Hewlett Packard Enterprise

HPE ProLiant Gen11サーバーおよびHPE Synergy用UEFIシステムユー ティリティユーザーガイド

部品番号: 30-6E440C90-113-ja-JP 発行: 2023年4月 版数: 1

HPE ProLiant Gen11サーバーおよびHPE Synergy用UEFIシステムユーティリティユーザーガイド

摘要

このガイドでは、すべてのHPE ProLiant Gen11サーバーおよびHPE SynergyコンピュートモジュールのシステムROMに内蔵されているUnified Extensible Firmware Interface (UEFI) にアクセスして使用する方法について詳しく説明します。このガイドでは、BIOSプラットフォーム構成メニューのUEFIとレガシーBIOS両方のオプションを使用する方法について説明します。このメニューは以前、ROMベースセットアップユーティリティ(RBSU)として知られていたものです。すべてのオプションとあり得る応答が定義されています。このガイドは、サーバーおよびストレージシステムのインストール、管理、トラブルシューティングの担当者を対象とします。

部品番号: 30-6E440C90-113-ia-JP

発行: 2023年4月

版数: 1

© Copyright 2017 - 2023 Hewlett Packard Enterprise Development LP

ご注意

本書の内容は、将来予告なしに変更されることがあります。Hewlett Packard Enterprise製品およびサービスに対する保証については、当該製品およびサービスの保証規定書に記載されています。本書のいかなる内容も、新たな保証を追加するものではありません。本書の内容につきましては万全を期しておりますが、本書中の技術的あるいは校正上の誤り、脱落に対して、責任を負いかねますのでご了承ください。

本書で取り扱っているコンピューターソフトウェアは秘密情報であり、 その保有、使用、または複製には、Hewlett Packard Enterprise から使用許諾を得る必要があります。 FAR 12.211 および 12.212 に従って、商業用コンピューターソフトウェア、コンピューターソフトウェアドキュメンテーション、および商業用製品の技術データ (Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items) は、ベンダー標準の商業用使用許諾のもとで、米国政府に使用許諾が付与されます。

他社の Web サイトへのリンクは、Hewlett Packard Enterprise の Web サイトの外に移動します。 Hewlett Packard Enterprise は、Hewlett Packard Enterprise の Web サイト以外の情報を管理する権限を持たず、また責任を負いません。

商標

Ampere®、Altra®、 A®、およびAmpere®ロゴは、Ampere Computingの登録商標または商標です。

Intel®、Itanium®、Pentium®、Intel Inside®、およびIntel Insideロゴは、アメリカ合衆国およびその他の国におけるIntel Corporationの商標です。

UEFI®はUEFI Forum. Inc. の登録商標です。

Linuxは、Linus Torvaldsの米国およびその他の国における登録商標です。

- はじめに
 - 。 UEFIシステムユーティリティ
 - UEFIの概要
 - 。 UEFIシステムユーティリティの概要
 - システムユーティリティの起動
 - システムユーティリティ内での移動
 - GUIモードでのシステムユーティリティ内での移動
 - 。 UEFIシステムユーティリティGUI
 - 。 システムユーティリティのキーの機能
 - 再起動が必要な場合
 - システムユーティリティメニューの概要
 - 共通のセットアップおよび構成に関するFAQ
 - ファームウェアまたはシステムROMのアップデート
- システムユーティリティメインメニューのオプション
 - 。 システム構成
 - システム構成メニューオプション
 - BIOS/プラットフォーム構成 (RBSU)
 - iL0 6構成ユーティリティの使用
 - iL0 6構成ユーティリティオプション
 - ネットワークオプション
 - ネットワークオプションの構成
 - アドバンストネットワークオプション
 - アドバンストネットワークオプションの構成
 - ユーザー管理
 - ユーザーの追加
 - 新しいユーザーアカウントの追加
 - ユーザーの編集/削除
 - ユーザーアカウントの編集または削除
 - 設定オプション
 - アクセス設定の構成
 - 工場出荷時のデフォルトにセット
 - iLOの工場出荷時デフォルト設定へのリセット
 - iLOのリセット
 - iLOのアクティブな接続のリセット
 - バージョン情報
 - iL0に関する情報の表示
 - 内蔵デバイス情報の表示と構成
 - コントローラー情報の表示
 - コントローラー設定の構成
 - 。 コントローラー設定の変更
 - 。 高度なコントローラー設定の変更
 - 。 コントローラー構成の消去
 - 。 バックアップ電源ステータスの表示
 - 。 電源設定の管理

- アレイの構成
 - 。 UEFIシステムユーティリティを使用したアレイの作成
 - 。 論理ドライブプロパティの表示
 - 。 論理ドライブの作成
 - 。 スペアドライブの割り当て
 - 。 スペアドライブの削除
 - 。 デバイスの確認
 - 。 アレイの削除
 - 。 論理ドライブの編集
 - 。 論理ドライブの削除
- ディスクユーティリティ
 - 。 ディスクデバイス情報の表示
 - ∘ ディスクデバイスの確認
- レガシーブートモード用のブート可能デバイスの設定
 - 。 プライマリおよびセカンダリブート可能デバイスの設定(レガシーブートモード)
 - 。 OSブート可能ドライブの数の設定 (レガシーブートモード)
- NICおよびFCoE設定の表示と構成
- 。 ワンタイムブートメニュー
 - ワンタイムブートメニューオプション
 - ワンタイムブートのオプションの選択
- 。 内蔵アプリケーション
 - 内蔵UEFIシェルの起動
 - インテグレーテッドマネジメントログの表示および消去
 - Active Health Systemログのダウンロード
 - 内蔵Diagnosticsの起動
 - Intelligent Provisioningの起動
 - 内蔵iPXEの起動
- 。 システム情報およびシステムヘルス
 - システム情報
 - システム情報の表示
 - システムヘルスの表示
- システムの再起動、言語の選択、およびブラウザーモードの設定
 - システムの再起動
 - システムを終了して再起動
 - システムの再起動
 - 言語とブラウザーモードの選択
 - システム言語の選択
 - ブラウザーモードの選択
- BIOS/プラットフォーム構成オプション
 - 。 Gen11の新機能
 - RBSU AMDオプション
 - RBSUインテルオプション
 - RBSU Ampereオプション
 - RBSUの共通オプション
 - 。 ワークロードプロファイルとパフォーマンスオプション
 - Workload Matching

- ワークロードプロファイルの依存関係の概要
 - 第1世代および第2世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係
 - 第3世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係
 - 第4世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係
 - インテル(R) Xeon(R) スケーラブルプロセッサーのワークロードプロファイルの依存関係
- ワークロードプロファイルの適用
- プロファイルの適用後の依存オプションの変更
- システムオプションの変更
 - ブート時間最適化の構成
 - 動的消費電力上限機能の設定
 - 拡張メモリテストの有効化または無効化
 - UEFI POST検出モードの設定
 - ウォームリセット時のメモリ消去の有効化または無効化
 - シリアルポートオプションの構成
 - 内蔵シリアルポートの割り当て
 - 仮想シリアルポートの割り当て
 - USBポートへのシリアルコンソールのミラーリング
 - USBオプションの構成
 - USB制御の設定
 - USBブートサポートの有効化または無効化
 - IOSシリアルコンソールとEMSの構成
 - BIOSシリアルコンソールポートの有効化または無効化
 - BIOSシリアルコンソールエミュレーションモードの選択
 - BIOSシリアルコンソールボーレートの設定
 - EMSコンソールポート設定の構成
 - サーバー可用性の構成
 - ASRの有効化または無効化
 - ASRタイムアウトの設定
 - ウェイクオンLANの有効化または無効化
 - POST F1プロンプトの遅延の設定
 - 電源ボタンを一瞬押す機能の有効化または無効化
 - 自動電源オン時の状態の設定
 - 電源投入遅延の設定
 - POST ASRの設定
 - POST ASRタイマーの設定
 - IPMIウォッチドッグタイマーの有効化または無効化
 - IPMIウォッチドッグタイマーのタイムアウトの設定
 - IPMIウォッチドッグタイマー動作の設定
 - サーバー資産情報の表示および入力
 - サーバー情報の入力
 - 管理者情報の入力
 - サービスコンタクト情報の入力
 - カスタムPOSTメッセージの入力
- 。 プロセッサーオプションの変更
 - インテルハイパースレッディングの有効化または無効化
 - インテル(R)スピード・セレクト・テクノロジーコアパワーの有効化または無効化

- インテル(R)スピード・セレクト・テクノロジーパフォーマンスプロファイルの構成
- インテル(R) スピード・セレクト・テクノロジーベースフリークエンシーの有効化または無効化
- 有効にするプロセッサーコアの数の設定
- プロセッサーRAPLワット値の構成
- プロセッサー物理アドレッシングの構成
- インテル(R) TSXサポートの有効化または無効化
- プロセッサーAES-NIサポートの有効化または無効化
- プロセッサーのUUID制御の有効化または無効化
- プロセッサーx2APICサポートの有効化または無効化
- AMD同時マルチスレッド (SMT) の有効化
- Performance Determinismオプションの構成
- AMDページテーブルエントリーの投機的ロックスケジューリングオプションの選択
- UPI3リンクの有効化または無効化
- ANCモードの構成
- L3キャッシュとしてのSLCの有効化または無効化
- プリフェッチャーの有効化または無効化
- メモリオプションの変更
 - メモリの再マップの構成
 - アドバンストメモリプロテクションの構成
 - メモリリフレッシュレートの構成
 - DRAMバーストリフレッシュモードの構成
 - チャネルインターリーブの有効化または無効化
 - IMCインターリーブの構成
 - AMDインターリーブの構成
 - メモリPステートの有効化または無効化
 - AMD 1TB再マップの構成
 - AMD定期的ディレクトリリンスの構成
 - 最大メモリバス周波数の設定
 - メモリ巡回スクラビングの有効化または無効化
 - ノードインターリーブの有効化または無効化
 - メモリ暗号化オプションの構成
 - 透過的セキュアメモリ暗号化の有効化または無効化
 - AMDセキュアメモリ暗号化の構成
 - AMD Secure Nested Pagingの有効化または無効化
 - メモリミラーリングモードの構成
 - NVDIMM-Nオプションの構成
 - NVDIMM-Nサポート
 - 次回の再起動時のポリシーにNVDIMM-Nサニタイズ/消去
 - NVDIMM─Nインターリービング
 - メモリ構成違反レポートの有効化または無効化
 - メモリの永続的な障害検出の有効化または無効化
 - HBMメモリオプションの構成
 - トータルメモリ暗号化(TME)の有効化または無効化
 - ECCモードの構成
 - ECC制御の構成
 - 巡回スクラブの有効化または無効化

- デマンドスクラブの有効化または無効化
- Fine Granularity Refresh (FGR) の構成
- 。 仮想化オプションの変更
 - 仮想化テクノロジーの有効化または無効化
 - インテルVT-dの有効化または無効化
 - アクセス制御サービスの有効化または無効化
 - SR-IOVの有効化または無効化
 - 最小のSEV ASIDの設定
 - AMD I/Oバーチャライゼーションテクノロジーの有効化
 - AMD DMA再マッピングの有効化または無効化
 - AMD 5レベルページの有効化
 - ARM SMMU PMUの有効化または無効化
- ブートオプションの変更
 - ブート順序ポリシーの設定
 - UEFIブート順序リストの変更
 - UEFIブート順序の制御
 - UEFIブート順序リストへのブートオプションの追加
 - UEFIブート順序リストからのブートオプションの削除
- 。 ネットワークオプションの変更
 - ネットワークブートオプション
 - プリブートネットワーク環境の設定
 - IPv6 DHCPユニーク識別子の方式の設定
 - ネットワークブートリトライサポートの有効化または無効化
 - NICのネットワークブートの有効化または無効化
 - PCIeスロットネットワークブートの有効化または無効化
 - HTTPサポートの設定
 - iSCSIソフトウェアイニシエーターの有効化
 - プリブートネットワーク設定の構成
 - プリブートネットワーク設定
 - URLからのブートの前提条件
 - iSCSIブート構成
 - iSCSIイニシエーター名の追加
 - iSCSIブート試行の追加
 - iSCSIブート試行の削除
 - iSCSIブート試行の詳細の表示および変更
 - VLANの構成
 - 内蔵iPXEオプションの変更
 - 内蔵iPXEの有効化または無効化
 - UEFIブート順序リストへの内蔵iPXEの追加
 - 内蔵iPXE起動スクリプトの自動実行の有効化または無効化
 - 内蔵iPXEスクリプト検証の有効化または無効化
 - 内蔵iPXE起動スクリプトロケーションの設定
 - 内蔵iPXE自動起動スクリプトのネットワーク上の場所の設定
- 。 ストレージオプションの変更
 - SATAセキュア消去の有効化
 - SATAサニタイズの有効化

- 内蔵チップセットSATAコントローラーサポートの有効化
- 内蔵ストレージブートポリシーの設定
- PCIeストレージブートポリシーの設定
- デフォルトのファイバーチャネル/FCoEスキャンポリシーの変更
- 内蔵NVM ExpressオプションROMの有効化または無効化
- NVM Expressドライブの撤去
- インテル(R) VMD構成オプションの構成
- インテル(R) VMD Direct Assignの構成
- インテル(R) CPU VMDサポートの構成
- インテル(R) PCH VMDサポートの構成
- インテル(R) VROCサポートの構成
- ローカルおよびリモートキー管理のためのSEDドライブの構成
- 電力およびパフォーマンスオプションの変更
 - パワーレギュレーターモードの設定
 - 最小プロセッサーアイドル電力コアCステートの設定
 - 最小プロセッサーアイドル電力パッケージCステートの設定
 - インテル(R) ターボブーストテクノロジーの構成
 - AMDデータファブリックCステートの有効化または無効化
 - エネルギーパフォーマンス設定の設定
 - AMDコアパフォーマンスブーストの構成
 - AMD Fmaxブースト制限制御の有効化または無効化
 - エネルギー/パフォーマンスバイアスの設定
 - AMD Infinity Fabricのパフォーマンス状態の設定
 - 協調電力制御の有効化または無効化
 - AMD XGMI強制リンク幅の構成
 - AMD XGMI最大リンク幅の構成
 - インテルDMIリンク周波数の設定
 - AMD NBIO LCLK DPMレベルの構成
 - NUMAグループサイズ最適化の設定
 - アンコア周波数のスケーリングの構成
 - 動的ロードライン(DLL)スイッチの無効化
 - Sub-NUMAクラスタリングの有効化または無効化
 - エネルギー効率ターボオプションの有効化または無効化
 - LLCデッドラインの割り当ての設定
 - Stale AからSへの設定
 - プロセッサープリフェッチャーオプションの無効化
 - I/0オプションの有効化または無効化
 - ACPI SLITオプションの有効化
 - インテルNIC DMAチャネルの有効化
 - I/0のメモリ近接関係レポートの有効化
 - インテルUPIオプションの構成
 - DRAM RAPLオプションの構成
 - DRAM RAPLレポートサポートの有効化または無効化
 - DRAM RAPL制限サポートの構成
 - DRAM RAPLワット値の構成
 - I/O非ポストプリフェッチの有効化または無効化

- アドバンストパフォーマンスチューニングオプションの構成
 - UPIへの送信オプションの設定
 - I0ダイレクトキャッシュの構成
 - デッドブロック予測の構成
 - スヌープ応答ホールドオフの構成
 - IOATスタックのスヌープ応答ホールドオフの構成
 - パフォーマンス管理
 - 。 パフォーマンス管理機能の要件
- アドバンスト電力オプションの構成
 - 冗長電源装置モードの設定
 - インテルプロセッサーPMAX電力調整の構成
 - Infinity Fabricの電力管理の有効化または無効化
 - パッケージ電力制限制御モードの構成
- APEIサポートの有効化または無効化
- CPPCサポートの有効化または無効化
- LPIサポートの有効化または無効化
- アンペア最大パフォーマンスの有効化または無効化
- 。 内蔵UEFIシェルオプションの変更
 - 内蔵UEFIシェルの有効化または無効化
 - UEFIブート順序リストへの内蔵UEFIシェルの追加
 - 内蔵UEFIシェル起動スクリプトの自動実行の有効化または無効化
 - シェルスクリプト検証の有効化または無効化
 - 内蔵UEFIシェル起動スクリプトロケーションの設定
 - DHCPを使用した、シェル自動起動スクリプトの検出の有効化または無効化
 - シェル自動起動スクリプトのネットワーク上の場所の設定
- 。 サーバーセキュリティ設定の変更
 - サーバーセキュリティのオプション
 - インテルSGX制御オプションの構成
 - SGX工場出荷時リセットの有効化または無効化
 - 電源投入時パスワード設定
 - iL0アカウントでのログイン許可
 - 管理者パスワードの設定
 - セキュアブート
 - セキュアブートの有効化または無効化
 - サーバーロック設定の構成
 - サーバー構成ロックのセットアップ
 - アドバンストセキュアブートオプション
 - アドバンストセキュアブートオプションの設定の表示
 - セキュアブート証明書キーまたはデータベース署名の登録
 - セキュアブート証明書キーまたはデータベース署名の削除
 - すべてのキーを削除
 - セキュアブート証明書キーまたはデータベース署名のエクスポート
 - すべてのセキュアブート証明書キーのエクスポート
 - セキュアブート認証キーまたはデータベース署名をプラットフォームのデフォルトにリセット
 - すべてのセキュアブート認証キーをプラットフォームのデフォルトにリセット
 - TLS (HTTPS) オプション

- TLS証明書の詳細の表示
- TLS証明書の登録
- TLS証明書の削除
- すべてのTLS証明書の削除
- TLS証明書のエクスポート
- すべてのTLS証明書のエクスポート
- すべてTLS設定をプラットフォームのデフォルトにリセット
- 高度なTLSセキュリティ設定の構成
- アドバンストセキュリティオプションの変更
 - プラットフォーム証明書サポートの有効化または無効化
 - iLOアカウントによるログインの有効化または無効化
 - バックアップROMイメージ認証の有効化または無効化
 - ワンタイムブートメニュー (F11プロンプト) の有効化または無効化
 - Intelligent Provisioning (F10プロンプト) の有効化または無効化
 - UEFI変数アクセスのファームウェアコントロールの構成
- Microsoft(R) Secured-coreサポートの有効化または無効化
- アドバンストオプションの変更
 - ROMイメージの選択
 - 内蔵ビデオ接続の構成
 - 一貫性のあるデバイスの名前付けの有効化または無効化
 - 電源装置混在レポートの有効化または無効化
 - POSTビデオサポート設定の変更
 - プラットフォームのRASポリシーの構成
 - SCI RASのサポートの構成
 - 高精度イベントタイマー (HPET) ACPIサポートの有効化または無効化
 - UEFI電源装置要件の変更
 - 温度構成の設定
 - 高温シャットダウンの有効化または無効化
 - ファン設置要件のメッセージングの設定
 - ファン故障ポリシーの設定
 - 上昇した周囲温度のサポートの有効化または無効化
 - シリアル番号の再入力
 - 製品IDの再入力
 - アドバンストデバッグオプションの構成
 - UEFIシステムユーティリティによるUEFIシリアル出カログデータの取得
- ワンタイムブートメニュー (F11プロンプト) の有効化または無効化
- Intelligent Provisioning (F10プロンプト) の有効化または無効化
- プロセッサーAES-NIサポートの有効化または無効化
- バックアップROMイメージ認証の有効化または無効化
- Trusted Platform Module (TPM) オプションの構成
- 。 PCIeデバイス構成オプションの変更
 - 高度なPCIeデバイス設定の選択
 - PCIe分岐オプションの構成
 - PCIe MCTPオプションの構成
 - PCIe EOIオプションの構成
 - 最大PCI Express速度の設定

- インテルPCIeホットプラグエラー制御の構成
- GPU構成の設定
- PCIeスロットからプロセッサーへのマッピングの構成
- PCIeデバイスの分離サポートの有効化または無効化
- 特定のPCIeデバイスの構成
- PCIe補助電源オプションの構成
- 。 日付と時刻の設定
- 。 バックアップおよびリストア設定の変更
- 。 システムデフォルトのリセット
 - システムデフォルト設定のリストア
 - 工場デフォルト設定のリストア
 - デフォルトのUEFIデバイス優先順位の変更
 - ユーザーデフォルトオプションの保存または消去
- スクリプトによる構成手順の使用
 - 。 スクリプトによる構成手順
 - UEFI用のiLO RESTful APIサポート
 - Configuration Replicationユーティリティ (CONREP)
 - Smart Storage Administrator (SSA)
- トラブルシューティング
 - 。 デバイスをブートできない
 - 。 システムデフォルトを復元できない
 - ∘ ネットワークブートURLのファイルをダウンロードできない
 - 。 ダウンロードしたイメージファイルを使用してネットワークブートを行うことができない
 - 。 UEF I シェルスクリプトから展開できない
 - 。 1つ以上のデバイスのオプションROMを実行できない
 - 。 ブート順序リストに新しいネットワークまたはストレージデバイスが見つからない
 - 。 インテルTXTが正常に動作していない
 - 。 無効なサーバーシリアル番号と製品ID
 - 。 無効な日付/時刻
 - 。 ネットワークデバイスが正しく機能しない
 - 。 システムが応答しなくなる
 - 。 単一デバイスで障害が発生した
 - 。 サーバーが起動しない
 - 。 Smartアレイコントローラーが正しく機能しない
 - 。 VMwareはUEFIモードで起動しない
- Webサイト、サポートと他のリソース
 - 。 Webサイト
 - サポートと他のリソース
 - Hewlett Packard Enterpriseサポートへのアクセス
 - アップデートへのアクセス
 - リモートサポート (HPE通報サービス)
 - カスタマーセルフリペア (CSR)
 - 保証情報
 - 規定に関する情報
 - ドキュメントに関するご意見、ご指摘

はじめに

サブトピック

<u>UEFI システムユーティリティ</u>

UEFIシステムユーティリティの概要

UEFIシステムユーティリティ

UEFIシステムユーティリティは、システムROMに内蔵されています。これを使用すると、次のような広範な構成作業を実行できます。

- システムデバイスとインストールされたオプションの構成。
- システム機能の有効化と無効化。
- システム情報の表示。
- プライマリブートコントローラーまたはパーティションの選択。
- メモリオプションの構成。
- その他のプリブート環境の起動。

UEFIを搭載するHPEサーバーでは、以下を提供できます。

- サイズが2.2 TB以上のブートパーティションのサポート。このような構成は、以前まで、RAIDソリューションを使用している場合に、ブートドライブでしか使用できませんでした。
- セキュアブート。システムファームウェア、オプションカードファームウェア、オペレーティングシステム、ソフトウェアを連携して、プラットフォームのセキュリティを強化することができます。
- UEFIグラフィカルユーザーインターフェイス (GUI)
- 内蔵UEFIシェル。スクリプトやツールを実行するための起動前環境を提供します。
- UEFIオプションROMのみをサポートするオプションカード向けブートサポート。

サブトピック

UEFIの概要

UEFIの概要

UEFI (Unified Extensible Firmware Interface) は、起動中またはスタートアップ中のオペレーティングシステムとプラットフォームファームウェア間のインターフェイスを定義しています。UEFIは、BIOSよりも高度な起動前ユーザーインターフェイスをサポートします。UEFIネットワークスタックは、従来のPXE展開を引き続き支えながら、より豊富なネットワークベースのOS展開の環境での実装を可能にします。UEFIは、IPv4およびIPv6両方のネットワークをサポートします。さらに、セキュアブートなどの機能を使用することにより、プラットフォームのベンダーは、OSによらず起動前の環境でシステムを保護するアプローチを実装することができます。

BIOS/プラットフォーム構成 (RBSU) とその他の構成オプションは、UEFIインターフェイスから利用できます。

UEFIシステムユーティリティの概要

サブトピック

システムユーティリティの起動

システムユーティリティ内での移動

システムユーティリティメニューの概要

共通のセットアップおよび構成に関するFAQ

ファームウェアまたはシステムROMのアップデート

システムユーティリティの起動

手順

- 1. オプション:サーバーにリモートアクセスする場合、iLOリモートコンソールセッションを開始します。
 - a. ブラウザーを開き、https://<iLO host name or IP address> と入力して、iLO Webインターフェイスにログ オンします。
 - b. ログインページで、ディレクトリまたはローカルユーザーアカウント名とパスワードを入力して、ログインをクリックします。
 - c. iLOナビゲーションツリーでリモートコンソール&メディアを選択します。

起動タブが表示されます。

- d. ご利用のシステムが、使用するリモートコンソールアプリケーションの使用要件を満たしていることを確認します。
- e. 選択したアプリケーションの起動ボタンをクリックします。

以下を選択することによって、iLOリモートコンソールセッションを起動することもできます。

- 情報 iL0の概要ページの統合リモートコンソールリンク。
- iLO Webインターフェイスの左下隅にあるコンソールサムネイル、および起動するアプリケーションタイプの選択。
- 2. サーバーを再起動するかまたは電源を入れます。

サーバーが再起動し、POST画面が表示されます。

3. F9キーを押します。

システムユーティリティ画面が表示されます。

国注記:

システムユーティリティの使用には、BIOS管理者の許可が必要です。BIOS管理者がパスワードを必要とする場合、サーバーからシステムユーティリティを起動する前にパスワードを入力するように求められます。管理者パスワードの設定については、サーバーセキュリティのオプションを参照してください。

システムユーティリティ内での移動

- 1. システムユーティリティを起動し、次のいずれかの操作を行います。
 - 画面を移動して設定を変更するには、ポインティングデバイスを使用するか、またはいずれかのナビゲーション キーを押します。各システムユーティリティ画面の下部にキーの機能が表示されます。

口 ヒント:

セットアップブラウザーの選択が自動(デフォルト設定)またはGUIの場合、ポインティングデバイスを使用してシステムユーティリティ画面をナビゲートすることができます。セットアップブラウザーの選択がテキストに設定されているとき、ナビゲーションキーを使用する必要があります。

- モバイルオンラインヘルプにアクセスするには、ご使用のモバイルデバイスでシステムユーティリティ画面の左下 部にあるQRコードをスキャンします。
- システムユーティリティ画面を終了してサーバーを再起動するには、メインメニューが表示されるまでEscキーを押してから、次のオプションのいずれかを選択します。
 - 終了し起動を再開 システムを終了して、通常のブートプロセスを続行します。ブート順序のリストに従ってブートが続行され、システム内の最初のブート可能なオプションが起動されます。
 - システムを再起動 システムを終了して、通常のブートプロセスを続行せずに、システムを再起動します。

サブトピック

GUIモードでのシステムユーティリティ内での移動

再起動が必要な場合

GUIモードでのシステムユーティリティ内での移動

前提条件

- システムユーティリティには物理端末または統合リモートコンソールを通じてアクセスします。
- セットアップブラウザーの選択は自動またはGUIに設定されます。

このタスクについて

システムユーティリティのGUIでは、ポインティングデバイスまたはナビゲーションのキーを使用して移動することができます。GUIモードでは、選択したメニュー項目は緑色に変わります。

注記:

シリアルコンソールを使用してシステムユーティリティにアクセスした場合、GUIモードはサポートされません。

ブラウザーモードGUIに設定するには:

手順

- 1. システムユーティリティ画面で、セットアップブラウザーの選択を選択します。
- 自動またはGUIを選択します。
- 3. 設定を保存します。
- 4. システムを再起動します。

サブトピック

<u>UEFIシステムユーティリティGUI</u>

<u>システムユーティリティのキーの機能</u>

UEFIシステムユーティリティGUI

HPE ProLiant Gen11およびHPE Synergyコンピュートモジュールは、GUI UEFIシステムユーティリティをサポートしています。UEFIシステムユーティリティのGUIではマウスとキーボードの両方のデバイスがサポートされます。

領域

システムユーティリティのGUIには次の領域があります。

- 1. キャプションバー この領域は、UEFIフォームのタイトルとシステムのボタンを示します。フォームのタイトルは、 現在操作しているフォームの名前を示しています。
- 2. ナビゲーション履歴 この領域には、以前ナビゲートしたフォームが表示されます。新しいシステムユーティリティのフォームにアクセスするたびに、ナビゲーション履歴にナビゲーション履歴ノードが追加されます。
- 3. サーバー情報 この領域には、サーバー情報とファンクションキー情報が表示されます。
- 4. システムユーティリティフォーム この領域には、現在のフォームのメニューオプションが表示されます。
- 5. アクティビティバー この領域には、ファンクションキーやシステムステータスインジケーターなどのシステム全体 の機能が表示されます。

GUIでのキーボードサポート

GUIではシステムユーティリティフォームをナビゲートするための基本的なキーがサポートされています。Tabキーを使用して、フォームのさまざまな領域にフォーカスを変更できます。サポートされるキーは、次のとおりです。

- 上下矢印キー
- Enter
- ファンクションキー
- Escキー

ナビゲーション履歴領域とキーボードサポート

ナビゲーション履歴は、ユーザーが以前ナビゲートしたシステムユーティリティフォームを表示します。新しいフォームにアクセスするたびに、ナビゲーション履歴にナビゲーション履歴ノードが追加されます。ナビゲーション履歴ノードをクリックして、以前アクセスしたユーティリティフォームに戻ることができます。

ナビゲーション履歴ノードが多すぎてナビゲーション履歴バーに収まらない場合、ホームノードが折り畳まれます。ホームノードを選択すると、アクセスしたナビゲーション履歴ノードのポップアップリストを表示できます。リストからナビゲーション履歴ノードをクリックして、以前アクセスしたフォームに戻ることができます。

ナビゲーション履歴領域を移動するには、次の機能を使用します。

- Tabキーを使用すると、ナビゲーション履歴領域内のフォーカスを変更できます。
- Enterキーを使用すると、ナビゲーション履歴ノード選択モードが開始してノードを選択できます。
- 矢印キーを使用すると、選択するノードに移動できます。
- Escキーを使用すると、ナビゲーション履歴ノード選択モードを終了します。

Gen11の機能

- 言語の選択 キャプションバーにあります。
- 保留中の変更 保存されていない変更をリストします。
- 強制書き込み設定 オプションの変更により強制的に変更されるオプションを表示します。
- 検索 RBSUオプションを検索します。
- 依存関係ビューア キャプションバーにある疑問符ボタンを押します。オプションがグレー表示されている理由に関する情報は、赤で表示されます。

システムユーティリティのキーの機能

- 上下矢印 メニューオプションを選択します。選択すると、メニューオプションの色がテキストブラウザーモードでは 白色から黄色に変更され、GUIモードでは緑色に変更されます。
- Enter エントリーを選択します。選択されたオプションによって、テキストブラウザーモードでは白色から黄色に変更され、GUIモードでは緑色に変更されます。サブメニューが使用可能な場合は、サブメニューが表示されます。
- Esc 前の画面に戻ります。
- F1 テキストモードでの選択に関するオンラインヘルプを表示します。

1 注記:

GUIモードでオンラインヘルプを表示するには、システムユーティリティのメイン画面の右上隅にある?アイコンをクリックします。

F7 - デフォルトのUEFI BIOS構成設定をロードします。

| 注記:

F7キーを押すとBIOS構成のみがリセットされます。オプションカードやiLOなどの他のエンティティはリセットされません。

- F10 変更した設定を保存するためのプロンプトが表示されます。
- F12 設定の変更を保存するプロンプトが表示され、システムユーティリティを終了します。
- 再起動が必要(ラジオボタン)-変更によってサーバーを再起動する必要がある場合、選択されて赤色に変化します。
- 変更保留中 (ラジオボタン) 有効にするためには保存する必要がある変更が保留中の場合、選択されて赤色に変化します。

再起動が必要な場合

特定の構成変更を反映するには、再起動が必要になる場合があります。このような場合、動作の実行を求めるセットアップ ブラウザーの選択に応じて、次のいずれかが発生します。

- GUIモードで、再起動が必要 (ラジオボタン) 変更によってサーバーを再起動する必要がある場合、選択されて赤色に変化します。
- テキストモードでは、該当するシステムユーティリティ画面でプロンプトが表示されます。

システムユーティリティメニューの概要

国注記:

UEFIシステム構成オプションは、サーバープラットフォームごとに異なります。したがって、ここに記載されているオプションの中には、ご使用のシステムでは表示されないものがある可能性があります。

システムユーティリティ画面は、UEFIのメニュー方式インターフェイスのメイン画面です。この画面には、次の構成タスクのメニューオプションが表示されます。

- システム構成 表示および構成のオプションを表示します。
 - 。 BIOS/プラットフォーム構成 (RBSU)
 - 。 iL0 6構成ユーティリティ
 - 。 その他のシステム固有のデバイス。取り付けられているSmartアレイデバイス、PCIeカード、NICなど。例えば、内蔵FlexibleLOMポート1があります。

| 注記:

インターフェイスのメニューでは、取り付けられているPCIデバイスの正しい製品名が表示されるようになっていますが、デバイスを認識できない場合は、non-HPE name などの汎用的なラベルが割り当てられます。この汎用的なラベルは、デバイスの機能や動作に影響するものではありません。デバイスは、ご使用のシステムによって異なります。

- ワンタイムブートメニュー ブートオーバーライドオプションを選択し、ファイルシステムからUEFIアプリケーションを実行するためのオプションを表示します。
- 内蔵アプリケーション 表示および構成のオプションを表示します。
 - 。 内蔵UEFIシェル
 - ∘ インテグレーテッドマネジメントログ (IML)
 - ∘ Active Health Systemログ
 - ファームウェアのアップデート
 - 内蔵Diagnostics
 - Intelligent Provisioning
 - 。 内蔵iPXE
- システム情報 サーバーの名前と世代、シリアル番号、製品ID、BIOSのバージョンと日付、パワーマネージメントコントローラー、バックアップBIOSのバージョンと日付、システムメモリ、ストレージデバイス、プロセッサーを表示するオプションを表示します。
- システムヘルス システム内のすべてのデバイスの現在のヘルスステータスを表示するためのオプションが表示されます。
- システムを終了して再起動 システムを終了して、通常のブートプロセスを続行します。
- システムを再起動する システムを終了し、UEFIブート順序リストを参照してシステム内の最初のブート可能なオプションを起動することで、システムを再起動します。例えば、UEFIシェルが有効で、リスト内で最初のブート可能なオプションとしてリストされている場合、UEFIシェルを起動できます。
- 言語の選択 ユーザーインターフェイスで使用する言語を選択することができます。デフォルトの言語は、英語です。
- セットアップブラウザーの選択 ブラウザーを選択することができます。

共通のセットアップおよび構成に関するFAQ

1. UEFIシステムユーティリティにアクセスする方法を教えてください。

システムユーティリティの起動を参照してください。

2. RBSU設定からUEFI設定に移行するには、どうすればいいですか?

ROMベースセットアップユーティリティ (RBSU) は、BIOS/プラットフォーム構成 (RBSU) メニューに置き換えられます。このメニューを使用すると、UEFIオプションにアクセスしたり使用したりできます。BIOS/プラットフォーム構成 (RBSU) を参照してください。

3. ファームウェアまたはシステムROMのアップデートするには、どうすればいいですか?

ファームウェアまたはシステムROMのアップデートを参照してください。

4. ブートデバイスの選択方法を教えてください。

<u>システムユーティリティの起動</u>を参照してください。ワンタイムブートオーバーライドのオプションを選択できるワンタイムブートメニューにアクセスするには、次のいずれかを実行します。

- サーバーのPOST処理中にF11を押します。
- システムユーティリティ画面で、ワンタイムブートメニューを選択します。<u>ワンタイムブートオプション</u>を参照してください。

すべてのブートのブート順序を変更するには、UEFIブート順序の変更を参照してください。

5. インテルハイパースレッディングを有効、または無効にするにはどうすればいいですか?

デフォルトでは、インテルハイパースレッディングは有効です。この設定を無効にするか、再度有効にするには、<u>イン</u> テルハイパースレッディングの有効化または無効化を参照してください。

6. 最小プロセッサーアイドル電力パッケージステートをパッケージステートなしに構成する方法を教えてください。

デフォルトでは、これはパッケージC6 (リテンション) ステート、つまりプロセッサーが最低アイドル電力の状態に設定されます。この設定を変更するには、<u>最小プロセッサーアイドル電力パッケージCステート</u>を参照してください。

7. タイムゾーンを構成するにはどうすればいいですか?

