
Symantec NetBackup™
DataStore SDK Programmer's
Guide for XBSA 1.1.0

Release 7.6

NetBackup™ DataStore SDK Programmer's Guide for
XBSA 1.1.0

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Documentation version: 7.6

Legal Notice
Copyright © 2013 Symantec Corporation. All rights reserved.

Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec
Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks
of their respective owners.

This Symantec product may contain third party software for which Symantec is required
to provide attribution to the third party (“Third Party Programs”). Some of the Third Party
Programs are available under open source or free software licenses. The License Agreement
accompanying the Software does not alter any rights or obligations you may have under
those open source or free software licenses. Please see the Third Party Legal Notice Appendix
to this Documentation or TPIP ReadMe File accompanying this Symantec product for more
information on the Third Party Programs.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED
IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software and Documentation by the U.S.
Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.symantec.com

Technical Support
Symantec Technical Support maintains support centers globally. Technical
Support’s primary role is to respond to specific queries about product features
and functionality. The Technical Support group also creates content for our online
Knowledge Base. The Technical Support group works collaboratively with the
other functional areas within Symantec to answer your questions in a timely
fashion. For example, the Technical Support group works with Product Engineering
and Symantec Security Response to provide alerting services and virus definition
updates.

Symantec’s support offerings include the following:

■ A range of support options that give you the flexibility to select the right
amount of service for any size organization

■ Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers software upgrades

■ Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

■ Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our website at
the following URL:

www.symantec.com/business/support/

All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be
at the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

www.symantec.com/business/support/
www.symantec.com/business/support/

■ Hardware information

■ Available memory, disk space, and NIC information

■ Operating system

■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Symantec

■ Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and support contracts

■ Information about the Symantec Buying Programs

■ Advice about Symantec's technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs or manuals

www.symantec.com/business/support/
www.symantec.com/business/support/

Support agreement resources
If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

customercare_apac@symantec.comAsia-Pacific and Japan

semea@symantec.comEurope, Middle-East, and Africa

supportsolutions@symantec.comNorth America and Latin America

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com

Technical Support . 4

Chapter 1 Introduction to NetBackup XBSA . 11

About Introduction to NetBackup XBSA 11
What is NetBackup XBSA? 11
What does NetBackup XBSA do? 12
Terminology 12
Important concepts ... 13
Resources ... 13

Chapter 2 How to set up the SDK . 15

System requirements ... 15
Installing the SDK 16

Installation requirements ... 16
Installation instructions for UNIX platforms 16
Installation instructions for Windows platforms 17

Uninstalling the SDK 17
Configuration 18
Description of XBSA SDK package 18
Library files ... 18
Header files ... 19

Chapter 3 Using the NetBackup XBSA interface . 21

Getting help with the API ... 21
NetBackup XBSA data structures ... 21

Object data ... 22
Object descriptors ... 22
Query descriptors ... 24
Buffers ... 25

NetBackup XBSA environment 28
Environment variable definitions ... 29
Extended environment variable definitions ... 32

XBSA sessions and transactions 38
Sessions 38

Contents

Transactions 39
Creating a NetBackup XBSA application 42

Initiating a session 42
Backup - creating an object ... 45
Query - finding an object descriptor ... 53
Restore - retrieving an object’s data ... 56
Delete - deleting an object ... 68
Logging and NetBackup 69
Client in a cluster ... 70
Performance considerations 70

Chapter 4 How to build an XBSA application . 73

Getting help 73
Flags and defines ... 73
How to build in debug mode 74
How to debug the application 74
Static libraries ... 74
Dynamic libraries ... 75
End-user configuration 76

Chapter 5 How to run a NetBackup XBSA application 77

About How to run a NetBackup XBSA application 77
Creating a NetBackup policy ... 77
Running a NetBackup XBSA application 78
Backups and restores initiated by NetBackup (via a script) 79
Backups and restores from the command line 79

Chapter 6 Process flow and troubleshooting . 81

About Process flow and troubleshooting 81
Backup 81

Stream backup process flow description 82
Restore ... 84

Stream restore process flow description 85

Chapter 7 How to use the sample files . 87

What the sample files do 87
Sample programs 87
Sample scripts ... 89

Description of sample files ... 89
How to build the sample programs 90

Contents8

Chapter 8 Support and updates . 93

About Support and updates ... 93

Index . 95

9Contents

Contents10

Introduction to NetBackup
XBSA

This chapter includes the following topics:

■ About Introduction to NetBackup XBSA

■ What is NetBackup XBSA?

■ What does NetBackup XBSA do?

■ Terminology

■ Important concepts

■ Resources

About Introduction to NetBackup XBSA
Applications or facilities needing data storage management for backup or archive
purposes can use the NetBackup XBSA Application Programming Interface (API)
to create a backup or archive application that communicates with NetBackup.

What is NetBackup XBSA?
XBSA is an Open Group Technical Standard defining a Backup Services API (XBSA).
The XBSA specification consists of source procedure calls, type definitions, data
structures, and return codes to be used by client applications to use a backup
service, NetBackup, to store and manage data.

The NetBackup XBSA is an API to NetBackup developed to the XBSA specifications.
The NetBackup XBSA interface has extended the XBSA specifications to make it

1Chapter

easier to use and enhance performance when used with NetBackup. Exceptions
are noted throughout the document.

See “Resources” on page 13.

NetBackup XBSA is provided as a Software Developers Kit (SDK) that includes the
header files and libraries required to create an XBSA application.

What does NetBackup XBSA do?
The NetBackup XBSA interface allows an XBSA application to create, query,
retrieve, and delete data objects using NetBackup for data storage. The operations
on the objects use the rules and policies defined and enforced by NetBackup.
Examples of these rules and policies include what type of media the objects are
stored on, number of copies, retention policies, scheduled operations, etc.

Objects are CREATED and RETRIEVED as a stream of data. Each object also has
a set of attributes that are used to describe the object. These attributes include a
CopyId, created by the NetBackup XBSA interface, which uniquely defines the
object. Other attributes are specified and used by the XBSA application to describe
the object. When retrieving an object, the object is returned as a data stream and
it is up to the XBSA application to restore it to its original form.

An XBSA application can also QUERY the NetBackup XBSA interface for objects
that it owns. This query is based on a subset of the attributes that were specified.
The result of a query is a list, possibly empty, of objects and their attributes.

Objects can also be DELETED when they are no longer needed by the XBSA
application. Deleting an object prevents it from being retrieved or queried but
does not necessarily delete the data. When the actual data gets deleted is a function
of NetBackup.

Terminology
Fundamental terms necessary to understand this NetBackup XBSA are described
below.

Table 1-1 XBSA Terms

DefinitionTerm

Application-specific software that uses the NetBackup XBSA API to
request NetBackup services. Typically an XBSA Application is tightly
bound to a user application (such as a DBMS) or an operating system
service (such as a file system).

XBSA Application

Introduction to NetBackup XBSA
What does NetBackup XBSA do?

12

Table 1-1 XBSA Terms (continued)

DefinitionTerm

The NetBackup software that communicates with NetBackup to carry
out the functions defined by this specification.

NetBackup XBSA
Interface

The NetBackup XBSA Environment is the environment that exists
between the NetBackup XBSA Interface and the XBSA Application.
This environment is defined by a NetBackup XBSA session. NetBackup
XBSA Environment variables are used to pass specific NetBackup
information between the XBSA Application and the NetBackup XBSA
Interface. Setting platform environment variables (such as getenv
or setenv) has no effect on the NetBackup XBSA Environment.

NetBackup XBSA
Environment

A NetBackup XBSA session is a logical connection between a XBSA
Application and NetBackup XBSA Interface. A session begins with a
call to BSAInit() and ends with a call to BSATerminate(). Nested
sessions are not supported.

NetBackup XBSA
Session

The NetBackup XBSA API uses an object-based paradigm. Every data
object visible and transferred at the NetBackup XBSA Interface is a
NetBackup XBSA Object. It is up to the XBSA Application to define the
objects that it will backup and restore.

NetBackup XBSA
Object

Important concepts
To get the most out of using the NetBackup XBSA interface, a working knowledge
of NetBackup is required. Allowing the XBSA application to control some of the
NetBackup concepts such as policy, schedule, timeouts, multiplexing, etc., will
allow the XBSA application to be more robust and perform better in a NetBackup
environment. Other items, such as storage units, determine where data gets stored,
which could affect the XBSA application.

Note, however, that the NetBackup XBSA interface does not provide an interface
for managing the configuration, media, jobs, etc. These types of operations must
be done through other NetBackup command line or graphical interfaces.

Resources
The NetBackup XBSA API specification is based on the Open Group Technical
Standard for Systems Management: Backup Services API (XBSA) Document
Number: C425. More information on this standard can be found at the following
URL:

http://www.opengroup.org/products/publications/catalog/c425.htm.f

13Introduction to NetBackup XBSA
Important concepts

http://www.opengroup.org/products/publications/catalog/c425.htm.f

Introduction to NetBackup XBSA
Resources

14

How to set up the SDK

This chapter includes the following topics:

■ System requirements

■ Installing the SDK

■ Uninstalling the SDK

■ Configuration

■ Description of XBSA SDK package

■ Library files

■ Header files

System requirements
The following items are needed before setting up the SDK.

■ Supported systems. Refer to the Database Agent Compatibility list for
NetBackup Enterprise Server for a list of platforms that are supported with
XBSA. This list is available from the following Web site:
http://entsupport.symantec.com

■ ANSI-compatible compiler.

■ To develop an application, you need NetBackup, a DataStore License Key, and
the NetBackup DataStore SDK installed.

■ To run an application, you need a NetBackup client installed (on client running
XBSA application) and the DataStore License Key (on NetBackup server)

2Chapter

http://entsupport.symantec.com

Installing the SDK
The NetBackup for DataStore SDK is released on a separate CD from the rest of
NetBackup. You must have this CD to install the SDK. Once installed, the files
should be moved to the environment where the development of the XBSA
application is to be done.

Installation requirements
The following items are required before installing the SDK:

■ NetBackup server software is installed and operational on the server where
the SDK is to be installed.

■ Adequate disk space (approximately 20 M) on the server must be present to
receive the software.

Installation instructions for UNIX platforms
To install the SDK on UNIX platforms

1 Log on as the root user on the computer.

If you are already logged on, but are not the root user, execute the following
command.

su - root

2 Verify that a registered and valid license key for resides on the master server.

To view or add license keys, perform one of the following:

■ Run the following command:

/usr/openv/netbackup/bin/admincmd/get_license_key

If you run the get_license_key command from the master server, it
returns the correct information by default.
If you run the get_license_key command from the media server, specify
the master server’s host name as the machine you are querying. If you do
no specify the master server’s host name, the command returns licensing
information about the media server.

■ Open the NetBackup Administration Console and choose Help > License
Keys.

3 Insert the NetBackup DataStore SDK CD-ROM into the drive.

How to set up the SDK
Installing the SDK

16

4 Change the working directory to the CD-ROM directory.

cd /CD_mount_point

5 Load and install the software by executing the install script.

./install

A prompt appears asking if the package is correct.

Answer y.

The SDK files are extracted into the directory
install_path/openv/netbackup/sdk.

The file version_dstore is extracted into the directory
install_path/openv/share.

Installation instructions for Windows platforms
To install the SDK on Windows platforms

1 Insert the CD-ROM into the drive.

■ On systems with AutoPlay enabled for CD-ROM drives, the install program
starts automatically.

■ On systems that have AutoPlay disabled, click the Start button and choose
Run. Type D:\Autorun\AutoRunI.exe, where D:\ is your CD-ROM drive.

2 Follow the prompts throughout the wizard.

Uninstalling the SDK
The NetBackup for DataStore SDK is delivered in native packaging format. Remove
the NetBackup for DataStore SDK by executing the native command appropriate
for your operating system:

■ AIX: installp -u SYMCnbsds

■ HP-UX: swremove SYMCnbsds

■ Linux: rpm -e SYMCnbsds

■ Solaris: pkgrm SYMCnbsds

Windows: On the WindowsControlPanel, select Add/RemovePrograms. Select
Symantec NetBackup - DataStore, then click Remove.

17How to set up the SDK
Uninstalling the SDK

Configuration
Creating an XBSA application using the NetBackup XBSA SDK should require a
minimum of setup. The SDK is installed as read only in the NetBackup directory.
It is recommended that the files that are going to be used be moved to the
development environment of the application.

The sample directory provides a Makefile for UNIX platforms and one for Windows
platforms. They will create valid executables for the sample programs, but they
should be used as guides only and the developers should use the compile options
and libraries that are optimal for their application. The XBSA libraries and header
files themselves do not require any special options.

Description of XBSA SDK package
The NetBackup SDK contains the libraries with the XBSA interfaces for each of
the platforms that the SDK supports. There are header files that are required to
compile an XBSA Application. The SDK is installed in the NetBackup directory,
either /usr/openv/netbackup/sdk/DataStore/XBSA on UNIX or
install_directory\VERITAS\NetBackup\sdk\DataStore\XBSA on Windows.
This directory will contain all files necessary to build an XBSA Application.

The package contains the following directories.

Table 2-1 SDK/DataStore/XBSA Directories

DescriptionDirectory

Contains sample programs and scripts.samples

Contains the library files for each supported system.lib

Contains the header files.include

Library files
The NetBackup XBSA SDK contains the archive libraries for each of the systems.
Installed with the NetBackup client is an XBSA shared object library. This allows
the developer to choose the method of binding for each application. Both of these
libraries contain all XBSA functions and all external references.

The XBSA libraries are found in the directory
/usr/openv/netbackup/sdk/DataStore/XBSA/lib. In this directory is a directory
for each hardware type. Within each of these directories is a directory for each
supported operating system level. For UNIX operating systems, there is the

How to set up the SDK
Configuration

18

libxbsa.a library. For the Windows operating systems, there is both an xbsa.lib

and a xbsas.lib. The xbsa.lib was generated when creating the xbsa.dll and
xbsas.lib is a full static library.

Header files
There are two header files that are released with the SDK. These should be used
when compiling the XBSA Application. These header files are found in directory
/usr/openv/netbackup/sdk/DataStore/XBSA/include.

