
JP1 Version 13

JP1/Automatic Operation Service Template
Developer's Guide
3021-3-L25(E)

Notices

■ Relevant program products
• P-2A2C-E1DL JP1/Automatic Operation 13-00 (Windows Server 2016, Windows Server 2019, Windows Server

2022)
The above product includes the following:
• P-CC2A2C-EADL JP1/Automatic Operation - Server 13-00 (Windows Server 2016, Windows Server 2019,

Windows Server 2022)
• P-CC2A2C-EBDL JP1/Automatic Operation - Contents 13-00 (Windows Server 2016, Windows Server 2019,

Windows Server 2022)
• P-2A2C-E3DL JP1/Automatic Operation Content Pack 13-00 (Windows Server 2016, Windows Server 2019,

Windows Server 2022)
• P-842C-E1DL JP1/Automatic Operation 13-00 (for Red Hat Enterprise Linux 7, Red Hat Enterprise Linux 8, Red

Hat Enterprise Linux 9, Oracle Linux 7, Oracle Linux 8, Oracle Linux 9, Miracle Linux 8, Rocky Linux 8)
The above product includes the following:
• P-CC842C-EADL JP1/Automatic Operation - Server 13-00 (for Red Hat Enterprise Linux 7, Red Hat Enterprise

Linux 8, Red Hat Enterprise Linux 9, Oracle Linux 7, Oracle Linux 8, Oracle Linux 9, Miracle Linux 8, Rocky
Linux 8)

• P-CC842C-EBDL JP1/Automatic Operation - Contents 13-00 (for Red Hat Enterprise Linux 7, Red Hat
Enterprise Linux 8, Red Hat Enterprise Linux 9, Oracle Linux 7, Oracle Linux 8, Oracle Linux 9, Miracle Linux
8, Rocky Linux 8)

• P-842C-E3DL JP1/Automatic Operation Content Pack 13-00 (for Red Hat Enterprise Linux 7, Red Hat Enterprise
Linux 8, Red Hat Enterprise Linux 9, Oracle Linux 7, Oracle Linux 8, Oracle Linux 9, Miracle Linux 8, Rocky
Linux 8)

■ Trademarks
HITACHI, HiRDB, JP1 are either trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
Intel is a trademark of Intel Corporation or its subsidiaries.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is a trademark of the Microsoft group of companies.
Microsoft, Windows are trademarks of the Microsoft group of companies.
Microsoft, Windows Server are trademarks of the Microsoft group of companies.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).

JP1/Automatic Operation Service Template Developer's Guide 2

Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/
1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)
2．This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com)
4. This product includes the OpenSSL Toolkit software used under OpenSSL License and Original SSLeay License.
OpenSSL License and Original SSLeay License are as follow:
LICENSE ISSUES
==============
The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts.
OpenSSL License

/* ==
* Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"

JP1/Automatic Operation Service Template Developer's Guide 3

* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

JP1/Automatic Operation Service Template Developer's Guide 4

*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]

JP1/Automatic Operation Service Template Developer's Guide 5

*/
This product includes the OpenSSL library.
The OpenSSL library is licensed under Apache License, Version 2.0.
https://www.apache.org/licenses/LICENSE-2.0
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project
(http://java.apache.org/).
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).
This product includes software developed by Andy Clark.
Java is a registered trademark of Oracle and/or its affiliates.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

■ Issued
Sep. 2023: 3021-3-L25(E)

■ Copyright
All Rights Reserved. Copyright (C) 2023, Hitachi, Ltd.

JP1/Automatic Operation Service Template Developer's Guide 6

Summary of amendments

The following table lists changes in this manual (3021-3-L25(E)) and product changes
related to this manual.

Changes Location

The following operating systems are no longer supported as a target of connection destinations :
• AIX
• HP-UX
• Solaris

6.4.3, 6.4.4, 6.4.7

In addition to the above changes, minor editorial corrections were made.

JP1/Automatic Operation Service Template Developer's Guide 7

Preface

This manual describes how to develop service templates and plug-ins used for JP1/Automatic Operation. In this manual,
JP1/Automatic Operation is abbreviated to JP1/AO.

For reference information on JP1/AO manuals and a glossary, see the JP1/Automatic Operation Overview and System
Design Guide.

■ Intended readers
This manual is intended for:

• Users who create new service templates

• Users who edit service templates

Readers of this manual must have a basic understanding of JP1/AO.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Windows Windows Server 2016 Microsoft(R) Windows Server(R) 2016 Datacenter

Microsoft(R) Windows Server(R) 2016 Standard

Windows Server 2019 Microsoft(R) Windows Server(R) 2019 Datacenter

Microsoft(R) Windows Server(R) 2019 Standard

Windows Server 2022 Microsoft(R) Windows Server(R) 2022 Datacenter

Microsoft(R) Windows Server(R) 2022 Standard

■ Formatting conventions used in this manual
The following describes the formatting conventions used in this manual.

Text formatting Description

Character string Italic characters indicate a variable.
Example: A date is specified in YYYYMMDD format.

Bold - Bold Indicates selecting menu items in succession.
Example: Select File - New.
This example means that you select New from the File menu.

key+key Indicates pressing keys on the keyboard at the same time.
Example: Ctrl+Alt+Delete means pressing the Ctrl, Alt, and Delete keys at the same time.

■ Representation of JP1/AO-related installation folders
In this manual, the default installation folders for the Windows version of JP1/AO are represented as follows:

JP1/Automatic Operation Service Template Developer's Guide 8

JP1/AO installation folder:
system-drive\Program Files\Hitachi\JP1AO

Common Component installation folder:
system-drive\Program Files\Hitachi\HiCommand\Base64

The installation folders for the Linux version of JP1/AO are as follows:

JP1/AO installation folder:

• /opt/jp1ao

• /var/opt/jp1ao

Common Component installation folder:
/opt/HiCommand/Base64

■ Diagrams of windows in the manual
Some windows in this manual might differ from the windows of your product due to improvements, browser
differences, etc without prior notice. Please keep this in mind before reading this manual.

JP1/Automatic Operation Service Template Developer's Guide 9

Contents

Notices 2
Summary of amendments 7
Preface 8

1 Flow of Service Template Development 16
1.1 Overview 17
1.1.1 Flow of service template development 17
1.1.2 Elements involved in service template development 19
1.2 Main windows used to develop service templates 22
1.2.1 Transition of windows when developing service templates 22
1.2.2 Service Builder window 24
1.2.3 Procedure for starting editing of service templates 28
1.2.4 Notes when an interrupt operation is performed in the Service Builder window 29
1.3 Contents and structure of tasks associated with service templates 31
1.3.1 Contents and structure of tasks performed when creating a new service template 31
1.3.2 Contents and structure of tasks performed when editing and reusing a service template 32
1.3.3 Content and structure of tasks performed when using an existing service template as is 32
1.4 General procedure for creating new service templates 34
1.4.1 General procedure for creating new service templates 34
1.5 General procedure when editing and reusing an existing service template 36
1.5.1 General procedure when editing service template definition information 37
1.5.2 General procedure for editing a plug-in and applying the result to a service template 38
1.5.3 General procedure for creating new plug-ins and adding them to service templates 39
1.5.4 General procedure for changing the version of a component used as a step 40
1.5.5 General procedure for adding or deleting processing to or from a service template 41
1.5.6 General procedure for dynamically or statically setting property values when executing services 42
1.5.7 General procedure for setting service properties 44
1.6 Using existing service templates provided by JP1/AO 45
1.6.1 General procedure for using an existing service template provided by JP1/AO 45
1.7 List of service template development features 46

2 Setting Service Template Definition Information 48
2.1 Overview of development service templates and release service templates 49
2.2 Creating and changing the service template definition information 50
2.2.1 Service Builder Edit window General tab 50
2.2.2 Procedure for creating blank service templates 50
2.2.3 Procedure for changing the service template definition information 51

JP1/Automatic Operation Service Template Developer's Guide 10

2.2.4 Items to set in service template definition information 52
2.2.5 Overview of custom files to be set to service templates 54
2.2.6 Procedure for setting custom files for service templates 55
2.2.7 Switching custom files for individual locales of the Web browser 56
2.2.8 Format of custom files 57
2.3 Setting display information for service templates in resource files 59
2.3.1 Procedure for setting service resource files 59
2.3.2 Format of service resource file 60
2.3.3 Definitions in service resource files 61
2.3.4 Correspondence between information displayed in service templates and properties in service

resource files 62
2.3.5 Service resource files automatically generated when a service template is created 63
2.3.6 Service resource files updated when a service template is edited 63
2.3.7 Displaying a service template in a Web browser that is set to a locale for which no service

resource file is available 64

3 Creating and Editing Flows for Service Templates 65
3.1 Service Builder Edit window Flow tab 66
3.2 Relationship between flow and steps 68
3.3 Creating flow hierarchies 69
3.4 Adding and editing steps 71
3.4.1 Procedure for adding steps 71
3.4.2 Procedure for editing steps 73
3.4.3 Settings in step definition information 74
3.4.4 Overview of subsequent step conditions 74
3.4.5 Conditional expressions that use arrows to indicate a connection with subsequent steps 75
3.5 Defining the execution order of steps 77
3.5.1 Procedure for defining the execution order of steps 77
3.5.2 Auto-completion of property values 78
3.5.3 Operations that can be performed on steps and relational lines 79
3.5.4 Information inherited when pasting steps or relational lines 79
3.5.5 Behavior when relational lines connect to multiple steps 80
3.5.6 Scenarios where relational lines cannot be drawn 80
3.5.7 Drawing relational lines when processing branches 81
3.6 Setting step properties 83
3.6.1 Overview of step properties 83
3.6.2 Procedure for directly specifying the input property values of steps 83
3.6.3 Procedure for mapping step property values 85
3.6.4 Overview of property mapping 87
3.6.5 Whether properties can be mapped depending on the visibility or data type 88
3.6.6 Procedure for elevating step properties to service properties 92
3.6.7 Example of defining step properties 93

JP1/Automatic Operation Service Template Developer's Guide 11

3.6.8 List of reserved properties 94
3.6.9 Warning icon displayed for steps 98
3.7 Managing the versions of components used as steps 100
3.7.1 Overview of managing the versions of components used as steps 100
3.7.2 Procedure for checking the versions of components used as steps 101
3.7.3 Procedure for batch-updating components used as steps to the latest versions 101
3.7.4 Procedure for changing the version of a component used as a step to any specified version 103
3.7.5 Information inherited when the versions of components are changed 105

4 Setting Service Properties 106
4.1 Property tab of the Service Builder Edit window 107
4.2 Editing and adding service properties 109
4.2.1 Overview of service property 109
4.2.2 Procedure for editing service properties 109
4.2.3 Procedure for adding service properties 110
4.2.4 Items set for input properties of services 111
4.2.5 Items set for output properties of services 115
4.2.6 Items set for variables 116
4.2.7 About dynamic changes to values set for the input properties for services and plug-ins 117
4.2.8 Visibility and display settings for properties 127
4.2.9 Procedure for deleting service properties 129
4.3 Service share properties 130
4.3.1 Overview of service share properties 130
4.3.2 Procedure for adding service share properties 131
4.3.3 Notes on defining service share properties 131
4.3.4 Overview of shared built-in service properties 132
4.4 Setting property groups 135
4.4.1 Procedure for setting property groups 135
4.4.2 Procedure for deleting property groups 136

5 Managing Service Templates 137
5.1 Viewing service templates 138
5.1.1 Procedure for viewing service templates 138
5.2 Copying service templates 139
5.2.1 Procedure for copying service templates 139
5.2.2 Uniqueness of service templates and plug-ins 140
5.3 Deleting development service templates 142
5.3.1 Procedure for deleting development service templates 142
5.4 Releasing service templates 143
5.4.1 Overview of service template release 143
5.4.2 Procedure for releasing a service template 144
5.5 Exporting service templates 146

JP1/Automatic Operation Service Template Developer's Guide 12

5.5.1 Procedure for exporting service templates 146
5.6 Importing service templates 147
5.6.1 Procedure for importing service templates 147
5.6.2 Importing service templates that contain steps using service components 148
5.6.3 Reason for maintaining separate development and active environments 148

6 Creating and editing plug-ins 150
6.1 Overview of plug-ins 151
6.1.1 Available operations by plug-in type 152
6.1.2 Plug-in executors 152
6.1.3 Files transferred to Windows systems 154
6.1.4 Files transferred to UNIX systems 155
6.1.5 Commands required for plug-in execution 155
6.1.6 Locale set for operation target devices during plug-in execution 155
6.1.7 Character set used for communication by JP1/AO during plug-in execution 156
6.1.8 Setting a specific character set during plug-in execution 157
6.2 Creating and editing plug-in definition information 159
6.2.1 Procedure for creating plug-ins 159
6.2.2 Procedure for editing plug-in definition information 161
6.2.3 Items to set in plug-in definition information 163
6.2.4 Image files that can be set for component icons 164
6.2.5 Plug-in credential types 165
6.3 Setting plug-in properties 166
6.3.1 Overview of plug-in properties 166
6.3.2 Procedure for adding plug-in properties 166
6.3.3 Procedure for editing plug-in properties 167
6.3.4 Items to set for plug-in input properties 168
6.3.5 Items to set for plug-in output properties 169
6.3.6 Reserved plug-in properties for specifying execution-target hosts and authentication information 169
6.3.7 About dynamic changes to values set for the input properties for plug-ins 170
6.3.8 Procedure for deleting plug-in properties 171
6.4 Editing platforms 172
6.4.1 Procedure for editing platforms 172
6.4.2 Items to set for platforms 173
6.4.3 Procedure for setting commands 174
6.4.4 Method for specifying scripts 175
6.4.5 Procedure for setting scripts (when attaching created scripts) 177
6.4.6 Procedure for setting scripts (when directly entering scripts) 178
6.4.7 Specifying commands in the CLI Command text box 179
6.4.8 Procedure for using the return value of a command or script as a flow branching condition (for

values outside the 0 to 63 range) 181
6.4.9 Return values of content plug-ins 181

JP1/Automatic Operation Service Template Developer's Guide 13

6.4.10 Relationship of command and script return values to the return values of plug-ins and steps 183
6.4.11 Information output to standard output by plug-ins 183
6.4.12 Procedure for mapping standard output and standard error output to output properties 184
6.4.13 Specifying Output Filter 185
6.4.14 Specifying Execution Directory 185
6.4.15 Procedure for adding and editing environment variables 186
6.4.16 Procedure for deleting environment variables 187
6.5 Using resource files to set plug-in display information 188
6.5.1 Procedure for setting plug-in resource files 188
6.5.2 Format of plug-in resource files 189
6.5.3 Correspondence between properties in plug-in resource files and information displayed for

plug-ins 190
6.5.4 Plug-in resource files automatically generated when plug-ins are created 190
6.5.5 Plug-in resource files updated when plug-ins are edited 191
6.5.6 Displaying plug-ins by using a Web browser with a locale for which the plug-in resource file has

not been created 191

7 Managing plug-ins 192
7.1 Copying plug-ins 193
7.1.1 Procedure for copying plug-ins 193
7.2 Deleting plug-ins 195
7.2.1 Procedure for deleting plug-ins 195

8 Validating Service Templates 196
8.1 Overview of service template validation 197
8.1.1 General procedure for validating service templates 197
8.1.2 Overview of building 198
8.1.3 Overview of debugging 199
8.1.4 Overview of operation tests 200
8.2 Building service templates 202
8.2.1 Procedure for building service templates 202
8.3 Debugging service templates 204
8.3.1 Service Builder Debug window 204
8.3.2 General procedure for debugging service templates 206
8.3.3 Functions used during debug operations 206
8.3.4 Example of debugging service templates 208
8.3.5 Procedure for starting debugging 209
8.3.6 Settings used when starting debugging 211
8.3.7 Procedure for debugging without pausing between steps 212
8.3.8 Timing with which step execution can be interrupted 212
8.3.9 Operations for interrupting step executions during debugging 213
8.3.10 Step information that can be changed when step execution is interrupted 216

JP1/Automatic Operation Service Template Developer's Guide 14

8.3.11 Procedure for skipping plug-in processing during debugging 217
8.3.12 Plug-ins that cannot be interrupted or skipped during debugging 218
8.3.13 Procedure for checking property mapping settings during debugging 219
8.3.14 Procedure for changing step property values or return value during debugging 221
8.3.15 Importing and exporting step properties in the Service Builder Debug window 222
8.3.16 Displaying step property values and return values during debugging 222
8.3.17 Effect of changing values of step properties during debugging 223
8.3.18 Procedure for handling debug tasks that are waiting for a response (response entry) 224
8.3.19 Procedure for debugging a service template again without rebuilding 224
8.3.20 Procedure for retrying a task from a failed step during debugging 225
8.3.21 Procedure for retrying a task from the step after the failed step during debugging 226
8.3.22 Displaying debug task flow 226
8.3.23 Displaying the flow tree of a debug task 229
8.3.24 Displaying a repeated execution flow during debugging 229
8.3.25 Information displayed for repeated execution plug-ins and repeated execution flows during

debugging 231
8.4 Managing debug tasks 232
8.4.1 Procedure for checking progress of debug tasks from the Tasks window 232
8.4.2 Procedure for checking details about debug tasks from the Task Details window 233
8.4.3 Procedure for checking task log entries for debug tasks 233
8.4.4 Procedure for stopping debug tasks 234
8.4.5 Procedure for forcibly stopping debug tasks 235
8.4.6 Procedure for deleting debug tasks 236
8.5 Testing the operation of service templates 237
8.5.1 Procedure for testing the operation of service templates 237

Appendix 238
A Reference Information 239
A.1 Reference information for build and release operations 239
A.2 Compatibility for service templates 243
A.3 Version changes 244

Index 253

JP1/Automatic Operation Service Template Developer's Guide 15

This chapter provides the general flow of service template development. Service templates are used
to define processing that automates the operating procedures in an IT system.

1 Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 16

1.1 Overview

This section describes the flow of service template development, and the elements involved in service template
development.

1.1.1 Flow of service template development
In JP1/AO, you can use service templates to automate operating procedures. This functionality is particularly effective
when applied to the automation of complex operating procedures, or procedures that are executed often but at irregular
times.

You can create new service templates. You can also use the existing templates provided by JP1/AO#1 without
modification, or copy an existing template and edit it#2 by adding and removing steps as needed.

#1
Service templates provided by JP1/AO include the service templates provided with the JP1/AO standard package
and the JP1/AO Content Set (available separately).

#2
Before you can edit a service template provided by JP1/AO, you need to import the service template.

Tip
If you want to use a content plug-in provided by JP1/AO as the basis for service template development,
import the service template that contains the content plug-in. Type Components (such as "vSphere
Components") are provided as the service templates for providing plug-ins.

For details about the plug-ins contained in these service templates, see List of plug-ins contained in service
templates in the manual JP1/Automatic Operation Service Template Reference.

The following figure shows the general procedure for developing service templates.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 17

Figure 1-1: Flow of service template development

Tip
Detailed input restrictions are not set for the properties of the plug-ins provided by JP1/AO because they
were created for general-purpose use. If necessary, when using these plug-ins to create a service template,
consider adding input restrictions on service properties (definition information of the service).

Related topics for creating new service templates
• 1.1.2 Elements involved in service template development

• 1.2 Main windows used to develop service templates

• 1.3.1 Contents and structure of tasks performed when creating a new service template

• 1.4 General procedure for creating new service templates

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 18

Related topics for editing service templates
• 1.1.2 Elements involved in service template development

• 1.2 Main windows used to develop service templates

• 1.3.2 Contents and structure of tasks performed when editing and reusing a service template

• 1.5 General procedure when editing and reusing an existing service template

Related topics for using unmodified service templates
• 1.1.2 Elements involved in service template development

• 1.3.3 Content and structure of tasks performed when using an existing service template as is

• 1.6 Using existing service templates provided by JP1/AO

1.1.2 Elements involved in service template development
Service templates define the information necessary to automate operating procedures. The following figure shows the
elements involved in service template development.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 19

Figure 1-2: Elements Involved in service template development

• Development environment
The environment in which the service template is developed. You can also conduct debugging and operation testing
in this environment to validate the operation of the service templates you develop. Although you can develop service
templates in an active environment, we recommend that you keep the development and active environments separate.

• Active environment
The environment in which you can create and execute services based on service templates you have developed. The
actual automation of operating procedures takes place in this environment.

• Service template
Defines the processing that automates the operating procedures in an IT system. A service template incorporates
flows and steps.

• Development service template

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 20

A service template that is being developed by a user. Service templates created by copying a release service template
are also classified as development service templates. Development service templates are used in the development
environment.

• Release service template
When you release a development service template, it becomes a release service template, which cannot be edited.
The service templates provided by JP1/AO are also classified as release service templates. Release service templates
are used in the active environment.

• Flow
Defines the flow of the operating procedure you are automating.

• Component
Plug-ins and release service templates that can be placed as steps.

• Plug-in
The smallest unit of processing you can define when automating IT operations.

• Step
An element of a flow. Each step executes a plug-in.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 21

1.2 Main windows used to develop service templates

The Service Builder window is mainly used to develop service templates. Some operations can also be performed in
the Service Template window.

1.2.1 Transition of windows when developing service templates
The display of the Service Builder window can be switched between the Service Builder Home page and the Service
Builder Edit page.

The Service Builder Home window is the base window used to start operations regarding service template development.
When you develop service templates, first come to this window and select an operation to perform.

To edit a service template, in the Service Builder Edit window, first edit the template in the Flow tab and then configure
the service properties in the Property tab. Note that you can switch between the Flow and Property tabs of the Service
Builder Edit window at any time while editing a service template.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 22

Figure 1-3: Main windows used in service template development (when creating, editing, or copying
a service template)

After editing a service template, in the Service Builder Debug window, debug the service template.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 23

Figure 1-4: Main windows used in service template development (when debugging a service
template)

Related topics
• 1.2.2 Service Builder window
• 8.3.1 Service Builder Debug window

1.2.2 Service Builder window
The Service Builder window is used to develop service templates and plug-ins. To display the Service Builder window,
in the main window, select Tools and then Service Builder.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 24

Service Builder Home window
The Service Builder Home window is used as the base window to start development of service templates and plug-ins.

Figure 1-5: Service Builder Home window

The Service Builder Home window displays service templates that were created (in the Released tab) and service
templates that are currently being developed (in the Developing tab). You can check details about a selected service
template or use the management functions to edit, view, copy, export, or delete service templates. You can also import
and create new service templates as needed.

Use the text box in the upper left corner of the window to search for a specific service template. You can also search
for a service template by the tag groups associated to that service template. Use the Card View tab or the Table View
tab to change the way service templates are displayed.

The following describes the items displayed in the window:

Custom Plug-in Actions pull-down menu
Specify the operation to be performed on a plug-in:
Create: Create a new development plug-ins.
Edit: Edit a development plug-ins.
Set Resources: Specify a resource file for a development plug-ins.
Copy: Copy a development plug-ins or a release plug-ins.
Delete: Delete a development plug-ins or a release plug-ins.

Tools pull-down menu
Reset Preferences returns the settings in the window back to their initial values at the time of shipment.

Help pull-down menu
Online Manual displays the JP1/AO manual.

Close button
In the dialog box asking whether to close the application, clicking the OK button closes the Service Builder Home
window and returns you to the main window.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 25

Developing tab

Import button
Import a development service template or a release service template into the JP1/AO server.

Create New Service Template button
Create a new development service template.

Edit button
Edit a selected development service template.

View button
View a selected development service template.

Copy button
Copy a selected development service template.

Service Details button
Check details about a selected service template.

More Actions pull-down menu
Export: Export the content of a selected service template to a file you specify.
Delete: Delete a selected service template.

Released tab

View button
View a release service template you select.

Copy and Edit button
Copy a release service template you select.

Service Details button
Check the details about a release service template you select.

Service Builder Edit window
The Service Builder Edit window is used to edit service template flows and properties.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 26

Figure 1-6: Service Builder Edit window

You can edit service templates in the Service Builder Edit window. Switch between tabs to view or edit details about
a service template, the general settings, and the properties.

The following describes the items displayed in the window:

Flow tab
Create or edit a service template flow. For details, see the topic 3.1  Service Builder Edit window Flow tab.

General tab
Check the details about a service template. Click the Edit button to edit or customize a service template. For details,
see the topic 2.2.1 Service Builder Edit window General tab.

Property tab
View the input and output properties related to a service template. For details, see the topic 4.1 Property tab of the
Service Builder Edit window.

Close button
Click this button to return to the Service Builder Home window.

Save button
Click this button to save a service template.

Debug button
Click this button to build a service template. If the build is successful, you will be able to debug the service template.

Release button
Click this button to release a service template.

Actions pull-down menu
When you select Set Resources, you can assign a resource file to a service template.
Select the Component Version Management button to manage the versions of the components that are used as
steps of the service template.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 27

Related topics
• 1.2.1 Transition of windows when developing service templates

1.2.3 Procedure for starting editing of service templates
You can edit service templates in the Service Builder Edit window. Note that, to edit a release service template, you
must first create a copy of the release service template as a development service template and then edit the development
service template.

To start editing of service template:
1. In the main window, from the Tools menu, select Service Builder.

Figure 1-7: Selecting Service Builder

2. Select the development service template that you want to edit, and then click the Edit button.

Operation result
The Flow tab of the Service Builder Edit window appears. Create or edit a flow, or configure the service properties as
needed.

Tip
To edit a release service template, click the Copy and Edit button on the Service Builder Home > Released
tab. After you set the general settings (in the Copy Service Template dialog box), the Flow tab of the
Service Builder Edit window automatically appears.