<u>日付と時刻の設定</u>を参照してください。

- 8. 構成変更を保存し、システムを再起動するにはどうすればいいですか?
 - a. 変更が完了したとき、変更が保留中です。変更を保存して終了しますか? というプロンプトが表示されない場合は、F10キーを押すと表示されます。
 - b. Yキーを押して、変更内容を保存します。

変更の保存を確認するプロンプトが表示されます。

- c. リブートオプションを選択してEnterキーを押します。
 - システムを終了して再起動 システムを終了して、通常のブートプロセスを続行します。ブート順序のリストに 従ってブートが続行され、システム内の最初のブート可能なオプションが起動されます。
 - システムを再起動 システムを終了して、通常のブートプロセスを続行せずに、システムを再起動します。
- 9. 内蔵UEFIシェルに移動する方法を教えてください。

内蔵UEFIシェルの起動を参照してください。

10. 取り付けられているすべてのオプションおよびデバイスのヘルスステータスを表示する方法を教えてください。

<u>システムヘルスの表示</u>を参照してください。

11. CONREPを使用してUEFIの設定を複製する方法を教えてください。

<u>Configuration Replicationユーティリティ (CONREP)</u>を参照してください。

12. ジッター制御を設定する方法を教えてください。

<u>アドバンストパフォーマンスチューニングオプションの構成</u>を参照してください。

13. ワークロードプロファイルを使用してパフォーマンスをチューニングする方法を教えてください。

<u>ワークロードプロファイルとパフォーマンスオプション</u>を参照してください。

14. RESTfulインターフェイスツールまたはAPIを使用してUEFI設定を複製する方法を教えてください。

Hewlett Packard EnterpriseのWebサイト (https://www.hpe.com/info/redfish) にあるRESTfulインターフェイスツールのドキュメントを参照してください。

15. セキュアブート、TPMなど、サーバー上のセキュリティ設定を変更する方法を教えてください。

<u>サーバーセキュリティのオプション</u>を参照してください。<u>https://www.hpe.com/support/gen10-intelligent-system-tuning-en</u>にあるHPE Gen10サーバーのIntelligent System Tuningも参照してください。

16. HPE Intelligent System Tuningはどんなツールですか。また、使用法を教えてください。

HPE Intelligent System Tuning (IST) には、Jitter Smoothing、Workload Matching、およびコアブーストが含まれています。 \underline{r} ドバンストパフォーマンスチューニングオプションの構成および \underline{r} ワークロードプロファイルとパフォーマンスオプションを参照してください。

ファームウェアまたはシステムROMのアップデート

ファームウェアまたはシステムROMをアップデートするには、以下のいずれかの方法を使用します。

- システムユーティリティのファームウェアのアップデートオプション。
- 内蔵UEFIシェルの fwupadte コマンド。
- Service Pack for ProLiant (SPP)
- HPEオンラインフラッシュコンポーネント
- Moonshot Component Pack

システムユーティリティメインメニューのオプション

システムユーティリティメインメニューは、以下のオプションの開始点です。

- システム構成
- ワンタイムブートメニュー
- 内蔵アプリケーション
- システム情報
- システムヘルス
- システムを終了して再起動
- システムを再起動する
- 言語の選択
- セットアップブラウザーの選択

サブトピック

システム構成

<u>ワンタイムブートメニュー</u>

内蔵アプリケーション

システム情報およびシステムヘルス

<u>システムの再起動、言語の選択、およびブラウザーモードの設定</u>

システム構成

サブトピック

システム構成メニューオプション

BIOS/プラットフォーム構成 (RBSU)

iLO 6構成ユーティリティの使用

内蔵デバイス情報の表示と構成

システム構成メニューオプション

- BIOS/プラットフォーム構成 (RBSU)
- iL0 6構成ユーティリティ
- その他のシステム固有のデバイス。取り付けられているPCIeカード、NIC、Smartアレイなど。例えば、内蔵FlexibleLOMポート1があります。

BIOS/プラットフォーム構成 (RBSU)

BIOS/プラットフォーム構成 (RBSU) メニューには、以下を含め、UEFIのオプションにアクセスするための多くのネストされたオプションが含まれます。

- ワークロードプロファイル
- システムオプション
- プロセッサーオプション
- メモリオプション
- 仮想化オプション
- ブートオプション
- ネットワークオプション
- ストレージオプション
- 電力およびパフォーマンスオプション
- 内蔵UEFIシェルオプション
- サーバーセキュリティのオプション
- PCIデバイス構成のオプション
- アドバンストオプション
- 日付と時刻
- システムデフォルトオプション

iLO 6構成ユーティリティの使用

サブトピック

iLO 6構成ユーティリティオプション

<u>ネットワークオプション</u>

ネットワークオプションの構成

<u>アドバンストネットワークオプション</u>

アドバンストネットワークオプションの構成

ユーザー管理

ユーザーの追加

新しいユーザーアカウントの追加

ユーザーの編集/削除

ユーザーアカウントの編集または削除

<u>設定オプション</u>

アクセス設定の構成

工場出荷時のデフォルトにセット

iLOの工場出荷時デフォルト設定へのリセット

iL0のリセット

iL0のアクティブな接続のリセット

バージョン情報

iL0に関する情報の表示

iLO 6構成ユーティリティオプション

iLO 6構成ユーティリティには、物理システムコンソールまたはiLO 6リモートコンソールセッションを使用してアクセスできます。このユーティリティは、次のオプションを備えています。

- <u>ネットワークオプション</u>
- <u>アドバンストネットワークオプション</u>
- ユーザー管理
- 設定オプション
- <u>工場出荷時のデフォルトにセット</u>
- iLOのリセット
- バージョン情報

ネットワークオプション

- MACアドレス (読み取り専用) 選択しているiLOネットワークインターフェイスのMACアドレスを指定します。
- ネットワークインターフェイスアダプター 使用するiLOネットワークインターフェイスアダプターを指定します。
 - 。 オン iL0専用ネットワークポートを使用します。
 - 共有ネットワークポート 共有ネットワークポートを使用します。このオプションは、サポートされているサーバーでのみ使用できます。

- オフ iL0へのすべてのネットワークインターフェイスが無効になります。
- 送信速度自動選択(iL0専用ネットワークポートのみ) ネットワークに接続しているときに、サポートされる最高のリンク速度とデュプレックス設定をiL0がネゴシエートできるようにします。 このオプションは、ネットワークインターフェイスアダプターがオンに設定されている場合にのみ使用できます。
- 送信速度手動設定(iL0専用ネットワークポートのみ) iL0ネットワークインターフェイスのリンク速度を設定します。

このオプションは、ネットワークインターフェイスアダプターがオンに設定され、送信速度自動選択がオフに設定され ている場合にのみ使用できます。

- 送信デュプレックス設定(iL0専用ネットワークポートのみ) iL0ネットワークインターフェイスのリンクデュプレックス設定を設定します。 このオプションは、ネットワークインターフェイスアダプターがオンに設定され、送信速度自動選択がオフに設定されている場合にのみ使用できます。
- VLAN有効(共有ネットワークポートのみ) VLAN機能を有効にします。 共有ネットワークポートがアクティブでVLANが有効な場合、iLO共有ネットワークポートはVLANの一部になります。物理 的に同じLANに接続されている場合でも、異なるVLANタグを持つすべてのネットワークデバイスが、独立したLANにある かのように表示されます。このオプションは、ネットワークインターフェイスアダプターが共有ネットワークポートに 設定されている場合にのみ使用できます。
- VLAN ID (共有ネットワークポートのみ) VLANが有効な場合は、VLANタグを指定します。 相互に通信するネットワークデバイスすべてが、同じVLANタグを持つ必要があります。VLANタグは、1~4094の任意の番号です。このオプションは、ネットワークインターフェイスアダプターが共有ネットワークポートに設定されている場合にのみ使用できます。
- DHCP有効 iLOがDHCPサーバーからIPアドレス(およびその他の多くの設定)を取得するよう構成します。
- DNS名 iLOサブシステムのDNS名を設定します。 この名前は、IPアドレスではなくiLOサブシステム名に接続するようDHCPとDNSを構成している場合にのみ使用できます。
- IPアドレス iLOのIPアドレスを指定します。
 DHCPを使用している場合、iLO IPアドレスが自動的に提供します。DHCPを使用しない場合は、静的IPアドレスを入力します。
- サブネットマスク iLO IPネットワークのサブネットマスクを指定します。 DHCPを使用する場合、サブネットマスクは自動的に提供されます。DHCPを使用しない場合は、ネットワークのサブネットマスクを入力します。
- ゲートウェイIPアドレス iLOのゲートウェイIPアドレスを指定します。
 DHCPを使用している場合、iLOゲートウェイのIPアドレスが自動的に提供されます。DHCPを使用しない場合は、iLOのゲートウェイIPアドレスを入力します。

ネットワークオプションの構成

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > ネットワークオプションを選択します。
- 2. ネットワークオプションのいずれかを選択し、そのオプションの設定を選択するかまたは値を入力します。
- 3. 設定を保存します。

アドバンストネットワークオプション

- DHCPからのゲートウェイ iLOがDHCPサーバー提供のゲートウェイを使用するかどうかを指定します。
- ゲートウェイ#1、ゲートウェイ#2、およびゲートウェイ#3 DHCPからのゲートウェイが無効の場合は、最大3つのiLO ゲートウェイのIPアドレスを指定します。
- DHCP経路 iLOがDHCPサーバー提供の静的経路を使用するかどうかを指定します。
- 経路1、経路2、および経路3 DHCP経路が無効の場合は、iLOの静的ルート先、マスク、およびゲートウェイアドレスを 指定します。
- DHCPからのDNS iLOがDHCPサーバー提供のDNSサーバーリストを使用するかどうかを指定します。
- DNSサーバー1、DNSサーバー2、DNSサーバー3 DHCPからのDNSが無効の場合は、プライマリ、セカンダリ、およびターシャリDNSサーバーを指定します。
- DHCPからのWINS iLOがDHCPサーバー提供のWINSサーバーリストを使用するかどうかを指定します。
- WINSサーバーに登録 iLOがWINSサーバーに名前を登録するかどうかを指定します。
- WINSサーバー#1およびWINSサーバー#2 DHCPからのWINSが無効の場合は、プライマリおよびセカンダリWINSサーバーを 指定します。
- ドメイン名 iLOのドメイン名。DHCPを使用していない場合は、ドメイン名を指定します。

アドバンストネットワークオプションの構成

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > アドバンストネットワークオプションの順に選択します。
- 2. <u>アドバンストネットワークオプション</u>のいずれかを選択し、そのオプションの設定を選択するかまたは値を入力します。
- 3. 設定を保存します。

ユーザー管理

- ユーザーの追加
- ユーザーの編集/削除

ユーザーの追加

このオプションを使用して、次の権限と情報を持つ新しいローカルiLOユーザーアカウントを追加します。

iLO 6ユーザー権限

- ユーザーアカウントの管理- ローカルのiLOユーザーアカウントを追加、編集、および削除できます。この権限を持つ ユーザーは、すべてのユーザーの権限を変更できます。 この権限がないと、本人の設定の表示と本人のパスワードの変更しか実行できません。
- リモートコンソールアクセス ビデオ、キーボード、マウスの制御を含めて、ホストシステムのリモートコンソールに リモートでアクセスできます。

- 仮想電源およびリセット ホストシステムの電源再投入やリセットを実行できます。 これらの操作はシステムの可用性を中断します。この権限を持つユーザーは、システムにNMIを生成ボタンを使用してシ ステムを診断できます。
- 仮想メディア ホストシステム上の仮想メディア機能を使用できます。
- 設定の構成 セキュリティ設定を含むほとんどのiL0設定を構成し、iL0ファームウェアをリモートアップデートすることができます。

この権限では、ローカルユーザーアカウントは管理できません。iLOを構成したら、Webインターフェイス、HPQLOCFG、またはCLIを使用して、すべてのユーザーからこの権限を取り消して、再構成を防止します。iLO RBSU、iLO 6構成ユーティリティ、またはHPONCFGにアクセスできるユーザーは、引き続きiLOを再構成できます。ユーザーアカウント管理権限を持つユーザーのみが、この権限を有効または無効にすることができます。

- ホストBIOS UEFIシステムユーティリティを使用してホストBIOS設定を構成できます。
- ホストNIC構成 ホストNIC設定を構成できます。
- **ホストストレージ構成** ホストストレージ設定を構成できます。
- リカバリセット リカバリインストールセットを管理できます。

三 注記:

デフォルトでは、リカバリセット権限はデフォルトのAdministratorアカウントに割り当てられます。この権限を別のアカウントに割り当てるには、すでにこの権限を持つアカウントでiLO Webインターフェイスにログインします。セッションを開始したときにシステムメンテナンススイッチがiLOセキュリティを無効にするように設定されている場合、この権限を使用できません。

新しいユーザーの情報

- 新しいユーザー名 ユーザー管理ページのユーザーリストに表示する名前を指定します。ユーザー名は、ログイン名と同じである必要はありません。ユーザー名は最長で39文字です。ユーザー名には、印字可能な文字を使用する必要があります。わかりやすいユーザー名を割り当てると、各ログイン名の所有者を簡単に識別でき便利です。
- ログイン名 iLOにログインするときに使用する必要がある名前を指定します。ユーザー管理ページ、iLO概要ページ、 およびiLOログのユーザーリストに表示されます。 ログイン名は、ユーザー名と同じである必要はありません。ログイン名の最大長は39文字です。ログイン名には、印字可能な文字を使用する必要があります。
- パスワードおよびパスワードの確認 iLOにログインするために使用するパスワードの設定と確認を行います。パスワードは、最長39文字です。パスワードは、確認のために2度入力します。

新しいユーザーアカウントの追加

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > ユーザー管理 > ユーザーの追加を選択します。
- 2. いずれかの<u>iL0 6ユーザー権限</u>を選択します。
- 3. 各オプションで、次のいずれかの設定を選択します。
 - はい このユーザーの権限を有効にします。
 - いいえ このユーザーの権限を無効にします。
- 4. 新しいユーザー情報エントリーを選択します。
- 5. 新しいユーザーの各エントリーを入力します。
- 6. 必要な数のユーザーアカウントを作成し、設定を保存します。

ユーザーの編集/削除

このオプションを使用して、iL0のユーザーアカウントの設定を編集するか、ユーザーアカウントを削除します。

ユーザーアカウントの編集または削除

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > ユーザー管理 > ユーザーの編集/削除を選択します。
- 2. 編集または削除するユーザーアカウントのアクションメニューを選択します。
- 3. 次のいずれかを選択します。
 - 削除 ユーザーアカウントを削除します。
 - 編集 ユーザーのログイン名、パスワード、またはユーザー権限を編集できます。
- 4. 必要な数のユーザーアカウントをアップデートし、設定を保存します。

設定オプション

このメニューを使用して、iLOアクセス設定の表示と構成を行います。

- iL0 6機能- iL0の機能が利用可能かどうかを指定します。この設定が有効(デフォルト)になっている場合、iL0ネットワークを使用でき、オペレーティングシステムドライバーとの通信がアクティブです。この設定が無効になっている場合、iL0ネットワークと、オペレーティングシステムドライバーとの通信が切断されます。iL0の機能が無効になっている場合、iL0ネットワークおよびオペレーティングシステムドライバーとの通信は切断されます。
- iLO 6構成ユーティリティ iLO 6構成ユーティリティを有効または無効にします。
 このオプションを無効に設定すると、UEFIシステムユーティリティにアクセスしたときに、iLO 6構成ユーティリティメニュー項目が使用できません。
- iL0 6構成のためのログインが必要 -- ユーザーがiL0 6機能にアクセスしたときに、ユーザー認証情報プロンプトを表示するかどうかを指定します。
 - この設定が有効の場合は、SUMおよびRESTfulインターフェイスツールのアップデートなどを含む機能に対してユーザー認証情報を入力します。
- POST中にiLO 6のIPアドレスを表示 ホストサーバーのPOST中にiLOのネットワークIPアドレスを表示できます。
- ローカルユーザー ローカルユーザーアカウントアクセスを有効または無効にします。
- シリアルCLIステータス シリアルポート経由でのCLI機能のログインモデルを指定します。設定は次のとおりです。
 - 。 有効 認証は必要 ホストシリアルポートに接続された端末からiLO CLPにアクセスできます。有効なiLOユーザー証明書が必要です。
 - 有効 認証は不要 ホストシリアルポートに接続された端末からiLO CLPにアクセスできます。iLOユーザー証明書は不要です。
 - 。 無効 ホストシリアルポートからiLO CLPへのアクセスを無効にします。 物理シリアルデバイスを使用する予定の場合は、このオプションを使用してください。
- シリアルCLI速度(ビット/秒) CLI機能のためのシリアルポートの速度を指定します。設定(ビット/秒) は、次のとお

りです。

- o 9600
- o 19200
- o 57600
- o 115200

正常に動作するためには、シリアルポート構成がパリティなし、データビット8、ストップビット1 (N/8/1) に設定されている必要があります。

| 注記:

速度38400は、iLO Webインターフェイスでサポートされていますが、iLO 6構成ユーティリティでは現在 サポートされていません。

● iLO Webインターフェイス - iLOと通信するためにiLO Webインターフェイスを使用できるかどうかを指定します。この 設定は、デフォルトで有効になっています。

アクセス設定の構成

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > 設定オプションの順に選択します。
- 2. ユーザーアクセスの<u>設定オプション</u>をアップデートします。
- 3. 設定を保存します。

工場出荷時のデフォルトにセット

この操作を行うと、すべてのユーザーおよびライセンスデータが消去されます。

このオプションを使用して、iLOを工場出荷時のデフォルト設定にリセットします。リセットした場合、次にシステムを再起動するまでiLO 5構成ユーティリティにアクセスできません。iLOをリモートで管理している場合は、リモートコンソールセッションが自動的に終了します。

サーバーに工場でインストールされたライセンスキーがある場合、このライセンスキーは保持されます。

iLOの工場出荷時デフォルト設定へのリセット

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > 工場出荷時のデフォルトにセットを選択します。
 - iLO 6構成ユーティリティに、はいまたはいいえを選択する画面が表示されます。
- 2. はい を選択します。
- 3. リセットの確認を求めるプロンプトが表示されたら、Enterキーを押します。

iLOが工場出荷時のデフォルト設定にリセットされます。iLOをリモートで管理している場合は、リモートコンソールセッションが自動的に終了します。

- 4. ブートプロセスを再開します。
 - a. オプション: iL0をリモート管理している場合は、iL0のリセットが完了するのを待ってから、iL0リモートコンソールを起動します。

以前のセッションのiLO 6構成ユーティリティ画面がまだ開いています。

- b. メインメニューが表示されるまで、Escキーを押します。
- c. メインメニューで、終了して再起動を選択し、Enterキーを押します。
- d. 要求の確認を求めるメッセージが表示されたら、Enterキーを押して画面を終了し、ブートプロセスを再開します。

iL0のリセット

iLOの応答が遅い場合は、このオプションを使用してリセットを実行することができます。

この方法でiLOをリセットしても構成が変更されることはありませんが、iLOへのアクティブな接続がすべて終了します。iLOをリセットすると、次の再起動までiLO 6構成ユーティリティを使用できなくなります。

iL0のアクティブな接続のリセット

このタスクについて

前提条件

iL0設定権限の構成

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > iLOをリセットを選択します。 iLO 6構成ユーティリティに、はいまたはいいえを選択する画面が表示されます。
- 2. はい を選択します。
- 3. リセットの確認を求めるプロンプトが表示されたら、Enterキーを押します。

アクティブなiLO接続がリセットされます。iLOをリモートで管理している場合は、リモートコンソールセッションが自動的に終了します。

- 4. ブートプロセスを再開します。
 - a. オプション: iL0をリモート管理している場合は、iL0のリセットが完了するのを待ってから、iL0リモートコンソールを起動します。

以前のセッションのUEFIシステムユーティリティがまだ開いています。

- b. メインメニューが表示されるまで、Escキーを押します。
- c. メインメニューで、終了して再起動を選択し、Enterキーを押します。
- d. 要求の確認を求めるメッセージが表示されたら、Enterキーを押してユーティリティを終了し、通常のブートプロセスを再開します。

バージョン情報

このメニューを使用して、次のiLOコンポーネントに関する情報を表示します。

- ファームウェア日付 iLOファームウェアのリビジョン日付。
- ファームウェアバージョン iLOファームウェアバージョン。
- iLO CPLDバージョン iLO CPLD (Complex Programmable Logic Device) のバージョン。
- ホストCPLDバージョン サーバーのCPLDのバージョン。
- シリアル番号 iLOのシリアル番号。
- PCI BUS iLOプロセッサーが接続されているPCIバス。
- デバイス PCIバス内のiLOに割り当てられているデバイス番号。

iL0に関する情報の表示

手順

- 1. システムユーティリティ画面で、システム構成 > iLO 6構成ユーティリティ > バージョン情報を選択します。
- 2. iLOコンポーネントの<u>バージョン</u>情報を表示します。

内蔵デバイス情報の表示と構成

サブトピック

<u>コントローラー情報の表示</u>

<u>コントローラー設定の構成</u>

アレイの構成

ディスクユーティリティ

レガシーブートモード用のブート可能デバイスの設定

NICおよびFCoE設定の表示と構成

コントローラー情報の表示

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > コントローラー情報を選択します。
- 2. コントローラー情報の画面で、情報を表示します。

コントローラー設定の構成

サブトピック

<u>コントローラー設定の変更</u>

高度なコントローラー設定の変更

コントローラー構成の消去

バックアップ電源ステータスの表示

電源設定の管理

コントローラー設定の変更

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > コントローラー設定の構成 > コントローラー設 定の変更を選択します。
- 2. コントローラー設定の変更画面で、次のいずれかの設定を変更します。

設定	説明
キャッシュ比率(読み取り)	書き込みキャッシュに対し、先読みキャッシュのメモリ量を調整 します。
	範囲は0~100です。値は5単位で増減できます。
構成された物理ドライブのライトキャッシュ状態	構成済みのすべての物理ドライブ上の書き込みキャッシュの設定 を有効または無効にします。
	オプションは、有効、無効、またはデフォルトです。
現在の並列表面のスキャン数	並行して動作できるコントローラーの表面スキャンの数を制御し ます。
	• 1:無効
	• 16:最大
バッテリなしの書き込みキャッシュ	Energy Packが存在しない場合や充電されていない場合、書き込みキャッシュは有効または無効です。
	オプションは、有効または無効です。
再構築の優先順位	コントローラーが内部コマンドを処理して、障害が発生した論理 ドライブを再構築する優先度が決まります。
	• 低:再構築よりも通常のシステム動作が優先されます。
	中:再構築の時間は半分になり、残りの時間に通常のシステム動作が行われます。
	やや高い:通常のシステム動作よりも再構築が優先されます。
	高:他のすべてのシステム動作よりも再構築が優先されます。

設定	説明
スペアのアクティベーションモード	予測スペアアクティベーションモードは、アレイ内のメンバード ライブが障害予測を報告するたびにスペアドライブをアクティブ 化します。
	障害スペアのアクティベーションモードは、アレイ内のメンバードライブが故障した場合に、フォールトトレランス方式でデータを再生成することにより、スペアドライブをアクティブにします。
表面スキャン分析の優先順位	表面スキャン分析を再開する前に、コントローラーの遅延/アイドル時間の長さを修正します。 • 0: 無効 • 1-30: アイドル状態 (遅延あり) • 31: 高
変換の優先順位	オペレーティングシステムからの要求が処理される速度: 高:通常のI/0とひきかえにできるだけ早く完了します。中:通常のI/0にいくらか影響を及ぼして完了します。低:通常のI/0が発生していないときに実行します。
構成されていない物理ドライブのライトキャッ シュ状態	構成されていないすべての物理ドライブ上の書き込みキャッシュ を有効または無効にします。オプションは、有効、無効、または デフォルトです。

3. 変更の送信をクリックします。

高度なコントローラー設定の変更

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > コントローラー設定の構成 > コントローラーの 詳細設定を選択します。
- 2. コントローラーの詳細設定画面で、次のいずれかの設定を変更します。

設定	説明
代替不整合修復ポリシー	コントローラーの不整合修正ポリシーの動作を制御します。このオプションは、ビデオアプリケーションのコントローラー性能を調整するために使用され、有効なライセンスキーのインストールが必要です。オプションは、有効または無効です。
劣化モードパフォーマンス最適化	ビデオアプリケーションのコントローラー性能を調整するために使用され、有効なライセンスキーのインストールが必要です。オプションは、有効または無効です。
HDDフレキシブル遅延最適化	ホスト要求からの最大測定遅延時間を減らします。
最大ドライブ要求キュー深度	ファームウェアが任意の時点でドライブに送信する物理ドライブ要求の最大数を制御します。このオプションは、ビデオアプリケーション用コントローラーのパフォーマンスのチューニングに使用されます。オプションは、2、4、8、16、32、または自動です。
モニターおよびパフォーマンス解析遅延	コントローラーのモニターおよびパフォーマンス解析遅延の動作を制御し、0から60までの範囲の値で表します。このオプションは、主にビデオアプリケーションのコントローラー性能を調整するために使用され、有効なライセンスキーのインストールが必要です。
物理ドライブの要求エレベーターソート	コントローラーのキャッシュ書き込みエレベーターソートアル ゴリズムの動作を制御します。
	このオプションは、ビデオアプリケーションのコントローラー 性能を調整するために使用され、有効なライセンスキーのイン ストールが必要です。オプションは、有効または無効です。
RAID 6/60代替不整合修復ポリシー	コントローラーの不整合修復ポリシーを設定します。オプションは、有効および無効です。

変更の送信をクリックします。

コントローラー構成の消去

このタスクについて

コントローラー構成を消去すると、アレイ構成およびパーティション情報を含むコントローラーメタデータが破棄されま す。

コントローラー構成を消去すると、接続されているメディアのすべてのデータにアクセスできなくなり、復 旧できません。

- 1. システムユーティリティ画面で、システム構成 > コントローラー > コントローラー設定の構成 > 構成のクリアを選 択します。
- 2. 構成のクリア画面で、次のいずれかまたは両方を選択します。

- すべてのアレイ構成の削除 コントローラーのすべてのアレイを削除します。アレイのすべてのデータも削除されます。
- すべての物理ドライブの構成メタデータを削除する アレイの一部ではないドライブ上のRAIDメタデータを削除します。

バックアップ電源ステータスの表示

手順

- 1. システムユーティリティ画面で、システム構成 > コントローラー > コントローラー設定の構成を選択します。
- 2. バックアップ電源画面で、バックアップ電源のステータスを表示します。

ステータスオプションは、次のとおりです。

- 障害発生
- 未装着
- 充電中
- 充電完了

電源設定の管理

手順

- 1. システムユーティリティ画面で、システム構成 > コントローラー > コントローラー設定の構成 > 電源設定の管理を 選択します。
- 2. 電源設定の管理画面で、次のいずれかの設定をアップデートします。

設定 説明

電力 オプションは次のとおりです。

モード ● 最大パフォーマンス(デフォルト) - パフォーマンスに影響する電力節約オプションは無効です。

- バランス パフォーマンスへの影響を最小限に抑えて電力を節約するにはこの設定を使用します。
- 最小電力 システムパフォーマンスにこだわらずにこの設定を選択すれば、最大の電力の節約が実現されます。

三 注記:

Hewlett Packard Enterpriseは一部のアプリケーションには最小電力の設定をお勧めしていますが、ほとんどのお客様に適切な設定ではありません。ほとんどのアプリケーションにおいて大幅なパフォーマンスの低下が生じます。

サバイ 温度がしきい値を超えたときにダイナミックパワー設定を最小値にまで低下させます。この最小の設定によバル り、サーバーはほとんどの状況で動作することができますが、パフォーマンスは低下する可能性があります。モード

3. 変更の送信をクリックします。

アレイの構成

サブトピック

UEFIシステムユーティリティを使用したアレイの作成

<u>論理ドライブプロパティの表示</u>

<u>論理ドライブの作成</u>

スペアドライブの割り当て

スペアドライブの削除

デバイスの確認

アレイの削除

<u> 論理ドライブの編集</u>

論理ドライブの削除

UEFIシステムユーティリティを使用したアレイの作成

このタスクについて

アレイを作成するときは、ドライブを選択し、RAIDレベルを指定し、ストリップサイズや論理ドライブサイズなどのアレイ設定を構成することができます。

手順

- 1. UEFIシステムユーティリティ画面で、システム構成 > 〈コントローラー名〉> アレイ構成 > アレイの作成を選択します。
- 2. アレイの作成画面で、アレイに含める各ドライブを選択して、次のフォームに進むをクリックします。
- 3. RAIDレベルの設定画面で、ドロップダウンメニューからRAIDレベルを選択し、次のフォームに進むをクリックします。
- 4. 論理ドライブ構成の設定画面で、構成設定を指定するか、デフォルトの選択を使用します。

設定 説明

論理ドライ ドライブラベルのデフォルト選択を使用するか、新しいラベルを入力します。ラベルの文字は英数字また ブのラベル はスペースを指定できます。

ストリップ ストリップサイズは、アレイの各物理ドライブに保存されるデータの量です。フルストライプサイズは、サイズ/フ アレイ内のすべてのドライブ上でコントローラーが同時に読み取りまたは書き込みできるデータの量で

ルストライ す。パリティを通じたフォールトトレランスをサポートするRAIDレベルでは、一度に1つのフルストリップサイズ プサイズに対してパリティ情報が計算されます。

ハードウェアRAIDの場合、ディスクの数とRAIDレベルに応じて、16KiBから1024KiBまで指定できます。デフォルト値は利用可能なすべての領域です。

サイズ 値は10進数で、最小のRAIDサイズは16MiBです。

ユニットサ 論理ドライブのユニットサイズ (MiB/GiB/TiB)。

イズ

高速化の方 論理ドライブの高速化の方法(コントローラーキャッシュまたはなし)。 法

5. 変更の送信をクリックします。

- 6. メインメニューに戻ります。
- 7. 変更内容の保存を行うための確認を求められたらOKをクリックします。
- 8. サーバーを再起動します。

論理ドライブプロパティの表示

手順

- 1. システムユーティリティ画面で、システム構成 > 3 コントローラー > 3 アレイの管理 > 3 アレイの管理 > 3 活理ドライブのリスト > 3 論理ドライブ > 3 論理ドライブの詳細を選択します。
- 2. 論理ドライブの詳細画面で詳細を表示します。

論理ドライブの作成

手順

- 1. システムユーティリティ画面で、システム構成 > コントローラー > アレイ構成 > アレイの管理 > アレイ > 論理ドライブの作成を選択します。
- 2. 論理ドライブの作成画面で、RAIDレベルを選択して次のフォームに進むをクリックします。
- 3. 論理ドライブ構成の設定画面で、構成のデフォルト値を使用するか異なる値を指定します。

設定 説明

論理ドライ ドライブラベルのデフォルト選択を使用するか、新しいラベルを入力します。ラベルの文字は英数字また ブのラベル はスペースを指定できます。

ストリップ ストリップサイズは、アレイの各物理ドライブに保存されるデータの量です。フルストライプサイズは、サイズ/フ アレイ内のすべてのドライブ上でコントローラーが同時に読み取りまたは書き込みできるデータの量でルストライ す。パリティを通じたフォールトトレランスをサポートするRAIDレベルでは、一度に1つのフルストリップサイズ プサイズに対してパリティ情報が計算されます。

ディスクの数とRAIDレベルに応じて、8KiBから1024KiBを指定できます。デフォルト値は利用可能なすべての領域です。

SmartRAID S100i SW RAIDを使用する場合、最小サイズは16KiB、最大サイズは256KiBです。

サイズ 値は10進数で、最小のRAIDサイズは16MiBです。

ユニットサ 論理ドライブのユニットサイズ(MiB/GiB/TiB)。

イズ

高速化の方 論理ドライブの高速化の方法(コントローラーキャッシュまたはなし)。 法

4. 変更の送信をクリックします。

スペアドライブの割り当て

前提条件

スペアドライブは、次の条件を満たす必要があります。

- 割り当てられていないドライブ、または別のアレイのスペアドライブである必要があります。
- アレイに含まれる既存のドライブと同じタイプ(SATA、SASなど)である必要があります。
- ドライブの容量は、アレイ内の最小ドライブ以上でなければなりません。

このタスクについて

スペアは論理ドライブ内で障害が発生したドライブに自動的に代わるドライブです。

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > アレイ > スペアドライブの管理を選択します。
- 2. スペアドライブの管理画面で、スペアアクティブ化タイプを選択します。
 - 専用スペアの割当
 - 自動交換スペアの割当
- スペアとして割り当てるドライブを選択します。

| 注記:

前提条件に記載されている条件を満たすドライブのみが表示されます。

スペアドライブの削除

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > *アレイ* > スペアドライブの管理 > スペアドライブの削除を選択します。
- 2. スペアドライブの削除画面で、削除するスペアを選択し、スペアドライブの削除をクリックします。

デバイスの確認

このタスクについて

UEFIシステムユーティリティを使用して、そのデバイスの識別LEDをオンにして、ドライブを識別します。

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > *アレイ* > デバイ スの確認を選択します。
- 2. デバイスの確認画面で、LEDを点灯させる時間を指定し(秒単位)、ドライブ構成タイプを選択し、開始をクリックします。

タスクの結果

LEDをオフにするには、終了をクリックします。

アレイの削除

このタスクについて

この手順では次のものを削除します。

- アレイ上のすべての論理ドライブ。
- アレイに組み込まれていた論理ドライブのすべてのデータ。

削除されたアレイがコントローラーで唯一のアレイである場合は、コントローラーの設定が削除され、デフォルト構成が復元されます。

個々の論理ドライブを削除するには、「論理ドライブの削除」を参照してください。

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > アレイ > アレイ o 削除を選択します。
- 2. アレイの削除画面で、変更の送信をクリックします。

論理ドライブの編集

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > アレイ > 論理ドライブのリスト > *論理ドライブ* > 論理ドライブの編集を選択します。
- 2. 論理ドライブの編集画面で、次の設定を編集します。

設定 説明

高速化の方 高速化の方法によって、直接論理ドライブにデータを書き込む代わりに、キャッシュメモリに書き込む法 ことによって、データベースの性能が向上します。オプションは次のとおりです。

- コントローラーキャッシュ データをキャッシュメモリに書き込みます。
- なし アレイの他の論理ドライブ用にキャッシュモジュールを予約するために、キャッシュ機能を 無効にします。

論理ドライ このラベルの値は論理ドライブの詳細画面に表示されます。ラベルは英数字およびスペースのみを含め ブのラベル ることができます。

3. 変更の送信をクリックします。

論理ドライブの削除

このタスクについて

個々の論理ドライブを削除するには、この手順を使用します。アレイ内のすべての論理ドライブを削除するには、「アレイの削除」を参照してください。

(i) 重要:

論理ドライブを削除すると、論理ドライブ上のすべてのデータも削除されます。削除する論理ドライブがアレイ内の唯一の論理ドライブである場合、アレイも削除されます。

手順

1. システムユーティリティ画面で、システム構成 > *コントローラー* > アレイ構成 > アレイの管理 > アレイ > 論理ドライブのリスト > *論理ドライブ* > 論理ドライブの削除を選択します。

2. 論理ドライブの削除画面で、変更の送信をクリックします。

ディスクユーティリティ

サブトピック

ディスクデバイス情報の表示

ディスクデバイスの確認

ディスクデバイス情報の表示

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > ディスクユーティリティ > *ディスク* > デバイス 情報を選択します。
- 2. デバイス情報の画面で、情報を表示します。

ディスクデバイスの確認

手順

- 1. システムユーティリティ画面で、システム構成 > *コントローラー* > ディスクユーティリティ > *ディスク* > デバイス の確認を選択します。
- 2. デバイスの確認画面で、LEDを点灯させる時間を指定し(秒単位)、ドライブ構成タイプを選択し、**開始**をクリックします。

タスクの結果

LEDの点滅を停止するには終了をクリックします。

レガシーブートモード用のブート可能デバイスの設定

サブトピック

プライマリおよびセカンダリブート可能デバイスの設定(レガシーブートモード)

<u>OSブート可能ドライブの数の設定(レガシーブートモード)</u>

プライマリおよびセカンダリブート可能デバイスの設定(レガシーブートモード)

手順

1. システムユーティリティ画面で、システム構成 > *コントローラー* > レガシーブートモードにブート可能なデバイスを 設定します > ブート可能な論理ドライブの選択 > *論理ドライブ*を選択します。

- 2. *論理ドライブ*画面で、次のいずれかを選択します。
 - プライマリブートデバイスとして設定
 - セカンダリブートデバイスとして設定

OSブート可能ドライブの数の設定(レガシーブートモード)

手順

- 1. システムユーティリティ画面で、システム構成 > コントローラー > レガシーブートモードにブート可能なデバイスを 設定します > OSブート可能ドライブの数を選択します。
- 2. OSのブート可能なドライブ数の画面で、OSブート可能ドライブの数を指定します。
- 3. 変更の送信をクリックします。

NICおよびFCoE設定の表示と構成

このタスクについて

システム構成画面を使用して、内蔵のNICやFCoEなど、取り付けられているシステムデバイスに関する情報の表示や構成を 行えます。一覧表示されるデバイスおよび使用できる構成オプションは、システムごとに異なります。

手順

- 1. システムユーティリティ画面からシステム構成を選択します。
- 2. デバイスを選択します。

システム構成画面に、内蔵デバイスの情報が表示されます。

- 3. 設定を表示、選択、または入力します。
- 4. 設定を保存します。

ワンタイムブートメニュー

サブトピック

ワンタイムブートメニューオプション

ワンタイムブートのオプションの選択

ワンタイムブートメニューオプション

ワンタイムブートメニューを使用して、ワンタイムブートオーバーライドにUEFIブートオプションを選択できます。このオプションを選択しても、事前定義済みのブート順序の設定は選択したオプションにより変更されません。iLOリモートコンソールでUSBキーまたは仮想メディアを使用する場合、システムユーティリティを終了し、システムユーティリティに入りなおしてこのメニューを更新する必要があります。これにより、デバイスが表示されます。

以下のブートオプションがあります。

• Windows Boot ManagerなどのOSブートマネージャー - インストールされているOSのブートマネージャーをリストしま

す。

• Generic USB Boot - UEFIで起動可能なUSBデバイスのプレースホルダーを提供します。このオプションのブート優先順位を設定し、今後取り付ける可能性があるUSBデバイスと使用する際にこの優先度を保持できます。この優先順位を設定しても、UEFIブート順序リスト内の個々のUSBデバイスの優先順位設定には影響しません。

| 注記:

このオプションは、UEFIモードでのみ使用できます。取り付けられた個々のUSBデバイスのブート順序が低く構成されている場合でも、システムはGeneric USB Bootエントリーで指定された順序ですべてのUEFIでブート可能なUSBデバイスのブートを試みます。

- 内部SDカード
- 内蔵フレキシブルLOM
- 内蔵UEFIシェル
- 内蔵SATAポート
- ファイルシステムからUEFIアプリケーションを実行 ファイルシステムから実行するUEFIアプリケーションを選択できます。システムで使用できるすべてのFATファイルシステムを表示できます。x64 UEFIアプリケーション(拡張子. EFI)を選択して実行することもできます(OSブートローダー、その他のUEFIアプリケーションなど)。
- 内蔵iPXE

ワンタイムブートのオプションの選択

手順

- 1. システムユーティリティ画面で、ワンタイムブートメニューを選択します。
- 2. ワンタイムブートメニューオプションを選択します。

レガシーBIOSワンタイムブートオプションを選択すると、システムが再起動します。

内蔵アプリケーション

サブトピック

内蔵UEFIシェルの起動

インテグレーテッドマネジメントログの表示および消去

Active Health Systemログのダウンロード

内蔵Diagnosticsの起動

Intelligent Provisioningの起動

内蔵iPXEの起動

内蔵UEFIシェルの起動

前提条件

内蔵UEFIシェルが有効に設定されていること。

このタスクについて

内蔵UEFIシェルオプションを使用して、内蔵UEFIシェルを起動します。内蔵UEFIシェルは、UEFIブートローダーを含むUEFIアプリケーションのスクリプトを作成し、実行するための起動前のコマンドライン環境です。このシェルには、システム情報を取得し、システムBIOSを構成およびアップデートするために使用できるCLIベースのコマンドも用意されています。

手順

- 1. システムユーティリティ画面で、内蔵アプリケーション > 内蔵UEF I シェルを選択します。
 - 内蔵UEFIシェル画面が表示されます。
- 2. 任意のキーを押して、その場にいることを知らせます。
 - この手順により、セキュアブートの無効化や他社製のUEFIツールを使用したセキュアブート証明書の管理など、特定の機能が制限されなくなります。
- 3. 管理者パスワードが設定されている場合はプロンプトで入力し、Enterキーを押します。
 - Shell> プロンプトが表示されます。
- 4. タスクの完了に必要なコマンドを入力します。
- 5. Exit コマンドを入力して、シェルを終了します。

インテグレーテッドマネジメントログの表示および消去

このタスクについて

インテグレーテッドマネジメントログ (IML) オプションは、サーバーで発生した履歴イベントの記録を表示または消去できます。IMLのエントリーが問題の診断や発生する可能性がある問題の特定に役立つ可能性があります。IMLは、各イベントに1分単位のタイムスタンプを設定します。

手順

- 1. システムユーティリティ画面で、内蔵アプリケーション > インテグレーテッドマネジメントログを選択します。
- 2. オプションを選択します。
 - IMLを表示 インテグレーテッドマネジメントログレコードを表示します。
 - IMLをクリア インテグレーテッドマネジメントログのすべてのエントリーをクリアします。

Active Health Systemログのダウンロード

このタスクについて

デフォルトでは、システムは直近の7日間のActive Health Systemログをダウンロードします(範囲の開始日および範囲の終了日フィールドを使用して別の期間を指定しなかった場合)。Hewlett Packard Enterpriseサポートから要求された場合は、保存されている.ahsファイルをコピーし、カスタマーサポートの担当者に電子メールで送信することができます。

手順

- 1. システムユーティリティ画面で、内蔵アプリケーション > Active Health Systemログを選択します。
- 2. Active Health Systemログのダウンロードを選択します。
- 3. 次の情報を、選択または入力します。
 - ログ全体をダウンロード サーバーの使用期間のAHSレコードをダウンロードするようにサポート担当者からアド

バイスを受けない限り、この設定を無効のままにしておきます(選択しない)。デフォルト設定は、無効です。

- 範囲の開始日 ログの収集の開始日を入力します。
- 範囲の終了日 ログの収集の終了日を入力します。
- ファイルの位置を選択 このオプションを選択してFile Explorer画面を開き、AHSログをダウンロードするローカルまたは仮想の書き込み可能メディア上でFAT32/FAT16パーティションを選択します。

| 注記:

AHSログをUSBまたはHDDメディアに保存することをお勧めします。SDカードへのログの保存はサポートされていません。

- オプション:サポートケース番号や連絡先情報などのお客様の情報を追加します。
- 4. ダウンロードを開始を選択します。

UEFIファームウェアはiLOと通信をして、要求されたAHSログファイルをダウンロードし、そのファイルを1つの.ahsファイルにまとめます。

5. Hewlett Packard Enterpriseサポートから要求された場合は、保存されている .ahs ファイルをコピーし、カスタマーサポートの担当者に電子メールで送信してください。

タスクの結果

システムユーティリティ > システムヘルス > Active Health Systemログのダウンロードを選択して、AHS ログファイルをダウンロードすることもできます。

内蔵Diagnosticsの起動

このタスクについて

内蔵Diagnosticsオプションを使用して、ハードウェア診断メニューを起動します。そこから、ヘルス概要ステータスの表示、システムテストおよびコンポーネントテストの実行、テストログの表示を行うことができます。

手順

- 1. システムユーティリティ画面で、内蔵アプリケーション > 内蔵Diagnosticsの順に選択します。
 - Hardware Diagnostics画面が表示されます。
- 2. オプションを選択します。
 - システムヘルス ヘルスの概要(BIOSハードウェア、ファン、温度、バッテリ、メモリ、ネットワーク、およびストレージのステータス)、ファン(ゾーン、ラベル、ステータス、および速度)、温度(ラベル、位置、ステータス、現在の測定値、および警告)、電源装置(電源装置の概要およびSmart Storageバッテリ)、プロセッサー、メモリ、NIC情報、ストレージ、およびファームウェア情報をリスト表示します。
 - システムテスト 情報をリスト表示し、ハードウェアサブシステムのチェック用のオプションを用意して、正しく動作していることを確認します。クイックテストオプションでは、10分間のハードウェアチェックを実行します。詳細テストオプションでは、ハードウェアの完全チェックが実行されます。このチェックは、完了まで2時間以上かかる可能性があります。
 - コンポーネントテスト 情報をリスト表示し、プロセッサー、メモリ、ハードドライブ、キーボード、マウス、 ネットワーク、オプティカルドライブ、システムボード、USBポート、およびビデオのテストを確認するためのオプ ションを用意しています。
 - テストログ テストの種類と結果(障害を含む)に関する情報が含まれるテストログを表示します。
 - IMLログ すべてのIMLログファイルを表示します。IMLログファイルには、深刻度、クラス、開始時刻、および

アップデート時刻に関する情報が含まれます。

- 言語 内蔵Diagnosticsで使用する言語を選択します。
- 終了 内蔵Diagnosticsメニューを終了して、システムユーティリティ画面に戻ります。

Intelligent Provisioningの起動

このタスクについて

Intelligent Provisioningは、組み込み型の単一サーバー用展開ツールで、サーバーのセットアップを簡素化し、信頼性と一貫性のあるサーバー構成の展開を実現します。Intelligent Provisioningオプションでは、この起動に限りIntelligent Provisioningホストオーバーライドオプションを選択できます。このオプションでは、通常のブート順序も、ブートモードの設定も変更されません。詳しくは、Hewlett Packard EnterpriseのWebサイト

(https://www.hpe.com/info/intelligentprovisioning/docs) のIntelligent Provisioningユーザーガイドを参照してください。

手順

- 1. システムユーティリティ画面で、内蔵アプリケーション > Intelligent Provisioningを選択します。
- 2. システムユーティリティメニューに戻るには、サーバーを再起動します。

内蔵iPXEの起動

前提条件

内蔵iPXEが有効になっている。

このタスクについて

内蔵iPXEオプションを使用して、内蔵iPXEを起動します。内蔵iPXEは、追加機能によって拡張された完全なPXE実装を提供します。

手順

システムユーティリティ画面で、内蔵アプリケーション 〉内蔵iPXEを選択します。

内蔵iPXEが起動し、ネットワークオプション > 内蔵iPXEで指定された操作が実行されます。

システム情報およびシステムヘルス

サブトピック

システム情報

システム情報の表示

システムヘルスの表示

システム情報

このオプションを使用して、以下の情報を表示します。

- 概要 以下の項目を含むシステム設定の概要を示します。
 - 。 システム名
 - 。 シリアル番号
 - 。 製品ID
 - 。 BIOSバージョン パワーマネージメントコントローラーのファームウェアバージョン ユーザーデフォルト
 - 。 システムメモリ
 - プロセッサータイプ
 - 。 iLOファームウェアバージョン
 - 。 内蔵ネットワークデバイス
- プロセッサー情報 以下の項目を含む詳細なプロセッサー情報を表示します。
 - 。 CPU数、ソケット番号、およびソケットロケーターラベル
 - 。 CPUソケットにCPUパッケージが装着されているかどうか
 - 。 CPUの簡単な製造者の説明と、CPUがサポートする特性のリスト
 - 。 コア数、有効なコア数、およびCPUパッケージ内のスレッド数 (論理コア数)
 - 。 CPUの定格速度と外部クロック
 - 。 CPUパッケージの電圧
 - 。 BIOSによってインストールされているマイクロコードパッチのリスト
 - 。 L1、L2、およびL2キャッシュのサイズと速度
- メモリ情報 以下の項目を含むメモリの詳細情報を表示します。
 - 。 システムメモリの合計
 - 。 メモリスロットの総数
 - 。 動作周波数と電圧
 - 。 CPUに接続されたスロットの数
 - 。 CPUに直接接続されているインストールされたモジュールの数
- ストレージ情報
- PCIデバイス情報 各PCIデバイスに関する詳細な情報を表示します。
- ファームウェア情報 以下の項目を含むファームウェアの詳細情報を表示します。システム情報をファイルにエクスポート 次のことを実行できる画面を開きます。
 - 1. ファイルの位置を選択 エクスポートされる情報のための新規ファイルを選択または指定します。
 - 2. エクスポートするシステム情報の種類を選択します。
 - 。 概要
 - 。 プロセッサー
 - 。 メモリ
 - 。 PCIデバイス
 - 。 ファームウェア
 - 3. 情報をエクスポートするには、選択内容を保存し、システムユーティリティを終了します。

システム情報の表示

手順

- 1. システムユーティリティ画面で、システム情報を選択します。
- 2. 関連情報を表示するためのオプションを選択します。

タスクの結果

RESTfulインターフェイスツールを使用して、ファームウェア情報を表示することもできます。次のRESTful インターフェイスツールのドキュメントを参照してくださ

t\: https://www.hpe.com/info/restfulinterface/docs.