Table 2-2 Header Files

DescriptionFile

Header file that contains the XBSA defined structures.xbsa.h

Header file that contains NetBackup specific definitions for the
NetBackup XBSA Interface.

nbbsa.h

19How to set up the SDK
Header files

How to set up the SDK
Header files

20

Using the NetBackup XBSA
interface

This chapter includes the following topics:

■ Getting help with the API

■ NetBackup XBSA data structures

■ NetBackup XBSA environment

■ XBSA sessions and transactions

■ Creating a NetBackup XBSA application

Getting help with the API
While working with the API, you can obtain reference information about XBSA
functions.

Sample applications are included with XBSA.

See “What the sample files do” on page 87.

NetBackup XBSA data structures
This section describes the XBSA data structures and explains how the NetBackup
XBSA interface and the XBSA Application use them for creating and manipulating
XBSA objects.

3Chapter

Object data
NetBackup XBSA Object data contains the actual data entity that is archived or
backed up by an XBSA Application. The NetBackup XBSA API supports only one
type of object data, namely, a variable-length, unstructured and uninterpreted
byte-stream.

To a particular XBSA Application, however, the XBSA Object Data can contain an
internal structure that reflects the data of the Application Object or Objects that
the XBSA Application archived or backed up. In this context the XBSA Object Data
can contain, for example, one of the following: a UNIX file system, a UNIX
directory, a file, a document, a disk image, a data stream, or a memory dump.

Through the NetBackup XBSA Interface, object data can be stored, retrieved, or
deleted, but not searched or modified. Since object data may be stored on slow (or
off-line) media, it is generally not advisable for an XBSA Application to store
metadata in object data, especially information that could influence a data-retrieval
decision.

However, the metadata of an XBSA Object, which is stored in the catalog, may be
replicated in its object data if it could enhance the performance of the restore of
the object. This is an XBSA Application implementation decision.

Object descriptors
A NetBackup XBSA Object has a BSA_ObjectDescriptor, containing cataloging
information and optional application-specific object metadata. Cataloging
information is capable of interpretation and searching by the NetBackup XBSA
Interface. Application-specific object metadata is not interpretable by the
NetBackup XBSA Interface but may be retrieved and interpreted by an application.
Using an object’s objectName or its assigned copyId identifier, the corresponding
BSA_ObjectDescriptor and object data can be retrieved through the NetBackup
XBSA Interface.

A BSA_ObjectDescriptor consists of a collection of object attributes. The basic
data types used for XBSA Object attributes are:

■ Fixed-length character strings

■ Hierarchical character strings (with a specified delimiter, and a length limit
on the overall string)

■ Enumerations

■ Integers (with a specified range limit)

■ Date-time (in a standard C TM structure) format and precision, for example,
yyyymmddhhmm)

Using the NetBackup XBSA interface
NetBackup XBSA data structures

22

The attributes are shown in the following table:

Table 3-1 BSA_ObjectDescriptor Attributes

SearchableData TypeAttribute

Yes(consisting of two parts)objectOwner

[fixed-length character string]bsa_ObjectOwner

[hierarchical character string]app_ObjectOwner

Yes(consisting of two parts)objectName

[fixed-length character string]objectSpaceName

[hierarchical character string]pathName

Yes[date-time]createTime

Yes[enumeration]copyType

No64-bit unsigned integercopyId

No64-bit unsigned integerrestoreOrder

No[fixed-length character string]resourceType

Yes[enumeration]objectType

Yes[enumeration]objectStatus

No[fixed-length character string]objectDescription

No[64-bit unsigned integer]estimatedSize

No[fixed-length byte string]objectInfo

Each NetBackup XBSA Object is a copy of certain application object(s):

■ To preserve the semantics of the use of each copy within the
BSA_ObjectDescriptor, each NetBackup XBSA Object has a copyType of either
backup or archive, which is recognized by the NetBackup XBSA Interface so
that the two types of objects can be managed differently and accessed
separately. Note that it is up to the XBSA Application to manage these types
differently, as the NetBackup XBSA Interface only keeps track of which type
the object is.

■ Each NetBackup XBSA Object also has an objectStatus of either most_recent
or not_most_recent.

23Using the NetBackup XBSA interface
NetBackup XBSA data structures

■ To capture an application object's type information, the corresponding
NetBackup XBSA Object may have a resourceType (for example, "filesystem")
and a possibly resource-specific BSA_ObjectType (for example,
BSA_ObjectType_FILE).

A XBSA Application may search for a particular NetBackup XBSA Object within
a certain search scope (for example, among objects in a certain objectSpaceName)
by qualifying the search on the value of the appropriate searchable attributes.

On the other hand, non-searchable, application-specific attributes may be provided
by a XBSA Application for storage in the BSA_ObjectDescriptor, but the NetBackup
XBSA Interface does not interpret these attributes. They are stored in the
NetBackup XBSA Object attributes objectInfo, resourceType, and objectDescription.

The objectInfo field defaults to a character string. It can also be used to store
binary data by using the NBBSA_OBJINFO_LEN XBSA environment variable.

Through these descriptor attributes, application-specific metadata may be stored
in the catalog so that this metadata can be efficiently retrieved without retrieving
the actual object data stored in the repository. These attributes can be used by a
XBSA Application to maintain inter-object relationships and dependencies. Be
aware though that some consideration should be given to how much data is being
stored in the NetBackup Catalog. The amount of metadata stored with a few large
objects can be larger than that stored for a million small objects.

Query descriptors
A BSA_QueryDescriptor is the structure that is used in the query process to find
an individual or set of objects. It contains those fields from the object descriptor
that are searchable. When doing a query, it is required that the enumeration fields
are specified. If they are unknown, they all allow an "ANY" enumeration. It is also
required to specify the objectName.pathName. Wild cards are allowed for this
field and "/*" is a valid pathname for querying. The other strings in the descriptor
can be empty strings, but they will still be used for comparison to find an object
descriptor that matches the query descriptor. If these fields are unknown, wild
cards are allowed here also. The start (createTime_from) and end (createTime_to)
dates are not required.

The attributes of the BSA_QueryDescriptor are shown in the following table:

Table 3-2 BSA_QueryDescriptor Attributes

Data TypeAttribute

(consisting of two parts)objectOwner

[fixed-length character string]bsa_objectOwner

Using the NetBackup XBSA interface
NetBackup XBSA data structures

24

Table 3-2 BSA_QueryDescriptor Attributes (continued)

Data TypeAttribute

[hierarchical character string]app_objectOwner

(consisting of two parts)objectName

[fixed-length character string]objectSpaceName

[hierarchical character string]pathName

[date-time]createTime_from

[date-time]createTime_to

[enumeration]CopyType

[enumeration]objectType

[enumeration]objectStatus

Note: The createTime_from and createTime_to fields are not part of the XBSA
specification for the BSA_QueryDescriptor structure. The NetBackup XBSA
Interface is using 2 reserved fields from the BSA_QueryDescriptor structure to
allow this information to be used (if available) for the query. These fields are not
required, although if the XBSA Application can specify these dates, it can, in some
instances, greatly speed up query time.

Buffers
All buffers that are used by NetBackup XBSA Interface are allocated by the XBSA
Application. The NetBackup XBSA Interface fills data into the buffers, but never
allocates any memory that is passed back to the XBSA Application. This simplifies
buffer allocation and deletion since the XBSA Application is solely responsible.

However, to allow the NetBackup XBSA Interface to influence how buffers should
be allocated and to provide an interface with the ability to reserve private sections
in certain buffers, the API uses several conventions.

Buffer size
For API calls that specify the size of the buffer as a separate parameter, the
interface uses the following convention to signal that a buffer is not large enough
and provide the XBSA Application with the means to discover what the correct
size should be.

25Using the NetBackup XBSA interface
NetBackup XBSA data structures

The parameter that specifies the size is a pointer, so that the NetBackup XBSA
Interface can alter the parameter. The size is always in bytes. If the size is adequate
and a valid buffer is given, the NetBackup XBSA Interface will copy the requested
data into the buffer and set the actual size in the size parameter.

If the size is inadequate, the NetBackup XBSA Interface will not copy the data into
the buffer. It will set the size parameter to the actual size of the data to be copied
and return from the function call with BSA_RC_BUFFER_TOO_SMALL. This allows
the XBSA Application to allocate a buffer of adequate size and to call the function
again.

The functions that use this convention are BSAGetEnvironment(), NBBSAGetEnv()
and BSAQueryServiceProvider().

Private buffer space
For function calls that use the BSA_DataBlock32 structure, a convention has been
adopted that allows the NetBackup XBSA Interface to reserve certain portions of
the buffer for its own use. There are two areas that can be reserved by the
NetBackup XBSA Interface:

A contiguous area starting at offset 0 (that is, the start of the buffer)Header

A contiguous area that ends at the end of the buffer (that is, the tail
of the buffer)

Trailer

The area reserved for the XBSA Application is the:

A contiguous area that lies in between the Header and TrailerData Segment

To make this preference known to the XBSA Application, the NetBackup XBSA
Interface may set certain parameters in the BSA_DataBlock32 structure when a
data transfer is initiated. Specifically, when the XBSA Application issues either
the BSACreateObject() call or the BSAGetObject() call, the BSA_DataBlock32
structure is not used for passing data but for passing the NetBackup XBSA
Interface's preference. The parameters that are set by the NetBackup XBSA
Interface, and their meaning, are specified in the following table:

Table 3-3 Parameters in the BSA.DATABlock32 Structure

PreferenceParameter

The interface has no restrictions on the buffer length. No trailer
portion is required.

bufferLen == 0

Using the NetBackup XBSA interface
NetBackup XBSA data structures

26

Table 3-3 Parameters in the BSA.DATABlock32 Structure (continued)

PreferenceParameter

The interface accepts buffers that are at least bufferLen bytes in
length (minimum length). It also accepts larger buffers. For a
BSASendData() call, the interface accepts a trailer that is as least
as large as: trailerBytes >= (bufferLen - numBytes - headerBytes)
For a BSAGetData() call, the interface returns a trailer that is not
larger than: trailerBytes <= (bufferLen - numBytes - headerBytes)

bufferLen != 0

The interface has no restrictions on the length of the data portion
of the buffer.

numBytes == 0

The interface accepts (for a BSASendData() call), or returns (for
a BSAGetData() call), a data segment that does not exceed
numBytes bytes.

numBytes != 0

The interface only accepts or returns buffers with no header.headerBytes == 0

The length of the header portion of buffers accepted or returned
by the interface is headerBytes bytes.

headerBytes != 0

Not usedbufferPtr

Subsequent calls to BSAGetData() or BSASendData() must adhere to the preferences
that were specified by the NetBackup XBSA Interface.

The NetBackup XBSA Interface can write anything into the header and trailer
area of the actual buffer, as specified by the bufferPtr parameter in the
BSA_DataBlock32 structure.

The NetBackup XBSA Interface has a buffer size limit of 1 Gigabyte.

Note: For NetBackup XBSA Version 1.1.0, there are no header or trailer
requirements. The format documented here is defined by the XBSA specifications
and may be used in the future by NetBackup.

Use of BSA_DataBlock32 in BSASendData()
For BSASendData(), all parameters in the BSA_DataBlock32 structure must be set
by the XBSA Application and adhere to the NetBackup XBSA Interface preferences
or the function will fail with a BSA_RC_INVALID_DATABLOCK error. The
NetBackup XBSA Interface is not allowed to change any of the parameters.

The buffers being passed by BSASendData() must be full. This means that
numBytes must be equal to bufferLen. The buffer for the last BSASendData() call
for an object does not need to be full.

27Using the NetBackup XBSA interface
NetBackup XBSA data structures

Use of BSA_DataBlock32 in BSAGetData()
For BSAGetData(), all parameters in the BSA_DataBlock32 structure must be set
by the XBSA Application and adhere to the NetBackup XBSA Interface preferences
or the function will fail with a BSA_RC_INVALID_DATABLOCK error. The
NetBackup XBSA Interface will change the numBytes parameter setting the actual
number of bytes copied into the data segment. NetBackup is not allowed to change
any of the other parameters.

Shared memory

Note: Passing of data in shared memory blocks between the XBSA Application
and the NetBackup XBSA Interface is not supported for NetBackup XBSA Version
1.1.0.

The BSA_DataBlock32 structure contains fields to allow the use of shared memory
blocks for passing data between a XBSA Application and the NetBackup XBSA
Interface. The shareId and shareOffset fields of the BSA_DataBlock32 structure
are used to define shared memory buffers. NetBackup XBSA Interface version
1.1.0 does not use these fields.

NetBackup XBSA environment
The NetBackup XBSA environment is created when an XBSA Application calls
BSAInit() to initiate a session. This environment only exists between the NetBackup
XBSA Interface and the XBSA Application. XBSA environment variables are used
to pass specific NetBackup information in both directions between the XBSA
Application and the NetBackup XBSA Interface. The environment variables are
generally set or modified by the XBSA Application, but the NetBackup XBSA
Interface does create and/or modify some variables in order to pass information
back to the XBSA Application. Setting platform environment variables (getenv or
setenv) has no effect on the NetBackup XBSA environment.

There are restrictions on when some of the variables can be set/modified. Most
of them can be set on the call to BSAInit(), which initiates a session. Some can
also be modified within a session but outside of a transaction. And a few can be
modified within a transaction. These limitations are outlined below in the
descriptions for each of the variables.

Each XBSA environment variable is defined as a keyword followed by an "=" and
followed by a null-terminated value. No spaces are allowed around the "=".
"BSA_API_VERSION=1.1.0" is valid while "BSA_API_VERSION = 1.1.0" is not.

The functions used to create, modify, and view these environment variables are:

Using the NetBackup XBSA interface
NetBackup XBSA environment

28

■ BSAInit()

■ BSAGetEnvironment()

■ NBBSAUpdateEnv()

■ NBBSASetEnv()

■ NBBSAGetEnv()

These functions are defined later in the API Function Definitions section of this
document.