Related topics
• 2.1 Overview of development service templates and release service templates
• 5.2.1 Procedure for copying service templates

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 28

• 3.4 Adding and editing steps
• 4.2 Editing and adding service properties

1.2.4 Notes when an interrupt operation is performed in the Service
Builder window

This subsection describes the behavior when another user performs an interrupt operation on a service template or plug-
in while you are editing the same service template or plug-in. The examples for service templates are shown below. You
can expect the same behavior for plug-ins.

In these examples, the user who is editing a service template in the Service Builder window is called the operation
user. Also, the user who performs different operations on the service template that the operation user is operating, is
called the interrupt user.

• When a service template is copied while it is being edited
Even while the operation user is editing a service template, the interrupt user can copy the same service template.
The content of the service template created by the copy operation is the same as the content before the operation
user saves the editing result of the service template.

Figure 1-8: When a service template is copied while it is being edited

• When a file is deleted or renamed while a service template or plug-in is being edited
While the operation user is editing a service template or plug-in, if the interrupt user performs one of the operations
below on the same service template or plug-in, an error message appears. This error message appears when the
operation user saves the service template or plug-in, or when the operation user builds or releases the service template.

• The plug-in icon set for the plug-in is deleted (except for the standard plug-in icon).

• The script file set for the plug-in is deleted or renamed.

• The custom file set for the service template is deleted or renamed.

Figure 1-9: When a file is deleted or renamed while a service template is being edited

• When a service template is released while it is being edited

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 29

While the operation user is editing a service template, if the interrupt user releases the same service template, the
release processing is performed successfully. However, the result of the release processing is not applied to the
window in which the operation user is editing the service template. When the operation user saves the editing result
of the service template, the save processing fails, and an error message appears.
When you release a service template, you need to confirm that no other users are editing the same service template.

Figure 1-10: When a service template is released while it is being edited

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 30

1.3 Contents and structure of tasks associated with service templates

This section describes the contents and structure of tasks performed when you develop service templates or use the
service templates provided by JP1/AO.

1.3.1 Contents and structure of tasks performed when creating a new
service template

The figure below shows the contents and structure of tasks performed when creating a new service template. The numbers
in the figure indicate the order in which each step is performed.

Figure 1-11: Contents and structure of tasks performed when creating a new service template

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 31

1.3.2 Contents and structure of tasks performed when editing and reusing
a service template

The figure below shows the contents and structure of tasks performed when editing and reusing a service template. The
numbers in the figure indicate the order in which each step is performed. Perform the tasks in the section enclosed by
the dashed line only if they are needed.

Figure 1-12: Contents and structure of tasks performed when editing and reusing a service template

1.3.3 Content and structure of tasks performed when using an existing
service template as is

The figure below shows the content and structure of tasks performed when using an existing service template as is. The
numbers in the figure indicate the order in which each step is performed.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 32

Figure 1-13: Content and structure of tasks performed when using an existing service template as
is

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 33

1.4 General procedure for creating new service templates

This section describes the general procedure for creating a new service template, and gives references to manuals.

1.4.1 General procedure for creating new service templates
Users are not limited to using and modifying the service templates provided by JP1/AO, and can create new service
templates to meet specific needs.

You might use this procedure when:
• You want to create your own service template rather than use an existing one.

Required knowledge
• 2.1 Overview of development service templates and release service templates

• 2.2.4 Items to set in service template definition information

• 6.2.3 Items to set in plug-in definition information

• 5.4.1 Overview of service template release

General procedure
Table 1-1: General procedure for creating new service templates

Task Manda
tory/
option
al

Refer to

1 Create a blank service template. Mandat
ory

2.2.2 Procedure for creating blank service templates

2 If not using an existing plug-in, create a
new plug-in.

Option
al

6.2.1 Procedure for creating plug-ins

To edit and reuse a release plug-in, copy
the plug-in and edit the copy.

Option
al

7.1.1 Procedure for copying plug-ins

6.2.2 Procedure for editing plug-in definition information

To edit and reuse a development plug-in,
begin by editing the plug-in.

Option
al

6.2.2 Procedure for editing plug-in definition information

3 Create a flow. Mandat
ory

3. Creating and Editing Flows for Service Templates

4 Set service properties. Mandat
ory

4. Setting Service Properties

5 Validate the created service template.# Option
al

8. Validating Service Templates

6 Release the completed service template
and prepare to create the service.

Mandat
ory

5.4.2 Procedure for releasing a service template

7 To move the service template from the
development environment to another
environment, export the service template,

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 34

Task Manda
tory/
option
al

Refer to

7 and then import it to the destination
environment.

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

8 Create, edit, and execute the service. Mandat
ory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds any issues with the service template, repeat tasks 2 to 5 as needed.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 35

1.5 General procedure when editing and reusing an existing service
template

Users can create original service templates by copying and then editing the service templates provided by JP1/AO (in
the standard JP1/AO package or JP1/AO Content Set). To edit a release service template, copy the template and then
edit the copy as a new service template.

Important
Once edited, the service templates (bundled service templates and JP1/AO Content Set) and plug-ins
provided by JP1/AO are outside the scope of JP1/AO product support. However, the plug-ins provided by
JP1/AO (the standard JP1/AO package or JP1/AO Content Set) that are called from such templates remain
subject to product support.

The following table lists the cases of editing service templates and shows where to read about the tasks involved in
editing a service template.

Table 1-2: Reading material for each development stage

Task You might perform this task
when:

Refer to

Investigation • You are investigating whether an
existing service template or
plug-in can be used without
further modification.

JP1/Automatic Operation Service Template Reference

Editing service
template definition
information

• You want to change the name of
the service template from "Stop
virtual server" to "Stop virtual
server and Notify by email".

1.5.1 General procedure when editing service template definition
information

Editing plug-ins • You want to change the contents
of scripts or commands defined
in a plug-in.

• You want to change the icon
displayed for a plug-in in the
Flow area.

1.5.2 General procedure for editing a plug-in and applying the result to a
service template

Creating new plug-ins • You want to create a new plug-
in and define processing that
executes a command.

1.5.3 General procedure for creating new plug-ins and adding them to
service templates

Changing the version
of components used as
steps

• You want to replace the plug-ins
used as the steps with the latest
version of plug-ins.

1.5.4 General procedure for changing the version of a component used as a
step

Adding or deleting
steps to or from the
service template

• You want to insert an email-
sending process at the end of the
processing automated by the
service template.

• A file transfer step is no longer
required for processing that
acquires log data for JP1/IM and
JP1/Base.

1.5.5 General procedure for adding or deleting processing to or from a
service template

Setting property values
dynamically or
statically during
execution of the service

• For processing that increases
available memory, you want the
memory capacity to be fixed at 5
GB each time the service runs.

1.5.6 General procedure for dynamically or statically setting property values
when executing services

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 36

Task You might perform this task
when:

Refer to

Setting property values
dynamically or
statically during
execution of the service

• You want a command to be
executed in response to the
execution result of the previous
command.

1.5.6 General procedure for dynamically or statically setting property values
when executing services

Setting properties used
by users who execute
the service to specify
necessary values for
executing the service,
and to acquire the
execution result of the
service

• For processing that increases the
memory capacity, you want to
specify the memory capacity
(instead of fixing the memory
capacity) when executing the
service.

• You want to check the
processing result of a plug-in in
the Task Details window.

1.5.7 General procedure for setting service properties

1.5.1 General procedure when editing service template definition
information

Service template definition information is the name and description of the service template displayed in the JP1/AO
operation window.

You might use this procedure when:
• You want to change the name of the service template from "Stop virtual server" to "Stop virtual server and Notify

by email".

Required knowledge
• 2.1 Overview of development service templates and release service templates

• 2.2.4 Items to set in service template definition information

• 5.4.1 Overview of service template release

General procedure
Table 1-3: General procedure when editing service template definition information

Task Man
dator
y/
optio
nal

Refer to

1 Copy the release service template that you
want to edit.

Optio
nal

5.2.1 Procedure for copying service templates

2 Change the service template definition
information.

Mand
atory

2.2.3 Procedure for changing the service template definition information

3 Release the completed service template and
prepare to create the service.

Mand
atory

5.4.2 Procedure for releasing a service template

4 To move the service template from the
development environment to another
environment, export the service template,

Optio
nal

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for importing
service templates

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 37

Task Man
dator
y/
optio
nal

Refer to

4 and then import it to the destination
environment.

Optio
nal

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for importing
service templates

5 Create, edit, and execute the service. Mand
atory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

1.5.2 General procedure for editing a plug-in and applying the result to a
service template

You can edit plug-ins (except for basic plug-ins). After editing a plug-in, you can apply the result to a service template.
If the plug-in is already released, copy the plug-in and edit the copy.

You might use this procedure when:
• You want to change the contents of a script or command defined in a plug-in.

• You want to change the icon displayed for a plug-in in the Flow area.

Required knowledge
• 6.1 Overview of plug-ins

• 2.1 Overview of development service templates and release service templates

• 5.4.1 Overview of service template release

General procedure
Table 1-4: General procedure for editing a plug-in and applying the result to a service template

Task Mandat
ory/
option
al

Refer to

1 Copy the release plug-in that you want to
edit.

Optional 7.1.1 Procedure for copying plug-ins

2 Edit plug-in definition information. Mandat
ory

6.2.2 Procedure for editing plug-in definition information

3 Copy the service template when applying
a plug-in to a release service template.

Optional 5.2.1 Procedure for copying service templates

4 Add the edited plug-in as a step in a flow,
or if the same version of the plug-in has
already been used as a step, change the
plug-in to a newer version.

Mandat
ory

3.4.1 Procedure for adding steps, 3.7.4 Procedure for changing the version of
a component used as a step to any specified version

5 Add or delete related steps when editing
a plug-in affects the flow of processing.

Optional 3.4 Adding and editing steps, 3.5.3 Operations that can be performed on steps
and relational lines

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 38

Task Mandat
ory/
option
al

Refer to

6 Set step properties when editing a plug-
in affects step properties.

Optional 3.6 Setting step properties

7 Set service properties when editing a
plug-in affects service properties.

Optional 4.2 Editing and adding service properties

8 Validate the edited service template#. Optional 8. Validating Service Templates

9 Release the completed service template
and prepare to create the service.

Mandat
ory

5.4.2 Procedure for releasing a service template

10 To move the service template from the
development environment to another
environment, export the service
template, and then import it to the
destination environment.

Optional 5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

11 Create, edit, and execute the service. Mandat
ory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 2 to 8 as needed.

1.5.3 General procedure for creating new plug-ins and adding them to
service templates

Users can create custom plug-ins and add them to service templates as steps.

You might use this procedure when:
• You want to create a new plug-in and define processing that executes a command.

Required knowledge
• 6.1 Overview of plug-ins

• 2.1 Overview of development service templates and release service templates

• 5.4.1 Overview of service template release

General procedure
Table 1-5: General procedure for creating new plug-ins and adding them to service templates

Task Mand
atory/
optio
nal

Refer to

1 Create a plug-in. Manda
tory

6.2.1 Procedure for creating plug-ins

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 39

Task Mand
atory/
optio
nal

Refer to

2 Copy the release service template that you
want to edit.

Option
al

5.2.1 Procedure for copying service templates

3 Add a plug-in you created as a step in a
flow.

Manda
tory

3.4.1 Procedure for adding steps

4 Add and delete related steps when adding
a step affects the flow of processing.

Option
al

3.4 Adding and editing steps, 3.5.3 Operations that can be performed on steps
and relational lines

5 Set step properties when editing a plug-in
affects step properties.

Option
al

3.6 Setting step properties

6 Set service properties when editing a plug-
in affects service properties.

Option
al

4.2 Editing and adding service properties

7 Validate the edited service template#. Option
al

8. Validating Service Templates

8 Release a completed service template and
prepare to create the service.

Manda
tory

5.4.2 Procedure for releasing a service template

9 To move the service template from the
development environment to another
environment, export the service template,
and then import it to the destination
environment.

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for importing
service templates

10 Create, edit, and execute the service. Manda
tory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 1 to 7 as needed.

1.5.4 General procedure for changing the version of a component used
as a step

You can replace a component used as a step in a service template, with another version of the component.

You might use this procedure when:
• You want to replace a plug-in used as a step, with the latest version of the plug-in.

Required knowledge
• 6.1 Overview of plug-ins

• 2.1 Overview of development service templates and release service templates

• 3.7.1 Overview of managing the versions of components used as steps

• 5.4.1 Overview of service template release

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 40

General procedure
Table 1-6: General procedure for changing the version of a component used as a step

Task Mandat
ory/
option
al

Refer to

1 Copy the service template when applying
a plug-in to a release service template.

Optional 5.2.1 Procedure for copying service templates

2 Check the version of the component used
by a step, and change the version as
needed.

Mandat
ory

3.7 Managing the versions of components used as steps

3 Set step properties when changing the
version of a component affects step
properties.

Optional 3.6 Setting step properties

4 Set service properties when changing the
version of a component affects service
properties.

Optional 4.2 Editing and adding service properties

5 Validate the edited service template#. Optional 8. Validating Service Templates

6 Release a completed service template
and prepare to create the service.

Mandat
ory

5.4.2 Procedure for releasing a service template

7 To move the service template from the
development environment to another
environment, export the service
template, and then import it to the
destination environment.

Optional 5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

8 Create, edit, and execute the service. Mandat
ory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 2 to 5 as needed.

1.5.5 General procedure for adding or deleting processing to or from a
service template

Users can add processing in the form of steps to a flow in an existing service template. Deleting a step will delete the
corresponding processing.

You might use this procedure when:
• You want to insert an email-sending process at the end of the processing automated by the service template.

• A file transfer step is no longer required in processing that acquires log data for JP1/IM and JP1/Base.

Required knowledge
• 2.1 Overview of development service templates and release service templates

• 3.2 Relationship between flow and steps

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 41

• 3.3 Creating flow hierarchies

• 5.4.1 Overview of service template release

General procedure
Table 1-7: General procedure for adding or deleting processing to or from a service template

Task Mand
atory/
optio
nal

Refer to

1 Copy a release service template that you
want to edit.

Option
al

5.2.1 Procedure for copying service templates

2 Add or delete steps. Manda
tory

3.4.1 Procedure for adding steps, 3.5.3 Operations that can be performed on
steps and relational lines

3 Check and (if necessary) change the order
of executing steps when adding or deleting
a step affects the processing flow.

Option
al

3.5.1 Procedure for defining the execution order of steps

4 Set step properties or service properties
when adding or deleting a step affects step
properties or service properties
respectively.

Option
al

3.6 Setting step properties, 4.2 Editing and adding service properties

5 Validate the edited service template#. Option
al

8. Validating Service Templates

6 Release the completed service template
and prepare to create the service.

Manda
tory

5.4.2 Procedure for releasing a service template

7 To move the service template from the
development environment to another
environment, export the service template,
and then import it to the destination
environment.

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for importing
service templates

8 Create, edit, and execute the service. Manda
tory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 2 to 5 as needed.

1.5.6 General procedure for dynamically or statically setting property
values when executing services

By mapping step properties to other step properties or service properties, you can execute processing by assigning the
property value. You can also assign a fixed value to an input property.

This process is not limited to existing input properties or output properties. Users can create new properties and map
them.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 42

You might use this procedure when:
• In processing that increases available memory, you want to be able to specify how much memory to allocate when

executing a service (dynamically setting input properties), instead of using a fixed value.

• In processing that increases available memory, you want the memory capacity to be fixed at 5 GB each time the
service runs (statically setting input properties).

Required knowledge
• 2.1 Overview of development service templates and release service templates

• 3.6.1 Overview of step properties

• 3.6.7 Example of defining step properties

• 5.4.1 Overview of service template release

General procedure
Table 1-8: General procedure for dynamically or statically setting property values when executing

services

Task Manda
tory/
option
al

Refer to

1 Copy a release service template that you
want to edit.

Option
al

5.2.1 Procedure for copying service templates

2 Set step properties. Mandat
ory

3.6 Setting step properties

3 Set service properties when setting a step
property affects service properties.

Option
al

4.2 Editing and adding service properties

4 Validate an edited service template#. Option
al

8. Validating Service Templates

5 Release the completed service template and
prepare to create the service.

Mandat
ory

5.4.2 Procedure for releasing a service template

6 To move the service template from the
development environment to another
environment, export the service template,
and then import it to the destination
environment.

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

7 Create, edit, and execute the service. Mandat
ory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 2 to 4 as needed.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 43

1.5.7 General procedure for setting service properties
You can set properties that are used by users who execute services to specify parameters necessary for executing the
services and to acquire the execution results of the services.

You might use this procedure when:
• In processing that increases available memory, you want to be able to specify how much memory to allocate when

executing a service, instead of using a fixed value.

• You want to check the processing result for a plug-in in the Task Details window.

Required knowledge
• 2.1 Overview of development service templates and release service templates

• 3.6.1 Overview of step properties

• 3.6.7 Example of defining step properties

• 4.2.1 Overview of service property

• 5.4.1 Overview of service template release

General procedure
Table 1-9: General procedure for setting service properties

Task Manda
tory/
option
al

Refer to

1 Copy a release service template that you
want to edit.

Option
al

5.2.1 Procedure for copying service templates

2 Set step properties when you want to elevate
step properties to service properties.

Option
al

3.6 Setting step properties

3 Set service properties. Mandat
ory

4.2 Editing and adding service properties

4 Validate an edited service template#. Option
al

8. Validating Service Templates

5 Release the completed service template and
prepare to create the service.

Mandat
ory

5.4.2 Procedure for releasing a service template

6 To move the service template from the
development environment to another
environment, export the service template,
and then import it to the destination
environment.

Option
al

5.5.1 Procedure for exporting service templates, 5.6.1 Procedure for
importing service templates

7 Create, edit, and execute the service. Mandat
ory

JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

#
If the validation process finds an issue with the service template, repeat tasks 2 to 4 as needed.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 44

1.6 Using existing service templates provided by JP1/AO

This section describes the general procedure for using existing service templates provided by JP1/AO as they are, and
gives references to manuals.

1.6.1 General procedure for using an existing service template provided
by JP1/AO

When appropriate, you can use the service templates provided in the standard JP1/AO package and the JP1/AO Content
Set.

You might use this procedure in situations like the following:
A template provided by JP1/AO exactly defines the task you want to automate:

• You want to use the Add monitoring setting service template to add multiple monitored servers to HP NNMi or JP1/
PFM.

• You want to use the Add operational user service template to add OS users, JP1 users, and the associated mapping
information.

Required knowledge
• 2.1 Overview of development service templates and release service templates

General procedure
Table 1-10: General procedure for using an existing service template provided by JP1/AO

Task Mandatory/
optional

Refer to

1 Evaluate the service template you want to use. Mandatory • Evaluating the service template to be used and the
targets of operation in the JP1/Automatic
Operation Overview and System Design Guide

• JP1/Automatic Operation Service Template
Reference
• List of JP1/AO Standard-package Service

Templates
• List of JP1/AO Content Pack service templates

2 Add service templates to JP1/AO. Mandatory Importing service templates in the JP1/Automatic
Operation Administration Guide

3 Create, edit, and execute services. Mandatory JP1/Automatic Operation Administration Guide
• Creating services
• Editing services
• Executing services

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 45

1.7 List of service template development features

The following table lists the features of JP1/AO that are used in the development of service templates.

Table 1-11: List of service template development features

Feature Description Refer to

Creating and
editing service
templates

Creating and editing
definition
information

Users can create new original service templates.
Users can also edit service templates and change information
(such as, the service template names, descriptions, service
properties, and custom files).

2.2 Creating and changing
the service template
definition information

Adding steps Users can add steps to a flow to place necessary processing in a
task. Users can also edit the definition information of steps.

3.4 Adding and editing
steps

Defining the
execution order of
steps

Users can add steps and connect them by relational lines to
define execution order of the processing.

3.5 Defining the execution
order of steps

Setting step
properties

Users can dynamically or statically set the property values used
when services are executed.

3.6 Setting step properties

Setting service
properties

Users can define the input items when setting or executing
services, or the items displayed when checking the execution
result.

4.2 Editing and adding
service properties

Managing the
versions of
components used as
steps

Users can check and change the version of the components used
as steps.

3.7 Managing the versions
of components used as steps

Setting display
information of
service templates

Users can set the display information of service templates (such
as service template names and descriptions) in resource files.
Note that resource files can be set for each locale for the Web
browser.

2.3 Setting display
information for service
templates in resource files

Managing service
templates

Viewing service
templates

Users can view the definition information and detailed
processing of service templates.

5.1 Viewing service
templates

Copying service
templates

Users can copy service templates. Users can also edit the copied
service templates and create new service templates.

5.2 Copying service
templates

Deleting service
templates

Users can delete service templates. 5.3 Deleting development
service templates

Releasing service
templates

Releasing validated service templates creates the packages of
the service templates, and they are imported to the JP1/AO
server. Service templates after being released, cannot be edited.
To move service templates from the development environment
to another environment, users must manually import the service
templates.

5.4 Releasing service
templates

Exporting service
templates

Users can store service template files in any folder. 5.5 Exporting service
templates

Importing service
templates

Users can import service templates to the destination
environment when moving the released service templates from
the development environment to another environment.

5.6 Importing service
templates

Creating and
editing plug-ins

Creating plug-ins Users can create new original plug-ins. 6.2 Creating and editing
plug-in definition
information, 6.3 Setting
plug-in properties, 6.4 
Editing platforms

Editing plug-ins Users can edit plug-ins, by setting the plug-in names, input
properties, output properties, and remote commands. Note that
users cannot edit plug-ins provided by JP1/AO.

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 46

Feature Description Refer to

Creating and
editing plug-ins

Setting display
information of plug-
ins

Users can set the display information of plug-ins (such as, plug-
in names and descriptions) in resource files. Note that users can
set resource files for each locale of the Web browser.

6.5 Using resource files to
set plug-in display
information

Managing plug-ins Copying plug-ins Users can copy development plug-ins and release plug-ins, and
create new plug-ins by editing the copied plug-ins.

7.1 Copying plug-ins

Deleting plug-ins Users can delete development plug-ins and release plug-ins. 7.2 Deleting plug-ins

Validating service
templates

Building service
templates

Building service templates creates packages for the service
templates being developed, and then they are imported to the
JP1/AO server. This processing is performed to validate service
templates.

8.2 Building service
templates

Debugging service
templates

Users can check the behavior of service templates that were
built, and find problems. If debugging finds a problem in flows
or plug-ins, users can edit the service templates or plug-ins.

8.3 Debugging service
templates

Conducting
operation tests for
service templates

Users can create and execute services from the service templates
that were built, and find operational problems. If operational
tests find a problem, users can edit the service templates or plug-
ins.

8.5 Testing the operation of
service templates

1. Flow of Service Template Development

JP1/Automatic Operation Service Template Developer's Guide 47

This chapter describes how to set definition information necessary for creating and editing service
templates.

2 Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 48

2.1 Overview of development service templates and release service
templates

Service templates consist of development service templates and release service templates.

Development service template
A development service template is a service template a user is developing. Service templates created by copying a
release service template are also categorized as development service templates.
When you build a development service template, Debug is set as the configuration type and execution of the service
can be tested. Services created from a development service template are used in a development environment. Any
service template that is not yet built is also categorized as a development service template.
Development service templates are displayed in the following windows:

• Developing tab of the Service Builder Home window

• Select Service Template dialog box (which users in a Develop or higher role can display by clicking the Create
button in the Services window)

Release service template
A release service template is a service template that has been imported into the JP1/AO server by releasing a
development service template. Service templates provided by JP1/AO are also categorized as release service
templates. Release service templates are used for real-world applications in the active environment. Release is set
as the configuration type of release service templates.
Service templates that have been imported to the JP1/AO server and have the configuration type Release are handled
as release service templates.
Release service templates are displayed in the following windows:

• Service Template window

• Released tab of the Service Builder Home window

• Select Service Template dialog box (which can be displayed by clicking the Create button in the Services
window)

Note that you cannot edit a service template after its release. To edit such a template, copy the release template and
then edit the copy as a development service template.

Important
Once edited, the service templates and plug-ins provided by JP1/AO are outside the scope of JP1/AO product
support. However, product support is still offered for the plug-ins provided by JP1/AO (in the standard
package or the JP1/AO Content Set) that are called from such templates.

Related topics
• 5.4.2 Procedure for releasing a service template

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 49

2.2 Creating and changing the service template definition information

After you create a blank service template or copy an existing release service template, set the definition information for
the service template.

2.2.1 Service Builder Edit window General tab
On the General tab of the Service Builder Edit window, you can edit the definition information for a created or copied
service template.

Figure 2-1: Service Builder Edit window General tab

This tab displays the definition information for a service template. You can edit the information by clicking the Edit
button.

2.2.2 Procedure for creating blank service templates
The first thing you need to do when creating a new service template is set the service template ID, service template
version, vendor ID, and other definition information.

To create a blank service template:
1. On the Developing tab of the Service Builder Home window, click the Create button.

2. In the Create Service Template dialog box, set the definition information for the service template, and then click
the OK button.
Note that you cannot change the values in the Service Template Key Name, Service Template Version, and Vendor
ID fields after the service template has been created. Make sure you confirm the definition information before saving
it.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 50

Figure 2-2: Create Service Template dialog box

Tip
You can also create a blank service template, by clicking the Create Service Template button in the Service
Template window.

Operation result
A blank service template is created, and the Flow tab of the Service Builder Edit window is displayed.

Related topics
• 2.2.4 Items to set in service template definition information
• 1.2.3 Procedure for starting editing of service templates
• 2.2.3 Procedure for changing the service template definition information
• 3. Creating and Editing Flows for Service Templates

2.2.3 Procedure for changing the service template definition information
After creating or copying a service template, in the General tab of the Service Builder Edit window, you can change
the previously specified definition information of the service template.

To edit service template definition information
1. On the Developing tab of the Service Builder Home window, select the development service template you want

to edit, and then click the Edit button.

