

BSA_RC_INVALID_VOTE0x0B

There are more objects to
restore in a multiple object
restore operation.

NBBSA_RC_MORE_DATA0x0E

The license for the requested
feature is not available.

NBBSA_RC_FEATURE_NOT_LICENSED0x0D

No XBSA object matched the
specified predicate.

BSA_RC_NO_MATCH0x11

No more data is available.BSA_RC_NO_MORE_DATA0x12

A parameter passed to this
function has an invalid value.

NBBSA_RC_INVALID_PARAMETER0x15

There is no copy of the
requested XBSA object.

BSA_RC_OBJECT_NOT_FOUND0x1A

The transaction was aborted.BSA_RC_TRANSACTION_ABORTED0x20

The BSA_DataBlock32
parameter contained an
inconsistent value.

BSA_RC_INVALID_DATABLOCK0x34

The NetBackup implementation
does not support the specified
version of the interface.

BSA_RC_VERSION_NOT_SUPPORTED0x4B

Access to the requested XBSA
object is not possible.

BSA_RC_ACCESS_FAILURE0x4D

The supplied buffer is too small
to contain the data, as specified
by the accompanying size
parameter.

BSA_RC_BUFFER_TOO_SMALL0x4E

The copyId field contained an
unrecognized value.

BSA_RC_INVALID_COPYID0x4F

77API reference
Error messages

Table 6-1 Error Messages for NetBackup XBSA Functions (continued)

MeaningReturn Code NameValue

An entry in the environment
structure is invalid or missing.

BSA_RC_INVALID_ENV0x50

The BSA_ObjectDescriptor was
invalid.

BSA_RC_INVALID_OBJECTDESCRIPTOR0x51

The BSA_QueryDescriptor was
invalid.

BSA_RC_INVALID_QUERYDESCRIPTOR0x53

A NULL pointer was
encountered in one of the
arguments.

BSA_RC_NULL_ARGUMENT0x55

Function calls
This section contains the C language definitions for the NetBackup XBSA API
functions. The NetBackup XBSA interface includes functions defined by the XBSA
specifications and some NetBackup extended functions. Both of these function sets
use the type definitions and data structures defined in the next chapter.

The following table lists the XBSA function specifications defined in this topic.

Table 6-2 XBSA Function Specifications

OperationFunction Call

Initialize the environment and set up a sessionBSAInit

Terminate a sessionBSATerminate

Begin a transactionBSABeginTxn

End a transactionBSAEndTxn

Create an XBSA objectBSACreateObject

Send a byte stream of data in a bufferBSASendData

Get an XBSA objectBSAGetObject

Get a byte stream of data using buffersBSAGetData

End a BSAGetData() or BSASendData() sequenceBSAEndData

Delete an XBSA objectBSADeleteObject

78API reference
Function calls

Table 6-2 XBSA Function Specifications (continued)

OperationFunction Call

Query about XBSA object copiesBSAQueryObject

Get the next XBSA object relating to a previous queryBSAGetNextQueryObject

Retrieve the current environment for the sessionBSAGetEnvironment

Retrieve the error code for the last system errorBSAGetLastError

Query for the current version of the APIBSAQueryApiVersion

Query the name of NetBackup implementationBSAQueryServiceProvider

The following table lists the NetBackup XBSA function extensions defined later in
this topic. These functions are provided by the NetBackup XBSA interface to
enhance the usability and performance of an XBSA application used with NetBackup.
The use of these functions is not required. An application using strictly XBSA
functions is supported.

Table 6-3 NetBackup XBSA Function Extensions

OperationFunction Call

Add objects to a list of objects to be restored in one jobNBBSAAddToMultiObjectRestoreList

Delete a NetBackup imageNBBSADeleteImage

End the restore of multiple objectsNBBSAEndGetMultipleObjects

Free job informationNBBSAFreeJobInfo

Get the value of a single XBSA environment valueNBBSAGetEnv

Get the string error message of an XBSA error codeNBBSAGetErrorString

Get the job ID for a backup or restore transactionNBBSAGetJobId

Get the job informationNBBSAGetJobInfo

Get the media IDs for a NetBackup imageNBBSAGetMedialds

Initiate a restore of a list of objectsNBBSAGetMultipleObjects

Get the NetBackup error code and text from the
NetBackup server

NBBSAGetServerError

Log a message to the XBSA logsNBBSALogMsg

79API reference
Function calls

Table 6-3 NetBackup XBSA Function Extensions (continued)

OperationFunction Call

Set the value of a single XBSA environment valueNBBSASetEnv

Update the current environment for the sessionNBBSAUpdateEnv

Validate the license key for the specified feature IDNBBSAValidateFeatureId

Conventions
The following conventions are used to indicate input or output for parameters:

(I) indicates input

(O) indicates output

(I/O) indicates input and output

In many cases, the actual input parameter is a pointer to a data structure. In these
cases the terms "I", "O" and "I/O" refer to changes in the value of the data structure
rather than to changes in the value of the pointer itself.

Function specifications
The following is a list of the function specifications for XBSA.

BSABeginTxn
Begin a transaction.

SYNOPSIS

#include <xbsa.h>

int BSABeginTxn(BSA_Handle bsaHandle)

DESCRIPTION

The BSABeginTxn() call indicates to the NetBackup XBSA interface the beginning
of one or more actions that are executed as an atomic unit, that is, all of the actions
will succeed or none will succeed. An action can be assumed to be either a single
function call or a series of function calls that are made for a particular purpose.

For example, a BSACreateObject() call followed by a number of BSASendData()
calls and terminated by a BSAEndData() call can be considered to be a single
action.

80API reference
Function specifications

In normal use, a BSABeginTxn() call is always coupled with a subsequent
BSAEndTxn() call. If BSATerminate() is called during a transaction, the transaction
is aborted.

If BSA_SERVICE_HOST has not been specified before calling BSABeginTxn(),
the default NetBackup server is determined and the feature is checked for a valid
license key. The feature_ID is the default DataStore feature_ID unless a specific
NetBackup feature_ID has been specified using NBBSA_FEATURE_ID. If a valid
license is not found, the transaction returns a
NBBSA_RC_FEATURE_NOT_LICENSED error and not open the transaction.

Nested transactions are not supported.

PARAMETERS

This parameter is the handle that associates this call with a previous
BSAInit() call.

BSA_Handle
bsaHandle (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation
aborted.

BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect.
Nested transactions are not supported.

BSA_RC_INVALID_CALL_SEQUENCE

The license for the requested feature is
not available.

NBBSA_RC_FEATURE_NOT_LICENSED

The handle used to associate this call
with a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The function succeeded.BSA_RC_SUCCESS

BSACreateObject
Create an XBSA object.

SYNOPSIS

#include <xbsa.h>

int BSACreateObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor
*objectDescriptorPtr, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

81API reference
Function specifications

The BSACreateObject() call creates an XBSA object within NetBackup. Duplicate
BSA_ObjectNames are allowed.

The BSACreateObject() call is used to create an XBSA object based on the
information in the objectDescriptor. This call initiates the communication between
the NetBackup XBSA interface and the NetBackup server. The XBSA object data
can then be passed in memory buffers. The dataBlockPtr parameter in the
BSACreateObject() call allows the caller to obtain information about the buffer
structure required by the NetBackup XBSA interface.

The XBSA object data is passed through one or more BSASendData() calls. If there
is no data to be sent, then a BSAEndData() call must be used to indicate completion
of the XBSA object. The BSASendData() and BSAEndData() calls must follow the
BSACreateObject() call and must be in the same transaction.

PARAMETERS

This parameter is the handle that associates
this call with a previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is used to pass XBSA object
attributes, including its name, copy type, and
so on.

BSA_ObjectDescriptor *objectDescriptorPtr
(I/O)

This parameter is a pointer to a structure that
is used to obtain the details of the required
buffer structure.

BSA_DataBlock32 *dataBlockPtr (O)

EXTENDED DESCRIPTION

Within the XBSA object descriptor, all fields must contain valid values. Enumerations
must contain one of their enumerated values. Strings must be null-terminated. All
other fields must be in the range of valid values for that field.

The following fields in the XBSA object descriptor are optional: objectOwner,
objectDescription, and objectInfo. The optional value for either field of objectOwner
and the field objectDescription is the empty string. The optional value for objectInfo
is all zeros. If the bsa_ObjectOwner is empty, it defaults to the value specified in
BSAInit().

Note: For NetBackup XBSA Version 1.1.0, the NetBackup XBSA interface and
NetBackup determine the XBSA object ownership. If the bsa_ObjectOwner field is
specified, it is saved with the object but does not define ownership.

The following fields in the XBSA object descriptor are mandatory: objectName,
copyType, estimatedSize, resourceType, and objectType. For objectName this

82API reference
Function specifications

means that the pathName must contain a non-empty string. For copyType and
objectType the enumeration value "ANY" is not allowed.

The estimatedSize must contain a non-zero estimate if the XBSA application intends
to create a non-empty XBSA object (that is, there is XBSA object data). This size
is in bytes. If the estimatedSize is zero, this call must be followed by a BSAEndData()
without calling BSASendData() in between. There are no resource allocations based
on this estimate, only whether the object will have data or not, so the estimate does
not need to be accurate.

The NetBackup XBSA interface can return several values to the XBSA application
through the objectDescriptorPtr for a newly created XBSA object. The interface
returns either all or none of these values.

The copyId attribute is a persistent, fixed-length object identifier that remains
unchanged throughout the life of the XBSA object.

Note: For NetBackup XBSA Version 1.1.0, the copyId is only guaranteed to be
unique on a given NetBackup master server.

If the copyId field is non-zero, the NetBackup XBSA interface returned values for
the copyId, createTime, restoreOrder, and objectStatus fields.

The createTime field is in UTC. The restoreOrder field can have the value zero,
which means that the NetBackup XBSA interface did not specify a restore order.

The dataBlockPtr structure does not point to an actual data buffer. All of the values
in the dataBlockPtr should be zero, and they are overwritten. The structure is used
by the NetBackup XBSA interface to provide the XBSA application with the interface
preference for the structure of the data blocks that are used to pass the NetBackup
XBSA object's data. The XBSA application should examine the values returned to
determine the buffer structure that it should create. The significance of the returned
values is as follows:

NetBackup has no restrictions on the buffer length. No trailer portion
is required.

bufferLen == 0

NetBackup accepts buffers that are at least bufferLen bytes in
length (minimum length). The length of the trailer portion of buffers
is: trailerBytes >= (bufferLen - numBytes - headerBytes)

bufferLen != 0

NetBackup has no restrictions on the length of the data portion of
the buffer.

numBytes == 0

The maximum length of the data portion of buffers accepted by
NetBackup must not exceed numBytes bytes.

numBytes != 0

83API reference
Function specifications

NetBackup only accepts buffers with no header portion.headerBytes == 0

The length of the header portion of buffers accepted by NetBackup
is headerBytes bytes.

headerBytes != 0

Not usedbufferPtr

The values returned by the call to BSACreateObject() remain in effect for the duration
of the data transfer of the XBSA object being created, that is, until the next
BSAEndData() call. The NetBackup XBSA interface currently does not have any
header or trailer requirements, so the full buffer specified can be used by the XBSA
application. This is documented for completeness with the XBSA specification and
to allow for future use of these fields as specified by the XBSA specifications.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation
aborted.

BSA_RC_ABORT_SYSTEM_ERROR

Cannot create the XBSA object with the
given descriptor.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The BSA_DataBlock32 parameter
contained an inconsistent value.

BSA_RC_INVALID_DATABLOCK

The handle used to associate this call
with a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The BSA_ObjectDescriptor was invalid.BSA_RC_INVALID_OBJECTDESCRIPTOR

A NULL pointer was encountered in one
of the arguments

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

BSADeleteObject
Delete a NetBackup XBSA object.

SYNOPSIS

#include <xbsa.h>

int BSADeleteObject(BSA_Handle bsaHandle, BSA_UInt64 copyId)

DESCRIPTION

84API reference
Function specifications

The BSADeleteObject() call only deletes an XBSA object from NetBackup. The
value for copyId can be obtained from a previous BSAQueryObject() call. The copyId
value is unique on a given NetBackup master server. An XBSA application can only
delete the NetBackup XBSA objects that it owns.