Environment variable definitions
The following XBSA environment variables are defined as part of the XBSA
specification and are accepted by the NetBackup XBSA Interface.

Table 3-4 XBSA Environment Variables

FormatDescriptionVariable Name

A string containing 3
numeric elements, (version,
issue, level) separated by
periods.

Mandatory. Specifies the
version of the specification
that the calling XBSA
Application requires.
BSAQueryApiVersion() can
retrieve the value of the
current NetBackup XBSA
Interface.

BSA_API_VERSION

A single ASCII character.Optional. The delimiter used
in hierarchical character
strings (default "/").

BSA_DELIMITER

A hierarchical character
string with 3 fields.

Optional. Identifies the
XBSA implementation.
BSAQueryServiceProvider()
can retrieve this value.

BSA_SERVICE_PROVIDER

A string containing a host
name.

Optional. Identifies a
specific host system for the
NetBackup Server.

BSA_SERVICE_HOST

In addition to the environment variables defined in the XBSA specification, the
following NetBackup XBSA environment variables are defined as part of this
specification. These are specific to NetBackup and have no relevance to other
XBSA implementations. See theNetBackupSystemAdministrator'sGuide,Volume

29Using the NetBackup XBSA interface
NetBackup XBSA environment

I, for a more complete definition of NetBackup policy, schedule, and logging. The
NetBackup environment variables all are prefaced with "NB."

Table 3-5 NetBackup Environment Variables

FormatDescriptionVariable Name

A string containing a host name.Optional. Identifies a specific host
system for the NetBackup client.

NBBSA_CLIENT_HOST

A string containing the policytype.Optional. This specifies a specific
policy type.

NBBSA_DB_TYPE

An integer value.Optional. This specifies a specific
NetBackup licensed feature within the
DataStore policy type.

NBBSA_FEATURE_ID

A string containing a keyword value
<= 100 characters.

Optional. If this is specified, this value
will be used for the NetBackup
Keyword field for this image.

NBBSA_KEYWORD

A string containing a single directory
name.

Optional. Identifies the name of
directory that will contain the log files
of the XBSA Application.

NBBSA_LOG_DIRECTORY

A string containing the group.Optional. This variable is used to define
the object group owner of an object
being created.

NBBSA_OBJECT_GROUP

A string containing the owner.Optional. This variable is used to define
the object owner of an object being
created.

NBBSA_OBJECT_OWNER

An integer value <= 256.Optional. If this variable is set before
an XBSA Object is created the
objectInfo field will be considered to
be of this length and the object will be
considered binary.

NBBSA_OBJINFO_LEN

A string containing a NetBackup policy
name.

Optional. Identifies a specific
NetBackup policy to be used.

NBBSA_POLICY

A string containing a NetBackup
schedule name.

Optional. Identifies a specific
NetBackup XBSA Schedule to be used.

NBBSA_SCHEDULE

An integer value between 0 and 4.Optional. This variable can be set to
cause the group of an object to be
something other than the login user
creating the object.

NBBSA_USE_OBJECT_GROUP

Using the NetBackup XBSA interface
NetBackup XBSA environment

30

Table 3-5 NetBackup Environment Variables (continued)

FormatDescriptionVariable Name

An integer value between 0 and 4.Optional. This variable can be set to
cause the owner of an object to be
something other than the login user
creating the object.

NBBSA_USE_OBJECT_OWNER

The following XBSA environment variables are set by the NetBackup XBSA
Interface from values in the NetBackup configuration files. These environment
variables are used to pass required information from NetBackup to the XBSA
Application. Descriptions of these NetBackup configuration values can be found
in theNetBackup SystemAdministrator's Guide forUNIX, Volume I, orNetBackup
System Administrator's Guide for Windows, Volume I.

Table 3-6 XBSA Environment Variables for NetBackup Configuration Values

FormatDescriptionVariable Name

An integer value between 0 and 9.The verbose level of the database
logs.

NBBSA_VERBOSE_LEVEL

An integer value.The NetBackup MULTIPLEXING
value.

NBBSA_MULTIPLEXING

An integer value in bytes.The NetBackup Server Buffer Size
value.

NBBSA_SERVER_BUFFSIZE

An integer value in seconds.The NetBackup
MEDIA_MOUNT_TIMEOUT value.

NBBSA_MEDIA_MOUNT_TIMEOUT

An integer value in seconds.The NetBackup
CLIENT_READ_TIMEOUT value.
This value can be modified by the
XBSA Application.

NBBSA_CLIENT_READ_TIMEOUT

31Using the NetBackup XBSA interface
NetBackup XBSA environment

Extended environment variable definitions

Table 3-7 Extended Environment Variables

Extended DescriptionVariable Name

BSA_API_VERSION specifies the version of the XBSA specification. It is
set by the XBSA Application as the version that the XBSA Application
requires. This value is required to be in the environmental variable list in
the call to BSAInit(), where it will be verified as a supported version of the
NetBackup XBSA Interface.

The current value of BSA_API_VERSION that is supported by the NetBackup
XBSA Interface can be retrieved with a call to BSAQueryApiVersion().

Once BSA_API_VERSION has been set in the XBSA environment, it cannot
be changed via calls to NBBSAUpdateEnv() or NBBSASetEnv().

The version supported for this feature pack is "1.1.0."

BSA_API_VERSION

BSA_DELIMITER is the delimiter used in hierarchical character strings.
The NetBackup XBSA Interface sets this XBSA environment variable.

The delimiter used by this feature pack is "/". This value can be retrieved
by BSAQueryServiceProvider().

BSA_DELIMITER

BSA_SERVICE_HOST identifies the host system for the NetBackup Server.
If this variable is not provided, the currently configured server for the
NetBackup Client will be used.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup System Administrator's Guide for Windows, Volume I, for
information on how to use the configuration file, bp.conf, to specify the
NetBackup servers.

This XBSA environment variable may be set by the XBSA Application via
BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or
modified after a transaction has begun.

BSA_SERVICE_HOST

BSA_SERVICE_PROVIDER identifies the XBSA implementation. The
NetBackup XBSA Interface sets this XBSA environment variable.

It is defined as: Symantec/NetBackup/1.1.0.

BSAQueryServiceProvider() may also retrieve this value.

BSA_SERVICE_PROVIDER

Using the NetBackup XBSA interface
NetBackup XBSA environment

32

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_CLIENT_HOST identifies a specific host system as the NetBackup
client. If this variable is not provided, the host the XBSA Application is
running on is the client.

This variable is useful for queries and restores when restoring data that
was backed up from a different host than the host where the data is being
restored. For backups, if the NBBSA_CLIENT_HOST is logically different
from the client host the backup is being initiated from, this will result in
an error, as you cannot create objects from another host.

This XBSA environment variable may be set by the XBSA Application via
BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or
modified after a transaction has begun.

NBBSA_CLIENT_HOST

NBBSA_CLIENT_READ_TIMEOUT is used to determine or reset the
NetBackup CLIENT_READ_TIMEOUT value.

The NetBackup XBSA Interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject(). After BSACreateObject(),
the NBBSA_CLIENT_READ_TIMEOUT value may be reset by the XBSA
Application via NBBSAUpdateEnv() or NBBSASetEnv(). Setting it at any
other time will have no effect.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup SystemAdministrator's Guide forWindows, Volume I, for more
information about CLIENT_READ_TIMEOUT.

NBBSA_CLIENT_READ_TIMEOUT

NBBSA_DB_TYPE is an internal string representation of a NetBackup policy
type. This is generally only used for NetBackup internal agents, but in
certain instances may be set up for external use. If this variable is not
specified, it defaults to the SDK default of DataStore policy type. If this
variable is used, the NBBSA_FEATURE_ID must also be specified.

NBBSA_DB_TYPE

NBBSA_FEATURE_ID identifies a specific NetBackup licensed feature to
be used for the session. If this variable is not provided, the default DataStore
feature id will be used. In general this environment variable does not need
to be set, but it allows an application, working with NetBackup product
management, to use a specific NetBackup license.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified after
a transaction has begun.

NBBSA_FEATURE_ID

33Using the NetBackup XBSA interface
NetBackup XBSA environment

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_KEYWORD will allow the XBSA Application to specify a NetBackup
keyword. This keyword is typically used to group images together and can
speed up a search. If this variable is specified for a backup transaction, the
keyword will be stored with the image. If it is specified before a query or
restore transaction, the keyword will be used to help in the search process.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified after
a transaction has begun.

NBBSA_KEYWORD

NBBSA_LOG_DIRECTORY identifies the name of directory that will contain
the log files of the NetBackup XBSA Interface and possibly for the XBSA
Application. This directory will be located in
/usr/openv/netbackup/logs on UNIX and
install_directory\VERITAS\NetBackup\Logs on Windows. If not
specified, the directory name will be exten_client.

All debug messages from the NetBackup XBSA Interface and from function
NBBSALogMsg() go to a dated log file in this directory.

This value may be set by the XBSA Application via BSAInit(). It may not be
modified after the call to BSAInit().

NBBSA_LOG_DIRECTORY

NBBSA_MEDIA_MOUNT_TIMEOUT is used to determine the NetBackup
MEDIA_MOUNT_TIMEOUT value.

The NetBackup XBSA Interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject().

NBBSA_MEDIA_MOUNT_TIMEOUT may not be modified by the XBSA
Application.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup SystemAdministrator's Guide forWindows, Volume I, for more
information about MEDIA_MOUNT_TIMEOUT.

NBBSA_MEDIA_MOUNT_TIMEOUT

NBBSA_MULTIPLEXING the number of streams that NetBackup has been
configured to accept at one time.

The NetBackup XBSA Interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject(). NBBSA_MULTIPLEXING
may not be modified by the XBSA Application.

See the NetBackup System Administrator's Guide, Volume I, for more
information about multiplexing.

NBBSA_MULTIPLEXING

Using the NetBackup XBSA interface
NetBackup XBSA environment

34

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_OBJECT_GROUP can be used in conjunction with variable
NBBSA_USE_OBJECT_GROUP to define the group ownership of an object.
When NBBSA_USE_OBJECT_GROUP = VxENV_OWNER, the name defined
in this string becomes the group owner of an object that is created. This
group should be a valid groupname on the client.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv(). It can be modified within a
transaction and each object created within one transaction could have a
different group.

NBBSA_OBJECT_GROUP

NBBSA_OBJECT_OWNER can be used in conjunction with variable
NBBSA_USE_OBJECT_OWNER to define the ownership of an object. When
NBBSA_USE_OBJECT_OWNER = VxENV_OWNER, the name defined in this
string becomes the owner of an object that is created. This owner should
be a valid username on the client.

This value may be set by the VxBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv(). It can be modified within a
transaction and each object created within one transaction could have a
different owner.

NBBSA_OBJECT_OWNER

NBBSA_OBJINFO_LEN is used by BSACreateObject() to allow the objectInfo
field of the object descriptor to contain non-ASCII values. If this variable
is not specified, the objectInfo field will be treated as a NULL terminated
character string. It is not required to specify this variable for a query or
restore transaction.

This value may be modified by the XBSA Application at any time during a
backup transaction using BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv().
If the length of the objectInfo field is different for each object, it can be
changed before each BSACreateObject() call.

NBBSA_OBJINFO_LEN

NBBSA_POLICY identifies a specific NetBackup policy to be used for the
transaction. If this variable is not provided, the NetBackup configuration
will be used to find the default policy to use. For backups, if a policy is
configured in NetBackup on the client, that policy is used for the backup.
For queries, restores, and deletes, the configured policy is not used.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup System Administrator's Guide for Windows, Volume I, for
information on how to create and configure a NetBackup policy.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified after
a transaction has begun.

NBBSA_POLICY

35Using the NetBackup XBSA interface
NetBackup XBSA environment

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_SCHEDULE identifies a specific NetBackup schedule to be used. If
this variable is not provided, the NetBackup configuration will be used to
find the default schedule to use. For backups, if a schedule is configured
in NetBackup on the client, that schedule is used for the backup. For queries,
restores, and deletes, the configured schedule is not used.

See the NetBackup System Administrator's Guide for UNIX, Volume I, or
NetBackup System Administrator's Guide for Windows, Volume I, for
information on how to create and configure a NetBackup Schedule.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified after
a transaction has begun.

NBBSA_SCHEDULE

NBBSA_SERVER_BUFFSIZE the NetBackup configured size of the

NET_BUFFER_SZ. This can be used by XBSA application to help improve
performance.

The NetBackup XBSA Interface creates this XBSA environment variable in
the function BSACreateObject() or BSAGetObject().
NBBSA_SERVER_BUFFSIZE may not be modified by the XBSA Application.

See theSee theNetBackup SystemAdministrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume I, for
more information about setting the buffer size.

NBBSA_SERVER_BUFFSIZE

Using the NetBackup XBSA interface
NetBackup XBSA environment

36

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_USE_OBJECT_GROUP allows the agent to define the group owner
of objects created with VxBSACreateObject(). The default group of an object
is the login user of the process creating the object (not the primary group
of the login user, but the actual login user). This variable allows the agent
to specify the ownership as follows.

VxLOGIN_USER 0 - Default, group field is set to the login user

VxLOGIN_GROUP 1 - Group field is set to the primary group of the login
user

VxBSA_OWNER 2 - Group field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Group field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Group field is set to value of NBBSA_GROUP_OWNER
variable

This value may be set by the BSA Application via BSAInit(), NBBSASetEnv(),
or NBBSAUpdateEnv() but may not be set or modified after a transaction
has begun.

NBBSA_USE_OBJECT_GROUP

NBBSA_USE_OBJECT_OWNER allows the agent to define the owner of
objects created with BSACreateObject(). The default ownership of an object
is the login user of the process creating the object. This variable allows the
agent to specify the ownership as:

VxLOGIN_USER 0 - Default, owner field is set to the login user

VxBSA_OWNER 2 - Owner field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Owner field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Owner field is set to value of NBBSA_OBJECT_OWNER
variable

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified after
a transaction has begun.