システムヘルスの表示

このタスクについて

システムヘルスオプションを使用して、システム内のすべてのデバイスのヘルスステータスを確認できます。例えば、この画面には、ブートプロセス中に検出されたサポートされていないデバイスが表示されます(存在する場合)。

手順

- 1. システムユーティリティ画面で、システムヘルスを選択します。
- 2. システムヘルスの表示を選択します。

システムの再起動、言語の選択、およびブラウザーモードの設定

サブトピック

システムの再起動

<u>言語とブラウザーモードの選択</u>

システムの再起動

サブトピック

システムを終了して再起動

システムの再起動

システムを終了して再起動

このタスクについて

終了してシステムの起動を再開 オプションを使用して、システムを終了し、通常のブートプロセスを続行します。ブート順序のリストに従ってブートが続行され、システム内の最初のブート可能なオプションが起動されます。たとえば、UEFI内

蔵シェルが有効で、UEFIブート順序リスト内で最初のブート可能なオプションとして選択されている場合、UEFI内蔵シェル を起動できます。

手順

- 1. システムユーティリティ画面で、終了してシステムの起動を再開を選択します。 確認メッセージが表示されます。
- 2. OKをクリックするか、Enterを押します。

システムの再起動

このタスクについて

システムを再起動オプションを使用して、通常のブートプロセスを続行せずに、システムを終了して再起動します。

手順

- システムユーティリティ画面で、システムを再起動を選択します。
 確認メッセージが表示されます。
- 2. はい、再起動しますをクリックするか、またはEnterキーを押します。

言語とブラウザーモードの選択

サブトピック

システム言語の選択

ブラウザーモードの選択

システム言語の選択

手順

- 1. システムユーティリティ画面で、言語を選択を選択します。
- 2. 言語を選択します。
 - 英語
 - 日本語
 - 中文(簡体)
- 3. 設定を保存します。

ブラウザーモードの選択

手順

1. システムユーティリティ画面で、セットアップブラウザーの選択を選択します。

- 2. 設定を選択します。
 - GUI 統合リモートコンソールまたは物理端末を使用してシステムユーティリティにアクセスするときにGUIベース のブラウザーを開きます。
 - テキスト シリアルコンソールを使用してシステムユーティリティにアクセスするときにテキストベースのブラウザーを開きます。
 - 自動 システムユーティリティへのアクセス方法に応じて、テキストベースのブラウザーまたはGUIベースのブラウザーを開きます。
- 3. 設定を保存します。

詳しくは

GUIモードでのシステムユーティリティ内での移動

BIOS/プラットフォーム構成オプション

サブトピック

Gen11の新機能

<u>ワークロードプロファイルとパフォーマンスオプション</u>

<u>システムオプションの変更</u>

プロセッサーオプションの変更

<u>メモリオプションの変更</u>

仮想化オプションの変更

ブートオプションの変更

ネットワークオプションの変更

ストレージオプションの変更

電力およびパフォーマンスオプションの変更

内蔵UEFIシェルオプションの変更

サーバーセキュリティ設定の変更

PCIeデバイス構成オプションの変更

日付と時刻の設定

バックアップおよびリストア設定の変更

<u>システムデフォルトのリセット</u>

Gen11の新機能

Gen11では、BIOSオプションの変更に、機能の追加、特定の機能の廃止、構成可能なRBSUオプションの値の変更が含まれます。詳しくはサブトピックを参照してください。

サブトピック

RBSU AMDオプション

RBSU AMDオプション

新しいAMDオプションと非推奨のAMDオプションを特定し、Gen10 PlusとGen11の間で、RBSU内の構成可能なAMDオプション値の変更を見つけるには、次の表を参照してください。

取り外し可能フラッシュメディアブート順序 プロセッサーx2APICサポート メモリインターリーブサイズ	プション プロセッサーオプション	 内部キーを最初 外部キーを最初(デフォルト) 自動(デフォルト) 強制的に有効 無効 	該当なし自動(デフォルト)強制的に有効
メモリインターリーブサイ		強制的に有効無効	
	メモリオプション		
		256(デフォル ト)/512/1024/2048/4096	該当なし
PCIe構成MMIO (MCFG) ベース3GB	メモリオプション	自動無効(デフォルト)	該当なし (Gen11にはレガシーブートがあ りません)
最大メモリバス周波数	メモリオプション	自動(デフォル ト)/2933/2667/2400	自動(デフォル ト)/3200/3600/4000/4400/4800
	メモリオプション/メモリ暗 号化オプション	該当なし	有効無効(デフォルト)
最大のSEV ASID	仮想化オプション	• ASIDCount253 • ASIDCount509 (デフォルト)	該当なし
AMD 5レベルページ	仮想化オプション	該当なし	有効無効(デフォルト)
	電力およびパフォーマンス オプション	・・ アクセラレータのスルー プット	 無効(デフォルト) IoTゲートウェイ HPCに最適化 OpenStack NFV リアルタイムカーネル用 OpenStack
最小プロセッサーアイドル 電力コアCステート	電力およびパフォーマンス オプション	CステートなしC6 (デフォルト)	CステートなしC1C6 (デフォルト)
	電力およびパフォーマンス オプション	有効(デフォルト)無効	該当なし
	電力およびパフォーマンス オプション/10オプション	有効無効(デフォルト)	該当なし
	電力およびパフォーマンス オプション/I0オプション	0~255	該当なし

オプション名	パス	Gen10 Plus	Gen11
NBI00バスベース (Hex)	電力およびパフォーマンス オプション/IOオプショ ン/NbioLcIkDpmレベル	0(デフォルト)~255	該当なし
NBI00バス制限(Hex)	電力およびパフォーマンス オプション/IOオプショ ン/NbioLcIkDpmレベル	0(デフォルト)~255	該当なし
NBIOO LCLK DPMレベル	電力およびパフォーマンス オプション/IOオプショ ン/NbioLclkDpmレベル	自動(デフォルト)静的(低)静的(高)	該当なし
AMD仮想DRTMデバイス	サーバーセキュリティ/アド バンストセキュリティオプ		● 有効
	ション		• 無効(デフォルト)
拡張優先I/0	電力およびパフォーマンス オプション/IOオプション	有効無効(デフォルト)	該当なし
PCIeホットプラグエラー制 御	PCIeデバイス構成/アドバンストPCIe構成	ホットプラグサプライズ (デフォルト)EDPCファームウェア優先EDPCOsFIRST	該当なし
動的PCIeレート変更をサポート	PCIeデバイス構成/アドバン ストPCIe構成	有効無効(デフォルト)	該当なし
NVMe PCIeリソースパディング	PCIeデバイス構成/アドバンストPCIe構成	正常(デフォルト)中高	該当なし
UEFI変数アクセスのファー ムウェアコントロール	サーバーセキュリティ/アド バンストセキュリティオプ ション	該当なし	無効(デフォルト)有効

関連トピック

- AMD Secure Nested Pagingの有効化または無効化
- ▲ AMD 5レベルページの有効化
- <u>UEFI変数アクセスのファームウェアコントロールの構成</u>

RBSUインテルオプション

新しいインテルオプションと非推奨のインテルオプションを特定し、Gen10 PlusとGen11の間で、RBSU内の構成可能なインテルオプション値の変更を見つけるには、次の表を参照してください。

オプション名	パス	Gen10 Plus	Gen11
プロセッサーx2APICサポート	プロセッサーオプション	有効(デフォルト)無効強制的に有効	● 自動(デフォルト) ● 強制的に有効

オプション名	パス	Gen10 Plus	Gen11
最大メモリバス周波数	メモリオプション	 自動(デフォルト) 1867 2133 2400 2667 2933 	自動(デフォルト)32003600400044004800
内蔵SATA構成	ストレージオプショ ン/SATAオプション	Ahci (デフォルト)SmartRAIDSwRaidIntelVrocSata	● Ahci(デフォルト) ● IntelVrocSata
インテル(R) VROCサポート	ストレージオプショ ン/NVMeオプション/イン テルNVMeオプション	なし(デフォルト)VmdForIntelNvmeVmdForHpeNvme	なし(デフォルト)標準プレミアム
インテル(R) ソフトウェアガードエ クステンションズ (SGX)	サーバーセキュリティ/イ ンテルセキュリティオプ ション	↑ ● 有効● 無効(デフォルト)● 工場出荷時へのリセッ!	有効無効(デフォルト)
SGX工場出荷時リセット	サーバーセキュリティ/イ ンテルセキュリティオプ ション		有効無効(デフォルト)
最小プロセッサーアイドル電力パッ ケージCステート	電力およびパフォーマン スオプション	C6リテンションなし状態なし	C6リテンション(デフォルト)C6リテンションなし状態なし
インテルパフォーマンス監視サポー ト	電力およびパフォーマン スオプション	有効無効(デフォルト)	該当なし
ローカル/リモートしきい値	電力およびパフォーマン スオプション	自動(デフォルト)低中高	該当なし
プロセッサーパフォーマンス強化	電力およびパフォーマン スオプション/アドバンス トパフォーマンスチュー ニングオプション		該当なし
プロセッサーパフォーマンス強化の プロファイル	電力およびパフォーマン スオプション/アドバンス トパフォーマンスチュー ニングオプション		無効(デフォルト)保守的中積極的
PCIピアツーピア直列化	電力およびパフォーマン スオプション/アドバンス トパフォーマンスチュー ニングオプション	- 11/1/201	該当なし
NVMe PCIeリソースパディング	PCIeデバイス構成オプ ション/アドバンストPCI デバイス設定	正常(デフォルト)e 中高	無効(デフォルト)有効
EmbSATA3Enable/Aspm/PCleOptionROM	PCIeデバイス構成オプ ション/内蔵SATA3構成	該当なし	自動無効
VMware独自のページ廃棄サポート	アドバンストオプション	有効(デフォルト)無効	該当なし (VMWare独自のソリュー ションは削除されました。)

オプション名	パス	Gen10 Plus	Gen11
UEFI変数アクセスのファームウェア コントロール	サーバーセキュリティ/ア ドバンストセキュリティ オプション	7 該当なし	無効(デフォルト)有効
HBMメモリモード 注記: HBMメモリオプションは、以前のROMバージョンではなくGen11 PR3 ROMでのみ使用できます。	メモリオプション/HBMメ モリオプション/HBMメモ リモード	該当なし	• 2LM • 1LM

関連トピック

- SGX工場出荷時リセットの有効化または無効化
- <u>UEFI変数アクセスのファームウェアコントロールの構成</u>
- <u>HBMメモリオプションの構成</u>

RBSU Ampereオプション

新しいAmpereオプションを確認するには、次の表を参照してください。

オプション名	パス	Gen11
ANCモード	プロセッサーオプション	モノリシック(デフォルト)ヘミスフィアクアドラント
L3キャッシュとしてのSLC	プロセッサーオプション	● 有効● 無効(デフォルト)
プリフェッチャー	プロセッサーオプション	有効(デフォルト)無効
ECCモード	メモリオプション	自動(デフォルト)SECDEDシンボル
ECC制御	メモリオプション	DE対応FI対応DEおよびFI対応(デフォルト)
巡回スクラブ	メモリオプション	有効(デフォルト)無効
デマンドスクラブ	メモリオプション	有効(デフォルト)無効
Fine Granularity Refresh (FGR)	メモリオプション	1x (デフォルト)2xRowHammerあり1xRowHammerあり2x
APEIサポート	電源オプション	有効(デフォルト)無効
CPPCサポート	電源オプション	有効(デフォルト)無効
LPIサポート	電源オプション	有効(デフォルト)無効
ARM SMMU PMU	仮想化オプション	● 有効● 無効(デフォルト)
アンペア最大パフォーマンス	電源オプション	有効(デフォルト)無効

RBSUの共通オプション

オプション名	パス	Gen10 Plus	Gen11
現在のTPMのタイプ	サーバーセキュリティ/TPMオ プション	Tpmなし(デフォルト)Tpm12Tpm20	該当なし
現在のTPM FIPSモード	サーバーセキュリティ/TPMオ プション	未指定(デフォルト)非FIPSモードFIPSモード	該当なし

オプション名	パス	Gen10 Plus	Gen11		
TpmActivePcrs	サーバーセキュリティ/TPMオ プション	未指定(デフォルト)sha1sha256Sha1Sha256	未指定(デフォルト)sha1sha256Sha384		
			Sha1Sha256Sha256Sha384		
現在のTPM 2.0ソフトウェア インターフェイスステータス	サーバーセキュリティ/TPMオ プション	操作なし(デフォルト)FIFOCrb	操作なし(デフォルト)FIF0		
TPM 1.2操作	サーバーセキュリティ/TPMオ プション	操作なし(デフォルト)有効無効クリア	該当なし 注記: Gen11はTPM 2.0のみです。		
TPMモード切替操作	サーバーセキュリティ/TPMオ プション	操作なし(デフォルト)Tpm12Tpm20	該当なし		
TPM 2.0ソフトウェアイン ターフェイス操作	サーバーセキュリティ/TPMオ プション	操作なし(デフォルト)FIFOCrb	該当なし		
TPM FIPSモードスイッチ	サーバーセキュリティ/TPMオ プション/TPMアドバンストオ プション		該当なし		
No-Executeメモリ保護	サーバーセキュリティ/アド バンストセキュリティオプ ション	有効(デフォルト)無効	該当なし		
NVM Express Smart RAID SW RAIDサポート	ストレージオプション/NVMe オプション/NVMe RAIDオプ ション	● 有効● 無効(デフォルト)	該当なし 注記: SWRAID は Gen11で削除されま した。		
PCIスロットX分岐	PCIeデバイス構成/アドバン ストPCIe構成/PCIe分岐オプ ション	自動(デフォルト)分岐デュアル分岐	分岐なし(デフォルト)分岐デュアル分岐		
最大PCI Express速度	PCIeデバイス構成/アドバンストPCIe構成	 PerPortCtrl (デフォルト) PcieGen1 PcieGen2 PcieGen3 	PerPortCtrl (デフオ ルト) PcieGen1 PcieGen2 PcieGen3 PcieGen4		
タイムゾーン	日時		UtcWET 注記: ダブリンとロンドンのUTCOから変更されました。		

オプション名 パス Gen10 Plus Gen11

UEFI最適化ブート

ブートオプション

有効(デフォルト)

無効

該当なし

| 注記: レガシーブー トモードは非推奨に なりました。

ワークロードプロファイルとパフォーマンスオプション

ワークロードプロファイルは、HPE Intelligent System Tuning (IST) 機能の1つで、事前構成されたワークロードプロ ファイルを選択することにより、HPE ProLiantサーバーのリソースを調整することができます。サーバーは、選択したワー クロードに一致するようにBIOS設定を自動的に構成します。

システムで提供されたワークロードプロファイル

システムは、これらのワークロードプロファイルを提供します。

一般的な電力効率のコンピューティング

このプロファイルは、ほとんどのProLiantサーバーとHPE Synergyコンピュートモジュールのデフォルトのプロファイ ルです。

このプロファイルは、ほとんどのアプリケーションのワークロードに役立ち、しかも全体のパフォーマンスに及ぼす 影響が最小限になる電力管理設定を有効にする、最も一般的なパフォーマンス設定を適用します。適用される設定 は、一般的なアプリケーションパフォーマンスと電力効率の間のバランスのとれたアプローチに対して非常に有利に 働きます。

このプロファイルは、通常BIOSをワークロード用に調整しないお客様にお勧めします。

一般的なピーク周波数のコンピューティング

このプロファイルは、任意の時点において個々のコアで可能な最大周波数を実現する必要があるプロセッサーやメモ リにとって一般的に有利になるワークロードを対象としています。電力管理設定は、任意のコンポーネントの上方周 波数が容易に得られることが確実なときに適用されます。発生する可能性がある遅延時間よりも処理速度が優先され ます。このプロファイルは汎用プロファイルであるため、プロセッサーコアとメモリの速度を向上させるための全般 的な最適化が行われます。

このプロファイルは、計算時間が短いことが通常有利になるワークロードに有利です。

一般的なスループットのコンピューティング

このプロファイルは、合計最大継続ワークロードスループットが必要なワークロードに対して使用します。プロセッ サーが個々のコアの最大の速度で実行されたときに、必ずしもスループットが向上するわけではありません。それよ りもプロセッサーが最大使用率のときに使用可能なすべてのコアで持続的な処理を実行できるときに、スループット が向上します。到達可能な最大帯域幅に影響することが認識されている場合、電力管理設定は無効化されます。

最高のスループットが達成されるのは、ワークロードがNUMA(Nonuniformed Memory Access)を認識して最適化され ているため、NUMAの認識が有利に働く設定が適用される場合です。

仮想化 - 電力効率

このプロファイルは、仮想化環境で使用します。このプロファイルにより、利用可能なすべての仮想化オプションが 有効になります。特定の仮想化テクノロジーは、非仮想化環境にパフォーマンス上の影響を及ぼすことがあり、他の プロファイルで無効にすることができます。電力管理設定は、仮想化OSの実行時にパフォーマンスに影響を与える可 能性があります。このプロファイルは、仮想化に配慮した電力管理設定を適用します。

仮想化 - 最大パフォーマンス

このプロファイルは、仮想化環境で使用します。このプロファイルにより、利用可能なすべての仮想化オプションが 有効になります。最大のパフォーマンスを提供するため、電力管理設定は無効になります。

低レイテンシ

このプロファイルは、ワークロードの計算待機時間が最小になることを希望するお客様向けです。このプロファイル は、HPE低レイテンシのホワイトペーパーに記載されている最も一般的なベストプラクティスに従っています。全体的 な計算待機時間を減少させるために、最大速度およびスループットが犠牲になります。計算待機時間を導入する電力 管理およびその他の管理機能も無効化されます。

このプロファイルは、リアルタイムのOS (RTOS) またはトランザクション待ち時間の影響を受けやすい他のワークロードを実行しているお客様に利点があります。

ミッションクリティカル

このプロファイルは、基本的なサーバーのデフォルト値を上回るサーバー信頼性とパフォーマンスの妥協点を探るお客様向けです。プロファイルには、計算パフォーマンスに対して測定可能な影響を及ぼす、高度なメモリの信頼性、可用性、および保守性(RAS)の機能があります。このプロファイルを有効にすると、最大メモリ帯域幅に影響を与え、メモリの遅延が大きくなります。

トランザクションアプリケーション処理

このプロファイルは、データベースバックエンドを必要とするオンライントランザクション処理(OLTP)アプリケーションなどのビジネス処理環境向けです。例えば、ワークロードは通常、共同でホストされるデータベースコンポーネントを持つ単一サーバー上で実行されるユーザーベースの多数のトランザクションアプリケーションで構成されています。このプロファイルは、ピーク周波数とスループットの両方の管理要件のバランスを調整します。

ハイパフォーマンスコンピューティング (HPC)

このプロファイルは、従来のHPC環境で実行しているお客様向けです。通常これらの環境は、大規模な科学的および工学的なワークロードを処理するために、各ノードが長期間にわたって最大の使用率で実行できるクラスター環境です。Apolloシリーズサーバーのデフォルトの場合、継続的に利用可能な帯域幅およびプロセッサーコンピュート容量を優先させるために、電力管理は通常無効化されます。このプロファイルは、最大スループットを達成するためにいくらかの遅延時間が受け入れられたことを除けば、低レイテンシプロファイルに似ています。

意思決定サポート

このプロファイルは、データマイニングやオンライン分析処理(OLAP)など、データウェアハウスの運用に焦点を合わせたエンタープライズビジネスデータベース(ビジネスインテリジェンス)のワークロード向けです。

グラフィック処理

このプロファイルは、Graphics Processing Unit (GPU) を使用するサーバー構成で実行されるワークロード向けです。GPUは通常、I/0とメモリの間の最大帯域幅に依存します。I/0とメモリ間のリンクに影響を与える電源管理機能は、無効化されています。ピア間トラフィックも重要であるため、仮想化も無効になります。

1/0スループット

このプロファイルは、I/0とメモリ間の最大スループットに依存している構成向けです。I/0とメモリ間のリンクにパフォーマンス上の影響を与えるプロセッサー使用率に依存する電源管理機能は、無効化されています。

カスタム

ワークロードプロファイルメニューのこのオプションは、ワークロードプロファイルを無効にします。展開の特定のBIOSオプションを手動で設定する場合、このオプションを使用します。カスタムを選択すると、以前に選択したプロファイルの設定がすべて変換されます。すべてまたは一部のオプションを編集できます。

カスタムはプロファイルではなく、指定した設定はテンプレートとして保存されません。

サーバーのデフォルトプロファイル

ワークロードプロファイルのオプションは、さまざまな電力消費とパフォーマンス要件をサポートします。ほとんどのHPE ProLiant Gen10サーバーおよびHPE Synergyコンピュートモジュールでは、ワークロードプロファイルはデフォルトで一般的な電力効率のコンピューティングに設定されています。このワークロードプロファイルは、ほとんどのアプリケーションワークロードに適した一般的なパフォーマンスと消費電力の設定を提供します。HPE Apolloシステム内のProLiant XLサーバーの場合、ワークロードプロファイルはデフォルトでハイパフォーマンスコンピューティングに設定されています。

カスタムプロファイル以外のワークロードプロファイルを選択すると、他の設定オプションに影響します。例えば、一般的なピーク周波数のコンピューティングプロファイルを選択すると、パワーレギュレーターモードがスタティックハイパフォーマンスになります。この設定は変更できず、グレー表示されます。

サブトピック

Workload Matching

<u>ワークロードプロファイルの依存関係の概要</u>

ワークロードプロファイルの適用

プロファイルの適用後の依存オプションの変更

Workload Matching

Hewlett Packard EnterpriseサーバーのデフォルトのBIOS設定は、パフォーマンスと電力効率のバランスをとります。これらの設定は、特定のアプリケーションのワークロードに適するように調整できます。

HPE Gen10以降のサーバーには、お客様が既知のワークロードベースのチューニングプロファイルを使用して、BIOS設定を調整するUEFI構成オプションがあります。ワークロードのプロファイル設定と実際に展開されたワークロードを一致させると、すぐに使えるBIOSのデフォルトを使用するだけの場合と比べたパフォーマンスのゲインがわかります。

詳しくは、<u>https://www.hpe.com/support/Workload-UG-en-Gen11</u>にあるHPEサーバー用のUEFIワークロードベースプロファイルおよびチューニングガイドを参照してください。

ワークロードプロファイルの依存関係の概要

依存関係

BIOS構成に使用できる複数のオプションがあります。すべてのプロファイルで、同じオプションが特定の設定に設定されるわけではありません。各プロファイルは、特定のパフォーマンス結果を得るために設計されており、それらの結果を満たすために異なるオプションを設定します。プロファイルが設定するオプションは、依存関係と呼ばれます。他のすべてのオプションは、ワークロードプロファイルの影響を受けないため、非依存設定として認識されます。

依存関係とプロファイルの切り替え

プロファイルを変更すると、そのプロファイルの依存関係の設定のみが変更されます。非依存設定は、プロファイルを変更 する前と変わりません。

以下に例を示します。

- 1. 一般的な電力効率のコンピューティングプロファイルを選択します。このプロファイルでは、エネルギーパフォーマンスバイアスがパフォーマンスをバランスに設定されています。
- 2. 一般的なピーク周波数のコンピューティングプロファイルを選択します。このプロファイルにはエネルギーパフォーマンスバイアスに対する依存関係はありません。エネルギーパフォーマンスオプションはパフォーマンスをバランスに設定されています。これは、その設定が一般的な電力効率のコンピューティングプロファイルから変換されるためです。
- 3. 一般的なスループットコンピューティングプロファイルを選択します。このプロファイルでは、エネルギーパフォーマンスバイアスが最大パフォーマンスに設定されています。
- 4. 一般的なピーク周波数のコンピューティングプロファイルを選択します。このプロファイルにはエネルギーパフォーマンスバイアスに対する依存関係はありません。エネルギーパフォーマンスバイアスは最大パフォーマンスに設定されています。これは、その設定が一般的なスループットコンピューティングプロファイルから変換されるためです。

以前のプロファイルと依存関係に戻すことはできません。新しいプロファイルに変更後、新しい依存関係が適用されます。 古いプロファイルに戻す唯一の方法は、変更を保存せずに終了することです。保存せずに終了すると、RBSUを入力したとき の状態に戻ります。プロファイルの保存後、そのプロファイルから中間の依存関係に戻すことはできません。

依存関係とオプションのマトリックス

この表は、ワークロードプロファイルとその依存関係を示しています。ワークロードプロファイルは、UIにリストされている順序でリストされます。テーブル内の「〇」は、オプションの設定にプロファイルの要件が存在せず、編集可能であることを示しています。依存関係は編集できません。

国注記:

この表のオプションの一部は、サーバーによっては調整できません。ただし、これらの設定を調整するオプションがない場合でも、デフォルトはここに示す値です。

サブトピック

第1世代および第2世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係

第3世代AMD EPYC(TM)プロセッサーのワークロードプロファイルの依存関係

第4世代AMD EPYC(TM)プロセッサーのワークロードプロファイルの依存関係

第1世代および第2世代AMD EPYC (TM) プロセッサーのワークロードプロファイル の依存関係

注記:

オプションは、サーバーに取り付けられているハードウェアによって異なります。

表 1. ワークロードプロファイル:一般的な電力効率のコンピューティング - 低レイテンシ

	効率のコン	一般的なピー ク周波数のコ ンピューティ ング	ループットの		仮想化 - 最大 パフォーマン ス	低レイテンシ	ミッションクリ ティカル
パワーレギュ レーター	OSコントロー ル		スタティック ハイパフォー マンス		スタティック ハイパフォー マンス		Х
SR-IOV	Х	Х	Х	有効	有効	無効	Х
AMD IOMMU	Х	Х	Х	有効	有効	Х	Х
AMDバーチャ ライゼーショ ンテクノロ ジー	Х	Х	Х	有効	有効	無効	Х
最小プロセッ サーアイドル 電力コアCス テート	C6	Х	Х	C6	Cステートな し	Cステートな し	Х
AMDターボコ ア	有効	有効	有効	Х	有効	無効	Х
L1ストリーム HWプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
L2ストリーム HWプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
NUMAグループ サイズ最適化	フラット	クラスター構 成	クラスタ ー 構 成	クラスター構 成	クラスター構 成	クラスタ ー 構 成	Х
メモリ巡回ス クラビング	Х	х	х	Х	х	無効	Х
メモリリフ レッシュレー ト	Х	1x	1x	Х	Х	1x	2x
x2APIC	Х	Х	Х	Х	Х	自動	Х

表 2. ワークロードプロファイル:ミッションクリティカル - 1/0スループット

	トランザク ションアプリ ケーション処 理		意思決定サ ポート	グラフィック 処理	I/0スループッ ト	カスタム	EV名
パワーレギュ レーター		スタティック ハイパフォー マンス	Х	Х	Х	Х	CQHPER
SR-IOV	Х	無効	Х	無効	Х	Х	CQHSRIOV
AMD IOMMU	Х	Х	Х	Х	Х	Х	CQHSKTPROC
AMDバーチャ ライゼーショ ンテクノロ ジー	Х	無効	Х	無効	Х	Х	CQHAMD
最小プロセッ サーアイドル 電力コアCス テート		Cステートな し	Х	Х	Х	Х	CQHSKTPOWER
AMDターボコ ア	有効	有効	Х	Х	х	Х	CQHSKTPOWER
L1ストリーム HWプリフェッ チャー	有効	有効	有効	有効	有効	Х	CQHSKTPROC
L2ストリーム HWプリフェッ チャー	有効	有効	有効	有効	有効	Х	CQHSKTPROC
NUMAグループ サイズ最適化		クラスター構 成	クラスター構 成	クラスター構 成	クラスター構 成	Х	CQHNUMA
メモリ巡回ス クラビング	Х	Х	Х	Х	Х	Х	CQHMEM
メモリリフ レッシュレー ト	Х	1x	Х	Х	Х	Х	CQHMEM
x2APIC	Х	自動	Х	自動	Х	Х	CQHSKTPROC

第3世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係

| 注記:

オプションは、サーバーに取り付けられているハードウェアによって異なります。

表 1. ワークロードプロファイル:一般的な電力効率のコンピューティング - ミッションクリティカル

	一般的な電力 効率のコン ピューティン グ		ループットの] 仮想化 − 最大 パフォーマン ス	低レイテンシ	ミッションクリ ティカル
プロセッサー x2APICオプ ション ¹	自動	Х	Х	Х	Х	自動	Х

	効率のコン	一般的なピー ク周波数のコ ンピューティ ング	ループットの		仮想化 - 最大 パフォーマン ス	低レイテンシ	ミッションクリ ティカル
メモリリフ レッシュレー ト	Х	Х	Х	Х	Х	1x	2x
メモリ巡回ス クラビング	Х	Х	Х	Х	Х	無効	有効
ソケットあた りのNUMAメモ リドメイン	Х	Х	Х	Х	Х	NPS4	Х
AMD I/0バー チャライゼー ションテクノ ロジー	Х	Х	Х	有効	有効	無効	Х
SR-IOV	Х	Х	Х	有効	有効	無効	Х
パワーレギュ レーター	OSコントロー ル	静的(高)	静的(高)	OSコントロー ル	静的(高)	静的(高)	Х
最小プロセッ サーアイドル 電力コアCス テート	C6	Х	Х	C6	Х	Х	X
データファブ リックCステー ト有効		無効	Х	有効	無効	無効	Х
Cステート効率 モード	Х	無効	無効	Х	無効	無効	無効
AMDコアパ フォーマンス ブースト	有効	有効	有効	Х	有効	無効	Х
Collaborative Power Control (協調 電力制御)		X	X	X	無効	無効	X
xGMI強制リン ク幅	Х	Х	Х	Х	Х	x16	Х
NUMAグループ サイズ最適化	フラット	クラスター化	クラスター化	クラスター化	クラスター化	クラスター化	Х
L1ストリーム HQプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
L2ストリーム HQプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
Infinity Fabricの電力 管理	有効	Х	Х	有効	無効	無効	Х
Infinity Fabricのパ フォーマンス 状態	自動	Х	P0	自動	P0	P0	X

表 2. ワークロードプロファイル:トランザクションアプリケーション処理 - 1/0スループット

トランザクションアハイパフォーマンス 意思決定サポート グラフィック処理 I/0スループット プリケーション処理 コンピューティング (HPC)

		(111 0)			
プロセッサー x2APICオプション ¹	Х	自動	Х	自動	Х
メモリリフレッ シュレート	Х	Х	Х	Х	Х
メモリ巡回スクラ ビング	無効	Х	Х	Х	Х
ソケットあたりの NUMAメモリドメイ ン	Х	NPS4	Х	NPS4	NPS2
AMD I/Oバーチャラ イゼーションテク ノロジー	Х	無効	X	無効	Х
SR-IOV	無効	無効	無効	無効	無効
パワーレギュレー ター	静的(高)	静的(高)	Х	Х	Х
最小プロセッサー アイドル電カコアC ステート	Х	Х	X	Х	X
データファブリッ クCステート有効	Х	無効	Х	無効	無効
Cステート効率モー ド	無効	無効	無効	無効	無効
AMDコアパフォーマ ンスブースト	有効	有効	Х	Х	Х
Collaborative Power Control (協 調電力制御)	Х	無効	Х	Х	Х
xGMI強制リンク幅	Х	x16	Х	x16	x16
NUMAグループサイ ズ最適化	クラスター化	クラスター化	クラスター化	クラスター化	クラスター化
L1ストリームHQプ リフェッチャー	有効	有効	有効	有効	有効
L2ストリームHQプ リフェッチャー	有効	有効	有効	有効	有効
Infinity Fabricの 電力管理	Х	無効	Х	無効	無効
Infinity Fabricの パフォーマンス状 態	X	P0	X	P0	PO

1

第4世代AMD EPYC (TM) プロセッサーのワークロードプロファイルの依存関係

₁ 1 - システムで256を超えるスレッドがアクティブな場合、プロセッサーx2APICオプションが強制的に有効になります。

表 1. ワークロードプロファイル:一般的な電力効率のコンピューティング - ミッションクリティカル

	効率のコン	一般的なピー ク周波数のコ ンピューティ ング	ループットの		仮想化 - 最大 パフォーマン ス	低レイテンシ	ミッションクリ ティカル
プロセッサー x2APICオプ ション ¹	Х	Х	Х	Х	Х	自動	Х
AMD SMT	Х	Х	Х	Х	Х	Х	Х
メモリリフ レッシュレー ト	Х	Х	Х	Х	Х	1x	2x
メモリバス周 波数	Х	Х	Х	Х	Х	Х	Х
メモリ巡回ス クラビング	Х	Х	Х	Х	Х	無効	有効
ソケットあた りのNUMAメモ リドメイン	X	Х	Х	Х	Х	NPS4	Х
NUMAノードと してのラスト レベルキャッ シュ(LLC)	Х	Х	Х	Х	Х	X	Х
AMD I/0バー チャライゼー ションテクノ ロジー	Х	Х	Х	有効	有効	無効	Х
SR-IOV	Х	Х	Х	有効	有効	無効	Х
パワーレギュ レーター	OSコントロー ル	静的(高)	静的(高)	OSコントロー ル	静的 (高)	静的(高)	Х
最小プロセッ サーアイドル 電力コアCス テート	C6	Х	X	C6	Х	X	X
データファブ リックCス テート有効	自動	無効	Х	有効	無効	無効	Х
Cステート効 率モード	Х	無効	無効	Х	無効	無効	無効
AMDコアパ フォーマンス ブースト	有効	有効	有効	Х	有効	無効	Х
xGMI強制リン ク幅	Х	Х	Х	Х	Х	x16	Х
NUMAグループ サイズ最適化	フラット	クラスター構 成	クラスター構 成	クラスター構 成	クラスター構 成	クラスタ ー 構 成	Х
L1ストリーム HWプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
L2ストリーム HWプリフェッ チャー	有効	有効	有効	Х	Х	有効	有効
Infinity Fabricの電力 管理	有効	Х	Х	有効	無効	無効	Х

	効率のコン	一般的なピー ク周波数のコ ンピューティ ング	ループットの		仮想化 - 最大 パフォーマン ス	低レイテンシ	ミッションクリ ティカル
Infinity Fabricのパ フォーマンス 状態	自動	Х	P0	自動	P0	P0	Х
AMDパフォー マンスワーク ロードプロ ファイル	無効	無効	無効	無効	無効	無効	無効

表 2. ワークロードプロファイル:トランザクションアプリケーション処理 - 1/0スループット

トランザクションアハイパフォーマンス 意思決定サポート グラフィック処理 I/0スループット プリケーション処理コンピューティング (HPC)

		(111 0)			
プロセッサー x2APICオプション ¹	Х	自動	Х	自動	Х
AMD SMT	Х	Х	Х	Х	Х
メモリリフレッ シュレート	Х	Х	Х	Х	Х
メモリバス周波数	Х	Х	Х	Х	Х
メモリ巡回スクラ ビング	無効	Х	Х	Х	Х
ソケットあたりの NUMAメモリドメイ ン	Х	NPS4	Х	NPS4	NPS2
NUMAノードとして のラストレベル キャッシュ(LLC)	Х	Х	Х	Х	Х
AMD I/Oバーチャラ イゼーションテク ノロジー	Х	無効	Х	無効	Х
SR-IOV	無効	無効	無効	無効	無効
パワーレギュレー ター	静的(高)	静的(高)	X	X	Х
最小プロセッサー アイドル電力コアC ステート		Х	Х	Х	Х
データファブリッ クCステート有効	Х	無効	Х	無効	無効
Cステート効率モー ド	無効	無効	無効	無効	無効
AMDコアパフォーマ ンスブースト	有効	有効	X	Х	Х
xGMI強制リンク幅	X	x16	Х	x16	x16
NUMAグループサイ ズ最適化	クラスター構成	クラスター構成	クラスター構成	クラスター構成	クラスター構成
L1ストリームHWプ リフェッチャー	有効	有効	有効	有効	有効
L2ストリームHWプ リフェッチャー	有効	有効	有効	有効	有効
Infinity Fabricの 電力管理	Х	無効	Х	無効	無効
Infinity Fabricの パフォーマンス状 態	Х	P0	Х	P0	P0
AMDパフォーマンス ワークロードプロ ファイル	無効	無効	無効	無効	無効

注記: セル内の「x」は、依存関係がなく、グレーアウトでないことを示します。

インテル(R) Xeon(R)スケーラブルプロセッサーのワークロードプロファイルの依存関係

注記:

オプションは、サーバーに取り付けられているハードウェアによって異なります。

表 1. ワークロードプロファイル:一般的な電力効率のコンピューティング - 低レイテンシ

	一般的な電力効 率のコンピュー ティング		プットのコン	仮想化 - 電力効 率	仮想化 - 最大パ フォーマンス	低レイテンシ
SR-IOV	Х	Х	Х	有効	有効	無効
VT-D	Х	Х	Х	有効	有効	無効
VT-x	Х	Х	Х	有効	有効	無効
パワーレギュ レーター		スタティックハ イパフォーマン ス		OSコントロール		スタティックハ イパフォーマン ス
最小プロセッ サーアイドル電 カコアCステー ト	C6	Х	Х	C6	Cステートなし	Cステートなし
最小プロセッ サーアイドル電 カパッケージC ステート		パッケージC6リ テンション	パッケージC6リ テンション	パッケージC6リ テンション	Cステートなし	Cステートなし
エネルギーパ フォーマンスバ イアス	パフォーマンス をバランス	Х	最大パフォーマ ンス	パフォーマンス をバランス	最大パフォーマ ンス	最大パフォーマ ンス
協調電力制御	有効	無効	無効	有効	無効	無効
インテルDMIリ ンク周波数	自動	自動	自動	自動	自動	自動
インテルターボ ブーストテクノ ロジー	有効	有効	有効	X	有効	無効
インテルNIC DMAチャネル (IOAT)	有効	Х	Х	X	Х	Х
HWプリフェッ チャー	有効	有効	有効	Х	Х	有効
隣のセクターの プリフェッチ	有効	有効	有効	Х	Х	有効
DCUストリーム プリフェッ チャー	有効	有効	有効	Х	Х	有効
DCU IPプリ フェッチャー	有効	有効	有効	Х	Х	有効
NUMAグループサ イズ最適化	フラット	クラスター構成	クラスター構成	クラスター構成	クラスター構成	クラスター構成
メモリ巡回スク ラビング	Х	Х	Х	Х	Х	無効

	一般的な電力効 率のコンピュー ティング	周波数のコン	一般的なスルー プットのコン ピューティング	仮想化 - 電力効 率	仮想化 - 最大バ フォーマンス	《低レイテンシ
メモリリフレッ シュレート	Х	1x	1x	Х	Х	1x
UPIリンク電力 管理	有効	無効	無効	有効	無効	無効
Sub-NUMAクラス タリング	無効	Х	SNC4 (4クラス ター) を有効	無効	SNC4 (4クラス ター) を有効	Х
エネルギー効率 ターボ	有効	無効	無効	有効	無効	無効
アンコア周波数 のシフト	自動	最大	Х	自動	最大	最大
x2APIC	Х	Х	Х	Х	Х	自動
チャネルイン ターリーブ	有効	有効	有効	有効	有効	有効
メモリバス周波 数	Х	Х	Х	Х	Х	Х
アドバンストメ モリプロテク ション	Х	Х	Х	Х	Х	アドバンスト ECCサポート
最適化電力モード	有効	無効	無効	無効	無効	無効

表 2. ワークロードプロファイル:ミッションクリティカル - 1/0スループット

	ミッションクリ ティカル	トランザクション アプリケーション 処理			グラフィック処 理	I/0スループット
SR-IOV	Х	Х	無効	Х	無効	Х
VT-D	Х	Х	無効	Х	無効	Х
VT-x	Х	Х	無効	Х	無効	Х
パワーレギュ レーター	Х	スタティックハイ パフォーマンス		X	Х	Х
最小プロセッ サーアイドル電 カコアCステー ト	Х	Cステートなし	Cステートなし	Х	Х	Х
最小プロセッ サーアイドル電 カパッケージC ステート	Х	Cステートなし	Cステートなし	Х	Х	Х
エネルギーパ フォーマンスバ イアス	Х	最大パフォーマン ス	最大パフォーマ ンス	Х	最大パフォーマ ンス	最大パフォーマ ンス
協調電力制御	Х	Х	無効	Х	Х	Х
インテルDMIリ ンク周波数	自動	自動	自動	自動	自動	自動
インテルターボ ブーストテクノ ロジー	Х	有効	有効	Х	Х	Х

	ミッションクリ ティカル	トランザクション アプリケーション 処理			グラフィック処 理	I/0スループット
インテルNIC DMAチャネル (IOAT)	Х	有効	有効	Х	Х	有効
HWプリフェッ チャー	有効	有効	有効	有効	有効	有効
隣のセクターの プリフェッチ	有効	有効	有効	有効	有効	有効
DCUストリーム プリフェッ チャー	有効	有効	有効	有効	有効	有効
DCU IPプリ フェッチャー	有効	有効	有効	有効	有効	有効
NUMAグループサ イズ最適化	Х	クラスター構成	クラスター構成	クラスター構成	クラスター構成	クラスター構成
メモリ巡回スク ラビング	Х	Х	Х	Х	Х	Х
メモリリフレッ シュレート	2x	Х	1x	Х	Х	Х
UPIリンク電力 管理	Х	無効	無効	Х	Х	Х
Sub-NUMAクラス タリング	Х	Х	Х	Х	Х	Х
エネルギー効率 ターボ	Х	Х	無効	Х	Х	Х
アンコア周波数 のシフト	Х	Х	最大	Х	最大	最大
x2APIC	Х	Х	自動	Х	自動	Х
チャネルイン ターリーブ	有効	有効	有効	有効	有効	有効
メモリバス周波 数	Х	Х	Х	Х	Х	Х
アドバンストメ モリプロテク ション	Х	Х	アドバンスト ECCサポート	Х	Х	Х
最適化電力モー ド	無効	無効	無効	無効	無効	無効