2. On the General tab of the Service Builder Edit window, click the Edit button.

3. In the Edit Service Template Attributes dialog box, set the definition information of the service template.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 51

Figure 2-3: Edit Service Template Attributes dialog box

4. Click the OK button.

Operation result
Definition information of the service template is set.

Important
If another user has performed an intervening action while you were editing the service template, the save
processing might fail.

Related topics
• 2.2.4 Items to set in service template definition information
• 1.2.3 Procedure for starting editing of service templates
• 1.2.4 Notes when an interrupt operation is performed in the Service Builder window

2.2.4 Items to set in service template definition information
In the Create Service Template, Copy Service Template, and Edit Service Template Attributes dialog boxes, you
can set the following items.

Table 2-1: Items to set in service template definition information

Item Description

Service Template Key Name#1 Specify the ID used to identify the service template.

Service Template Version#1 Specify the version number of the service template in aa.bb.cc format.

Vendor ID#1 Specify the ID used to identify the vendor who created the service template.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 52

Item Description

Vendor ID#1 Create a unique vendor ID by specifying the domain name in reverse order from the top level as
a period-separated value. For example, specify vendor IDs in the format com.xxxx or jp.co.yyyy.
If you choose not to use domain names as vendor IDs, make sure that the vendor ID you specify
is not being used for another vendor.
Note that you cannot specify a vendor ID that begins with com.hitachi.software.dna.

Service Template Name Specify the name of the service template.

Vendor Name#2 Specify the name of the vendor that created the service template.

Description Specify the description of the service template.

Tags Specify one or more tags to be defined for the service template.

#1
You cannot change Service Template Key Name, Service Template Version, and Vendor ID after the service
template is created or copied. The uniqueness of a service template is guaranteed by the combination of these three
items.

#2
If you omit specifying this item, the value specified for Vendor ID is set for Vendor Name.

In the Edit Service Template Attributes dialog box, you can also set the following items as advanced options.

Table 2-2: Items that can be set as advanced options

Item Description

Icon The icon set for the service template is displayed. Clicking the Back to the Default button
changes the icon set for the service template back to the default. Clicking the Change button
displays the dialog box where you can select the icon file to be uploaded and change the icon.
For the icon, set the file in png format (48 x 48 pixels).

Custom Files The custom files set for the service template are displayed. Clicking a file name enables you to
download the file. Clicking the Select button displays the dialog box for selecting a folder, where
you can set custom files. Clicking the Delete button cancels the specified custom files.

Service Details File Name If a file in zip format has been specified for a custom file, in the Service Detail(s) window,
specify the relative path to the settings file.

Service Overview File Name If a file in zip format has been specified for a custom file, specify the relative path to the image
file for service overview.

Available Scheduling Options Specify the options for the schedule types that can be specified when the service is executed.
Schedule types include Immediate, Scheduled, and Recurring. You can further narrow down the
options for the schedule types when creating or editing a service.

Available Actions Specify whether to permit Forcibly Stop and Retry actions for tasks that use the service template.
You can further narrow down the available actions when creating or editing a service.

Related topics
• 5.2.2 Uniqueness of service templates and plug-ins
• 6.2.4 Image files that can be set for component icons
• 2.2.5 Overview of custom files to be set to service templates

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 53

2.2.5 Overview of custom files to be set to service templates
A custom file defines the contents and format of a service displayed in the window. By setting custom files in the Edit
Service Template Attributes window, you can define the contents displayed in the Service Detail(s) window and the
image file for service overview. By setting custom files for individual locales of the Web browser, you can view the
service details in the language corresponding to the locale of the Web browser.

The image file for service overview is displayed in the following windows:

• Service Definition window

• Submit Service window

The following figures show examples of windows.

Figure 2-4: Example of the Service Detail(s) window

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 54

Figure 2-5: Example of the image file for service overview

Related topics
• 2.2.6 Procedure for setting custom files for service templates
• 2.2.7 Switching custom files for individual locales of the Web browser
• 2.2.8 Format of custom files

2.2.6 Procedure for setting custom files for service templates
You can set one or more files as the custom files for a service template so that, for example, you can set figures and
links, compress multiple files or folders in zip format, and then register the zip file.

Note that you can change custom files even after the setup.

To set custom files:
1. Store the multiple files you created under the any-folder\webroot folder.#

2. Compress the files under the webroot folder in zip format. Do not include the webroot folder itself in the zip folder.#

3. In the Edit Service Template Attributes dialog box, under Custom Files, click the Select button.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 55

Figure 2-6: Edit Service Template Attributes dialog box

4. Select the file you want to specify for the custom file.

5. In the Service Details File Name or Service Overview File Name text box, enter the relative path to the
corresponding file.#

Set the path that the zip file you specified has been expanded to as the current path, and then specify the relative
path. Use a slash (/) as the delimiter of the path.

#: This step is required for setting multiple custom files.

Tip
If the extension of a file is .zip, after the file is saved, built, or released, the file name is automatically
changed to webroot.zip.

Operation result
Custom files are set for the service template.

Related topics
• 2.2.5 Overview of custom files to be set to service templates
• 2.2.7 Switching custom files for individual locales of the Web browser

2.2.7 Switching custom files for individual locales of the Web browser
When creating custom files in zip format, store the files for each locale under the corresponding webroot\language-
code folder. Then the custom files corresponding to the locale of the Web browser are loaded, and the display is switched
according to the custom files.

Compress the files under the webroot folder in zip format. However, for the Service Details File Name or Service
Overview File Name text box, set the webroot\language-code folder as the current path, and specify the relative path.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 56

You can specify, as the language code, two-digit lowercase letters (ja, en, or zh) as defined in ISO-639.

If you also store custom files directly under the webroot folder, those files are loaded in the cases below. Thus, for
example, you can set it to load English custom files when there is no custom file that corresponds to the locale of the
Web browser.

• The language code folder corresponding to the locale of the Web browser does not exist.

• No file exists in the language code folder corresponding to the locale of the Web browser.

Important
• The file names directly under the webroot folder must be the same as the file names in the language

code folder.

• Even when you do not store files directly under the webroot folder, specify the same file names for the
files under individual language folders.

Related topics
• 2.2.6 Procedure for setting custom files for service templates
• 2.2.8 Format of custom files

2.2.8 Format of custom files
Create custom files as static content to be executed in a Web browser.

Specifiable extensions
The following are some of the extensions you can specify for custom files:

Custom files that define the contents displayed in the Service Detail(s) window

• .html

• .js

• .css

• .swf

• .jpeg

Custom files that define the image for service overview
.png
We recommend that you use an image file of 150 x 420 pixels (vertical x horizontal).

Note that JP1/AO product support does not extend to dynamic content such as .jsp and .war files that run on an application
server.

Characters specifiable in file names and paths
Use ASCII characters in the file names and paths of custom files. You cannot use the following characters:

• Multi-byte characters

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 57

• Control characters ('\u0000' to '\u001F' and '\u007F' to '\u009F')

• Question marks (?), asterisks (*), double quotation marks ("), right angle brackets (>), left angle brackets (<), vertical
bars (|), and colons (:)

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 58

2.3 Setting display information for service templates in resource files

You can assign resource files to service templates, and define different information to display on screen for different
Web browser locales. For example, you can have the service template name displayed in a language that is appropriate
for the locale of the Web browser.

2.3.1 Procedure for setting service resource files
By assigning a service resource file, you can define the information displayed in a service template. You can then set
display information for service templates, steps, and service properties. To edit a service resource file, you download
the file and overwrite the contents as needed.

Note that you cannot change the information displayed for a release service template unless you copy the release service
template and edit it as a development service template.

1. In the Service Builder Home window, click the Developing tab, select the service templates that you want to edit,
and then click the Edit button.

2. In the Service Builder Edit window, from the Actions pull-down menu, select Set Resources.

3. In the Service Resources Setting dialog box, click the link for the service resource file, and download the service
resource file.

Figure 2-7: Service Resources Setting dialog box

4. Edit the definitions in the service resource file you downloaded.
Do not change the file name from service_language-code.properties.txt. If you change the file name, an error will
occur when you attempt to upload the file.
For the language-code, you can specify two-digit lowercase letters (ja, en, or zh) as defined in ISO-639.

5. Click the Refresh button, select the service resource file you edited, and then upload the file.

6. In the confirmation dialog box, click the OK button.

Important
When you upload a service resource file, the existing file is overwritten with the contents of the new
file. Take care not to upload the wrong file.

Operation result
Display information of the service template is set, according to the contents of the resource file.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 59

Related topics
• 5.2.1 Procedure for copying service templates
• 2.3.2 Format of service resource file
• 2.3.3 Definitions in service resource files

2.3.2 Format of service resource file
A service resource file defines the items displayed in the operation windows of JP1/AO. The format of the file is described
below. Note that the definitions in the service resource file depend on the type of display items you are defining. For
details about how to define each type of display item, see 2.3.3 Definitions in service resource files.

• The file name of the service resource file is service_language-code.properties.txt.
As language-code, you can specify two-digit lowercase letters (ja, en, or zh) as defined in ISO-639.

• Define the file contents in the format property-key delimiting-character setting-value. As the delimiting character,
you can use an equals sign (=), a colon (:), tab characters (\t), or a single-byte space.

• Enter one property key and setting per line.

• Property keys can contain the following characters:

• Single-byte alphanumeric characters

• Single-byte hyphens (-)

• Single-byte underscores (_)

• Single-byte periods (.)

• Characters must be encoded in UTF-8

• If you define the same property key in the file more than once, the value of the last occurrence of the property key
applies.

• Lines that begin with a hash mark (#) are handled as comments.

• Property keys are case sensitive.

• To specify a character string that contains a back slash (\), specify two back slashes (\\) instead.

• Lines that consist only of single-byte spaces are ignored.

• On each line of the service resource file, the property key is the character string from the first character that is not
a single-byte space to the character immediately preceding the first delimiting character.

• The setting value is the string from the first non-delimiting character after the delimiting character following the
property key to the last character in the line.
For example, the following line in the service resource file represents the property key abc with the setting value c.
abc\t\tc
However, if the character immediately following the first delimiting character is = or :, the setting value is the
character string from the next character that is not a single-byte space or tab character (\t), to the end of the line.
For example, the following line in the service resource file represents the property key abc with the setting value =
\tc.
abc\t=\t=\tc

• You cannot use surrogate pair characters.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 60

2.3.3 Definitions in service resource files
The definitions in the service resource file depend on the type of display items you are setting. You can specify the
following definitions in the service resource file:

Setting items displayed in the Edit Service Template Attributes dialog box
Define entries in the following format to set the service template names, descriptions, and other information
displayed in the Edit Service Template Attributes dialog box.
property-key delimiting-character setting-value
For example, enter a definition in the format service.displayName=This is a test service..

When specifying display items for a step
Define entries to set the step name and description. The step name and description are displayed in the Flow area
of the Tasks window when you execute the service.

Setting a step name
To set a step name in a service template, enter a definition in the following format:
dnajob.step-ID.displayName delimiting-character setting-value
For example, enter a definition in the format dnajob.teststep.comment=This is a test step..

Setting a step description
To set a description of a step, enter a definition in the following format:
dnajob.step-ID.comment delimiting-character setting-value
For example, enter a definition in the format dnajob.teststep.comment=This is a test step..

When specifying display items for a step that is not on the highest hierarchical level of a flow
Specify the step IDs from the step at the highest hierarchical level to the target step, connecting them with slashes
(/).
For example, to specify a resource in Step F in the figure below, connect the step ID for Step B at the highest
hierarchical level to the step ID for Step F. To specify a resource in Step I, connect the step IDs of Step B, Step G,
and Step I.

Figure 2-8: Example of specifying resources in Step F and Step I

The following shows how to specify resources in Step F and Step I in a service resource file.

dnajob.StepB/StepF.displayName=Step F
dnajob.StepB/StepF.comment=Step F description
dnajob.StepB/StepG/StepI.displayName=Step I
dnajob.StepB/StepG/StepI.comment=Step I description

Related topics
• 2.3.4 Correspondence between information displayed in service templates and properties in service

resource files

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 61

2.3.4 Correspondence between information displayed in service
templates and properties in service resource files

The display information for service templates can be set in the window. The display information you set in the window
is also defined in the resource file for the service. The following table lists the correspondence between the information
displayed for a service template and the properties in the service resource file.

Table 2-3: Correspondence between information displayed for service templates and properties in
service resource files

Information displayed for service template Property in service resource file

Vendor name service.vendorDisplayName

Service template name service.displayName

Service template description service.shortDescription

Property group name When there is no related step in the property group
propertyGroup.property-group-ID.displayName

When there is a related step in the property group
propertyGroup.step-ID/property-group-ID.displayName#

Property group description When there is no related step in the property group
propertyGroup.property-group-ID.description

When there is a related step in the property group
propertyGroup.step-ID/property-group-ID.description#

Service property name When there is no related step in the property group
property.property-key.displayName

When there is a related step in the property group
property.step-ID/property-key.displayName#

Service property description When there is no related step in the property group
property.property-key.description

When there is a related step in the property group
property.step-ID/property-key.description#

Step property name property.step-ID/property-key.displayName#

Step property description property.step-ID/property-key.description#

Step name dnajob.step-ID.displayName#

Step description dnajob.step-ID.comment#

#
To set a resource for a step that is not at the highest hierarchical level of a flow, specify the step IDs from the step
at the highest hierarchical level to the target step, connecting them with forward slashes (/).

Information of the step property is displayed under the dotted line of the service resource file. After uploading a service
resource file, if you elevate a step property to a service property in the Flow tab of the Service Builder Edit window,
the information already set for the step property is applied to the information of the service property.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 62

2.3.5 Service resource files automatically generated when a service
template is created

When a service template is created, two service resource files are automatically generated: one is for the same language
as the Web browser locale, and the other is for English. However, if the locale of the Web browser is English, only the
one for English is generated.

The following table lists the values set in these automatically generated service resource files.

Table 2-4: Default values for display information set in service resource files (at service template
creation)

Defined display information Value set by default

Same language as Web browser
locale

Automatically generated English
language resource file#

Vendor name The value specified in the Service Builder
window

Vendor ID

Service template name Service template ID

Service template description Blank

#
For the contents of the service resource file generated when the Web browser locale is English, see the Same language
as the Web browser locale column.

Examples of service resource files automatically generated when creating a service template are shown below.

Values specified in the window for creating a service template

Vendor ID: test.vendor
Service template ID: test.service
Service template version: 10.00.00
Service template name: test.template
Vendor name: test.vendor
Description: This service template is for testing purposes.

Generated service resource file

service.vendorDisplayName=test.vendor
service.displayName=test.service
service.shortDescription=This service template is for testing purposes.

2.3.6 Service resource files updated when a service template is edited
When you edit and save a service template, JP1/AO updates the service resource file for the same language as the Web
browser locale.

However, in the following cases, corresponding changes are made to the other service resource files for the non-Web
browser locale language to ensure consistency:

• A definition of display information is added or deleted.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 63

• A property group ID, step ID, or property key is updated.

The table below shows the values added to the service resource file for locales other than the Web browser locale when
you add a definition of a display item. When you update the definition of a display item and update a property group
ID, property key, or step ID, the values in the file are automatically overwritten with the values in the table. If you want
to reference the existing value, create a backup of the service resource file for locales other than the Web browser locale.

Important
When the step ID of a layering step or repeated step is updated, the names and descriptions of subordinate
steps are automatically overwritten with the values in the table below. Note that the overwritten values are
those defined in the service resource file for locales other than the Web browser locale.

Table 2-5: Display item values set in service resource files

Defined display information Assigned value

Property group name#1 Property group ID

Property group description#1 Blank

Service property name#2 Property key

Service property description#2 Blank

Step name#3 Step ID

Step description#3 Blank

#1
The value of this display item is overwritten when the property group ID is updated.

#2
The value of this display item is overwritten when the property key is updated.

#3
The value of this display item is overwritten when the step ID is updated.

When you delete the definition of a display item, the definition is also deleted from the service resource file for languages
other than that of the Web browser locale.

To set display information for a language other than that of the Web browser locale, you need to manually create or edit
a service resource file and then upload the file. When manually creating a service resource file, we recommend that you
download and use a service resource file for a locale in which display information is already defined.

2.3.7 Displaying a service template in a Web browser that is set to a locale
for which no service resource file is available

When you display a service template in a Web browser that is set to a locale for which no service resource file is available,
the system uses the service resource file for English language locales to display the template.

2. Setting Service Template Definition Information

JP1/Automatic Operation Service Template Developer's Guide 64

This chapter describes how to create and edit flows for service templates. By creating and editing
flows, you can change the order in which the steps are performed, or add steps to an existing
procedure.

3 Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 65

3.1  Service Builder Edit window Flow tab

The Flow tab of the Service Builder Edit window is used to create and edit flows for service templates. If you perform
a create or edit operation in the Service Builder Home window, the Flow tab of the Service Builder Edit window is
displayed.

Figure 3-1: Service Builder Edit window Flow tab

The following describes the displayed items:

Component area
Displays the components that can be deployed as steps in a flow. If you click the Release tab, Develops tab, or
Services tab, the type of the components to be displayed is switched. When you select a component, detailed
information about the component is displayed, and buttons appear that you can use to perform operations on the
component. You can search for a component by using the search window on the top or by selecting a tag.

Release tab
Clicking this tab displays release plug-ins.

Develops tab
Clicking this button displays development plug-ins.

Services tab
Clicking this button displays service components. If you select a service component and then click the Service
Details button, you can view a detailed description of the release service template on which the service
component is based.

Flow area
This area defines the order in which the steps are executed.

Flow Tree area
In this area, you can select the hierarchy of the flow to be displayed in the Flow area. The flow names defined in
the service template are displayed hierarchically. If you click a flow name, the subordinate flows are displayed in
the Flow area.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 66

Step Properties area
In this area, you can set the values for step properties and their visibility. The definition information, a list of
properties, and a list of subsequent steps are displayed for the selected step.

General tab
Edit the definition information of a step.
You can edit the definition information for a step in the Edit Step dialog box that appears when you click the
Edit button. For details, see 2.2.1 Service Builder Edit window General tab.

Property tab
A list of properties of the plug-ins used as steps is displayed. For details, see 4.1 Property tab of the Service
Builder Edit window.

Next Steps tab
This tab displays a list of subsequent steps for the selected step and a conditional expression that uses arrows to
connect the selected step and the subsequent steps. For details, see 3.4.5 Conditional expressions that use arrows
to indicate a connection with subsequent steps.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 67

3.2 Relationship between flow and steps

Plug-ins and service templates that can be deployed in a flow are called components. Components are displayed in the
Component area on the Flow tab of the Service Builder Edit window. The user adds each unit of processing to a flow
by dragging components to the Flow area. Each component dropped into the Flow area is called a step. A flow is created
by placing the steps required to execute a task and connecting them with relational lines. The following figure shows
the relationship between a flow and steps.

Figure 3-2: Relationship between flow and steps

You can also use flow plug-ins and repeated-execution plug-ins to define a flow within another flow.

Related topics
• 3.3 Creating flow hierarchies

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 68

3.3 Creating flow hierarchies

A flow hierarchy is created when you define a flow within another flow. You can define a maximum of 25 hierarchical
levels, with the top-level flow being level 1. If you deploy service components as steps, the hierarchical levels in the
service components must also be counted for the total number of hierarchical levels. To check the number of hierarchical
levels contained in a service component, see the release service template that the service component is based on.

You can create a flow hierarchy by deploying flow plug-ins, and repeat a unit of processing that consists of several steps
by deploying repeated execution plug-ins.

Figure 3-3: Creating flow hierarchies

Table 3-1: Component roles and their relationship to steps

Dragged & dropped
component

Type of step Role

Flow plug-in Hierarchical step The system creates a flow hierarchy.

Repeated execution plug-in Repeated step The system repeats execution of the specified flow.
To create a hierarchy under a repeated step, use a flow plug-in or a repeated
step. Note that the maximum number of nested levels that can be specified
for a repeated execution plug-in is three.

Service component Service step The system places a release service template as a component in a flow,
and executes the processing.

Other components Normal step The system executes the component.

Tip
In the Flow Tree area on the right side of the Flow tab of the Service Builder Edit window, you can check
the list of defined flows in tree format. In the Flow Tree area, the top-level flow is displayed with its service

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 69

template name. Each subordinate hierarchy level is displayed with the name of the step that executes the
flow plug-in, or repeated execution plug-in.

Related topics
• Task log details in the JP1/Automatic Operation Administration Guide
• 5.1 Viewing service templates

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 70

3.4 Adding and editing steps

You can add steps to a flow, or edit existing steps.

You can view the workflow for adding a step by clicking the Tour icon (). This workflow is shown automatically
the first time you open the Flow tab of the Service Builder Edit window.

3.4.1 Procedure for adding steps
You can add processing to a flow by adding steps. A step is a component that the user has placed in a flow.

The limits below apply to the number of steps you can add. Do not exceed the maximum number of steps including the
number of steps in service components. To check the number of steps in a service component, see the release service
template that the service component is based on.

• Maximum number of steps in one service template: 320

• Maximum number of steps at a given hierarchical level: 80

Tip
A mini map is displayed when there are too many steps to fit on the screen. For example, a mini map might
appear when you are adding a large number of steps, or a large number of steps were added to a given
hierarchical level. You can use this mini map to see which part of the overall flow is displayed.

To add a step:
1. In the Component area on the Flow tab of the Service Builder Edit window, select the component you want to

add as a step.

2. Drag the component you selected to the Flow area.

3. In the Create Step dialog box, enter the definition information for the step, and then click the OK button.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 71

Figure 3-4: Create Step dialog box

Operation result
The step is added to the Flow area.

Tip
You can add the following plug-ins to the Flow area by selecting Add step from the right-click menu in
the Flow area.

• Branch by property value plug-in

• Branch by returncode plug-in

• Abnormal-end plug-in

• Repeated execution plug-in

• Flow plug-in

Related topics
• 1.2.3 Procedure for starting editing of service templates
• 3.4.3 Settings in step definition information
• 5.1 Viewing service templates

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 72

3.4.2 Procedure for editing steps
Editing a step is an operation of changing the definition information that was set in the Create Step dialog box when
the step was created. You can change the definition information for a step in the Edit Step dialog box.

To edit a step:
1. In the Flow area on the Flow tab of the Service Builder Edit window, right-click the step whose definition

information you want to change, and select Edit. Alternatively, click the Edit button in the Step Properties area of
the General tab.

2. In the Edit Step dialog box, change the definition information for the step, and then click the OK button.

Figure 3-5: Edit Step dialog box

Operation result
The edited information for the step is set.

Tip
You can also change the definition information for a step by clicking the step in the Flow area, and then
clicking the wrench icon above the step.

Related topics
• 3.4.3 Settings in step definition information

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 73

3.4.3 Settings in step definition information
The definition information that can be set by users for a step are the step ID, step name, description, and subsequent-
step execution condition. Set these items in the Create Step dialog box or Edit Step dialog box.

Table 3-2: Items displayed in the Create Step dialog box or Edit Step dialog box

Item Description

Step Step ID A value that uniquely identifies the step. For the step ID, specify a value that is unique within
the flow (not including the hierarchy flow). By default, this field displays the component ID.
If there is more than one step with the same step ID in a given flow, _n is appended to the end of
the step ID (where n is a unique integer starting from 2), which is displayed in the format step-
ID_n. Note that if step-ID_n is longer than 30 characters, the excess characters are truncated at
the end of the step ID, and the shortened step ID is displayed with the _n suffix.

Step Name The value you specify in this field appears with the icon for the step in the Flow area. More than
one step can have the same name within a given flow.
If there is more than one step with the same name, _n is appended to the end of the step name
(where n is a unique integer starting from 2), which is displayed in the format step-name_n. Note
that if step-name_n is longer than 64 characters, the excess characters are truncated at the end of
the step name, and the shortened step name is displayed with the _n suffix.

Description The description you specify in this field is displayed in the Flow area. This field is blank by
default.

Component Displays information about the component.

Next Step Conditions Set whether to execute the subsequent step according to the return value of the plug-in executed
by the current step.

Related topics
• 3.4.4 Overview of subsequent step conditions

3.4.4 Overview of subsequent step conditions
You can set whether to execute a subsequent step based on the return value of the previous step.

In most situations, the return value of the step is the same as the return value of the plug-in. For details about the
relationship between the return values of steps and plug-ins, see 6.4.10 Relationship of command and script return
values to the return values of plug-ins and steps.

For steps that use service components, the return values are as follows:

• 0: The steps in the service component ended normally.

• 1: A step in the service component ended with a warning. No steps ended abnormally.

• 2: A step in the service component ended abnormally.

Types of subsequent step conditions:

Determine the return value based on the threshold
The following figures give examples of setting judgment values and warning values.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 74

Figure 3-6: When judgment value is 0 and no warning value is set (default)

• If the return value is equal to or less than the judgment value, the subsequent step is executed (normal
termination).

• If the return value is greater than the judgment value, the subsequent step is not executed (abnormal termination).

Figure 3-7: When judgment value is 6 and warning value is 2

• If the return value is equal to or less than the judgment value, the subsequent step is executed (normal
termination). However, if the return value is equal to or greater than the warning value and equal to or less than
the judgment value, the subsequent step is executed and the task terminates with a warning. In this case, the task
status appears as Failed (after the task has finished) or In Progress (with Error) (while the task is still running)
to indicate that the warning value was exceeded. In the Flow area, the step is recorded as having terminated with
a warning. When you specify a warning value, specify a value that is equal to or less than the judgment value.
You do not need to specify a warning value.

• If the return value is larger than the judgment value, the subsequent step is not executed (abnormal termination).

Always succeed regardless of return value
Subsequent steps are always executed, regardless of the return value of the plug-in.

Always fail regardless of return value
The step ends abnormally regardless of the return value of the plug-in. Subsequent steps are not executed.