NBBSA_USE_OBJECT_OWNER

37Using the NetBackup XBSA interface
NetBackup XBSA environment

Table 3-7 Extended Environment Variables (continued)

Extended DescriptionVariable Name

NBBSA_VERBOSE_LEVEL is the verbose level of the NetBackup debug logs.
The verbose level can be configured through both the Backup, Archive, and
Restore interface or the NetBackup Administration Console.

This value may be useful if the XBSA Application, using NBBSALogMsg(),
wants to log different levels of messages to the NetBackup XBSA logs based
on the verbose level that is configured in NetBackup.

The NetBackup XBSA Interface will originally set this value in BSAInit().
The XBSA Application may reset this environment variable, using
NBBSASetEnv() or NBBSAUpdateEnv(), if it wants to change the level of
logging.

NBBSA_VERBOSE_LEVEL

XBSA sessions and transactions
All operations for NetBackup must be in an XBSA session. Each session can contain
one or more transactions. This section defines how XBSA sessions are defined
and what can be in each transaction.

Sessions
In order to use most of the NetBackup XBSA API calls, it is necessary for a XBSA
Application to set up a session with the NetBackup XBSA Interface by invoking
the BSAInit() call. The functions BSAQueryApiVersion() and
BSAQueryServiceProvider() may be invoked prior to calling BSAInit(). These
functions are used to determine the current version of the API used by the
NetBackup XBSA Interface and a string describing the provider of the NetBackup
XBSA Interface, respectively, and are not dependent on being within a session.

Initialization and termination
A session is initiated by a BSAInit() call. This call sets up a session with the
NetBackup XBSA Interface and creates a context, defined by handle, for the caller
to be used in subsequent calls. The XBSA environment is set up within that context
and remains in place until the session is terminated. Nested sessions are not
permitted.

A session is terminated by a BSATerminate() call, which will release any resources
acquired during the NetBackup XBSA session. If BSATerminate() is called within
a transaction, the transaction is aborted.

Using the NetBackup XBSA interface
XBSA sessions and transactions

38

Authentication
In NetBackup XBSA Version 1.1.0, all authentication and security is handled by
NetBackup based on the login user. Object ownership is determined by the login
user of the session that created the object. In order to query or restore an object,
the login user doing the request must be the same user who created the object or
a root administrator.

Note: NetBackup XBSA Version 1.1.0 does not validate the objectOwner and
SecurityToken parameters of BSAInit(). The objectOwner fields, bsa_objectOwner
and app_objectOwner, can be specified and will be stored with an object, but the
login user who created the object determines the official ownership of an object.
This user, or a root admin, are the only users who can query or restore this object.

Transactions
Within each session, a XBSA Application can make a sequence of calls (for example,
to backup some objects, to query the set of objects it has backed up, or to restore
objects). These calls must be grouped into a transaction by invoking BSABeginTxn()
at the beginning of the group of calls and invoking BSAEndTxn() at the end. The
latter either commits the transaction or aborts it.

If a transaction is aborted either by a BSAEndTxn() or BSATerminate() call, then
the effect of all the calls made within the transaction is nullified. If a transaction
is committed, then the effect of all the calls within the transaction is made
permanent.

Within a single session, transactions cannot be nested and cannot overlap.
Transactions are categorized into the following types:

■ NetBackup XBSA Object modification transactions - in which NetBackup XBSA
Objects may be created or deleted.

■ NetBackup XBSA Object retrieval transactions - in which NetBackup XBSA
Objects may only be queried and/or retrieved. This type of transaction provides
no functional benefit for the calling XBSA Application, and is only included
for completeness.

The type of a transaction is established by the first create/delete/retrieve operation
performed. Attempts to mix operations in a transaction will result in a
BSA_RC_INVALID_CALL_SEQUENCE error. The permissible call sequences are
defined later in this chapter.

Once a transaction starts, many of the XBSA Environment variables can no longer
be reset. BSA_SERVICE_HOST, NBBSA_CLIENT_HOST, NBBSA_POLICY, and
NBBSA_SCHEDULE cannot be modified within a transaction. If these need to be

39Using the NetBackup XBSA interface
XBSA sessions and transactions

modified, the XBSA Application must exit the transaction, make the variable
changes, and start a new transaction.

Backup transaction
A XBSA Application can create a NetBackup XBSA Object in a backup transaction.
The backup transaction is defined by the first BSACreateObject() call. The
BSACreateObject() function takes as input an object descriptor that has all of the
XBSA attributes of the object. After the BSACreateObject() call, the object's data
is passed to NetBackup in buffers using a sequence of BSASendData() calls. When
all data has been sent, the object is completed with a BSAEndData() call. Multiple
objects may be created in one transaction, although BSAEndData() must be called
before the next BSACreateObject() is called.

The NetBackup XBSA Interface treats backup and archive transactions the same.
It is up to the XBSA Application to do any extra operations that may be associated
with an archival. The XBSA Application is also responsible for any other backup
types such as an incremental backup. The NetBackup archive and incremental
backups do not apply to the NetBackup XBSA Interface. It is also important to
note that all information required to restore an object needs to be contained in
the object descriptor or object data.

Within a backup transaction, query, delete, and restore operations are not allowed.

Restore transaction
The Restore transaction is similar to Backup transaction, except that the data
flow is reversed. The restore transaction is defined by a call to BSAGetObject().

In order to restore an XBSA object, the NetBackup XBSA Interface needs to know
the copyId of that object. The copyId can be obtained from a catalogue maintained
by the XBSA Application or from a prior BSAQueryObject() call. Query operations
can be mixed in with restore operations to get this data.

The BSAGetObject() call is used to initiate the restore of an object. It takes as input
an object descriptor that contains the copyId of the object to be restored. Then a
series of BSAGetData() calls are used to get data for the object in buffers, and the
BSAEndData() call is to signal the end of getting data for the object. It is up to the
XBSA Application to recreate the object being restored using the object descriptor
and data. When restoring multiple objects, the XBSA Application must get all data
for an object and call BSAEndData() before calling BSAGetObject() to start restoring
the next object.

Within a restore transaction, it is permissible to have BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA Application to intermix
restore operations with BSAQueryObject() and BSAGetNextQueryObject() calls in

Using the NetBackup XBSA interface
XBSA sessions and transactions

40

order to restore multiple objects within one transaction. Backup and delete
operations are not allowed within a restore transaction.

It should be noted that the use of transactions for restore operations does not
provide any functional benefit to the XBSA Application but is required for
completeness. If a restore is aborted via a call to BSAEndTxn() or BSATerminate()
before the restore has completed, the NetBackup XBSA Interface will free up the
NetBackup resources but it is up to the XBSA Application to leave the object being
restored in a consistent state.

Delete transaction
A XBSA Application may delete a NetBackup XBSA Object using the
BSADeleteObject() call. BSADeleteObject() takes a copyId as a parameter and marks
that object to be deleted. The actual delete of an object does not take place until
the BSAEndTxn() call commits the transaction, so a query within a delete
transaction could return an object to be deleted. If an object was backed up to a
tape device, the data will not be deleted as part of this transaction. When all images
on a tape have been deleted or expired, NetBackup will free the tape to be reused.

Within a delete transaction, it is permissible to embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA Application to intermix
delete operations with BSAQueryObject() and BSAGetNextQueryObject() calls in
order to delete multiple objects within one transaction. Backup and restore
operations are not allowed within a delete transaction.

Note: For NetBackup XBSA Version 1.1.0, BSADeleteObject() has a limitation that
there can only be one object in a NetBackup image for the delete to work. This
means that when the object was created, it was the only object created in the
transaction. If there are multiple objects, BSADeleteObject() will return a
BSA_RC_SUCCESS status, but the object will still exist.

NetBackup takes care of deleting objects via the retention period setting which
is part of the configuration of a NetBackup schedule. In general, due to the way
the data is stored on tape and other media, deleting individual objects has limited
value.

Query transaction
A XBSA Application may query for NetBackup XBSA Objects that have been created
in a query transaction. The BSAQueryObject() call is used to query the NetBackup
catalogue for NetBackup XBSA Objects. Since retention of NetBackup XBSA Objects
is a function of NetBackup there is no guarantee that the call to BSAQueryObject()
will return any objects.

41Using the NetBackup XBSA interface
XBSA sessions and transactions

The query is based on a subset of the object descriptor attributes, contained in a
query descriptor. All fields in the query descriptor must be populated and the
query will search for objects that match all fields. Each of the fields does have a
wildcard or 'ANY' value that can be used. But leaving a field blank will only match
objects that also have blanks in that field.

The result of a query can return Object Descriptors, but never XBSA Object Data.
If a query finds multiple object descriptors, BSAQueryObject() will return the first
object descriptor and the remaining objects can be retrieved one at a time by using
a succession of BSAGetNextQueryObject() calls.

It should be noted that the use of transactions for query operations does not
provide any functional benefit to the XBSA Application but is required for
completeness. And as noted in the other transaction types, queries can be
embedded in restore and delete transactions.

Creating a NetBackup XBSA application
This section contains information on initiating an XBSA session, using XBSA
objects, logging, running an XBSA application in a clustered environment, and
hints for getting the best performance out of the NetBackup XBSA Interface.

Initiating a session
A session is initiated with a call to BSAInit(). One of the parameters of BSAInit()
is the list of environment variables that is used to set up the XBSA environment
between the XBSA Application and the NetBackup XBSA Interface. The only
variable that is required by the NetBackup XBSA Interface is BSA_API_VERSION.
BSAInit() will validate that the XBSA Application is using a supported version.
Other environmental variables can be included to increase flexibility of the
application or to override values from the NetBackup configuration. But if these
variables are not set, there are defaults from the configuration that will be used.

Be aware that using these environment variables does not allow the XBSA
Application to bypass the NetBackup configuration, only to change from the
default. All hosts, policies, schedules, etc. that are used must still be defined in
the NetBackup configuration in order for the transactions to work. See the
NetBackupSystemAdministrator'sGuide forUNIX,Volume I, orNetBackupSystem
Administrator's Guide for Windows, Volume I, for more information on how to
configure NetBackup.

The XBSA Application should allow the XBSA environment variables to be set
from run time values. These values can be obtained from parameters or from
system environment variables. This will allow the maximum flexibility for the
application.

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

42

See “About How to run a NetBackup XBSA application” on page 77.

Some of the XBSA environment variables must be specified in the call to BSAInit()
and cannot be changed within the session. Others can be set or modified within
the session which gives the XBSA Application maximum flexibility.

More information is available for the individual variables.

See See “NetBackup XBSA environment” on page 28.

Modifying XBSA environment within a session
The XBSA environment is created when the session is initiated. A couple of the
variables, like BSA_API_VERSION and NBBSA_LOG_DIRECTORY, cannot be
changed once the session has started. Many of the other variables can still be
modified. If the XBSA Application is going to set BSA_SERVICE_HOST,
NBBSA_CLIENT_HOST, NBBSA_POLICY, or NBBSA_SCHEDULE, this needs to be
done outside of a transaction, either before the first transaction or between
transactions.

Once within a session, the XBSA Environment can be updated with either
NBBSASetEnv() or NBBSAUpdateEnv(). These are extensions to the XBSA
specification. NBBSASetEnv() is used to set an individual XBSA environment
variable and NBBSAUpdateEnv() updates the entire XBSA environment.

Session example
The following example sets up a session and begins a transaction. It sets up the
XBSA environment, a BSA_ObjectOwner structure, and a BSA_SecurityToken.
The security token is NULL because the NetBackup XBSA Interface does not use
this security method. The session is initiated by a BSAInit() call that returns a
BSA_Handle. This handle is then used when beginning a transaction and for all
XBSA function calls within the session. Within the session, the XBSA environment
is modified to change the NBBSA_CLIENT_HOST. Lastly a transaction is started.

BSA_Handle BsaHandle;

BSA_Obje ctOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

/ * Allocate memory for the XBSA environment variable array. */

envx[0] = malloc(40);

43Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

envx[1] = malloc(40);

/ * Populate the XBSA environment variables for this session.

* Normally the BSA_SERVICE_HOST would not be hard coded like this but

* would be retrieved via a parameter or environment variable.

*/

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

envx[2] = NULL;

/ * The NetBackup XBSA Interface does not use the security token. */

security_tokenPtr = NULL;

/ * Populate the object owner structure. */

strcpy(BsaObjectOwner.bsa_ObjectOwner,"XBSA Client");

strcpy(BsaObjectOwner.app_ObjectOwner,"XBSA App");

/ * Initialize an XBSA session. */

status = BSAInit(&BsaHandle,NULL,&BsaObjectOwner,envx);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrString);

printf("ERROR: BSAInit failed with error: %s\n", ErrString);

exit(status);

}

/ * Set the hostname of the client for the next transaction. */

NBBSASetEnv(BsaHandle, "NBBSA_CLIENT_HOST", "client_host");

/ * Begin a transaction. If it fails, terminate the session. */

status = BSABeginTxn(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSABeginTxn failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

44

Backup - creating an object
Once the application has started a transaction, it can start a backup. A backup
transaction is identified by the first BSACreateObject() call. BSACreateObject()
will start the process of backing up an object. Once the object has been created,
multiple BSASendData() calls are be used to send the data associated with an
object. This object is then completed with a BSAEndData() call.

The ability to pass data in buffers allows an XBSA Application to use any buffering
technique that is appropriate to ensure consistency or to improve performance.
When data is passed in buffers, all the data for one object must be passed, in the
proper sequence, before any other operation is started.

Creating an object
An object descriptor defines an XBSA object. It is up to the XBSA Application to
define the attributes of the object such that the application will know how to
restore the object. For example, if the XBSA Application wants to implement an
incremental type of backup, enough information will need to be kept in the object
descriptor to identify if the object is a full or incremental and any other
information that will be required to restore the object.

The following fields of an object descriptor are user-defined and need to be defined
by the XBSA Application before the descriptor is passed to BSACreateObject().

See See “Object descriptors” on page 22. for more definition of the
BSA_ObjectDescriptor.

The fields that are defined as strings can be empty strings, except for the
pathName, which must have a valid path. The fields that are enumerations cannot
have the ANY value. The estimatedSize field must have a value greater than zero
if the object will have data and zero if there will be no data. While it is good practice
to have the estimated size field be as accurate as possible, it does not affect how
NetBackup will store the object.