ワークロードプロファイルの適用

このタスクについて

システムで提供される定義済みの設定に応じて、システムでワークロードを管理するためのワークロードプロファイルを適用します。依存オプションは変更できず、グレー表示されます。非依存オプションはどれもプロファイル内で変更できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ワークロードプロファイルを選択します。
- 2. ワークロードプロファイルを選択します。

- オプション:
 変更したい非依存オプションをすべて変更します。
- 4. 変更を保存します。
- 5. 再起動してワークロードプロファイルを適用します。

詳しくは

<u>ワークロードプロファイルとパフォーマンスオプション</u>

プロファイルの適用後の依存オプションの変更

前提条件

このタスクを実行する前に、ワークロードプロファイルを適用します。

このタスクについて

ワークロードプロファイルで変更する依存オプションが1つまたは複数存在する場合があります。定義済みのプロファイルでは依存オプションを変更することはできません。カスタムモードでは、依存オプションを変更できます。カスタムモードでは、展開はプロファイルモードになっていないため、オプションの設定を手動で調整することができます。カスタムモードに入ると、以前に適用されたプロファイルのすべての設定が表示されます。

依存設定を変更する最も簡単な方法は、適用されているプロファイルを変更することです。まず、使用する設定の大部分が含まれるワークロードプロファイルを適用してから、カスタムモードに変更します。次に、新しい値を持つ設定だけを変更します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ワークロードプロファイルを選択します。
- 2. カスタムプロファイルオプションを選択します。

以前に適用されたワークロードプロファイルのすべての設定が表示されます。すべてのオプションは編集できます。

- 3. 新しい値を指定するオプションを変更します。
- 4. 変更を適用するには、保存して再起動します。

システムオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > システムオプションを選択しま す。

サブトピック

ブート時間最適化の構成

<u>シリアルポートオプションの構成</u>

<u>USBオプションの構成</u>

IOSシリアルコンソールとEMSの構成

サーバー可用性の構成

サーバー資産情報の表示および入力

ブート時間最適化の構成

サブトピック

動的消費電力上限機能の設定

拡張メモリテストの有効化または無効化

UEFI POST検出モードの設定

ウォームリセット時のメモリ消去の有効化または無効化

動的消費電力上限機能の設定

このタスクについて

動的消費電力上限機能の構成オプションを使用して、ブート処理中にシステムROMが電力較正を実行するかどうかを制御し ます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > ブート時間最適化 > 動的消費電力上限機能を選択します。
- 2. 設定を選択します。
 - 自動 電力較正は、最初にサーバーが起動されたときに実行し、サーバーのハードウェア構成の設定が変更されたときにのみ、再度実行されます。
 - 有効 システムブートのたびに、電力較正が実行されます。
 - 無効 電力較正は実行されず、動的消費電力上限はサポートされていません。
- 3. 設定を保存します。

拡張メモリテストの有効化または無効化

このタスクについて

拡張メモリテストオプションを使用すると、メモリの初期化プロセスでシステムがメモリを検証するかどうかを構成できます。有効にすると、訂正不能メモリエラーが検出された場合に、そのメモリが特定され、故障したDIMMがIMLに記録されます。

戸 注記:

このオプションを有効にすると、ブート時間が大幅に伸びる可能性があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > ブート時間最適化 > 拡張メモリテストを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

UEFI POST検出モードの設定

このタスクについて

UEFI POST検出モード オプションを使用して、システムがUEFIデバイスドライバーをロードする方法を制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > ブート時間最適化 > UEFI POST検出モードを選択します。
- 2. 次のいずれかを選択します。
 - 自動 システムは、UEFIブート順序リスト内のデバイスを起動するために必要なUEFIデバイスドライバーのみをロードします。
 - 完全検出の強制 システムは、すべてのデバイスのUEFIドライバーをロードし、すべてのブートターゲットを使用 可能にします。

| 注記:

この設定により、ブート時間が大幅に増加する可能性があります。

- 高速検出の強制 システムは、ブート時間を長くするためにできるだけ少ない数のデバイスを起動します。
 - 注記:

高速検出をサポートしていない一部のデバイスでは、正しく動作しない場合があります。

3. 設定を保存します。

ウォームリセット時のメモリ消去の有効化または無効化

このタスクについて

ウォームリセット時のメモリ消去オプションを使用して、ウォームリセット時にメモリが消去される時期を構成します。このオプションを無効にすると、ウォームリセット時のメモリ消去がスキップされ、起動時間を短縮できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > ブート時間最適化 > ウォームリセット時のメモリ消去キーを押します。
- 2. 設定を選択します。
 - 有効-メモリはすべての再起動時に消去されます。
 - 無効-ウォームリセット時にオペレーティングシステムから要求された場合にのみメモリが消去されます。
- 3. 設定を保存します。

シリアルポートオプションの構成

サブトピック

内蔵シリアルポートの割り当て

内蔵シリアルポートの割り当て

このタスクについて

内蔵シリアルポートオプションを使用して、論理COMポートアドレスと関連のデフォルトリソースを、選択した物理シリアルポートに割り当てます。

前提条件

適切な画面解像度を得るために、端末ソフトウェアのコンソール解像度を100x31に設定してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > シリアルポートオプション > 内蔵シリアルポートを選択します。
- 2. 設定を選択します。

• COM 1: IRQ4: I/O: 3F8h-3FFh

• COM 2: IRQ3: I/O: 2F8h-2FFh

- 無効
- 3. 設定を保存します。

仮想シリアルポートの割り当て

このタスクについて

仮想シリアルポートオプションを使用して、仮想シリアルポート(VSP)で使用する論理COMポートアドレスと関連のデフォルトリソースを割り当てます。VSPを使用すると、BIOSシリアルコンソールおよびオペレーティングシステムシリアルコンソールをサポートするために、iLOマネジメントコントローラーを物理シリアルポートとして表示することができます。前提条件

適切な画面解像度を得るために、端末ソフトウェアのコンソール解像度を100x31に設定してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > シリアルポートオプション > 仮想シリアルポートを選択します。
- 2. 設定を選択します。
 - COM 1
 - COM 2
 - 無効
- 3. 設定を保存します。

USBポートへのシリアルコンソールのミラーリング

このタスクについて

このオプションを有効にすると、シリアルコンソールをUSBポートにミラーリングできます。ミラーリングにはHPEコンソールケーブルキットが必要です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > シリアルポートオプション > USBコンソールリダイレクションを選択します。
- 2. オプションを選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

USBオプションの構成

サブトピック

USB制御の設定

USBブートサポートの有効化または無効化

USB制御の設定

このタスクについて

USBオプションのオプションを使用して、起動時のUSBポートと内蔵デバイスの動作を構成できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > USB オプション > USB制御を選択します。
- 2. 設定を選択します。
 - すべてのUSBポート有効 すべてのUSBポートと内蔵デバイスを有効にします。
 - すべてのUSBポート無効 すべてのUSBポートと内蔵デバイスを無効にします。
 - ◆ 外部USBポート無効 外部USBポートを無効にします。
 - 内部USBポート無効 内部USBポートを無効にします。
- 3. 設定を保存します。

USBブートサポートの有効化または無効化

このタスクについて

USBブートサポートオプションを使用して、(サポートされている場合に)システムが仮想メディアデバイスなどの接続されているUSBデバイスや内蔵SDカードスロットからブートできるかどうかを制御します。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > USB オプション > USBブートサポートを選択します。

- 2. 設定を選択します。
 - 有効 システムは、サーバーに接続されているUSBデバイスから起動できます。
 - 無効 システムは、サーバーに接続されているUSBデバイスから起動できません。
- 3. 設定を保存します。

IOSシリアルコンソールとEMSの構成

サブトピック

BIOSシリアルコンソールポートの有効化または無効化

BIOSシリアルコンソールエミュレーションモードの選択

BIOSシリアルコンソールボーレートの設定

EMSコンソールポート設定の構成

BIOSシリアルコンソールポートの有効化または無効化

このタスクについて

BIOSシリアルコンソールポートオプションを使用して、ビデオとキーストロークをシリアルポート経由でオペレーティングシステムブートにリダイレクトします。

注記:

このオプションは、シリアルポートに接続されている非端末デバイスに干渉する場合があります。その場合、このオプションを無効に設定します。

注記:

このオプションは、UEFIプリブートのシステムユーティリティを実行中は、英語モードのみサポートされます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > BIOSシリアルコンソール/EMSオプション > BIOSシリアルコンソールポートを選択します。
- 2. 設定を選択します。
 - 自動
 - 物理シリアルポート
 - 仮想シリアルポート
- 3. 設定を保存します。

BIOSシリアルコンソールエミュレーションモードの選択

このタスクについて

BIOSシリアルコンソールエミュレーションモードオプションを使用して、エミュレーションモードタイプを選択します。シリアルターミナルプログラム(ハイパーターミナルまたはPuTTYなど)で使用するエミュレーションと一致させるには、こ

のオプションを選択します。BIOSエミュレーションモードは、ターミナルプログラムで選択したモードと一致する必要があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > BIOS シリアルコンソール/EMS > BIOSシリアルコンソールエミュレーションモードを選択します。
- 2. 設定を選択します。
 - VT100
 - ANSI
 - VT100+
 - VT-UTF8
- 3. 設定を保存します。

BIOSシリアルコンソールボーレートの設定

このタスクについて

BIOSシリアルコンソールボーレートオプションを使用します。これは、シリアルポートを介して通信されるデータの通信レートです。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > BIOS シリアルコンソール/EMS > BIOSシリアルコンソールボーレートを選択します。
- 2. 設定を選択します。
 - 9600
 - 19200
 - 57600
 - 115200
 - 38400
- 3. 設定を保存します。

EMSコンソールポート設定の構成

このタスクについて

EMSコンソールポート設定オプションを使用して、物理または仮想シリアルポートを介したWindows Server Emergency Management console (EMS) のリダイレクト機能を含む、ACPIシリアルポートの設定を構成します。

EMSの構成オプションは変更されています。詳細については製品のドキュメントを参照してください。

| 注記:

すべてのBAUDレートがオペレーティングシステムによるシリアルポートリダイレクション (EMS) によって、サポートされていません。サポートされるモードについては、オペレーティングシステムのドキュメントを参照してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > BIOS シリアルコンソール/EMS > EMSコンソールを選択します。
- 2. 物理または仮想ポート設定を選択します。
- 3. 設定を保存します。

サーバー可用性の構成

サブトピック

ASRの有効化または無効化

ASRタイムアウトの設定

ウェイクオンLANの有効化または無効化

POST F1プロンプトの遅延の設定

電源ボタンを一瞬押す機能の有効化または無効化

自動電源オン時の状態の設定

電源投入遅延の設定

POST ASRの設定

POST ASRタイマーの設定

<u>IPMIウォッチドッグタイマーの有効化または無効化</u>

IPMI ウォッチドッグタイマーのタイムアウトの設定

IPMIウォッチドッグタイマー動作の設定

ASRの有効化または無効化

このタスクについて

前提条件

システムマネジメントドライバーがロードされている。

ASRステータスオプションを使用して、自動サーバー復旧を有効または無効にします。ASRは、サーバーがロックアップした 場合にサーバーを自動的に再起動します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > システムオプション > サーバー可用性 > ASRステータスを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

ASRステータスオプションは、ProLiant Gen10サーバーでのみサポートされています。

ASRタイムアウトの設定

このタスクについて

前提条件

ASRステータスが有効である。ASRタイムアウトオプションを使用して、オペレーティングシステムのクラッシュ時または サーバーのロックアップ時のサーバーの再起動までの待ち時間を設定できます。選択した時間内にサーバーが応答しない と、サーバーは自動的に再起動します。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > システムオプション > サー バー可用性 > ASRタイムアウトを選択します。
- 待機時間を選択します。
 - 5分
 - 10分
 - 15分
 - 20分
 - 30分
- 設定を保存します。

注記:

ASRタイムアウトオプションは、ProLiant Gen10サーバーでのみサポートされています。

ウェイクオンLANの有効化または無効化

このタスクについて

ウェイクオンLANオプションを使用して、WOL対応NICを使用してサーバーの電源をリモートでオンにする機能を有効または 無効にします。

前提条件

WOL対応のNIC、NICドライバー、およびオペレーティングシステム。

| 注記:

このオプションを有効にする場合、アダプターを挿入したり取り外したりする前に、すべての電源コードを 外してください。アダプターによっては、サーバーに追加されたときにサーバーの電源をONにするものがあ ります。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サー バー可用性 > ウェイクオンLANを選択します。
- 設定を選択します。
 - 有効

- 無効
- 3. 設定を保存します。

POST F1プロンプトの遅延の設定

このタスクについて

POST F1プロンプトオプションを使用して、サーバーのPOST画面でのF1キーの表示方法を構成します。オプションが有効になっていてエラーが発生した場合、F1キーを押すと、サーバーの電源投入シーケンスを続行できます。 POST処理中に、一連のシステムテストが実行され、次の処理を行います。

- システムが動作継続可能な状態で障害が発生した場合、システムは起動を続行した後、メッセージを出力します。
- 重要なコンポーネントに障害が発生したり欠落した場合、システムは起動を試みます。起動に成功した場合、メッセージとF1プロンプト(有効にしている場合)が表示されます。
- 欠落または障害が発生したコンポーネントがあり、システムが動作できない場合、そのコンポーネントが交換されるまでシステムは停止します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > POST F1プロンプトを選択します。
- 2. 設定を選択します。
 - 20秒の遅延 エラーが発生した場合、システムはF1プロンプトで20秒間動作を停止してから、OSの起動を続行します。
 - 2秒の遅延 エラーが発生した場合、システムはF1プロンプトで2秒間動作を停止してから、OSの起動を続行します。
 - 無効 エラーが発生した場合、システムはF1プロンプトを回避して起動を続行します。
- 3. 設定を保存します。

電源ボタンを一瞬押す機能の有効化または無効化

このタスクについて

電源ボタンモードオプションを使用すると、電源ボタンの機能が一瞬有効または無効になります。このモードは4秒間の電源ボタンのオーバーライド、あるいはリモートの電源管理機能に影響がありません。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > 電源ボタンモードを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

白動電源オン時の状能の設定

このタスクについて

自動電源オンオプションを使用して、AC電源が接続されたときにサーバーの電源を自動的にオンにする方法を構成します。 デフォルトでは、AC電源の喪失後にAC電源が復旧したとき、システムは以前の電源状態に戻ります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > 自動電源オンを選択します。
- 2. 設定を選択します。
 - 常に電源オン AC電源が喪失した時点でシステムが「オフ」であった場合でも、システムは自動的に「オン」の状態に戻ります。
 - ・ 常に電源オフ システムは自動的に電源オフ状態に戻ります。
 - 最後の電源状態を復元 システムは自動的に以前の電源状態に戻ります。
- 3. 設定を保存します。

電源投入遅延の設定

このタスクについて

電源投入遅延オプションを使用して、指定した時間にサーバーの電源をオンにすることを遅らせるかどうかを設定します。 このオプションにより、電源喪失後のサーバーの電源オンを遅らせ、電力使用量の急激な増加を防ぐことができます。

| 注記:

次のイベントは電源投入遅延設定を上書きし、サーバーの電源をただちに入れます。

- iL0仮想電源ボタンを使用して電源ボタンを押す
- ウェイクオンLANイベント
- RTC (リアルタイムクロック) ウェイクアップイベント

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > 電源投入遅延を選択します。
- 2. 設定を選択します。
 - 遅延なし
 - ランダムに遅延
 - 15秒遅延
 - 30秒遅延
 - 45秒遅延
 - 60秒遅延
- 3. 設定を保存します。

POST ASRの設定

このタスクについて

POST ASRオプションを使用すると、POST ASR(自動サーバー復旧)を構成できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > POST ASRを選択します。
- 2. 設定を選択します。
 - POST ASRがオン
 - POST ASRがオフ
- 3. 設定を保存します。

| 注記:

POST ASRオプションは、ProLiant Gen10 Plus以降のサーバーでのみサポートされています。

POST ASRタイマーの設定

このタスクについて

POST ASRタイマーを使用して、サーバーのロックアップ時のサーバーの再起動までの待ち時間を設定できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > POST ASRタイマーを選択します。
- 2. 設定を選択します。
 - 10分
 - 15分
 - 20分
 - 30分
- 3. 設定を保存します。

IPMIウォッチドッグタイマーの有効化または無効化

このタスクについて

IPMIウォッチドッグタイマーオプションを使用すると、IPMIに準拠した起動時 (POST) のウォッチドッグタイマー (WDT) を有効にできます。このタイマーは、ユーザーがシステムに対してIPMIコマンドを発行すると無効になります。このタイマーは自動的に無効になりません。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー可用性 > IPMI ウォッチドッグタイマーを選択します。
- 2. 設定を選択します。
 - 無効
 - 有効

| 注記: IPMIウォッチドッグタイマーを有効にした後、ユーザーがシステムをRBSUまたはUEFIシェルに 再起動した場合、タイマーは停止しません。WDTは選択された待機時間の後にタイムアウトし、システ ムは選択されたタイムアウトリセット動作を続行します。

設定を保存します。

IPMIウォッチドッグタイマーのタイムアウトの設定

前提条件

IPMIウォッチドッグタイマーが有効になっている。

このタスクについて

IPMIウォッチドッグタイマーのタイムアウトを使用すると、サーバーのロックアップが発生した場合にサーバーに対して必 要なタイムアウト動作を実行するまでの待機時間を設定できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サー バー可用性 > IPMI ウォッチドッグタイマーのタイムアウトを選択します。
- 待機時間を選択します。
 - 10分
 - 15分
 - 20分
 - 30分
- 3. 設定を保存します。

IPMIウォッチドッグタイマー動作の設定

このタスクについて

IPMIウォッチドッグタイマー動作を使用して、サーバーのロックアップによってウォッチドッグタイマーが時間切れになっ たときのタイムアウト動作を構成します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サー バー可用性 > IPMIウォッチドッグタイマー動作を選択します。
- 設定を選択します。
 - 電源再投入
 - 電源切断
 - ウォームブート
- 設定を保存します。

サーバー資産情報の表示および入力

サブトピック

<u>サーバー情報の入力</u>

管理者情報の入力

サービスコンタクト情報の入力

カスタムPOSTメッセージの入力

サーバー情報の入力

このタスクについて

サーバー情報オプションを使用して、サーバー管理者の参照情報を入力します。テキストの設定については、最大14文字を 入力します。デフォルトでは、すべての値が空白です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー資産情報 > サーバー情報を選択します。
- 2. エントリーを選択して入力します。
 - サーバー名 サーバーの名前を入力します。
 - サーバー資産タグ サーバー資産番号を入力します。
 - 資産タグ保護 次の設定を選択します。
 - 。 非固定
 - 。 ロック 資産タグ情報をロックします。デフォルトのシステム設定が復元されても、資産タグは消去されません。
 - サーバープライマリOS サーバーのプライマリOSに関する説明を入力します。
 - サーバーのその他の情報 サーバーについて説明する追加テキストを入力します。
- 3. 設定を保存します。

管理者情報の入力

このタスクについて

管理者情報のオプションを使用して、サーバー管理者の連絡先情報を入力できます。各エントリーに入力できる文字数は、サーバーモデルによって異なります。デフォルトでは、すべての値が空白です。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー資産情報 > 管理者情報を選択します。
- 2. エントリーを選択して入力します。
 - 管理者名 サーバーの管理者名を入力します。
 - 管理者電話番号 サーバー管理者の電話番号を入力します。
 - 管理者メールアドレス サーバー管理者の電子メールアドレスを入力します。
 - 管理者その他の情報 サーバー管理者に関する追加テキストを入力します。

3. 設定を保存します。

サービスコンタクト情報の入力

このタスクについて

サービスコンタクト情報オプションを使用して、サーバー管理者用にサービスコンタクト情報を入力します。各エントリーに入力できる文字数は、サーバーモデルによって異なります。デフォルトでは、すべての値が空白です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー資産情報 > サービスコンタクト情報を選択します。
- 2. エントリーを選択して入力します。
 - サービスコンタクト名 サービスコンタクトの名前を入力します。
 - サービスコンタクト電話番号 サービスコンタクトの電話番号を入力します。
 - サービス連絡先E-mailアドレス サービスコンタクトの電子メールアドレスを入力します。
 - サービスコンタクトその他情報 サービスコンタクトに関する追加テキストを入力します。
- 3. 設定を保存します。

カスタムPOSTメッセージの入力

このタスクについて

カスタムPOSTメッセージオプションを使用して、サーバーのPOST画面にカスタムメッセージを表示します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムオプション > サーバー資産情報 > カスタムPOSTメッセージを選択します。
- 2. 最大62文字のメッセージを入力します。
- 3. 設定を保存します。

プロセッサーオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > プロセッサーオプションを選択します。

サブトピック

<u>インテルハイパースレッディングの有効化または無効化</u>

インテル(R)スピード・セレクト・テクノロジーコアパワーの有効化または無効化

インテル(R)スピード・セレクト・テクノロジーパフォーマンスプロファイルの構成

インテル(R)スピード・セレクト・テクノロジーベースフリークエンシーの有効化または無効化

有効にするプロセッサーコアの数の設定

プロセッサーRAPLワット値の構成

プロセッサー物理アドレッシングの構成

インテル(R) TSXサポートの有効化または無効化

プロセッサーAES-NIサポートの有効化または無効化

プロセッサーのUUID制御の有効化または無効化

プロセッサーx2APICサポートの有効化または無効化

AMD同時マルチスレッド (SMT) の有効化

Performance Determinismオプションの構成

AMDページテーブルエントリーの投機的ロックスケジューリングオプションの選択

UPI3リンクの有効化または無効化

ANCモードの構成

L3キャッシュとしてのSLCの有効化または無効化

プリフェッチャーの有効化または無効化

インテルハイパースレッディングの有効化または無効化

このタスクについて

インテル(R) ハイパースレッディングオプションを使用して、インテルのハイパースレッディングテクノロジーをサポートするプロセッサー上で論理プロセッサーコアを有効または無効にすることができます。インテルのハイパースレッディングテクノロジーでは、プロセッサーコア数が多いことにより恩恵を受けるアプリケーションで全体的なパフォーマンスを改善できます。

| 注記:

ハイパースレッディングはすべてのプロセッサーでサポートされているわけではありません。詳しくは、ご使用のプロセッサーモデルのドキュメントを参照してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > インテル(R) ハイパースレッディングオプションを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

インテル(R)スピード・セレクト・テクノロジーコアパワーの有効化または無効化

このタスクについて

インテル(R)スピード・セレクト・テクノロジー - コアパワーにより、コア間でエネルギーと電力バジェットにバイアスをかけることができます。

() 重要:

プロセッサーでサポートされていない場合、スピード・セレクト・テクノロジーオプションがRBSUで非表示になる可能性があります。詳細については、搭載されているCPUのDCLドキュメントを参照してください。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > インテル(R)スピード・セレクト・テクノロジー コアパワーを選択します。
- 2. 次のいずれかの設定を選択します。
 - 有効
 - 無効(デフォルト)
- 3. 設定を保存します。

インテル(R)スピード・セレクト・テクノロジーパフォーマンスプロファイルの構成

このタスクについて

() 重要:

プロセッサーでサポートされていない場合、スピード・セレクト・テクノロジーオプションがRBSUで非表示になる可能性があります。詳細については、搭載されているCPUのDCLドキュメントを参照してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > インテル(R)スピード・セレクト・テクノロジー パフォーマンスプロファイルを選択します。
- 2. 次のいずれかの設定を選択します。
 - 基本
 - 構成1
 - 構成2
- 3. 設定を保存します。

インテル(R) スピード・セレクト・テクノロジーベースフリークエンシーの有効化または無効化

このタスクについて

(i) 重要:

プロセッサーでサポートされていない場合、スピード・セレクト・テクノロジーオプションがRBSUで非表示になる可能性があります。詳細については、搭載されているCPUのDCLドキュメントを参照してください。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > インテル(R)スピード・セレクト・テクノロジー ベース・フリークエンシーを選択します。
- 2. 次のいずれかの設定を選択します。

- 有効
- 無効(デフォルト)
- 3. 設定を保存します。

有効にするプロセッサーコアの数の設定

このタスクについて

このオプションを使用すると、物理プロセッサーごとの有効なプロセッサーコアの数を制限できます。有効なコアの数は、物理プロセッサーでサポートされる値に設定できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > プロセッサーごとの有効なコアを選択します。
- 2. 有効にするコアの数を入力してください。
 - 0またはプロセッサーでサポートされていない値を入力した場合、すべてのコアが有効になります。
- 3. 設定を保存します。

プロセッサーRAPLワット値の構成

このタスクについて

プロセッサーRAPLワット値は、システム内に取り付けられたすべてのプロセッサーに適用されるプロセッサーRAPLごとの値です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > プロセッサーRAPLワット値を選択します。
- 2. ワット値をミリワット単位で入力または変更します。これを検証するには、資格のある担当者に相談してください。
- 3. 設定を保存します。

プロセッサー物理アドレッシングの構成

このタスクについて

プロセッサー物理アドレッシングでは、プロセッサー物理アドレッシング(PAE)を46ビットに制限します。このオプションは、高いアドレッシング機能をサポートしない古いオペレーティングシステムをサポートするために必要な場合があります。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > プロセッサー物理アドレッシングを選択します。
- 2. 次のいずれかの設定を選択します。
 - デフォルト
 - 制限付き[(PAE)を制限する]

3. 設定を保存します。

インテル(R) TSXサポートの有効化または無効化

このタスクについて

インテル(R) TSXサポートは、プロセッサーのTransactional Synchronization Extensions (TSX) サポートを構成するために使用できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > インテル (R) TSXサポートを選択します。
- 2. 次のいずれかの設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

プロセッサーAES-NIサポートの有効化または無効化

このタスクについて

プロセッサーAES-NIサポートを使用して、プロセッサー内のAdvanced Encryption Standard Instruction Set (AES-NI) を有効または無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > プロセッサーオプション > プロセッサーAES-NIサポートを選択します。
- 2. 次のいずれかの設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

プロセッサーのUUID制御の有効化または無効化

このタスクについて

プロセッサーのUUID制御を使用して、PPIN制御のロックを解除し、有効または無効にします。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > プロセッサーのUUID制御を選択します。
- 2. 次のいずれかの設定を選択します。
 - ロック/無効
 - アンロック/有効

3. 設定を保存します。

プロセッサーx2APICサポートの有効化または無効化

このタスクについて

プロセッサーx2APICサポートを有効にすると、高コア数構成でオペレーティングシステムをより効率的に実行できるようになります。また、仮想化された環境での割り込み配布が最適化されます。有効化モードは、x2APICハードウェアを有効にしませんが、オペレーティングシステムに必要なサポートを提供します。古いハイパーバイザーまたはx2APICサポートと互換性がないオペレーティングシステムを使用していない限り、このオプションは有効のままにします。一部のハイパーバイザーおよびオペレーティングシステムは、起動前にプロセッサーx2APICサポートを強制的に有効に設定しなければ、X2APICを使用できません。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > プロセッサーx2APICサポートを選択します。
- 2. 次のいずれかの設定を選択します。
 - 自動 ACPI x2APIC制御構造が生成され、オペレーティングシステムがロードされるときにx2APICサポートを有効にするオプションが追加されます。
 - 強制的に有効 特定のプロセッサーで、オペレーティングシステムがロードされるときに、オペレーティングシステムに対してx2APICサポートを有効にします。
- 3. 設定を保存します。

AMD同時マルチスレッド(SMT)の有効化

このタスクについて

AMD SMTオプションを使用して、AMD SMT機能を有効または無効にします。

三 注記:

このオプションは、AMDプロセッサーを搭載するサーバーで使用できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > AMD SMTオプションを選択します。
- 2. 次のいずれかを選択します。
 - 有効 各物理プロセッサーコアは2個の論理プロセッサーコアとして動作します。このオプションを有効にすると、プロセッサーコアの数が多いことによりメリットを受けるアプリケーションの全体パフォーマンスが向上します。
 - 無効 各物理プロセッサーコアは1個の論理プロセッサーコアとして動作します。
- 3. 設定を保存します。

Performance Determinismオプションの構成

このタスクについて

注記:

このオプションは、AMDプロセッサーを搭載するサーバーで使用できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > Performance Determinismを選択します。
- 2. 次のいずれかを選択します。

このオプションを使用してAMD決定論制御を構成します。

- 自動:プロセッサー融合値が使用されます。
- 手動
- 3. 次のいずれかを選択します。

これを使用して、ワークロード要件に合わせて、電力またはパフォーマンスを最大限に高めるようプロセッサーを構成します。

- Power Deterministic
- Performance Deterministic
- 4. 設定を保存します。

AMDページテーブルエントリーの投機的ロックスケジューリングオプションの選択

このタスクについて

AMDページテーブルエントリーの投機的ロックスケジューリングオプションを構成するには、この機能を使用します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > AMDページテーブルエントリーの投機的ロックスケジューリングを選択します。
- 2. 有効または無効を選択します。

無効にすると、ページテーブルエントリーのロックを非投機的にのみスケジュールします。この機能を無効にすると、パフォーマンスに影響します。

UPI3リンクの有効化または無効化

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプション > UPI3リンクを選択します。
- 2. 設定を選択します。
 - 有効: PCIeポート3のレーン0はGen5からGen4に劣化します。
 - 無効(デフォルト、推奨): PCIeポート3のレーン0から最大のPCIeパフォーマンスを提供します。
- 3. 設定を保存します。

ANCモードの構成

このタスクについて

Ampere NUMA Control (ANC) モードを構成し、プロセッサーのコア、キャッシュ、およびメモリを複数の不均一メモリアクセス (NUMA) ドメインに分割します。NUMAに対応し、最適化されているワークロードでは、このオプションを有効にするとパフォーマンスが向上する可能性があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプションを 選択します。
- 2. 設定を選択します。
 - モノリシック (デフォルト) モノリシックモードで構成されたシステムには、ソケットごとに1つのNUMAパーティションがあります。
 - ヘミスフィア ヘミスフィアモードで構成されたシステムには、ソケットごとに2つのNUMAパーティションがあります。
 - クアドラント クアドラントモードで構成されたシステムには、ソケットごとに4つのNUMAパーティションがあります。
- 3. 設定を保存します。

L3キャッシュとしてのSLCの有効化または無効化

このタスクについて

L3キャッシュとしてのSLCを使用して、SLCをL3キャッシュとして有効または無効にします。

| 注記: これは、ANCモノリシックモードのみに限定されます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプションを 選択します。
- 2. 設定を選択します。
 - 有効
 - 無効(デフォルト)
- 3. 設定を保存します。

プリフェッチャーの有効化または無効化

このタスクについて

プリフェッチャーを使用して、CPUプリフェッチを構成します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > プロセッサーオプションを 選択します。
- 2. 設定を選択します。

- 有効(デフォルト)
- 無効
- 3. 設定を保存します。

メモリオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプションを選択します。

サブトピック

メモリの再マップの構成

アドバンストメモリプロテクションの構成

<u>メモリリフレッシュレートの構成</u>

DRAMバーストリフレッシュモードの構成

<u>チャネルインターリーブの有効化または無効化</u>

IMCインターリーブの構成

<u>AMDインターリーブの構成</u>

メモリPステートの有効化または無効化

AMD 1TB再マップの構成

AMD定期的ディレクトリリンスの構成

最大メモリバス周波数の設定

メモリ巡回スクラビングの有効化または無効化

<u>ノードインターリーブの有効化または無効化</u>

メモリ暗号化オプションの構成

メモリミラーリングモードの構成

NVDIMM-Nオプションの構成

メモリ構成違反レポートの有効化または無効化

メモリの永続的な障害検出の有効化または無効化

HBMメモリオプションの構成

トータルメモリ暗号化(TME)の有効化または無効化

ECCモードの構成

ECC制御の構成

巡回スクラブの有効化または無効化

デマンドスクラブの有効化または無効化

Fine Granularity Refresh (FGR) の構成

メモリの再マップの構成

このタスクについて

メモリの再マップオプションを使用して、障害イベント(訂正不能なメモリエラーなど)のために無効にされた可能性があるシステムメモリを再マップします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ の再マップを選択します。
- 2. 設定を選択します。
 - すべてのメモリの再マップ 次回の起動時にシステム内のすべてのメモリを再度利用可能にします。
 - アクションなし 影響を受けるすべてのメモリをシステムは依然として利用できません。
- 3. 設定を保存します。

アドバンストメモリプロテクションの構成

このタスクについて

アドバンストメモリプロテクションオプションを使用すると、エラー検出および訂正(ECC)による高度なメモリ保護を構成できます。アドバンストECCサポートは、オペレーティングシステムに対して最大のメモリ容量を提供します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > アドバンストメモリプロテクションを選択します。
- 2. 設定を選択します。
 - HPEファーストフォルトトレラント(ADDDC) メモリエラーを訂正しDIMM上の複数のDRAMデバイスに障害が発生した場合でも引き続き、システムを動作させることを可能にします。アドバンストECCで利用できる以上の、訂正不能メモリエラーに対する保護が提供されます。
 - アドバンストECCサポート すべてのシングルビットエラーと一部のマルチビットエラーに対してシステムを保護するともに、オペレーティングシステムが最大のメモリ容量を使用できるようにします。
 - アドバンストECCサポート付きミラーメモリ 対処しないとシステム障害につながる可能性のある訂正されていないメモリエラーに対して最大限の保護を行います。ミラーメモリをオペレーティングシステムに提供するには、追加のメモリを取り付ける必要があります。
- 3. 設定を保存します。

メモリリフレッシュレートの構成

このタスクについて

メモリリフレッシュレートオプションでは、メモリコントローラーのリフレッシュレートを調整できますが、サーバーのメモリのパフォーマンスと耐障害性に影響する場合があります。このサーバーの他のドキュメントに設定の指示がある場合を除き、この設定をデフォルトの状態にしておくことを推奨します。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ

リフレッシュレートを選択します。

- 2. 設定を選択します。
 - 1xリフレッシュ
 - 2xリフレッシュ
- 3. 設定を保存します。

DRAMバーストリフレッシュモードの構成

このタスクについて

DRAMバーストリフレッシュモードオプションは、TRRespassおよび対象となる行のリフレッシュの悪用を緩和します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > メモリオプション > DRAM バーストリフレッシュモードを選択します。
- 2. 設定を選択します。
 - 有効 設定はデフォルトで有効になっています。
 - 無効 -設定は、TRRespassを軽減するために無効になっています。
- 3. 設定を保存します。

チャネルインターリーブの有効化または無効化

このタスクについて

チャネルインターリーブオプションを使用すると、メモリインターリーブのより高いレベルを有効または無効にすることができます。通常、メモリインターリーブのレベルを上げるとパフォーマンスは向上します。一方、レベルを下げると消費電力を節約できます。

NVDIMM-Nメモリインターリービングを有効にしている場合、チャネルインターリーブも有効にする必要があります。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > チャネルインターリーブを選択します。
- 2. 設定を選択します。
 - 有効 最高レベルのインターリービングを有効にして、システムメモリをこのレベルに対して構成します。
 - 無効 メモリインターリーブを有効にしません。
- 3. 設定を保存します。

IMCインターリーブの構成

このタスクについて

このオプションを使用してメモリコントローラーインターリーブオプションを制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ コントローラーインターリーブを選択します。
- 2. 設定を選択します。
 - 自動-(推奨)システム構成に基づいて、メモリコントローラーインターリーブ を自動的に有効または無効にします。
 - 無効-メモリコントローラーインターリーブを強制的に無効にすることができます。状況によっては、無効を選択すると、すべてのシステムメモリでパフォーマンスが向上する場合があります。
- 設定を保存します。

AMDインターリーブの構成

前提条件

このオプションは、ワークロードプロファイルがカスタムに設定されている場合のみ構成できます。

このタスクについて

このオプションを使用してメモリインターリーブモードのオプションを制御します。メモリシステムを構成するインターリーブのレベルを変更できます。通常、メモリインターリーブを自動化するとパフォーマンスが最大になります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > メモリオプション > AMDメモリインターリーブを選択します。
- 2. 次のいずれかを選択します。
 - チャネルインターリーブ
 - ダイインターリーブ
 - ソケットインターリーブ
- 3. 設定を選択します。
 - 有効
 - 無効
- 4. 設定を保存します。

| 注記:

AMDメモリインターリーブオプションは、ProLiant Gen10サーバーでのみサポートされています。

メモリPステートの有効化または無効化

このタスクについて

メモリPステートオプションを使用して、メモリPステートを有効または無効にします。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ Pステートを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMD 1TB再マップの構成

このタスクについて

AMD 1TB再マップオプションを有効にすると、少なくとも1TBのRAMを備えたシステムでIOMMUが有効になっている場合に、予 約済みとマークされている12GBのRAMが回収されます。このオプションを有効にすると、アクセス可能なメモリマップに大 きなギャップが発生するため、一部のオペレーティングシステムで問題が生じる場合があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > メモリオプション > AMD 1TB再マップを選択します。
- 2. 次のいずれかを選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMD定期的ディレクトリリンスの構成

このタスクについて

ディレクトリ容量をより効率的に管理するために役立つ定期的ディレクトリリンスを有効にします。データベースやHPCアプリケーションのように、システム全体での共有度の高いワークロードでは、ディレクトリリンス操作の周期を短くすることでパフォーマンスが向上する場合があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > AMD定期的ディレクトリリンスを選択します。
- 2. 次のいずれかを選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

最大メモリバス周波数の設定

このタスクについて

最大メモリバス周波数オプションを使用すると、取り付けられているプロセッサー/DIMMの構成でサポートされているより

も低い最高速度でメモリが動作するように構成することができます。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > 最大メモリバス周波数を選択します。
- 2. 設定を選択します。
 - 自動では、システム構成でサポートされている最大速度でメモリが動作します。
 - 2933 MHz
 - 2667 MHz
 - 2400 MHz
 - 2133 MHz
 - 1867 MHz

| 注記:

AMDサーバーは1867および2133 MHzのシステム構成をサポートしていません。

3. 設定を保存します。

メモリ巡回スクラビングの有効化または無効化

前提条件

ワークロードプロファイルがカスタムに設定されている。

このタスクについて

有効にした場合、メモリ巡回スクラビングは、メモリのソフトエラーを修正するので一定のシステム実行時間が経過すると、マルチビットエラーおよび訂正不能なエラーの発生が減少します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ 巡回スクラビングを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

ノードインターリーブの有効化または無効化

このタスクについて

ノードインタリービングオプションを使用して、NUMAノードインターリーブを有効化または無効化します。通常、NUMAノードでは、このオプションを無効のままにしておくことで、最適なパフォーマンスを得ることができます。このオプションを有効にすると、メモリアドレスが各プロセッサー用に取り付けられているメモリ全体でインターリーブされ、一部のワークロードでパフォーマンスが改善される可能性があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > ノード インタリービングを選択します。
- 2. 設定を選択します。
 - 有効 各プロセッサーに取り付けられているメモリ全体でメモリアドレスがインターリーブされます。すべての ノードのメモリサイズが同じである必要があります。システムのパフォーマンスが影響を受ける可能性がありま す。
 - 無効(デフォルト) ノードインターリーブを無効にして、ほとんどの環境で最適なパフォーマンスを提供しま
- 設定を保存します。 3.