BSADeleteObject() only works when there is only one object in an image, that is,
one object created per transaction. If there are multiple objects, BSADeleteObject()
returns a BSA_RC_SUCCESS status, but the object still exists.

The actual delete of the object from NetBackup occurs when the transaction is
closed with a commit. A query in the same transaction can still return the object. If
the transaction is aborted, the object is not deleted.

If the object data is stored in a NetBackup disk storage unit, the data is deleted with
the object. If the object is on a tape storage unit, the data is considered expired but
is not deleted until all of the objects on the media are expired. You can create and
then delete the same NetBackup XBSA object within a single transaction.

Note: Objects which are found, but are protected in the NetBackup catalog (Legal
Hold, WORM storage, etc.) are not deleted and a BSA_RC_SUCCESS status is returned
on the BSAEndTxn call.

PARAMETERS

This parameter is the handle that associates this call with
a previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is the unique ID of the XBSA object to
be deleted. The value(s) for a specific XBSA object can
be obtained through a BSAQueryObject() call.

BSA_UInt64 copyId (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

Cannot delete an XBSA object with the given
copyId.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The copyId field cannot be zero.BSA_RC_INVALID_COPYID

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

85API reference
Function specifications

The given copyId does not exist.BSA_RC_OBJECT_NOT_FOUND

The function succeeded.BSA_RC_SUCCESS

BSAEndData
End a BSAGetData() or BSASendData() sequence.

SYNOPSIS

#include <xbsa.h>

int BSAEndData(BSA_Handle bsaHandle)

DESCRIPTION

The caller issues BSAEndData() after a call to BSACreateObject() followed by zero
or more BSASendData() calls, or after a call to BSAGetObject() followed by zero
or more BSAGetData() calls to signify the end of data. When used with
BSAGetObject() or BSAGetData() calls, BSAEndData() does not transfer any more
data for the NetBackup XBSA object to the caller. When used with
BSACreateObject() or BSASendData() calls, BSAEndData() tells the NetBackup
XBSA interface that the caller has finished sending data for a particular NetBackup
XBSA object. BSAEndData() signifies the end of data for the immediately preceding
BSACreateObject(), BSAGetObject(), BSAGetData(), or BSASendData().

It is also required after a call to BSAGetObject() or BSACreateObject() if the object
is empty.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The function succeeded.BSA_RC_SUCCESS

86API reference
Function specifications

BSAEndTxn
End a transaction.

SYNOPSIS

#include <xbsa.h>

int BSAEndTxn(BSA_Handle bsaHandle, BSA_Vote vote)

DESCRIPTION

BSAEndTxn() is coupled with BSABeginTxn() to identify the API call or set of API
calls that are to be treated as a transaction. The caller must specify as a parameter
to the BSAEndTxn() call whether or not the transaction is to be committed.

The BSA_RC_TRANSACTION_ABORTED error is only returned when a vote of
BSA_Vote_COMMIT has been specified but an error has occurred that causes the
transaction to be aborted. A BSAEndTxn() specifying a vote of BSA_Vote_ABORT
returns a success status.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter indicates whether or not the caller wants to
commit all the actions done between the previous
BSABeginTxn() call and this call.

BSA_Vote vote (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

There is no corresponding BSABeginTxn().BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The value specified for vote is invalid.BSA_RC_INVALID_VOTE

The function succeeded.BSA_RC_SUCCESS

The transaction was aborted.BSA_RC_TRANSACTION_ABORTED

BSAGetData
Get a byte stream of data using buffers.

87API reference
Function specifications

SYNOPSIS

#include <xbsa.h>

int BSAGetData(BSA_Handle bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSAGetData() allows the caller to request a buffer full of XBSA object data from
the NetBackup XBSA interface. This call is used after a BSAGetObject() call or
after other BSAGetData() calls.

PARAMETERS

This parameter is the handle that associates this call with
a previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a pointer to a structure that includes both
a pointer to the buffer for the data that is to be received
and the size of the buffer. Further, the API returns, in this
structure, the number of bytes of data that have been sent
to the caller for this call.

BSA_DataBlock32
*dataBlockPtr (I/O)

EXTENDED DESCRIPTION

The NetBackup XBSA interface overwrites the numBytes field to provide the actual
values used. The NetBackup XBSA interface does not modify any other fields. The
XBSA application can only use the data portion of the buffer in which the XBSA
object data is contained.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The BSA_DataBlock32 parameter
contained an inconsistent value.

BSA_RC_INVALID_DATABLOCK

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

There is no more data.BSA_RC_NO_MORE_DATA

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

88API reference
Function specifications

BSAGetEnvironment
Retrieve the current NetBackup XBSA environment variables for the session.

SYNOPSIS

#include <xbsa.h>

int BSAGetEnvironment(BSA_Handle bsaHandle, BSA_UInt32 *sizePtr, char
**environmentPtr)

DESCRIPTION

The BSAGetEnvironment() call returns the (keyword, value) pairs that are currently
defined in the NetBackup XBSA environment for the session

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter contains the size of the environment buffer
in bytes.

BSA_UInt32 *sizePtr (I/O)

This parameter is a pointer to an array of character pointers
to the environment variables strings for the session. Each
string consists of a keyword followed by an 9.1=9.1 followed
by a null-terminated value. A NULL pointer terminates the
array of pointers.

char **environmentPtr (O)

EXTENDED DESCRIPTION

If a buffer too small error is encountered, the required size is returned in the sizePtr
parameter. If the sizePtr parameter is set to zero, it forces a buffer too small error,
that provides a mechanism to query the required size.

See “Environment variable definitions” on page 25.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The size of the data buffer is invalid.BSA_RC_BUFFER_TOO_SMALL

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

A NULL pointer was encountered in one of
the arguments.

BSA_RC_NULL_ARGUMENT

89API reference
Function specifications

The function succeeded.BSA_RC_SUCCESS

BSAGetLastError
Return the last system error code.

SYNOPSIS

#include <xbsa.h>

int BSAGetLastError(BSA_UInt32 *sizePtr, char *errorCodePtr)

DESCRIPTION

The BSAGetLastError() call returns a textual description of the last error encountered
by the NetBackup XBSA interface. It is used to return the NetBackup-specific
information that describes the underlying cause of the failure of the most recent
XBSA call; for example, a network failure.

PARAMETERS

This parameter contains the size of the error buffer in bytes.BSA_UInt32 sizePtr (I/O)

This parameter is a pointer to a data area that contains a text
string describing the last error encountered.

char *errorPtr (O)

EXTENDED DESCRIPTION

If the NetBackup XBSA interface sets the sizePtr parameter to zero, it is unable to
return a string describing the last error. This indicates that the NetBackup XBSA
interface has no record of what error occurred.

If a BSA_RC_BUFFER_TOO_SMALL error is encountered, the required size is
returned in the sizePtr parameter. If the XBSA application sets the sizePtr parameter
to zero, this forces a BSA_RC_BUFFER_TOO_SMALL error that provides a
mechanism to query the required size.

RETURN VALUE

The following return codes are returned by this function:

The size of the data buffer is invalid.BSA_RC_BUFFER_TOO_SMALL

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

90API reference
Function specifications

The function succeeded.BSA_RC_SUCCESS

BSAGetNextQueryObject
Get the next NetBackup XBSA object found from a previous query.

SYNOPSIS

#include <xbsa.h>

int BSAGetNextQueryObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor
*objectDescriptorPtr)

DESCRIPTION

The BSAGetNextQueryObject() call returns the next NetBackup XBSA object
descriptor that is a member of a previous query. Successive calls to
BSAGetNextQueryObject() return all of the NetBackup XBSA object descriptors
from a query one object at a time. When the last object descriptor from a query has
been found, the function returns a status of BSA_RC_NO_MORE_DATA.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a pointer to an XBSA object descriptor
structure that is populated with the values from the next XBSA
object in the list generated by the query.

BSA_ObjectDescriptor
*objectDescriptorPtr (O)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

There is no more data.BSA_RC_NO_MORE_DATA

A NULL pointer was encountered in one
of the arguments

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

91API reference
Function specifications

BSAGetObject
Get an object.

SYNOPSIS

#include <xbsa.h>

int BSAGetObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor
*objectDescriptorPtr, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSAGetObject() retrieves the NetBackup XBSA object identified by the copyId and
prepares the NetBackup XBSA Interface to retrieve the XBSA object data. It initiates
the communication with the NetBackup server to retrieve the object.

The dataBlockPtr parameter in the BSAGetObject() call allows the caller to obtain
information about the buffer structure required by the NetBackup XBSA interface.
The caller obtains the NetBackup XBSA object data through subsequent
BSAGetData() calls. The caller must terminate the receipt of the data by using the
BSAEndData() call.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a pointer to a data area used to pass the
NetBackup XBSA object's copyId to the NetBackup XBSA
interface.

BSA_ObjectDescriptor
*objectDescriptorPtr (I)

This parameter is a pointer to a structure that is used to obtain
the details of the required buffer structure.

BSA_DataBlock32
*dataBlockPtr (O)

EXTENDED DESCRIPTION

It is mandatory that the copyId field in the BSA_ObjectDescriptor structure is set
as this is the only field that is checked. A copyId value of zero cannot identify a
valid XBSA object. BSAGetObject() matches the copyId field for equality.

The dataBlockPtr structure does not point to an actual buffer. All values in the
dataBlockPtr should be zero, and are overwritten. The structure is used by the
NetBackup XBSA interface to provide the XBSA application with the interface's
preference for the structure of the data blocks that are used to pass the NetBackup
XBSA object's data. The XBSA application should examine the values returned to
determine the buffer structure that it should create. The significance of the returned
values is as follows:

92API reference
Function specifications

NetBackup has no restrictions on the buffer length. No trailer
portion is required.

bufferLen == 0

NetBackup accepts buffers that are at least bufferLen bytes
in length (minimum length). The length of the trailer portion
of buffers is: trailerBytes >= (bufferLen - numBytes -
headerBytes).

bufferLen != 0

NetBackup has no restrictions on the length of the data
portion of the buffer.

numBytes == 0

The minimum length of the data portion of buffers accepted
by NetBackup must be numBytes bytes. If the interface
provides a larger data portion, NetBackup may take
advantage of it.

numBytes != 0

NetBackup only accepts buffers with no header portion.headerBytes == 0

The length of the header portion of buffers accepted by
NetBackup is headerBytes bytes.

headerBytes != 0

Not used.bufferPtr

The values returned by the call to BSAGetObject() remain in effect for the duration
of the data transfer of the NetBackup XBSA object being retrieved, that is, until the
next BSAEndData() call. The NetBackup XBSA interface currently does not have
any header or trailer requirements, so the full buffer specified can be used by the
XBSA application. This is documented for completeness with the XBSA specification
and to allow future use of these fields as specified by the XBSA specifications.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

Access to the requested XBSA object is
not possible. Cannot retrieve the XBSA
object with the given copyId.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The copyId cannot be zero.BSA_RC_INVALID_COPYID

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

93API reference
Function specifications

The given copyId does not exist.BSA_RC_OBJECT_NOT_FOUND

The function succeeded.BSA_RC_SUCCESS

BSAInit
Initialize the environment and set up a session.

SYNOPSIS

#include <xbsa.h>

int BSAInit(BSA_Handle *bsaHandlePtr, BSA_SecurityToken *tokenPtr,
BSA_ObjectOwner *objectOwnerPtr,

char **environmentPtr)

DESCRIPTION

The BSAInit() call authenticates the XBSA application, sets up a session with the
NetBackup XBSA interface and an environment for subsequent API calls for the
caller. Nested sessions are not supported.

PARAMETERS

This parameter is used to return the handle that identifies
this session and must be used for subsequent API calls using
this session.

BSA_Handle *bsaHandlePtr
(O)

For NetBackup XBSA Version 1.1.0, this parameter is
ignored. Client authentication is part of NetBackup
functionality and is performed between the NetBackup XBSA
interface and the NetBackup server.