The following are the required BSA.ObjectDescriptor fields:

objectOwner

bsa_objectOwner

app_objectOwner

objectName

pathName

objectSpaceName

copyType

resourceType

objectType

objectDescription

45Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

estimatedSize

objectInfo

The NetBackup XBSA Interface will populate the other fields in the object
descriptor.

The other structure that is required before creating an object is the
BSA_DataBlock32 structure. The structure does not need to be populated because
BSACreateObject() will populate select fields with values that define how the data
needs to be passed in buffers.

See “Buffers” on page 25..

Those are the two parameters to BSACreateObject(). The BSACreateObject()
function will create the object and prepare the NetBackup to be able to accept
data. This includes mounting a tape if that is required. When BSACreateObject()
has successfully created the object and returns, the object descriptor will have
the copyId field populated. This is the unique identifier that is associated with
this object. If the XBSA Application is going to keep any information about an
object in an application catalog, this copyId should be a key value. It can be used
to restore or delete this object.

There are four environmental variables that are created during BSACreateObject().
These are NBBSA_CLIENT_READ_TIMEOUT, NBBSA_MEDIA_MOUNT_TIMEOUT,
NBBSA_MULTIPLEXING, and NBBSA_SERVER_BUFFSIZE. These variables are
part of the NetBackup configuration and can be used to determine if the XBSA
application will be successful. The NBBSA_CLIENT_READ_TIMEOUT and
NBBSA_MEDIA_MOUNT_TIMEOUT values can be reset by the XBSA application
if it knows it needs to override the default NetBackup configuration.

NBBSA_CLIENT_READ_TIMEOUT is the amount of time, in seconds, the NetBackup
server will wait for data to be received. If the time between when the NetBackup
server starts the backup and the time the transmission of data starts exceeds this
timeout value, the backup job will fail. This is to ensure that a hung or failed
process on the client does not cause the job to wait, and take up resources,
indefinitely. If the XBSA Application knows it will take longer than this to prepare
the data to be sent, this value should be reset to a higher value.

NBBSA_MEDIA_MOUNT_TIMEOUT is the amount of time the NetBackup client
will wait for the media to be mounted. If the time between when the NetBackup
server starts the backup and the time the media is mounted exceeds this timeout
value, the XBSA Interface will return a fail condition.

NBBSA_MULTIPLEXING is the number of streams that can be accepted by
NetBackup. This value cannot be changed but if the XBSA Application is processing
multiple streams, it should be evaluated to make sure that NetBackup will accept
all streams that are being sent.

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

46

NBBSA_SERVER_BUFFSIZE is the size configured for NET_BUFF_SZ. This value
cannot be changed but, if the XBSA Application has the ability to modify the size
of the buffers it uses, these could be modified to enhance performance of the
transfer of data.

If everything is OK so far, data can be sent to the NetBackup XBSA Interface via
buffers by BSASendData(). The buffers are defined by the BSA_DataBlock32
structure. The key fields to set are the numBytes, which contains the number of
bytes being sent, bufferLen, which contains the length of the buffer in bytes, and
bufferPtr, which is a pointer to the buffer. The number of bytes must equal the
buffer length except for the last buffer, which can be only partially full.
BSASendData() can be called any number of times to pass all the data from an
object.

Once all data has been sent, BSAEndData() must be called to signal to the
NetBackup XBSA Interface that the object is complete.

If multiple objects are to be created, this whole process can be repeated multiple
times. The most efficient way to create multiple objects is to repeat this within
one transaction. It is also possible to create multiple objects by creating one object
per transaction and doing multiple transactions.

Once all objects for a transaction have been created, the transaction is completed
with BSAEndTxn(). BSAEndTxn() can either commit or abort the transaction. If
the transaction is aborted, all objects that were created in the transaction are not
saved. If the transaction is committed, the object(s) are saved in the NetBackup
catalog and can at a future point be restored. The BSATerminate() function also
acts as an abort to the transaction.

NetBackup object ownership
Default behavior

When the NetBackup XBSA interface is used to create an object, by default the
owner of the object will be the login user of the process that created the object.
The default group of the object will also be the login user, not the primary group
of the login user, but the exact same name as the login user name. The permissions
of the file will be set to 600, or

‘rw- - - - - - -’, which is read/write for owner and no access permissions for anyone
else. This requires that the user restoring an object be an administrator or the
same user that created the object. The XBSA objectOwner fields are saved in the
NetBackup catalog with the object, but they are kept as attributes of the object
and are not used for security purposes.

Ownership options

47Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Using the XBSA environmental variables NBBSA_USE_OBJECT_OWNER,
NBBSA_USE_OBJECT_GROUP, NBBSA_OBJECT_OWNER, and
NBBSA_GROUP_OWNER, an agent can change the default owner. These variables
allow the XBSA agent to be able to specify who owns the objects.

Note: Specifying object ownership only works when creating objects using
BSACreateObject(). Accessing the objects via BSAQueryObject() and BSAGetObject()
is dependent on the login process having permissions to access the objects. So if
user_Y creates an object with an object owner of user_X, then user_X or an
administrator (root) can access and restore the object, but user_Y cannot.

Object owner

To specify the owner of an object, the XBSA environment variable
NBBSA_USE_OBJECT_OWNER needs to be set. There are 4 values that this variable
can be set to. These values are defined in nbbsa.h.

/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the login user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the login user */

#define VxBSA_OWNER 2 /* owner/group field is set to \

objectDesctiptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to \

objectDesctiptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of \

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_OWNER variable wasn’t set.

VxLOGIN_GROUP does not apply to object ownership.

VxBSA_OWNER will set the object owner to the value stored in the objectDescriptor
field objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field will
need to be a valid username without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner will still be stored as an attribute of the object and
a query will need to correctly specify this field in the query descriptor to
successfully find the object.

VxAPP_OWNER will set the object owner to the value stored in the objectDescriptor
field objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field will
need to be a valid username without any spaces in the name. The value in
objectOwner.app_ObjectOwner will still be stored as an attribute of the object and

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

48

a query will need to correctly specify this field in the query descriptor to
successfully find the object.

VxENV_OWNER will set the object owner to the value of the XBSA environmental
variable NBBSA_OBJECT_OWNER. The value stored in the
NBBSA_OBJECT_OWNER will need to be a valid username without any spaces in
the name.

The variables NBBSA_USE_OBJECT_OWNER and NBBSA_OBJECT_OWNER can
be changed within a transaction so that an XBSA agent can set different ownership
of each object in a transaction if it so desires.

Object group

An XBSA agent can also change the group ownership of an object. When the group
ownership is set via one of these options, other than the default, the permissions
on the object are set to 660, or 'rw - rw- - - -', which is read/write for owner and
group. This allows any user in the specified group to access and restore the object.

To specify the group of an object, the XBSA environment variable
NBBSA_USE_OBJECT_GROUP needs to be set. There are 5 values that this variable
can be set to. These values are defined in nbbsa.h.

/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the login user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the login user */

#define VxBSA_OWNER 2 /* owner/group field is set to \

objectDesctiptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to \

objectDesctiptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of \

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_GROUP variable wasn't set. The group name will be the
same name as the owner field, whether that is the login user or a user name defined
by one of the other options, and the permissions of the object will be 600, owner
read/write only.

VxLOGIN_GROUP will set the group field to the primary group of the login user.

VxBSA_OWNER will set the object group to the value stored in the objectDescriptor
field objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field will
need to be a valid username without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner will still be stored as an attribute of the object and

49Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

a query will need to correctly specify this field in the query descriptor to
successfully find the object.

VxAPP_OWNER will set the object group to the value stored in the objectDescriptor
field objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field will
need to be a valid username without any spaces in the name. The value in
objectOwner.app_ObjectOwner will still be stored as an attribute of the object and
a query will need to correctly specify this field in the query descriptor to
successfully find the object.

VxENV_OWNER will set the object group to the value of the XBSA environmental
variable NBBSA_OBJECT_GROUP. The value stored in the NBBSA_OBJECT_GROUP
will need to be a valid username without any spaces in the name.

The variables NBBSA_USE_OBJECT_GROUP and NBBSA_OBJECT_GROUP can be
changed within a transaction so that an XBSA agent can set different group
ownership of each object in a transaction if it so desires.

Creating an empty object
It is acceptable to create an XBSA object without any associated data. This is
created in much the same way as an object with data with two differences. The
estimatedSize.left and estimatedSize.right fields need to be zero so the NetBackup
XBSA Interface knows that the object is going to be empty. After the
BSACreateObject() call, the XBSA Application calls BSAEndData() to end the object.
If estimatedSize is set to zero and BSASendData() is called, this will result in an
error.

Backup example
The following example goes through the process of creating an object. It is assumed
the transaction has already been started). The BSA_ObjectDescriptor is populated
with the values that are associated with the object. Then the DataBlock32 structure
is created to receive any restrictions put on the data by the NetBackup Interface.
BSACreateObject() is then called to create the object and start the backup process.
Once the object is created, this example sends one buffer of data with the
BSASendData() call. After the last BSASendData() call, the object is completed
with a BSAEndTxn(), which commits the object.

This highly simplistic example only creates one object and only sends one buffer
of data. In general, objects will take multiple buffers and a transaction can create
multiple objects.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

50

BSA_DataBlock32 *data_block;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 DataBuffSz;

BSA_UInt32 Size;

char *envx[5];

char DataBuff[512];

char ErrorString[512];

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Populate object descriptor of the first object to be backed up. */

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

strcpy(object_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

strcpy(object_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(object_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(object_desc->objectName.objectSpaceName, "");

strcpy(object_desc->resourceType, "Sample");

strcpy(object_desc->objectDescription,"Sample description of Obj 1");

strcpy(object_desc->objectInfo,"Object 1");

object_desc->copyType = BSA_CopyType_BACKUP;

object_desc->estimatedSize.left = 0;

object_desc->estimatedSize.right = 100;

object_desc->objectType = BSA_ObjectType_FILE;

/ * Initialize the BSA_DataBlock32 structure. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

memset(data_block, 0x00, sizeof(BSA_DataBlock32));

/ * Create sample object. If object cannot be created, terminate session. */

status = BSACreateObject(BsaHandle, object_desc, data_block);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else {

Size = 512;

51Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSACreateObject failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * For the purposes of this sample, we will assume that the data in the *

* DataBuff buffer has been populated from reading the data from the object *

* being backed up. */

strcpy(DataBuff, "This is the sample data that is contained in the sample object that

is being backed up for the purposes of showing how data can be backed up and

restored.");

DataBuffSz = strlen(DataBuff);

/ * BSACreateObject sets values in the BSA_DataBlock32 to indicate *

* header and trailer requirements. The NetBackup implementation has *

* no such requirements and are not checked here. Set the other *

* fields of the data_block for the BSASendData call. */

data_block->bufferLen = 512;

data_block->bufferPtr = DataBuff;

data_block->numBytes = DataBuffSz;

/ * Send the data to be backed up. In normal implementations, BSASendData *

* would be in a loop reading the data into the buffer and then sending it *

* until all the data of the object has been sent. */

status = BSASendData(BsaHandle, data_block);

if (status == BSA_RC_SUCCESS) {

printf("Bytes backed up: %d\n", data_block->numBytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSASendData failed with error: %s\n", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

52

/ * All data has been sent for the object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the backup transaction and commit the object. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Query - finding an object descriptor
An XBSA Application may query the NetBackup XBSA Interface for XBSA objects
that have been created. The BSAQueryObject() call is used to query the NetBackup
catalog for these objects. The query is based on a subset of the object descriptor
attributes, contained in a query descriptor. If the result of the query is multiple
object descriptors, BSAQueryObject() will return the first (most recent) object and
the rest can be retrieved one object descriptor at a time by using a succession of
BSAGetNextQueryObject() calls.

Querying for an object
When querying for an object, the object attributes that the XBSA Application is
querying for are contained in a query descriptor. This query descriptor is made
up of strings and enumerations. They will be evaluated against the objects stored
in the NetBackup catalog for objects that match all fields. Each field of the query
descriptor must be populated. If a string field is populated with an empty string
or NULL, it will only match objects that also have an empty string for that field.

53Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Wildcards and 'ANY' enumerations allow the XBSA application to search for
objects that have some fields that are unknown.

There are two fields that are not part of the XBSA specifications but can be very
useful. The createTime_from and createTime_to fields limit the search to the time
period between these dates. These are optional fields, the default is to search all
objects, but can greatly speed up the search when the NetBackup catalog is very
large.

When doing the query, the XBSA application will only return objects that are
owned by login user running the query, unless that user is a root admin. NetBackup
XBSA Version 1.1.0 uses the login user as the object owner. The objectOwner field
is considered an attribute and is not used for security.

The query, by default, will also only return objects that were created on the
hostname from which the query is being run. If the XBSA Application needs to
find an object that was created from a different host, the NBBSA_CLIENT_HOST
environment variable must be set to the hostname from which the object was
created. This variable can only be set before a transaction begins. If the application
is looking for objects from multiple hosts, the application will need to do queries
in separate transactions.

Query example
Here is a simple example of a query. It starts with populating a query descriptor,
which identifies what objects are being searched for. Then it makes the initial
query

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

54

/ * Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_ANY;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

strcpy(query_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

/ * Begin searching for objects matching the query criteria. BSAQueryObject() *

* returns the first (most recent) object found. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else if (status == BSA_RC_NO_MATCH) {

sprintf(msg, "WARNING: BSAQueryObject() did not find an object matching the

query");

NBBSALogMsg(BsaHandle, MSWARNING, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

/ * Continue searching for other objects which match the query criteria. *

* BSAGetNextQueryObject() should return BSA_RC_NO_MORE_DATA when there *

* are not more objects. */

while ((status = BSAGetNextQueryObject(BsaHandle, object_desc)) == BSA_RC_SUCCESS) {

printf("CopyId: %d.%d\n", object_desc->copyId.left, object_desc->copyId.right);

}

if (status != BSA_RC_NO_MORE_DATA) {

55Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetNextQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

/ * End the query transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are *

* equivalent as there is nothing to commit or abort. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

Restore - retrieving an object’s data
Another type of transaction is a restore transaction. A restore transaction is
identified by the first BSAGetObject() call. A difference from a backup transaction
is that there can also be BSAQueryObject() calls within a restore transaction, which
is useful to get the object descriptor of the object the XBSA Application is restoring.
BSAGetObject() will start the process of retrieving an object. Once the object has
been retrieved, multiple BSAGetData() calls are be used to retrieve the data
associated with an object. The last BSAGetData() call will return
BSA_NO_MORE_DATA that will signal that the NetBackup XBSA Interface has
completed sending the data. The BSAEndData() call will then release all resources.