メモリ暗号化オプションの構成

メモリ暗号化オプションの構成については、サブトピックを参照してください。

サブトピック

透過的セキュアメモリ暗号化の有効化または無効化

AMDセキュアメモリ暗号化の構成

AMD Secure Nested Pagingの有効化または無効化

透過的セキュアメモリ暗号化の有効化または無効化

このタスクについて

透過的セキュアメモリ暗号化オプションを使用して、透過的セキュアメモリ暗号化(TSME)を有効または無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ 暗号化オプション > 透過的セキュアメモリ暗号化を選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

AMDセキュアメモリ暗号化の構成

このタスクについて

この機能を有効にすると、AMDセキュアメモリの暗号化機能を使用することができます。

注記:

このオプションは、AMDプロセッサーを搭載するサーバーで使用できます。

手順

- 2. オプションを選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMD Secure Nested Pagingの有効化または無効化

このタスクについて

AMD Secure Nested Pagingを使用して、AMD SEV-SNPを有効にします。有効にすると、SEV-SNPによって強力なメモリ整合性保護が追加され、メモリ再生やメモリ再マッピングなどのハイパーバイザーベースの悪意のある攻撃を防止して分離された実行環境を作成できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ 音号化オプション > AMD Secure Nested Pagingを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効(デフォルト)
- 3. 設定を保存します。

メモリミラーリングモードの構成

前提条件

この機能をアクティブ化するには、アドバンストメモリプロテクションの構成メニューでアドバンストECCサポート付きミラーメモリオプションを有効にします。

このタスクについて

メモリミラーリングオプションを使用して、ミラーリング用に予約する使用可能なシステムメモリの合計を構成します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ > メモリングモードを選択します。
- 2. 設定を選択します。
 - フルミラー 使用可能なメモリの合計の50%をミラーリング用として予約します。
 - パーシャルミラー (4GB超の20%) 4GBを超える使用可能なメモリの合計の20%をミラーリング用として予約します。
 - パーシャルミラー (4GB超の10%) 4GBを超える使用可能なメモリの合計の10%をミラーリング用として予約します。
 - パーシャルミラー (4GB未満のメモリ) メモリ構成に応じて、4GB未満の2GBまたは3GBのメモリをミラーリング用としてセットアップします。

- パーシャルミラー(OSによる構成) オペレーティングシステムがパーシャルメモリミラーリングを構成できるようにします。
- 3. 設定を保存します。

NVDIMM-Nオプションの構成

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > 不揮発性メモリオプション > NVDIMM-Nオプションを選択します。
- 2. 以下のオプションの有効または無効を選択します。
 - NVDIMM−Nサポート
 - NVDIMM-Nインターリービング
 - 次回の再起動時のポリシーにNVDIMM-Nサニタイズ/消去
 - (i) 重要:

NVDIMM-Nのサニタイズ/消去することは、NVDIMM-N内に保存された**すべての**ユーザーデータの損失を招くことになります。Hewlett Packard Enterpriseでは、NVDIMMのサニタイズ/消去を行う前に、NVDIMM-N内のすべてのユーザーデータのバックアップを手動で行うことを、強く推奨します。

- ◆ システム内のすべてのNVDIMM-Nのサニタイズ/消去
- プロセッサー上のすべてのNVDIMM-Nのサニタイズ/消去 これらのメニュー項目は、サーバーの構成によって異なります。
- プロセッサー1 DIMM 2のサニタイズ/消去 これらのメニュー項目は、サーバーの構成によって異なります。
- 3. 変更を保存します。

サブトピック

NVDIMM-Nサポート

次回の再起動時のポリシーにNVDIMM-Nサニタイズ/消去

NVDIMM-Nインターリービング

NVDIMM-Nサポート

このオプションを使用すると、NVDIMM-Nサポート(電源を切る、またはリセットするときにフラッシュするメモリの内容をバックアップする機能を含む)を有効または無効にできます。このオプションで無効が選択されていると、システム内のNVDIMM-Nは、パーシステントストレージとしてもシステムメモリとしてもオペレーティングシステムに提供されません。

次回の再起動時のポリシーにNVDIMM-Nサニタイズ/消去

この設定は、選択されたNVDIMM-Nに保存されたすべてのユーザーデータとエラーステータスデータをサニタイズまたは消去するプロセスの一部です。次回の再起動時のポリシーにNVDIMM-Nサニタイズ/消去を有効にすると、NVDIMMのサニタイズに関するさまざまなオプションが画面に表示されます。サーバーに取り付けられたNVDIMM-Nによって、以下を選択できます。

● システム内のすべてのNVDIMM-Nのサニタイズ/消去 - リブート時にサーバーに取り付けられているすべてのNVDIMM-Nを

サニタイズします。

- プロセッサーX上のすべてのNVDIMM-Nのサニタイズ/消去 リブート時にプロセッサーXのDIMMスロットに取り付けられているすべてのNVDIMM-Nをサニタイズします。
- プロセッサーX DIMM Yのサニタイズ/消去 リブート時にプロセッサーXのDIMMスロットYに取り付けられているNVDIMM-Nをサニタイズします。NVDIMM-Nが格納されているプロセッサーX DIMMスロットごとに選択できます。

選択されたNVDIMM-Nは、システムの次回のリブート時にサニタイズされます。選択されたNVDIMM-Nの最大グループがサニタイズされます。たとえば、プロセッサー1上のすべてのNVDIMM-Nのサニタイズ/消去が有効で、かつサニタイズ/消去プロセッサー1 DIMM 8が無効になっている場合、プロセッサー1 DIMM 8を含むプロセッサー1上のすべてのNVDIMM-Nがサニタイズされます。

NVDIMM-Nがサニタイズ/消去された後のシステムの動作は、以下のポリシーで制御されます。

- NVDIMMのサニタイズ/消去後にシステムの電源を切断する
- NVDIMMのサニタイズ後にオペレーティングシステムを起動する
- NVDIMMのサニタイズ後にシステムユーティリティを起動する

NVDIMM-Nインターリービング

このオプションは、メモリマップ内の他のNVDIMM-Nでインターリーブされる特定のプロセッサーに取り付けられている NVDIMM-Nを有効にします。このオプションはHPE SmartMemory DIMMのインターリービングに影響しません。インターリービングは、NVDIMM-NとHPE SmartMemory DIMMの間は有効ではありません。異なるプロセッサー上に取り付けられたNVDIMM-N は、一緒にインターリーブされることはありません。この設定が**有効**または**無効**に変更されると、取り付けられたすべての NVDIMM-Nをサニタイズする必要があります。取り付けられたすべてのNVDIMM-Nがサニタイズされないと、次回のブート時にエラー状態が報告され、NVDIMM-Nは使用できません。

メモリ構成違反レポートの有効化または無効化

このタスクについて

メモリ構成違反レポートを使用して、システムがメモリ構成違反のメッセージを送信して、ログに記録する方法を構成します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ 構成違反レポートを選択します。
- 2. 設定を選択します。
 - 有効: (デフォルト) この状態では、システムは、サポートされている検証済みのガイドラインに含まれていない メモリ構成を報告します。
 - **戸** 注記: 検証済みでサポートされている構成のリストについては、メモリ取り付けのガイドラインを参照してください。
 - 無効:この状態では、メモリ構成違反は報告されません。
 - | 注記: デフォルト構成(有効)を維持することをお勧めします。
- 3. 設定を保存します。

メモリの永続的な障害検出の有効化または無効化

このタスクについて

メモリの永続的な障害検出は、インテルPermanent Fault Detect (PFD) 機能を制御します。有効にすると、メモリコントローラーは、メモリサブシステムのパフォーマンスに影響を及ぼすことがあるメモリエラーをより適切に検出して修正することができます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ の永続的な障害検出を選択します。
- 2. 設定を選択します。
 - 有効(デフォルト)
 - 無効
- 3. 設定を保存します。

HBMメモリオプションの構成

このタスクについて

High Band Memory (HBM) 値を指定したIntel® Xeon® CPU Max Seriesは、メモリ帯域幅の影響を受けやすいワークロード (WL) のパフォーマンスを大幅に向上させます。これらはおよそ1秒あたり1テラバイト (TB/s) のメモリ帯域幅 (BW) を持ちます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > メモリオプション > HBMメモリオプションを選択します。
- 2. HBMメモリモードの値を選択します。
 - 2LM システム構成で許可されている場合、システムはこのオプションを2LMに構成しようとします。
 - 1LM システムは1LMにダウングレードされます。
- 3. 設定を保存します。

トータルメモリ暗号化(TME)の有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプション > メモリ 暗号化オプション > トータルメモリ暗号化 (TME) を選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

ECCモードの構成

このタスクについて

ECCモードを使用して、システムがエラー訂正を処理する方法を構成します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプションを選択します。
- 2. 設定を選択します。
 - 自動(デフォルト) デバイス幅を自動検出し、推奨モードを選択します。
 - SECDED x4 DIMM以外の場合に推奨されるシングルエラー訂正とダブルエラー検出
 - シンボル x4 DIMMにのみ推奨されます
- 3. 設定を保存します。

ECC制御の構成

このタスクについて

ECC制御を使用して、システムがエラー訂正を制御する方法を構成します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプションを選択します。
- 2. 設定を選択します。
 - DE対応 OK応答を送信することにより、訂正不能読み取りエラーを遅延させます。このビットがクリアされている場合、回復不能なエラーが発生したときに、システムのデフォルトが非遅延動作に設定されます。
 - FI対応 障害処理割り込みを有効にします。ECC障害が記録されたことを通知するために、障害処理割り込みが発生します。
 - DEおよびFI対応(デフォルト)
- 3. 設定を保存します。

巡回スクラブの有効化または無効化

このタスクについて

巡回スクラブを使用して、24時間スクラブします。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプションを選択します。
- 2. 設定を選択します。
 - 有効 (デフォルト)
 - 無効
- 3. 設定を保存します。

デマンドスクラブの有効化または無効化

このタスクについて

デマンドスクラブを使用して、修正可能エラーが検出されたときに、修正されたデータをメモリに書き戻す機能を有効/無 効にします。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > メモリオプションを選択し ます。
- 2. 設定を選択します。
 - 有効 (デフォルト)
 - 無効
- 3. 設定を保存します。

Fine Granularity Refresh (FGR) の構成

このタスクについて

Row-Hammerマルウェアの緩和のあり/なしでFine Granularity Refresh (FGR) モードを構成します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > メモリオプションを選択し ます。
- 2. 設定を選択します。
 - 1x (デフォルト)
 - 2x
 - 1x (RowHammer緩和あり)
 - 2x (RowHammer緩和あり)
- 3. 設定を保存します。

仮想化オプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプションを選択しま

サブトピック

仮想化テクノロジーの有効化または無効化

インテルVT-dの有効化または無効化

アクセス制御サービスの有効化または無効化

SR-IOVの有効化または無効化

最小のSEV ASIDの設定

AMD I/Oバーチャライゼーションテクノロジーの有効化

AMD DMA再マッピングの有効化または無効化

AMD 5レベルページの有効化

ARM SMMU PMUの有効化または無効化

仮想化テクノロジーの有効化または無効化

このタスクについて

インテル(R) バーチャライゼーションテクノロジー(インテルVT) を使用して、UEFI インテルプロセッサーによって提供され るハードウェア機能を、仮想化テクノロジーをサポートするVirtual Machine Manager (VMM) が使用できるようにするかど うかを制御します。

注記:

VMM、またはAMD-V仮想化をサポートしていないオペレーティングシステムを使用している場合、仮想化テク ノロジーを無効にする必要はありません。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > インテ ル(R) バーチャライゼーションテクノロジー(インテルVT) を選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

インテルVT-dの有効化または無効化

このタスクについて

インテル(R) VT-dオプションを使用して、Virtual Machine Manager (VMM) でダイレクトI/O (VT-d) 対応のインテル仮想 化テクノロジーを有効または無効にします。

| 注記:

この機能をサポートするオペレーティングシステムまたはハイパーバイザーを使用していない場合は、イン テル(R) VT-dオプションを無効に設定する必要はありません。有効のままで構いません。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > インテ ル(R) VT-dを選択します。
- 設定を選択します。
 - 有効 ハイパーバイザーまたはこのオプションをサポートするオペレーティングシステムで、ダイレクトI/0のイ ンテル仮想化テクノロジーが提供するハードウェア機能が使用できます。
 - 無効 ハイパーバイザーまたはこのオプションをサポートするオペレーティングシステムで、ダイレクトI/0のイ ンテル仮想化テクノロジーが提供するハードウェア機能が使用できません。

3. 設定を保存します。

アクセス制御サービスの有効化または無効化

このタスクについて

アクセス制御サービスオプションを使用して、ビデオとキーストロークをシリアルポート経由でオペレーティングシステム ブートにリダイレクトします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > アクセ ス制御サービスを選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

SR-IOVの有効化または無効化

このタスクについて

SR-IOV (Single Root I/O Virtualization) インターフェイスは、PCI express (PCIe) 仕様の拡張です。これにより、 BIOSがPCIeデバイスに、より多くのPCIリソースを割り当てることができます。このオプションは、PCIeデバイスまたはSR-IOVをサポートするオペレーティングシステムで有効にします。ハイパーバイザーを使用する場合は、有効のままにしてお きます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > SR-IOVを選択します。
- 設定を選択します。
 - 有効 ハイパーバイザーがPCIeデバイスの仮想インスタンスを作成できるため、パフォーマンスが向上する可能性 があります。
 - 無効 PCIeデバイスの仮想インスタンスを作成するためにハイパーバイザーを有効にしません。
- 設定を保存します。

最小のSEV ASIDの設定

このタスクについて

最小のSEV ASIDオプションを使用して、AMD Secure Encrypted Virtualization (SEV) を有効にしたゲストに使用できる最 小のアドレス空間識別子 (ASID) を構成できます。この数値以下のASIDは、SEV-ES (暗号化状態) も有効にしているSEV有 効ゲストのみが利用可能です。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 仮想化オプション > 最小の SEV ASIDを選択します。

- 2. 1~16の数を入力します。
- 3. 設定を保存します。

AMD I/Oバーチャライゼーションテクノロジーの有効化

このタスクについて

有効にした場合、このオプションをサポートするハイパーバイザーまたはオペレーティングシステムは、AMD VTが提供する ハードウェア機能を使用できます。ハイパーバイザーまたはこのオプションを使用するオペレーティングシステムを使用し ない場合でも、この設定を有効にしておくことができます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > AMD 1/0バーチャライゼーションテクノロジーを選択します。
- 次のいずれかを選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMD DMA再マッピングの有効化または無効化

このタスクについて

AMD DMA再マッピングは、DMA再マッピング設定を構成します。DMA再マッピングは、メモリの破損や悪意のあるDMA攻撃から 保護します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプション > AMD DMA再マッピングを選択します。
- 次のいずれかを選択します。
 - 有効
 - 無効
- 設定を保存します。

AMD 5レベルページの有効化

このタスクについて

AMD 5レベルページを有効にして、仮想アドレスのサイズを48ビットから57ビットに拡張し、アドレス指定可能な仮想メモ リを128 PBまで増やします。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 仮想化オプション > AMD 5 レベルページを選択します。
- 2. 次のいずれかを選択します。

- 有効
- 無効(デフォルト)
- 設定を保存します。

ARM SMMU PMUの有効化または無効化

このタスクについて

ARM SMMU PMUを使用して、ARMシステムメモリ管理ユニットパフォーマンス監視ユニットを有効または無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 仮想化オプションを選択し ます。
- 2. 設定を選択します。
 - 有効
 - 無効 (デフォルト)
- 3. 設定を保存します。

ブートオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ブートオプションを選択しま

サブトピック

ブート順序ポリシーの設定

UEFIブート順序リストの変更

UEFIブート順序の制御

<u>UEFI ブート順序リストへのブートオプションの追加</u>

UEFIブート順序リストからのブートオプションの削除

ブート順序ポリシーの設定

このタスクについて

UEFIブート順序リストに従ってデバイスのブートを試みたときにブート可能なデバイスが見つからない場合に、ブート順序 ポリシーオプションを使用してシステムの動作を制御します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ブートオプション > ブート 順序ポリシーを選択します。
- 2. 設定を選択します。

- ブート順序を無限に再試行 システムはブート可能なデバイスが検出されるまでブート順序の試行を繰り返しま す。
- ブート順序を1回試行 システムはブートメニュー内のすべての項目を1回ずつ試行してからシステムを停止しま
- ブート試行の失敗後リセット システムはすべての項目を1回ずつ試行した後でシステムを再起動します。
- 3. 設定を保存します。

UEFIブート順序リストの変更

このタスクについて

UEFIブート順序オプションを使用して、UEFIブート順序リスト内のエントリーのブート順序を変更します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ブートオプション > UEFI ブート設定 > UEFIブート設定 > UEFIブート順序を選択します。
- 2. ブート順序リスト内を移動するには、ポインティングデバイスまたは矢印キーを使用します。
- エントリーを選択し、そのエントリーのリスト内での順序を変更します。
 - ブートリスト内でエントリーを上に移動するには、+キーを押すか、またはエントリーをドラッグアンドドロップし
 - ブートリスト内でエントリーを下に移動するには、-キーを押すか、またはエントリーをドラッグアンドドロップし ます。
- 4. 変更を保存します。

UEFIブート順序の制御

このタスクについて

個々のUEFIブートオプションを有効または無効にするには、UEFIブート順序制御オプションを使用します。有効になってい る項目は選択(チェック)されています。無効になっている項目は、UEFIブート順序リストの中に残りますが、ブートプロ セス中に試行されません。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > ブートオプション > UEFI ブート設定 > UEFIブート設定 > UEFIブート順序制御を選択します。
- 次の操作を実行します。
 - オプションを有効にするには、対応するチェックボックスを選択します。
 - オプションを無効にするには、対応するチェックボックスを選択します。
- 変更を保存します。

UEFIブート順序リストへのブートオプションの追加

このタスクについて

ブートオプションを追加を使用して、拡張子.EFIを持つx64 UEFIアプリケーション(OSブートローダーやその他のUEFIアプ リケーションなど)を選択し、新しいUEFIブートオプションとして追加できます。

新しいブートオプションは、UEFIブート順序リストの最後に追加されます。ファイルを選択すると、ブートメニューに表示 するブートオプションの説明と、、EFIアプリケーションに渡すデータ(オプション)を入力するよう求めるプロンプトが表 示されます。

手順

- 1. FAT16/FAT32パーティションを持つメディアを接続します。
- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ブートオプション > UEFI ブート設定 〉 ブートオプションを追加を選択します。
- リスト内の、EFIアプリケーションを選択してEnterキーを押します。
- 必要に応じて、Enterキーを押してメニューオプションをドリルダウンします。 4.
- ブートオプションの説明とオプションのデータを入力し、Enterキーを押します。 5. UEFIブート順序リストに新しいブートオプションが表示されます。
- 変更をコミットして終了しますを選択します。

UEFIブート順序リストからのブートオプションの削除

このタスクについて

削除されたオプションがネットワークPXEブートやリムーバブルメディアデバイスなどの標準の起動場所を 指している場合、システムBIOSは次回の再起動時にオプションを追加します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ブートオプション > UEFI ブート設定 > ブートオプションを削除を選択します。
- 2. リストからオプションを1つ以上選択します。
- 3. 変更をコミットして終了を選択します。

ネットワークオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプションを選択 します。

サブトピック

<u>ネットワークブートオプション</u>

プリブートネットワーク設定の構成

iSCSIブート構成

VLANの構成

内蔵iPXEオプションの変更

ネットワークブートオプション

- プリブートネットワーク環境ポリシー
- IPv6 DHCPユニーク識別子
- ネットワークブートリトライサポート
- ネットワークインターフェイスカード (NIC)
- PCIeスロットネットワークブート
- HTTPサポート
- iSCSIソフトウェアイニシエーター

サブトピック

プリブートネットワーク環境の設定

IPv6 DHCPユニーク識別子の方式の設定

ネットワークブートリトライサポートの有効化または無効化

NICのネットワークブートの有効化または無効化

PCIeスロットネットワークブートの有効化または無効化

HTTPサポートの設定

iSCSIソフトウェアイニシエーターの有効化

プリブートネットワーク環境の設定

このタスクについて

プリブートネットワーク環境オプションを使用して、ご使用のネットワークブートターゲットがUEFIブート順序リスト内で 表示される方法を優先設定できます。このオプションは、内蔵UEFIシェルからプリブートネットワーク操作も制御できま す。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > プリブートネットワーク環境を選択します。
- 設定を選択します。
 - 自動 プリブート環境で開始したすべてのネットワーク操作がIPv4またはIPv6上で実行されます。UEFIブート順 序リスト内の既存のネットワークブートターゲットの順序は変更されません。システムBIOSのデフォルトポリシー を使用して、新しいネットワークブートターゲットがリストの最後に追加されます。
 - IPv4 プリブート環境で開始したすべてのネットワーク操作がIPv4上でのみ実行されます。UEFIブート順序リスト 内にある既存のすべてのIPv6ネットワークブートターゲットを削除します。新しいIPv6ネットワークブートター ゲットはリストに追加されません。
 - IPv6 プリブート環境で開始したすべてのネットワーク操作がIPv6上でのみ実行されます。UEFIブート順序リスト 内にある既存のすべてのIPv4ネットワークブートターゲットを削除します。新しいIPv4ネットワークブートター ゲットはリストに追加されません。
- 3. 変更を保存します。

IPv6 DHCPユニーク識別子の方式の設定

このタスクについて

IPv6 DHCPユニーク識別子オプションを使用して、IPv6 DHCPユニーク識別子(DUID)の設定方法を制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > IPv6 DHCPユニーク識別子を選択します。
- 設定を選択します。
 - 自動 サーバーのUUID (Universal Unique Identifier) を使用するか、サーバーを利用できない場合はリンク層 アドレスと時刻値(DUID-LLT)の方式を使用して、DUIDを設定します。
 - DUID-LLT リンク層アドレスと時刻値 (DUID LLT) の方式を使用してDUIDを設定します。
- 変更を保存します。

ネットワークブートリトライサポートの有効化または無効化

このタスクについて

ネットワークブートリトライサポートのオプションを使用して、ネットワークブートリトライ機能を有効または無効にしま す。有効にした場合、システムBIOSはネットワークデバイスの起動を、最大でネットワークブートリトライ数オプションで 設定された回数試行した後、次のネットワークデバイスの起動を試行します。この設定は、F12ファンクションキーとワン タイムブートオプションからネットワークデバイスのブートを試行したときにのみ有効です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > ネットワークブートリトライサポートを選択します。
- 2. 設定を選択します。
 - 有効 ネットワークブートリトライを有効にします。
 - 無効 ネットワークブートリトライを無効にします。
- 3. 変更を保存します。

NICのネットワークブートの有効化または無効化

このタスクについて

ネットワークインターフェイスカード(NIC)オプションを使用してインストール済みNICのネットワークブートを有効また は無効にします。リストされるデバイスはシステムによって異なりますが、次のようなものを含めることができます。

- 内蔵LOM 1ポート1
- 内蔵FlexibleLOM 1ポート1

注記:

ブートオプションの使用を開始するには、NICファームウェアの構成が必要になる場合があります。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプションを選択します。
- NICを選択します。
- 3. 設定を選択します。
 - ネットワークブート ネットワークブートを有効にします。
 - 無効 ネットワークブートを無効にします。
- 4. 変更を保存します。
- 5. ネットワークブートを選択した場合、ブート順序リストにNICブートオプションが表示されるようサーバーを再起動し ます。

PCIeスロットネットワークブートの有効化または無効化

このタスクについて

PCIeスロットネットワークブートオプションを使用して、PCIeスロットのNICカードのUEFIネットワークブートを有効また は無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > PCIeスロットネットワークブートを選択します。
- 2. PCIeスロットエントリーを選択します。
- 3. 設定を選択します。
 - 有効 PCIeスロットのNICカードのUEFIネットワークブートを有効にします。
 - 無効 PCIeスロットのNICカードのUEFIネットワークブートを無効にします。
- 4. 変更を保存します。

HTTPサポートの設定

前提条件

このオプションを使用して、UEFIモード時に、内蔵UEFIシェル > DHCPを使用したシェル自動起動スクリプトの検出設定を 使用して、UEFI HTTP (s) ブートサポートを制御します。

自動またはHTTPSのみを選択してHTTPSブートを有効にするには、サーバーセキュリティ > TLS (HTTPS) オプションでHTTPS サーバーの各TLS証明書を登録する必要があります。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > HTTPサポートを選択します。
- 設定を選択します。
 - 自動 ネットワークブートが有効になっている各ネットワークポートのUEFIブート順序リストにHTTP(S)ブート オプションを自動的に追加します。DHCPサーバーによって提供されたHTTPまたはHTTPSのURLからシステムを起動で きます。DHCPサーバーによって提供されたその他のURLは無視されます。
 - HTTPのみ ネットワークブートが有効になっている各ネットワークポートのUEFIブート順序リストにHTTPブートオ プションを自動的に追加します。DHCPサーバーによって提供されたHTTP URLからシステムを起動でき、提供された

HTTPSまたはその他のURLは無視されます。

- HTTPSのみ ネットワークブートが有効になっている各ネットワークポートのUEFIブート順序リストにHTTPSブート オプションを自動的に追加します。DHCPサーバーによって提供されたHTTPS URLからシステムを起動でき、提供され たHTTPまたはその他のURLは無視されます。
- 無効
- 変更を保存します。

iSCSIソフトウェアイニシエーターの有効化

このタスクについて

iSCSIソフトウェアイニシエーターを有効または無効にします。有効にすると、システムのiSCSIソフトウェアイニシエー ターを使用して、構成済みのすべてのNICポート上のiSCSIターゲットへのアクセスが行われます。無効にすると、システム のiSCSIソフトウェアイニシエーターは構成済みのiSCSIターゲットへのアクセスを試行しません。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > ネットワークブートオプション > iSCSIソフトウェアイニシエーターを選択します。
- 設定を選択します。
 - 有効 UEFI iSCSIソフトウェアイニシエーターを有効にします。
 - 無効 UEFI iSCSIソフトウェアイニシエーターを無効にします。

| 注記:

このオプションは、iSCSIソフトウェアイニシエーターが有効か無効かのみを制御します。アダプターイ ニシエーターからのiSCSIブートを有効にするには、アダプターファームウェアでiSCSIを有効にして構成 する必要があります。

変更を保存します。

プリブートネットワーク設定の構成

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > プリブートネットワーク設定を選択します。
- プリブートネットワーク設定オプションのいずれかを選択します。
- 3. 追加の設定を選択するか、そのオプションの追加の値を入力します。
- 変更を保存します。

サブトピック

プリブートネットワーク設定

URLからのブートの前提条件

詳しくは

<u>プリブートネットワーク設定</u>

プリブートネットワーク設定

起動前のネットワークインターフェイスおよび関連設定を構成するには、このオプションを使用します。

(i) 重要:

同じインターフェイス上で webclient または ftp を実行する予定の場合、ネットワークインターフェイス 上で内蔵UEFIシェル ifconfig コマンドを使用する必要はありません。システムユーティリティ内で構成さ れているプリブートネットワーク設定は、これらのインターフェイスを自動的に選択します。

ftp および webclient によって使用されるインターフェイスが ifconfig によって構成される場合、そ の設定は消去されます。代わりに、システムユーティリティプリブートネットワーク設定メニューは、コマ ンドが実行されるとインターフェイスに適用されます。

- プリブートネットワークインターフェイスープリブートネットワーク接続に使用するネットワークインターフェイスを 指定します。
 - 自動(デフォルト) システムは、ネットワーク接続されている最初の使用可能なポートを使用します。
 - 特定のポートの選択 システムは選択されたNICポートを使用します。
- DCHPv4 内蔵UEFIシェルおよびURLから起動からのネットワーク操作のために、DHCPサーバーからのプリブートネット ワークIPv4構成の取得を有効または無効にします。
 - 。 有効 DHCPv4ネットワークアドレス構成を有効にします。個別の設定は使用できません。
 - 無効 DHCPv4のアドレス構成を無効にします。したがって以下の静的IPアドレス設定を手動で構成する必要があり ます。
 - IPv4アドレス
 - IPv4サブネットマスク
 - IPv4ゲートウェイ
 - IPv4プライマリDNS
- プリブートネットワークプロキシ プリブートネットワークプロキシを指定します。これが設定されている場合、プリ ブートネットワークインターフェイスのネットワーク操作は構成済みのプロキシ経由で試行されます。プロキシはHTTP URL形式である必要があり、http://IPv4 address:port, http://[IPv6 address]:port また は http://FQDN:port として指定することができます。
- IPv6構成ポリシー
 - 自動 内蔵UEFIシェルからのネットワーク操作のために、プリブートネットワークIPv6構成を自動的に取得するこ とができます。個別の設定は使用できません。
 - 手動 静的IPアドレス設定を個別に構成することができます。
- URL 1、2、3、または4から起動 ブート可能なISOまたはEFIファイルのネットワークURLを指定します。HTTPまたは HTTPSのいずれかの形式で、IPv4またはIPv6のサーバーアドレスまたはホスト名を使用してURLを入力します。たとえ ば、URLを次のいずれかの形式にすることができます。http://192.168.0.1/file/image.iso、 http://example.com/file/image.efi, https://example.com/file/image.efi, http://[1234::1000]/image.iso。構成すると、このURLがUEFIブートメニューにブートオプションとして表示さ れます。その後、ブートメニューからこのオプションを選択し、指定されたファイルをシステムメモリにダウンロード して、そのファイルからシステムをブートできるようにすることができます。

注記:

URLから起動では、プリブートネットワーク設定ページで構成されたIPアドレス設定が使用されます。

ISOファイルからの起動には、予備のOS環境イメージ(WinPEやミニLinuxなど)または完全なOSインス トールイメージの起動のみを含めることができます。ただし、OSがHTTPブート機能をサポートする場合 (古いOSバージョンはISOファイルまたはOSインストールイメージからの起動をサポートしない可能性が あります)。使用しているOSのドキュメントでHTTPブート機能がサポートされるかどうかを確認してくだ さい。

URLからのブートの前提条件

このタスクについて

URLから起動を使用するときは、ブートモードはUEFIモードのままにしておきます。

iSCSIブート構成

| 注記:

RESTfulインターフェイスツールを使用してiSCSIブート設定を構成することもできます。次のRESTfulイン ターフェイスツールのドキュメントを参照してくださ

t\: https://www.hpe.com/info/restfulinterface/docs.

サブトピック

iSCSIイニシエーター名の追加

iSCSIブート試行の追加

<u>iSCSIブート試行の削除</u>

iSCSIブート試行の詳細の表示および変更

iSCSIイニシエーター名の追加

このタスクについて

iSCSIイニシエーター名のオプションを使用して、IQN (iSCSI Qualified Name) 形式で名前を設定します。EUIフォーマッ トはサポートされません。このオプションは、イニシエーターに設定されたデフォルト名に置き換わります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > iSCSIの構成 > iSCSIイニシエーター名を選択します。
- iSCSI修飾名(IQN)フォーマットを使用してiSCSIイニシエーターの一意の名前を入力します。たとえば、ign.2001-04.com.example:uefi-13021088 です。

この設定は自動的に保存されます。

iSCSIブート試行の追加

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > ネットワークオプション > iSCSIの構成 > iSCSIブート試行を追加を選択します。
 - このブート試行が、次にサーバーが再起動されるまで有効にならないことを示すメッセージが表示されます。
- Enterを押します。
- iSCSI接続を試行するポートを選択します。

- 4. 構成設定を完了します。
 - iSCSI試行名 名前を入力します。
 - iSCSIブート制御 有効またはMPIOを有効を選択します。
 - 闰 注記: デフォルト設定は、無効です。MPIOを有効を使用して、マルチパスI/O (MPIO) 機能を有効にし
 - IPアドレスタイプ アドレスタイプを選択します。
 - 接続再試行カウント 0~16の値を入力します。デフォルトの再試行回数は3回です。
 - 接続タイムアウト 100~20000の値(ミリ秒単位)を入力します。デフォルトは、20000(20秒)です。
 - イニシエーターDHCP デフォルト設定です。イニシエーターについて静的IPアドレスを構成する必要がある場合 は、このオプションをオフにします。イニシエーターについて静的アドレスを構成する場合は、ターゲット名、IP アドレス、ポート、およびブートLUNも手動で構成する必要があります(ターゲットDHCP構成を無効にします)。
 - ターゲットDHCP構成 デフォルト設定です。ターゲット設定を手動で構成する必要がある場合は、このチェック ボックスをオフにして、ターゲット名、IPアドレス、ポート、およびブートLUNを入力します。
 - オプション:認証タイプ デフォルトはNONEです。必要な場合、CHAPを選択してCHAPエントリーを入力します。
- 変更の保存を選択します。
- システムを再起動します。

iSCSIブート試行の削除

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > iSCSIブート構成 > iSCSIブート試行を削除を選択します。
- 1つ以上のiSCSIブート試行エントリーを選択します。
- 変更をコミットして終了を選択します。

iSCSIブート試行の詳細の表示および変更

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > iSCSIブート構成 > iSCSI試行を選択します。
- 2. リストからエントリーを選択します。
- ブート試行の詳細を表示または変更します。

VLANの構成

このタスクについて

VLAN構成オプションを使用して、すべての有効なネットワークインターフェイスにグローバルVLAN設定を構成します。構成 には、PXEブート、iSCSIブート、およびHTTP/HTTPSブートで使用されるインターフェイス、および内蔵UEFIシェルからのす べてのプリブートネットワークアクセス用のインターフェイスが含まれます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > VLAN構成を選択します。
- 2. 以下の操作を実行します。
 - a. VLANコントロール 有効を選択すると、有効なすべてのネットワークインターフェイス上でVLANタギングを有効に できます。この設定は、デフォルトでは無効になっています。
 - VLAN ID VLANコントロールが有効な場合、1から4094の範囲でVLAN IDを入力します。
 - VLAN優先順位 VLANコントロールが有効な場合、VLANタグ付きフレームに0~7の優先順位の値を入力します。
- 変更を保存します。

内蔵iPXEオプションの変更

このタスクについて

内蔵iPXEは、システムBIOSに組み込まれたオープンソースのネットワークブートアプリケーションであり、ネットワーク ブートの実行に使用できます。このオプションにより、UEFIシェルコマンド ipxe と内蔵アプリケーションリストのエント リーも有効になります。どちらも内蔵iPXEの起動に使用できます。

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵 iPXEを選択します。

サブトピック

内蔵iPXEの有効化または無効化

<u>UEFI ブート順序リストへの内蔵 i PXEの追加</u>

内蔵iPXE起動スクリプトの自動実行の有効化または無効化

内蔵iPXEスクリプト検証の有効化または無効化

内蔵iPXE起動スクリプトロケーションの設定

内蔵iPXE自動起動スクリプトのネットワーク上の場所の設定

内蔵iPXEの有効化または無効化

このタスクについて

内蔵iPXEオプションを使用して、システムBIOSに組み込まれているiPXEオープンソースネットワークブートイメージを有効 または無効にします。内蔵iPXEは、追加機能によって拡張された完全なPXE実装を提供します。有効にして、内蔵iPXEを ブート順序に追加を有効にすると、内蔵iPXEがUEFIブート順序リストに追加されます。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > 内蔵iPXEを選択します。
- 設定を選択します。
 - 有効 起動前環境から内蔵iPXEを起動してUEFIブート順序リストに追加できます。
 - 無効 内蔵iPXEは起動前環境で使用できないため、UEFIブート順序リストに追加できません。

3. 設定を保存します。

UEFIブート順序リストへの内蔵iPXEの追加

前提条件

ブートモードがUEFIモードに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > 内蔵iPXEをブート順序に追加を選択します。
- 2. 設定を選択します。
 - 有効 次の再起動時に内蔵iPXEをブート順序リストに追加します。
 - 無効 内蔵iPXEは、ブート順序リストに追加されません。
- 3. 設定を保存します。

内蔵iPXE起動スクリプトの自動実行の有効化または無効化

前提条件

- ブートモードがUEFIモードに設定されている。
- 内蔵iPXEが有効になっている。

このタスクについて

内蔵iPXE起動中の内蔵iPXE起動スクリプトの自動実行を有効または無効にするには、iPXEスクリプト自動起動オプションを 使用します。

- 起動スクリプトを使用して、iPXEの起動時に一連のiPXEコマンドを自動化できます。
- スクリプトファイルはローカルメディアに保存したりネットワークの場所からアクセスできます。
- スクリプトファイルに Startup.ipxe という名前を付けて、ローカルメディアのルートディレクトリに配置します。 サーバーからアクセス可能なネットワーク上の場所に起動スクリプトを配置することもできます。スクリプトファイル 名は任意であり、ネットワークの場所を使用する場合はファイルのURLを指定する必要があります。
- 自動起動が有効な場合、iPXE自動起動スクリプトロケーションオプションが自動に設定されていると、内蔵iPXEは、ス クリプトファイルを、最初にネットワーク上、次にローカル接続のFAT16またはFAT32フォーマットのメディアで探しま す。
- 1つのファイルシステムに、Startup.ipxeファイルを1つだけ配置することをお勧めします。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > iPXEスクリプト自動起動を選択します。
- 2. 設定を選択します。
 - 有効 内蔵iPXEの起動時に、内蔵iPXE起動スクリプトが実行されます。
 - 無効 内蔵iPXEの起動時に、内蔵iPXE起動スクリプトが実行されません。
- 3. 設定を保存します。

内蔵iPXEスクリプト検証の有効化または無効化

前提条件

- ブートモードがUEFIモードに設定されている。
- 内蔵iPXEが有効になっている。
- iPXEスクリプト自動起動が有効になっている。
- セキュアブートが有効になっている。
- 内蔵iPXEスクリプトがセキュアブートデータベースに登録されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > iPXEスクリプトの検証を選択します。
- 2. 設定を選択します。
 - 有効 iPXEスクリプトの検証を有効にします。
 - 無効 (デフォルト) iPXEスクリプトの検証を有効にしません。
- 3. 設定を保存します。

内蔵iPXE起動スクリプトロケーションの設定

前提条件

- 内蔵iPXEが有効になっている。
- iPXEスクリプト自動起動が有効になっている。

このタスクについて

iPXE自動起動スクリプトロケーションオプションを使用して、内蔵iPXE起動スクリプトの場所を選択します。iPXEスクリプ ト自動起動を有効にすると、この設定は内蔵iPXEが起動スクリプトファイルを検索する場所を指定します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > iPXE自動起動スクリプトロケーションを選択します。
- 2. 設定を選択します。
 - 自動:内蔵iPXEは、起動スクリプトの取得を最初にネットワーク上の場所から試行し、続いてローカルに接続され たメディアから試行します。
 - 接続メディア上のファイルシステム 内蔵iPXEは、USBディスク上のFAT32パーティション、iLO仮想ドライブ、HDDな ど、UEFIでアクセス可能なローカルファイルシステム上のStartup. ipxeスクリプトファイルを検索します。
 - ネットワークの場所 内蔵iPXEは、この設定で指定されたURLが指す.ipxeスクリプトを実行します。
- 設定を保存します。

内蔵iPXE自動起動スクリプトのネットワーク上の場所の設定

前提条件

- 内蔵iPXEが有効になっている。
- Φ 内蔵iPXE自動起動スクリプトロケーションがネットワーク上または自動に設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ネットワークオプション > 内蔵iPXE > iPXE自動起動スクリプトのためのネットワーク上の場所を選択します。
- .ipxe ファイルのネットワーク上の場所を入力します。

有効な値は次のとおりです。

- IPv4またはIPv6サーバーアドレスかホスト名のHTTP/HTTPS形式のURL。
- IPv4サーバーアドレスかホスト名のFTP形式のURL。

例:

- http://192.168.0.1/file/file.ipxe
- http://example.com/file/file.ipxe
- https://example.com/file/file.ipxe
- http://[1234::1000]/file.ipxe
- 設定を保存します。

ストレージオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプションを選択し ます。

サブトピック

SATAセキュア消去の有効化

SATAサニタイズの有効化

<u>内蔵チップセットSATAコントローラーサポートの有効化</u>

内蔵ストレージブートポリシーの設定

PCIeストレージブートポリシーの設定

デフォルトのファイバーチャネル/FCoEスキャンポリシーの変更

内蔵NVM ExpressオプションROMの有効化または無効化

NVM Expressドライブの撤去

インテル(R) VMD構成オプションの構成

インテル(R) VMD Direct Assignの構成

インテル(R) CPU VMDサポートの構成

インテル(R) PCH VMDサポートの構成

インテル(R) VROCサポートの構成

SATAセキュア消去の有効化

前提条件

- ハードドライブ上のSATAコントローラーがACHIモードになっている。
- ハードドライブがセキュア消去コマンドをサポートしている。

このタスクについて

SATAセキュア消去オプションを使用すると、SATAセキュア消去機能がサポートされているかどうかを制御できます。この機 能により、セキュアフリーズロックコマンドがSATAハードディスクドライブへ送信されません。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > SATAコントローラーオプション > SATAセキュア消去を選択します。
- 設定を選択します。
 - 有効 Security Freeze LockコマンドはサポートされたSATAハードディスクドライブに送信されず、セキュア消去 機能は有効になります。
 - 無効 セキュア消去を無効にします。
- 3. 設定を保存します。

SATAサニタイズの有効化

このタスクについて

SATAサニタイズオプションを使用して、サニタイズ機能をサポートするかどうかを制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > SATAコントローラーオプション > SATAサニタイズを選択します。
- 設定を選択します。
 - 有効 Security Freeze LockコマンドはサポートされたSATAハードディスクドライブに送信されず、セキュア消去 機能は有効になります。
 - 無効 サニタイズを無効にします。
- 3. 設定を保存します。

内蔵チップセットSATAコントローラーサポートの有効化

前提条件

- 選択したオプションに対応する、正しいオペレーティングシステムのドライバーであること。
- ・ ブートモードがUEFIモードに設定されている。

このタスクについて

内蔵SATA構成オプションを使用して、内蔵チップセットSATA (Serial Advanced Technology Attachment) コントローラー サポートを有効にします。AHCIまたはHPE SmartアレイSW RAIDサポートを選択できます。選択したオプションに対応する正 しいオペレーティングシステムドライバーが使用されていることを確認してください。

ブートモードがレガシーBIOSモードに構成されている場合は、Dynamic Smartアレイはサポートされませ ん。Dynamic SmartRAID RAIDを有効にすると、データが損失するか、既存のSATAドライブ上のデータが破壊 されます。このオプションを有効にする前にすべてのドライブのデータをバックアップしてください。 SATA AHCIサポートを有効にする前に、ご使用のオペレーティングシステムのドキュメントを参照して、 ベースメディアのドライバーがこの機能をサポートしていることを確認します。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > SATAコントローラーオプション 〉 内蔵SATA構成を選択します。
- ご使用のSATAオプションに対して、正しいAHCIまたはRAIDシステムドライバーを使用していることを確認します。
- 3. 設定を選択します。
 - SATA AHCIサポート AHCI用の内蔵チップセットSATAコントローラーを有効化します。
 - インテルVROC SATAサポート
- 設定を保存します。

内蔵ストレージブートポリシーの設定

前提条件

ブートモードがUEFIモードに設定されている。

このタスクについて

内蔵ストレージブートポリシーオプションを使用して、内蔵ストレージコントローラーにUEFI BIOSブートターゲットを選 択します。デフォルトでは、UEFIブート順序リストでは、ストレージコントローラーに接続されているすべての有効なブー トターゲットを使用できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > 内 蔵ストレージブートポリシーを選択します。
- ストレージコントローラーを選択します。
- 3. 設定を選択します。
 - すべてのターゲットを起動 ストレージコントローラーに接続されているすべての有効なブートターゲット が、UEFIブート順序リストに使用できます。
 - 24のターゲットに起動を制限 ストレージコントローラーに接続されている最大24のブートターゲットが、UEFI ブート順序リストに使用できます。
 - ターゲットで起動なし ストレージコントローラーに接続されているブートターゲットは、UEFIブート順序リスト に使用できません。
- 設定を保存します。

PCIeストレージブートポリシーの設定

このタスクについて

前提条件

ブートモードがUEFIモードに設定されている。

PCIeストレージブートポリシーオプションを使用して、PCIeスロット内のストレージコントローラーにUEFI BIOSブート ターゲットを選択します。

注記:

この設定は、PCIeスロット内のファイバーチャネルコントローラーに対するファイバーチャネル/FCoEス キャンポリシー設定よりも優先されます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > PCIeストレージブートポリシーを選択します。
- ストレージコントローラーを選択します。
- ブートターゲットを選択します。 3.
- 設定を保存します。

デフォルトのファイバーチャネル/FCoEスキャンポリシーの変更

このタスクについて

前提条件

ブートモードがUEFIモードに設定されている。

ファイバーチャネル/FCoEスキャンポリシーオプションを使用して、有効なFC/FCoE(または、SANからのブート)ブート ターゲットのスキャンのためのデフォルトのポリシーを変更します。デフォルトでは、取り付けられている各FC/FCoEアダ プターは、デバイス設定で事前構成されているターゲットのみをスキャンします。PCIeスロット内のファイバーチャネルコ ントローラーの場合、この設定はPCIeストレージブートポリシー設定によって上書きされます。

注記:

UEFIモードでのみサポートされます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > ストレージオプション > ファイバーチャネル/FCoEスキャンポリシーを選択します。
- 設定を選択します。
 - すべてのターゲットをスキャン インストールされている各FC/FCoEアダプターは、すべての利用可能なターゲッ トをスキャンします。
 - 構成済みターゲットのみスキャン インストールされている各FC/FCoEアダプターは、デバイスの設定で構成済み のターゲットだけをスキャンします。この設定は、デバイス固有のセットアップで構成された個々のデバイス設定 を上書きします。
- 設定を保存します。

内蔵NVM ExpressオプションROMの有効化または無効化

このタスクについて

内蔵NVM ExpressオプションROMオプションを使用して、NVM ExpressオプションROMがロードされる方法を制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > NVM Expressオプション > 内蔵NVM ExpressオプションROMを選択します。
- 2. 設定を選択します。
 - 有効 システムは、システムBIOSによって提供されるNVM ExpressオプションROMをロードします。
 - 無効 システムは、アダプターによって提供されるNVM ExpressオプションROMをロードします。
- 3. 設定を保存します。

NVM Expressドライブの撤去

このタスクについて

次のオプションを使用して、NVM Expressドライブを撤去します。選択したドライブは、次のブート時に安全に消去されま す。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > NVM Expressオプション > NVM Expressドライブ撤去オプションを選択します。
- 撤去するドライブを選択します。
- 3. 設定を保存します。

インテル(R) VMD構成オプションの構成

前提条件

インテル(R) CPU VMDサポートは個々のCPU NVMeルートポートが有効に設定されています。

このタスクについて

インテル(R) VMD構成オプションを使用して、NVMe用のインテルCPUボリューム管理デバイスサポートを有効または無効にし ます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > NVM Expressオプション > インテル(R) NVMe > インテル(R) VMD構成オプションを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

インテル(R) VMD Direct Assignの構成

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション >

NVM Expressオプション > インテル(R) NVMe > インテル(R) VMD Direct Assignを選択します。

- 設定を選択します。
 - すべてのVMDに対してVMD Direct Assignを有効にします
 - 無効
- 3. 設定を保存します。

インテル(R) CPU VMDサポートの構成

このタスクについて

インテル(R) CPU VMDサポートオプションを使用して、NVMe用のインテルCPUボリューム管理デバイスサポートを有効/無効 にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > NVM Expressオプション > インテル(R) NVMe > インテル(R) CPU VMDサポートを選択します。
- 2. 設定を選択します。
 - 個々のCPU NVMeルートポートが有効
 - すべてのCPU NVMeルートポートが有効
 - 無効
- 設定を保存します。

インテル(R) PCH VMDサポートの構成

このタスクについて

インテル(R) PCH VMDサポートオプションを使用して、NVMe用のインテルPCHボリューム管理デバイスサポートを有効/無効 にします。

手順

- システムユーティリティ画面で、システム構成 〉 BIOS/プラットフォーム構成(RBSU) 〉 ストレージオプション 〉 NVM Expressオプション > インテル(R) NVMe > インテル(R) PCH VMDサポートを選択します。
- 2. 設定を選択します。
 - すべてのPCH NVMeルートポートが有効
 - 無効
- 3. 設定を保存します。

インテル(R) VROCサポートの構成

前提条件

● インテル(R) PCH VMDサポートはすべてのPCH NVMeルートポートが有効に設定されています。

● インテル(R) CPU VMDサポートはすべてのCPU NVMeルートポートが有効に設定されています。

このタスクについて

インテル(R) VROCサポートオプションを使用して、さまざまなタイプのVROCライセンスを選択します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > ストレージオプション > NVM Expressオプション > インテル(R) NVMe > インテル(R) VROCサポートを選択します。
- 設定を選択します。
 - なし
 - 標準
 - プレミアム
- 3. 設定を保存します。

ローカルおよびリモートキー管理のためのSEDドライブの構成

このタスクについて

キー管理モードは、ローカルキー管理とリモートキー管理を切り替えることができます。暗号化された自己暗号化ドライブ (SED) は暗号化されたままですが、暗号化キーとそれらのキーのストレージは、選択されたキー管理モードに基づいて変 更されます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > デ バイス暗号化オプションを選択します。
- 2. キー管理設定を次のいずれかに変更します。
 - **ローカル** ローカルキー管理を有効にします。暗号キーは、サーバーにローカルに保存されます。 この設定を表示および選択するには、HPE TPM 2.0がインストールされている必要があります。
 - **リモート** リモートキー管理を有効にします。暗号キーは、リモートキーサーバーに保存されます。 この設定を表示および選択するには、HPE iLOがキーマネージャーに登録され接続されている必要があります。
- F12キーを押して変更を保存し、終了します。
- サーバーを再起動します。

電力およびパフォーマンスオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンスオプ ションを選択します。

サブトピック

パワーレギュレーターモードの設定

最小プロセッサーアイドル電力コアCステートの設定

最小プロセッサーアイドル電力パッケージCステートの設定

インテル(R)ターボブーストテクノロジーの構成

AMDデータファブリックCステートの有効化または無効化

エネルギーパフォーマンス設定の設定

AMDコアパフォーマンスブーストの構成

AMD Fmaxブースト制限制御の有効化または無効化

エネルギー/パフォーマンスバイアスの設定

AMD Infinity Fabricのパフォーマンス状態の設定

協調電力制御の有効化または無効化

AMD XGMI強制リンク幅の構成

AMD XGMI最大リンク幅の構成

インテルDMIリンク周波数の設定

AMD NBIO LCLK DPMレベルの構成

NUMAグループサイズ最適化の設定

アンコア周波数のスケーリングの構成

動的ロードライン(DLL)スイッチの無効化

Sub-NUMAクラスタリングの有効化または無効化

エネルギー効率ターボオプションの有効化または無効化

LLCデッドラインの割り当ての設定

Stale AからSへの設定

プロセッサープリフェッチャーオプションの無効化

1/0オプションの有効化または無効化

<u>インテルUPIオプションの構成</u>

DRAM RAPLオプションの構成

I/O非ポストプリフェッチの有効化または無効化

アドバンストパフォーマンスチューニングオプションの構成

<u>アドバンスト電力オプションの構成</u>

APEIサポートの有効化または無効化

CPPCサポートの有効化または無効化

LPIサポートの有効化または無効化

アンペア最大パフォーマンスの有効化または無効化

パワーレギュレーターモードの設定

このタスクについて

パワーレギュレーターの設定を使用することで、サーバーの効率が向上し、消費電力を管理することができます。

特定のプロセッサーは、1種類の電力状態のみをサポートし、どのパワーレギュレーターモードが選択され ていても常に初期化された周波数で稼働します。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > パワーレギュレーターを選択します。
- 設定を選択します。
 - ダイナミックパワーセービングモード プロセッサーの利用率に基づいてプロセッサー速度と電力使用量を自動的 に変化させます。このモードは、プロセッサーの動作を監視するのに、ROMベースのアルゴリズムを使用します。こ のモードを使用すると、パフォーマンスにほとんど、またはまったく影響を与えずに全体的な電力消費を削減し、 OSのサポートは必要ありません。
 - スタティックローパワーモード プロセッサー速度を下げ、電力使用量を減らします。システムの最大電力使用量 の低下が保証されます。このモードは、電力供給能力が制約されている場合に有益で、システムの最大電力使用を 低減するのに必要です。
 - スタティックハイパフォーマンスモード プロセッサーは、電力と性能が最大の状態で動作します。OSの電源管理 ポリシーは無視されます。このモードは、性能が重視され、電力消費はそれほど重要ではない環境で役立ちます。
 - OSコントロールモード OSが電力管理ポリシーを有効にしない限り、プロセッサーは常に最大電力/パフォーマン ス状態で稼働します。
- 設定を保存します。

最小プロセッサーアイドル雷カコアCステートの設定

このタスクについて

最小プロセッサーアイドル電カコアCステートオプションを使用して、オペレーティングシステムが使用するプロセッサー の最小アイドル電力状態(Cステート)を選択します。Cステートを高く設定すればするほど、そのアイドル状態の消費電力 は少なくなります。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション 〉 最小プロセッサーアイドル電力コアCステートを選択します。
- 2. 設定を選択します。
 - C6ステート (デフォルト 最小)
 - C1Eステート
 - Cステートなし
- 3. 設定を保存します。

最小プロセッサーアイドル雷力パッケージCステートの設定

このタスクについて

最小プロセッサーアイドル電力パッケージCステートオプションを使用して、最小プロセッサーアイドル電力状態(Cステー ト)を選択します。プロセッサーは、プロセッサーのコアの移行先のCステートに基づいて、自動的にパッケージCステート に移行します。パッケージGステートを高く設定すればするほど、そのアイドルパッケージ状態の消費電力は少なくなりま す。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > 最小プロセッサーアイドル電カパッケージCステートを選択します。
- 2. 設定を選択します。
 - パッケージC6 (リテンション) ステート (デフォルト 最小)
 - パッケージC6 (リテンションなし) ステート
 - パッケージステートなし
- 設定を保存します。

インテル(R)ターボブーストテクノロジーの構成

このタスクについて

インテル(R) ターボブーストテクノロジー - プロセッサーに利用可能な電力があり、温度が仕様範囲内である場合に、プロ セッサーの定格速度より高い周波数に移行できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 電力およびパフォーマンス オプション > インテル(R) ターボブーストテクノロジーを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
 - ↑ 注意: このオプションを無効にすると、消費電力が低減しますが、あるワークロードの下ではシステ ムの最大達成可能なパフォーマンスも低下します。
- 設定を保存します。

AMDデータファブリックCステートの有効化または無効化

このタスクについて

データファブリックCステート有効オプションを使用して、データファブリックCステートを有効または無効にします。

| 注記:

このオプションは、AMDプロセッサーを搭載するサーバーで使用できます。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス

オプション 〉データファブリックCステート有効を選択します。

- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

エネルギーパフォーマンス設定の設定

このタスクについて

エネルギーパフォーマンス設定を使用して、エネルギーパフォーマンス設定を有効または無効にします。

パワーレギュレーターはOSコントロールモードに設定されます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション〉エネルギーパフォーマンス設定を選択します。
- 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMDコアパフォーマンスブーストの構成

このタスクについて

AMDコアパフォーマンスブーストは、プロセッサーが使用できる電力に余裕があり、温度が仕様内である場合に、定格より も高い周波数にプロセッサーを移行するかどうかを制御します。

| 注記:

このオプションは、AMDプロセッサーを搭載するサーバーで使用できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 電力およびパフォーマンス オプション > AMDコアパフォーマンスブーストを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

AMD Fmaxブースト制限制御の有効化または無効化

このタスクについて

AMD Fmaxブースト制限設定は、最大プロセッサーブースト周波数を設定します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > AMD Fmaxブースト制限制御を選択します。
- 設定を選択します。
 - 自動 プロセッサーは可能な最高のブースト周波数で動作できます。
 - 手動 最大ブースト周波数を低く構成できます。
- 設定を保存します。 3.

エネルギー/パフォーマンスバイアスの設定

前提条件

ワークロードプロファイルがカスタムに設定されている。

このタスクについて

エネルギー/パフォーマンスバイアスオプションを使用すると、複数のプロセッサーサブシステムを、プロセッサーのパ フォーマンスと消費電力が最適化されるように構成できます。

手順

- システムユーティリティ画面で、システム構成 〉BIOS/プラットフォーム構成(RBSU) 〉 電力およびパフォーマンス オプション > エネルギー/パフォーマンスバイアスを選択します。
- 設定を選択します。
 - 最大パフォーマンス パフォーマンスが最大になり、遅延が最小になります。この設定は、消費電力に関する制約 が厳しくない環境で使用してください。
 - パフォーマンスに最適化 電力効率が最適化されるため、ほとんどの環境にお勧めします。
 - 電力に最適化 サーバーの使用率に基づいて電力効率が最適化されます。
 - 省電力モード 消費電力に関する制約が厳しく、パフォーマンスの低下を容認できる環境で使用してください。
- 設定を保存します。

AMD Infinity Fabricのパフォーマンス状態の設定

このタスクについて

Infinity Fabricの出力パフォーマンスが無効になっているときにInfinity Fabricのパフォーマンス状態(P-state)をカ スタマイズするには、Infinity Fabricのパフォーマンス状態オプションを使用します。

注記:

このオプションは、Infinity Fabricの電力管理が無効になっている場合にのみ表示されます。 詳しくは、この章の関連トピックを参照してください。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > Infinity Fabricのパフォーマンス状態を選択します。

- 2. 設定を選択します。
 - 自動
 - P0
 - P1
 - P2
 - P3
- 設定を保存します。

詳しくは

Infinity Fabricの電力管理の有効化または無効化

協調電力制御の有効化または無効化

このタスクについて

プロセッサークロッキングコントロール(PCC)インターフェイスをサポートしているオペレーティングシステムで協調電 力制御を有効にすると、サーバーでパワーレギュレーターオプションがダイナミックパワーセービングモードに設定されて いる場合でも、プロセッサー周波数の変更を要求するようにオペレーティングシステムが構成されます。PCCインターフェ イスをサポートしていないオペレーティングシステムの場合やパワーレギュレーターモードがダイナミックパワーセービン グモードに構成されていない場合、このオプションはシステムの動作に影響しません。 前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- システムユーティリティ画面で、システム構成 〉 BIOS/プラットフォーム構成(RBSU) 〉 電力およびパフォーマンス オプション > 協調電力制御を選択します。
- 設定を選択します。
 - 有効 オペレーティングシステムは、プロセッサーの周波数の変更を要求します。
 - 無効 オペレーティングシステムは、プロセッサーの周波数の変更を要求しません。
- 設定を保存します。

| 注記:

協調電力制御オプションは、ProLiant Gen10サーバーでのみサポートされています。

AMD XGMI強制リンク幅の構成

このタスクについて

XGMI強制リンク幅設定は、XGMIリンク幅を強制的にユーザー設定値にします。

| 注記: この設定は、CPUを2基搭載しているシステムにのみ存在します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > XGMI強制リンク幅を選択します。
- 設定を選択します。

- 自動 システムが必要に応じてXGMIリンク幅を動的に変更できるようにします。
- x2 XGMIリンク幅を強制的にx2にします。
- x8 XGMIリンク幅を強制的にx8にします。
- x16 XGMIリンク幅を強制的にx16にします。
- 3. 設定を保存します。

AMD XGMI最大リンク幅の構成

このタスクについて

XGMI最大リンク幅設定は、最大XGMIリンク幅をユーザー設定値に設定します。

戸 注記: この設定は、CPUを2基搭載しているシステムにのみ存在します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > XGMI最大リンク幅を選択します。
- 設定を選択します。
 - 自動 システムが必要に応じてXGMI最大リンク幅を動的に変更できるようにします。
 - x2 XGMIリンク幅を最大x2に制限します。
 - x8 XGMIリンク幅を最大x8に制限します。
 - x16 XGMI リンク幅を最大x16に制限します。
- 3. 設定を保存します。

インテルDMIリンク周波数の設定

このタスクについて

インテルDMIリンク周波数オプションを使用して、プロセッサーとサウスブリッジのリンク速度を強制的に遅くできます。 そうすることにより電力消費を削減できますが、システムパフォーマンスにも影響する可能性があります。

注記:

このオプションは、2個以上のCPUを持つシステムで構成できます。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > インテルDMIリンク周波数を選択します。
- 2. 設定を選択します。
 - 自動
 - Gen 1速度
 - Gen 2速度
- 設定を保存します。

AMD NBIO LCLK DPMレベルの構成

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > I/Oオプション > NBIO LCLK DPMレベルを選択します。
- 値を選択します。
 - 自動
 - 静的(低)
 - 静的(高)
 - 注記: NBIOを静的(高)に構成すると、NBIO上のPCIeデバイスのパフォーマンスが向上する場合があ りますが、プロセッサーのその他の部分のパフォーマンスが低下します。この設定は、PCIeデバイス 要件のレビュー後にのみ使用する必要があります。
- 設定を保存します。

NUMAグループサイズ最適化の設定

このタスクについて

NUMAグループサイズ最適化オプションを使用して、システムROMがNUMA(Non-Uniform Memory Access)ノード内の論理プロ セッサー数をレポートする方法を構成します。結果の情報を使用すると、オペレーティングシステムがアプリケーションで の使用のためにプロセッサーをグループ化するのに役立ちます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > NUMAグループサイズ最適化を選択します。
- 設定を選択します。
 - クラスター NUMAの境界に沿ってグループを最適化し、より優れたパフォーマンスを提供します。
 - フラット 複数グループにスパニングするプロセッサーを利用できるように最適化されていないアプリケーション が、より多くの論理プロセッサーを使用することが可能になります。
- 設定を保存します。

アンコア周波数のスケーリングの構成

このタスクについて

アンコア周波数のスケーリングオプションを使用して、プロセッサーの内部バスの周波数のスケーリングを制御します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション〉アンコア周波数のスケーリングを選択します。
- 設定を選択します。
 - 自動 プロセッサーはワークロードに基づいて周波数を動的に変更できます。
 - カスタム 2つのオプションを提供することで、レイテンシまたは消費電力の調整が可能になります。

- 最大アンコア周波数:特定の最大値を指定します。
- 最小アンコア周波数:特定の最小値を指定します。
- 設定を保存します。

動的ロードライン(DLL)スイッチの無効化

このタスクについて

動的ロードラインスイッチは、MSR 0x1FC[Bit33]を制御します。この切り替えを有効または無効にすると、条件による電力 やパフォーマンスに影響を与えます。DLLはP状態の動作に応じてEPBモードをスイッチします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション 〉動的ロードラインスイッチを無効にするを選択します。
- 設定を選択します。
 - DLLスイッチを無効にしない
 - DLLスイッチを無効にする
- 設定を保存します。

Sub-NUMAクラスタリングの有効化または無効化

このタスクについて

Sub-NUMAクラスタリングを使用して、プロセッサーのコア、キャッシュ、およびメモリを複数のNUMAドメインに分割できま す。NUMAに対応し、最適化されているワークロードでは、このオプションを有効にするとパフォーマンスが向上する可能性 があります。

注記:

Sub-NUMAクラスタリングを有効にすると、最大1GBのシステムメモリを使用できなくなる可能性がありま

前提条件

このオプションを有効にするために、XPTプリフェッチャーを有効にする。

手順

- システムユーティリティ画面で、システム構成 〉BIOS/プラットフォーム構成(RBSU) 〉 電力およびパフォーマンス オプション > Sub-NUMAクラスタリングを選択します。
- 設定を選択します。
 - 無効
 - SNC2
 - SNC4
- 設定を保存します。

エネルギー効率ターボオプションの有効化または無効化

このタスクについて

エネルギー効率ターボオプションを使用して、プロセッサーが、エネルギー効率ベースのポリシーを使用するかどうかを制 御します。

前提条件

インテル(R) ターボブーストテクノロジーを有効にする。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション 〉エネルギー効率ターボを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

LLCデッドラインの割り当ての設定

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > LLCデッドラインの割り当てを選択します。
- 次のいずれかを選択します。
 - 有効 LLCのデッドラインを状況に応じて満たします。
 - 無効 LLCのデッドラインを満たすことはありません。
- 3. 設定を保存します。

Stale AからSへの設定

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > Stale AからSへを選択します。
- 2. 次のいずれかを選択します。
 - 自動
 - 有効 Stale AからSへのディレクトリ最適化を有効にします。
 - 無効 Stale AからSへのディレクトリ最適化を無効にします。
- 3. 設定を保存します。

プロセッサープリフェッチャーオプションの無効化

このタスクについて

デフォルトでは、ほとんどの環境に最適なパフォーマンスを提供するために、プロセッサープリフェッチャーオプションが 有効になっています。場合によっては、これらのオプションを無効にするとパフォーマンスが向上する可能性があります。

(i) 重要:

環境内のパフォーマンスを改善できることを確認するには、プロセッサープリフェッチャーオプションを無 効にする前に、アプリケーションベンチマーク評価を実行します。

手順

- システムユーティリティ画面で、システム構成 〉 BIOS/プラットフォーム構成(RBSU) 〉 電力およびパフォーマンス オプション 〉 プロセッサープリフェッチャーオプションを選択します。
- 設定を選択します。
 - HWプリフェッチャー
 - 隣接セクターのプリフェッチャー
 - DCUストリームプリフェッチャー
 - DCU IPプリフェッチャー
 - LLCのプリフェッチ
- 無効を選択します。
- 変更を保存します。

I/Oオプションの有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > 1/0オプションを選択します。
- オプションを選択します。
- 有効または無効を選択します。
- 4. 変更を保存します。

サブトピック

ACPI SLITオプションの有効化

インテルNIC DMAチャネルの有効化

1/0のメモリ近接関係レポートの有効化

ACPI SLITオプションの有効化

このタスクについて

Advanced Configuration and Power Interface System Locality Information Table (ACPI SLIT) を有効または無効にし ます。ACPI SLITは、プロセッサー、メモリサブシステム、およびI/0サブシステム間の相対アクセス時間を定義します。 SLITをサポートするオペレーティングシステムでは、この情報を使用してリソースやワークロードの割り当てを効率化し、 パフォーマンスを改善できます。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス

オプション > 1/0オプションを選択します。

- 2. オプションACPI SLITで、次のいずれかを選択します。
 - 有効
 - 無効
- 3. 変更を保存します。

インテルNIC DMAチャネルの有効化

このタスクについて

インテルNIC上でのDMAアクセラレーションを有効または無効にします。ご使用のサーバーにインテルNICが搭載されていな い場合は、この設定を無効のままにしてください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > 1/0オプションを選択します。
- 2. オプションインテルNIC DMAチャネルで、次のいずれかを選択します。
 - 有効
 - 無効
- 3. 変更を保存します。

1/0のメモリ近接関係レポートの有効化

このタスクについて

I/Oデバイスと、オペレーティングシステムのシステムメモリとの間の近接関係をシステムROMがレポートする機能を有効ま たは無効にします。ほとんどのオペレーティングシステムでは、この情報を使用して、ネットワークコントローラーやスト レージデバイスなどのデバイスにメモリリソースを効率的に割り当てることができます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > 1/0オプションを選択します。
- オプション1/0のメモリ近接関係レポートで、次のいずれかを選択します。
 - 有効
 - 無効

注記:

OSのドライバーがこの機能をサポートするための適切な最適化が行われていない場合、特定のI/Oデバイ スではI/O処理の利点を利用できない場合があります。詳しくは、オペレーティングシステムおよびI/Oデ バイスのドキュメントを参照してください。

3. 変更を保存します。

1 ノ / ルリ17 ノ ノ コ ノ リ1件以

このタスクについて

インテルUPIオプションを選択して、ACPI SLIT、インテルNIC DMA、I/Oのメモリ近接関係レポート、およびI/O非ポストプ リフェッチの設定を変更します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション 〉インテルUPIオプションを選択します。
- 2. 以下のオプションを構成します。
 - インテルUPIリンク有効 使用可能な場合、プロセッサー間でより少ない数のリンクを使用するようにUPIトポロジ を構成します。デフォルトから変更すると、少ない電力消費の代償として、UPIバンド幅パフォーマンスが低下する 可能性があります。
 - 。 自動
 - シングルリンク動作
 - ◆ インテルUPIリンク電力管理 Quick Pathインターコネクト(UPI) リンクが使用されていない場合に、そのリンク を低電力状態にします。これは、パフォーマンスへの影響を最小限に抑えながら消費電力を低減します。
 - 有効(デフォルト)
 - 。 無効
 - (i) 重要: 2個以上のCPUが存在し、ワークロードプロファイルがカスタムに設定されている場合のみ、こ のオプションを構成できます。
 - インテルUPIリンク周波数 UPIリンク周波数を低速に設定します。低い周波数で実行すると、消費電力は低減でき ますが、システムのパフォーマンスにも影響する可能性があります。
 - 自動
 - 。 最小UPI速度
 - (i) 重要: 2個以上のCPUが存在し、ワークロードプロファイルがカスタムに設定されている場合のみ、こ のオプションを構成できます。
 - UPIプリフェッチャー このオプションを使用して、プロセッサーのUPIプリフェッチ機能を無効にします。場合に よっては、このオプションを無効にするとパフォーマンスが向上する可能性があります。通常はこのオプションを 有効にするとパフォーマンスが改善します。
 - 。 有効
 - 無効
 - ヒント: アプリケーションのベンチマークを実行して、環境内でのパフォーマンスの向上を確認した 後にのみ、このオプションを無効にしてください。Sub-NUMAクラスタリング(SNC)を有効にする場 合、このオプションを有効にする必要があります。
 - UPIに送信 (D2K)
 - 。 自動
 - 有効
 - 。 無効
- 3. 変更を保存します。

DRAM RAPLオプションの構成

サブトピック

DRAM RAPLレポートサポートの有効化または無効化

DRAM RAPL制限サポートの構成

DRAM RAPLワット値の構成

DRAM RAPLレポートサポートの有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > DRAM RAPLオプション > DRAM RAPLレポートサポートを選択します。
- 値を選択します。
 - 有効 DRAM電力レポートを有効にします。
 - 無効 DRAM電力レポートを無効にします。
- 3. 変更を保存します。

DRAM RAPL制限サポートの構成

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > DRAM RAPLオプション > DRAM RAPL制限サポートを選択します。
- 値を選択します。
 - 無効 DRAM電力制限を無効にするため、システムファームウェアもオペレーティングシステムソフトウェアもDRAM 電力を制限できなくなります。
 - OS制御モード DRAM電力制限を有効にするため、オペレーティングシステムソフトウェアのみがDRAM電力制限をプ ログラムできるようになります。
 - BIOS制御モード DRAM電力制限を有効にするため、システムファームウェアのみがPOST中のDRAM電力制限をプログ ラムできるようになります。
 - □ ヒント: DRAM RAPL値はプロセッサーのメモリ全体に適用されます。この値は、プロセッサーソケットレ ベルで、接続されているすべてのメモリからの合計電力を制限します。
- 変更を保存します。

DRAM RAPLワット値の構成

このタスクについて

DRAM RAPLワット値は、システム内に取り付けられたすべてのソケットに適用されるソケット単位のDRAM RAPLの値です。資 格を持つ担当者の指示に従って、この値を変更します。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > DRAM RAPLオプション > DRAM RAPLワット値を選択します。

- 2. 担当者と相談した上で値をミリワット単位で入力します。
- 3. 変更を保存します。

I/O非ポストプリフェッチの有効化または無効化

このタスクについて

I/0非ポストプリフェッチオプションを使用して、I/0の非ポストプリフェッチを有効または無効にします。 読み込み/書き込みのI/0トラフィックをバランスよく分配する必要がある小さな構成セットでは、I/0の非ポストプリ フェッチを無効にするとパフォーマンスが大幅に向上する可能性があります。たとえば、InfiniBandを含む構成、または PCI-eバスの最大帯域幅を利用する複数のx16デバイスです。

注記:

この機能を無効にすると、100% 1/0読み取り帯域幅に若干影響します。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 雷力およびパフォーマンス オプション > 1/0非ポストプリフェッチを選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

アドバンストパフォーマンスチューニングオプションの構成

このタスクについて

ジッターの原因になり遅延を発生させる周波数の変動を抑制するために、高度なパフォーマンスチューニングを使用しま す。ジッター制御は、手動または自動で管理できます。プロセッサー周波数の変動があるかどうかに関わらず、使用する周 波数を指定することもできます。ジッター制御について詳しくは、HPE Gen11 Servers Intelligent System Tuningを参照 してください。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > アドバンストパフォーマンスチューニングオプションを選択します。
- 設定を構成します。
 - プロセッサーパフォーマンス強化:この機能を有効または無効にするには、このオプションを使用します。有効に した場合、プロセッサーの設定がより活動的な設定に調整され、パフォーマンスが向上する可能性がありますが、 消費電力が高くなる可能性があります。
 - インテル (R) AVX P1:このオプションは、SSE、AVX、およびAVX-512の確定的周波数に関するデフォルトのCPUポリ シーを上書きします。これにより、確定的動作周波数が低下します。ターボモードを無効にすると、確定的動作が 増強されますが、結果的に動作周波数が低下します。オプションは、正常、レベル1、レベル2です。
- 3. 変更を保存します。

サブトピック

UPIへの送信オプションの設定

10ダイレクトキャッシュの構成

デッドブロック予測の構成

スヌープ応答ホールドオフの構成

IOATスタックのスヌープ応答ホールドオフの構成

パフォーマンス管理

UPIへの送信オプションの設定

手順

- 1. システムユーティリティ画面から、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマン スオプション 〉 アドバンストパフォーマンスチューニングオプション 〉 UPIへの送信の順に選択します。
- 2. オプションを選択します。
 - 有効: このオプションを有効にすると、リモートメモリまたはI/0のアクセスをUPIバスに依存しているマルチプロ セッサー構成のシステムで、パフォーマンス上の利点が得られます。
 - 無効
- 3. 変更を保存します。

IOダイレクトキャッシュの構成

このタスクについて

IOダイレクトキャッシュオプションを使用して、PCIピアツーピア直列化を構成します。

この機能が有効になっていると、プロセッサーソケット上に複数のGPUが搭載されているシステムなど、一部の構成では、 パフォーマンスの向上が見られる場合があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > アドバンストパフォーマンスチューニングオプション > 10ダイレクトキャッシュを選択します。
- 2. 設定を選択します。
 - 自動
 - 無効 リモートInvItoM (IIO) またはWCiLF (コア) に対してメモリルックアップの代わりにスヌープを生成しま
 - リモートInvItoMハイブリッドプッシュに対して有効
 - InvItoM AllocFlow
 - InvItoMハイブリッドAllocFlow
 - リモートInvItoMおよびリモートWViLFに対して有効
- 3. 設定を保存します。

デッドブロック予測の構成

このタスクについて

デッドブロック予測オプションを使用して、DBP-Fプロセッサーのパフォーマンスオプションを構成します。有効にする と、この機能は、改善されたキャッシュライン削除の予測に基づいて、マルチスレッドワークロードにメリットをもたらし ます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > アドバンストパフォーマンスチューニングオプション > デッドブロック予測を選択します。
- 2. 設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

スヌープ応答ホールドオフの構成

このタスクについて

スヌープ応答ホールドオフは、推奨されるデフォルト設定によってワークロードのパフォーマンスが低下するまれなケース で、I/0サブシステムのスヌープ応答時間を調整します。

この設定の値を大きくすると、スヌープ要求を保留できる時間が指数関数的に増加します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > アドバンストパフォーマンスチューニングオプション > スヌープ応答ホールドオフを選択します。
- ドロップダウンで値[0-15]を選択します。 2.
- 3. 設定を保存します。

IOATスタックのスヌープ応答ホールドオフの構成

このタスクについて

IOATスタックのスヌープ応答ホールドオフは、推奨されるデフォルト設定によってワークロードのパフォーマンスが低下す るまれなケースで、1/0サブシステムのスヌープ応答時間を調整します。

この設定の値を大きくすると、スヌープ要求を保留できる時間が指数関数的に増加します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション > アドバンストパフォーマンスチューニングオプション > IOATスタックのスヌープ応答ホールドオフを選 択します。
- ドロップダウンで値[0-15]を選択します。 2.
- 設定を保存します。

パフォーマンス管理

選択したHPE Gen10以降のサーバーでは、以下のサーバーのパフォーマンス管理およびチューニング機能がサポートされて います。

- Workload Matching 設定済みのサーバープロファイルを使用して、アプリケーションパフォーマンスを最大化しま す。
- Jitter Smoothing プロセッサージッター制御モード設定を使用して、周波数変動(ジッター)をならしてバランスさ せ、低レイテンシを実現します。
- パフォーマンス監視 Innovation Engineのサポートによってサーバーでサポートされたセンサーから収集したパ フォーマンスデータを表示します。収集したデータに基づいてアラートを構成できます。
- ワークロードアドバイザー 選択されたサーバーワークロード特性を表示します。監視対象データに基づき、推奨のパ フォーマンスチューニング設定を表示したり、構成したりできます。
- コアブースト アクティブなプロセッサーコア間のパフォーマンスを高めるためにこの機能を有効にします。 この機能はGen10サーバーのみでサポートされています。Gen10 Plus以降のサーバーではサポートされていません。 iLOを工場出荷時のデフォルト設定にリセットすると、パフォーマンス管理のすべての設定とデータが削除されます。 iLOのバックアップおよびリストア機能を使用するときは、パフォーマンス管理設定が保持されます。収集されたパフォー マンスデータはバックアップまたはリストアされません。

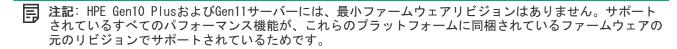
サブトピック

パフォーマンス管理機能の要件

パフォーマンス管理機能の要件

表 1. HPEサーバーGenerationによるパフォーマンス機能

HPEサーバー	Workload Matching	g Jitter Smoothing	コアブースト	パフォーマンス監 視	ワークロードアド バイザー
インテルスケーラブルパ フォーマンスプロセッサーを 使用するHPE Gen10サーバー	✓	√	✓	√	✓
AMD EPYCプロセッサーを使用するHPE Gen10サーバー	✓				
インテルスケーラブルパ フォーマンスプロセッサーを 使用するHPE Gen10 Plusサー バー				√	✓
AMD EPYCプロセッサーを使用するHPE Gen10 Plusサーバー	-				
インテルスケーラブルパ フォーマンスプロセッサーを 使用するHPE Gen11サーバー	✓			✓	✓
AMD EPYCプロセッサーを使用するHPE Gen11サーバー	*				


表 2. パフォーマンス機能のiLO Advancedライセンス要件

要件	Workload Matching	Jitter Smoothing	コアブースト	パフォーマンス監視	見ワークロードアドバ イザー
iLO Advancedのラ イセンス		✓	✓	✓	✓

表 3. パフォーマンス機能のHPE Gen10サーバーの最小ファームウェア要件

ファームウェア	Workload Matching	Jitter Smoothing	コアブースト	パフォーマンス監視	見ワークロードアドバ イザー
最小システムROM	1.00	静的の場合1.00 動的の場合1.20 最適化の場合1.40	1. 20	2. 00	2. 00
最小iLOファーム ウェア	該当なし	1.15 iLO RESTful API 1.30 iLOのWebイン ターフェイス	1.15 iLO RESTful API 1.30 iLOのWebイン ターフェイス	1.40 iLO RESTful API 1.40 iLOのWebイン ターフェイス	1.40 iLO RESTful API 1.40 iLOのWebイン ターフェイス
最小 のHPEInnovation Engineファーム ウェア ¹	該当なし	1. 2. 4	1. 2. 4	2. 0. 11	2. 0. 11

iLOのWebインターフェイスのパフォーマンスページは、Innovation Engineがサポートされていないサーバーでは使用 できません。Innovation Engineがサポートされているかどうかを確認するには、インストールされたファームウェ アページでInnovation Engineファームウェアを検索します。

アドバンスト電力オプションの構成

このタスクについて

チャネルインターリーブや協調電力制御のような高度な電力機能を有効にするには、アドバンスト電力オプションメニュー を使用します。また、UPIリンク周波数を低速に設定したり、プロセッサーのアイドル電力状態を設定したりできます。

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンスオプ ション 〉 アドバンスト電力オプションを選択します。

サブトピック

冗長電源装置モードの設定

インテルプロセッサーPMAX電力調整の構成

Infinity Fabricの電力管理の有効化または無効化

パッケージ電力制限制御モードの構成

冗長電源装置モードの設定

このタスクについて

冗長電源装置モードオプションを使用すると、システムによる冗長電源装置の構成の取り扱い方法を設定できます。冗長電 源装置を使用している場合は、どの高効率モード設定を使用しても、電力の半分が電力使用レベルの低いスタンバイモード に維持されるため、電力効率の最も高い動作が実現します。バランスモード - 取り付けられているすべての電源装置に均 一に電力が供給されます。

前提条件

ワークロードプロファイルがカスタムに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプション 〉 アドバンスト電力オプション 〉 冗長電源装置モードを選択します。
- 設定を選択します。
 - バランスモード システムでは、取り付けられているすべての電源装置に均一に電力が供給されます。
 - 高効率モード(自動) システムは、システムのグループ内のセミランダム分布に基づいて、奇数または偶数の電 源装置から選択します。
 - 高効率モード(奇数電源スタンバイ)-システムは、奇数の電源装置をスタンバイ状態にします。
 - 高効率モード(偶数電源スタンバイ)-システムは、偶数の電源装置をスタンバイ状態にします。
- 設定を保存します。

インテルプロセッサーPMAX電力調整の構成

このタスクについて

プロセッサーPMAX電力調整オプションを使用して、プロセッサー電力調整(PMAX)設定を制御します。このオプションを構 成すると、プロセッサーのピーク最大電力検出(PMAX)回路が変更され、デフォルト設定より早くスロットル調整を開始す るようになります。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 雷力およびパフォーマンス オプション > アドバンスト電力オプション > プロセッサーPMAX電力調整を選択します。
- 値を入力します。
- 3. 設定を保存します。

Infinity Fabricの電力管理の有効化または無効化

このタスクについて

Infinity Fabricの電力管理を有効にすると、EPYCプロセッサーはアクティビティレベルに基づいてInfinity Fabricのク ロック周波数を動的に変更します。

NUMAに最適化されたワークロードの場合は、Infinity Fabricの実行速度を下げると、CPUブーストの増加によって全体的な パフォーマンスが向上する可能性があります。レイテンシの影響を受けやすいワークロードの場合は、この機能を無効にす ることが必要になる場合があります。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス

オプション 〉 アドバンスト電力オプションを選択します。

- Infinity Fabricの電力管理で、設定を選択します。
 - 有効
 - 無効
- 3. 設定を保存します。

パッケージ電力制限制御モードの構成

このタスクについて

パッケージ電力制限制御モードは、システム内に取り付けられたすべてのプロセッサーに適用されるプロセッサーあたりの パッケージ電力制限値です。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電力およびパフォーマンス オプションを選択します。
- 2. パッケージ電力制限制御モードで、設定を選択します。
 - 自動 デフォルトのプロセッサー値が使用されます。
 - 手動 パッケージ電力制限値をワット単位で変更できます。資格のある担当者の指示に従って行ってください。
- 設定を保存します。

APEIサポートの有効化または無効化

このタスクについて

APEIサポートを使用して、ACPIプラットフォームエラーインターフェイスのサポートを有効/無効にします。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 電源オプションを選択しま す。
- 設定を選択します。
 - 有効(デフォルト)
 - 無効
- 設定を保存します。

CPPCサポートの有効化または無効化

このタスクについて

CPPCサポートを使用して、Collaborative Processor Performance Controlを有効または無効にします。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電源オプションを選択しま

す。

- 設定を選択します。
 - 有効(デフォルト)
 - 無効
- 3. 設定を保存します。

LPIサポートの有効化または無効化

このタスクについて

LPIサポートを使用して、低電力アイドルを有効または無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電源オプションを選択しま す。
- 2. 設定を選択します。
 - 有効 (デフォルト)
 - 無効
- 設定を保存します。

アンペア最大パフォーマンスの有効化または無効化

このタスクについて

アンペア最大パフォーマンスを使用して、最大パフォーマンスを有効または無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 電源オプションを選択しま す。
- 2. 設定を選択します。
 - 有効 (デフォルト)
 - 無効
- 3. 設定を保存します。

内蔵UEFIシェルオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内蔵UEFIシェルオプションを選 択します。

サブトピック

内蔵UEFIシェルの有効化または無効化

UEFIブート順序リストへの内蔵UEFIシェルの追加

内蔵UEFIシェル起動スクリプトの自動実行の有効化または無効化

シェルスクリプト検証の有効化または無効化

内蔵UEFIシェル起動スクリプトロケーションの設定

DHCPを使用した、シェル自動起動スクリプトの検出の有効化または無効化

シェル自動起動スクリプトのネットワーク上の場所の設定

内蔵UEFIシェルの有効化または無効化

このタスクについて

内蔵UEFIシェルオプションを使用すると、UEFIブートローダーを含むUEFIアプリケーションのスクリプトを作成し、実行す るための起動前のコマンドライン環境を有効または無効にすることができます。内蔵UEFIシェルには、システム情報を取得 し、システムBIOSを構成およびアップデートするために使用できるCLIベースのコマンドも用意されています。このオプ ションを有効にして、内蔵UEFIシェルをブート順序に追加を有効にすると、内蔵UEFIシェルがUEFIブート順序リストに追加 されます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 内蔵UEFIシェル > 内蔵UEFI シェルを選択します。
- 設定を選択します。
 - 有効 起動前環境から内蔵UEFIシェルを起動してUEFIブート順序リストに追加できます。
 - 無効 内蔵UEFIシェルは起動前環境で使用できないため、UEFIブート順序リストに追加できません。
- 設定を保存します。

UEFIブート順序リストへの内蔵UEFIシェルの追加

このタスクについて

前提条件

ブートモードがUEFIモードに設定されている。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内蔵UEFIシェル > 内蔵UEFI シェルをブート順序に追加を選択します。
- 2. 設定を選択します。
 - 有効 次の再起動時に内蔵UEFIシェルをブート順序リストに追加します。
 - 無効 内蔵UEFIシェルは、ブート順序リストに追加されません。
- 3. 設定を保存します。

内蔵UEFIシェル起動スクリプトの自動実行の有効化または無効化

前提条件

- ブートモードがUEFIモードに設定されている。
- ・ 内蔵UEFIシェルが有効になっている。

このタスクについて

シェル起動中の内蔵UEFIシェル起動スクリプトの自動実行を有効または無効にするには、UEFIシェルスクリプト自動起動オ プションを使用します。

- 起動スクリプトを使用して、RAMディスクの作成、ネットワークからのファイルをダウンロード、データの収集、結果の ネットワークへの再アップロードを行い、システムを再起動せずにOSを再起動できます。
- ローカルメディア上にスクリプトファイルを保存したり、ネットワーク上の位置からスクリプトファイルにアクセスし たりできます。
- スクリプトファイルに startup.nsh という名前を付け、ローカルメディア上、またはサーバーがアクセスできるネッ トワーク上の位置に配置する必要があります。
- 自動起動が有効な場合、シェル自動起動スクリプトロケーションオプションが自動に設定されていると、シェルは、ス クリプトファイルを、最初にネットワーク上、次にローカル接続のFAT16またはFAT32フォーマットのメディアで探しま す。
- 1つのファイルシステムには、startup.nsh ファイルを1つだけ配置することをお勧めします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内蔵UEFIシェル > UEFIシェ ルスクリプト自動起動を選択します。
- 2. 設定を選択します。
 - 有効 シェルの起動中に、UEFIシェル起動スクリプトを実行します。
 - 無効 シェルの起動中に、UEFIシェル起動スクリプトを実行しません。
- 設定を保存します。