BSA_SecurityToken *tokenPtr
(I)

This parameter is a pointer to a structure used to specify both
the bsa_ObjectOwner and the app_ObjectOwner. For
NetBackup XBSA Version 1.1.0, the NetBackup XBSA
interface and NetBackup determine object ownership. If the
bsa_ObjectOwner field is specified, it is ignored. The
app_ObjectOwner is optional and can be the empty string.
The BSA_ObjectOwner established when the session is
created is used in subsequent authorization checking.

BSA_ObjectOwner
*objectOwnerPtr (I)

94API reference
Function specifications

This parameter is a pointer to a structure that contains the
new NetBackup XBSA environment variables (keyword,
value) pairs, for the session. The new NetBackup XBSA
environment consists of a pointer to an array of strings. Each
string consists of a keyword followed by an ‘=’ and followed
by a null-terminated value. No spaces are allowed around
the ‘=’. A NULL pointer terminates the array of pointers.

char **environmentPtr (I)

EXTENDED DESCRIPTION

See “Environment variable definitions” on page 25.

Variables defined by the XBSA application but not interpreted by the NetBackup
XBSA interface are silently ignored and not added to the NetBackup XBSA
environment. Variables required by the NetBackup XBSA interface and not specified
by the application can result in a BSA_RC_INVALID_ENV error during a BSAInit()
call. The BSAGetEnvironment() call only returns the NetBackup XBSA environment
variables that are meaningful to the NetBackup XBSA interface. This allows the
XBSA application to discover which variables specified in the call to BSAInit() the
NetBackup XBSA interface interpreted.

When an XBSA application connects to a NetBackup XBSA interface, it can make
an initial call to BSAQueryApiVersion() to determine the highest version of the
specification supported. If the application supports that version, it should specify it
when calling BSAInit(). If the application does not support that version, or did not
call BSAQueryApiVersion(), the XBSA application should specify the version it
requires. If a "version not supported" error is encountered, and the XBSA application
supports other versions, the XBSA application may retry the call to BSAInit()
specifying a different version.

BSAInit() can also determine the verbose level and open the log file if the log
directory exists. Thus the XBSA application can start logging after BSAInit().

If BSA_SERVICE_HOST and NBBSA_FEATURE_ID are specified in the list of
XBSA environment variables, the feature is checked for a valid license key. If a
valid license is not found, the transaction returns a
NBBSA_RC_FEATURE_NOT_LICENSED error and does not open the session.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation
aborted.

BSA_RC_ABORT_SYSTEM_ERROR

There was an authentication failure.BSA_RC_AUTHENTICATION_FAILURE

95API reference
Function specifications

The sequence of API calls is incorrect.
Nested sessions are not supported.

BSA_RC_INVALID_CALL_SEQUENCE

An entry in the environment structure is
invalid or missing.

BSA_RC_INVALID_ENV

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

The license for the requested feature is
not available.

NBBSA_RC_FEATURE_NOT_LICENSED

The function succeeded.BSA_RC_SUCCESS

The NetBackup XBSA interface does
not support the specified version of the
interface.

BSA_RC_VERSION_NOT_SUPPORTED

BSAQueryApiVersion
Query for the current version of the API.

SYNOPSIS

#include <xbsa.h>

int BSAQueryApiVersion(BSA_ApiVersion *apiVersionPtr)

DESCRIPTION

The BSAQueryApiVersion() call is used to determine the current version of the
NetBackup XBSA interface. The version information consists of the issue, version
within the issue, and level within the version. If the NetBackup XBSA interface
supports more than one version, the latest version information is returned.

PARAMETERS

This parameter is a pointer to a structure that is
to be used to return the current issue, version,
and level, of the API.

BSA_ApiVersion *apiVersionPtr (O)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

A NULL apiVersionPtr was encountered.BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

96API reference
Function specifications

BSAQueryObject
Query about the XBSA object copies.

SYNOPSIS

#include <xbsa.h>

int BSAQueryObject(BSA_Handle bsaHandle, BSA_QueryDescriptor
*queryDescriptorPtr,

BSA_ObjectDescriptor *objectDescriptorPtr)

DESCRIPTION

The BSAQueryObject() call initiates a request for information on NetBackup XBSA
object copies from the NetBackup XBSA interface. The results of the query are
determined by the search conditions specified in the query descriptor. The XBSA
object descriptor for the first XBSA object satisfying the query search conditions is
returned in the BSA_ObjectDescriptor (referenced by the objectDescriptorPtr
parameter). The application can obtain the other XBSA object descriptors found by
the query by successive calls to BSAGetNextQueryObject().

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a pointer to a structure that contains the
search conditions for the query.

BSA_QueryDescriptor
*queryDescriptorPtr (I)

This parameter is a pointer to a structure that is used to return
the XBSA object descriptor for the first XBSA object that
satisfies the search condition specified in the query.

BSA_ObjectDescriptor
*objectDescriptorPtr (O)

EXTENDED DESCRIPTION

This function may only be used as part of a retrieval transaction.

A limited wildcard capability is available as follows:

Wildcard optionsData Type

"*" matches 0 or more characters "?" matches exactly one character
"*" matches a literal "*" "\?" matches a literal "?" "\\" matches a
literal "\"

String matching is performed without any interpretation of the string
contents. There is no implied knowledge of the structure of the
string contents.

string

97API reference
Function specifications

Zero value = any timetime

ANY value matches any valueenumerations

Defaults to value specified at session initializationBSA_ObjectOwner

The following examples illustrate wildcard string matching:

Matches all NetBackup XBSA
objects for this server

BSA_ObjectName.pathName = /server/*

Matches all levels of rootdbsBSA_ObjectName.pathName = /server/rootdbs/*

Matches all levels whose name
is exactly four characters long

BSA_ObjectName.pathName = /server/????

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation
aborted.

BSA_RC_ABORT_SYSTEM_ERROR

Access to the requested NetBackup
XBSA object descriptor is not permitted.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call
with a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The BSA_QueryDescriptor was invalid.BSA_RC_INVALID_QUERYDESCRIPTOR

No NetBackup XBSA objects matched
the given query.

BSA_RC_NO_MATCH

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

BSAQueryServiceProvider
Retrieve a string identifying NetBackup provider.

SYNOPSIS

#include <xbsa.h>

98API reference
Function specifications

int BSAQueryServiceProvider(BSA_UInt32 *sizePtr, char *delimiter, char
*providerPtr)

DESCRIPTION

The BSAQueryServiceProvider() call returns a hierarchical string identifying
NetBackup provider.

PARAMETERS

This parameter contains the size of the provider buffer in
bytes.

BSA_UInt32 *sizePtr (I/O)

This parameter is a pointer to the character that is used to
delimit fields in the provider hierarchical string.

char *delimiter (O)

This parameter is a pointer to a data area that contains
hierarchical string which conveys information identifying
NetBackup provider.

char *providerPtr (O)

EXTENDED DESCRIPTION

The format of the provider string is the same as the NetBackup XBSA environment
variable BSA_SERVICE_PROVIDER (see BSAGetEnvironment). The delimiter
character is returned in the delimiter parameter.

If a BSA_RC_BUFFER_TOO_SMALL error is encountered, the required size is
returned in the sizePtr parameter. If the XBSA application sets the sizePtr parameter
to zero, it forces a BSA_RC_BUFFER_TOO_SMALL error that provides a
mechanism to query the required size.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The size of the data buffer is invalid.BSA_RC_BUFFER_TOO_SMALL

A NULL pointer was encountered in one of the
arguments.

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

BSASendData
Send a byte stream of data in a buffer.

SYNOPSIS

99API reference
Function specifications

#include <xbsa.h>

int BSASendData(BSA_Handle bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSASendData() sends a byte stream of data to the NetBackup XBSA interface in
a buffer. BSASendData() can be called multiple times, in case the byte stream of
data to be sent is large. This call can be used only after a BSACreateObject() or
another BSASendData() call.

PARAMETERS

This parameter is the handle that associates this call with
a previous BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a pointer to a structure that includes a
pointer to the buffer from which the data is to be sent, as
well as the size of the buffer.

BSA_DataBlock32
*dataBlockPtr (I)

EXTENDED DESCRIPTION

The NetBackup XBSA interface does not overwrite any of the fields in the
BSA_DataBlock32 structure. The NetBackup XBSA interface can write into the
header and trailer portions of the buffer. See “Use of BSA_DataBlock32 in
BSASendData()” on page 23.

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

The BSA_DataBlock32 parameter
contained an inconsistent value.

BSA_RC_INVALID_DATABLOCK

The handle used to associate this call with
a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

BSATerminate
Terminate a session.

100API reference
Function specifications

SYNOPSIS

#include <xbsa.h>

int BSATerminate(BSA_Handle bsaHandle)

DESCRIPTION

The BSATerminate() call terminates the session with the NetBackup XBSA interface
that was set up by a previous BSAInit() call and is associated with the bsaHandle.
It also releases any resources acquired for the session, including closing any log
files. If BSATerminate() is called within a transaction, the transaction is aborted.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The function succeeded.BSA_RC_SUCCESS

NBBSAAddToMultiObjectRestoreList
Add objects to a list of objects to be restored in one job.

SYNOPSIS

#include <nbbsa.h>

int NBBSAAddToMultiObjectRestoreList(BSA_Handle bsaHandle,
NBBSA_DESCRIPT_LIST ** DescriptList, BSA_ObjectDescriptor *
ObjectDescriptorPtr)

DESCRIPTION

NBBSAAddToMultiObjectRestoreList() adds the objectDescriptor passed in to a
linked list of objectDescriptors. This list is used when restoring multiple objects.
The memory allocated in this function for the list is freed in
NBBSAEndGetMultipleObjects().

PARAMETERS

101API reference
Function specifications

The handle that associates this call with a previous
BSAInit() call.

BSA_Handle bsaHandle (I)

The address of a pointer to a list of
BSA_ObjectDescriptor's.

NBBSA_DESCRIPT_LIST
**DescriptList (I)

Pointer to an BSA_ObjectDescriptor to be added to the
list.

BSA_ObjectDescriptor
*ObjectDescriptorPtr (I)

RETURN VALUE

The following return codes are returned by this function:

The object descriptor has been added to the list.BSA_RC_SUCCESS

NBBSADeleteImage
Delete a NetBackup image.

SYNOPSIS

#include <nbbsa.h>

int NBBSADeleteImage(BSA_Handle bsaHandle, BSA_UInt64 copyId)

DESCRIPTION

NBBSADeleteImage() deletes a NetBackup image given the copyId of an XBSA
object. The value for copyId can be obtained from a previous BSAQueryObject()
call. The copyId value is unique on a given NetBackup Master Server. The XBSA
application can only delete a NetBackup image that contains the XBSA objects that
it owns.

NBBSADeleteImage() deletes an image regardless of the number of objects
contained in an image. For an image containing multiple objects,
NBBSADeleteImage() only needs to be called once passing in the copyId of any
of the objects contained in the image.

The deletion of an image occurs during the NBBSADeleteImage() processing.

If the image data is stored in a NetBackup disk storage unit, the data is deleted with
the image. If the image is on a tape storage unit, the data is considered expired but
is not deleted until all of the images on the media are expired. You cannot create
and then delete an image within a single transaction.

PARAMETERS

This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Handle bsaHandle (I)

102API reference
Function specifications

This parameter is the unique ID of an XBSA object that is
contained in the image to be deleted. The value for a specific
XBSA object can be obtained through a BSAQueryObject() call.

BSA_UInt64 copyId (I)

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

Cannot delete NetBackup image with the given
copyId.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect. Within a
transaction calling NBBSADeleteImage(), it is
permissible to embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the
XBSA application to intermix NBBSADeleteImage()
calls with BSAQueryObject() and
BSAGetNextQueryObject() calls to delete multiple
images within one transaction. Backup and restore
operations are not allowed within a transaction that
calls NBBSADeleteImage().

BSA_RC_INVALID_CALL_SEQUENCE

The copyId field cannot be zero.BSA_RC_INVALID_COPYID

The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The given copyId does not exist.BSA_RC_OBJECT_NOT_FOUND

The function succeeded.BSA_RC_SUCCESS

NBBSAEndGetMultipleObjects
End the restore of multiple objects.