Restoring an object
When restoring an XBSA object, the login user must be the owner of the XBSA
object or a root admin. (The owner of an object is the login user of the process
that created the object.) If a different user tries to restore the object, the NetBackup
XBSA Interface will return a BSA_RC_OBJECT_NOT_FOUND error. This error
could also be returned if the host on which the restore is being done is different
from the host which backed up the object.

See “Redirected restore to a different client” on page 57.

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

56

The XBSA Application is responsible for recreating the object. The NetBackup
XBSA Interface sends a stream of data to the XBSA Application. It is up to the
XBSA Application to ensure the correct permissions exist for restoring the object,
recreating all attributes, etc. If any of these attributes are stored in the object
descriptor of the XBSA object, the object descriptor needs to be retrieved with a
BSAQueryObject() call. The call to BSAGetObject() does not populate the object
attributes.

To restore an XBSA object, the NetBackup XBSA Interface needs to have an object
descriptor that contains the copyId of the object being restored. This copyId can
be obtained from either a query process or from information stored by the XBSA
Application. It is permissible to mix query operations in a restore transaction.

The other structure that is required before restoring an object is the
BSA_DataBlock32 structure. The structure does not need to be populated as
BSAGetObject() will populate select fields with values that define how the data
buffers will be used.

See “Buffers” on page 25.

The restore is initiated with a call to BSAGetObject() with this object descriptor
and data block as parameters. This function starts the process of retrieving the
object. If BSAGetObject() returns with good status, BSAGetData() can retrieve the
object data from the NetBackup XBSA Interface via buffers. The buffers are defined
by the BSA_DataBlock32 structure. It is the responsibility of the XBSA Application
to allocate the buffers. BSAGetObject() will fill the buffers with data and set the
numBytes field of the BSA_DataBlock32 with the number of bytes in the buffer.
When the last buffer of data for the object has been passed, BSAGetObject() will
return BSA_NO_MORE_DATA. BSAEndData() should then be called to signal to
the NetBackup XBSA Interface that the object is restored and that it can free up
the resources. The NetBackup XBSA Interface requires that all data for an object
is retrieved or the return status of the NetBackup server would be an error status.
This will not affect the XBSA Application, but may impact how a user of the
application interprets the results of the restore.

After the object(s) have been restored, the transaction should be closed. From the
NetBackup XBSA Interface point of view, a committed or aborted transactions
are handled the same, as there is nothing for NetBackup to commit.

Redirected restore to a different client
One specific type of restore that deserves special notice is what is considered a
redirected restore to a different client. An XBSA object is stored within NetBackup
with a specific client from which it was backed up. The default is to assume that
the object is being restored to the same client. If the hostname that is initiating

57Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

the restore is different from the hostname on which the object was backed up, the
NBBSA_CLIENT_HOST environment variable needs to be set.

The NBBSA_CLIENT_HOST must be set, before entering the transaction, to the
hostname on which the object was backed up. If this variable has not been specified,
the NetBackup XBSA Interface will not be able to find the object.

Restore example
Here is an example of a restore. It assumes that the object descriptor has been
populated with the copyId of the object either from a query or the XBSA application
having stored this information.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_UInt32 EnvBufSz = 512;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

char ErrorString[512];

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Get the object. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

status = BSAGetObject(BsaHandle, object_desc, data_block);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

58

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * The application is responsible for recreating the file or other object *

/ * type that is being restored using the information that is stored in the *

/ * object_descriptor. This sample prints the results to the screen. */

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

/ * Initialize the data_block structure. */

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/ * Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/ * Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s", restore_location);

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

/ * The last BSAGetData() that returns BSA_RC_NO_MORE_DATA may have data *

* in the buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s\n", restore_location);

59Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * Done retrieving data. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are *

/ * equivalent as there is nothing to commit or abort for a restore transaction. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSATerminate(BsaHandle);

exit(status);

}

Multiple object restore
If multiple objects are going to be restored in one session or transaction, the XBSA
agent should consider using the NBBSAGetMultipleObjects function call. This is
a NetBackup extension to the XBSA interface to optimize the retrieval of objects

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

60

in a NetBackup environment. This is especially useful when retrieving many small
objects.

The reason this provides a performance improvement is that each NetBackup
restore operation creates a NetBackup job, which acquires resources and then
frees them up when the job is complete. Each BSAGetObject call translates into
one NetBackup job. The initial time required to start a NetBackup job and establish
communication are minimal, especially when compared to the time to transfer
large amounts of data. But if the objects are small and numerous, this overhead
per object will be noticeable. It is also possible on heavily loaded NetBackup
systems that successive BSAGetObject calls may get queued up behind other
NetBackup jobs and resource requests. Any of these could cause performance
issues if the separate objects are really all part of one restore.

To address this behavior of NetBackup, we have added a multiple object restore
interface to the XBSA interface. This is an extension of the XBSA specification to
enhance performance for NetBackup XBSA Applications. The use of this interface
is not required and does not provide functionality on objects that is not available
through the interfaces defined by XBSA.

Requirements

■ In order to do a multiple object restore, the XBSA Application needs to have
created the objects in ways that will allow this and there are restrictions on
how the objects can be retrieved.

■ All the objects to be restored within a multiple object restore must be part of
the same NetBackup image, which means that the objects were created in one
transaction. This can be verified by checking that each object being restored
has the same copyId.left.

■ The objects must be retrieved in the same order that they were created. Some
objects in the image can be skipped, but the objects being retrieved must be
ordered in a way that will not cause the media to have to position backwards.
The ordering of objects can be determined by verifying that the copyId.right
for each object is in ascending order.

■ While not all objects in an image need to be retrieved, all objects in the list
created by NBBSAAddToMultiObjectRestoreList must be retrieved in the order
in which they are on the list. Objects cannot be skipped or added.

■ Each object in the list will be retrieved with BSAGetObject followed by
successive BSAGetData calls to retrieve all the data. All data for an object must
be retrieved before moving on to the next object.

Functions and use

There are three new functions provided as part of the XBSA interface that can be
used to do multiple object restores.

61Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

■ NBBSAAddToMultiObjectRestoreList takes an object descriptor and it to a
descriptor list. This function is called for each object that is to be retrieved as
part of one restore job. It is highly recommended to use this function to create
the list because it allows the XBSA interface to be in charge of memory
allocation and deletion.

■ NBBSAGetMultipleObjects starts the multiple object restore job. It takes the
list of descriptors built by NBBSAAddToMultiObjectRestoreList and submits
a request to restore all objects.

■ NBBSAEndGetMultipleObjects ends the multiple object restore job. This
function cleans up the memory from the object list and allows the application
to COMMIT or ABORT the restore, which has no real effect on the data.

The process is very similar to the single object restores. First, all objectDescriptors
to be retrieved are added to a list using the NBBSAAddToMultiObjectRestoreList.
The objectDescriptors can be generated from BSAQueryObject or populated by
the application. Once the list is ready, a call to NBBSAGetMultipleObjects will
initiate the restore process. Then, each object is retrieved using the standard
BSAGetObject, BSAGetData, and BSAEndData function calls. The difference is
that BSAGetObject knows it is part of a larger restore job. After all objects have
been retrieved, NBBSAEndGetMultipleObjects is called to end the restore process.
The transaction can then be ended. If an object is skipped or not all data is
retrieved, the entire job will fail.

Multiple object restore example
Here is an example of a multiple object restore. Examples of BSAQueryObject and
BSAGetObject are included elsewhere in this document, so this example bypasses
some of the error handling associated with those calls.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

BSA_ObjectDescriptor *object_desc_current;

NBBSA_DESCRIPT_LIST *object_list = NULL;

NBBSA_DESCRIPT_LIST *object_list_current;

BSA_UInt32 EnvBufSz = 512;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

char ErrorString[512];

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

62

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/* Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_MOST_RECENT;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "BSA Client");

strcpy(query_desc->objectOwner.app_ObjectOwner, "BSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

/* Search for an object matching the query criteria. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Start building the objectList by adding the object descriptor to the list. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

63Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

}

/* Search for a second object. */

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object2");

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Add the second object descriptor to the objectList. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Start the multiple object restore by passing in the object list. The object list

* will be evaluated and the restore job will be started.

*/

status = NBBSAGetMultipleObjects(BsaHandle, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAGetMultipleObjects () failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Create a pointer to the object list in order to keep track of the current object

* being restored. A list created by the application could also be used.

* Point the object descriptor at the first object

*/

object_list_current = object_list;

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

64

object_desc_current = object_list_current->Descriptor;

/* Get the first object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the first object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

65Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

/* handle error condition */

}

/* Set the object descriptor to the next object in the list. */

object_list_current = object_list_current->next;

object_desc_current = object_list_current->Descriptor;

if (object_desc_current == NULL) {

/* handle error condition */

}

/* Get the next object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

66

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the second object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* End the multiple object restore transaction. Set any references to objects

* in the object list to NULL as the memory associated to the list has been freed.

*/

status = NBBSAEndGetMultipleObjects(BsaHandle, BSA_Vote_COMMIT, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAEndGetMultipleObjects() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

object_list_current = NULL;

object_desc_current = NULL;

/* End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are

* equivalent as there is nothing to commit or abort for a restore transaction.

*/

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

67Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Delete - deleting an object
Deleting a NetBackup XBSA Object is done with the BSADeleteObject() function.
BSADeleteObject() will not always delete the object specified, even if it return a
success status. The only objects that can be deleted are objects in which there was
only one object created per transaction. Also note that it is possible for a deleted
object to show up again as delete only removes the entry from the NetBackup
catalog and the objects are not deleted from the tape media they are on. NetBackup
allows media to be imported to recreate all images from that media, which could
recreate an object that was deleted.

Based on those limitations, the BSADeleteObject() function is pretty
straightforward. It takes a copyId as its parameter and deletes this object. Multiple
objects can be deleted in one transaction and it is permissible to have query
operations within a delete transaction. The object is not deleted until the
transaction is committed so these query operations in a delete transaction could
return a deleted object.

Delete example
This delete example is very simple. It assumes that the copyId has been populated
from a previous query or from information stored by the XBSA Application. It
then deletes one object and commits the transaction that does the delete of the
object.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

BSABeginTxn(BsaHandle);

/ * Delete the object from NetBackup. */

status = BSADeleteObject(BsaHandle, object_desc->copyId);

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

68

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSADeleteObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the delete transaction, commit will delete the object */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSATerminate(BsaHandle);

exit(status);

}

Logging and NetBackup
NetBackup has a log directory that contains the debug logs for the various
processes that make up the NetBackup server and/or client. There is a configurable
verbose level that controls how much information is logged to these debug logs.
This verbose level is a value from 0 to 5, with 0 indicating minimal logging and 5
being debug. These logs are used by NetBackup support to help solve customer
problems. The log directory is located at /usr/openv/netbackup/logs on UNIX
systems and install directory/Veritas/NetBackup/logs on Windows. Within
this directory are directories for the different processes such as bprd, bpbrm, etc.
One log file gets created for each day, and NetBackup automatically cleans up old
files from this directory. The NetBackup XBSA Interface by default logs to the
directory exten_client.

With NetBackup , some of the NetBackup services use Unified Logging (VxUL).
Those include scheduler components: nbjm, nbpem and nbrb. For more details on
VxUL please refer to theNetBackupTroubleshootingGuide. The NetBackup XBSA
interface does not currently use VxUL.

The NetBackup XBSA Interface allows the XBSA Application to log in a manner
consistent with other NetBackup processes. By using the NBBSALogMsg() function,
the XBSA Application will log messages to the same file as the NetBackup XBSA

69Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Interface. This may cause some confusion for the developer at first, especially at
high debug levels, but allows the application to see what is causing errors and
could help NetBackup support see what the XBSA Application is doing. The log
messages contain a timestamp along with the process id, which is useful when
there are multiple processes going at once.

The log message also contains a debug level. The different error levels used by
NetBackup are defined in nbbsa.h. One of these values should be used in the
msgType parameter of NBBSALogMsg(). While there are no hard definitions of
when to use each of these values, using these values may help if NetBackup support
or engineering is ever involved in looking at a debug log.

#define MSINFO 4

#define MSWARNING 8

#define MSERROR 16

#define MSCRITICAL 32

The XBSA Application is not required to log information to the NetBackup logs.
If the XBSA Application is the backup portion of another application or database,
it may make more sense to log information to a place consistent with the rest of
the application.

Client in a cluster
Running an XBSA Application in a clustered environment is a valid mode of
operation. The key thing about running in a cluster is to ensure that the client
name used when an object is created is the same as the client name used when
the object is being queried or retrieved. To ensure that the same client name is
used, the XBSA Application should use the virtual name of the clients in the cluster.
The best way to do this would be to use the NBBSA_CLIENT_HOST variable and
set it to the virtual name for both creating and retrieving an object. The virtual
name needs to be the client name that is configured in the NetBackup policy.
Another option is to configure the virtual name as the default NetBackup client
name. Configuring this way will then cause other NetBackup jobs, such as the file
system backups, to use this virtual name also, which may not be desired. If neither
of these options is used by the XBSA Application, the XBSA Interface will use the
default client name, which will be the physical address of the client. What will
happen then is that the objects will be created successfully, but if the query or
retrieval is done from a different node in the cluster, the object will not be found.

Performance considerations
For the most part, the performance of the NetBackup XBSA Interface in conjunction
with the XBSA Application is dependent on how NetBackup is configured and how

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

70

fast the XBSA Application can send or receive data. It is important that the
developers of an XBSA Application have some understanding of NetBackup to get
the most out of it. But much of that is determined by any individual
implementation. But there are areas that the application can make a difference
in performance.