Plug-ins for which subsequent step conditions cannot be set
You cannot specify subsequent step conditions for the plug-ins following flows:

• Branch by returncode plug-in

• Test value plug-in

• Interval plug-in

• Abnormal-end plug-in

• Branch by property value plug-in

3.4.5 Conditional expressions that use arrows to indicate a connection
with subsequent steps

In the Next Steps tab, specify a conditional expression that uses arrows to connect the selected step, which was selected
in the Flow area of the Flow tab in the Service Builder Edit window, and the subsequent steps.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 75

Table 3-3: Items displayed in the Next Steps tab

Item Description

Step Name The name of a subsequent step is displayed.

Condition Name The value specified here will be displayed for an icon of a step in the Flow area or in the list
of the subsequent steps as the name of a conditional expression using arrows. By default, the
name of the subsequent step is displayed.

Condition Type Select the type of a conditional expression using arrows from the pull-down menu.
• ALWAYS
• IF
• OTHER

By default, ALWAYS is displayed. When selecting OTHER, you must specify, in the Next Steps
tab, a step for which IF is selected as Condition Type (the type of a conditional expression
using arrows).

Condition The value specified here will be displayed for an icon of a step in the Flow area or in the list
of the subsequent steps as a conditional expression using arrows. You can specify this item
only when IF is selected as Condition Type (the type of a conditional expression using
arrows).

Description The value specified here will be displayed for in the list of the subsequent steps as the
description of a conditional expression using arrows. You can specify this item only when IF
is selected as Condition Type (the type of a conditional expression using arrows).

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 76

3.5 Defining the execution order of steps

In the Flow area of the Flow tab in the Service Builder Edit window, you can define the execution order of steps by
connecting them using relational lines.

3.5.1 Procedure for defining the execution order of steps
After adding steps, the user connects the steps by using relational lines so that the steps will be arranged in the order
they are executed in a task. By connecting steps by using relational lines, the execution order of the steps can be defined.

To define the execution order of steps:
1. To enable the Auto Complete function for property values, right-click the canvas in the Flow area on the Flow tab

of the Service Builder Edit window, and select Auto-completion of property values. If there is a tick beside Auto-
completion of property values in the right-click menu, the Auto Complete function for property values is already
enabled.

2. In the Flow area, drag the white circle of the icon for the step that will be executed first, to the icon for the step that
will be executed next. When the color of the icon changes, release the mouse button.

Figure 3-8: Service Builder Edit window Flow tab

Operation result
Steps are connected by relational lines.

Related topics
• 3.5.2 Auto-completion of property values
• 3.5.3 Operations that can be performed on steps and relational lines
• 3.5.5 Behavior when relational lines connect to multiple steps
• 3.5.6 Scenarios where relational lines cannot be drawn

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 77

• 3.5.7 Drawing relational lines when processing branches

3.5.2 Auto-completion of property values
Auto-completion of property values is a function of automatically setting mapping of property values when defining
the execution order of steps in the Flow area. If you enable auto-completion of property values, property mapping of
the connection-source step and connection-destination step is automatically set when steps are connected by a relational
line. If property mapping has already been set before auto-completion is performed, the old setting is overwritten with
the new setting.

In the Step Properties area, is displayed for the properties for which auto-completion was performed. remains
displayed until another step is selected. If is displayed for a property, check whether the desired setting has been
specified for the step for which auto-completion was performed. If the setting for the step is not what you designed, set
the mapping again.

The following describes the method and behavior when setting mapping:

Setting mapping for the input property and the output property of steps
If the output property of the connection-source step and the input property of the connection-destination step of a
relational line have the same property key, the reference to the output property is set for the input property.

Setting mapping for the input properties of steps
If the input properties of the connection-source step and the connection-destination step of a relational line have the
same property key and data type, the input property value of the connection-source step is set for the input property
value of the connection-destination step.
Note that, even if you change the input property value of the connection-source step after auto-completion is
performed, the input property value of the connection-destination step will not be changed.

Tip
Auto-completion is not performed in the following cases:

• The connection-source step and connection-destination step of a relational line are using service
components, and mapping has already been set between the internal step properties.

If auto-completion of property values is not performed in other than the above cases, the connection-source
step or connection-destination step might be deployed by using any version earlier than JP1/AO 10-02. In
that case, deploy the steps again by using the same components. Then these steps will be subject to auto-
completion.

Related topics
• 3.6.1 Overview of step properties
• 3.6.3 Procedure for mapping step property values
• 3.6.4 Overview of property mapping
• 3.6.5 Whether properties can be mapped depending on the visibility or data type
• 4.2.1 Overview of service property

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 78

3.5.3 Operations that can be performed on steps and relational lines
You can delete, copy, cut, or paste steps and relational lines by right-clicking and selecting the corresponding menu
item.

You can select multiple steps and relational lines. In the Flow area, drag your mouse and select a range of steps you
want to select, or click the steps you want to select while pressing the Ctrl key.

The steps and relational lines in the selected range are included in any cut operation. If the selected range contains a
hierarchical flow, all subordinate flows are included in any cut operation. Only the data cut by the latest cut operation
is cached.

The relational lines that were connected with the steps outside the selected range will be deleted from the Flow area
immediately after a cut or delete operation.

Related topics
• 3.5.4 Information inherited when pasting steps or relational lines

3.5.4 Information inherited when pasting steps or relational lines
When you paste a step or relational line you have copied or cut, some information associated with the item is inherited
at the destination. After pasting a step or relational line, review the definition information for the destination development
service template as needed.

The following table shows the information related to steps or relational lines that is inherited when you paste the item.

Table 3-4: Information inherited when pasting steps or relational lines

Copied or
cut item

Information for
copied or cut
item

Information at paste destination

Step Step ID A step ID must be unique within the flow (not including subordinate hierarchy flows).
If there is no step with the same step ID at the paste destination, the information of the copy or cut
source is inherited as-is.
If there is a step with the same step ID, the step ID of the pasted step changes to step-ID_n, where n is
a unique integer of 2 or higher. If step-ID_n is longer than 30 characters, the excess characters are
truncated from the end of the step ID.

Step name If there is no step with the same name at the paste destination, the information of the copy or cut source
is inherited as-is.
If there is a step with the same name, the step name of the pasted step is changed to step-name_n, where
n is a unique integer of 2 or higher. If step-name_n is longer than 64 characters, the excess characters
are truncated from the end of the step ID.

Description The information from the copy or cut source is pasted to the destination as-is.

References to
plug-in
information

Subsequent-step
execution
conditions

Input property
settings

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 79

Copied or
cut item

Information for
copied or cut
item

Information at paste destination

Step Output property
settings

The information from the copy or cut source is pasted to the destination as-is.

Related service
properties

If a step uses a development plug-in or release plug-in, the step is added to the property group for the
default property. If a step uses a service component, information about the property group is also
inherited.

Relational lines Direction The system copies information about the direction of relational lines. However, lines that connect to
steps outside the selected range are not copied.

3.5.5 Behavior when relational lines connect to multiple steps
A flow can contain relational lines that connect one step to several, and several steps to one. When lines are drawn in
these ways, the next step is executed only after every connected step has finished executing.

Figure 3-9: Example of connecting multiple steps

3.5.6 Scenarios where relational lines cannot be drawn
You cannot connect relational lines in certain configurations. For example, you cannot draw a relational line that would
result in a recurring loop within a flow, or whose source and destination are the same step.

Table 3-5: Restrictions on relational lines

Restricted relational
line connection

Details Example

Relational lines that form a
loop

You cannot use relational lines in a way that creates a
loop within a flow.

Relational lines that connect
a step to itself

You cannot draw a relational line if the source and
destination steps of the line are the same.

Identical relational lines You cannot create parallel relational lines with the
same source and destination step.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 80

Restricted relational
line connection

Details Example

Multiple inputs to a branch
by returncode plug-in

Because a branch by returncode plug-in judges the
return value of the preceding step, you cannot draw
relational lines to such a plug-in from multiple steps.
Only one step can serve as the preceding step of a
branch by returncode plug-in.

Connecting a branch by
returncode plug-in or branch
by property value plug-in to
a branch by returncode plug-
in or branch by property
value plug-in

You cannot draw a relational line that connects a
branch by returncode plug-in or branch by property
value plug-in to a branch by returncode plug-in or
branch by property value plug-in. However, you can
connect such a plug-in as a succeeding step.

Relational lines from a
branch destination step of a
branch by returncode plug-in
or branch by property value
plug-in

A branch by returncode plug-in or branch by property
value plug-in can only have one branch destination
step, which cannot be connected further by a
relational line. If you need to use several steps, draw
a connection line to a flow plug-in.

Relational lines to a branch
destination step of a branch
by returncode plug-in or
branch by property value
plug-in

You cannot draw a relational line to the branch
destination step of a branch by returncode plug-in or
branch by property value plug-in.

Legend: : branch by returncode plug-in or branch by property value plug-in : Other plug-in

: Other plug-in
• 3.5.7 Drawing relational lines when processing branches

• branch by returncode plug-in in the JP1/Automatic Operation Service Template Reference

3.5.7 Drawing relational lines when processing branches
If you want to execute a particular step only when judgment conditions are met, you can use a branch by returncode
plug-in or branch by property value plug-in. When using such a plug-in, connect the branch-destination component to
the plug-in by dragging the branch-destination component to the dotted line under the plug-in.

When the conditions are met, the branch destination step is executed first, followed by the succeeding step. If the
conditions are not met, the succeeding step is executed without first executing the branch destination step.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 81

Figure 3-10:  Example of relational lines connecting a branch by returncode plug-in

• The connection with the succeeding step is represented by a single-headed arrow.

• The relational line that connects a step executed only when the judgment conditions are met is represented by a
double-headed arrow. There cannot be more than one step executed when judgment conditions are met.

• If the judgment conditions are met, the steps are executed in the following order: sample1, branch by returncode
plug-in, sample2, and then sample3.

• If the conditions are not met, the steps are executed in the following order: sample1, branch by returncode plug-in,
and then sample3.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 82

3.6 Setting step properties

You can set step properties by directly specifying the values or by mapping other property values.

3.6.1 Overview of step properties
A step property is a property defined for a step. Plug-in properties contained in the components used as steps are displayed
as step properties in the Step Properties area on the Flow tab of the Service Builder Edit window.

You can set step properties in the following ways:

• Directly specify the value of an input property.

• Inherit the value by mapping the properties of the previous and succeeding steps.

• Elevate a property to a service property to enable the input property value to be specified when the service is set
and executed.

• Elevate a property to a service property to enable you to check the output property value in the Task Details window.

Related topics
• 3.6.2 Procedure for directly specifying the input property values of steps
• 3.6.3 Procedure for mapping step property values
• 3.6.6 Procedure for elevating step properties to service properties
• 3.6.7 Example of defining step properties

3.6.2 Procedure for directly specifying the input property values of steps
You can directly specify a fixed value in a service template for an input property of a step.

To directly specify the input property value of a step:
1. Select a step in the Flow area on the Flow tab of the Service Builder Edit window.

2. On the Properties tab of the Step Properties area, click the icon for the input property.

3. Select the row corresponding to the property whose value you want to specify directly, and then click the pencil
icon.

4. In the Specify Component Input Property Mapping Parameters dialog box, select Direct Input for Setting
Method.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 83

Figure 3-11: Specify Component Input Property Mapping Parameters dialog box (when
Direct Input is selected for Setting Method)

5. In the Value text box, enter the value for the step property.

Tip
If you want to specify a combination of another property value and any character string, click the Insert
Property button. In the Select Reference Property dialog box, select a property, and then click the
OK button. Then, the property key for the selected property is inserted in the Value text box.

6. Click the OK button.

Operation result
The step property value is set.

Tip
You can also specify a step property value in the text box in the Value column of the Step Properties area.
At this time, you can select a value from the pull-down menu if the presentation format of the step property
is Selection, or from the calendar if the data type is date.

Related topics
• 3.6.7 Example of defining step properties

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 84

3.6.3 Procedure for mapping step property values
If you map properties, the property value can be inherited between the properties. For example, if you map the output
property of Step A to the input property of Step B, the value of the output property of Step A can be inherited by the
input property of Step B.

To set mapping of step properties:
1. Select a step in the Flow area on the Flow tab of the Service Builder Edit window.

2. In the Step Properties area, click the Property tab and then click the icon for the input or output property.

3. Select the row corresponding to the property you want to map, and then click the pencil icon.

Figure 3-12: Step Properties area

4. In the Specify Component Input Property Mapping Parameters dialog box or Specify Component Output
Property Mapping Parameters dialog box, select the View Property radio button.
Only properties that can be mapped are shown in the Properties area.

Figure 3-13: Specify Component Input Property Mapping Parameters dialog box (when
View Property is selected for Setting Method)

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 85

Tip

• If you click the Available icon (), filtering switches off and the properties that cannot be mapped
are also displayed. If you point to an error icon, the reason why the property cannot be mapped is
displayed.

• Entering information into the Specify Component Input Property Mapping Parameters dialog
box

• To display service properties or variables
Select a service template name in the Step Tree area. You can display the service properties that
belong to a property group by clicking the icon to the left of the property group name. Variables
are displayed in the default property group.

• To display reserved properties
In the Step Tree area, select a reserved property.

• To display step properties
In the Step Tree area, select a step name. The properties for the step are displayed in the
Properties area. By default, the steps before the selected step are displayed in the Step Tree
area. If you select the Show All Steps check box, all steps in the flow are displayed in the Step
Tree area.

5. In the Properties area, select the property you want to map.

6. Click the OK button.

Operation result
Properties are mapped.

Tip
• You can create a new service property and map it to a step property. The service properties you created

are displayed in the Specify Component Input Property Mapping Parameters dialog box or Specify
Component Output Property Mapping Parameters dialog box, and can be mapped in the same way
as step properties.

• If the visibility or data type is different between the mapping-source property and the mapping-
destination property, an error might occur while the service template is built. For details about whether
properties can be mapped depending on the visibility or data type, see 3.6.5 Whether properties can be
mapped depending on the visibility or data type.

• By default, the Error message service property is provided for output properties. Error message is a
service property used to output the Error Message to the Message area of the Task Details window. If
you map Error message to the output property of a step, you can output the output property value as the
Error Message in the Message area of the Task Details window.
Note that you can edit or delete Error Message. If you delete Error Message and then add a service
property with the same property key, the output property value is displayed in the Task Details window.

Related topics
• 3.6.4 Overview of property mapping
• 3.6.7 Example of defining step properties

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 86

3.6.4 Overview of property mapping
Property mapping is the setting that inherits a value from one step property or service property to another step property
or service property. This enables you to dynamically set property values.

Setting mapping for an input property
When you edit an input property and set mapping, the value of the property being mapped is inherited by the input
property being edited.

You can map the following properties to the input property:

• Step properties

• Input property for the service

• Reserved property other than reserved.loop.output, reserved.terminal.account,
reserved.terminal.password, and reserved.terminal.suPassword

• Variables

The following figure shows an example of data flow when mapping is set for the input property.

Figure 3-14: Data flow when mapping is set for the input property

In this figure, Property A is mapped to the input property. Therefore, the value specified or output to Property A is
inherited by the value for the input property.

Setting mapping for an output property
When you edit an output property and set mapping, the value of the output property being edited is inherited by the
property being mapped.

You can map the following properties to an output property:

• Output property for the service

• Reserved property reserved.loop.output

• Variables

The following figure shows an example of data flow when mapping is set for the output property.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 87

Figure 3-15: Data flow when mapping is set for the output property

In this figure, Property A is mapped to the output property. Therefore, the value output to the output property is inherited
by the value for Property A.

Important
If you map the output property for which mapping is being set to an input property, an error occurs while
the service template is built. For example, if the value of the output property of a step is set to be inherited
by the output property of a service, the value cannot be inherited by the input property of the next step.

Related topics
• 3.6.3 Procedure for mapping step property values
• 3.6.5 Whether properties can be mapped depending on the visibility or data type

3.6.5 Whether properties can be mapped depending on the visibility or
data type

We recommend that you use the same visibility and data type for both the property from which a value is inherited and
the property that inherits the value when the properties are mapped. If the visibility or data type for the properties are
different, an error might occur while the service template is built, depending on the combination of the visibility settings
or data type settings. If an error occurs, in the Property tab of the Service Builder Edit window, check and (if necessary)
change the visibility or data type for the service properties.

Whether properties can be mapped depending on the visibility
For the property that inherits the property value, specify the same level or a lower level of visibility than the property
whose value is inherited. The lower level of visibility means that the range open to the public (the windows that display
properties) is limited. If the property that inherits the value has a wider range open to the public than the property whose
value is inherited, an error occurs when the service template is built.

The following table describes whether properties can be mapped depending on the combination of visibility settings.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 88

Table 3-6: Whether properties can be mapped depending on the combination of the visibility settings
when input properties are edited

Visibility for the property whose value is inherited Visibility for the property that inherits the value (input
property)

Input property of the service (with a
related step)

Input property of
the step#

Edit and Submit
Window

Edit Window Only

Input property of the service (with no
related steps)

Edit and Submit Window Y Y Y

Edit Window Only N Y Y

Input property of the service (with a
related step)

Edit and Submit Window Y Y Y

Edit Window Only N Y Y

Variable# N N Y

Input property of the step# N N Y

Output property of the step# N N Y

Legend:
Y: The properties can be normally mapped. N: The properties can be mapped, but an error occurs when the service
template is built.

#
Step properties and variables are internal properties that can be viewed or set when users in a Develop or higher role
develop service templates. Therefore, the visibility is at a lower level than a service property.

Table 3-7: Whether properties can be mapped depending on the combination of the visibility settings
when output properties are edited

Visibility for the property whose value is
inherited (output property)

Visibility for the property that inherits the value

Output property of the
service (with no related
steps)

Output property of the
service (with a related step)

Variable#

Output property of the service (with a related step) Y N N

Output property of the step# Y N Y

Legend:
Y: The properties can be normally mapped. N: The properties can be mapped, but an error occurs when the service
template is built.

#
Step properties and variables are internal properties that can be viewed or set when users in a Develop or higher role
develop service templates. Therefore, the visibility is at a lower level than a service property.

Whether properties can be mapped depending on the data type
For the property that inherits the property value, specify a data type that can handle the data type of the property whose
value is inherited. Note that step properties and the reserved.loop.output reserved property have no data type. However,
if the component that the step is based on is a basic plug-in, data type is set for some of the step properties. If such a

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 89

step property is elevated to a service property, you can check the data type in the Edit Input Property for Service
dialog box.

The following table describes whether the properties can be mapped depending on the combination of the data type
settings.

Table 3-8: Whether properties can be mapped depending on the combination of the data types
when input properties are edited (values passed from input properties)

Data type
for the
input
property
whose
value is
inherited

Data type for the property (input property) that inherits the value

boolean integer string double date password composite No data
type

boolean Y N Y N N N Y Y

integer N Y Y N N N Y Y

string N N Y N N N Y Y

double N N Y Y N N Y Y

date N N Y N Y N Y Y

password N N N N N Y N Y

composite N N N N N N Y Y

No data type N N Y N N N Y Y

Legend:
Y: The properties can be normally mapped. N: The properties can be mapped, but an error occurs when the service
template is built.

Table 3-9: Whether properties can be mapped depending on the combination of the data types
when input properties are edited (values passed from output properties)

Data type
for the
output
property
whose
value is
inherited

Data type for the property (input property) that inherits the value

boolean integer string double date password composite No data
type

boolean Y N N N N N Y Y

integer N Y N N N N Y Y

string Y Y Y Y Y N Y Y

double N N N Y N N Y Y

date N N N N Y N Y Y

password N N N N N Y N Y

composite N N N N N N Y Y

No data type N N N N N N N Y

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 90

Legend:
Y: The properties can be normally mapped. N: The properties can be mapped, but an error occurs when the service
template is built.

Table 3-10:  Whether properties can be mapped depending on the combination of the data types
when output properties are edited

Data type
for the
property
(output
property)
whose
value is
inherited

Data type for the property that inherits the value

boolean integer string double date password composite No data
type

boolean Y N Y N N N Y N

integer N Y Y N N N Y N

string Y Y Y Y Y N Y Y

double N N Y Y N N Y N

date N N Y N Y N Y N

password N N N N N Y N N

composite N N N N N N Y N

No data type Y Y Y Y Y Y Y Y

Legend:
Y: The properties can be normally mapped. N: The properties can be mapped, but an error occurs when the service
template is built.

Tip
When properties are mapped, the restrictions on input characters and maximum length that are set for the
property whose value is inherited are ignored, and the restrictions on the property that inherits the value are
applied. Therefore, set restrictions on the property that inherits the value by considering the property value
that is inherited.

Related topics
• 3.6.4 Overview of property mapping
• 3.6.3 Procedure for mapping step property values
• 3.6.6 Procedure for elevating step properties to service properties
• 4.2.1 Overview of service property
• 4.2.4 Items set for input properties of services
• 4.2.5 Items set for output properties of services

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 91

3.6.6 Procedure for elevating step properties to service properties
If you elevate a step property to a service property, the service property is displayed in the Property tab of the Service
Builder Edit window, and you will be able to edit the service property. For details about service properties, see 4.2.1 
Overview of service property.

If you elevate the input property of a step to a service property, the service property is displayed in the Service Definition
window and Submit Service window, and you will be able to enter a value when creating or submitting a service.

If you elevate the output property of a step to a service property, after the service is submitted, you will be able to check
the value of the output property in the Output area of the Task Details window.

To elevate a step property to a service property:
1. In the Flow area of the Flow tab of the Service Builder Edit window, select a step.

2. In the Step Properties area, click the icon for input or output properties, and select the check box in the GUI
Visibility column for the step property you want to elevate to a service property.

Figure 3-16: Step Properties area

Tip
If you select a step that uses a service component, you cannot change the selection of the check box in
the GUI Visibility.

For a step that uses one of the following components, the check box is not displayed in the GUI Visibility
because the property of such a step cannot be elevated to a service property.

• Flow plug-in

• Interval plug-in

• Branch by returncode plug-in

• Abnormal-end plug-in

Operation result
A step property is elevated to a service property, and displayed in the Properties tab of the Service Builder Edit window.

Related topics
• 3.6.7 Example of defining step properties

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 92

3.6.7 Example of defining step properties
This subsection describes an example of defining step properties when creating a service template.

Assume a service template that executes Step A and Step B in this order. Step B is executed for the folder in which the
output result of Step A is stored. Values of some properties are not fixed in the service template, but are specified each
time a service is executed.

Definitions
The following table describes the definitions of the step properties.

Table 3-11: Definitions of Step A

Property type Property name Definition

Input property Capacity The value is fixed at 10. You do not need to change this value.

Execution server Specify the value when a service is executed.

Output property Path to the folder storing the output result You do not need to check the output result in the Task Details window.

Table 3-12: Definitions of Step B

Property type Property name Definition

Input property Path to the execution folder Specify the folder to store the output result of Step A.

Output property Output result of Step B Check the output result in the Task Details window.

Settings
• Because the value of the Capacity property is fixed at 10, in the Step Properties area on the Flow tab of the Service

Builder Edit window, directly enter 10 in the text box in the Value column.

• To specify the value of the Execution server property when a service is executed, in the Step Properties area on the
Flow tab of the Service Builder Edit window, select the check box in the GUI Visibility to elevate the property to
a service property. Then, specify the visibility of the elevated property in the Edit and Submit Window.

• To execute Step B for the folder storing the output result of Step A, select the "Path to the execution folder" property
of Step B, and in the Specify Component Input Property Mapping Parameters dialog box, specify the "Path to
the folder storing the output result" property of Step A.

• After the service is executed, to check the "Output result of Step B" property in the Task Details window, in the
Step Properties area on the Flow tab of the Service Builder Edit window, select the check box in the GUI Visibility
to elevate the property to a service property.

Data flow
The following figure shows the data flow of individual properties.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 93

Figure 3-17: Data flow

1. The value specified by the user who submits the service in the Submit Service window is stored as the value of the
"Execution server" property of Step A.

2. The value output to the "Path to the folder storing the output result" property of Step A is stored as the value of the
"Path to the execution folder" property of Step B.

3. The "Output result of Step B" property of Step B is displayed in the Task Details window.

Related topics
• 3.6.2 Procedure for directly specifying the input property values of steps
• 3.6.3 Procedure for mapping step property values
• 3.6.6 Procedure for elevating step properties to service properties

3.6.8 List of reserved properties
A reserved property is a special service property whose property key has a specific definition or purpose in JP1/AO.
The property key of a reserved property begins with "reserved". You can use reserved properties by mapping them to
step properties in the Specify Component Input Property Mapping Parameters dialog box or Specify Component
Output Property Mapping Parameters dialog box. Users do not need to define or assign values to reserved properties.

When you map a reserved property to an input property, the value of the reserved property is assigned to a plug-in
property when the plug-in is executed.

To use a reserved property, select the View Property radio button in the Specify Component Input Property Mapping
Parameters dialog box.

Alternatively, select the Direct Input option, and then click the Insert Property button. If you select a reserved property
in the Select Reference Property dialog box#, you can specify (in the Value text box) the reserved property in the

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 94

format "?dna_reserved-property-key?". In this case, the value of the reserved property supplies part of the value of the
plug-in properties at plug-in execution.

#
In the Step Tree area, if you select a step of a repeated execution plug-in, the RESERVED PROPERTY dialog
box is displayed. In this dialog box, reserved properties related to repeated execution plug-ins are displayed.

When you use a reserved property as an output property, the reserved property stores the value of a designated plug-in
property. By selecting the View Property radio button in the Specify Component Output Property Mapping
Parameters dialog box, you can specify a reserved property to which the value of the output property is passed.