SYNOPSIS

#include <nbbsa.h>

int NBBSAEndGetMultipleObjects(BSA_Handle bsaHandle, BSA_Vote vote,
NBBSA_DESCRIPT_LIST * descriptList)

DESCRIPTION

NBBSAEndGetMultipleObjects() closes the communications to the NetBackup
server to end a multiple object restore. The objectDescriptor list is freed and a check
is made to see if all of the objects requested were restored. If all of the objects were

103API reference
Function specifications

not restored, NBBSAEndGetMultipleObjects() returns an error. A vote parameter
is provided to allow the multiple object restore to be aborted. As with a single object
restore, commit or abort provides no functional difference to NetBackup.

PARAMETERS

The handle that associates this call with a previous
BSAInit() call.

BSA_Handle bsaHandle (I)

Allows the multiple object restore to be committed
or aborted.

BSA_Vote vote (I)

List of objects that were restored as part of the
multiple object restore.

NBBSA_DESCRIPT_LIST * descriptList
(I)

RETURN VALUE

The following return codes are returned by this function:

The handle used to associate this call with a previous
BSAInit()() call is invalid.

BSA_RC_INVALID_HANDLE

Not all of the requested objects were restored.BSA_RC_MORE_DATA

The end of the restore has been successfully
completed.

BSA_RC_SUCCESS

NBBSAFreeJobInfo
Free job information.

SYNOPSIS

#include <nbbsa.h>

int NBBSAFreeJobInfo(char **jobInfo)

DESCRIPTION

NBBSAFreeJobInfo() frees the job information storage that was allocated previously
through a call to NBBSAGetJobInfo().

PARAMETER

The job information array of pointers to character strings that was
populated by a previous call to NBBSAGetJobInfo().

char **JobInfo(I)

RETURN VALUE

The following return codes are returned by this function:

104API reference
Function specifications

A NULL pointer was encountered by the argument.BSA_RC_NULL_ARGUMENT

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The function succeeded.BSA_RC_SUCCESS

NBBSAGetEnv
Set the value of a single XBSA environment value.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetEnv(BSA_Handle bsaHandle, char *EnvVar, char *EnvVal, int
*ValSize)

DESCRIPTION

NBBSAGetEnv() gives the XBSA application the ability to retrieve the value of a
specific XBSA environment variable. The same results can be achieved by calling
BSAGetEnvironment() and evaluating for the specific variable being sought.

PARAMETERS

The handle that associates this call with a previous BSAInit()
call.

BSA_Handle bsaHandle (I)

Pointer to a null-terminated string that specifies the
environment variable.

char *EnvVar (I)

Pointer to a buffer to receive the value of the specified
environment variable.

char *EnvVal (O)

Pointer to the size, in characters, of the buffer pointed to by
the EnvVal parameter. Returns the size of EnvVal.

int *ValSize (I/O)

RETURN VALUE

The following return codes are returned by this function:

The buffer pointed to by EnvVal is not large
enough, The buffer size, in characters, required to
hold the value string and its terminating null
character is stored in the location pointed to by
ValSize.

BSA_RC_BUFFER_TOO_SMALL

105API reference
Function specifications

The specified environment variable name was not
found in the XBSA environment block for the
current session.

BSA_RC_INVALID_ENV

The function succeeded.BSA_RC_SUCCESS

NBBSAGetErrorString
Get the textual error message of an XBSA error code.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetErrorString(int ErrCode, BSA_UInt32 *sizePtr, char *errorCodePtr)

DESCRIPTION

The NBBSAGetErrorString() call returns a textual description of the XBSA error
code passed in.

PARAMETERS

The XBSA error code.int ErrCode (I)

Pointer to the size, in characters, of the buffer pointed to
by the errorCodePtr parameter. Returns the size of
errorCodePtr.

BSA_UInt32 *sizePtr (I/O)

Pointer to a buffer to receive the text of the error code.char *errorCodePtr (O)

RETURN VALUE

The following return codes are returned by this function:

The size of the data buffer is invalid.BSA_RC_BUFFER_TOO_SMALL

No description for error code passed in.BSA_RC_NO_MATCH

A NULL pointer was encountered in one of the
arguments.

BSA_RC_NULL_ARGUMENT

The function succeeded.BSA_RC_SUCCESS

NBBSAGetJobId
Obtain the job ID for a backup or restore transaction.

SYNOPSIS

106API reference
Function specifications

#include <nbbsa.h>

int NBBSAGetJobId(BSA_Handle bsaHandle, int *jobId)

DESCRIPTION

NBBSAGetJobId() returns the job ID associated with a backup or restore transaction.
To retrieve the job ID for a backup transaction, NBBSAGetJobId() can be called
any time after the BSACreateObject() call, but before the BSAEndTxn() call. To
retrieve the job ID for a restore transaction, NBBSAGetJobId() can be called any
time after the BSAGetObject() call, but before the BSAEndTxn() call. To retrieve
the job ID for a multiple object restore transaction, NBBSAGetJobId() can be called
any time after the NBBSAGetMultipleObjects() call, but before the BSAEndTxn()
call.

PARAMETERS

The handle that associates this call with a previous BSAInit()
call.

BSA_Handle bsaHandle
(I)

Pointer to the job ID for the current backup or restore.int *jobId (O)

RETURN VALUE

The following return codes are returned by this function:

A NULL pointer was encountered in one of the
arguments.

BSA_RC_NULL_ARGUMENT

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

The sequence of API calls is incorrect. This code is
returned if the current transaction is not a backup or
restore transaction. During a backup transaction, this
code is returned if NBBSAGetJobId() is called before
BSACreateObject() or after BSAEndTxn(). During a
restore transaction, this code is returned if
NBBSAGetJobId() is called before BSAGetObject ()
or after BSAEndTxn(). During a multiple object restore
transaction, this code is returned if NBBSAGetJobId()
is called before NBBSAGetMultipleObjects() or after
BSAEndTxn().

BSA_RC_INVALID_CALL_SEQUENCE

The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The function succeeded.BSA_RC_SUCCESS

107API reference
Function specifications

NBBSAGetJobInfo
Obtain job information.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetJobInfo(BSA_Handle bsaHandle, int jobid, BSA_UInt32 length, char
**jobInfo)

DESCRIPTION

NBBSAGetJobInfo() returns information about a job. The information obtained is
equivalent to the information that is displayed by the following command:

bpdbjobs -jobid id -all_columns

See the NetBackup Commands Reference Guide for details. NBBSAGetJobInfo()
can be called at any time during any transaction to obtain the job information for
the job ID specified. The job information is returned in an array of pointers to
character strings (for fields that have no information, the pointer is NULL). The
NBBSAGetJobInfo() function allocates storage for each character string. After the
application has completed its use of the job information, NBBSAFreeJobInfo()
should be called to free the allocated storage.

The following #define constants are defined the include file nbbsa.h and should be
used to obtain a specific piece of information for the specified job ID:

#define NBBSA_JOB_ID 0

#define NBBSA_JOB_TYPE 1

#define NBBSA_JOB_STATE 2

#define NBBSA_JOB_STATUS 3

#define NBBSA_JOB_POLICY_NAME 4

#define NBBSA_JOB_SCHEDULE_NAME 5

#define NBBSA_JOB_CLIENT_NAME 6

#define NBBSA_JOB_MEDIA_SERVER 7

#define NBBSA_JOB_START_TIME 8

#define NBBSA_JOB_ELAPSED_TIME 9

#define NBBSA_JOB_END_TIME 10

#define NBBSA_JOB_STORAGE_UNIT 11

#define NBBSA_JOB_NUMBER_OF_TRIES 12

#define NBBSA_JOB_OPERATION 13

#define NBBSA_JOB_DATA_WRITTEN 14

#define NBBSA_JOB_FILES_WRITTEN 15

#define NBBSA_JOB_LAST_WRITTEN_PATH 16

#define NBBSA_JOB_PERCENT_COMPLETE 17

#define NBBSA_JOB_PID 18

108API reference
Function specifications

http://www.veritas.com/docs/DOC5332

#define NBBSA_JOB_USER_ACCOUNT 19

#define NBBSA_JOB_SUBTYPE_CODE 20

#define NBBSA_JOB_POLICY_TYPE 21

#define NBBSA_JOB_SCHEDULE_TYPE 22

#define NBBSA_JOB_CONFIGURED_PRIORITY 23

#define NBBSA_JOB_SERVER_GROUP_NAME 24

#define NBBSA_JOB_MASTER_SERVER_NAME 25

#define NBBSA_JOB_RETENTION_LEVEL 26

#define NBBSA_JOB_RETENTION_PERIOD 27

#define NBBSA_JOB_COMPRESSION 28

#define NBBSA_JOB_ESTIMATED_KILOBYTES 29

#define NBBSA_JOB_ESTIMATED_FILES 30

#define NBBSA_JOB_FILE_LIST_COUNT 31

#define NBBSA_JOB_FILE_PATHS_WRITTEN 32

#define NBBSA_JOB_TRY_COUNT 33

#define NBBSA_JOB_TRY_PID 34

#define NBBSA_JOB_TRY_STORAGE_UNIT 35

#define NBBSA_JOB_TRY_SERVER 36

#define NBBSA_JOB_TRY_START_TIME 37

#define NBBSA_JOB_TRY_ELAPSED_TIME 38

#define NBBSA_JOB_TRY_END_TIME 39

#define NBBSA_JOB_TRY_STATUS_CODE 40

#define NBBSA_JOB_TRY_STATUS_DESCRIPTION 41

#define NBBSA_JOB_TRY_STATUS_LINES_COUNT 42

#define NBBSA_JOB_TRY_STATUS_LINES 43

#define NBBSA_JOB_TRY_DATA_WRITTEN 44

#define NBBSA_JOB_TRY_FILES_WRITTEN 45

#define NBBSA_JOB_PARENT_JOB_NUMBER 46

#define NBBSA_JOB_TRANSFER_SPEED 47

#define NBBSA_JOB_COPY_NUMBER 48

#define NBBSA_JOB_ROBOT 49

#define NBBSA_JOB_VAULT_ID 50

#define NBBSA_JOB_VAULT_PROFILE 51

#define NBBSA_JOB_VAULT_SESSION 52

#define NBBSA_JOB_TAPES_TO_EJECT 53

#define NBBSA_JOB_SOURCE_STORAGE_UNIT 54

#define NBBSA_JOB_SOURCE_MEDIA_SERVER 55

#define NBBSA_JOB_SOURCE_MEDIA_ID 56

#define NBBSA_JOB_DESTINATION_MEDIA_ID 57

#define NBBSA_JOB_STREAM_NUMBER 58

#define NBBSA_JOB_SUSPENDABLE 59

#define NBBSA_JOB_RESUMABLE 60

#define NBBSA_JOB_RESTARTABLE 61

109API reference
Function specifications

#define NBBSA_JOB_DATA_MOVEMENT_TYPE 62

#define NBBSA_JOB_SNAPSHOT_OPERATION 63

#define NBBSA_JOB_BACKUP_ID 64

#define NBBSA_JOB_KILLABLE 65

#define NBBSA_JOB_CONTROLLING_HOST 66

#define NBBSA_JOB_OFF_HOST_TYPE 67

#define NBBSA_JOB_FIBER_TRANSPORT_USAGE 68

#define NBBSA_JOB_QUEUE_REASON 69

#define NBBSA_JOB_OPTIONAL_REASON 70

#define NBBSA_JOB_DEDUP_RATIO 71

#define NBBSA_JOB_ACCELERATOR_OPTIMIZATION 72

#define NBBSA_JOB_INSTANCE_DATABASE_NAME 73

#define NBBSA_JOB_LAST_FIELD 73

The file paths for the NBBSA_JOB_FILE_PATHS_WRITTEN string will

be delimited by a newline character.

The status lines for the NBBSA_JOB_TRY_STATUS_LINES string will

be delimited by a newline character.

--- Sample code ---

char *job_info[NBBSA_JOB_LAST_FIELD+1];

Rc=NBBSAGetJobInfo(BsaHandle,job_id,NBBSA_JOB_LAST_FIELD+1,job_info);

if (Rc == BSA_RC_SUCCESS) {

printf("Job Status: %s\n", job_info[NBBSA_JOB_STATUS]);

Rc=NBBSAFreeJobInfo(job_info);

}

PARAMETERS

The handle that associates this call with a previous BSAInit() call.BSA_Handle bsaHandle
(I)

The job ID for which you want to obtain information.int jobId (I)

The length of the jobInfo parameter that is an array of pointers to
the character strings. The length of this array should be
NBBSA_JOB_LAST_FIELD+1.