Here are some hints to help you get the most out of the NetBackup XBSA Interface.

■ Use copyId if you know it. If the XBSA Application has the ability to know or
keep the copyId for further reference, this is the most efficient method of
getting the object for restore.

■ Specify dates when doing a query. If start and end dates are not specified when
doing a query, the NetBackup XBSA Interface may need to search through the
entire NetBackup catalog to find the object. Specifying dates allows it to narrow
its search.

■ Limit use of wildcards when doing a query. Wildcards, including the "ANY"
value of the enumeration types, cause more overhead searching and can also
cause large portions of the NetBackup catalog to be searched. This is especially
true of the pathName. Wildcards can be very useful, but from a performance
perspective they are harmful.

■ Use OBJECT_STATUS_MOST_RECENT. If the XBSA application knows that a
pathName is unique, or that it is searching for only the most recent copy of
that object, set the objectStatus of the query descriptor to
OBJECT_STATUS_MOST_RECENT. This will let NetBackup stop searching
once one copy has been found.

■ Unless the images are very large, create multiple objects per transaction rather
than one object per transaction when there are multiple objects being created.
Every transaction creates a NetBackup job that must be scheduled, open sockets,
mount tapes, etc. For large objects, this overhead is dwarfed by the time it
takes to backup the data. On the other hand if there are many small objects,
this overhead becomes significant. Of course, creating multiple objects within
one transaction limits the ability of the NetBackup XBSA Interface to delete
an object.

71Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

Using the NetBackup XBSA interface
Creating a NetBackup XBSA application

72

How to build an XBSA
application

This chapter includes the following topics:

■ Getting help

■ Flags and defines

■ How to build in debug mode

■ How to debug the application

■ Static libraries

■ Dynamic libraries

■ End-user configuration

Getting help
Included in the NetBackup DataStore SDK are XBSA sample files that can be used
as a basis for creating an application. Included are both source files and Makefiles.
See the chapter What the sample files do for information on building and using
the sample programs. The Makefiles included in the sample directory can be used
as a basis for setting up an environment for creating an XBSA application.

Flags and defines
There are no specific flags or defines that need to be used in order to compile
using the NetBackup XBSA Interface. You should be able to use any values to make
your application compile efficiently.

4Chapter

How to build in debug mode
There is no compile level debug mode built into the XBSA libraries or header files.
The NetBackup Verbose level controls debug messages.

How to debug the application
Debugging an XBSA application is best done through the log files generated by
NetBackup. This assumes that the XBSA application itself compiles and does not
have any known runtime errors.

See Logging and NetBackup for more information on this topic. You should also
see the 'Logging' sections in theNetBackupSystemAdministrator'sGuide forUNIX,
Volume I, or NetBackup System Administrator's Guide for Windows, Volume I,.
The NetBackup Verbose level controls the amount of debug messages that are
sent to the logs.

One of the advantages of debugging in this way is that it ties in with the NetBackup
logging that is going on for the other NetBackup processes. In many cases, it could
be a configuration issue that is causing a failure rather than a problem in the
NetBackup XBSA interface or the XBSA application.

Static libraries
The example Makefiles have example entries for using static libraries for your
XBSA application. These entries include the path to the static archive library,
libxbsa.a, along with the system libraries that are also required to be included.
For the platforms on which we support 32-bit binaries, a libxbsa32.a can be used
to link to a 32-bit XBSA application.

For the UNIX platforms, (from Makefile.unix):

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa32.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.23/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.23/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.31/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.18/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesRedHat2.6/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesRedHat2.6/libxbsa32.a -lc -ldl

How to build an XBSA application
How to build in debug mode

74

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesSuSE2.6/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesSuSE2.6/libxbsa32.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMzSeriesRedHat2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMzSeriesSuSE2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6.18/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE2.6.16/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE2.6.16/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa64.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris_x86_10_64/libxbsa.a -lintl -lsocket

-lnsl -ldl -ladm

For the Windows platforms, use:

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2008\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2008\xbsa.lib

Dynamic libraries
The example Makefiles have example entries for using dynamic libraries for your
XBSA application.

For the UNIX platforms, (fromMakefile.unix), choose the 32-bit or 64-bit dynamic
library:

Use one of these LIBS to bind dynamically

LIBS = -L/usr/openv/lib -lxbsa -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa64 -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa32 -lnbclientcST32 -lnbbasecST32

For the Windows platforms, (from Makefile.nt):

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2008\xbsa.lib

75How to build an XBSA application
Dynamic libraries

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2008\xbsa.lib

The dynamic shared object libraries will be installed with the NetBackup 7.6 client
on any supported client platform. Similar to the static libraries, on platforms that
NetBackup supports both 32-bit and 64-bit applications, there will be a libxbsa.so
(sl) and a libxbsa64.so (sl). On UNIX platforms, the libraries are installed to
/usr/openv/lib. On Windows platforms, the libraries are installed on
install_directory\netbackup\bin.

End-user configuration
Once an XBSA application has been created and installed on a NetBackup Client,
a NetBackup Policy and schedule must be configured through the NetBackup GUI
or command line. See the chapter About How to run a NetBackup XBSA application.

How to build an XBSA application
End-user configuration

76

How to run a NetBackup
XBSA application

This chapter includes the following topics:

■ About How to run a NetBackup XBSA application

About How to run a NetBackup XBSA application
Once an XBSA Application has been created, it can be used in a NetBackup
environment to store and retrieve data. To use an XBSA application, at least one
"DataStore" policy with the appropriate schedules needs to be defined. A
configuration can have a single policy that includes all clients or there can be
many policies, some of which include only one client.

This manual only contains a brief description of configuring a DataStore policy.
More information on creating policies and configuring NetBackup can be found
in theNetBackup SystemAdministrator's Guide forUNIX, Volume I, orNetBackup
System Administrator's Guide for Windows, Volume I.

Creating a NetBackup policy
A NetBackup policy defines the backup criteria for a specific group of one or more
clients. These criteria include:

■ storage unit and media to use

■ backup schedules

■ script files to be executed on the clients

■ clients to be backed up

5Chapter

Selecting a storage unit
Each policy sends the data to a defined storage unit. The storage units must have
already been defined and one needs to be selected for the DataStore policy.

Adding new schedules
Each policy has its own set of schedules. These schedules control initiation of
automatic backups and also specify when user operations can be initiated.

A XBSA application requires each policy to have at least an Application Backup
schedule. To help satisfy this requirement, an Application Backup schedule named
Default-Application-Backup is automatically created when you configure a new
DataStore policy. The backup window for an Application Backup schedule must
encompass the time period during which all NetBackup DataStore jobs, scheduled
and unscheduled, will occur. This is necessary because the Application Backup
schedule starts processes that are required for all XBSA application backups,
including those started automatically.

If the user wants NetBackup to initiate the XBSA application, an Automatic Backup
schedule will also be required. An Automatic Backup schedule specifies the dates
and times when NetBackup will automatically start backups by running the XBSA
scripts in the order that they appear in the Files list. If there is more than one
client in the DataStore policy, the XBSA scripts are executed on each client.

Adding script files to the files list
Each policy has a Files list. When a DataStore policy is configured, the Files list
is actually a list of script(s) that are to be executed when the backup is initiated.
That script that will be executed as a user-directed backup. Within the script
should be any commands that are required to prepare the application for a backup,
including setting up an environment, halting processes, etc., along with calling
the XBSA Application with whatever parameters are required to execute the
backup operations.

Adding new clients
Each policy also has a list of NetBackup clients. This list should contain all clients
on which the XBSA application is going to run.

Running a NetBackup XBSA application
Once configured, backups and restores can be run either from the XBSA application
or through jobs scheduled through NetBackup. NetBackup can run backups and

How to run a NetBackup XBSA application
About How to run a NetBackup XBSA application

78

restores indirectly through the XBSA Application by executing scripts that contain
XBSA Application backup or restore commands.

Backups and restores initiated by NetBackup (via a script)
The XBSA Application can be initiated through NetBackup. This allows the XBSA
Application to be treated like the rest of the system environment when creating
and scheduling backup windows and other resource considerations. Backup and
restore operations through NetBackup are done via scripts. When a DataStore
policy is configured, the Files list is actually a script that is to be executed when
the backup or restore is initiated. That script that will be executed as a
user-directed backup. Within these scripts should be any commands that are
required to prepare the application for a backup or restore, including setting up
an environment, halting processes, etc., along with calling the XBSA Application
with whatever parameter are required to execute the backup or restore operations.

What is not available is the ability to browse for backups. The Files list is a script
to be executed, not a list of objects that can be restored. It is up to these scripts
to determine what needs to be backed up or conversely what XBSA objects need
to be restored. In this regard, the XBSA Application needs to be fairly intelligent
or allow options that can be specified to give the script the ability to be intelligent.

Backups and restores from the command line
The NetBackup XBSA Application can also be initiated from the command line to
run a backup or restore. Commands included in the backup or restore scripts can
also be run directly from the command line. The XBSA application will connect
to NetBackup through the XBSA interface and a NetBackup job will be started.
For backups, a backup window must be open in the Application Backup schedule.

79How to run a NetBackup XBSA application
About How to run a NetBackup XBSA application

How to run a NetBackup XBSA application
About How to run a NetBackup XBSA application

80

Process flow and
troubleshooting

This chapter includes the following topics:

■ About Process flow and troubleshooting

■ Backup

■ Restore

About Process flow and troubleshooting
The XBSA interface is provided to insulate the XBSA Applications from knowing
about the internals of NetBackup and the processes and calls that are required to
do backups and restores. This is appropriate when the application is working
correctly. In the event that a problem occurs, this chapter gives a brief description
of the NetBackup processes that get instantiated for each backup and restore. If
process fails, a log is produced that contains information pertaining to the failure.
All logs should be examined, however, for the root cause of the failure.

Backup
The backup stream diagram contains the processes involved in a backup being
executed through a scheduled backup. bphdb is called to initiate the XBSA
application, which then initiates one or more user-directed jobs.

If the backup is initiated from the XBSA application, it starts at that point. In the
diagram below, the processes are divided among three logical machines, the Master
Server, Media Server, and Client, but they could exist on only one or two machines.

6Chapter

Refer to the backup process diagrams in the "Functional Overview" appendix of
the NetBackup Troubleshooting Guide.

Figure 6-1 Stream backup process flow diagram

Master Server Client

bprd

bpcd
bphdb

XBSA

Applicatio
n

bpbrm

bptm

Progress
file

DB disk

Media Server

XBSA

Interface

Storage unit

nbpem

nbjm

Stream backup process flow description
This description provides a basic process flow. There are other processes involved
that are not explicitly specified here. These processes include bpcd and some
parent/child processes. Most connectivity from the server to the client initially
goes through bpcd, such as initiating bphdb and writing to the progress log. And
many of the processes, such as bpbrm, bptm, etc., initiate child processes. To keep
the description simple, these processes are not included in the process steps.

Process flow and troubleshooting
Backup

82

Process steps
1 nbpem determines that a backup is scheduled to run and it initiates a backup

job via nbjm.

2 nbjm starts bpbrm, which makes a request via bpcd.

3 bpbrm makes a request via the bpcd daemon to start bphdb on the client.

4 bphdb executes the backup script (which is contained in the Backup Selections
list of the backup policy). Bphdb waits for an exit status from this script so
that it can pass a status back to the server.

5 The backup script initiates the backup utility of the XBSA Application.

(If it is not a scheduled backup operation, but is initiated on the client by the
XBSA application, then the backup process starts here.)

6 The Application initiates the XBSA Interface by starting one or more sessions.
Each session should be started in its own process. For simplicity, we will
assume only one stream in this diagram. In reality, each stream follows each
of these steps.

7 The backup is initiated with the first call to BSACreateObject(). This causes
the XBSA Interface to make a bprd request to initiate a backup.

8 bprd submits a backup request to nbpem, which submits a job for nbjm. If
this was a scheduled backup, there are now two backup jobs. nbjm initiates
a bpbrm and a bpdbm process.

9 bpbrm initiates a bptm/bpdm process (bptm if tape storage unit, bpdm if disk
storage unit). bptm initiates the process to mount media.

10 bpbrm writes progress information to the progress file on the client (via bpcd).
This information includes sockets, status, backup attributes, etc.

11 XBSA reads the progress file to find the sockets and other information and
connects to bpbrm on the name socket. It continues to read the progress file
until it gets the message that it can continue the backup.

12 XBSA connects to bptm/bpdm through shared memory (if applicable) or on
the data socket if the client and media server are separate machines.

13 XBSA sends the XBSA object entry to bpbrm, which sends it on to bpdbm to
be catalogued.

14 At this point, BSACreateObject() returns to the XBSA Application. XBSA is
ready to receive data.

15 The Application fills buffers and calls BSASendData() to have the XBSA
Interface send these buffers to bptm/bpdm through the established
connection.

83Process flow and troubleshooting
Backup

16 bptm/bpdm writes this data to media or disk storage.

17 When the Application has sent all data, it indicates this with a BSAEndData()
call. XBSA recognizes the object is complete.

18 The XBSA Application can then call BSACreateObject() again to create more
objects. The subsequent CreateObject calls do not cause new jobs or
connections, but continue with the existing processes.

19 When the XBSA Application has completed creating objects, a call to
BSAEndTxn() causes XBSA to initiate the termination process. XBSA sends
a client status to bpbrm, which terminates the server processes (bptm).

20 bpbrm writes the server status to the progress log and is read by XBSA. This
allows the XBSA interface to confirm that the image has been successfully
catalogued and all data written to media.

21 XBSA then passes this status back to the Application through the return
status from BSAEndTxn(). This status is passed back to bphdb, which passes
it back to the original scheduled job to complete the backup. This status
displays in the Activity Monitor for the originally scheduled job.

Restore
The Restore diagram contains the processes involved in a restore that is executed
from the XBSA Application. The restore process is very similar to the backup
process except the flow of data is reversed. While it is possible to run a scheduled
restore through bphdb, this is not a standard procedure; this diagram starts with
the XBSA Application initiating the restore.