Table 3-13: List of reserved properties

Reserved property key Description

reserved.external.hcmds.dir Supplies the internal directory (HiCommand) that is created in the same layer as the JP1/AO installation
directory. This property is used to add new External Resource Provider.
Example: C:\\Program Files\\Hitachi\\HiCommand

reserved.external.path Supplies the additional path of the REST API request that was specified for Additional Path. This
property is used to add new External Resource Provider.

reserved.external.query Supplies the query parameter to be passed to the REST API request that was specified for Query
parameter. This property is used to add new External Resource Provider.

reserved.external.resource.dir Supplies the resource directory of an external resource. This property is used to add new External
Resource Provider.
Example:
C:\\Program Files\\Hitachi\\JP1AO\\contents\\ExternalResources\\6e29b455-90ef-45d7-
b973-458f5ba5320d

reserved.external.userName Supplies the user that is logged in to JP1/AO from the REST API. This property is used to add new
External Resource Provider.

reserved.loop.index#1 References a numerical value from 1 to 99 that indicates how many times a repeated execution plug-
in located one level above the selected plug-in has repeated.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 95

Reserved property key Description

reserved.loop.index#1 Of the comma-delimited values specified in the inputProperties property of the repeated execution
plug-in, this property stores the position of the parameter to which the current execution applies. You
can also reference this value when parallel is set as the execution method of the repeated execution
plug-in. To reference this reserved property, specify the property key in the format ?
dna_reserved.loop.index?. Like the reserved.loop.input property, you can use this property in any plug-
in within the flow of the repeated execution plug-in, provided that service properties can be mapped
to the plug-in.

reserved.loop.indexN#1 References a numerical value from 1 to 99 that indicates the number of times that a repeated execution
plug-in located N levels above the selected plug-in has been executed.
Of the comma-delimited values specified in the inputProperties property of the repeated execution
plug-in, this property stores the position of the parameter to which the current execution applies. You
can also reference this value when parallel is set as the execution method of the repeated execution
plug-in. To reference this reserved property, specify the property key in the format ?
dna_reserved.loop.indexN?. Like the reserved.loop.input property, you can use this property in any
plug-in within the flow of the repeated execution plug-in, provided that service properties can be
mapped to the plug-in.
Note: Above, N represents the integer 2 or 3.

reserved.loop.input#1 References the value of the inputProperties input property of a repeated execution plug-in located one
level above the selected plug-in.
As one of the comma-delimited values specified in the input properties of the repeated execution plug-
in, this property stores the value of the element that corresponds to the current iteration of the flow.
For example, if the input property is "A, B, C", the values A, B, and C are input in the order
corresponding to the repetition count of the flow. The repeated execution plug-in can be executed a
maximum of 99 times. To reference this reserved property, specify the property key in the format ?
dna_reserved.loop.input?.

reserved.loop.inputN#1 References the value of the inputProperties property of a repeated execution plug-in that is located N
levels above the selected plug-in.
As one of the comma-delimited values specified in the input properties of the repeated execution plug-
in, this property stores the value of the element that corresponds to the current iteration of the flow.
For example, if the input property is "A, B, C", the values A, B, and C are input in the order
corresponding to the repetition count of the flow. The repeated execution plug-in can be executed a
maximum of 99 times. To reference this reserved property, specify the property key in the format ?
dna_reserved.loop.inputN?.
Note: Above, N represents the integer 2 or 3.

reserved.loop.output Passes values to the outputProperties output property of a repeated execution plug-in.
The values output to this property are assigned to the output property as a comma-separated value.
For example, if the values of the output property of the plug-in are X, Y, and Z for successive iterations,
the value "X, Y, Z" is assigned to the output property.

reserved.service.name References the name of the service from which a task was generated.
To reference this reserved property, specify the property key in the format ?
dna_reserved.service.name?. You can use this property in any plug-in to which service properties can
be mapped.

reserved.step.path References the ID of the step that is currently being executed.
To reference this reserved property, specify the property key in the format ?dna_reserved.step.path?.
The value of this property is the same as the step ID displayed in the messages output to the task log
when plug-in execution begins and ends. You can use this property in any plug-in to which service
properties can be mapped.

reserved.service.serviceGroupName References the service group in which the service from which a task was generated is registered.
To reference this reserved property, specify the property key in the format ?
dna_reserved.service.serviceGroupName?. You can use this property in any plug-in to which service
properties can be mapped.

reserved.step.prevReturnCode Supplies the return value of the preceding step (the step that is the origin of the relational line connected
to the plug-in).

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 96

Reserved property key Description

reserved.step.prevReturnCode To reference this reserved property, specify the property key in the format ?
dna_reserved.step.prevReturnCode?. If there are multiple preceding steps, the property is assigned the
logical sum of all the return values. If there is no preceding step, 0 is assigned. You can use this property
in any plug-in to which service properties can be mapped.
If you retry a task from a step that references this reserved property without executing the preceding
step, the return value from the last time the preceding step was executed is set in this reserved property
as the return value of the preceding step.#

reserved.task.description Supplies the description of a task.
To reference this reserved property, specify the property key in the format ?
dna_reserved.task.description?. You can use this property in any plug-in to which service properties
can be mapped.

reserved.task.dir Supplies the path of the temporary data folder created during task execution.
This property provides a unique folder path at the execution of each task.
The folder referenced by this property is created on the JP1/AO server when the task is executed, and
deleted when the task is archived.
Note that files and folders that start with "task" are reserved in JP1/AO, and cannot be created by the
user.

reserved.task.id Supplies the task ID.
To reference this reserved property, specify the property key in the format ?dna_reserved.task.id?. You
can use this property in any plug-in to which service properties can be mapped.

reserved.task.name Supplies the task name.
To reference this reserved property, specify the property key in the format ?dna_reserved.task.name?.
You can use this property in any plug-in to which service properties can be mapped.

reserved.task.submitter Supplies the user ID of the user who submitted the task for execution.
If the task was retried, this property references the user ID of the user who submitted the task, not the
user who retried the task.
To reference this reserved property, specify the property key in the format ?
dna_reserved.task.submitter?. You can use this property in any plug-in to which service properties can
be mapped.

reserved.task.tags Supplies the tags set for the task.
To reference this reserved property, specify the property key in the format ?dna_reserved.task.tags?.
You can use this property in any plug-in to which service properties can be mapped.

reserved.task.url Supplies the URL for accessing the Task Details window.
To reference this reserved property, specify the property key in the format ?dna_reserved.task.url?.
You can use this property in any plug-in to which service properties can be mapped.

reserved.terminal.account References the user ID used by a terminal connect plug-in.
This property is used by the commandLine input property of a terminal command plug-in.
It stores the login name of the user account used to connect to the terminal.

reserved.terminal.password References the password used by a terminal connect plug-in.
This property is used by the commandLine input property of a terminal command plug-in.
It stores the password of the user account used to connect to the terminal.

reserved.terminal.suPassword References the administrator password used by the terminal connect plug-in.
This property is used by the commandLine input property of a terminal command plug-in.
It stores the password of the superuser used to connect to the terminal.

#1
If the definition of repeated execution plug-ins is nested, the input value of a repeated execution plug-in
(reserved.loop.input, reserved.loop.inputN) and a value that indicates how many times the repeated execution plug-
in has been repeated (reserved.loop.index, reserved.loop.indexN) are displayed together in a pull-down menu. In

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 97

this case, the step names of repeated execution plug-ins are displayed in parentheses. The following figure shows
the details.

#2
The following shows examples of the values assigned to the reserved property when a task is retried:

The illustrated flow consists of Step 1, Step 2, and Step 3. The reserved.step.prevReturnCode property is defined
for Step 2 and Step 3. The return value of Step 1 is 0, and the return value of Step 2 is 63, indicating an error. The
task fails with Step 3 in Unexecuted status.
In this scenario, if you use the Retry the Task From the Failed Step option, the value of
reserved.step.prevReturnCode (the return value of Step 1) is 0 from the perspective of Step 2. If you use the Retry
the Task From the Step After the Failed Step option, the value of reserved.step.prevReturnCode (the return value
of Step 2) is 63 from the perspective of Step 3.

3.6.9 Warning icon displayed for steps
If a mandatory step property value is omitted, a warning icon is displayed for the step.

Figure 3-18: Example of steps with warning icon displayed

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 98

The icon is updated when you edit the value of a step property.

When you copy and paste a step with a warning icon, the pasted step retains the warning icon.

The warning icon is also displayed in the Step Properties area.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 99

3.7 Managing the versions of components used as steps

For a component used as a step in a service template, you can update the version to the latest or change it to any version.

3.7.1 Overview of managing the versions of components used as steps
In JP1/AO, you can change the versions of components used as steps in a development service template in a batch or
separately. When you change the versions of components, you can inherit the information set by users (such as property
values). You can also check the versions of components used as steps. These functions can be used for components that
have multiple versions.

If you change the versions of components using service components that contain further inside service components, the
versions of those inside service components are not changed.

Functions of managing the versions of components used as steps
You can choose Apply to All or Individual apply as the method of checking and changing the versions of components
used as steps. The following notes describe their functions.

Apply to All
This function changes the versions of all components used as steps to the latest versions of release plug-ins or service
components in a batch. However, the steps that use the latest versions of components are not changed. You can also
check the versions of all components used as steps.

Individual apply
This function changes the version of a specified component used as a step to any version you want. You can also
check the version of a specified component.

The following table describes the difference between Apply to All and Individual apply.

Table 3-14: Difference between the Apply to All and Individual apply functions

What is
compared

Apply to All Individual apply

Components
whose version is
subject to change

Components whose versions are older than the latest. The specified component (of any versions).

Components after
changing the
versions

The latest versions of release plug-ins and service
components.

The specified version of component.

Tip
These functions can be used for development service templates. If you want to change the versions of
components used by steps in release service templates, copy the corresponding service templates
beforehand, and then use them as development service templates.

Related topics
• 3.7.2 Procedure for checking the versions of components used as steps

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 100

• 3.7.3 Procedure for batch-updating components used as steps to the latest versions
• 3.7.4 Procedure for changing the version of a component used as a step to any specified version
• 3.7.5 Information inherited when the versions of components are changed

3.7.2 Procedure for checking the versions of components used as steps
You can check the versions of components used as steps.

To check the versions of all components used as steps in a batch, select the Apply to All tab. To check the version of a
specified component, select the Individual apply tab.

To check the versions on the Apply to All tab
1. In the Service Builder Home window, click the Developing tab, select the service template whose component

versions you want to check, and then click the Edit button.

2. In the Actions pull-down menu, select Component Version Management.
3. In the Component Version Management dialog box, select the Apply to All tab.

4. In Current Version of Step List, you can check the versions of all components used as steps in the service template.
For steps whose Status is displayed as Not applied, you can change the versions of the components to the latest
versions of release plug-ins or service components. The steps whose status is displayed as Applied already use the
latest versions of release plug-ins or components. The steps whose status is displayed as Not applicable do not have
release plug-ins or service components that can be specified for the change-destination.

To check the version on the Individual apply tab
1. In the Service Builder Home window, click the Developing tab, select the service template whose component

versions you want to check, and then click the Edit button.

2. In the Actions pull-down menu, select Component Version Management.
3. In the Component Version Management dialog box, select the Individual apply tab.

4. From the Component List, select the component of which you want to check the version.

5. In Current Version of Step List, you can check the version of the component used by the selected step.
For a step whose Status is displayed as Not applied, you can change the version of the component. The steps whose
status is displayed as Applied already use the specified versions of components.

Related topics
• 3.7.1 Overview of managing the versions of components used as steps

3.7.3 Procedure for batch-updating components used as steps to the
latest versions

You can change the versions of components used as steps to the latest versions of release plug-ins or service components
in a batch.

1. In the Service Builder Home window, click the Developing tab, select the service template whose component
versions you want to check, and then click the Edit button.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 101

2. From the Actions pull-down menu, select Component Version Management.

Figure 3-19: Selecting Component Version Management

3. In the Component Version Management dialog box, select the Apply to All tab.

Figure 3-20: Component Version Management dialog box (Apply to All tab)

Tip
• If you do not want to update the components used by some steps to the latest versions, clear the

check boxes for selecting such steps.

• For the steps in which newer versions of development plug-ins than the latest versions of release
plug-ins are used, the check boxes for selecting the steps as the change targets are selected. Therefore,
to exclude such plug-ins as the change targets, unselect the check boxes for selecting the steps.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 102

4. Click the Apply button.
All components used by the steps selected in Step List are changed to the latest versions of release plug-ins or
service components in a batch.
If the property values before version change are not inherited as the properties after version change, is displayed
for such properties. If this icon is displayed, check and (if necessary) change the definition information of the
corresponding step. A property value before change is not inherited in the following cases:

• The property has been deleted.

• The value of the property key has been changed.

• The type of the property (input or output) has been changed.

Operation result
The component used by the selected step is changed to the latest version of release plug-in or service component.

Related topics
• 3.7.1 Overview of managing the versions of components used as steps
• 3.7.5 Information inherited when the versions of components are changed

3.7.4 Procedure for changing the version of a component used as a step
to any specified version

You can change the version of each component used as a step to a specified version.

1. In the Service Builder Home window, click the Developing tab, select the service template whose component
versions you want to check, and then click the Edit button.

2. In the Actions pull-down menu, select Component Version Management.

Figure 3-21: Selecting Component Version Management

3. In the Component Version Management dialog box, select the Individual apply tab.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 103

Figure 3-22: Component Version Management dialog box (Individual apply tab)

4. From Component List, select the component you want to change the version.
In Component List, the types of components used as steps are displayed. The types of components are displayed
when there are multiple versions of components. If a type of components contains components whose versions are
not the latest, is displayed for that type.

5. To view detailed information about the destination version, select the version from the Version pull-down menu,
and check the displayed plug-in information. If a View button is displayed for a plug-in, you can view detailed
information about the plug-in in the View Plug-in Details dialog box that appears when you click the View button.
Check Status of Step List for each version you specified. For the steps whose Status is displayed as Not applied,
you can change the versions. For the steps whose status is displayed as Applied, you cannot change the versions
because the current versions are the same as the versions specified for the destination versions.

6. From the Version pull-down menu, select a version you want to specify for the change destination.

7. Among the steps whose Status is Not applied, select a step for which you want to change the version.

8. Click the Apply button.
The step selected in Step List is changed to the specified version of the component.
If the properties before version change are not inherited as the properties after version change, is displayed
for such properties. If this icon is displayed, check and (if necessary) change the definition information of the
corresponding step. A property value before change is not inherited in the following cases:

• The property has been deleted.

• The value of the property key has been changed.

• The type of the property (input or output) has been changed.

Operation result
The component used by the selected step is changed to the specified version of the component.

Related topics
• 3.7.1 Overview of managing the versions of components used as steps

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 104

• 3.7.5 Information inherited when the versions of components are changed

3.7.5 Information inherited when the versions of components are changed
When you change the versions of components, some information is inherited by the same properties before and after
version change.

Property information inherited when the versions of components are changed
If the property key and type (input or output) of a property are the same before and after "Apply to All" or "Individual
apply" is performed, that property is handled as the same property before and after the version change. If a property is
added after the version change, the default value is specified for the property. If a property is deleted after the version
change, the corresponding property itself is deleted.

The following information is inherited when a property is handled as the same property before and after "Apply to All"
or "Individual apply" is performed:

• Property value (including Input Method of the property)

• Property name

• Description

• Display settings

• Default value#

#: The default value is updated by the information after version change only when one of the following conditions is
applied in a step that uses a service component:

• A property before or after version change references a property in a service component.

• The data type of a property is changed from the composite type to other than the composite type.

• The data type of a property is changed from other than the composite type to the composite type.
Note that, in this case, the default value becomes blank.

Property group information inherited when the versions of components are changed
If the property group key of a property group is the same between before and after "Apply to All" or "Individual apply"
is performed, that property group is handled as the same property group before and after the version change. The property
groups that exist only in the components after the version change are newly added. The property groups that exist only
in the components before the version change are deleted.

The following information is inherited when a property group is handled as the same property group before and after
"Apply to All" or "Individual apply" is performed:

• Property group name

• Description

• Display settings

Note: When you change the versions of components that use service components, the properties are updated with the
information after the version change.

3. Creating and Editing Flows for Service Templates

JP1/Automatic Operation Service Template Developer's Guide 105

After you edit a flow, set service properties in the Property tab of the Service Builder Edit window.

After setting service properties, you can define items to be entered when services are set or
executed, and items displayed when you check the execution results.

4 Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 106

4.1 Property tab of the Service Builder Edit window

The Property tab of the Service Builder Edit window is used to set service properties. To display service properties,
perform a creation or edit operation in the Service Builder Home window, and then click the Property tab in the
displayed Service Builder Edit window.

Figure 4-1: Property tab of the Service Builder Edit window

The Property tab displays a list of property groups and service properties that belong to each property group. The
Property tab consists of the following items:

Filtering function area
The filtering function filters the properties to be displayed when the properties area contains many properties.

Text search box
You can enter any text string to filter the service properties to be displayed.

Filtering button
Uses property attributes to filter which service properties are displayed. Clicking this button switches the filtering
setting on or off. You can use the following attributes to filter the properties.
‐Property types (input property, output property, or variable)
‐Visibility of properties (the edit and submit window, edit window only, or the Task Details window)
‐Display settings of properties (editable, read only, display, or hide)

Operational function area
You can use the following buttons to perform operations on property groups or service properties:

Open All Groups button
Opens all property groups and displays the service properties.

Close All Groups button
Closes all property groups.

Add button
Enables you to create a property group or service property.

Edit button
Enables you to edit the service property selected in the list.

Delete button
Deletes the service property selected in the list.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 107

Preview button
Displays a preview of the Create Service window, Submit Service window, or Task Details window.

More Actions button
Enables you to change the visibility and display settings of the service property selected in the list.

Properties area
Displays a list of property groups and service properties. This section describes items displayed in property group
lines and service property lines.
The following items are displayed in property group lines:

Display/Hide pull-down menu
Displays or hides property groups.

Edit button
Enables you to edit a property group.

Delete button
Enables you to delete a property group.

Add button
Enables you to create a property and then add it to a property group.

Up Group button and Down Group button
These buttons change the sort order of property groups.

The following items are displayed in service property lines:

Check box
Select this check box to select a service property line. You can select multiple lines.

Edit button
Enables you to edit a service property.

Delete button
Deletes a service property.

Service property types
Displays the service property type (input property, output property, or variable)

Key
Displays the service property key.

Display Name
Enables you to edit the display name.

Description
Enables you to edit the description.

Visibility pull-down menu
Enables you to select whether to display the service property in both the Create Service window and Submit
Service window, or only in the Create Service window.

Display Settings pull-down menu
Enables you to select the display settings for the property.

Default Value
Enables you to edit the default value.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 108

4.2 Editing and adding service properties

Properties defined for a service are called service properties. Information set for a service property includes display
information, data type, and default value.

4.2.1 Overview of service property
A service property is a property used by the user who submits a service to specify a parameter necessary for submitting
the service, or to obtain the execution result of the service. The following types of service properties exist:

Input property
You can define properties used to store the input values necessary for submitting services. You can define your
original properties or use service share properties.

Output property
You can define properties used to store the execution results of services.

Variable
Variables are temporarily set for inheriting values between plug-ins.

Input properties and output properties are displayed as service properties in the following windows:

• Create Service window

• Submit Service window

• Task Details window

• Shared Properties Settings area (for service share properties)

Tip
The step properties set to be elevated to service properties in the Flow tab of the Service Builder Edit
window are displayed as service properties in the Property tab. You can also create new service properties.

Related topics
• 4.2.2 Procedure for editing service properties
• 4.2.3 Procedure for adding service properties
• 3.6.6 Procedure for elevating step properties to service properties
• 4.3.1 Overview of service share properties
• 4.3.4 Overview of shared built-in service properties
• 4.2.8 Visibility and display settings for properties

4.2.2 Procedure for editing service properties
Editing a service property is an operation that changes the definition information of the service property. You can change
the definition information of service properties in the Edit Input Property for Service dialog box, Edit Output
Property for Service dialog box, or Edit Variable dialog box.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 109

To edit a service property:
1. In the Properties tab of the Service Builder Edit window, select the service property you want to edit, and then

click the Edit button.

2. In the displayed dialog box, edit the definition information.

Figure 4-2: Edit Input Property for Service dialog box

3. Click the OK button.

Operation result
The edited information of the service property is set.

Related topics
• 1.2.3 Procedure for starting editing of service templates
• 4.2.4 Items set for input properties of services
• 4.2.5 Items set for output properties of services
• 4.2.6 Items set for variables

4.2.3 Procedure for adding service properties
You can add input properties, output properties, and variables for services. You can map the added service properties
to step properties.

To add a service property:
1. In the Property tab of the Service Builder Edit window, from the menu of the Add button, click Input

Property, Output Property, or Variable.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 110

2. In the displayed dialog box, enter the definition information.

Figure 4-3: Create Input Property for Service dialog box

3. Click the OK button.

Operation result
A service property is created and added in the Property tab of the Service Builder Edit window.

Tip
You can also add input properties, output properties, and variables for services from the Specify Component
Input Property Mapping Parameters dialog box or Specify Component Output Property Mapping
Parameters dialog box.

Related topics
• 4.2.4 Items set for input properties of services
• 4.2.5 Items set for output properties of services
• 4.2.6 Items set for variables

4.2.4 Items set for input properties of services
The following table describes the items that can be set in the Create Input Property for Service dialog box or Edit
Input Property for Service dialog box. Note that you can select a different presentation format depending on the data
type of a property.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 111

Table 4-1: Items set for the input property of a service

Item Description

Definitions Related Step Displays the related step of the property.
This item is displayed when you edit a property for which the GUI
Visibility check box is selected in the Step Properties area in the Flow tab
of the Service Builder Edit window.

Key Enter the property key.
You cannot change the value for this item when the property has a related
step, when the related step of the property is using a service component or
when the property is a shared built-in service property.

Display Name#1 Enter the property name.

Description#1 Enter the description for the property.

Property Group Select the property group that the property is to belong to.
You cannot change the value for this item when the related step of the
property is using a service component.
You can also set a property group by dragging the service property and
dropping it on a property group in the Property tab of the Service Builder
Edit window.

Visibility#1 Set the visibility in the Create Service window and Submit Service
window. Set the visibility when you want to restrict the role of users who
are allowed to view the input property. Whether the input property is
displayed in each window differs, depending on the combination of the
settings for Display Settings and this item. For details about the
combination of Visibility and Display Settings, see 4.2.8 Visibility and
display settings for properties.
You cannot change the value for this item when the related step of the
property is using a service component, or when the property is a shared
built-in service property.

Display Settings#1 Select the display settings in the Create Service window and Submit
Service window. Set the display settings when you want to restrict the
operations the users can perform on the input property. Whether the input
property is displayed in each window and whether the value can be changed
differ, depending on the combination of the settings for Visibility and this
item. For details about the combination of Visibility and Display
Settings, see 4.2.8 Visibility and display settings for properties.

Service Share Property If you select this item, the input property becomes a shared service property.
You cannot change the value of this item when the property has a related
step, when the related step of the property is using a service component or
when the property is a shared built-in service property. If composite is
selected for the data type, you cannot select this item.

Required If you select this item, the input property becomes a required property.
You cannot change the value of this item when the property has a related
step, when the related step of the property is using a service component or
when the property is a shared built-in service property.

Data Type Select the data type of the input property.
You cannot change the value in the following cases:
• If the related step of the property is using a service component
• Some properties of a basic component (with type definition)
• The property is a shared built-in service property

Restrictions Minimum Length Specify the restrictions of the input property. The setting items to be
displayed vary depending on the data type.
You cannot change the value if:Maximum Length

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 112

Item Description

Restrictions Restricted Character • The value is already specified for the property of the basic component.

Minimum Value

Maximum Value

Value and
Presentation

Setting Method Select the setting method of the input property.
This item is displayed if all the following conditions are satisfied:
• The property has a related step.
• The property is not a shared service property.
• The property is not mapped (in the service component) to another

property.

Note that if you select View Property for the setting method, you will not
be able to change the default value in the Create Service window or
Submit Service window.

Presentation Select the presentation format when displaying the input property in the
Service Definition window (creating, editing, or copying) or Submit
Service window. The selectable values vary depending on the data type.

Default Value#1#2 Specify the default value of the property.
This item is not displayed when the property is a shared built-in service
property.
If the related step of the property being edited is using a service component,
and the property is mapped (in the service component) to another property,
(Internal Property) is displayed as the default value and it cannot be
changed.

Data Source This item is displayed only when Selection is selected in Presentation.
You can select either of the following. The setting items are displayed
according to the selected item.
• Static
• Dynamic

Static Specify List
Items

Specify List Items.

Dynamic External
Resource

Select the External Resource Provider.
Options (1) and (2) below are displayed. If (2) is selected, the Create
External Resource Provider dialog box is opened.
(1) defined-External-Resource-Provider
(2) Create External Resource Provider

Extra Path Specify Extra Path.

Query Param Specify Query Param.

Name Field Specify Name Field.

Value Field Specify Value Field.

#1
You can also edit the item in the Properties area in the Property tab of the Service Builder Edit window.

#2
If composite is selected for the data type, the editor for entering the default value appears. In this case, even if the
property key is specified as the default value, the property key is treated as a character string and the property value
cannot be obtained.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 113

Tip
The difference between the string type and composite type is the number of characters you can specify. For
the string type, you can specify 1,024 or fewer characters. For the composite type, you can specify a character
string whose size is 30 MB or less. For example, if you want to map an output property that has more than
1,024 characters to the input property of another step, specify the composite type for the data type of the
input property.

The following table lists the items displayed according to the selected data type.

Table 4-2: Items set for the input property of a service (whether the items are displayed differs
depending on the data type)

Item Data type

string boolean integer double date password composite

Minimum Length Y N N N N Y N

Maximum Length Y N N N N Y N

Minimum Value N N Y Y Y N N

Maximum Value N N Y Y Y N N

Restricted Character# Y N N N N Y N

#
Specify the restricted characters in regular expression conforming to PCRE.

Legend:
Y: Displayed. N: Not displayed.