シェルスクリプト検証の有効化または無効化

前提条件

- ブートモードがUEFIモードに設定されている。
- 内蔵UEFIシェルが有効になっている。
- セキュアブートが有効になっている。
- シェルスクリプトがセキュアブートデータベースに登録されている。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内蔵UEFIシェル > シェルス クリプトの検証を選択します。
- 設定を選択します。
 - 有効 シェルスクリプトの検証を有効にします。
 - 無効 (デフォルト)シェルスクリプトの検証を有効にはしません。
- 設定を保存します。

内蔵UEFIシェル起動スクリプトロケーションの設定

前提条件

- 内蔵UEFIシェルが有効になっている。
- UEFIシェルスクリプト自動起動が有効になっている。

このタスクについて

シェル自動起動スクリプトロケーションオプションを使用して、内蔵UEFIシェル起動スクリプトの位置を選択します。UEFI シェルスクリプト自動起動を有効にする場合は、この設定でシェルが startup.nsh ファイルを検索する場所を指定しま

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > 内蔵UEFIシェル > シェル自 動起動スクリプトロケーションを選択します。
- 設定を選択します。
 - 自動 シェルは起動スクリプトの取得を最初にネットワーク上の場所から試行し、続いてローカルに接続されたメ ディアから試行します。
 - 接続メディア上のファイルシステム シェルはUSBディスクまたはHDD上のFAT32パーティションのようなUEFIから アクセス可能なローカルファイルシステム上で startup.nsh スクリプトファイルを探します。
 - ネットワーク上 シェルはシステムからアクセス可能なHTTPおよびHTTPSまたはFTPの場所から .nsh スクリプトを 探します。
- 設定を保存します。

DHCPを使用した、シェル自動起動スクリプトの検出の有効化または無効化

前提条件

- 内蔵UEFIシェルが有効になっている。
- UEFIシェルスクリプト自動起動が有効になっている。
- HTTPサポートポリシーが有効になっており、DHCPサーバーによって提供されたURLが、HTTPサポートポリシーの設定とー 致する。
- シェル自動起動スクリプトロケーションがネットワーク上または自動に設定されている。
- DHCPサーバーが、HTTP/HTTPSまたはFTPのURLを提供するように構成されている。
- UEFIShellに設定されている User Class オプションに応答するように、DHCPサーバーが構成されている。IPv4上の DHCPを使用する場合、User Classオプションはオプション77です。IPv6上のDHCPを使用する場合はオプション15です。

このタスクについて

DHCPを使用したシェル自動起動スクリプトの検出オプションを使用して、シェルがDHCPを使用して、起動スクリプトのURL を検出できるようにします。有効に設定した場合、シェルは、DHCP User Class オプションを文字列 UEFIShell に設定 してDHCP要求を送信します。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内蔵UEFIシェル > DHCPを使 用したシェル自動起動スクリプトの検出を選択します。
- 設定を選択します。
 - 有効 シェルは、起動スクリプトのURLを検出するのにDHCPを使用します。

- 無効 シェルは、起動スクリプトのURLを検出するためのDHCP要求を送信しません。
- 設定を保存します。

シェル自動起動スクリプトのネットワーク上の場所の設定

前提条件

- 内蔵UEFIシェルが有効になっている。
- シェル自動起動スクリプトロケーションがネットワーク上または自動に設定されている。
- DHCPを使用したシェル自動起動スクリプトの検出が無効に設定されている。
- HTTPS URLを指定するとき、サーバーセキュリティ > TLS (HTTPS) オプションを使用して、HTTPSサーバーのTLS証明書 が構成されます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 内部UEFIシェル > シェル自動 起動スクリプトのためのネットワーク上の場所を選択します。
- .nsh ファイルのネットワーク上の位置を入力します。次の値が有効です。
 - IPv4またはIPv6サーバーアドレスかホスト名のHTTP/HTTPS形式のURL。
 - IPv4またはIPv6サーバーアドレスかホスト名のFTP形式のURL。

例:

- http://192.168.0.1/file/file.nsh
- http://example.com/file/file.nsh
- https://example.com/file/file.nsh
- http://[1234::1000]/file.nsh
- 設定を保存します。

サーバーセキュリティ設定の変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティを選択し ます。

サブトピック

<u>サーバーセキュリティのオプション</u>

インテルSGX制御オプションの構成

SGX工場出荷時リセットの有効化または無効化

電源投入時パスワード設定

iLOアカウントでのログイン許可

管理者パスワードの設定

セキュアブート

セキュアブートの有効化または無効化

サーバーロック設定の構成

アドバンストセキュアブートオプション

TLS (HTTPS) オプション

アドバンストセキュリティオプションの変更

Microsoft (R) Secured-coreサポートの有効化または無効化

アドバンストオプションの変更

<u>ワンタイムブートメニュー(F11プロンプト)の有効化または無効化</u>

Intelligent Provisioning (F10プロンプト) の有効化または無効化

プロセッサーAES-NIサポートの有効化または無効化

バックアップROMイメージ認証の有効化または無効化

Trusted Platform Module (TPM) オプションの構成

サーバーセキュリティのオプション

- 電源投入時パスワードの設定
- 管理者パスワードの設定
- セキュアブート設定
- TLS (HTTPS) オプション
- Trusted Platform Moduleオプション
- インテル(R) TXTサポート
- ワンタイムブートメニュー(F11プロンプト)
- バックアップROMイメージの認証

インテルSGX制御オプションの構成

このタスクについて

インテルSGX制御オプションを構成するには、この画面を使用します。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > イ ンテルセキュリティオプションを選択します。
- 2. 以下のオプションを構成します。
 - インテル(R) ソフトウェア ガード エクステンションズ (SGX) : ソフトウェア ガード エクステンションズ (SGX) を有効または無効 にします。
 - PRMRRサイズ: PRMRRのサイズを選択します。

• オーナーエポック入力タイプの選択:次の3つのオーナーエポックモードがあります。オーナーエポックの変更な し、新しいランダムなオーナーエポックへの変更、新しいオーナーエポックの手動入力。オーナーエポックを変更 すると、インテル(R) ソフトウェア ガード エクステンションズで保護されているすべての永続データが失われま す。

オーナーエポック値が変更されると、インテル(R) ソフトウェア ガード エクステンションズテクノ ロジーで保護されているすべての永続データが失われます。

- ソフトウェア ガード エクステンションズエポック:ソフトウェア ガード エクステンションズ128ビットエポック の16進数値。
- SGXローンチコントロールポリシー:ソフトウェア ガード エクステンションズ (SGX) ローンチコントロールポリ シー。オプションは次のとおりです。
 - インテルロック済み:インテルのローンチェンクレーブを選択します。
 - 解除:ローンチエンクレーブのOS/VMM構成を有効にします。
 - ロック済み:ローンチェンクレーブの構成を所有者に許可します。
- SGX LE公開キーハッシュ0:ソフトウェア ガード エクステンションズ (SGX) ローンチエンクレーブ公開キーハッ シュのバイト0から7
- SGX LE公開キーハッシュ1:ソフトウェア ガード エクステンションズ (SGX) ローンチエンクレーブ公開キーハッ シュのバイト8から15
- SGX LE公開キーハッシュ2:ソフトウェア ガード エクステンションズ (SGX) ローンチエンクレーブ公開キーハッ シュのバイト16から23
- SGX LE公開キーハッシュ3:ソフトウェア ガード エクステンションズ (SGX) ローンチエンクレーブ公開キーハッ シュのバイト24から31
- 3. オプションを保存します。

SGX工場出荷時リセットの有効化または無効化

前提条件

以下の事柄を確認します。

- トータルメモリ暗号化(TME)を有効にしている。
- システム構成は1チャネルメモリ構成でない。

このタスクについて

SGX工場出荷時リセットを有効にすると、SGX工場出荷時リセットが実行され、再起動時にすべての登録データが削除されま す。このアクションにより、初期プラットフォーム確立フローが強制されます。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > イ ンテルセキュリティオプション > SGX工場出荷時リセットを選択します。
- 2. 設定を選択します。
 - 有効
 - 無効(デフォルト)
- 3. 変更を保存します。

電源投入時パスワード設定

このタスクについて

電源投入時パスワード設定オプションを使用して、ブートプロセス中にサーバーにアクセスするためのパスワードを設定で きます。サーバーの電源を投入すると、プロンプトが表示されます。続行するには、ここにパスワードを入力する必要があ ります。パスワードを無効化または消去するには、パスワードの入力を求めるメッセージが表示されたときに、パスワード の後に/(スラッシュ)を付けて入力します。

注記:

ASR(自動サーバー復旧)再起動の場合、電源投入時パスワードはバイパスされ、サーバーは通常どおり起 動します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > 電 源投入時パスワード設定を選択します。
- 2. パスワードを入力します。

パスワードは次の条件を満たしている必要があります。

- 最大31文字
- 英数字および特殊文字の任意の組み合わせ
- 確認のためもう一度パスワードを入力して、Enterを押します。

パスワードが設定されていることを確認するメッセージが表示されます。

- 変更を保存します。
- サーバーを再起動します。

iLOアカウントでのログイン許可

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > サーバーセキュリティ > iLOアカウントでのログインを許可を選択します。
- ユーザーがCONFIGURE BIOS権限を持つiLOアカウントでログインできるようにするには、iLOアカウントでのログインを 許可を選択します。
- 変更を保存します。

管理者パスワードの設定

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > 管 理者パスワードの設定を選択します。
- 2. パスワードを入力します。

パスワードは次の条件を満たしている必要があります。

最大31文字

- 英数字および特殊文字の任意の組み合わせ
- 確認のためもう一度パスワードを入力して、Enterを押します。

パスワードが設定されていることを確認するメッセージが表示されます。

- 4. 変更を保存します。
- サーバーを再起動します。

ヤキュアブート

セキュアブートはサーバーのセキュリティ機能で、完全にBIOSに組み込まれており、特殊なハードウェアは不要です。セ キュアブートにより、ブートプロセス中に起動した各コンポーネントにデジタル記号が付けられ、この署名がUEFI BIOSに 内蔵された一連の信頼済みの証明書と照合されて検証されます。セキュアブートは、ブートプロセス中に次のコンポーネン トのソフトウェアIDを検証します。

- PCIeカードからロードされたUEFIドライバー
- ◆ 大容量ストレージデバイスからロードされたUEFIドライバー
- プリブートUEFIシェルアプリケーション
- OS UEFIブートローダー

セキュアブートが有効になっている場合には、以下が必要です。

- ブートプロセス中、ブートローダーを持つオペレーティングシステムとファームウェアコンポーネントは、実行するた めに適切なデジタル署名を持っている必要があります。
- オペレーティングシステムは、起動するためには、セキュアブートをサポートし、認証済みキーの1つで署名されたEFI ブートローダーを持っている必要があります。サポートされるオペレーティングシステムについて詳しく は、https://www.hpe.com/servers/ossupportを参照してください。

独自の証明書を追加または削除することにより、UEFI BIOSに組み込まれている証明書をカスタマイズできます。カスタマ イズは、サーバーに直接取り付けられた管理コンソールから行うことも、またはiLOリモートコンソールを使用してサー バーにリモート接続して行うこともできます。

セキュアブートは、次のように構成できます。

- 以下の各項で説明されているシステムユーティリティオプションを使用する。
- iLO RESTful APIを使用して、証明書をクリアし、復元する。詳しくは、Hewlett Packard EnterpriseのWebサイト (https://www.hpe.com/info/redfish) を参照してください。
- 内蔵UEFIシェルで secboot コマンドを使用し、セキュアブートデータベース、キー、およびセキュリティレポートを 表示する。

セキュアブートの有効化または無効化

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > セキュアブートの試行を選択します。
- 2. 設定を選択します。
 - 有効 セキュアブートを有効にします。
 - 無効 セキュアブートを無効にします。
- 3. 変更を保存します。

4. サーバーを再起動します。

サーバーロック設定の構成

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > サーバー構成ロックの設定を選択します。

画面に、サーバー構成ロックの状態が表示されます。

- 2. 以下のオプションを変更できます。
 - サーバー構成ロックのチャレンジが必要:有効または無効を選択します。
 - システムのトランスポートの準備:有効または無効を選択します。
 - サーバー構成ロックの障害検出時に停止:有効または無効を選択します。
- 3. 設定を保存します。

サブトピック

サーバー構成ロックのセットアップ

サーバー構成ロックのセットアップ

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > サーバー構成ロックの設定 > サーバー構成ロックのセットアップを選択します。
- 2. 以下を選択します。
 - システムボードを除外。
 - DIMMを除外。
 - CPUを除外。
 - PCIeスロットを除外。
 - セキュリティ構成を除外。
 - システムのファームウェアリビジョンを除外。
- 3. デジタルフィンガープリントを作成するには、サーバー構成ロックのデジタルフィンガープリントの生成をクリックし ます。
- 4. 設定を保存します。

アドバンストセキュアブートオプション

• PK - プラットフォームキー - プラットフォームオーナーとプラットフォームファームウェア間の信頼関係を確立しま す。

- ▶ KEK キー交換キー 許可されていない変更から署名データベースを保護できます。このキーのプライベート部分がな いと、署名データベースに変更を加えることはできません。
- DB 許可済み署名データベース プラットフォーム上での実行を許可された署名のセキュアブート許可済み署名デー タベースを保持します。
- DBX 禁止された署名データベース プラットフォーム上での実行を許可されていない署名のセキュアブートブラック リスト署名データベースを保持します。
- DBT タイムスタンプ署名データベース タイムスタンプ署名データベース内のコードの署名を保持します。
- すべてのキーを削除
- すべてのキーをエクスポート
- すべてのキーをプラットフォームのデフォルトにリセット

| 注記:

デフォルトのセキュリティ証明書を変更すると、一部のデバイスからシステムの起動に失敗することがあり ます。さらに、Intelligent Provisioningのようなシステムソフトウェアの起動に失敗することもありま

サブトピック

<u>アドバンストセキュアブートオプションの設定の表示</u>

セキュアブート証明書キーまたはデータベース署名の登録

セキュアブート証明書キーまたはデータベース署名の削除

すべてのキーを削除

セキュアブート証明書キーまたはデータベース署名のエクスポート

すべてのセキュアブート証明書キーのエクスポート

セキュアブート認証キーまたはデータベース署名をプラットフォームのデフォルトにリセット

<u>すべてのセキュアブート認証キーをプラットフォームのデフォルトにリセット</u>

アドバンストセキュアブートオプションの設定の表示

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプションを選択します。
- 交換キーまたは署名データベースオプションを選択します。
- 3. 交換キーまたは署名データベースオプションに対してViewエントリーを選択します。
- 表示するオプションのエントリーを選択します。

例:HPE UEFIセキュアブート2016 PKキーの詳細の表示

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セキュ アブート設定 > アドバンストセキュアブートオプション > PK - プラットフォームキー > PKエントリーを表示 > HPE UEFI Secure Boot 2016 PKキーを選択します。

セキュアブート証明書キーまたはデータベース署名の登録

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプションを選択します。
- 2. 交換キーまたは署名データベースオプションを選択します。
- 3. Enroll < option name > (〈オプション名〉を登録) を選択します。
- Enroll 〈option name〉using file(ファイル名を使用して〈オプション名〉を登録)を選択します。
 - ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。
- 証明書ファイルが配置されている接続されているメディアデバイスを選択し、Enterを押します。 5.
- 証明書ファイルのメニューのパスの選択を続行します。選択するごとに、Enterキーを押します。
- オプション:署名所有者のGUIDを選択します。
- 8. オプション:署名所有者GUIDでその他を選択した場合、署名のGUIDを入力します。

次の形式を使用します(36文字): 11111111-2222-3333-4444-1234567890ab

- Hewlett Packard Enterpriseの証明書の場合は、F5A96B31-DBA0-4faa-A42A-7A0C9832768E を入力します。
- Microsoftの証明書の場合は、77fa9abd-0359-4d32-bd60-28f4e78f784bを入力します。
- SUSEの証明書の場合は、2879c886-57ee-45cc-b126-f92f24f906b9 を入力します。
- 9. 変更をコミットして終了を選択します。

例:KEKエントリーを登録

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > KEK - キー交換キー > KEKエントリーを登録を選択し ます。
- 2. ファイルを使用してKEKを登録を選択します。
- 接続されているメディアデバイスから証明書ファイルの場所を選択します。
- オプション:署名所有者のGUIDを選択します。
- 5. オプション:署名所有者GUIDでその他を選択した場合、署名のGUIDを入力します。
- 6. 変更をコミットして終了を選択します。

セキュアブート証明書キーまたはデータベース署名の削除

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプションを選択します。
- 交換キーまたは署名データベースオプションを選択します。
- 3. 次のいずれかを実行します。
 - 削除できるオプションが1つある場合は、次の手順に従います。
 - a. 削除〈*オプション名*〉チェックボックスを選択します。
 - b. はいをクリックします。
 - 削除できるオプションが2つ以上ある場合は、次の手順に従います。

- a. 削除〈*オプション名*〉を選択します。
- b. 削除するオプションのチェックボックスを選択します。
- c. はいをクリックします。

例:KEKエントリーの削除

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > KEK - キー交換キー > KEKエントリーを削除を選択し
- 2. 削除するエントリーのチェックボックスを選択します。
- 3. はいをクリックします。

すべてのキーを削除

このタスクについて

すべてのキーを削除オプションを選択すると、プラットフォームキーを含む、システム内のすべてのキーが削除されます。

(i) 重要:

すべてのキーが削除されると、システムのセキュアブートはただちに強制的に無効になります。システムを 再起動しても、セキュアブートは無効なままです。これは、有効なセキュアブートキーが復元されるまで続 きます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > すべてのキーを削除を選択します。
- 2. Enterキーを押して、すべてのキーを削除します。
- 3. 削除を確認します。

セキュアブート証明書キーまたはデータベース署名のエクスポート

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプションを選択します。
- 交換キーまたは署名データベースオプションを選択します。
- 選択エクスポート〈*オプション名*〉を選択します。 3.
- エクスポートするエントリーを選択します。

ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。

- 次のいずれかを実行します。
 - ファイルをエクスポートする接続されているメディアデバイスを選択し、証明書ファイルのメニューパスの選択を 続けます。選択するごとに、Enterキーを押します。
 - 新しいファイルにエクスポートするには、+キーを押して、ファイル名を入力します。

例:許可済み署名データベース署名のエクスポート

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > DB - 許可済み署名データベース > 署名をエクスポー ト > HPE UEFI Secure Boot 2016 DB Kevを選択します。
- 2. エクスポートするエントリーを選択します。

ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。

- 3. 次のいずれかを実行します。
 - ファイルをエクスポートする接続されているメディアデバイスを選択し、証明書ファイルのメニューパスの選択を 続けます。選択するごとに、Enterキーを押します。
 - 新しいファイルにエクスポートするには、+キーを押して、ファイル名を入力します。

すべてのセキュアブート証明書キーのエクスポート

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > すべてのキーをエクスポートを選択します。
 - ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。
- 2. 次のいずれかを実行します。
 - ファイルをエクスポートする接続されているメディアデバイスを選択し、証明書ファイルのメニューパスの選択を 続けます。選択するごとに、Enterキーを押します。
 - 新しいファイルにエクスポートするには、+キーを押して、ファイル名を入力します。

セキュアブート認証キーまたはデータベース署名をプラットフォームのデフォル トにリセット

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプションを選択します。
- 2. 交換キーまたは署名データベースオプションを選択します。
- プラットフォームのデフォルトにリセットを選択します。 3.
- はいをクリックします。

すべてのセキュアブート認証キーをプラットフォームのデフォルトにリセット

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > セ キュアブート設定 > アドバンストセキュアブートオプション > すべてのキーをプラットフォームのデフォルトにリ セットを選択します。
- 2. はいをクリックします。

TLS (HTTPS) オプション

サブトピック

TLS証明書の詳細の表示

TLS証明書の登録

TLS証明書の削除

すべてのTLS証明書の削除

TLS証明書のエクスポート

すべてのTLS証明書のエクスポート

<u>すべてTLS設定をプラットフォームのデフォルトにリセット</u>

高度なTLSセキュリティ設定の構成

TLS証明書の詳細の表示

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS)オプション > 証明書を表示を選択します。
- 2. 証明書を選択します。

TLS証明書の登録

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS) オプション 〉証明書を登録を選択します。
- ファイルエクスプローラーを使用して証明書を登録を選択します。
 - ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。
- 3. 証明書ファイルが配置されている接続されているメディアデバイスを選択し、Enterを押します。 4. 証明書ファイルのメニューのパスの選択を続行します。選択するごとに、Enterキーを押します。
- 5. 変更をコミットして終了を選択します。

TLS証明書の削除

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS)オプション > 証明書を削除を選択します。
- 2. 証明書のリストで、削除する証明書を選択します。

3. 変更をコミットして終了を選択します。

すべてのTLS証明書の削除

このタスクについて

証明書をすべて削除オプションを選択すると、システム内のすべての証明書を削除できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS) オプション > 証明書をすべて削除を選択します。
- 2. Enterを押します。
- 3. 削除を確認します。

TLS証明書のエクスポート

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS) オプション 〉証明書をエクスポートを選択します。
- エクスポートされる証明書のファイル形式を選択します。 ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。
- 3. 次のいずれかを実行します。
 - ファイルをエクスポートする接続されているメディアデバイスを選択し、証明書ファイルのメニューパスの選択を 続けます。選択するごとに、Enterキーを押します。
 - 新しいファイルにエクスポートするには、+キーを押して、ファイル名を入力します。

すべてのTLS証明書のエクスポート

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS(HTTPS)オプション 〉すべての証明書をエクスポートを選択します。

ファイルエクスプローラー画面に、接続されているメディアデバイスが表示されます。

- 2. 次のいずれかを実行します。
 - ファイルをエクスポートする接続されているメディアデバイスを選択し、証明書ファイルのメニューパスの選択を 続けます。選択するごとに、Enterキーを押します。
 - 新しいファイルにエクスポートするには、+キーを押して、ファイル名を入力します。

すべてTLS設定をプラットフォームのデフォルトにリセット

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS) オプション > すべての設定をプラットフォームのデフォルトにリセットを選択します。
- 2. OKをクリックします。

高度なTLSセキュリティ設定の構成

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > TLS (HTTPS)オプション 〉高度なセキュリティ設定を選択します。
- 2. オプションを構成します。
 - TLS接続でどの暗号スイートが許可されるのかについて構成を行うには、次の手順に従います。
 - a. TLS接続で許可する暗号スイートを選択します。
 - b. 次のいずれかを選択します。
 - 許可する暗号スイートに対応する個々のチェックボックス。
 - プラットフォームのデフォルトの暗号スイートを選択
 - c. 変更をコミットして終了を選択します。
 - TLS接続ごとに証明書検証プロセスを構成するには、次の手順に従います。
 - a. すべてのTLS接続の証明書の検証を選択します。
 - b. 設定を選択します。
 - PEER(推奨) セキュアな通信を実現するために、ピアで提供される証明書を検証します。
 - なし 証明書を検証しません。
 - 厳密なホスト名のチェックを有効または無効にするには、次の手順に従います。
 - a. ホスト名を厳密にチェックを選択します。
 - b. 設定を選択します。
 - 。 ENABLE 接続されているサーバーのホスト名がサーバーが提供する証明書のホスト名と照合されます。
 - 。 DISABLE 接続されているサーバーのホスト名の、サーバーが提供する証明書のホスト名との照合は行われま せん。
 - TLS接続に使用するプロトコルバージョンを指定するには、次の手順に従います。
 - a. TLSプロトコルバージョンをサポートを選択します。
 - b. 設定を選択します。
 - 。 AUTO TLSサーバーとクライアントの両方でサポートされる最新のプロトコルバージョンがネゴシエートされ ます。
 - 1.0 TLSプロトコルバージョン1.0を使用します。(Gen10 Plus以降のサーバーではサポートされていませ)
 - 。 1.1 TLSプロトコルバージョン1.1を使用します。 (Gen10 Plus以降のサーバーではサポートされていませ ん)
 - 1.2 TLSプロトコルバージョン1.2を使用します。

- 闰 注記: ProLiant Gen11サーバーは、自動とバージョン1.2のみをサポートしています。
- 変更を保存します。

アドバンストセキュリティオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストセキュリティオプ ションを選択します。

サブトピック

プラットフォーム証明書サポートの有効化または無効化

iLOアカウントによるログインの有効化または無効化

バックアップROMイメージ認証の有効化または無効化

ワンタイムブートメニュー(F11プロンプト)の有効化または無効化

Intelligent Provisioning (F10プロンプト) の有効化または無効化

<u>UEFI変数アクセスのファームウェアコントロールの構成</u>

プラットフォーム証明書サポートの有効化または無効化

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > プラットフォーム証明書サポートを選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

iLOアカウントによるログインの有効化または無効化

このタスクについて

ユーザーが CONFIGURE BIOS 権限を持つiLOアカウントでログインできるようにするには、iLOアカウントでのログインを 許可オプションを使用します。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > iL0アカウントでのログインを許可を選択します。
- 2. 設定を選択します。
 - 有効
 - 無効

3. 設定を保存します。

バックアップROMイメージ認証の有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > バックアップROMイメージの認証を選択します。
- 2. 設定を選択します。
 - 有効:有効にした場合、起動時にバックアップROMイメージの暗号化認証が行われます。
 - 無効:無効にした場合、起動のたびにプライマリROMイメージのみが認証されます。
- 3. 設定を保存します。

ワンタイムブートメニュー(F11プロンプト)の有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > ワンタイムブートメニュー(F11プロンプト)を選択します。
- 2. 設定を選択します。
 - 有効
 - 無効:これは、POSTワンタイムブートF11プロンプトを無効にします。無効の場合、boot シェルコマンドは使用で きません。
- 3. 設定を保存します。

Intelligent Provisioning (F10プロンプト) の有効化または無効化

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > Intelligent Provisioning (F10プロンプト) を選択します。
- 2. 設定を選択します。
 - 有効:有効にすると、Intelligent Provisioning機能を使用できます。
 - 無効:無効にすると、サーバーの起動時にF10を押している間に、Intelligent Provisioning環境に入れません。
- 3. 設定を保存します。

UEFI変数アクセスのファームウェアコントロールの構成

このタスクについて

UEFI変数アクセスのファームウェアコントロールオプションを使用すると、オペレーティングシステムなど他のソフトウェ アによる特定のUEFI変数の書き込みを、システムBIOSで完全に制御できるようになります。

無効の場合は、すべてのUEFI変数が書き込み可能です。有効の場合は、システムBIOS以外のソフトウェアによって重要な UEFI変数に加えられる変更はすべてブロックされます。

例えば、新しいブートオプションの場合、OSがブート順序の最上位に追加しようとしても、実際にはブート順序の最下位に 配置されます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ア ドバンストセキュリティオプション > UEFI変数アクセスのファームウェアコントロールを選択します。
- 設定を選択します。
 - 有効
 - ↑ 注意: 有効にすると、一部のOS機能が期待どおりに動作しない場合があります。新しいOSのインス トール中にエラーが発生する場合があります。
 - 無効
- 設定を保存します。

Microsoft (R) Secured-coreサポートの有効化または無効化

このタスクについて

Microsoft(R) Secured-coreサポートオプションを使用して、Microsoft(R) Secured-coreサポート用にサーバーを構成しま す。有効にすると、さまざまな仮想化とセキュリティの設定が自動的に有効になります。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > サーバーセキュリティ > Microsoft (R) Secured-coreサポートを選択します。
- 設定を選択します。
 - 有効

| 注記:

インテル システムでこの機能を有効にすると、次が有効になります。

- 。 すべてのプロセッサーコア
- 。 インテルVT
- 。 インテルVT-d
- 。 インテルTXT
- セキュアブート
- 。 UEFI 最適化ブート
- ブートモードがUEFIモードに設定されている
- TPMモードがTPM 2.0に設定されている
- TPMの状態が装着済で有効に設定されている

AMDシステムでこの機能を有効にすると、次が有効になります。

- 。 すべてのプロセッサーコア
- AMD I/Oバーチャライゼーションテクノロジー
- 。 AMD仮想DRTMデバイス
- 。 透過的セキュアメモリ暗号化
- o UEFI最適化ブート
- 。 セキュアブート
- 。 ブートモードがUEFIモードに設定されている。
- 。 TPMモードがTPM 2.0に設定されている
- 。 TPMの状態が装着済で有効に設定されている
- 無効
- 設定を保存します。

アドバンストオプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプションを選択 します。

サブトピック

ROMイメージの選択

内蔵ビデオ接続の構成

<u>一貫性のあるデバイスの名前付けの有効化または無効化</u>

電源装置混在レポートの有効化または無効化

POSTビデオサポート設定の変更

プラットフォームのRASポリシーの構成

SCI RASのサポートの構成

<u>高精度イベントタイマー(HPET)ACPIサポートの有効化または無効化</u>

UEFI電源装置要件の変更

温度構成の設定

高温シャットダウンの有効化または無効化

ファン設置要件のメッセージングの設定

ファン故障ポリシーの設定

<u>上昇した周囲温度のサポートの有効化または無効化</u>

シリアル番号の再入力

製品IDの再入力

アドバンストデバッグオプションの構成

<u>UEFIシステムユーティリティによるUEFIシリアル出力ログデータの取得</u>

ROMイメージの選択

このタスクについて

冗長ROMを搭載するサーバーでは、ROMの選択オプションを使用して、サーバーを以前のBIOS ROMイメージに戻してくださ

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ROMの選択を選択します。
- 2. 設定を選択します。
 - 現在のROMを使用
 - バックアップROMへ切り替え 最後のフラッシュイベントの前に使用されていたイメージに戻ります。
- 3. 設定を保存します。

内蔵ビデオ接続の構成

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > 内蔵ビデオ接続を選択します。
- 2. 設定を選択します。
 - 自動 モニターが接続されていないと、内蔵ビデオコントローラーへの外部ビデオ接続は消費電力を節約するた め、自動的に無効になります。モニターが接続されると自動的に有効になります(サーバーが動作中の場合を含 む)。
 - 常に無効 内蔵ビデオコントローラーへの外部ビデオ接続は無効であり、システムの起動中を除いて、このポート に接続されているモニターには表示されません。

- 常に有効 内蔵ビデオコントローラーへの外部ビデオ接続は常に有効です。このオプションが必要なのは、動作し ないモニター検出機器にモニターが接続されていて、自動モードが適切に動作しなくなる場合だけです。
- 設定を保存します。

一貫性のあるデバイスの名前付けの有効化または無効化

このタスクについて

サポートされているオペレーティングシステムで、一貫性のあるデバイスの名前付けオプションを使用して、システム内の NICポートの位置に基づいてNICポートに名前を付ける方法を制御します。

注記:

既存のNIC接続は、OS環境で取り付けなおされるまではその名前を維持します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > 一貫性のあるデバイスの名前付けを選択します。
- 2. 設定を選択します。
 - LOMおよびスロットのCDNサポート システムのすべてのNICポートに名前を付けます。
 - LOMのみのCDNサポート 内蔵NICおよびFlexible LOMには名前を付けますが、その他のNICポートには付けません。
 - 無効 一貫性のあるデバイスの名前付けを無効にします。
- 設定を保存します。

電源装置混在レポートの有効化または無効化

このタスクについて

電源装置混在レポートオプションを使用すると、混合電源装置構成が存在する場合にサーバーがメッセージを記録するかど うかを設定できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > 電源装置混在レポートを選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

POSTビデオサポート設定の変更

このタスクについて

このオプションを使用して、POSTビデオサポート設定を構成します。このオプションはUEFIブートモードでのみサポートさ れており、POST (プリブート)環境中のビデオ出力にのみ適用されます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ビデオオプションを選択します。
- 設定を選択します。
 - すべて表示:システムは設置済みのすべてのビデオコントローラーにPOSTビデオを表示します。
 - 組み込み型のみ表示:システムは組み込み型ビデオコントローラーにのみPOSTビデオを表示します。
- 3. 設定を保存します。

プラットフォームのRASポリシーの構成

このタスクについて

プラットフォームのRASポリシーは、プラットフォームの耐障害性および保守性(RAS)ポリシーを制御します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > プラットフォームのRASポリシーを選択します。
- 設定を選択します。
 - ファームウェア優先(デフォルト) このモードでは、BIOSは訂正済みエラーを監視し、ユーザーが訂正済みエ ラーに対処する必要がある場合はエラーをログに記録します。OSは、訂正済みエラーを監視またはログに記録しま せん。
 - 注記: このオプションは、推奨される構成です。
 - 0S優先 このモードでは、訂正済みエラーはOSに対してマスクされず、OSが訂正済みエラーのログ記録のためのポ リシーを制御します。一部のオペレーティングシステムでは、OSはすべての訂正済みエラーをログに記録します。
 - 闰 注記: 訂正済みエラーは予期される自然に発生するものであり、 (BIOSでもイベントのログが記録さ れている場合を除き) 訂正済みエラーのOSのログ機能に基づいたアクションは必要ありません。
- 設定を保存します。

SCI RASのサポートの構成

このタスクについて

SCI RASのサポートを使用して、動作のシステム制御割り込み (SCI) 信号モードを選択します。この設定は、特定のエラー 条件に対してシステムがOSに信号を送る方法を監視するために使用できます。ページ廃棄などの特定の耐障害性機能では、 OSがエラーイベントに適切に対応できるように、この設定を適切に構成する必要があります。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > SCI RASのサポートを選択します。
- 2. 設定を選択します。
 - GHES v1サポート
 - GHES v2サポート

| 注記: どのオペレーティングシステムがSCI操作のどのモードをサポートするかについては、ドキュメ ントを参照してください。インストールされているOSは、適切な動作を保証するために、適切なGHES 信号モードをサポートしている必要があります。

設定を保存します。

高精度イベントタイマー(HPET)ACPIサポートの有効化または無効化

このタスクについて

高精度イベントタイマー(HPET)ACPIサポートオプションを使用すると、ACPIの高精度イベントタイマー(HPET)テーブル とデバイスオブジェクトを有効または無効にすることができます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンスオプション > 高 精度イベントタイマー(HPET) ACPIサポートを選択します。
- 設定を選択します。
 - 有効 業界標準のACPI名前空間を使用してHPETをサポートするオペレーティングシステムはHPETを利用できます。
 - 無効 業界標準のACPI名前空間を使用してHPETをサポートするオペレーティングシステムはHPETを利用できませ ん。
- 3. 設定を保存します。

UEFI電源装置要件の変更

このタスクについて

このオプションを使用して、電源装置冗長論理を構成します。サーバーは、要件に適合する電源装置が搭載されている状態 で、幅広いワークロードと構成で動作できます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > アドバンスオプションを選 択します。
- 電源装置要件で、次のいずれかを選択します。
 - 1+1冗長に構成済み:1つの電源が必要で、冗長構成に追加の電源が必要です。
 - 2+2冗長に構成済み:2つの電源が必要で、冗長構成に2つの追加の電源が必要です。
 - 3+1冗長に構成済み:3つの電源が必要で、冗長構成に追加の電源装置が必要です。
 - 4+0冗長に構成済み:冗長性なしで4つの電源が必要です。
- 設定を保存します。

温度構成の設定

このタスクについて

温度構成オプションを使用すると、システムのファン冷却方法を選択できます。このオプションの変更をお勧めするの は、最適な冷却では適切に冷却できない、Hewlett Packard Enterpriseがサポートする通常の構成とは異なる構成を使用す る場合に限られます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ファンと温度のオプション > 温度構成を選択します。
- 設定を選択します。
 - 最適な冷却 ファンが適切な冷却を行うために必要な最低限の速度に構成されるため、最も効率的な冷却が可能に なります。
 - 増強した冷却 ファンの回転速度を上げます。
 - 最大冷却 システムで使用できる最大の冷却能力を提供します。
 - 強化されたCPU冷却 プロセッサーへの冷却を強化することにより、パフォーマンスが向上する可能性がありま す。
- 設定を保存します。

高温シャットダウンの有効化または無効化

このタスクについて

高温シャットダウンオプションを使用すると、非冗長ファンモードでファンに障害が発生した場合、システムをシャットダ ウンするように構成できます。非冗長ファンの障害、またはあらかじめ設定されたしきい値を超える温度の上昇が発生した 場合に、シャットダウンを開始できます。無効にした場合、システムマネジメントドライバーは高温イベントを無視しま す。データが破壊されるような状況になると、システムの電源はただちにオフになります。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > アドバンストオプション > ファンと温度のオプション > 高温シャットダウンを選択します。
- 設定を選択します。
 - 有効 サーバーの内部温度がクリティカルなレベルの5度以内に達すると、サーバーは自動的にシャットダウンさ
 - 無効 サーバーの内部温度がクリティカルなレベルの5度以内に達しても、サーバーは自動的にシャットダウンさ れません。温度がクリティカルなレベルに達するとシャットダウンされます。
- 3. 設定を保存します。

ファン設置要件のメッセージングの設定

このタスクについて

ファン設置要件オプションを使用すると、すべての必要なファンが取り付けられていない場合のサーバーの対応方法を構成 できます。必要なファンがない状態でサーバーを動作すると、ハードウェアコンポーネントが損傷を受ける可能性がありま す。必要なファンが取り付けられていない場合、デフォルトでは、サーバーは、メッセージを表示し、イベントをIMLに記 録します。サーバーは引き続き、起動して動作することが可能です。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ファンと温度のオプション > ファン設置要件を選択します。
- 2. 設定を選択します。

- メッセージング有効 必要なファンが取り付けられていない場合、サーバーは、メッセージとログイベントをIML に表示します。サーバーは引き続き、起動して動作することが可能です。この設定は推奨される設定です。
- メッセージング無効 必要なファンが取り付けられていない場合、サーバーは、メッセージとログイベントを表示しません。必要なファンがない状態でサーバーが動作していることを示すものがすべてが削除されます。
- 3. 設定を保存します。

ファン故障ポリシーの設定

このタスクについて

ファン故障ポリシーオプションを使用すると、ファンの障害によって、稼働に必要なファンがサーバーからなくなったときのサーバーの対応方法を構成できます。

| 注記:

必要なファンを取り付けずにサーバーを動作させるのはお勧めできません。システムがコンポーネントを正しく冷却する機能に影響を及ぼす可能性があります。ハードウェアコンポーネントに損傷を与える可能性もあります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ファンと温度のオプション > ファン故障ポリシーを選択します。
- 2. 設定を選択します。
 - 重大なファン故障時にシャットダウン/停止 1つまたは複数のファンの障害によって必要なファンが動作していない場合、サーバーの起動または動作ができません。この設定は推奨される設定です。
 - 重大なファン故障時に稼働許可 1つまたは複数のファンの障害によって必要なファンが動作していない場合も、 サーバーは起動して動作することが可能です。
- 設定を保存します。

上昇した周囲温度のサポートの有効化または無効化

このタスクについて

拡張周囲温度サポートオプションを使用すると、通常サポートされる温度よりも高い周囲温度でサーバーが動作するように できます。

| 注記:

このオプションは、特定のハードウェア構成によってのみサポートされます。周囲温度の拡張サポートを有効にする前に、HPEサーバーのドキュメントを参照してください。不適切なシステムの動作やハードウェアコンポーネントの損傷は、未サポートの構成でこれらの機能を有効にすることが原因である場合があります。

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > ファンと温度のオプション > 拡張周囲温度サポートを選択します。
- 2. 設定を選択します。
 - 無効
 - 周囲温度40cに対応 (ASHRAE 3) 周囲温度が最大40度 (摂氏) の環境でサーバーの動作を許可します。

● 周囲温度45cに対応(ASHRAE 4) - 周囲温度が最大45度(摂氏)の環境でサーバーの動作を許可します。

すべてのサーバーが周囲温度40c(ASHRAE 3)と45c(ASHRAE 4)の両方をサポートするとは限りません。

設定を保存します。

シリアル番号の再入力

このタスクについて

シリアル番号オプションは、システムボードの交換後、サーバーのシリアル番号を再入力するのに使用します。この値は シャーシの背面に貼付されているシリアル番号のステッカーと一致する必要があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > アドバンストサービスオプション > シリアル番号を選択します。
- シリアル番号を入力し、Enterを押します。
- 3. 設定を保存します。

製品IDの再入力

このタスクについて

製品IDオプションは、システムボードの交換後、製品IDを再入力するのに使用します。この値は、シャーシの背面に貼付さ れている製品IDステッカーと一致する必要があります。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > アドバンストオプション > アドバンストサービスオプション 〉製品IDを選択します。
- 製品IDを入力して、Enterを押します。
- 設定を保存します。

アドバンストデバッグオプションの構成

前提条件

ブートモードがUEFIモードに設定されている。

アドバンストデバッグオプションを使用して、デバッグおよびPOSTブートの進捗状況メッセージの出力レベルを制御してい る。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > アドバンストデバッグオプションを選択します。
- 設定を選択します。
 - UEFIシリアルデバッグメッセージレベル シリアルコンソールへのデバッグメッセージ出力のレベルを設定しま

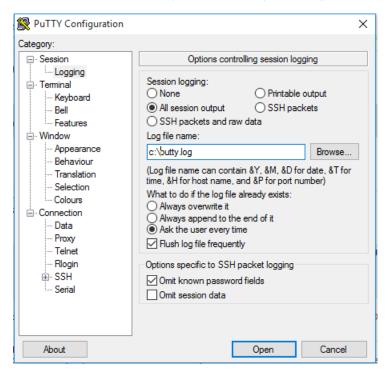
す。

- 無効
- エラーのみ
- 。中
- ネットワーク
- 。 詳細

| 注記:

この設定により、ブート時間が大幅に増加する可能性があります。

- 。 カスタム
- ポスト冗長ブート処理 起動プロセス中にサーバーが応答しなくなった理由を判定するために役立つ可能性がある 詳細なメッセージ出力を有効にします。
 - 。 無効
 - シリアルのみ 詳細なメッセージをシリアルコンソールに出力します。
 - すべて 詳細なメッセージをPOST画面とシリアルコンソールに出力します。
- アドバンストクラッシュダンプモード 予期しないシステムクラッシュが発生したときに追加のデバッグ情報を Active Health System (AHS) ログに記録するようにシステムを構成します。
 - 有効
 - (i) 重要:このオプションは、資格のあるサービス担当者に指示された場合にのみ有効にする必要があ ります。
 - 無効
- PCHクラッシュログ機能 予期しないシステムクラッシュが発生したときに追加のデバッグ情報をActive Health System (AHS) ログに記録するようにシステムを構成します。
 - 。 有効
 - (i) 重要: このオプションは、資格のあるサービス担当者に指示された場合にのみ有効にする必要があ ります。
 - 無効
- CPUクラッシュログ機能 予期しないシステムクラッシュが発生したときに追加のデバッグ情報をActive Health System (AHS) ログに記録するようにシステムを構成します。
 - 。 有効
 - (i) 重要:このオプションは、資格のあるサービス担当者に指示された場合にのみ有効にする必要があ ります。
 - 無効
- 3. 設定を保存します。


UEFIシステムユーティリティによるUEFIシリアル出カログデータの取得

このタスクについて

サーバーに物理的にアクセスできない場合、このタスクを使用して、シリアル出カログデータを取得します。PCIe拡張カー ドを使用している場合、カードからのデバッグ収集を有効にできます。

- 1. POST中にF9キーを押してシステムユーティリティを起動します。
- 2. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > アドバンストオプション > アドバンストデバッグオプションを選択します。
- 3. デバッグレベルを設定します。
 - a. UEFIシリアルデバッグレベルを選択します。
 - b. 詳細を選択します。
- 4. 拡張カードを使用している場合、拡張カードからのデバッグデータ収集を有効にします。
 - a. ポスト冗長ブート処理を選択します。
 - b. シリアルのみまたはすべてのいずれかを選択します。
- 5. 保存して、システムユーティリティを終了します。
- 6. iLO仮想シリアルポート(VSP)セッションを開始します。
- 7. PuTTYなどのユーティリティを使用して接続を確立し、ファイルへのログを有効にしてください(All session outputを選択します)。

次の例は、ログデータの収集のためのPuTTY設定の例を示します。

詳しくは

システムユーティリティの起動

ワンタイムブートメニュー(F11プロンプト)の有効化または無効化

このタスクについて

このオプションを使用して、現在のブート時に、F11キーを押してワンタイムブートメニューに直接ブートできるかどうかを制御します。このオプションでは、通常のブート順序の設定は変更されません。このオプションを有効にすると、サーバーの再起動後にPOST画面でF11キーを押すことにより、システムユーティリティのワンタイムブートメニューを直接起動できます。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > ワ ンタイムブートメニュー(F11プロンプト)を選択します。
- 設定を選択します。
 - 有効
 - 無効
- 変更を保存します。

Intelligent Provisioning (F10プロンプト) の有効化または無効化

このタスクについて

Intelligent Provisioning (F10プロンプト) オプションを使用して、POST画面からユーザーがF10キーを押して Intelligent Provisioningにアクセスできるようにするかどうかを制御します。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > サーバーセキュリティ > Intelligent Provisioning (F10プロンプト)を選択します。
- 設定を選択します。
 - 有効
 - 無効
- 設定を保存します。

プロセッサーAES-NIサポートの有効化または無効化

このタスクについて

プロセッサーAES-NIオプションを使用して、プロセッサー内のAdvanced Encryption Standard Instruction Setを有効また は無効にします。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > プ ロセッサーAES-NIサポートを選択します。
- 設定を選択します。
 - 有効 AES-NIサポートを有効にします。
 - 無効 AES-NIサポートを無効にします。
- 変更を保存します。

バックアップROMイメージ認証の有効化または無効化

このタスクについて

起動時にバックアップROMイメージの暗号認証を有効または無効にするには、バックアップROMイメージの認証オプションを 使用します。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > バックアップROMイメージの認証を選択します。
- 設定を選択します。
 - 有効 起動時に、バックアップROMイメージが認証されます。
 - 無効 バックアップROMイメージの起動時の認証は行われません。プライマリイメージのみが認証されます。
- 3. 変更を保存します。

Trusted Platform Module (TPM) オプションの構成

このタスクについて

Trusted Platform Moduleは、プラットフォームの認証に使用される仕掛けを安全に格納するコンピューターチップです。 これらの仕掛けには、パスワード、証明書、暗号鍵などが含まれます。また、TPMを使用すると、プラットフォームの測定 値を格納してプラットフォームの信頼性を保証することができます。Trusted Platform Moduleで構成されているサーバー では、ファームウェアおよびオペレーティングシステムは、TPMを使用して、ブートプロセスのすべてのフェーズを測定で

TPMモジュールオプションの取り付けおよび有効化については、ご使用のサーバーモデルのユーザードキュメントを参照し てください。デフォルトでは、Trusted Platform Moduleを取り付けた後にサーバーの電源がオンになると、Trusted Platform ModuleはTPM 2.0として有効化されます。

★ 注意: サーバーの変更や、適切な手順を使用してOSでのTPMのサスペンドまたは無効化を実行しないと、TPM を使用しているOSですべてのデータアクセスがロックされる場合があります。これには、システムまたはオ プションファームウェアの更新、ハードウェア(システムボードやハードドライブなど)の交換、TPMのOS 設定の変更が含まれます。OSのインストール後にTPMモードを変更すると、データ消失などの問題の原因と なります。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > サーバーセキュリティ > Trusted Platform Moduleオプションを選択します
- オプションを選択します。オプションのTPMを使用して構成されているサーバーでは、以下を設定できます。
 - TPM 2.0操作:再起動後に実行するTPM 2.0の動作を設定します。オプションは次のとおりです。
 - 。 操作なし:構成されているTPMはありません。
 - クリア:再起動中にTPMがクリアされます。また、TPM 2.0操作は、操作なしに設定されます。
 - 現在のTPM 2.0アクティブPCR:PCRバンクが切り替えられると、拡張操作中にPCRに格納されたハッシュ値を計算す るために使用されるアルゴリズムが変更されます。オプションは次のとおりです。
 - 。 SHA1のみ
 - 。 SHA256のみ
 - 。 SHA384のみ
 - 。 SHA1およびSHA256
 - 。 SHA256およびSHA384

Trusted Platform Module詳細オプションで、

- TPM 2.0ビジビリティ:オペレーティングシステムがTPMを認識しないようにするかどうかを設定します。オプショ ンは次のとおりです。
 - 。 隠さない
 - 隠す オペレーティングシステムからTPMを隠します。この設定を使用して、実際のハードウェアを取り外さずに TPMオプションをシステムから削除します。

- TPM UEFIオプションROM測定: UEFI PCI操作ROMの測定を有効または無効(スキップ)にします。オプションは次の とおりです。
 - 。 有効
 - 。 無効
- ▼ TPM 2.0承認階層:承認階層は、ユーザーがプライバシーに関する懸念を持っている場合に選択する階層です。オプ ションは次のとおりです。
 - 有効
 - 。 無効
- TPM 2.0ストレージ階層:ストレージ階層は、プライバシーを重視しない操作を対象としています。オプションは次 のとおりです。
 - 有効
 - 。 無効
- ブートデバイスイベントの省略:PCRブート試行の測定をスキップまたは記録します。オプションは次のとおりで
 - 有効 PCRブート試行の測定は無効になり、PCR[4]での測定は記録されません。
 - 。 無効
- 変更を保存します。
- システムを再起動します。

システムが再起動したら、現在のTPMのタイプと現在のTPMの状態の設定を表示できます。

新しい現在のTPMのタイプと現在のTPMの状態の設定が、画面の上部に表示されることを確認します。

PCIeデバイス構成オプションの変更

手順

システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成を選択しま

サブトピック

高度なPCIeデバイス設定の選択

GPU構成の設定

PCIeスロットからプロセッサーへのマッピングの構成

PCIeデバイスの分離サポートの有効化または無効化

特定のPCIeデバイスの構成

PCIe補助電源オプションの構成

高度なPCIeデバイス設定の選択

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成を選択します。

- 2. 設定を選択します。
 - NVMe PCIeリソースパディング NVMeドライブのPCIeホットアドをサポートするようにPCIeリソースを構成しま
 - 無効 ブート時にインストールされたデバイスにのみPCIeリソースを割り当てます。PCIeホットアドは、起動 時にNVMeドライブが存在しないポートではサポートされていません。
 - 有効 追加のPCIeリソースがPCIeルートポートごとに割り振られます。これで、PCIeホットアドイベントはシ ステムを再起動せずにデバイスを列挙できるようになります。
 - 最大PCI Express速度 ワークロードプロファイルがカスタムに設定されている場合、PCI Expressデバイスがサー バーで稼働できる最大速度を設定します。
 - ポートあたりの制御
 - PCIe Generation 1.0
- 3. 設定を保存します。

サブトピック

PCIe分岐オプションの構成

PCIe MCTPオプションの構成

PCIe EOIオプションの構成

最大PCI Express速度の設定

インテルPCIeホットプラグエラー制御の構成

PCIe分岐オプションの構成

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成 > PCIe分岐オプションを選択します。
- 各PCIeスロットの分岐オプションを選択します。
 - 分岐なし
 - 分岐
 - デュアル分岐
- 3. 設定を保存します。

PCIe MCTPオプションの構成

このタスクについて

PCIe MCTPオプションを使用して、指定されたスロットのPCIe管理コンポーネント転送プロトコル(MCTP)を制御します。 このオプションは、このプロトコルを適切にサポートしない可能性のある指定されたPCIeエンドポイントに対するMCTPのサ ポートを無効にするために使用できます。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成 > PCIe MCTPオプションを選択します。

- 2. 各PCIeスロットのMCTPブロードキャストサポートを選択します。
 - 有効(システムの全機能を利用するために推奨)
 - 無効
- 設定を保存します。

PCIe EOIオプションの構成

このタスクについて

PCIe EOIオプションを使用して、特定のスロットのPCIe EOI(割り込み終了)メッセージのブロードキャストサポートを制 御します。このオプションは、このプロトコルを適切にサポートしない可能性のある指定されたPCIeエンドポイントに対す るEOIのサポートを無効にするために使用できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成 > PCIe EOIオプションを選択します。
- 各PCIeスロットのEOIブロードキャストサポートを選択します。
 - 有効
 - 無効
- 設定を保存します。

最大PCI Express速度の設定

このタスクについて

最大PCI Express速度オプションを使用すると、PCI Expressデバイスがサーバーで稼働できる最大PCI Express速度を下げ ることができます。また、このオプションを使用して、問題のあるPCI Expressデバイスの問題に対処することもできま す。この値を最大サポートに設定すると、プラットフォームまたはPCIeデバイスでサポートされる最大速度(どちらか低い 方)で動作するようにプラットフォームが構成されます。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成 > 最大PCI Express速度を選択します。
- 設定を選択します。
 - ポートあたりの制御
 - PCIe Generation 1.0
 - PCIe Generation 2.0
 - PCIe Generation 3.0
 - PCIe Generation 4.0
- 設定を保存します。

インテルPCIeホットプラグエラー制御の構成

このタスクについて

PCIeホットプラグエラー制御オプションを使用して、プラットフォームのPCIe (NVMe) ホットプラグサポートを選択しま

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > アドバ ンストPCIe構成 > PCIeホットプラグエラー制御を選択します。
- 値を選択します。
 - ホットプラグサプライズ RBSUは、サプライズリムーバル時にプラットフォームのエラーの発生を防止しようとし
 - □ ヒント: 拡張ダウンストリームポートコンテインメント(eDPC)をサポートしていない古いオペレー ティングシステムの場合は、このオプションを選択します。
 - eDPCファームウェア制御 プラットフォームファームウェアとOSが正しくネゴシエートし、すべてのホットプラグ イベントをログに記録します。(このオプションは現在、すべてのオペレーティングシステムでサポートされてい るわけではありません。)
 - eDPC OS制御 ホットプラグイベントはオペレーティングシステムで処理され、プラットフォームは関与しませ ん。このモードでは、イベントのログ記録はすべてOSに限定されます。
 - (i) 重要:ホットプラグイベントとサプライズリムーバルイベントがプラットフォームで正しく処理され るようにするには、このオプションをOSに基づいて正しく設定する必要があります。 詳細については、OSのドキュメントを参照してください。
- 3. 設定を保存します。

GPU構成の設定

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > GPU CFG設定の順に選択します。
- 2. オプションを選択します。
 - 4:1-取り付けられている各プロセッサーに4つのPCIeスロットをマップします。
 - 8:1-1つのプロセッサーにすべてのスロットをマップします。
- 3. 設定を保存します。

PCIeスロットからプロセッサーへのマッピングの構成

このタスクについて

PCIeスロットからプロセッサーへのマッピングオプションを使用して、PCIeからプロセッサーへのマッピング構成を変更し ます。

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成オプショ ン > PCIeスロットからプロセッサーへのマッピングを選択します。
- 2. 設定を選択します。

- 4:1 このオプションが選択されている場合、4つのPCIeスロットが、取り付けられている各プロセッサーにマップ されます。
- 8:1 このオプションが選択されている場合、すべてのスロットが1つのプロセッサーにマップされます。
- 設定を保存します。

PCIeデバイスの分離サポートの有効化または無効化

このタスクについて

PCIeスロットからプロセッサーへのマッピングオプションを使用して、PCIe分離サポートを構成します。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成オプショ ン > PCIeデバイスの分離サポートを選択します。
- 設定を選択します。
 - 有効 有効にした場合、実行時にエラーが検出されると、PCIeデバイスが無効になります。
 - 無効 無効にした場合、実行時にエラーが検出されると、PCIeデバイスが有効になります。 このオプションを有効にする前にオペレーティングシステムのドキュメントを参照してください。
- 設定を保存します。

特定のPCIeデバイスの構成

このタスクについて

PCIeデバイス構成オプションを使用して、内蔵PCIデバイスまたは増設したPCIデバイスの構成設定を、有効化、無効化、お よび選択します。デバイスを無効にすると、通常そのデバイスに割り当てられているリソース(メモリ、I/O、ROMスペー ス、電力など)が割り当て直されます。デフォルトでは、すべてのデバイスが有効です。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成を選択し ます。
- リストからデバイスを選択します。
- 3. 設定を選択します。デバイスに応じて、以下のオプションがあります。
 - PCIeデバイスが無効
 - 自動 デバイスは、サーバーの起動時に自動的に有効になります。
 - 無効 デバイスは、自動では有効になりません。
 - PCIeリンク速度
 - 自動 PCIeリンクのサポートされる最大速度にリンク速度を設定します。
 - o PCIe Generation 1.0 リンク速度をPCIe Generation 1.0の最大速度に設定します。
 - PCIe Generation 2.0 リンク速度をPCIe Generation 2.0の最大速度に設定します。

| 注記:

この機能がサポートされていない場合、オプションは使用できません。

- PCIe電力管理 (ASPM)
 - 。 自動
 - 。 無効
 - 。 L1有効 デバイスのリンクは、長い終了レイテンシを犠牲にした低電カスタンバイ状態に入ります。
- PCIeオプションROM
 - 有効 プラットフォームはPCIeオプションROMのロードを最適化し、ブート時間を節約します。
 - 。 無効 プラットフォームは、古いPCIeデバイスで必要になる可能性があるすべてのPCIeオプションROMの最適化 を無効にします。
- 設定を保存します。

PCIe補助電源オプションの構成

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > PCIeデバイス構成 > PCIe補 助電源オプションを選択します。
- 2. スロットごとに、構成を選択します。
 - 0CPスロット14補助電源 有効または無効を選択します。
 - 0CPスロット15補助電源 有効または無効を選択します。
- 3. 設定を保存します。

日付と時刻の設定

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > 日付と時刻を選択します。
- 設定を選択し、項目を入力します。
 - 日付(mm-dd-yyyy) 日付を月-日-年(mm-dd-yyyy)形式で入力します。
 - 時刻(hh:mm:ss) 時刻を24時間形式(hh:mm:ss)で入力します。
 - 時刻形式 -12時間形式と24時間形式で時刻を入力します。
 - 時間形式
 - 。 協定世界時 (UTC) ハードウェアのReal Time Clock (RTC) に格納された時刻を、関連したタイムゾーン設定 から計算します。
 - 現地時間 タイムゾーン設定の使用を解除します。 このオプションは、レガシーBIOSブートモードで設定されたWindowsオペレーティングシステム間で発生する通 信問題に対処する場合に役立ちます。
 - タイムゾーン システムの現在のタイムゾーンを選択します。
 - サマータイム
 - 有効 表示された現地時間を夏時間に合わせて1時間だけ調節します。
 - 無効 表示された現地時間を夏時間に調節しません。

設定を保存します。

| 注記:

時間形式オプションは、ProLiant Gen10 PlusおよびGen11サーバーでのみサポートされています。

バックアップおよびリストア設定の変更

このタスクについて

バックアップファイルには、シリアル番号と製品ID情報が含まれます。バックアップからリストアする場合、この情報をシ ステムに適用するかどうかを求められます。バックアップを使用して新しいシステムをセットアップする場合は、シリアル 番号と製品IDのリストアを省略できます。

デバイス暗号化設定を変更するには、システム構成 > BIOS/プラットフォーム構成 (RBSU) > サーバーセキュリティ > デ バイス暗号化オプション 〉 デバイス暗号化移行オプションにアクセスします。

手順

- システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成(RBSU) > システムデフォルトオプ ション 〉 バックアップおよびリストア設定を選択します。
- 次のいずれかを選択します。
 - a. バックアップ
 - b. リストア
- 手順に従って、バックアップファイルがある場所に移動するか、バックアップファイルを作成する場所に移動します。

| 注記:

バックアップをリストアする場合、バックアップファイルは .json か .zip ファイルである必要があり ます。

操作を開始をクリックします。

システムデフォルトのリセット

サブトピック

<u>システムデフォルト設定のリストア</u>

工場デフォルト設定のリストア

デフォルトのUEFIデバイス優先順位の変更

<u>ユーザーデフォルトオプションの保存または消去</u>

システムデフォルト設定のリストア

このタスクについて

システムデフォルト設定のリストアオプションを使用すると、すべてのBIOS構成設定がデフォルト値にリセットされ、サー バーは自動的に直ちに再起動します。

このオプションを選択すると、以下を除くすべてのプラットフォーム設定をリセットします。

- セキュアブートBIOS設定
- 日付と時刻の設定
- プライマリおよび冗長のROMの選択(サポートされる場合)

システムの復元時にカスタムのデフォルト構成を保存するには、ユーザーデフォルトオプションを使用します。そうす ることにより、保存していないと失うおそれのある設定を保存できます。

オプションカードやiL0などの他のエンティティは、個別にリセットする必要があります。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムデフォルトオプ ション 〉システムデフォルト設定のリストアを選択します。
- はい、デフォルト設定をリストアしますを選択します。
- サーバーを再起動します。

工場デフォルト設定のリストア

このタスクについて

工場デフォルト設定のリストアオプションを使用すると、すべてのBIOS構成設定を工場デフォルト値にリセットして、ブー ト構成、セキュアブートのセキュリティキー(セキュアブートが有効になっている場合)など、不揮発性のすべてのUEFI変 数を削除できます。それまでの変更内容が失われる可能性があります。

この動作と、システムデフォルト設定のリストアオプションの違いは、工場デフォルト設定のリストアではUEFI変数がすべ て消去されることです。OSは、ブート順序のエントリーやセキュアブート用キーデータベース情報などを保存するUEFI変数 を書き込むことができます。工場デフォルト設定のリストアを行うときは、この情報はクリアされるのに対し、システムデ フォルト設定のリストアでは保持されます。

システムの復元時にカスタムのデフォルト構成を保存するには、ユーザーデフォルトオプションを使用します。そうするこ とにより、保存していないと失うおそれのある設定を保存できます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムデフォルトオプ ション〉工場デフォルト設定のリストアを選択します。
- 2. はい、デフォルト設定をリストアしますを選択します。
- 3. サーバーを再起動します。

デフォルトのUEFIデバイス優先順位の変更

前提条件

ユーザーデフォルトオプションは、構成され、保存されています。

このタスクについて

デフォルトのUEFIデバイス優先順位オプションを使用して、デフォルトのシステム設定が復元されるときに使用されるUEFI デバイスの優先順位を変更します。このオプションで定義された優先順位に基づいて、初期のUEFIブート順序リストが作成 されます。デフォルトの構成設定がロードされるとき、工場出荷時のデフォルト設定ではなく、保存されたデフォルトの UEFIデバイス優先順位が使用されます。

手順

1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムデフォルトオプ

ション 〉デフォルトのUEFIデバイス優先順位を選択します。

- 2. エントリーを選択します。
- リスト内のエントリーを上に移動するには、+キーを使用します。リスト内のエントリーを下に移動するには、-キーを 使用します。リスト内の移動には、ポインティングデバイスまたは矢印キーを使用します。
- 4. 設定を保存します。

ユーザーデフォルトオプションの保存または消去

このタスクについて

ユーザーデフォルトオプションを使用すると、構成を、カスタムデフォルト構成として保存または消去できます。必要に応 じてシステムを構成した後、このオプションを有効にして、構成をデフォルト構成として保存します。システムがデフォル ト設定をロードするとき、工場デフォルト設定の代わりにカスタムデフォルト設定が使用されます。

手順

- 1. システムユーティリティ画面で、システム構成 > BIOS/プラットフォーム構成 (RBSU) > システムデフォルトオプ ション 〉 ユーザーデフォルトオプションを選択します。
- 2. オプションを選択します。
 - ユーザーデフォルトの保存
 - はい、保存します。 現在の設定をシステムのデフォルト設定として保存します。
 - いいえ、キャンセルします。 現在の設定はシステムのデフォルト設定として保存されません。
 - ユーザーデフォルトの消去
 - はい、現在の設定を消去します。 現在のユーザー定義のデフォルト設定を消去(削除)します。消去した設 定は、手動でのみ復元できます。
 - o いいえ、キャンセルします。 現在のユーザー定義のデフォルト設定を消去しません。
- 3. 設定を保存します。

スクリプトによる構成手順の使用

サブトピック

スクリプトによる構成手順

スクリプトによる構成手順

BIOS/プラットフォーム構成 (RBSU) をRESTful APIツールとともに使用して、標準的なサーバー構成スクリプトを作成する ことにより、サーバーの設定プロセスでの手動による手順の多くを自動化できます。

サブトピック

UEFI用のiLO RESTful APIサポート

Configuration Replicationユーティリティ (CONREP)

UEFI用のiLO RESTful APIサポート

ProLiantサーバーおよびHPE Synergyコンピュートモジュールには、RESTful APIを使用してUEFI BIOS設定を構成するため のサポートが含まれています。RESTful APIツールは、サーバー管理ツールから使用することでサーバーの構成、インベン トリ、および監視を実行できる管理インターフェイスです。RESTクライアントは、HTTPS操作を使用して、iLO 6、UEFI BIOS設定など、サポートされているサーバー設定を構成します。RESTful APIおよびRESTfulインターフェイスツールについ て詳しくは、Hewlett Packard EnterpriseのWebサイト (https://www.hpe.com/info/restfulinterface/docs) を参照して ください。

Configuration Replicationユーティリティ (CONREP)

CONREPは、STKに含まれます。このユーティリティは、BIOS/プラットフォーム構成(RBSU)と連携して、ハードウェア構成 を複製します。このユーティリティは、スクリプトによるサーバーの展開の際に、「State O, Run Hardware Configuration Utility」で実行されます。CONREPユーティリティは、システム環境変数を読み出して構成を判定し、その 結果を、編集可能なスクリプトファイルに書き出します。このファイルは、同様のハードウェアおよびソフトウェアコンポーネントを持つ複数のサーバーに展開できます。STKは、Hewlett Packard EnterpriseのWebサイト (https://www.hpe.com/info/stk/docs) にあります。詳しくは、Hewlett Packard EnterpriseのWebサイ トhttps://www.hpe.com/info/stk/docsにある、ご使用のオペレーティングシステム環境用のScripting Toolkitユーザーガ イドを参照してください。

Smart Storage Administrator (SSA)

SSAスクリプティングは、SSA CLIアプリケーションとともに配布されるスタンドアロンアプリケーションで、Smartアレイ デバイス上にアレイを構成するために使用されます。

• Scripting Toolkit for Windowsユーザーガイド

https://www.hpe.com/support/STK Windows UG en

• SSAガイド

https://www.hpe.com/info/smartstorage/docs

トラブルシューティング

サブトピック

デバイスをブートできない

システムデフォルトを復元できない

<u>ネットワークブートURLのファイルをダウンロードできない</u>

ダウンロードしたイメージファイルを使用してネットワークブートを行うことができない

UEFIシェルスクリプトから展開できない

1つ以上のデバイスのオプションROMを実行できない

ブート順序リストに新しいネットワークまたはストレージデバイスが見つからない

インテルTXTが正常に動作していない

無効なサーバーシリアル番号と製品ID

無効な日付/時刻

ネットワークデバイスが正しく機能しない

システムが応答しなくなる

単一デバイスで障害が発生した

<u>サーバーが起動しない</u>

Smartアレイコントローラーが正しく機能しない

VMwareはUEFIモードで起動しない

デバイスをブートできない

症状

起動するオプションまたはデバイスが見つからない、または不明なデバイスとしてシステム構成内にリストされている、 というメッセージが表示されます。

解決方法 1

原因

UEFIオプションROMドライバーがないオプションを起動しようとしています。

アクション

ブート機能にx64またはEFIバイトコードのいずれかをサポートしているUEFIオプションドライバー(オプション ROM)がご使用のオプションカードにあることを確認してください。

三 注記:

- UEFIドライバーは、システムユーティリティ画面にメッセージを表示したり、ファンクションキー のプロンプトを表示したりしません。
- マザーボードを交換すると、UEFI変数は失われます。
- ブートイメージでPXEサーバーを構成する必要があります。また、x64 EFIマシンの場合、x64 EFI DHCPのブート要求をサポートするようにDHCPサーバーを構成する必要があります。詳しくは、UEFI Information Library (https://www.hpe.com/info/ProLiantUEFI/docs) を参照してください。
- ブート手順を再度試みます。

解決方法 2

原因

サポートされていないオプションまたは最新のファームウェアを実行していないオプションで起動しようとしています。

アクション

- 1. ご使用のサーバーのQuick SpecsまたはRead This Firstカードを参照して、ご使用のカードがサポートされているこ とを取り付ける前に確認します。他社製のオプションカードも動作する可能性がありますが、これらは、UEFIシステ ムユーティリティを実行しているサーバー用に最適化されていません。
- オプションのシステムヘルス設定に正しい情報が一覧表示されることを確認します。
- 3. 必要に応じて、最新のSPPをオフラインモードで使用して、ファームウェアを最新バージョンにアップグレードしま

解決方法 3

原因

デフォルトブートモード設定がユーザー定義の設定と異なります。

アクション

- 1. ユーザーデフォルトオプションは、カスタムのデフォルト構成を保存して、システムの復元時に使用します。
- ブート手順を再度試みます。

システムデフォルトを復元できない

症状

- Windowsで、あるサーバーから別のサーバーにドライブを移動した後、特定の設定が検出できないというエラーメッ セージが表示されます。
- マザーボードを交換した後、セキュアブートなどの構成設定が失われます。

原因

ドライブを移動したり、システムのハードウェアを交換したりすると、以前に構成した設定へのポインターが破壊される 可能性があります。

アクション

- 1. システムデフォルト設定のリストアオプションまたは工場デフォルト設定のリストアを使用して、設定を復元しま す。
- 2. この手順を再度試みます。

ネットワークブートURLのファイルをダウンロードできない

症状

ネットワークブート用として指定したURLのファイルをダウンロードしようとすると、エラーメッセージが表示されます。

解決方法 1

原因

静的構成時に指定したネットワークURLが正しくありません。

アクション

- 内蔵UEFIシェルの ping コマンドを使用してネットワーク接続をチェックします。UEFIシェルユーザーガイドの 「Ping」を参照してください。
- 静的なネットワーク接続設定を変更し、URLにあるファイルをもう一度ダウンロードします。

解決方法 2

原因

DHCPサーバーが応答していません。

アクション

- 1. DHCPサーバーが使用可能で、動作していることを確認します。
- URLのファイルをもう一度ダウンロードします。

解決方法 3

原因

選択したNICポートにケーブルが接続されていません。

アクション

- 1. ケーブルが接続されていることを確認します。
- 2. URLをもう一度ダウンロードします。

解決方法 4

原因

ファイルが正しくないかサーバーに存在しない、または必要な権限がないためダウンロードできません。ファイル名を チェックし、サーバーに存在していることを確認します。そのサーバーに対する管理者権限があることを確認します。

アクション

- 1. ファイルが存在し、正しいファイル名を使用していること、そのファイルをダウンロードする十分な権限を持ってい ることを確認します。
- 2. URLのファイルをもう一度ダウンロードします。

解決方法 5

原因

HTTPまたはFTPサーバーが停止、または応答しませんでした。

アクション

- 1. 指定したHTTPまたはFTPサーバーが利用可能で動作可能であるか確認します。
- 2. URLのファイルをもう一度ダウンロードします。

ダウンロードしたイメージファイルを使用してネットワークブートを行うことが できない

症状

URLに指定されているイメージからの起動に失敗します。

解決方法 1

原因

イメージが署名されておらず、セキュアブートが有効になっています。

アクション

- 1. イメージが署名されており、そのセキュアブート設定が正しいことを確認します。
- 2. URLのファイルをもう一度ダウンロードします。

解決方法 2

原因

ダウンロードしたファイルが破損しています。

アクション

- 1. 新規ファイルを選択します。
- 2. URL構成を繰り返して新しいファイルを指定します。
- 3. URLにある新規ファイルのダウンロードを再度試行します。

UEFIシェルスクリプトから展開できない

症状

UEFIシェルスクリプトを使用してOSを展開しようとすると、展開が失敗したことを示すエラーメッセージが表示されま

原因

構成設定が正しくありません。

アクション

- 1. 以下を確認します。
 - a. 内蔵UEFIシェルインターフェイスがUEFIブート順序リストまたはワンタイムブートメニューに追加されている。
 - b. UEFIブート順序リストに追加されると、内蔵UEFIシェルインターフェイスがUEFIブート順序リスト内の最初のブー トオプションになり、ロードする他のブートオプションよりも優先される。
 - c. UEFIシェルスクリプト自動起動が有効になっている。
 - d. 接続されているメディアの startup.nsh スクリプトファイルの場所またはネットワーク上の場所が正しく指定さ れている。接続メディア内の場合は、 startup.nsh スクリプトは fsX: \ または fsX: \ efi \ boot \ ディレクト リ内になければなりません。
 - e. nsh スクリプトに、サポートされているコマンドのみが含まれている。
 - f. 使用しているシステムに、自動スクリプトの実行中にRAMディスクを作成するための十分なRAMメモリがある。
 - g. .nsh script を使用して起動されたOSブートローダーや診断アプリケーションのUEFI環境での実行がサポートさ れている。
 - h. シェルスクリプトの検証が有効になっている場合、スクリプトがセキュアブートデータベースに登録され、スクリ プトが#!NSH行で始まることを確認する。
- 2. 展開をやり直します。

1つ以上のデバイスのオプションROMを実行できない

症状

1つ以上のデバイスのオプションROMを実行できません。

原因

利用可能なオプションROMの総容量を超えました。

アクション

- 1. 不要なオプションROMがあれば(PXEなど)無効にします。
- 2. この手順を再度試みます。

ブート順序リストに新しいネットワークまたはストレージデバイスが見つからな [,1

症状

ネットワークまたはストレージデバイスを接続しましたが、ブート順序リストに表示されません。

原因

新しく追加されたデバイスは、システムを再起動するまで、ブート順序リストには表示されません。

アクション

- 1. システムを再起動します。
- 2. ご使用のデバイスがブート順序リストに表示されることを確認します。

インテルTXTが正常に動作していない

原因

いずれかの前提条件が有効になっていない可能性があります。

アクション

前提条件が有効になっていることを確認します。

- VT-d
- TPM

無効なサーバーシリアル番号と製品ID

症状

サーバーのシリアル番号と製品IDが無効化、破損、または喪失したことを示すエラーメッセージが表示されます。

原因

シリアル番号、製品ID、またはその両方が有効でない、壊れている、あるいは失われました。

アクション

- 1. これらのフィールドに正しい値を入力します。
- 2. エラーメッセージが再び表示されないことを確認します。

無効な日付/時刻

症状

日付と時刻が設定されていないことを示すメッセージが表示されます。

原因

構成メモリの時間または日付が無効です。

アクション

- 日付と時刻オプションを使用して、設定を変更します。
- メッセージが再び表示されないことを確認します。

ネットワークデバイスが正しく機能しない

原因

サポートされるサーバーオプションのリストにあるネットワーキングデバイスのみを使用する必要があります。

アクション

ネットワーキングデバイスをサーバーで使用する前に、ファームウェアを最新バージョンにアップデートすることをお勧 めします。オペレーティングシステムをインストールする前に、最新のService Pack for ProLiantをオフラインモード で使用して、ファームウェアを最新バージョンにアップグレードしてください。

注記:

デフォルトのブートモード設定とユーザーが構成した設定が異なる場合は、デフォルト設定に復元する と、システムがOSインストールを起動しなくなる可能性があります。この問題を回避するには、UEFIシス テムユーティリティのユーザーデフォルトオプション機能を使用して、工場出荷時のデフォルト設定を オーバーライドしてください。

システムが応答しなくなる

原因

PCIe拡張カードが誤って構成されているか誤動作を起こしています。

アクション

問題のカードを識別するためにPCIeデバッグ情報の収集を有効にします。

単一デバイスで障害が発生した

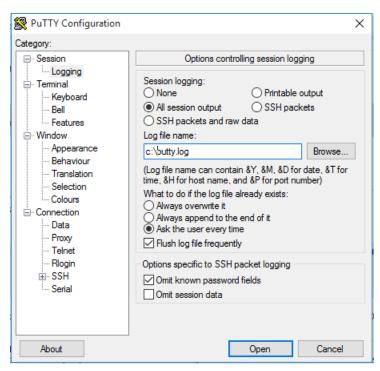
症状

POST中に起動が失敗しました。

アクション

サーバーが起動しない場合は、HPE ProLiant Gen10およびGen10 Plusサーバートラブルシューティングガイドに記載の 「POST実行時の問題-起動時にビデオが表示されない場合のフローチャート」を参照してください。

サーバーが起動しない


原因

メンテナンススイッチでシリアルデバッグを有効にします。

アクション

- 1. サーバーの電源を切断します。
- サーバーメンテナンススイッチ(12ポジションスイッチ)を探して、DIP 4をオンの位置に設定します。スイッチの 位置についてはシャーシのフードラベルを参照してください。
- NULLモードケーブルをサーバーのシリアルポートに接続するか、iLO仮想シリアルポート(VSP)セッションを開きま す。
- PuTTYなどのユーティリティを使用して接続を確立し、ファイルへのログを有効にしてください(All session outputを選択します)。

次の例は、ログデータの収集のためのPuTTY設定の例を示します。

Smartアレイコントローラーが正しく機能しない

原因

他のSmartアレイコントローラーはサポートされておらず、正しく機能しません。

サポートされるオプションについて詳しくは、Hewlett Packard EnterpriseのWebサイトにあるサーバーの QuickSpecs (https://www.hpe.com/info/qs) を参照してください。

ファームウェアとドライバーの最新バージョンについて詳しくは、Hewlett Packard EnterpriseのWebサイト (https://www.hpe.com/support/hpesc) を参照してください。

アクション

Smartアレイコントローラーをサーバーで使用する前に、ファームウェアを最新バージョンにアップデートすることをお 勧めします。オペレーティングシステムをインストールする前に、最新のService Pack for ProLiantをオフラインモー ドで使用して、ファームウェアを最新バージョンにアップグレードしてください。

VMwareはUEFIモードで起動しない

原因

UEFI最適化ブートは有効ではありません。

アクション

UEFI最適化ブートを有効にします。

Webサイト、サポートと他のリソース

サブトピック

Webサイト

サポートと他のリソース

Webサイト

全般的なWebサイト

Single Point of Connectivity Knowledge (SPOCK) ストレージ互換性マトリックス

http://www.hpe.com/storage/spock

ストレージのホワイトペーパーおよび分析レポート

http://www.hpe.com/storage/whitepapers

UEFIの仕様

http://www.uefi.org/specifications

UEFIの学習資料

http://www.uefi.org/learning_center

RESTful APIツール

https://www.hpe.com/info/redfish

Hewlett Packard Enterprise Worldwideの連絡先

https://www.hpe.com/assistance

サブスクリプションサービス/サポートのアラート

https://www.hpe.com/support/e-updates-ja

Software Depot

https://www.hpe.com/support/softwaredepot

Insight Remote Support

https://www.hpe.com/info/insightremotesupport/docs

上記以外のWebサイトについては、サポートと他のリソースを参照してください。

サポートと他のリソース

サブトピック

Hewlett Packard Enterpriseサポートへのアクセス

アップデートへのアクセス

<u>リモートサポート(HPE通報サービス)</u>

カスタマーセルフリペア (CSR)

保証情報

規定に関する情報

ドキュメントに関するご意見、ご指摘

Hewlett Packard Enterpriseサポートへのアクセス

• ライブアシスタンスについては、Contact Hewlett Packard Enterprise WorldwideのWebサイトにアクセスします。

https://www.hpe.com/info/assistance

ドキュメントとサポートサービスにアクセスするには、Hewlett Packard EnterpriseサポートセンターのWebサイトにア クセスします。

https://www.hpe.com/support/hpesc

ご用意いただく情報

- テクニカルサポートの登録番号(該当する場合)
- 製品名、モデルまたはバージョン、シリアル番号
- オペレーティングシステム名およびバージョン
- ファームウェアバージョン
- エラーメッセージ
- 製品固有のレポートおよびログ
- アドオン製品またはコンポーネント
- 他社製品またはコンポーネント

アップデートへのアクセス

- 一部のソフトウェア製品では、その製品のインターフェイスを介してソフトウェアアップデートにアクセスするための メカニズムが提供されます。ご使用の製品のドキュメントで、ソフトウェアの推奨されるソフトウェアアップデート方 法を確認してください。
- 製品のアップデートをダウンロードするには、以下のいずれかにアクセスします。

Hewlett Packard Enterpriseサポートセンター

https://www.hpe.com/support/hpesc

Hewlett Packard Enterpriseサポートセンター:ソフトウェアのダウンロード

https://www.hpe.com/support/downloads

マイHPEソフトウェアセンター

https://www.hpe.com/software/hpesoftwarecenter

• eNewslettersおよびアラートをサブスクライブするには、以下にアクセスします。

https://www.hpe.com/support/e-updates

お客様のエンタイトルメントを表示およびアップデートするには、または契約と標準保証をお客様のプロファイルにリ ンクするには、Hewlett Packard EnterpriseサポートセンターMore Information on Access to Support Materialsペー ジをご覧ください。

https://www.hpe.com/support/AccessToSupportMaterials

(i) 重要:

Hewlett Packard Enterpriseサポートセンターからアップデートにアクセスするには、製品エンタイトルメ ントが必要な場合があります。関連するエンタイトルメントでHPE Passportをセットアップしておく必要が あります。

リモートサポート(HPE通報サービス)

リモートサポートは、保証またはサポート契約の一部としてサポートデバイスでご利用いただけます。優れたイベント診 断、Hewlett Packard Enterpriseへのハードウェアイベント通知の自動かつ安全な送信を提供します。また、お使いの製品 のサービスレベルに基づいて高速かつ正確な解決方法を開始します。Hewlett Packard Enterpriseでは、ご使用のデバイス をリモートサポートに登録することを強くお勧めします。

ご使用の製品にリモートサポートの追加詳細情報が含まれる場合は、検索を使用してその情報を見つけてください。

HPE诵報サービス

http://www.hpe.com/jp/hpalert

HPE Pointnext Tech Care

https://www.hpe.com/jp/ja/services/tech-care

HPE Complete Care

https://www.hpe.com/jp/ja/services/complete-care

カスタマーセルフリペア(CSR)

Hewlett Packard Enterpriseカスタマーセルフリペア (CSR) プログラムでは、ご使用の製品をお客様ご自身で修理するこ とができます。CSR部品を交換する必要がある場合、お客様のご都合のよいときに交換できるよう直接配送されます。一部 の部品はCSRの対象になりません。Hewlett Packard Enterpriseの正規保守代理店が、CSRによって修理可能かどうかを判断 します。

CSRについて詳しくは、お近くの正規保守代理店にお問い合わせください。

保証情報

ご使用の製品の保証情報を確認するには、以下のリンクを参照してください。

HPE ProLiantとIA-32サーバーおよびオプション

https://www.hpe.com/support/ProLiantServers-Warranties

HPE EnterpriseおよびCloudlineサーバー

https://www.hpe.com/support/EnterpriseServers-Warranties

HPEストレージ製品

https://www.hpe.com/support/Storage-Warranties

HPEネットワーク製品

https://www.hpe.com/support/Networking-Warranties

規定に関する情報

安全、環境、および規定に関する情報については、Hewlett Packard Enterpriseサポートセンターからサーバー、ストレー ジ、電源、ネットワーク、およびラック製品の安全と準拠に関する情報を参照してください。

https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts

規定に関する追加情報

Hewlett Packard Enterpriseは、REACH (欧州議会と欧州理事会の規則EC No 1907/2006) のような法的な要求事項に準拠す る必要に応じて、弊社製品の含有化学物質に関する情報をお客様に提供することに全力で取り組んでいます。この製品の含 有化学物質情報レポートは、次を参照してください。

https://www.hpe.com/info/reach

RoHS、REACHを含むHewlett Packard Enterprise製品の環境と安全に関する情報と準拠のデータについては、次を参照して ください。

https://www.hpe.com/info/ecodata

社内プログラム、製品のリサイクル、エネルギー効率などのHewlett Packard Enterpriseの環境に関する情報については、 次を参照してください。

https://www.hpe.com/info/environment

ドキュメントに関するご意見、ご指摘

Hewlett Packard Enterpriseでは、お客様により良いドキュメントを提供するように努めています。ドキュメントの改善に 役立てるために、Hewlett Packard Enterpriseサポートセンターポータル (https://www.hpe.com/support/hpesc) にあ るフィードバックボタンとアイコン(開いているドキュメントの下部にあります)から、エラー、提案、またはコメントを 送信いただけます。すべてのドキュメント情報は、プロセスによってキャプチャーされます。