Refer to the restore process diagrams in the "Functional Overview" appendix of
the NetBackup Troubleshooting Guide.

Process flow and troubleshooting
Restore

84

Figure 6-2 Stream restore process flow diagram

Master Server Client

bprd

XBSA

Application

bpbrm

bptm

Progress file

DB disk

Media Server

XBSA

Interface

nbrb

nbjm

Storage unit

Stream restore process flow description
Similar to the backup diagram, the restore diagram is simple, without some of the
parent/child processes. Note that the query process, which can be included in a
restore operation, is not described in the following process. This process assumes
the XBSA Application has the object descriptor to be passed to BSAGetObject.

Process steps
1 The XBSA Application initiates the XBSA Interface by starting one or more

sessions. Each session is started in its own process. For simplicity, we will
assume only one stream in this diagram. In reality, each stream will have
each of these steps.

2 The restore is initiated with the first call to BSAGetObject(). This will cause
the XBSA Interface to make a bprd request to initiate a restore.

3 bprd initiates a bpbrm process.

85Process flow and troubleshooting
Restore

4 bpbrm initiates a bptm/bpdm process (bptm if tape storage unit, bpdm if disk
storage unit). bptm gets the resources from nbjm/nbrb and initiates the
process to mount media and start reading the data.

5 bpbrm writes progress information to the progress file on the client (via bpcd).
This information includes sockets, status, restore attributes, etc.

6 XBSA reads the progress file to find the sockets and other information and
connects to bpbrm on the name socket. It continues to read the progress file
until it gets the message that it can continue the restore.

7 XBSA connects to bptm/bpdm via shared memory (if applicable) or on the
data socket if the client and media server are separate machines.

8 At this point, BSAGetObject() returns to the XBSA Application. XBSA is ready
to receive data.

9 The Application passes buffers to BSASendData() to have the XBSA Interface
fill these buffers with data from bptm/bpdm via the established connection.

10 bptm/bpdm continues to read this data from media or disk storage and write
it to to the buffers.

11 When the Application has received all data, it indicates this with a
BSAEndData() call. XBSA verifies that all of the data from the object has been
sent. XBSA sends a client status to bpbrm, which will then terminate the
server processes (bptm).

12 bpbrm write the server status to the progress log and is read by XBSA. This
allows the XBSA interface to confirm that the server has successfully read
all the data and terminated.

13 The restore has been completed at this time. A call to BSAEndTxn() is required
to close the transactions, but other than some internal cleanup, it does not
provide any function for restores.

Process flow and troubleshooting
Restore

86

How to use the sample files

This chapter includes the following topics:

■ What the sample files do

■ Description of sample files

■ How to build the sample programs

What the sample files do
Included in the SDK are some simple sample programs and scripts. The sample
programs can be used as examples of how to use the XBSA functions to create an
XBSA application. The sample scripts are examples of how an XBSA application
can be executed from a NetBackup schedule.

Sample programs
The SDK includes some simple sample programs that can be used as an example
of the sequence of function calls that are required to create new objects, query
the NetBackup database for existing objects, retrieve the objects, and delete objects.
There is a separate program for each of these functions, although this is for the
convenience of the samples and not necessarily a recommended way of building
an XBSA application.

These programs as installed will not run. First, they need to be modified to set
the correct hostname of the NetBackup server. Then they can be compiled and
each can be individually run. Below is the description of the programs and what
to expect from them if they have not been modified other than setting the
hostname.

The following section of the sample programs needs to be modified. The entries
‘server_host’, ‘sample_policy’, and ‘sample_schedule’ need to be replaced with

7Chapter

actual values from your environment. Or these three entries can be eliminated
so that the sample program uses default values from the NetBackup configuration.

/* Populate the XBSA environment variables for this session. */

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

strcpy(envx[2], "NBBSA_POLICY=sample_policy");

strcpy(envx[3], "NBBSA_SCHEDULE=sample_schedule");

envx[4] = NULL;

Backup
This program will create one small object. The unique identifier, copyId, will be
printed out along with the number of bytes backed up.

copyId: 1 - 1018898698

Bytes backed up: 154

Restore
This program will retrieve the last object created. The copyId will be printed out
along with the text of the object data and the number of bytes that were retrieved.

Retrieving copyId: 1 - 1018898698

This is the sample data that is contained in the sample object that

is being backed up for the purposes of showing how data can be

backed up and restored.

Total bytes retrieved: 154

Query
This program will search for all objects created by the Backup program. The copyId
of each of these objects will be printed out.

copyId: 1 - 1018898698

copyId: 1 - 1018898638

Delete
This program will delete the last object created. The copyId of the object being
deleted will be printed out.

Deleting copyId: 1 - 1018898698

How to use the sample files
What the sample files do

88

Sample scripts
Also included are some examples of scripts that can be used to initiate an XBSA
Application as a scheduled NetBackup job. Again these are very simple scripts
based on the sample programs. There are sample scripts for UNIX platforms (*.sh)
and for Windows platforms (*.cmd).

In general use, the XBSA Application would have parameters or use system
environment variables to communicate the parameters about the backup or restore
operations. See the Running an XBSA application chapter for a better explanation
of how these scripts work.

Description of sample files
This section includes a description of the sample files provided with the SDK. All
sample files are located in ~sdk/DataStore/XBSA/samples.

Table 7-1 Description of Sample Files

DescriptionFilename

This is an example of the functions needed to create an XBSA
object.

Backup.c

This is an example of the functions needed to search for an XBSA
object.

Query.c

This is an example of the functions needed to retrieve an XBSA
object.

Restore.c

This is an example of the functions needed to delete an XBSA
object.

Delete.c

This is an example Makefile which can be used to compile the
sample programs on the UNIX platforms.

Makefile.unix

This is an example Makefile which can be used to compile the
sample programs on Windows platforms.

Makefile.nt

This is an example of the script needed to run an XBSA application
from a NetBackup schedule on a Windows platform.

backup_script.cmd

This is an example of the script needed to run an XBSA application
from a NetBackup schedule on a Windows platform.

restore_script.cmd

This is an example of the script needed to run an XBSA application
from a NetBackup schedule on a UNIX platform.

backup_script.sh

89How to use the sample files
Description of sample files

Table 7-1 Description of Sample Files (continued)

DescriptionFilename

This is an example of the script needed to run an XBSA application
from a NetBackup schedule on a UNIX platform.

restore_script.sh

How to build the sample programs
Also included with the samples are a Makefile for UNIX platforms, Makefile.unix,
and one for Windows, Makefile.nt. The Makefiles will compile the four sample
programs using basic compiler options.

The UNIX Makefile needs to be modified to select which library to use. Library
paths for all supported platforms are in the Makefile but commented out. The
library for the required operating system needs to be chosen along with whether
to use an archive library or a shared library.

The following lines are from Makefile.unix. One of the CFLAGS and one of the
LIBS definitions need to be uncommented. The default is to compile 32 bit using
the dynamic shared libraries.

The CFLAGS definitions are compile options. Select a CFLAGS definition for the
system that is being compiled on. Note that this is a very minimal set of options
and you may want to add other compile options based on your environment.

Uncomment the CFLAGS for the environment that is being compiled

General 32 bit

CFLAGS =

Solaris sparc 32 bit

#CFLAGS = -xarch=generic

Solaris sparc 64 bit

#CFLAGS = -xarch=v9

Solaris Opteron 64 bit

#CFLAGS = -xtarget=opteron -xarch=generic64

HP PARISC 32 bit

#CFLAGS = +DA1.1 +DS2.0

HP 64 bit

#CFLAGS = +DA2.0W +DS2.0

How to use the sample files
How to build the sample programs

90

HP IA64 bit

#CFLAGS = -Ae +DSitanium2 +DD64

AIX 32 bit

#CFLAGS = -q32

AIX 64 bit

#CFLAGS = -q64

Linux x86 32 bit

#CFLAGS = -m32

Linux x86 64 bit

#CFLAGS = -m64

Linux on Power PC 64 bit

#CFLAGS = -mpowerpc64 -m64

Linux on Power PC 32 bit

#CFLAGS = -mpowerpc64

DEFINES =

INCLUDES= -I$(XBSA_SDK_DIR)/include

The LIBS definitions define which XBSA library to link with. A shared object library
is installed in /usr/openv/lib on all NetBackup clients and can be used for
dynamic linking. An archive library for each platform is included in the SDK and
can be used to statically link the application. Select a LIBS definition for the system
that is being compiled. Be sure to use the 32-bit libraries if you are using 32-bit
compile options.

Use one of these LIBS to bind dynamically

#LIBS = -L/usr/openv/lib -lxbsa -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa64 -lnbclientcST -lnbbasecST

#LIBS = -L/usr/openv/lib -lxbsa32 -lnbclientcST32 -lnbbasecST32

Or choose the correct LIBS for your system to bind statically

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP-UX-IA64/HP-UX11.31/libxbsa32.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.23/libxbsa.a

91How to use the sample files
How to build the sample programs

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.23/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.31/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.31/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/Debian2.6.18/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesRedHat2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesRedHat2.6.18/libxbsa32.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesSuSE2.6.18/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMpSeriesSuSE2.6.18/libxbsa32.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMzSeriesRedHat2.6/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/IBMzSeriesSuSE2.6/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.6/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE2.6.16/libxbsa.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/SuSE2.6.16/libxbsa64.a -lc -ldl

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX6/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris10/libxbsa64.a -lintl -lsocket -lnsl

-ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris_x86_10_64/libxbsa.a -lintl -lsocket

-lnsl -ldl -ladm

The Windows Makefile may need to be modified to select which Windows library
to use. The Windows Makefile needs to be modified if SDK was installed into a
directory other than the default c:\Program Files.

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x86\Windows2008\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2003\xbsa.lib

#LIBS = $(XBSA_SDK_DIR)\lib\Windows-x64\Windows2008\xbsa.lib

How to use the sample files
How to build the sample programs

92

Support and updates

This chapter includes the following topics:

■ About Support and updates

About Support and updates
The NetBackup SDK for DataStore is sold and distributed under specific licensing
agreements. These licensing agreements will define how the SDK is supported,
who to contact for support, and how upgrades will be supported. The agreements
should also define how an XBSA application is sold and supported in conjunction
with NetBackup. Please review your licensing agreement for details on product
support.

8Chapter

Support and updates
About Support and updates

94

A
authentication 39

B
backup transactions 40, 45
buffers

overview 25
private buffer space 26
size 25

C
clients 78
cluster

running an XBSA application in 70
command line, initiating backups and restores 79
configuration 18

end-user 76

D
debug logs 69
debug mode 74
debugging an XBSA application 74
defines 73
delete transaction 41
deleting objects 68

example 68
dynamic libraries 75

E
environment variables 29

extended 38
NetBackup XBSA 31
XBSA 31

example
of a backup 50
of a query 54

F
flags 73

G
get_license_key 16

H
header files 18–19

I
installation

on UNIX 16
on Windows 17

L
library files 18
license keys 16
logging 69

N
NetBackup object ownership

changing the group ownership 49
default behavior 47
options 48
specifying the owner 48

NetBackup XBSA
environment

defined 13
interface

defined 13
object

defined 13
session

defined 13

O
object

attributes 22
creating an empty 50
deleting 68

example 68
descriptors 22

Index

P
performance considerations 71
policies

creating 77
private buffer space 26

Q
query

descriptors 24
for an object 54
transaction 41

R
requirements

for compiling 15
installation 16

restore transaction 40
restores

of an object 56
of multiple objects 61

example 62
requirements 61

to a different client 58
example 58

running a NetBackup XBSA application 79

S
samples

programs 87
scripts 89

schedules 78
script

files 78
scripts

to initiate backups and restores 79
sessions

described 38
initiating 38, 42

example 43
modifying XBSA environment in 43
termination 38

shared memory 28
static libraries 74
storage units 78
support 93

T
terminology 13
transactions 39

backup 40, 45
delete 41
query 41
restore 40

X
XBSA

application
defined 12

described 11
environment 28

modifying with a session 43
environment variables 31

for NetBackup configuration values 31
libraries 19
object data 22

Index96

	Symantec NetBackup™ DataStore SDK Programmer's Guide for XBSA 1.1.0
	Technical Support
	Contents
	1. Introduction to NetBackup XBSA
	About Introduction to NetBackup XBSA
	What is NetBackup XBSA?
	What does NetBackup XBSA do?
	Terminology
	Important concepts
	Resources

	2. How to set up the SDK
	System requirements
	Installing the SDK
	Installation requirements
	Installation instructions for UNIX platforms
	Installation instructions for Windows platforms

	Uninstalling the SDK
	Configuration
	Description of XBSA SDK package
	Library files
	Header files

	3. Using the NetBackup XBSA interface
	Getting help with the API
	NetBackup XBSA data structures
	Object data
	Object descriptors
	Query descriptors
	Buffers

	NetBackup XBSA environment
	Environment variable definitions
	Extended environment variable definitions

	XBSA sessions and transactions
	Sessions
	Transactions

	Creating a NetBackup XBSA application
	Initiating a session
	Backup - creating an object
	Query - finding an object descriptor
	Restore - retrieving an object’s data
	Delete - deleting an object
	Logging and NetBackup
	Client in a cluster
	Performance considerations

	4. How to build an XBSA application
	Getting help
	Flags and defines
	How to build in debug mode
	How to debug the application
	Static libraries
	Dynamic libraries
	End-user configuration

	5. How to run a NetBackup XBSA application
	About How to run a NetBackup XBSA application
	Creating a NetBackup policy
	Running a NetBackup XBSA application
	Backups and restores initiated by NetBackup (via a script)
	Backups and restores from the command line

	6. Process flow and troubleshooting
	About Process flow and troubleshooting
	Backup
	Stream backup process flow description

	Restore
	Stream restore process flow description

	7. How to use the sample files
	What the sample files do
	Sample programs
	Sample scripts

	Description of sample files
	How to build the sample programs

	8. Support and updates
	About Support and updates

	Index