The following shows the correspondence between the data types and specifiable presentations of service input properties.
If you wish to use the data type "list" in JP1/AO V12 or later, select the presentation "Selection" for the data type "string".

Table 4-3: Data types and specifiable presentations (service input properties)

Data
type

Presentation

Text
Box

Text
Box
(hex)

Text
Area

URL
Ancho
r

Select
ion

Radio
Butto
n

Check
Box

Spin
Box

Capac
ity#1

Date
Picker

Pass
word

File
Choos
er#2

string Y N Y Y Y Y N N N N N N

boolea
n

N N N N Y Y Y N N N N N

integer Y Y N N Y Y N Y Y N N N

double Y N N N Y Y N N N N N N

date N N N N Y Y N N N Y N N

passwo
rd

N N N N N N N N N N Y N

compos
ite

N N Y N Y N N N N N N Y

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 114

Legend:
Y: Can be specified. N: Cannot be specified.

#1
Capacity(Byte), Capacity(KB), Capacity(MB), Capacity(GB), Capacity(TB), Capacity(BinaryByte),
Capacity(KiB), Capacity(MiB), Capacity(GiB), Capacity(TiB)

#2
Base64 encodes the data obtained from the selected file.

Related topics
• 4.2.8 Visibility and display settings for properties

4.2.5 Items set for output properties of services
The following table lists and describes the items that can be set in the Create Output Property for Service dialog box
or Edit Output Property for Service dialog box. Note that you can select a different presentation format depending
on the data type of a property.

Table 4-4: Items that can be set for the output property of a service

Item Description

Definitions Related Step Displays the related step of the property.
This item is displayed when you edit a property for which the GUI Visibility check box is selected in
the Step Properties area in the Property tab of the Service Builder Edit window.

Key Enter the property key.
You cannot change the value for this item when the related step of the property is using a service
component.

Display Name# Enter the property name.

Description# Enter the description for the property.

Property Group Select the property group that the property is to belong to.
You cannot change the value for this item when the related step of the property is using a service
component.
You can also set a property group by dragging the service property and dropping it on a property group
in the Property tab of the Service Builder Edit window.

Display/Hide# Select whether to display the output property in the Task Details window.

Data Type You cannot change the value in the following cases:
• If the related step of the property is using a service component
• Some properties of a basic component (with type definition)

Value and
presentation

Presentation Select the presentation format when displaying the output property in the Task Details window. The
selectable values vary depending on the data type.

Default Value# Enter the default value of the output property. The values that can be specified differ depending on the
data type.
If the property has a related step, this item is displayed as Default Value, and you can set the property
mapping only.
If the related step of the property is using a service component, and the property is mapped (in the service
component) to another property, (Internal Property) is displayed for Default Value and it cannot be
changed.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 115

#
You can also edit the item in the Properties area in the Property tab of the Service Builder Edit window.

The following shows the correspondence between the data types and specifiable presentations of service output
properties. If you wish to use the data type "list" in JP1/AO 12-01 or later, select the presentation "Selection" for the
data type "string".

The types of data that can be specified for output properties were increased so that they are now equivalent to the types
of data that can be specified for input properties. For information on whether the properties of the added data types can
be mapped, see 3.6.5 Whether properties can be mapped depending on the visibility or data type.

Table 4-5: Data types and specifiable presentations (service output properties)

Data
type

Presentation

Text
Box

Text
Box
(hex)

Text
Area

URL
Anchor

Selecti
on

Radio
Button

Check
Box

Capaci
ty#

Pass
word

File
Choos
er

Data
Grid

string Y N Y Y N N N N N N N

boolean N N N N Y Y Y N N N N

integer Y Y N N N N N Y N N N

double Y N N N N N N N N N N

date Y N N N N N N N N N N

passwor
d

N N N N N N N N Y N N

composi
te

N N Y N N N N N N Y Y

Legend:
Y: Can be specified. N: Cannot be specified.

#
Capacity(Byte), Capacity(KB), Capacity(MB), Capacity(GB), Capacity(TB), Capacity(BinaryByte),
Capacity(KiB), Capacity(MiB), Capacity(GiB), Capacity(TiB)

4.2.6 Items set for variables
The following table lists and describes the items that can be set in the Create Variable dialog box or Edit Variable
dialog box.

Table 4-6: Items set for variables

Item Description

Definitions Key Enter the property key.

Display Name# Enter the property name.

Description# Enter the description for the property.

Property Group The default property is specified. You cannot change this item if it is
a variable.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 116

Item Description

Definitions Data Type The following data type can be selected:
• string
• boolean
• integer
• double
• date
• password
• composite

Value and Presentation Default Value# Enter the default value of the variable. The values that can be specified
differ depending on the data type.

#:
You can also edit the item in the Properties area in the Property tab of the Service Builder Edit window.

4.2.7 About dynamic changes to values set for the input properties for
services and plug-ins

The External Resource Provider function is a function that dynamically acquires, from any resource provider (External
Resource Provider), the possible values that can be set for the input properties for services and plug-ins. When a person
who creates service templates or plug-ins (a user with the Admin role or Develop role) sets an acquisition method for
External Resource, users with the Submit role will be able to select the value that was acquired from the External
Resource Provider when they execute services.

For example, if you want to perform an operation on a virtual machine on vCenter Server, you will be able to acquire
a list of virtual machines from vCenter Server without having to build flows for individual virtual machines when you
open the Submit Service window, and you can then execute a service on the virtual machines that you select in the
Submit Service window.

The following four methods of acquiring external resources are provided.

Table 4-7: External resource acquisition methods

External resource acquisition method Description

Javascript Acquires resource information from an external web service by writing a code that
executes a REST API request in JavaScript

Script Acquires resource information from an external web service by writing a code that
executes a REST API request in a script.

CLI Command Acquires the execution results of a CLI command as resource information

File Acquires resource information from a specified file

In addition, built-in External Resource Providers that acquire resources from the JP1/AO server are provided. If you
select the following built-in External Resource Providers in External Resource, execute the applicable REST API
request on the JP1/AO server to obtain the resource.

The following built-in External Resource Providers are available.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 117

Table 4-8: List of built-in External Resource Providers

External Resource Information that can be acquired Request REST API

Tasks a list of tasks GET /Automation/v1/objects/Tasks/

TaskLogs task logs GET /Automation/v1/objects/TaskLogs/

TaskHistories a list of history records GET /Automation/v1/objects/
TaskHistories/

Tags a list of tags GET /Automation/v1/objects/Tags/

TagGroups a list of tag groups GET /Automation/v1/objects/TagGroups/

Services a list of services GET /Automation/v1/objects/Services/

ServiceTemplates a list of service templates GET /Automation/v1/objects/
ServiceTemplates/

ServiceGroups a list of service groups GET /Automation/v1/objects/
ServiceGroups/

Schedules a list of schedules GET /Automation/v1/objects/Schedules/

PropertyValues a list of property values GET /Automation/v1/objects/
PropertyValues/

PropertyInformations lists of property definitions and
property values

GET /Automation/v1/objects/
PropertyInformations/

PropertyGroups a list of property groups GET /Automation/v1/objects/
PropertyGroups/

PropertyDefinitions a list of property definitions GET /Automation/v1/objects/
PropertyDefinitions/

(1) Procedure for using the function

1. In Service Builder Edit, create or edit the input properties for service templates or plug-ins in the following windows.

• Create Input Property for Service dialog box

• Edit Input Property for Service dialog box

• Create Input Property for Plug-in dialog box

• Edit Input Property for Plug-in dialog box

2. In the displayed dialog box, specify the settings of External Resource.
For details, see (2) Procedure for setting External Resource.

3. If there is no external resource, create External Resource.
For details, see (3) Procedure for creating an External Resource.

4. In the Service Definition window and the Submit Service window, select the acquired resource information.

Other operations associated with external resources can be performed from the drop-down list of External Resource
or from External Resource Provider on the Administration tab.

• Editing of External Resource.
Update the settings manually.

• Update of External Resource.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 118

Overwrite the selected External Resource Provider with the content of the specified external resource provider
definition file (zip format). The update possibilities of the External Resource Provider are listed in the following
table.

Table 4-9: Update possibilities of the External Resource Provider (ERP)

Case Update
possibility

Error message

If VRS of the update source ERP > VRS of the update
destination ERP

Possible --

If VRS of the update source ERP = VRS of the update
destination ERP

Possible --

If VRS of the update source ERP < VRS of the update
destination ERP

Not possible KNAE01889-E

If UUID of the update source ERP is different from that of
the update destination ERP

Not possible KNAE01890-E

• Deletion of External Resource
• Import of External Resource

The external resource provider definition file (zip format) is imported.
In Import of External Resource, if an External Resource Provider with the same UUID as the External Resource
Provider to be imported already exists, the content of the existing External Resource Provider is overwritten with
the content of the external resource provider definition file (zip format) to be imported, regardless of VRS of the
External Resource Providers.

Table 4-10: Import possibilities of the External Resource Provider (ERP)

Case Import
possibility

Remarks

If an ERP with the same UUID as the ERP to be imported does not
exist

Possible --

If an ERP with the same UUID as the ERP to be imported already
exists

Possible Regardless of VRS of the ERP, the content
of the existing ERP is overwritten with the
content of the ERP to be imported.

• Export of External Resource
The external resource provider definition file (zip format) is exported.

(2) Procedure for setting External Resource

The procedure for setting External Resource is as follows.

1. Select Selection or Radio Button as the expression format of the input property for a service or plug-in.

2. In Data source, which is displayed, select Dynamic.

Here, the settings items related to External Resource are explained.

Table 4-11: Setting items related to External Resource
Item Description

External resource The name of an external resource.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 119

Item Description

External resource Define a label for each external resource acquisition method and acquisition target.

Additional path The value to be passed to requestPath in JavaScript or to REQUEST_PATH in a Python
script.
Specify this when Type of the external resource provider is JavaScript or when Type of
the external resource provider is Script.
No specification is required unless necessary.

Query parameter The value to be passed to queryParamMap in JavaScript or QUERY_PARAM_MAP in a
script.
Specify this when Type of the external resource provider is JavaScript or when Type of
the external resource provider is Script.
No specification is required unless necessary.
To specify this item, use the key=value format. Note that you can use ampersands (&) to
specify multiple parameters (key=value&key=value).

Name field# Specify the field name of the acquired external resource.
The specified field value will be used as a label of an option that appears in the drop-down
list.
If omitted, the name field will be specified.

Value field# Specify the field name of the acquired external resource.
The specified field value will be set as the property value when the label of name field is
selected from the drop-down list.
If omitted, the instanceID field will be specified.

#:
If the data type is the composite type, this item is not displayed.

When the following External Resource Provider is set for an input property of a service component, that service
component cannot be used in more than one flow:

• External Resource Provider that references other properties in the query parameter.

(3) Procedure for creating an External Resource

From the pull-down list of External Resource, select (Add New External Resource Provider), and then, in the Create
External Resource Provider dialog box, specify the following setting items.

Table 4-12: Setting items in the Create External Resource Provider dialog box

Item Description

Name Name of the external resource provider
Specified name appears in the drop-down list with "ExternalResources/External-Resource-Provider-
ID".

Version Version. Specification format: nn.nn.nn
Example: 01.00.00

Content type Data format to be used with the External Resource Provider (formats of the request body, response
body, standard output, and file)
The following context types (MINE types) can be selected.
• application/json
• text/csv

(a) application/json

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 120

Item Description

Content type Specify in JSON format.

{"data":[
 object1,
 object2,
 ...
]}

(b) text/csv
Specify in CSV format.

Header line
record1
record2
...

Note that, if you select text/csv as the content type, select (3) or (4) as the type.

Description Description of the External Resource Provider

Type An external resource acquisition method
You can select one of the following types. You need to specify the necessary information in the input
field that appears based on the selected type.
(1) Javascript
(2) Script
(3) CLI Command
(4) File
Note that the following external resources can be acquired when each type is selected.
(1) Return values of the JavaScript function
(2) Standard output of the script
(3) Execution results of the CLI command
(4) File contents

(a) If you specify JavaScript as the type

You need to define a JavaScript function. The following function is defined by default.

Table 4-13: Javascript function

Item Description

Function name function fn(requestPath, queryParamMap, properties) {
}

Arguments requestPath The information
specified for
Additional path is
passed

Character string
/External-Resource-Provider-ID/The-information-specified-for-
Additional-path-is-passed

queryParamMap The information
specified for Query
parameter is passed.

JSON object that contains a map of the keys and values
{"key":"value", …}

properties Shared properties#1 and
reserved properties#2 of
the service is passed.

JSON object that contains a map of the property keys and property
values
{property-key:property-value,...}

Response An array of JSON objects is returned as a value of the request body returned by the External
Resource Provider.
The array must be set for the property named "data". The data format is as follows:
Response schema:

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 121

Item Description

Response {"data":[
 Object1,
 Object2,
 …
]}

#1:
The following shared property cannot be used:
com.hitachi.software.dna.sys.cm.cache.interval

#2:
For details about the reserved properties, see Table 3-13: List of reserved properties.

• Javascript library (auto_util library)
The auto_util library can be used in JavaScript. The auto_util library has the following main functions:

• Sends an HTTP or HTTPS request to any connection destination

• Retrieves the connection information set for the web service connection

The APIs of the auto_util library are as follows.

Table 4-14: Details of the APIs of the auto_util library

Method name Argument Return value Description

sleep 1 Specifies the time to sleep in the
numeric-value format
(unit: milliseconds)

None Sleeps for the specified
time

parseJson 1 Specifies a JSON character string
expression in the character-string
format

JSON object Converts character
strings to JSON objects

stringifyJson 1 Specifies any JSON object JSON character string
expression

Converts JSON objects
to character strings

base64.encode 1 Specifies a character string to be
converted to Base64

A character string
encoded into Base64

Encodes a character
string into Base64

base64.decode 1 Specifies a Base64 character string A character string
decoded from Base64

Decodes a character
string from Base64

http.call 1 JSON object of the request JSON object of the
response

Performs an HTTP or
HTTPS request and
returns a response

http.toRawHeader 1 JSON object of the header Header character string Returns the header in a
character-string format.
In the argument, a
JSON object to which a
key and its
corresponding value are
set is specified.

http.defaultErrorHandl
er

1 Error None Throws the HttpError
instance

2 JSON object of the request

3 JSON object of the response

http.handleCall 1 httpCall method None Calls the httpCall
method of the first

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 122

Method name Argument Return value Description

http.handleCall 2 None argument by specifying
the request of the
second argument.
If the resulting response
code is 200 or greater,
and less than 400, the
third argument is called.
In other cases, the
fourth argument is
called.

JSON object of the request

3 Method that is called when an HTTP
call is successful

4 Method that is called when the result
status code of the HTTP call is 200 or
greater, and less than 400

5 Method that is called when an error
occurs before an HTTP call

The arguments and JSON objects of the return values are as follows.

Table 4-15: Details of JSON objects of requests

Member Type Description

requestUrl String If you are not using a web service connection:
Specify the request URL starting with HTTP or HTTPS.

If you are using a web service connection:
Specify the part of the request URL from the "/" after the host name, to
the end.
Example: In the case of http://host:port/Folder/, specify "/Folder".

requestMethod String HTTP request method.
Specify the following values in the character string:
• GET
• POST
• PUT
• DELETE

requestHeaders String Request headers.
The setting of the return value of the http.toRawHeader method is
assumed.

If you are using a web service connection:
The following values can be used as pad characters for the user ID and
password:
• ${connection.username}
• ${connection.password}

requestBody String The request body

authScheme String If authentication is required, specify one of the following values.
• basic
• digest
• negotiate

productName String Specify the category of the web service connection.
Be sure to specify this if you are using a web service connection.

connectionName String Specify the name of the web service connection.
Be sure to specify this if you are using a web service connection.

userName String Specify the user name if you want to perform authentication on the
connection destination.
Do not specify this if you are using a web service connection.

password String Specify the password if you want to perform authentication on the
connection destination.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 123

Member Type Description

useProxy boolean Specify this (true/false) if you want to use a proxy.

proxyHost String Specify the host name or IP address of the proxy server.

proxyPort int Specify the port number of the proxy server.

proxyAuthScheme String If authentication is required at the proxy server, specify one of the
following values.
• basic
• digest

proxyUserName String Specify the user name if authentication is required on the proxy server.

proxyPassword String Specify the password if authentication is required on the proxy server.

Table 4-16: Details of JSON objects of responses

Member Type Description

responseHeaders String Response header

responseStatusCode int Response code

responseStatusMessage String Response message

responseBody String Response body

• Sample JavaScript code
The following sample looks up the connection information of the web service connection, acquires a list of service
templates from JP1/AO, Note that, in the sample, a web service connection must be registered with the name "view"
in the category "Automation" in advance.

(function fn (requestPath, queryParamMap, properties) {
 return getServiceTemplates('Automation', 'view');

 function getServiceTemplates(productname, connectionname) {
 var respBody = null;
 var request = {
 requestMethod: 'GET',
 requestUrl: '/Automation/v1/objects/ServiceTemplates/',
 requestHeaders:auto.util.http.toRawHeader({
 'Accept': 'application/json',
 'Accept-Language': 'en',
 'Content-Type': 'application/json',
 }),
 authScheme: 'basic',
 connectionName: connectionname,
 productName: productname,
 };

 auto.util.http.handleCall(auto.util.http.call, request,
 function(resp, req) {
 respBody = resp.responseBody;
 }, function(resp, req) {
 auto.util.http.defaultErrorHandler(null, req, resp);
 }, function(err, req) {
 auto.util.http.defaultErrorHandler(err, req);
 });
 return respBody;
 }
})

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 124

(b) If you specify Script as the type

Specify the following setting items.

Table 4-17: Setting items when Script is specified

Item Description

Interpreter path Interpreter path of the script.
(1) Python script
The supported Python version is the 3.x series. To use this External Resource Provider in a cluster
environment, the Python interpreter must be installed in both the active and standby systems.
Virtual environments in Python are not supported. Shared properties of services can be specified
for the interpreter path.

Script type Script type.
Only Python is supported.

Script Script implementation
An array of JSON objects is returned as a value of the request body returned by the External
Resource Provider.
The array must be set for the property named "data". The data format is as follows. Script set the
data of following JSON format for the standard output(print()).
Response schema:

{"data":[
 Object1,
 Object2,
…
]}

By using scripts, the following environment variable values can be acquired in the os.environ["key-name"] or
os.environ.get("key-name") format.

Table 4-18: Environment variables that can be acquired by using scripts

Environment variable Description Format

REQUEST_PATH The information specified for Additional
path is passed

Character string
/External-Resource-Provider-ID/The-
information-specified-for-Additional-path-
is-passed

QUERY_PARAM_MAP The information specified for Query
parameter is passed.

Character string in JSON format
{property-name:value,...}

SERVICE_TEMPLATE_ID Service template ID that belongs to the
External Resource Provider

Numeric value

SERVICE_ID Service ID that executes the External
Resource Provider

Numeric value

SERVICE_TEMPLATE Information about the service template that
belongs to the External Resource Provider

Character string in JSON format
{service-template-attribute:value,...}

SERVICE Information about the service that executes
the External Resource Provider

Character string in JSON format
{service-attribute:value,...}

WEB_SERVICE_CONNECTIONS Setting information of the web service
connection.
Information that corresponds to
"__webServiceConnectionCategory__" and
"__webServiceConnectionName__" as were

Character string in JSON format
[{attribute-of-web-service-connection:value,
…}, …]

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 125

Environment variable Description Format

WEB_SERVICE_CONNECTIONS specified for Query parameter is stored. The
information to be stored varies depending on
the specification of Query parameter.
For information about the values to be
stored, see Table 4-19: Values of the
environment variable
WEB_SERVICE_CONNECTIONS.

Character string in JSON format
[{attribute-of-web-service-connection:value,
…}, …]

Table 4-19: Values of the environment variable WEB_SERVICE_CONNECTIONS

Query parameter Reference information

__webServiceConnectionCategory__ __webServiceConnectionName__

Y Y Information about the web service connection
that matches the specified Category and
Name

Y N Information about the web service connection
that matches the specified Category

N Y None

N N None

Legend:
Y: Specified, N: Not specified

(c) If you specify CLI Command as the type

Specify the following setting items.

Table 4-20: Setting items when CLI Command is specified

Item Description

CLI Command The CLI command to be executed on the JP1/AO server.
If the return value of the command is a value other than 0, an error occurs.
To specify a script file, use its absolute path to specify it.
The upper limit of the standard output is 30 MB. The character set for reading the standard output
is read through the system character set.
By enclosing property keys with "${" and "}", you can include service shared properties and
reserved properties in the CLI command.

(d) If you specify File as the type

Specify the following setting items.

Table 4-21: Setting items when File is specified

Item Description

File The path to a file on the JP1/AO server. By enclosing property keys with "${" and "}", you can
include service shared properties and reserved properties in the file path.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 126

4.2.8 Visibility and display settings for properties
You can set whether to display a property in each JP1/AO window or whether the value and display settings can be
changed, by using a combination of visibility and display settings of the service property. However, you cannot set these
for variables.

Visibility of properties
You can set visibility for a service property. If you specify visibility for a property, you will be able to display or hide
the property in JP1/AO operation windows.

You can display properties in the following JP1/AO operation windows:

• Create Service window

• Submit Service window

• Task Details window

• Shared Properties Settings area

For example, you can set to hide properties (that users who submit services do not need to know) from the Submit
Service window.

Note that the output properties of services are displayed in the Task Details window only.

You can set visibility of the input property of a service in the Property tab of the Service Builder Edit window. You
can set Edit and Submit Window or Edit Window Only for visibility of a property. Visibility is fixed for output
properties. You can set (by display settings) whether to display output properties in the Task Details window.

Edit and Submit Window
Specify this option for the properties you want to display as the input items in the Create Service window and
Submit Service window. If you specify this option for a property, that property is opened to the users with Submit
or higher role.

Edit Window Only
Specify the option for the properties you want to display as the input items in the Create Service window. If you
specify this option for a property, that property is opened to the users with Modify or higher role.

Display settings of properties
If you specify display settings of a service property, you can define whether to display or hide the service property or
whether the value can be changed in the Create Service window or Submit Service window.

Editable
If this option is set for the input property of a service, the value for the service property can be changed in the window
in which the service property is displayed.

Read only
If this option is set for the input property of a service, the value of the service property cannot be changed in the
window in which the service property is displayed.

Display
If this option is set for the output property of a service, the value of the service property can be viewed in the window
in which the service property is displayed.

Hide
The service property is not displayed in windows.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 127

The following tables describe whether a property is displayed and operations are enabled in individual windows, for
each combination of visibility and display settings.

Table 4-22: Whether properties are displayed in the Create Service window

Visibility Display settings Whether a property is displayed and operations are
enabled in the window

Edit and Submit Window Editable The property value and display settings can be changed.

Read only The property value and display settings can be changed.

Hide The property value and display settings can be changed.

Edit Window Only Editable The property value can be changed.

Read only The property value is displayed, but cannot be changed.

Hide Hidden

Table 4-23: Whether properties are displayed in the Submit Service window

Visibility Display settings Whether a property is displayed and operations are
enabled in the window

Edit and Submit Window Editable The property value can be changed.

Read only The property value is displayed, but cannot be changed.

Hide Hidden

Edit Window Only Editable Hidden

Read only Hidden

Hide Hidden

Table 4-24: Whether properties are displayed in the Task Details window

Visibility Type of the service
property (input or
output)

Display settings Whether a property is displayed and
operations are enabled in the window

Edit and Submit
Window#

Input property Editable Displayed

Read only Displayed

Hide Hidden

Output property Display Displayed

Hide Hidden

Edit Window Only Input property Editable Hidden

Read only Hidden

Hide Hidden

#
For an output property, the visibility in the Property tab of the Service Builder Edit window is displayed as Task
Details window.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 128

Table 4-25: Whether shared service properties are displayed in the Shared Properties Settings
area

Visibility Display settings Whether a property is displayed and operations are
enabled in the window

Edit and Submit Window Editable The property value can be changed.

Read only The property value can be changed.

Hide The property value can be changed.

Edit Window Only Editable The property value can be changed.

Read only The property value can be changed.

Hide The property value can be changed.

Related topics
• 4.3 Service share properties

4.2.9 Procedure for deleting service properties
You can delete input properties, output properties, and variables of service properties. However, by using this procedure,
you can delete only service properties that do not have related steps.

If you want to delete service properties elevated from step properties, in the Step Properties area in the Flow tab of the
Service Builder Edit window, clear the GUI Visibility check box. You cannot delete service properties contained in
service components.

To delete a service property:
1. In the Properties area in the Property tab of the Service Builder Edit window, select the service property you want

to delete, and click the Delete button.

Operation result
The service property is deleted.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 129

4.3 Service share properties

This section describes service share properties, which are a type of service property.

4.3.1 Overview of service share properties
Service share properties are properties that are shared by more than one service, each of which can view and update its
value. A service share property referenced by a service or task returns a value maintained by the system.

Service share properties that are predefined by JP1/AO are called shared built-in service properties.

Values set for service share properties
Because the value of a service share property is the same system-wide, you cannot assign different values for different
service groups. Even if you create multiple services from a service template and assign each to a different service group,
the value of the service share property is shared among the service groups.

Even if you use multiple service components for which the same service share property is defined in a service template,
the service components are displayed as one service share property in the Create Service window or Submit Service
window. For the property name, description, and display settings, the settings for the service share property displayed
at the highest level in the Properties area in the Property tab of the Service Builder Edit window apply.

Valid range of the values for service share properties
You can also set property values in the Shared Properties Settings area of the Create Service window, Submit Service
window, and Administration window. However, the property values set in the Submit Service window are applied
only to the tasks created from the corresponding service. Thus, the settings specified in the Submit Service window do
not affect the values of the service share properties referenced by other services. Also, even if a property value is changed
in the Shared Properties Settings area after the service is executed, the property values for the executed service are
not affected.