BSA_UInt_32 length(I)

110API reference
Function specifications

The job information is returned in this array of pointers to character
strings. A specific piece of information can be obtained by indexing
the arrays using one of the #define constants listed in the
description. If there is no information for a given field, the pointer
is NULL.

char **JobInfo(O)

RETURN VALUE

The following return codes are returned by this function:

A NULL pointer was encountered in one of the arguments.BSA_RC_NULL_ARGUMENT

The array pointed to by the JobInfo parameter is not large
enough. The length parameter specifies the length of the
array and it should be NBBSA_JOB_LAST_FIELD+1.

BSA_RC_BUFFER_TOO_SMALL

System detected error, operation was aborted.BSA_RC_ABORT_SYSTEM_ERROR

The handle that was used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The function succeeded.BSA_RC_SUCCESS

NBBSAGetMediaIds
Obtain media IDs for a NetBackup image.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetMediaIds(BSA_Handle bsaHandle, BSA_UInt64 copyId, BSA_UInt32
*sizePtr, char *MediaIdsPtr)

DESCRIPTION

NBBSAGetMediaIds() returns a null delimited text string containing the media IDs
that are associated with a NetBackup image given the copyId of any XBSA object
in the image. The value for copyId can be obtained from a previous
BSAQueryObject() call. The list of null delimited media IDs is terminated with an
empty string. This can also be called a double null terminated string.

Examples are as follows:

■ Image with two media IDs: MediaId1\0MediaId2\0\0

■ Image with one media ID: MediaId3\0\0

PARAMETERS

111API reference
Function specifications

The handle that associates this call with a previous BSAInit()
call.

BSA_Handle bsaHandle (I)

The unique ID of an XBSA Object that is contained in the
image being queried for media IDs. The value for a specific
XBSA object can be obtained through a BSAQueryObject()
call.

BSA_UInt64 copyId (I)

Pointer to the size, in characters, of the buffer pointed to by
the MediaIdsPtr parameter. Returns the size of the string
pointed to by MediaIdsPtr.

BSA_UInt32 *sizePtr (I/O)

Pointer to a buffer that receives a null delimited character
string of media IDs.

char * MediaIdsPtr (O)

RETURN VALUE

The following return codes are returned by this function:

The buffer pointed to by MediaIdsPtr is not large
enough. The buffer size, in characters, required to
hold the media ID string and its terminating null
character is stored in the location pointed to by sizePtr.

BSA_RC_BUFFER_TOO_SMALL

There was a NULL pointer in one of the arguments.BSA_RC_NULL_ARGUMENT

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

Cannot access the requested image. Cannot retrieve
the media IDs with the given copyId.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect. Within a
transaction calling NBBSAGetMediaIds(), you can
embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA
application to intermix get NBBSAGetMediaIds() calls
with BSAQueryObject() and
BSAGetNextQueryObject() calls to obtain the media
IDs of multiple images within one transaction. Backup
and restore operations are not allowed within a
transaction that calls NBBSAGetMediaIds().

BSA_RC_INVALID_CALL_SEQUENCE

The copyId field cannot be zero.BSA_RC_INVALID_COPYID

The handle that is used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

The given copyId does not exist.BSA_RC_OBJECT_NOT_FOUND

112API reference
Function specifications

The function succeeded.BSA_RC_SUCCESS

NBBSAGetMultipleObjects
Initiate a restore of a list of objects

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetMultipleObjects(BSA_Handle bsaHandle, NBBSA_DESCRIPT_LIST
* descriptList)

DESCRIPTION

NBBSAGetMultipleObjects() prepares the NetBackup XBSA interface for retrieving
the data of multiple XBSA objects that are from the same backup image. It validates
the descriptor list, checking that all of the copyId's are valid, that all of the objects
are part of the same image, and that the object descriptors are in the correct order.
Then, it initiates a connection with the NetBackup server to start the retrieval process
for the objects. If any of the objects don't exist, the operation is aborted. When the
multiple object restore has been started, the objects can be retrieved in order using
the BSAGetObject() - BSAGetData() - BSAEndData() calls.

PARAMETERS

The handle that associates this call with a previous
BSAInit() call.

BSA_Handle bsaHandle (I)

Pointer to a list of objectDescriptors that are to be
retrieved.

NBBSA_DESCRIPT_LIST *descriptList

RETURN VALUE

The following return codes are returned by this function:

System detected error, operation aborted.BSA_RC_ABORT_SYSTEM_ERROR

Access to the requested object is not
possible. Cannot retrieve object with given
copyId.

BSA_RC_ACCESS_FAILURE

The sequence of API calls is incorrect.BSA_RC_INVALID_CALL_SEQUENCE

A value in the copyId is invalid.BSA_RC_INVALID_COPYID

The handle that is used to associate this
call with a previous BSAInit() call is invalid.

BSA_RC_INVALID_HANDLE

113API reference
Function specifications

A NULL pointer was encountered in one
of the arguments.

BSA_RC_NULL_ARGUMENT

The given copyId does not exist.BSA_RC_OBJECT_NOT_FOUND

The multiple object restore has
successfully been initiated.

BSA_RC_SUCCESS

NBBSAGetServerError
Get the error code and text from the NetBackup server.

SYNOPSIS

#include <XBSA.h>

#include <nbbsa.h>

int NBBSAGetServerError(BSA_Handle bsaHandle, int *ServerStatus, BSA_UInt32
sizePtr, char *ServerStatusStr)

DESCRIPTION

NBBSAGetServerError returns the error code and corresponding text message
generated from the NetBackup processes. This can be useful in logging a more
accurate cause of a failure as compared to the NBBSA error code, which tends to
be very generic when the error occurred on the NetBackup server.

PARAMETERS

The handle that associates this call with a previous call to
BSAInit.

BSA_Handle bsaHandle (I)

Pointer to the NetBackup error code that has been returned
from the NetBackup server.

int *ServerStatus (O)

Pointer to the size of the ServerStatusStr in bytes.BSA_UInt32 sizePtr (I/O)

Pointer to the text string of the server status.char *ServerStatusStr (O)

EXTENDED DESCRIPTION

NBBSAGetServerError requires the ServerStatusStr string to be allocated and the
size of this string to be entered in the sizePtr parameter. This ensures that the
NetBackup error text can fit in the string. The function resets the sizePtr to the actual
size of the error text that is returned.

RETURN VALUE

The following return codes are returned by this function:

114API reference
Function specifications

The size of the data buffer is too small for the error
text.

BSA_RC_BUFFER_TOO_SMALL

A NULL pointer was encountered in one of the
arguments.

BSA_RC_NULL_ARGUMENT

The function successfully returned the error.BSA_RC_SUCCESS

NBBSALogMsg
Log a message to the XBSA logs.

SYNOPSIS

#include <nbbsa.h>

int NBBSALogMsg(BSA_Handle bsaHandle, int msgType, char *msgBuf, char
*callingFunc)

DESCRIPTION

NBBSALogMsg() gives the XBSA application the ability to log messages to the
same debug log file that is being used by the NetBackup XBSA interface with the
log messages being the same format. If used correctly, this can make debugging
easier because you can follow the complete flow of the combined XBSA application
and XBSA interface.

The log file is opened in BSAInit(), so logging cannot occur until the session has
been initiated. The log file is closed in BSATerminate().

PARAMETERS

The handle that associates this call with a previous BSAInit()
call.

BSA_Handle bsaHandle (I)

The level of error that is displayed with the timestamp and
message.

int msgType (I)

The text of the error message.char *msgBuf (I)

The function name that is calling this function. It is displayed
in the log file.

char *callingFunc (I)

RETURN VALUE

The following return codes are returned by this function:

The function succeeded.BSA_RC_SUCCESS

115API reference
Function specifications

NBBSASetEnv
Set the value of a single XBSA environment value.

SYNOPSIS

#include <nbbsa.h>

int NBBSASetEnv(BSA_Handle bsaHandle, char *EnvVar, char *EnvVal)

DESCRIPTION

NBBSASetEnv() gives the XBSA application the ability to set the value of a specific
XBSA environment variable after the beginning of a session. If the variable does
not exist in the environment, it is added. If the variable exists in the environment,
the value is replaced. Some of the XBSA environment variables can only be set or
updated at certain points in the session. See “Environment variable definitions”
on page 25. If the variable cannot be set or updated, the original value remains.

The XBSA specifications do not provide a way for these XBSA environment variables
to be reset after the session has been initiated with BSAInit().

PARAMETERS

The handle that associates this call with a previous BSAInit()
call.

BSA_Handle bsaHandle (I)

Pointer to a null-terminated string that specifies the XBSA
environment variable whose value is being set.

char *EnvVar (I)

Pointer to a null-terminated string containing the new value
of the specified XBSA environment variable. If this parameter
is NULL, the variable is deleted from the current sessions
XBSA environment.

char *EnvVal (I)

RETURN VALUE

The following return codes are returned by this function:

The specified XBSA environment variable has
been set.

BSA_RC_SUCCESS

A required argument was passed as a NULL
pointer.

BSA_RC_NULL_ARGUMENT

Unable to increase the size of the session's
XBSA environment block.

BSA_RC_ABORT_SYSTEM_ERROR

The variable is not a supported environment
variable.

BSA_RC_INVALID_ENV

116API reference
Function specifications

NBBSAUpdateEnv
Update the current environment for the session.

SYNOPSIS

#include <nbbsa.h>

int NBBSAUpdateEnv(BSA_Handle *bsaHandle, char **envPtr)

DESCRIPTION

NBBSAUpdateEnv() resets the environment pairs in the current environment. It
performs the same functionality as NBBSASetEnv() except it takes a string of
multiple (keyword, value) pairs. The same restrictions apply to updating some of
the restricted variables. If a variable exists in the environment but is not included
in the list being updated, it remains in the environment.

The XBSA specifications do not provide a way for these XBSA environment variables
to be reset after the session has been initiated with BSAInit().

PARAMETERS

The handle that associates this call with a previous BSAInit() call.BSA_Handle bsaHandle
(I)

Pointer to a structure that contains the new environment variables
(keyword, value) pairs, for the session. The environment consists
of a pointer to an array of strings.

char **envPtr (I)

RETURN VALUE

The following return codes are returned by this function:

The specified XBSA environment variable has been set.BSA_RC_SUCCESS

NBBSAValidateFeatureId
Validate the license key for the specified feature ID.

SYNOPSIS

#include <nbbsa.h>

int NBBSAValidateFeatureId(BSA_Handle bsaHandle, char * featureIdList, int
validationOption)

DESCRIPTION

NBBSAValidateFeatureId() parses the featureIdList string for the list of feature IDs
that need to be validated. If MATCH_ANY_FEATURE_ID is specified as the

117API reference
Function specifications

validationOption, BSA_RC_SUCCESS is returned if a license key exists for any of
the feature IDs in the list. If MATCH_ALL_FEATURE_ID is specified as the
validationOption, BSA_RC_SUCCESS is returned if a license key exists for all of
the feature IDs in the list.

PARAMETERS

The handle that associates this call with a previous
BSAInit() call.

BSA_Handle bsaHandle (I)

This parameter is a space delimited list of the license
feature id(s) that are to be validated.

char *featureIdList (I)

Specifies which combination of features needs to exist to
be valid. Currently supports MATCH_ANY_FEATURE_ID
or MATCH_ALL_FEATURE_ID.

int validationOption (I)

RETURN VALUE

The following return codes are returned by this function:

The feature does not have a valid
license.

NBBSA_RC_FEATURE_NOT_LICENSED

The specified feature id(s) have a valid
license.

BSA_RC_SUCCESS

Type definitions
The following type definitions are provided for use within the NetBackup XBSA
interfaces.

Table 6-4 XBSA Type Definitions

Example Type DefinitionType NameData Type

typedef short BSA_Int16;BSA_Int1616-bit Integer

typedef int BSA_Int32;BSA_Int3232-bit Integer

typedef struct {

BSA_Int32 left;

BSA_Int32 right;

} BSA_Int64;

BSA_Int6464-bit Integer

118API reference
Type definitions

Table 6-4 XBSA Type Definitions (continued)

Example Type DefinitionType NameData Type

typedef unsigned short
BSA_UInt16;

BSA_UInt1616-bit Unsigned Integer

typedef unsigned int
BSA_UInt32;

BSA_UInt3232-bit Unsigned Integer

typedef struct {BSA_UInt 6464-bit Unsigned Integer

BSA_UInt32 left;

BSA_UInt32 right;

} BSA_UInt64;

<Not_Used>BSA_ShareIdShared Memory Buffer
reference

Enumerated types
The following enumerated type definitions are provided for use within the NetBackup
XBSA interfaces. For enumerations used in queries, the value 1 is reserved for use
as a wildcard (ANY) value.

BSA_CopyType
The BSA_CopyType enumeration describes the type of the operation used to create
a NetBackup XBSA object. It is defined as follows:

typedef enum {

BSA_CopyType_ANY = 1,

BSA_CopyType_ARCHIVE = 2,

BSA_CopyType_BACKUP = 3

} BSA_CopyType;

The meaning of the enumeration values is as follows:

Table 6-5 BSA_CopyType Enumeration Values

ValueDefinitionConstant

Used for matching any copy type (for example,
"backup" or "archive" in the copy type field of
structures for selecting query results).

1ANY

119API reference
Type definitions

Table 6-5 BSA_CopyType Enumeration Values (continued)

ValueDefinitionConstant

Specifies that the copy type should be "archive."2ARCHIVE

Specifies that the copy type should be "backup."3BACKUP

BSA_ObjectStatus
The BSA_ObjectStatus enumeration describes the current status of the NetBackup
XBSA object. It is defined as follows:

typedef enum {

BSA_ObjectStatus_ANY = 1,

BSA_ObjectStatus_MOST_RECENT = 2,

BSA_ObjectStatus_NOT_MOST_RECENT = 3

} BSA_ObjectStatus;

The meaning of the enumeration values is as follows:

Table 6-6 BSA_ObjectStatus Enumeration Values

DefinitionValueConstant

Provides a wildcard function. Can only be used in
queries.

1ANY

Indicates that this is the most recent backup copy of
an object.

2MOST_RECENT

Indicates that this is not the most recent backup copy,
or that the object itself no longer exists.

3NOT_MOST_RECENT

BSA_ObjectType
The BSA_ObjectType enumeration describes the original data type of the object.
It is defined as follows:

typedef enum {

BSA_ObjectType_ANY = 1,

BSA_ObjectType_FILE = 2,

BSA_ObjectType_DIRECTORY = 3,

BSA_ObjectType_OTHER = 4

} BSA_ObjectType;

The meaning of the enumeration values is as follows:

120API reference
Type definitions

Table 6-7 BSA_ObjectType Enumeration Values

DefinitionValueConstant

Used for matching any object type (for example, "file" or
directory") value in the object type field of structures for
selecting query results.

1ANY

Used by the application to indicate that the type of application
object is a "file" or single object.

2FILE

Used by the application to indicate that the type of application
object is a "directory" or container of objects.

3DIRECTORY

Used by the application to indicate that the type of application
object is neither a "file" nor a "directory".

4OTHER

BSA_Vote
The BSA_Vote enumeration describes whether or not the transaction is to be
committed. It is defined as follows:

typedef enum {

BSA_Vote_COMMIT = 1,

BSA_Vote_ABORT = 2

NBBSA_Vote_CONDITIONAL = 99

} BSA_Vote;

The meaning of the enumeration values is as follows:

Table 6-8 BSA_Vote Enumeration Values

DefinitionValueConstant

The transaction is to be committed.1COMMIT

The transaction is to be aborted.2ABORT

The transaction is to be committed, report only conditional
success.

99CONDITIONAL

Constant values
The following constants are defined for use in the NetBackup XBSA interfaces:

121API reference
Type definitions

Table 6-9 XBSA Constant Values

DefinitionValueConstant

General-purpose enumeration
wildcard value

1BSA_ANY

Max end-user object owner length64BSA_MAX_APPOBJECT_OWNER

Max BSA object owner length64BSA_MAX_BSAOBJECT_OWNER

Description field100BSA_MAX_DESCRIPTION

Max ObjectSpace name length1024BSA_MAX_OBJECTSPACENAME

Max object info size256BSA_MAX_OBJECTINFO

Max path name length1024BSA_MAX_PATHNAME

Max resourceType name length31BSA_MAX_RESOURCETYPE

Max size of a security token64BSA_MAX_TOKEN_SIZE

Data structures
The following data structures are provided for use within the NetBackup XBSA
interfaces.

BSA_ApiVersion
The BSA_ApiVersion structure describes the version of the API that is implemented.
It is defined as follows:

typedef struct {

BSA_UInt16 issue;

BSA_UInt16 version;

BSA_UInt16 level;

} BSA_ApiVersion;

The usage of the structure fields is defined as follows:

Table 6-10 BSA_ApiVersion Structure Fields

DescriptionField

Issue number of the XBSA specificationissue

Version number of the XBSA specificationversion

122API reference
Type definitions

Table 6-10 BSA_ApiVersion Structure Fields (continued)

DescriptionField

NetBackup XBSA-defined version numberlevel

The NetBackup XBSA interface is an implementation of the XBSA Technical
Standard (document - C425); the values should be 1,1,0.

BSA_DataBlock32
The BSA_DataBlock32 structure is used to pass data between an XBSA application
and the NetBackup XBSA interface. It is defined as follows:

typedef struct {

BSA_UInt32 bufferLen;

BSA_UInt32 numBytes;

BSA_UInt32 headerBytes;

BSA_ShareId shareId;

BSA_UInt32 shareOffset;

void *bufferPtr

} BSA_DataBlock32;

The usage of the structure fields is defined as follows:

Table 6-11 BSA_DataBlock32 Structure Fields

DefinitionField Name

Length of the allocated bufferbufferLen

Actual number of bytes read from or written to the buffer, or the minimum
number of bytes needed

numBytes

Number of bytes used at start of buffer for header information (offset
to data portion of buffer)

headerBytes

Value used to identify a shared memory block.shareId

Specifies the offset of the buffer in the shared memory block.shareOffset

Pointer to the bufferbufferPtr

The values assigned to the various structure fields would always obey the following
relationships:

bufferLen >= headerBytes + numBytes

trailerBytes == (bufferLen - numBytes - headerBytes)

123API reference
Type definitions

The header and trailer portions of the buffer are reserved for the use of the
NetBackup XBSA interface, and should not be modified by the XBSA application.
The XBSA application should only write to the data portion of the buffer, which is
the only portion used for transferring application data.

The sizes for the header and trailer portions of the buffer that are required by the
NetBackup XBSA interface are obtained by calling BSACreateObject() or
BSAGetObject().

BSA_ObjectDescriptor
The BSA_ObjectDescriptor structure is used to describe an object. It is defined as
follows:

#include <time.h>

typedef struct {

BSA_UInt32 rsv1;

BSA_ObjectOwner objectOwner;

BSA_ObjectName objectName;

struct tm createTime;

BSA_CopyType copyType;

BSA_UInt64 copyId;

BSA_UInt64 restoreOrder;

char rsv2[31];

char rsv3[31];

BSA_UInt64 estimatedSize;

char resourceType[BSA_MAX_RESOURCETYPE];

BSA_ObjectType objectType;

BSA_ObjectStatus objectStatus;

char rsv4[31];

char objectDescription[BSA_MAX_DESCRIPTION];

unsigned char objectInfo[BSA_MAX_OBJECTINFO];

} BSA_ObjectDescriptor;

Some of the fields in this structure are supplied by the XBSA application (Direction
= in), and some by the NetBackup XBSA interface (Direction = out). Some fields
are optional.

The usage of the structure fields is defined as follows:

Table 6-12 BSA_ObjectDescriptor Structure Fields

StatusSupplied ByDefinitionField Name

--Reserved fieldrsv1

124API reference
Type definitions

Table 6-12 BSA_ObjectDescriptor Structure Fields (continued)

StatusSupplied ByDefinitionField Name

optionalApplicationOwner of the objectobjectOwner

mandatoryApplicationObject nameobjectName

mandatoryInterfaceCreates timecreateTime

mandatoryApplicationCopies type: archive
or backup

copyType

mandatoryInterfaceUnique object
identifier

copyId

optionalInterfaceProvides hints to the
XBSA application
that allow it to
optimize the order of
object retrieval
requests

restoreOrder

--reserved fieldrsv2

--reserved fieldrsv3

mandatoryApplicationEstimated object size
in bytes, can be up to
(2>64 - 1) bits

estimatedSize

mandatoryApplicationfor example, a UNIX
file system

resourceType

mandatoryApplicationfor example, file,
directory, or
database

objectType

mandatoryInterfaceMost recent / Not
most recent

objectStatus

--reserved fieldrsv4

optionalApplicationDescriptive label for
the object

objectDescription

optionalApplicationApplication-specific
information

objectInfo

125API reference
Type definitions

All values in a BSA_ObjectDescriptor must be valid before the BSA_ObjectDescriptor
as a whole is valid. For enumerations valid values exclude the enumeration "ANY".
For strings valid values are null-terminated.

The optional string value is the empty string. The optional restoreOrder value is
zero. The optional objectInfo value is an empty string.

The mandatory objectName must have a non-empty string in the pathName field.
The mandatory createTime must be a valid time in UTC. The mandatory copyId
must be non-zero. The mandatory resourceType must have a non-empty string
value.

All string values cannot contain any new line, carriage return, or line feed characters.
Although this cannot cause an error when the object is being created, the object
cannot be restored.

BSA_ObjectName
The BSA_ObjectName structure is the name assigned by an XBSA application to
a NetBackup XBSA object. It is defined as follows:

typedef struct {

char objectSpaceName[BSA_MAX_OBJECTSPACENAME];

char pathName[BSA_MAX_PATHNAME];

} BSA_ObjectName;

The usage of the structure fields is defined as follows:

Table 6-13 BSA_ObjectName Structure Fields

DefinitionField Name

Highest-level name qualifierobjectSpaceName

Object name within objectSpaceNamepathName

An objectSpaceName is an optionally defined, fixed-length character string. It
identifies a logical space, called an object space, to which the object belongs. For
example, an object space may be used to identify a storage volume (for example,
a disk partition, or a floppy disk), or a database in the XBSA application's domain.

The NetBackup XBSA interface uses the concept of an object space to provide a
primary grouping of NetBackup XBSA objects that can be used for an object search
by a user and/or for object management. Additional groupings are provided by
object attributes. Examples of an objectSpaceName are C: Drive and
VolumeLabel=XYZ.

126API reference
Type definitions

A pathName is a hierarchical character string that identifies a NetBackup XBSA
object within an ObjectSpace. While the pathname does not need to correspond
to an actual file path, NetBackup requires that the first character is a ‘/’. This is true
for both UNIX and Windows.

An example of a pathName for the backup copy of a UNIX file can be its original
path name and file name, for example, /x/y/z/xyx.c.

The value of the delimiter that is used to separate the name components can be
obtained by calling BSAGetEnvironment().

BSA_ObjectOwner
The BSA_ObjectOwner structure is the name of the owner of an object. It is defined
as follows:

typedef struct {

char bsa_ObjectOwner[BSA_MAX_BSAOBJECT_OWNER];

char app_ObjectOwner[BSA_MAX_APPOBJECT_OWNER];

} BSA_ObjectOwner;

The usage of the structure fields is defined as follows:

Table 6-14 BSA_ObjectOwner Structure Fields

DefinitionField Name

The name that the NetBackup XBSA interface authenticatesbsa_ObjectOwner

The name defined by the applicationapp_ObjectOwner

In NetBackup XBSA Version 1.1.0, the actual object owner is determined between
the NetBackup XBSA interface and NetBackup. If the XBSA application specifies
the bsa_ObjectOwner, the value is stored with the object or validated against it, but
it does not define the object ownership. If the object was created by a different user,
unless you are a root administrator, you cannot restore the object even if you specify
the correct bsa_ObjectOwner.