The following figure shows the valid range of a service share property.

Figure 4-4: Valid range of service share property

The following figure shows the valid range of service properties for which no service share property is set.

Figure 4-5: Valid range of ordinary (non-shared) service property

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 130

If you do not select the check box in the Service Share Property area, the value specified for the property is only valid
in the context of that service. You can set property values in the Create Service window or Submit Service window.

Related topics
• 4.3.4 Overview of shared built-in service properties
• Setting Service Share Properties in the JP1/Automatic Operation Administration Guide

4.3.2 Procedure for adding service share properties
You can share properties between services by adding a service share property for the properties in a service template.
You can also use service share properties predefined in JP1/AO (shared built-in service properties), or add service share
properties associated with service templates you have imported.

To add a new service share property:
1. In the Property tab of the Service Builder Edit window, click the Add Input Property button.

2. In the Create Input Property for Service dialog box, in the Service Share Property area, select the check box.

To set a defined service property as a service share property:
1. In the Property tab of the Service Builder Edit window, click the Edit button for the input property of a service.

2. In the Edit Input Property for Service dialog box, in the Service Share Property area, select the check box.
However, you cannot change the selection of the Shared Properties Settings check box in the following cases:

• The service has a related step.

• The property is a shared built-in service property.

• composite is selected for the data type.

To add a defined service share property:
1. In the Property tab of the Service Builder Edit window, select Add > Service Share Property.

2. In the Select Service Share Property dialog box, select the service share property you want to add and the property
group to which the service share property is to be added, and then click the OK button.

Related topics
• 4.3.1 Overview of service share properties
• 4.3.3 Notes on defining service share properties
• 4.3.4 Overview of shared built-in service properties

4.3.3 Notes on defining service share properties
Note the following when defining service share properties:

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 131

Setting values for service share properties
• The name and description you specify for properties in the Property tab of the Service Builder Edit window appear

in the Create Service window and Submit Service window.

• Create a property key that is unique within the system by specifying the domain name in reverse order from the top
level as a period-separated value. If you choose not to use domain names for property keys, make sure that the
property key you specify is not being used for another property whose value you do not want shared.

• If you need to change a parameter of a service share property other than the property name or description, use the
following procedure:
1. Delete from JP1/AO all service templates that include the service share property you want to modify.
2. Add the service templates to JP1/AO with the new values specified for the service share property.
The value of the service share property is now changed.

• The following describes what happens when a service share property with the same key as an existing service share
property is assigned to a service template:

• Initially, the service share property is assigned the value specified in the Default Value for the service share
property defined in the service template that was built, released, or imported. You can then specify a value for
the property in the Shared Properties Settings area, Create Service window, or Submit Service window.

• The property name, description, default value, and display settings can differ from that of the existing service
share property. However, if an item other than the property name, description, default value, or display settings
differs, an error occurs when you attempt to build, release, or import the service template.

• When a value differs from that of the existing service share property, the specified value only appears in windows
and dialog boxes that display the property name or description as a property of the service template.

• Service share properties selected in the Select Service Share Property dialog box are added with no default value
specified. Set the default value in the Edit Input Property for Service dialog box.

Assigning a service share property to a property group
• You can assign service share properties to any property group when defining a service template. The same service

share property can belong to a different property group in different service templates.

4.3.4 Overview of shared built-in service properties
Shared built-in service properties are properties that are predefined in the JP1/AO system. Unlike other properties,
shared built-in service properties are not tied to a specific service or task. JP1/AO functions that reference shared built-
in service properties use the value assigned to the property when they execute.

You can also define a shared built-in service property as a service share property of a service, and reference it from
within a task. In this case, the values while services are executed are referenced in the same manner as other service
share properties.

You can define a shared built-in service property as a service share property of a service in the Property tab of the
Service Builder Edit window. If you select Add > Service Share Property in the Property tab of the Service Builder
Edit window, a list of shared built-in service properties appears.

The following table lists the shared built-in service properties provided in JP1/AO.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 132

Table 4-26: List of shared built-in service properties

No. Property key Property name# Description#

1 com.hitachi.software.dn
a.sys.mail.notify

Email notification Enables or disables the email notification functionality. (Built-in shared
service property)

2 com.hitachi.software.dn
a.sys.mail.smtp.server

SMTP server
address

Specifies the SMTP server address. The address can be specified as an
IPv4 or IPv6 address, or as a host name. Only one of the above can be
specified. Multiple addresses cannot be specified by separating them with
commas. (Built-in shared service property)

3 com.hitachi.software.dn
a.sys.mail.smtp.port

SMTP server port
number

Specifies the SMTP server port number. (Built-in shared service property)

4 com.hitachi.software.dn
a.sys.mail.smtp.userid

SMTP server user
ID

Specifies the user ID of the user who logs in to the SMTP server. (Built-in
shared service property)

5 com.hitachi.software.dn
a.sys.mail.smtp.passwo
rd

SMTP server
password

Specifies the password of the user who logs in to the SMTP server. (Built-
in shared service property)

6 com.hitachi.software.dn
a.sys.mail.from

Notification email
sender

Specifies the sender of notification emails. (Built-in shared service
property)

7 com.hitachi.software.dn
a.sys.mail.to

Notification email
recipients (To)

Specifies the "To" recipients of notification emails. Multiple email
addresses can be specified by separating them with commas. (Built-in
shared service property)

8 com.hitachi.software.dn
a.sys.mail.cc

Notification email
recipients (Cc)

Specifies the "Cc" recipients of notification emails. Multiple email
addresses can be specified by separating them with commas. (Built-in
shared service property)

9 com.hitachi.software.dn
a.sys.mail.bcc

Notification email
recipients (Bcc)

Specifies the "Bcc" recipients of notification emails. Multiple email
addresses can be specified by separating them with commas. (Built-in
shared service property)

10 com.hitachi.software.dn
a.sys.task.log.level

Task log output
level

Specifies the level of messages output to the task log. (Built-in shared
service property)

11 com.hitachi.software.dn
a.sys.ssh.privatekey.pas
sphrase

Pass phrase of the
private key (for
SSH public key
authentication)

Specifies the pass phrase of the private key used for SSH public key
authentication. (Built-in shared service property)

#
You can change the contents of the Create Service dialog box by entering a property name and description of your
choice for the built-in shared service property. However, the information displayed in the Shared Properties
Settings area is not changed from its initial state at installation.

The following table describes detailed information about each property.

Table 4-27: Detailed information about shared built-in service properties

No. Property key Data
type

Defaul
t value

Requir
ed?

Length Specifiab
le
character
s

Presentati
on

Values
in list

Minim
um

Maxim
um

1 com.hitachi.software.dna.sys.
mail.notify

boolean false true -- -- -- Selection --

2 com.hitachi.software.dna.sys.
mail.smtp.server

string -- false 0 255 No
restrictions

Text Box --

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 133

No. Property key Data
type

Defaul
t value

Requir
ed?

Length Specifiab
le
character
s

Presentati
on

Values
in list

Minim
um

Maxim
um

3 com.hitachi.software.dna.sys.
mail.smtp.port

integer 25 true 0 65535 -- Text Box --

4 com.hitachi.software.dna.sys.
mail.smtp.userid

string -- false 0 255 No
restrictions

Text Box --

5 com.hitachi.software.dna.sys.
mail.smtp.password

passwor
d

-- false 0 1,024 No
restrictions

Password --

6 com.hitachi.software.dna.sys.
mail.from

string -- false 0 255 No
restrictions

Text Box --

7 com.hitachi.software.dna.sys.
mail.to

string -- false 0 255 No
restrictions

Text Box --

8 com.hitachi.software.dna.sys.
mail.cc

string -- false 0 255 No
restrictions

Text Box --

9 com.hitachi.software.dna.sys.
mail.bcc

string -- false 0 255 No
restrictions

Text Box --

10 com.hitachi.software.dna.sys.ta
sk.log.level

string 10 true -- -- -- Selection 0,10,20,3
0,40

11 com.hitachi.software.dna.sys.s
sh.privatekey.passphrase

passwor
d

-- false 0 1,024 No
restrictions

Password --

Legend:
--: Not applicable.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 134

4.4 Setting property groups

You can add and edit property groups that service properties belong to.

4.4.1 Procedure for setting property groups
In the Property tab of the Service Builder Edit window, add and edit property groups.

1. In the Property tab of the Service Builder Edit window, select Add > Property Group to add a property group,
or click the Edit button for the line of a property group to edit the property group.

2. In the dialog box that appears, set the definition information of the property group.

Figure 4-6: Create Property Group dialog box

The following table lists and describes the items that can be set.

Table 4-28: Items set for property groups

Item Description

Related Step Displays the related step of the property group.

ID Enter the ID of the property group.
You cannot change the value for this item when the related step of the property group is using a service component.

Display Name Enter the name of the property group.

Description Enter the description for the property group.

Display/Hide Select whether to display the property group in the following windows:
• Create Service window
• Submit Service window
• Task Details window

3. Click the OK button.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 135

Operation result
The property group is set.

4.4.2 Procedure for deleting property groups
You can delete property groups that service properties belong to. The service properties that belonged to the deleted
property groups will belong to "default property".

Tip
You cannot delete the "default property" property group and property groups in related steps.

To delete a property group:
1. In the Property tab of the Service Builder Edit window, click the Delete button for the line of the property group

you want to delete.

Operation result
The property group is deleted.

4. Setting Service Properties

JP1/Automatic Operation Service Template Developer's Guide 136

This chapter describes operations (other than the edit operation) that can be performed on service
templates. For example, you can copy or release service templates.

5 Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 137

5.1 Viewing service templates

You can view the settings of development service templates and release service templates.

5.1.1 Procedure for viewing service templates
You can view the settings of a development service template or release service template in another window while you
edit the flow in a service template. Because the reference window is opened as read-only, there is no risk of the user
inadvertently changing the existing templates.

You can also view the settings of a service template in the Service Builder Home window and Service Template
window. In the Service Template window, you can view release service templates only.

To open a service template for reference purposes:
1. In the Service Builder Home window, select the service template you want to view on the Developing tab or

Released tab, and then click the View button.

Operation result
The Service Builder View window appears.

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 138

5.2 Copying service templates

You can copy a development service template or release service template.

5.2.1 Procedure for copying service templates
You can copy a development service template or release service template and create a new development service template
that retains the settings of the original. You can use this procedure when developing a new service template based on
an existing service template, or when creating an upgraded version of an existing service template.

Important
If you copy a service template that contains a step using a service component, make sure that the release
service template that the service component is based on has been imported to the JP1/AO server. If such a
release service template does not exist on the JP1/AO server, you will not be able to obtain information
about the service component even after the service template is copied.

To copy a service template:
1. In the Service Builder Home window, select the service template you want to copy on the Developing tab or

Released tab, and then click the Copy button.

2. In the Copy Service Template dialog box, set the definition information for the service template, and then click the
OK button.

Figure 5-1: Copy Service Template dialog box

Operation result
The service template is copied, and the Flow tab of the Service Builder Edit window appears. You can continue to
create and edit flows, and set service properties.

You cannot copy a service template without changing at least one of the vendor ID, service template ID, and service
template version. These three items together ensure that the service template can be uniquely identified within the JP1/
AO system. You cannot specify a vendor ID that begins with com.hitachi.software.dna. This string is reserved in

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 139

JP1/AO. If the vendor ID of the service template you are copying begins with com.hitachi.software.dna, the vendor ID
and vendor name are deleted when you copy the template.

Tip
• You can also copy release service templates in the Service Templates window by clicking the Copy

button.

• The information that you entered in the Copy Service Templates dialog box is set to the same service
resource file for the browser locale, and the copy source values are copied to the service resource files
of other locales.

Related topics
• 2.2.4 Items to set in service template definition information
• 5.2.2 Uniqueness of service templates and plug-ins

5.2.2 Uniqueness of service templates and plug-ins
The following three items ensure that service templates and plug-ins can be uniquely identified within the JP1/AO
system:

• Vendor ID

• Service template ID (or plug-in ID)

• Service template version (or plug-in version)

These three items are centrally managed with no distinction made between development service templates (development
plug-ins) and release service templates (release plug-ins). For this reason, you cannot create or copy a service template
or plug-in whose vendor ID, service template ID (plug-in ID), and service template version (plug-in version) all match
those of an existing release service template (or release plug-in).

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 140

Figure 5-2: Managing service template versions

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 141

5.3 Deleting development service templates

You can delete development service templates.

5.3.1 Procedure for deleting development service templates
When you delete a development service template, the definition of the service template is deleted from the JP1/AO
server and from the list under Service Template List.

Important
You can delete a development service template that another user is editing. Make sure that the service
template is not being edited by another user before you delete it.

To delete a development service template:
1. On the Developing tab of the Service Builder Home window, select the service template you want to delete.

2. From the More Actions pull-down menu, select the Delete button.

Operation result
The development service template is deleted.

Tip
• The system does not delete the development plug-ins and release plug-ins used by the development

service template you are deleting, regardless of whether they are used by another service template. If a
development plug-in or release plug-in is no longer needed, you can delete it individually.

• JP1/AO deletes any services that were created by building the development service template you are
deleting, and archives any tasks generated from those services. If a task is in progress, the deletion
processing fails. If any debug services or debug tasks created while debugging the development service
template remain in the system, those services and tasks are deleted. If a debug task is still in progress,
the deletion processing fails.

• If the development service template you are deleting has already been released by another user, the
deletion processing fails.

• To delete release service templates, perform operations in the Service Templates window. For details
about the procedure, see Deleting service templates in the JP1/Automatic Operation Administration
Guide.

Related topics
• 7.2.1 Procedure for deleting plug-ins
• 1.2.4 Notes when an interrupt operation is performed in the Service Builder window
• Deleting service templates in the JP1/Automatic Operation Administration Guide

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 142

5.4 Releasing service templates

After developing service templates and validating them, you can release the service templates.

5.4.1 Overview of service template release
Release is the process of making a service template available to other users after it has undergone validation processing.
When successfully released, a service template is packaged and can be created as a service.

Note that you cannot edit a service template or its plug-ins after the service template has been released. To edit a released
service template or its plug-ins, you need to copy the service template or plug-in and edit the copy.

Objective
Perform a release operation when you want to use a service template in the active environment. A released service
template is packaged as a service template of the Release configuration type, and imported to the JP1/AO server.

Number of releases
You can release a service template only once. When you release a service template, the pre-release development service
template is deleted. Any services that were created from the development service template prior to release are deleted,
and associated tasks are archived. Debug services and debug tasks are deleted.

For details about the specific service templates, services, tasks, debug services, and debug tasks that are deleted and
archived during a release operation, see A.1(5) Deletion and archiving of service templates, services, and tasks during
build and release operations.

Assigned configuration type
After its release, a service template is assigned the Release configuration type. In addition to users in the Admin and
Develop roles, users in the Modify and Submit roles can configure and execute release service templates and the
associated services and tasks that were created. Note that you cannot edit a service template or its plug-ins after the
service template has been released. To edit a released service template or its plug-ins, you need to copy the service
template or plug-in and edit the copy. For details about the configuration types assigned to service templates and plug-
ins by the release processing, see A.1(2) Configuration types assigned to service templates and plug-ins by debug and
release operations.

Output destinations of service templates
When you release a service template, a service template package is created in the folder shown below with the name
vendor-ID_name_version.st.

You can also save a service template package in any folder by exporting the released service template.

In a Windows non-cluster system
JP1/AO-installation-folder\develop\output

In a Linux non-cluster system
/var/opt/jp1ao/develop/output

In a Windows cluster system
shared-folder-name\develop\output

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 143

In a Linux cluster system
shared-folder-name/develop/output

Related topics
• 5.4.2 Procedure for releasing a service template
• 2.1 Overview of development service templates and release service templates
• 5.2.1 Procedure for copying service templates
• (1) Structure of debug and release processes and how they differ
• (2) Configuration types assigned to service templates and plug-ins by debug and release operations
• (5) Deletion and archiving of service templates, services, and tasks during build and release operations

5.4.2 Procedure for releasing a service template
When you select and release a service template, a package is created based on the service template and imported to the
JP1/AO server. If the development environment is the same as the active environment, you are then able to create the
service.

Important
• If a service template has been released, it cannot be re-edited. If you want to edit a released service

template, copy it so that it can be edited.

• If a service template contains a step that uses a service component, make sure that the release service
template that the service component is based on has been imported to the JP1/AO server. If the release
service template has been deleted or has not been imported, the release processing fails.

To release a service template:
1. On the Developing tab of the Service Builder Home window, select the service template you want to release, and

then click the Edit button.

2. In the Service Builder Edit window, click the Release button.

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 144

Figure 5-3: Service Builder Edit window

3. In the confirmation window, click the OK button.

4. In the Build / Release Result dialog box, check the result, and then click the Close button.

Operation result
The service template is released. The release service template is displayed in the Service Templates window.

If the service template has been deleted or released by another user, an error occurs and the release processing fails.

If an error occurs during the release processing, a message is displayed to the operator that describes the cause of the
error and instructs the operator to fix the flow. Then, at the upper right of the Service Builder Edit window, the Error
button is displayed. After you close the message display, you can view the message again by clicking the Error button.
This button is retained in the Service Builder Edit window until the operator closes this window.

Related topics
• 5.4.1 Overview of service template release
• (5) Deletion and archiving of service templates, services, and tasks during build and release operations

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 145

5.5 Exporting service templates

When you want to import to the active environment a service template created in the development environment, first
export the service template package to any folder you want.

5.5.1 Procedure for exporting service templates
After you export a service template that has been built or released, you can save the service template package in any
folder. The following describes the procedure for exporting a developing service template.

To export a developing service template:
1. On the Developing tab of the Service Builder Home window, select the service template you want to export.

2. From the More Actions pull-down menu, select Export.
3. Specify any folder you want, and then click the Save button.

Operation result
The service template package is saved in a folder.

Tip
You can also export a release service template by selecting Export from the More Actions pull-down
menu in the Service Templates window. The service template package is saved in the folder you select in
your Web browser.

Related topics
• 5.6 Importing service templates

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 146

5.6 Importing service templates

When you want to move a service template you developed to another environment, import the service template file to
the destination environment.

5.6.1 Procedure for importing service templates
When you want to move a service template you developed to another environment, you need to import the exported
service template file to the destination environment.

Important
If you import a service template from the Service Builder Home window or the Service Templates window,
the file size must be 100 MB or less.

Tip
We recommend that you use different environments for the development environment for service templates
and the active environment. If the development environment and the active environment are different, use
the service templates created in the development environment after importing them to the active
environment.

When the development environment and the active environment are different, we recommend that you
check the behavior of a service template in the development environment before you actually use the service
template in the active environment. After checking the behavior in the development environment, copy the
service template package to the active environment, and then import the service template.

To import a service template:
1. On the Developing tab of the Service Builder Home window, click the Import button.

2. In the Import Service Template dialog box, click the Browse button.

3. Select a service template file, and then click the Import button.

Operation result
A service template is imported to JP1/AO.

Related topics
• 5.6.2 Importing service templates that contain steps using service components
• 5.5 Exporting service templates
• 5.6.3 Reason for maintaining separate development and active environments

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 147

5.6.2 Importing service templates that contain steps using service
components

If a service template you import contains a step using a service component, the release service template that the service
component is based on is also imported.

Service templates are imported from deeper hierarchy levels. If importing one of the service templates fails, an import
error occurs, and the import processing stops. However, the service templates that have already been imported when
the processing stops remain normally imported.

The following figure shows the behavior when importing a release service template (that a service component in the
service template being imported is based on) fails.

Figure 5-4: Behavior when importing a release service template that a service component is based
on fails

In this figure, importing Service template B (that Service component B is based on) fails. In this situation, Service
template C (which was imported before Service template B) has already been imported. Service template B (for which
import processing failed) and Service template A (which was planned to be imported after Service template B) cannot
be imported.

5.6.3 Reason for maintaining separate development and active
environments

When you develop a service template in a separate environment from the active environment, each environment has its
own set of service share properties.

When the development and active environments are the same
A given service share property has one value within the JP1/AO system. When you change the value of a service
share property, the change affects release service templates in addition to development service templates.

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 148

When the development and active environments are different
The values of service share properties are managed separately in the active and development environments. When
you change the value of a service share property, the change only applies to the service share property associated
with the development service template. It does not affect the service share property associated with the release service
template.

Therefore, we recommend that you keep the development and active environments of the service template separate.
This allows you to prevent changes made during development from affecting the service share properties of the release
service template.

5. Managing Service Templates

JP1/Automatic Operation Service Template Developer's Guide 149

This chapter describes how to create and edit plug-ins. You can use the plug-ins provided by
JP1/AO in an unmodified state, or create and edit plug-ins to define processing that meets a specific
need.

6 Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 150

6.1 Overview of plug-ins

A plug-in defines processing that executes a task.

There are three types of plug-ins in JP1/AO: basic plug-ins, release plug-ins, and development plug-ins. In the
Component area of the Flow tab of the Service Builder Edit window, basic plug-ins and release plug-ins are displayed
in the Release tab, and development plug-ins are displayed in the Develops tab.

For the sake of expedience, plug-ins are separated into basic plug-ins and content plug-ins according to their origin. For
details, see Types of Service Templates and Plug-ins in the JP1/Automatic Operation Service Template Reference.

Tip
In the Component area of the Flow tab of the Service Builder Edit window, the Services tab displays
service components. Service components are release service templates that can be placed as steps in the
Flow area. Thus, service components are not included in the plug-ins described in this manual.

Table 6-1: Types of plug-in

Type Description

Basic plug-in • Displayed in the Release tab.
• A plug-in provided by JP1/AO. A basic plug-in defines generic

processing like email notification and flow repetition.

Content plug-in Release plug-in • Displayed in the Release tab.
• A plug-in that is imported into JP1/AO by a user releasing a service the

user created.
• A plug-in in a service template provided by JP1/AO.
• A plug-in that is imported into the JP1/AO server in released

configuration, is also handled as a release plug-in.

Development plug-in • Displayed in the Develops tab.
• A plug-in that a user created as a new plug-in, which has not yet been

released. A plug-in that is being created based on a copy of an existing
plug-in is also classified as a development plug-in.

• When you build a development service template that includes a
development plug-in, the development plug-in is imported into the JP1/
AO server and can be executed for testing purposes.

• A plug-in that is imported into the JP1/AO server in debug
configuration, is also handled as a development plug-in.

By using plug-ins, you can perform actions like the following:

• Send notification emails and control flow repetition.

• Transfer files and folders between the JP1/AO server and a remote host.

• Connect to a remote host and execute commands and scripts.

In JP1/AO, a user can create a custom content plug-in. Users can also create plug-ins that connect to a remote host and
execute commands and scripts, and incorporate these plug-ins into a service template.

When JP1/AO executes a content plug-in, it uses WMI to connect to operation target devices that are running Windows,
and SSH to connect to UNIX devices. For details about basic plug-ins, see the description of basic plug-ins in the JP1/
Automatic Operation Service Template Reference.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 151

Related topics
• 6.1.1 Available operations by plug-in type
• 6.1.2 Plug-in executors
• 6.1.3 Files transferred to Windows systems
• 6.1.4 Files transferred to UNIX systems
• 6.1.5 Commands required for plug-in execution
• 6.1.6 Locale set for operation target devices during plug-in execution
• 6.1.7 Character set used for communication by JP1/AO during plug-in execution
• 6.1.8 Setting a specific character set during plug-in execution
• (2) Configuration types assigned to service templates and plug-ins by debug and release operations

6.1.1 Available operations by plug-in type
The operations you can perform depend on the type of plug-in selected.

Table 6-2: Available operations by plug-in type

Type Plug-in operation

Show in list Create Edit Delete Copy

Basic plug-in Y N N N N

Development plug-in Y Y Y Y #1 Y

Release plug-in Y N #2 N Y #1, #3 Y

Legend:
Y: Can be performed. N: Cannot be performed.

#1
The plug-in cannot be deleted when being used in a development service template.
The plug-in cannot be deleted if a development service template has been built that incorporates the plug-in you
want to delete as a step. In this case, in the relevant development service template, delete the step that uses the plug-
in and build the template again. You can then delete the plug-in.

#2
If a development service template that incorporates a development plug-in is released, the development plug-in
becomes a release plug-in.

#3
The plug-in cannot be deleted when being used in a release service template.

6.1.2 Plug-in executors
The executor of a plug-in depends on the combination of the setting of the local execution function and the operation
target device.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 152

When local execution function is disabled
When local execution function is disabled, the executor of a plug-in is as follows:

• When the OS of the operation target device is Windows
In most circumstances, the execution user of a command or script is the user who connects to the operation target
device. However, you can also execute commands or scripts with the permissions of the System account after
connecting to the operation target device.
When the operation target device is running Windows, user profiles are not inherited. This means a plug-in can
produce different execution results from a command or script executed on the desktop.
To avoid this issue, do not reference settings in user profiles, such as user environment variables, registry entries,
and the settings of your web brower, when executing a plug-in. If a command or script references an element of a
user profile, the command or script might not behave as expected.

• When the OS of the operation target device is UNIX
Generally, the user who connects to the operation target device is the executor of commands and scripts. JP1/AO
also provides a function that allows you to elevate the executor of a command or script to root privileges.
Note that when a user connects to an operation target device as a user with root privileges, the connection of the
root privileged user must be permitted on the operation target device side.
The following table lists the executors of plug-ins.

Table 6-3: Execution users for plug-ins

Plug-in Elevation to
root privileges#1

User who connected
to operation target
device

Executor of
command or
script#2

• Basic plug-in (general command plug-in, file-transfer
plug-in, or terminal connect plug-in)

• Content plug-in

Enabled User with root privileges User with root
privileges

User without root
privileges

User with root
privileges

Not enabled User with root privileges User with root
privileges

User without root
privileges

User without root
privileges

#1 The process by which the user is elevated to root privileges depends on the plug-in.