An app_ObjectOwner is an optional name, such as an actual end-user name,
provided by the respective XBSA application, so that the NetBackup XBSA interface
can provide assistance to support application-specific access control by optimizing
access for the given app_ObjectOwner.

The app_ObjectOwner can have multiple components defined in the application,
such as a group name and a user ID. In general, it is a hierarchical character string.
An app_ObjectOwner is not registered with the NetBackup XBSA interface. Its
registration and authentication is the responsibility of the XBSA application.

127API reference
Type definitions

Examples of a typical app_ObjectOwner are Smith, AccountingDept.Clerk1 and *
(unspecified).

BSA_QueryDescriptor
The BSA_QueryDescriptor structure is used to query the repository to locate objects.
It is defined as follows:

#include <time.h>;

typedef struct {

BSA_ObjectOwner objectOwner;

BSA_ObjectName objectName;

struct tm createTime_from;

struct tm createTime_to;

struct tm rsv1;

struct tm rsv2;

BSA_CopyType copyType;

char rsv3[31];

char rsv4[31];

char rsv5[31];

BSA_ObjectType objectType;

BSA_ObjectStatus objectStatus;

char rsv6[100];

} BSA_QueryDescriptor;

The usage of the structure fields is defined as follows:

Table 6-15 BSA_QueryDescriptor Structure Fields

DefinitionField Name

Owner of the objectobjectOwner

Object nameobjectName

Date time to start looking for the objectcreateTime_from

Date time to stop looking for the objectcreateTime_to

reserved fieldrsv1

reserved fieldrsv2

Copy type: archive or backupcopyType

reserved fieldrsv4

128API reference
Type definitions

Table 6-15 BSA_QueryDescriptor Structure Fields (continued)

DefinitionField Name

reserved fieldrsv5

reserved fieldrsv5

Examples are file, directory, databaseobjectType

Most recent / not most recentobjectStatus

reserved fieldrsv8

BSA_SecurityToken
The BSA_SecurityToken structure contains an application-specific security token.
It is defined as follows:

typedef char BSA_SecurityToken[BSA_MAX_TOKEN_SIZE];

129API reference
Type definitions

Process flow and
troubleshooting

This chapter includes the following topics:

■ About Process flow and troubleshooting

■ Backup

■ Restore

About Process flow and troubleshooting
The XBSA interface is provided to insulate the XBSA applications from knowing
about the internals of NetBackup and the processes and calls that are required to
do backups and restores. This is appropriate when the application is working
correctly. In the event that a problem occurs, this chapter gives a brief description
of the NetBackup processes that get instantiated for each backup and restore. If
process fails, a log is produced that contains information pertaining to the failure.
All logs should be examined, however, for the root cause of the failure.

Backup
The backup stream diagram contains the processes involved in a backup being
executed through a scheduled backup. bphdb is called to initiate the XBSA
application, which then initiates one or more user-directed jobs.

If the backup is initiated from the XBSA application, it starts at that point. In the
diagram below, the processes are divided among three logical machines, the Master
Server, Media Server, and Client, but they can exist on only one or two machines.

See the backup process diagrams in the NetBackup Logging Reference Guide.

7Chapter

http://www.veritas.com/docs/DOC5332

Figure 7-1 Stream backup process flow diagram

Master Server Client

bprd

bpcd
bphdb

XBSA

Applicatio
n

bpbrm

bptm

Progress
file

DB disk

Media Server

XBSA

Interface

Storage unit

nbpem

nbjm

Stream backup process flow description
This description provides a basic process flow. There are other processes involved
that are not explicitly specified here. These processes include bpcd and some
parent/child processes. Most connectivity from the server to the client initially goes
through bpcd, such as initiating bphdb and writing to the progress log. And many
of the processes, such as bpbrm, bptm, and so on, initiate child processes. To keep
the description simple, these processes are not included in the process steps.

Stream backup procedure
The stream backup procedure is as follows:

131Process flow and troubleshooting
Backup

1 nbpem determines that a backup is scheduled to run and it initiates a backup
job by nbjm.

2 nbjm starts bpbrm, which makes a request by bpcd.

3 bpbrm makes a request by the bpcd daemon to start bphdb on the client.

4 bphdb executes the backup script (which is contained in the Backup Selections
list of the backup policy). Bphdb waits for an exit status from this script so that
it can pass a status back to the server.

5 The backup script initiates the backup utility of the XBSA application.

(If it is not a scheduled backup operation, but is initiated on the client by the
XBSA application, then the backup process starts here.)

6 The application initiates the XBSA interface by starting one or more sessions.
Each session should be started in its own process. In this diagram, we assume
that there is only one stream. In reality, each stream follows each of these
steps.

7 The backup is initiated with the first call to BSACreateObject(). This causes
the XBSA interface to make a bprd request to initiate a backup.

8 bprd submits a backup request to nbpem, which submits a job for nbjm. If this
was a scheduled backup, there are now two backup jobs. nbjm initiates a bpbrm
and a bpdbm process.

9 bpbrm initiates a bptm/bpdm process (bptm if tape storage unit, bpdm if disk
storage unit). bptm initiates the process to mount media.

10 bpbrm writes progress information to the progress file on the client (by bpcd).
This information includes sockets, status, backup attributes, and so on.

11 XBSA reads the progress file to find the sockets and other information and
connects to bpbrm on the name socket. It continues to read the progress file
until it gets the message that it can continue the backup.

12 XBSA connects to bptm/bpdm through shared memory (if applicable) or on the
data socket if the client and media server are separate machines.

13 XBSA sends the XBSA object entry to bpbrm, which sends it on to bpdbm to
be catalogued.

14 At this point, BSACreateObject() returns to the XBSA application. XBSA is
ready to receive data.

15 The application fills buffers and calls BSASendData() to have the XBSA
interface send these buffers to bptm/bpdm through the established connection.

16 bptm/bpdm writes this data to media or disk storage.

132Process flow and troubleshooting
Backup

17 When the application has sent all of the data, it indicates this with a
BSAEndData() call. XBSA recognizes that the object is complete.

18 The XBSA application can then call BSACreateObject() again to create more
objects. The subsequent CreateObject calls do not cause new jobs or
connections, but continue with the existing processes.

19 When the XBSA application has completed creating objects, a call to
BSAEndTxn() causes XBSA to initiate the termination process. XBSA sends
a client status to bpbrm, that terminates the server processes (bptm).

20 bpbrm writes the server status to the progress log and is read by XBSA. This
allows the XBSA interface to confirm that the image has been successfully
catalogued and all of the data was written to media.

21 XBSA then passes this status back to the application through the return status
from BSAEndTxn(). This status is passed back to bphdb, that passes it back
to the original scheduled job to complete the backup. This status displays in
the Activity Monitor for the originally scheduled job.

Restore
The Restore diagram contains the processes involved in a restore that is executed
from the XBSA application. The restore process is very similar to the backup process
except the flow of data is reversed. While it is possible to run a scheduled restore
through bphdb, this is not a standard procedure; this diagram starts with the XBSA
application initiating the restore.

See the restore process diagrams in the NetBackup Logging Reference Guide.

133Process flow and troubleshooting
Restore

http://www.veritas.com/docs/DOC5332

Figure 7-2 Stream restore process flow diagram

Master Server Client

bprd

XBSA

Application

bpbrm

bptm

Progress file

DB disk

Media Server

XBSA

Interface

nbrb

nbjm

Storage unit

Stream restore process flow description
Similar to the backup diagram, the restore diagram is simple, without some of the
parent/child processes. The query process, that can be included in a restore
operation, is not described in the following process. This process assumes that the
XBSA application has the object descriptor to be passed to BSAGetObject.

Stream restore procedure
The stream restore procedure is as follows:

1 The XBSA application initiates the XBSA interface by starting one or more
sessions. Each session is started in its own process. For simplicity, we assume
that there is only one stream in this diagram. In reality, each stream has each
of these steps.

2 The restore is initiated with the first call to BSAGetObject(). This causes the
XBSA interface to make a bprd request to initiate a restore.

134Process flow and troubleshooting
Restore

3 bprd initiates a bpbrm process.

4 bpbrm initiates a bptm/bpdm process (bptm if tape storage unit, bpdm if disk
storage unit). bptm gets the resources from nbjm/nbrb and initiates the process
to mount media and start reading the data.

5 bpbrm writes progress information to the progress file on the client (by bpcd).
This information includes sockets, status, restore attributes, and so on.

6 XBSA reads the progress file to find the sockets and other information and
connects to bpbrm on the name socket. It continues to read the progress file
until it gets the message that it can continue the restore.

7 XBSA connects to bptm/bpdm by shared memory (if applicable) or on the data
socket if the client and media server are separate machines.

8 At this point, BSAGetObject() returns to the XBSA application. XBSA is ready
to receive data.

9 The application passes buffers to BSASendData() to have the XBSA interface
fill these buffers with data from bptm/bpdm by the established connection.

10 bptm/bpdm continues to read this data from media or disk storage and write it
to the buffers.

11 When the application has received all data, it indicates this with a BSAEndData()
call. XBSA verifies that all of the data from the object has been sent. XBSA
sends a client status to bpbrm that terminates the server processes (bptm).

12 bpbrm writes the server status to the progress log and is read by XBSA. This
allows the XBSA interface to confirm that the server has successfully read all
the data and terminated.

13 The restore has been completed at this time. A call to BSAEndTxn() is required
to close the transactions, but other than some internal cleanup, it does not
provide any function for restores.

135Process flow and troubleshooting
Restore

How to use the sample
files

This chapter includes the following topics:

■ What the sample files do

■ Description of sample files

■ How to build the sample programs

What the sample files do
Included in the SDK are some simple sample programs and scripts. The sample
programs can be used as examples of how to use the XBSA functions to create an
XBSA application. The sample scripts are examples of how an XBSA application
can be executed from a NetBackup schedule.

Sample programs
The SDK includes some simple sample programs that can be used as an example
of the sequence of function calls that are required to create new objects, query the
NetBackup database for existing objects, retrieve the objects, and delete objects.
There is a separate program for each of these functions, although this is for the
convenience of the samples and not necessarily a recommended way of building
an XBSA application.

These programs cannot run as installed. First, they need to be modified to set the
correct hostname of the NetBackup server. Then, they can be compiled and each
can be individually run. Below is the description of the programs and what to expect
from them if they have not been modified other than setting the hostname.

8Chapter

The following section of the sample programs needs to be modified. The entries
‘server_host’, ‘sample_policy’, and ‘sample_schedule’ need to be replaced with
actual values from your environment. These three entries can also be eliminated
so that the sample program uses the default values from the NetBackup
configuration.

/* Populate the XBSA environment variables for this session. */

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

strcpy(envx[2], "NBBSA_POLICY=sample_policy");

strcpy(envx[3], "NBBSA_SCHEDULE=sample_schedule");

envx[4] = NULL;

Backup
This program creates one small object. The unique identifier, copyId, is printed out
along with the number of bytes that were backed up.

copyId: 1 - 1018898698

Bytes backed up: 154

Restore
This program retrieves the last object that was created. The copyId is printed out
along with the text of the object data and the number of bytes that were retrieved.

Retrieving copyId: 1 - 1018898698

This is the sample data that is contained in the sample object that

is being backed up for the purposes of showing how data can be

backed up and restored.

Total bytes retrieved: 154

Query
This program searches for all of the objects created by the Backup program. The
copyId of each of these objects is printed out.

copyId: 1 - 1018898698

copyId: 1 - 1018898638

137How to use the sample files
What the sample files do

Delete
This program deletes the last object that was created. The copyId of the object
being deleted is printed out.

Deleting copyId: 1 - 1018898698

Sample scripts
Also included are some examples of scripts that can be used to initiate an XBSA
application as a scheduled NetBackup job. Again these are very simple scripts
based on the sample programs. There are sample scripts for UNIX platforms (*.sh)
and for Windows platforms (*.cmd).

In general use, the XBSA application would have parameters or use system
environment variables to communicate the parameters about the backup or restore
operations.

See “Running a NetBackup XBSA application” on page 74.

Description of sample files
This section includes a description of the sample files provided with the SDK. All
sample files are located in ~sdk/DataStore/XBSA/samples.

Table 8-1 Description of Sample Files

DescriptionFilename

This is an example of the functions needed to create an XBSA
object.

Backup.c

This is an example of the functions needed to search for an XBSA
object.

Query.c

This is an example of the functions needed to retrieve an XBSA
object.

Restore.c

This is an example of the functions needed to delete an XBSA
object.

Delete.c

This is an example Makefile that can be used to compile the sample
programs on the UNIX platforms.

Makefile.unix

This is an example Makefile that can be used to compile the sample
programs on Windows platforms.

Makefile.nt

138How to use the sample files
Description of sample files

Table 8-1 Description of Sample Files (continued)

DescriptionFilename

This is an example of the script that runs an XBSA application from
a NetBackup schedule on a Windows platform.

backup_script.cmd

This is an example of the script that runs an XBSA application from
a NetBackup schedule on a Windows platform.

restore_script.cmd

This is an example of the script that runs an XBSA application from
a NetBackup schedule on a UNIX platform.

backup_script.sh

This is an example of the script that runs an XBSA application from
a NetBackup schedule on a UNIX platform.

restore_script.sh

How to build the sample programs
Also included with the samples are a Makefile for UNIX platforms, Makefile.unix,
and one for Windows, Makefile.nt. The Makefiles compile the four sample programs
using basic compiler options.

The UNIX Makefile needs to be modified to select which library to use. Library paths
for all of the supported platforms are in the Makefile but commented out. The library
for the required operating system needs to be chosen along with whether to use
an archive library or a shared library.

The following lines are from Makefile.unix. One of the CFLAGS and one of the
LIBS definitions need to be uncommented. The default is to compile 64 bit using
the dynamic shared libraries.

The CFLAGS definitions are compile options. Select a CFLAGS definition for the
system that is being compiled on. Note that this is a very minimal set of options and
you can add other compile options based on your environment.

Uncomment the CFLAGS for the environment that is being compiled

Solaris sparc 64 bit

#CFLAGS = -xarch=v9

Solaris Opteron 64 bit

#CFLAGS = -xtarget=opteron -xarch=generic64

HP IA64 bit

#CFLAGS = -Ae +DSitanium2 +DD64

139How to use the sample files
How to build the sample programs

AIX 64 bit

#CFLAGS = -q64

Linux x86 64 bit

#CFLAGS = -m64

Linux on Power PC 64 bit

#CFLAGS = -m64

DEFINES =

INCLUDES= -I$(XBSA_SDK_DIR)/include

The LIBS definitions define to which XBSA library to link. A shared object library is
installed in /usr/openv/lib on all NetBackup clients and can be used for dynamic
linking. An archive library for each platform is included in the SDK and can be used
to statically link the application. Select a LIBS definition for the system that is being
compiled.

Use one of these LIBS to bind dynamically

#LIBS = -L/usr/openv/lib -lxbsa -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa64 -lnbclientcST -lnbbasecST

Or choose the correct LIBS for your system to bind statically

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.32/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6.32/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE4.4.73/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-ppc64le/IBMpSeriesRedHat3.10.0/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-ppc64le/IBMpSeriesSuSE4.4.21/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-s390x/IBMzSeriesRedHat2.6.32/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux-s390x/IBMzSeriesSuSE4.4.73/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa64.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris_x86_10_64/libxbsa.a -lintl -lsocket

-lnsl -ldl -ladm

The Windows Makefile may need to be modified to select which Windows library
to use. The Windows Makefile needs to be modified if SDK was installed into a
directory other than the default c:\Program Files.

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

140How to use the sample files
How to build the sample programs

Support and updates
This chapter includes the following topics:

■ About Support and updates

About Support and updates
The NetBackup SDK for DataStore is sold and distributed under specific licensing
agreements. These licensing agreements define how the SDK is supported, who
to contact for support, and how upgrades are supported. The agreements should
also define how an XBSA application is sold and supported with NetBackup. Please
review your licensing agreement for details on product support.

9Chapter

Register authorized
locations

This appendix includes the following topics:

■ Registering authorized locations used by a NetBackup database script-based
policy

Registering authorized locations used by a
NetBackup database script-based policy

During a backup, NetBackup checks for scripts in the default script location and
any authorized locations. The default, authorized script location for UNIX is
usr/openv/netbackup/ext/db_ext and for Windows is
install_path\netbackup\dbext. If the script is not in the default script location
or an authorized location, the policy job fails. You can move any script into the
default script location or any additional authorized location and NetBackup
recognizes the scripts. You need to update the policy with the script location if it
has changed. An authorized location can be a directory and NetBackup recognizes
any script within that directory. An authorized location can also be a full path to a
script if an entire directory does need to be authorized.

If the default script location does not work for your environment, use the following
procedure to enter one or more authorized locations for your scripts. Use
nbsetconfig to enter an authorized location where the scripts reside. You can also
use bpsetconfig, however this command is only available on the master or the
media server.

AAppendix

Note:One recommendation is that scripts should not be world-writable. NetBackup
does not allow scripts to run from network or remote locations. All scripts must be
stored and run locally. Any script that is created and saved in the NetBackup db_ext

(UNIX) or dbext (Windows) location needs to be protected during a NetBackup
uninstall.

For more information about registering authorized locations and scripts, review the
knowledge base article:

https://www.veritas.com/content/support/en_US/article.100039639

To add an authorized location

1 Open a command prompt on the client.

2 Use nbsetconfig to enter values for an authorized location. The client privileged
user must run these commands.

The following examples are for paths you may configure for the Oracle agent.
Use the path that is appropriate for your agent.

■ On UNIX:

[root@client26 bin]# ./nbsetconfig

nbsetconfig>DB_SCRIPT_PATH = /Oracle/scripts

nbsetconfig>DB_SCRIPT_PATH = /db/Oracle/scripts/full_backup.sh

nbsetconfig>

<ctrl-D>

■ On Windows:

C:\Program Files\Veritas\NetBackup\bin>nbsetconfig

nbsetconfig> DB_SCRIPT_PATH=c:\db_scripts

nbsetconfig> DB_SCRIPT_PATH=e:\oracle\fullbackup\full_rman.sh

nbsetconfig>

<ctrl-Z>

Note: Review the NetBackup Command Reference Guide for options, such
as reading from a text file and remotely setting clients from a NetBackup server
using bpsetconfig. If you have a text file with the script location or authorized
locations listed, nbsetconfig or bpsetconfig can read from that text file. An
entry of DB_SCRIPT_PATH=none does not allow any script to execute on a client.
The none entry is useful if an administrator wants to completely lock down a
server from executing scripts.

143Register authorized locations
Registering authorized locations used by a NetBackup database script-based policy

https://www.veritas.com/content/support/en_US/article.100039639
https://www.veritas.com/support/en_US/article.DOC5332

3 (Conditional) Perform these steps on any clustered database or agent node
that can perform the backup.

4 (Conditional) Update any policy if the script location was changed to the default
or authorized location.

144Register authorized locations
Registering authorized locations used by a NetBackup database script-based policy

A
authentication 34

B
backup transactions 35, 41
buffers

overview 21
private buffer space 22
size 21

C
clients 74
cluster

running an XBSA application in 69
command line, initiating backups and restores 75
configuration 15

end-user 72
constant values 122
conventions 80

D
data structures 122, 129
debug logs 67
debug mode 71
debugging an XBSA application 71
defines 70
delete transaction 36
deleting objects 63

example 64
dynamic libraries 72

E
environment variables 25

extended 33
NetBackup XBSA 26
XBSA 26

error messages 76, 78
example

of a backup 46
of a query 50

F
flags 70
function extensions 79–80
function specifications 79–80, 104

G
get_license_key 13

H
header files 15–16

I
installation

on UNIX 13
on Windows 14

L
library files 15
license key 13
logging 67

M
media IDs

transaction 37

N
NetBackup object ownership

changing the group ownership 45
default behavior 43
options 43
specifying the owner 44

NetBackup XBSA
environment

defined 10
interface

defined 10
object

defined 10

Index

NetBackup XBSA (continued)
session

defined 10

O
object

attributes 18
creating an empty 46
deleting 63

example 64
descriptors 18

P
performance considerations 69
policies

creating 73
private buffer space 22

Q
query

descriptors 20
for an object 49
transaction 37

R
requirements

for compiling 12
installation 13

restore transaction 35
restores

of an object 52
of multiple objects 56

example 58
requirements 57

to a different client 53
example 54

running a NetBackup XBSA application 74

S
samples

programs 136
scripts 138

schedules 74
script

files 74
scripts

to initiate backups and restores 75

sessions
described 34
initiating 34, 38

example 39
modifying XBSA environment in 39
termination 34

shared memory 24
static libraries 71
storage units 74
support 141

T
terminology 10
transactions 34

backup 35, 41
delete 36
media IDs 37
query 37
restore 35

type definitions 118, 129
data structures 122, 129
enumerated 119, 122

X
XBSA

application
defined 10

described 8
environment 24

modifying with a session 39
environment variables 26

for NetBackup configuration values 27
function specifications 79–80, 104
libraries 16
object data 18
type definitions 118, 129

146Index

	Veritas NetBackup™ DataStore SDK Programmer's Guide for XBSA 1.1.0
	Contents
	1. Introduction to NetBackup XBSA
	About Introduction to NetBackup XBSA
	What is NetBackup XBSA?
	What does NetBackup XBSA do?
	Terminology
	Important concepts
	Resources

	2. How to set up the SDK
	System requirements
	Installing the SDK
	Installation requirements
	Installation instructions for UNIX platforms
	Installation instructions for Windows platforms

	Uninstalling the SDK
	Configuration
	Description of the XBSA SDK package
	Library files
	Header files

	3. Using the NetBackup XBSA interface
	Getting help with the API
	NetBackup XBSA data structures
	Object data
	Object descriptors
	Query descriptors
	Buffers

	NetBackup XBSA environment
	Environment variable definitions
	Extended environment variable definitions

	XBSA sessions and transactions
	Sessions
	Transactions

	Creating a NetBackup XBSA application
	Initiating a session
	Backup - creating an object
	Query - finding an object descriptor
	Restore - retrieving an object’s data
	Delete - deleting an object or image
	Media IDs - obtaining media IDs
	Logging and NetBackup
	Client in a cluster
	Performance considerations

	4. How to build an XBSA application
	Getting help
	Flags and defines
	How to build in debug mode
	How to debug the application
	Static libraries
	Dynamic libraries
	End-user configuration

	5. How to run a NetBackup XBSA application
	About How to run a NetBackup XBSA application
	Creating a NetBackup policy
	Running a NetBackup XBSA application
	Backups and restores initiated by NetBackup (through a script)
	Backups and restores from the command line

	6. API reference
	Error messages
	Function calls
	Conventions

	Function specifications
	BSABeginTxn
	BSACreateObject
	BSADeleteObject
	BSAEndData
	BSAEndTxn
	BSAGetData
	BSAGetEnvironment
	BSAGetLastError
	BSAGetNextQueryObject
	BSAGetObject
	BSAInit
	BSAQueryApiVersion
	BSAQueryObject
	BSAQueryServiceProvider
	BSASendData
	BSATerminate
	NBBSAAddToMultiObjectRestoreList
	NBBSADeleteImage
	NBBSAEndGetMultipleObjects
	NBBSAFreeJobInfo
	NBBSAGetEnv
	NBBSAGetErrorString
	NBBSAGetJobId
	NBBSAGetJobInfo
	NBBSAGetMediaIds
	NBBSAGetMultipleObjects
	NBBSAGetServerError
	NBBSALogMsg
	NBBSASetEnv
	NBBSAUpdateEnv
	NBBSAValidateFeatureId

	Type definitions
	Enumerated types
	Data structures

	7. Process flow and troubleshooting
	About Process flow and troubleshooting
	Backup
	Stream backup process flow description

	Restore
	Stream restore process flow description

	8. How to use the sample files
	What the sample files do
	Sample programs
	Sample scripts

	Description of sample files
	How to build the sample programs

	9. Support and updates
	About Support and updates

	A. Register authorized locations
	Registering authorized locations used by a NetBackup database script-based policy

	Index