• For general command plug-in and file-transfer plug-in:
You can specify whether to elevate the user to root privileges in the plug-in properties. For details about the
elevation of users to root privileges, see the section describing basic plug-ins in the manual JP1/Automatic
Operation Service Template Reference.

• For the terminal connect plug-in:
You cannot configure JP1/AO to elevate users of the terminal connect plug-in to root privileges. To achieve this,
you need to execute the command that elevates the user to root privileges in a terminal command plug-in. For
details about the elevation of users to root privileges, see the section describing basic plug-ins in the manual
JP1/Automatic Operation Service Template Reference.

• For content plug-ins:
You can specify the permissions of the executor by using the Execute with root privileges check box on the
Remote Command tab of the Create Custom Plug-in or the Edit Custom Plug-in dialog box. If you select
this check box, commands and scripts are executed as a user with root privileges. If the check box is not selected,
commands and scripts are executed with the permissions of the user who connected to the operation target device.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 153

Tip
When the Execute with root privileges check box is selected, how you specify the superuser
password depends on the credential type specified on the remote Command tab in the Create
Custom Plug-in or Edit Custom Plug-in dialog box.

• If Shared agentless setting is selected as the credential type for the plug-in
JP1/AO uses the superuser password specified in the definition of the connection destination.

• If Service input property is selected as the credential type for the plug-in
JP1/AO uses the superuser password specified in the plugin.suPassword plug-in property.

#2 In the case of a file-transfer plug-in, this executor is the user who transfers the file. Also, in the case of a terminal
connect plug-in, the command is actually executed by a terminal command plug-in.

When local execution function is enabled
When the local execution function is enabled and the operation target device is the local host, the executors of plug-ins
are as follows :

• When the OS of the local host is Windows
Commands and scripts are executed by a user with System account privileges.

• When the OS of the local host is UNIX
Commands and scripts are executed by a user who has root-user privileges.

Note that the executor for the operation target device that is other than the local host is the same executor as when the
local execution function is disabled.

6.1.3 Files transferred to Windows systems
When a general command plug-in, file-transfer plug-in, or content plug-in executes an operation on a Windows device,
JP1/AO transfers the files shown in the following figure to the device. The files are deleted when the plug-in finishes
executing.

Figure 6-1: Files transferred to Windows systems

Files are transferred when either of the following conditions are met:

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 154

• You use a file-transfer plug-in.

• A script is executed in a content plug-in.

However, when the local execution function is enabled and the operation target is the local host, the file is not transferred
or copied to the local host.

6.1.4 Files transferred to UNIX systems
When a file-transfer plug-in or content plug-in executes an operation on a UNIX device, JP1/AO transfers the files as
listed in the following figure to the device. The files are deleted when the plug-in finishes executing.

Figure 6-2: Files transferred to UNIX systems

Files are transferred in the following circumstances:

• You use a file-transfer plug-in.

• A script is executed in a content plug-in.

However, when the local execution function is enabled and the operation target is the local host, the file is not transferred
or copied to the local host.

You can set working-folder by using the plugin.remoteCommand.workDirectory.ssh key in the user-specified properties
file (config_user.properties). The default is /tmp/Hitachi_AO.

Related topics
• User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration Guide

6.1.5 Commands required for plug-in execution
Certain commands must be installed in the operating system of the operation target device before you can execute plug-
ins. For details, see the Release Notes.

6.1.6 Locale set for operation target devices during plug-in execution
The locale setting that applies to a device on which an operation is performed by a plug-in depends on the operating
system. Below are descriptions of the locale settings applied when plug-ins are executed in each operating system.

In Windows
When JP1/AO executes a script or command on an operation target device, make sure that the locale and character
set of the operation target device match those of the JP1/AO server. The locale and character set are determined by
the settings in the Windows Control Panel that govern date and time formats, user-level display languages, system-
level display languages, and system locale settings.
For details about the character set JP1/AO uses for communication, see 6.1.7 Character set used for communication
by JP1/AO during plug-in execution.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 155

In UNIX
The locale setting applied during plug-in execution depends on the Character Set Auto Judgment setting on the
Remote Command tab of the Create Custom Plug-in or Edit Custom Plug-in dialog box.

• If the Enabled check box is not selected in the Character Set Auto Judgment area
Scripts are executed with the LC_ALL=C locale. Make sure that commands and command parameters consist
only of ASCII characters. If a command parameter, standard output, or standard error output contains non-ASCII
characters, the characters might be garbled and prevent the command from executing normally.

• If the Enabled check box is selected in the Character Set Auto Judgment area
JP1/AO references the default locale of the connecting user and executes the script accordingly.
When executing a script or command on an operation target device, JP1/AO sets the environment variable
LC_ALL and LANG to the default locale of the connecting user. It does not change the settings of LC_XXXXX
environment variables other than LC_ALL.
The locale assigned when executing a script or command is referenced in the order of priority as shown in the
following table.

Table 6-4: Priority of locale settings referenced during plug-in execution

Priority Environment variable

1 Value of LC_ALL

2 Value of LC_CTYPE

3 Value of LANG

If the script or command is encoded in a different character set from the one assigned at plug-in execution, the
characters might be garbled and the script or command might not function properly. Note that the character set
you can use in commands and command parameters depends on the operating system. For details, see 6.1.7 
Character set used for communication by JP1/AO during plug-in execution.

6.1.7 Character set used for communication by JP1/AO during plug-in
execution

The character set that is assigned at plug-in execution and used by JP1/AO for communication depends on the operating
system of the device on which the operation is being performed.

Entries output to the task log and public log by the JP1/AO server are output in UTF-8. For this reason, characters taken
from a character set that is incompatible with the operation target device, machine-dependent characters, and Unicode-
dependent characters might be garbled when output to a log file.

The following describes the character sets assigned at plug-in execution according to the operating system of the
operation target device.

In Windows:
When executing a script or command on an operation target device, make sure that the locale and character set of
the operation target device match those of the JP1/AO server. The locale and character set are determined by the
settings in the Control Panel.

In UNIX:
When executing a script or command on an operation target device, the character sets the JP1/AO server can use
for communication are limited to those shown below as output by the locale charmap command. Note that the
output of the locale charmap command is not case sensitive.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 156

• EUC-JP

• eucjp

• ibm-943C

• ISO-8859-1

• MS932

• PCK

• Shift_JIS

• UTF-8

• windows-31j

If the command returns a character set that is not one of those listed here, UTF-8 is assigned as the character set.
Note that if the output of the locale charmap command is IBM-943, JP1/AO uses the ibm-943C character set
for communication when executing the plug-in.
To find out which character set JP1/AO is using, use an SSH client or the ssh command to log in as the connection
user, and then execute the locale charmap command. If you want to automatically change the character set
when the connection user logs in, use a login script or other means to assign values to environment variables at login.
You can change the character set at login by assigning a value to the LC_ALL or LANG environment variable.
If you want to assign a specific character set, see 6.1.8 Setting a specific character set during plug-in execution.

Note that if local execution function is enabled, the default character set for the System account or root user applies. In
this case, the following processing is not performed:

• Character set auto judgment by the locale charmap command

• Character set setting by a character-set mapping file

• Character set setting by a connection-destination property file

6.1.8 Setting a specific character set during plug-in execution
If you want the JP1/AO server to use a specific character set for communication when performing an operation on a
UNIX device, enter the appropriate setting in a character-set mapping file, or in the terminal.charset key of a connection-
destination property file.

If you specify a character set in a character-set mapping file and in the terminal.charset key of a connection-destination
property file, the character set is assigned in the order of priority shown in the following table.

Table 6-5: Priority of character set settings during plug-in execution

Priority Setting

1 Character set specified in the terminal.charset key of the connection-destination property file

2 Character set specified in the character-set mapping file

3 Character set returned by the locale charmap command on the operation target device

4 UTF-8

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 157

Related topics
• Connection-destination property file (connection-destination-name.properties) and Character-set mapping

file (charsetMapping_user.properties) in the JP1/Automatic Operation Configuration Guide

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 158

6.2 Creating and editing plug-in definition information

After you create, edit, or copy a plug-in, set the definition information.

6.2.1 Procedure for creating plug-ins
Users can create new plug-ins to meet a specific need.

To create a plug-in:
1. In the Service Builder Home window, from the Custom Plug-in Actions pull-down menu, select Create.

2. In the Create Custom Plug-in dialog box, enter the definition information for the plug-in and then click the Save
button.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 159

Figure 6-3: Create Custom Plug-in dialog box

Tip
You can also create a plug-in while editing a service template by clicking the Create button on the
Developing Plug-in tab of the Flow tab of the Service Builder Edit window.

Operation result
A plug-in is created.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 160

Related topics
• 6.2.3 Items to set in plug-in definition information

6.2.2 Procedure for editing plug-in definition information
You can edit the definition information for development plug-ins. When you want to edit a release plug-in, copy a
development plug-in and then edit it.

To edit the definition information for a plug-in:
1. In the Service Builder Home window, from the Custom Plug-in Actions pull-down menu, select Edit.
2. In Custom Plug-in List, select the plug-in you want to edit, and then click the Edit button.

3. In the Edit Custom Plug-in dialog box, set the definition information of the plug-in, and then click the Save button.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 161

Figure 6-4: Edit Custom Plug-in dialog box

Operation result
The definition information of the plug-in is set.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 162

Important
If you are editing the properties of a plug-in that has been placed as a step in a flow, make sure that the
settings of the step properties are appropriate. If there is an inconsistency between the settings for the plug-
in properties and the step properties, an error will occur when you build or release the service template.

Tip
You can also edit a plug-in while editing a service template by clicking the Edit button on the Developing
Plug-in tab of the Flow tab of the Service Builder Edit window.

Related topics
• 6.2.3 Items to set in plug-in definition information

6.2.3 Items to set in plug-in definition information
The following table lists the items you can set on each tab when you create, edit, or copy a plug-in.

Table 6-6: Items to set in plug-in definition information (General tab)

Item Description

Key Name#1 Specify the ID that identifies the plug-in.

Version#1 Specify the version number of the plug-in in aa.bb.cc format.

Vendor ID#1 Specify the ID that identifies the vendor who created the plug-in.
Create a vendor ID that is unique within the system by specifying the domain name in reverse
order from the top level as a period-separated value. For example, specify the vendor ID as
com.xxxx or jp.co.yyyy. If you choose not to use domain names for vendor IDs, make sure that
the vendor ID you specify is not being used for another vendor ID.
Note that you cannot specify a vendor ID that begins with com.hitachi.software.dna.

Display Name Specify the name of the plug-in.

Vendor Name#2 Specify the name of the vendor who created the plug-in.

Description Specify the description for the plug-in.

Tags Specify the tags you define for the plug-in. You can specify multiple tags. The total number of
characters for all tags combined must be no more than 256, including the characters for all tag
names set for the plug-in and the commas inserted between tags.

Icon The icon set for the plug-in is displayed. Clicking the Restore Default Icon button changes the
icon set for the plug-in back to the default. Clicking the Change button displays the dialog box
where you can select the icon file to be uploaded and change the icon. For the icon, set the file
in .png format (48 x 48 pixels).

#1
You cannot change the values for Key Name, Version, and Vendor ID after you create or copy a plug-in.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 163

#2
If you omit specifying the value for this item, the value set for Vendor ID will be set for Vendor Name. Note that
Vendor Name for a development plug-in displayed in the Flow tab of the Service Builder Edit window remains
blank.

Table 6-7: Items to set in plug-in definition information (Property tab)

Item Description See

Input Properties# You can define properties for storing input values necessary for
executing the plug-in.

6.3 Setting plug-in properties

Output Properties# You can define properties for storing the execution results of the plug-
in.

#
You can define no more than 100 properties (as the total of input and output properties) for a plug-in.

Tip
You can filter the displayed properties by clicking the icons for input and output properties.

Table 6-8: Items to set when a plug-in is created or edited (Remote Command tab)

Item Description

Credential Type Select the credential type for the plug-in from the following:
• Shared agentless setting

Select this option when you use the credential type set in the Agentless Remote
Connections area when executing a service.

• Service input property
Select this option when you specify authentication information by using an input property.

Windows Options If you select the Run as system account check box, commands and scripts executed on the
destination host are executed with the permissions of the System account.

Linux/UNIX Options • Execute with root privileges
Select the check box to run commands and scripts on the connection destination host as an
executor with root privileges.

• Character Set Auto Judgment
Select the check box to enable the Character Set Auto Judgment functionality.

Platform Set a command or script that can be executed on the operation target host. Set this item for
each OS.
For details about the items you can set, see 6.4 Editing platforms.

Related topics
• 6.2.4 Image files that can be set for component icons
• 6.2.5 Plug-in credential types

6.2.4 Image files that can be set for component icons
You can set any image for each component icon displayed in the Flow tab of the Service Builder window.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 164

Set a plug-in icon when you create or edit a plug-in. For a service component, the service template icon set in the
definition information of the service template is used as the component icon. If you do not set any icon, the default plug-
in icon or default service template icon is set.

Figure 6-5: Default plug-in icon

Figure 6-6: Default service template icon

You can set an image file that satisfies the conditions below for an icon. If you specify a file that does not satisfy the
conditions, an error occurs when the file is registered.

File format
PNG format

Image size
48 x 48 pixels

The file name of the image registered as an icon is changed to icon.png.

Note that you can select and re-register an image file that has already been registered. In this case, the existing registered
file is deleted, and replaced with the re-registered file.

6.2.5 Plug-in credential types
The following properties are set automatically according to the option selected for Credential Type in the Create
Custom Plug-in dialog box or the Edit Custom Plug-in dialog box:

When Shared agentless setting is selected for Credential Type
• plugin.destinationHost

When Service input property is selected for Credential Type
• plugin.destinationHost

• plugin.account

• plugin.password

• plugin.suPassword

• plugin.publicKeyAuthentication

• plugin.keyboardInteractiveAuthentication

Related topics
• 6.3.6 Reserved plug-in properties for specifying execution-target hosts and authentication information

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 165

6.3 Setting plug-in properties

After you create definition information for a plug-in, you can set the input properties and output properties for the plug-
in.

6.3.1 Overview of plug-in properties
By defining plug-in properties, you can specify parameters necessary for executing plug-ins, or obtain the execution
results of plug-ins. The following types of plug-in properties exist:

Input property
You can define input properties as properties used to store the input values necessary for executing plug-ins (for
example, arguments used by the remote command, and operation target hosts).

Output property
You can define output properties as properties used to store the execution results of plug-ins (for example, the
execution results of the remote command, such as the standard output or standard error output).

Plug-in properties are valid only in the plug-in for which the properties are defined.

The maximum size of an input property for a plug-in is 1,024 characters when a composite-type service property has
not been mapped, or 30MB when a composite-type service property has been mapped. If the specified value exceeds
the maximum value, the excess part of the value is truncated.

A plug-in property whose property key and intended use are predefined is called a reserved plug-in property. You need
to define reserved plug-in properties as plug-in properties to specify the execution host of a remote command or
authentication information.

Related topics
• 6.3.2 Procedure for adding plug-in properties
• 6.3.3 Procedure for editing plug-in properties
• 6.3.6 Reserved plug-in properties for specifying execution-target hosts and authentication information

6.3.2 Procedure for adding plug-in properties
You can add plug-in properties when creating or editing plug-ins.

To add a plug-in property:
1. In the Service Builder Home window, perform operations for creating or editing a plug-in.

2. In the dialog box that appears, select the Property tab, and from the Add pull-down menu, select Input Property
or Output Property.

3. In the dialog box that appears, enter the definition information for the plug-in property.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 166

Figure 6-7: Specify Input Property for Custom Plug-in dialog box

4. Click the OK button.

Operation result
A plug-in property is added.

Related topics
• 6.3.4 Items to set for plug-in input properties
• 6.3.5 Items to set for plug-in output properties
• 6.3.1 Overview of plug-in properties
• 6.2.1 Procedure for creating plug-ins
• 6.2.2 Procedure for editing plug-in definition information

6.3.3 Procedure for editing plug-in properties
You can edit plug-in properties when editing plug-ins.

To edit a plug-in property:
1. In the Service Builder Home window, perform operations for editing a plug-in.

2. In the dialog box that appears, on the Property tab, select the row that corresponds to the property you want to edit,
and then click the Edit button.

3. In the dialog box that appears, edit the definition information for the plug-in property.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 167

Figure 6-8: Edit Input Property for Custom Plug-in dialog box

4. Click the OK button.

Operation result
The definition information for the plug-in property is set.

Related topics
• 6.3.4 Items to set for plug-in input properties
• 6.3.5 Items to set for plug-in output properties
• 6.3.1 Overview of plug-in properties
• 6.2.2 Procedure for editing plug-in definition information

6.3.4 Items to set for plug-in input properties
In the Specify Input Property for Custom Plug-in dialog box or Edit Input Property for Custom Plug-in dialog
box, you can set the items shown in the following table.

Table 6-9: Items to set for the definition information of plug-in input properties

Item Description

Key Specify the property key. You cannot change the value for this item when you have selected a
reserved plug-in property.

Name Specify the property name.

Description Specify the description for the property.

Required If you select the Required check box, entering a value for this item will be required. You cannot
change the value for this item when you have selected the plugin.destinationHost,
plugin.publicKeyAuthentication, or plugin.keyboardInteractiveAuthentication reserved plug-in
property.

Default Value Specify the default value for the property.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 168

6.3.5 Items to set for plug-in output properties
In the Specify Output Property for Custom Plug-in dialog box or Edit Output Property for Custom Plug-in dialog
box, you can set the items in the following table.

Table 6-10: Items to set for the definition information of plug-in output properties

Item Description

Key Specify the property key.

Name Specify the property name.

Description Specify the description for the property.

6.3.6 Reserved plug-in properties for specifying execution-target hosts
and authentication information

A reserved plug-in property is a plug-in property whose property key and intended use are predefined in the JP1/AO
system.

The names of reserved plug-in properties start with plugin.. Reserved plug-in properties are created automatically
in the Input Properties area of the following dialog boxes:

• Create Custom Plug-in dialog box

• Edit Custom Plug-in dialog box

Reserved plug-in properties are only valid in the context of the plug-in for which they are defined.

Although you can edit some aspects of a reserved plug-in property, other aspects such as the property key and whether
certain parameters are mandatory cannot be changed. You cannot delete a reserved plug-in property.

Reserved plug-in property for specifying execution-target hosts
The reserved plug-in property shown in the following table is automatically created to specify the execution-target host.

Table 6-11: Reserved plug-in property for specifying the execution-target host

Property key Description

plugin.destinationHost Specify the target host of an operation by IPv4 address, IPv6 address, or host name. You must
specify a target host in a network configuration in which the JP1/AO server and the command
execution environment can communicate directly with each other. However, if the OS on the
JP1/AO server is Linux and the OS on the operation target device is Windows, you cannot specify
an IPv6 address for the connection destination.
You can specify a value from 1 to 256 characters long.

Reserved plug-in property for specifying authentication information
As the credential type of a plug-in, for the Credential Type option on the Remote Command tab of the Create Custom
Plug-in or Edit Custom Plug-in dialog box, select Shared agentless setting or Service input property.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 169

Shared agentless setting
Select this option to use the authentication information set in the Agentless Remote Connections area. When you
select this option, JP1/AO uses the authentication information specified in the connection destination definition for
Windows, SSH, or Telnet connections, depending on the operation-target host.

Service input property
Select this option to use the authentication information specified in a property.

When you select Service input property, the reserved plug-in properties shown in the following table are automatically
created in the list of input properties in the Create Custom Plug-in dialog box or Edit Custom Plug-in dialog box.
Note that if local execution function is enabled and the execution host is the local host, these settings are ignored.

Table 6-12: Reserved plug-in properties for specifying authentication information

Property key Description

plugin.account Specify the user ID for logging in to the target host in 1 to 256 characters.

plugin.password Specify the password for logging in to the target host in 1 to 256 characters.
If true is specified for the plugin.publicKeyAuthentication reserved plug-in property, JP1/AO ignores the value
set for the plugin.password property.

plugin.suPassword Specify the password of the root account used to log in to a target host in a UNIX environment, using 1 to 256
characters.
The root password you specify is ignored in the following circumstances:
• The target host is running Windows.
• The Execute with root privileges check box is not selected in the Create Custom Plug-in dialog box or

the Edit Custom Plug-in dialog box.

plugin.publicKeyAuthentica
tion

This property specifies whether to use public key authentication for SSH connections to target hosts in UNIX
environments. If you do not specify a value, false is the default value.
• true

Specify this value to use public key authentication.
• false

Specify this value to not use public key authentication.#

plugin.keyboardInteractive
Authentication

This property specifies whether to use keyboard interactive authentication for SSH connections to target hosts
in UNIX environments. If you do not specify a value, false is the default value.
Note that the value for plugin.keyboardInteractiveAuthentication is enabled only when false is specified for
plugin.publicKeyAuthentication. If true is specified for plugin.publicKeyAuthentication, public key
authentication is set even if true is specified for plugin.keyboardInteractiveAuthentication.
• true

Specify this value to use keyboard interactive authentication.
• false

Specify this value to not use keyboard interactive authentication.#

#
If you specify false for both plugin.publicKeyAuthentication and plugin.keyboardInteractiveAuthentication
properties, password authentication is set.

6.3.7 About dynamic changes to values set for the input properties for
plug-ins

Dynamic changes to values set for the input properties for plug-ins are same as services.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 170

For details, see the topic 4.2.7 About dynamic changes to values set for the input properties for services and plug-ins.

6.3.8 Procedure for deleting plug-in properties
You can delete plug-in properties when editing plug-ins.

Tip
You cannot delete reserved plug-in properties.

To delete a plug-in property:
1. In the Service Builder Home window, perform operations for editing a plug-in.

2. In the dialog box that appears, select the row that corresponds to the property you want to delete on the Property
tab, and then click the trash can icon.

Operation result
A plug-in property is deleted.

Related topics
• 6.2.2 Procedure for editing plug-in definition information
• 6.3.6 Reserved plug-in properties for specifying execution-target hosts and authentication information

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 171

6.4 Editing platforms

You can set the commands or scripts that plug-ins execute on the operation-target hosts.

6.4.1 Procedure for editing platforms
You can assign a platform to a plug-in. You can set different platforms for each operating system.

To edit a platform:
1. In the Service Builder Home window, perform operations for creating or editing a plug-in.

2. In the dialog box that appears, click the Remote Command tab, and edit the items in the Platform area.

Figure 6-9: Platform (when Script is selected for the execution method)

3. Click the Save button.

Operation result
The platform to be executed by the OS on the operation-target host is set.

Related topics
• 6.4.2 Items to set for platforms
• 6.2.1 Procedure for creating plug-ins
• 6.2.2 Procedure for editing plug-in definition information

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 172

6.4.2 Items to set for platforms
In the Platform area, select the operating system on which the remote command will be executed from the Add Platform
pull-down menu.

If you select another OS in the Import Settings pull-down menu, the definition information of the remote command
targeted to the selected OS is loaded. The following OSs are supported:

• Windows

• Linux

Note that you need to upload the attached file for the specified OS after the definition information is loaded because the
attached file is not loaded automatically.

The following table lists the items you can set on the tab for the selected operating system.

Table 6-13: Items to set on tab for selected OS

Item Description

Execution Method Select the execution method of the remote command.
• Script

Select this option when you want to set a script created by a user.
• CLI Command

Select this option when you want to set a command stored in the operation-target device.

CLI Command Enter the command line to be executed. If you click the Insert Input Property button, all input properties
defined for the plug-in are displayed. When you select a property or properties to insert and click OK, the
property or properties are input in the format "?dna_property-key?". You can select multiple properties by
selecting the check boxes beside the property keys. There is a space at the beginning of the property format.

Script specification method If you select Script for the Execution Method radio button, select the method for specifying the script.
• Attachment

Select this option when you want to attach the script.
• Type in

Select this option when you want to directly enter the script.

File If you select Attachment for the Script specification method radio button, the name of the attached file
is displayed. If you click the Browse button, a dialog box appears in which you can select the script file to
be attached.

File Name If you select Type in for the Script specification method radio button, enter the file name of the script
entered in the Script text box. The script entered in the Script text box is uploaded with the file name set
for this item.

Script If you select Type in for the Script specification method radio button, enter the script you want to execute
on the operation-target device.

Mapping Definition of
Output Properties

Displays a list of mapping definitions of output properties. If you want to store part of the standard output
and standard error output of a commands or script in an output property, click the pencil icon beside the
property in which you want to store the information. This allows you to edit the output filter.

Details Execution Directory Enter the directory where the
command or script is to be
executed on the target device.

Environment Variables Displays a list of environment
variables required to execute
commands or scripts. You can
add, edit, or delete environment
variables.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 173

Related topics
• 6.4.3 Procedure for setting commands
• 6.4.4 Method for specifying scripts
• 6.4.12 Procedure for mapping standard output and standard error output to output properties
• 6.4.14 Specifying Execution Directory
• 6.4.15 Procedure for adding and editing environment variables

6.4.3 Procedure for setting commands
Set the command that is appropriate for the operating system on the operation target host (Windows or Linux). When
creating a plug-in that is compatible with multiple operating systems, set a command for each operating system.

The commands you set must be scripts or commands that are present on and executable by the operation target device.

The commands executed in plug-ins can have return values in the range from 0 to 63.

Plug-ins and service templates must be designed in such a way that standard output and standard error output produce
less than 100 KB of data. When the standard output or standard error output of a plug-in exceeds 100 KB, the command
is immediately killed and the plug-in terminates with an error. In this scenario, the results of execution of the command
cannot be guaranteed.

Important
Interactive commands and script that seek user input and commands that do not end automatically using a
GUI display or the like cannot be executed.

If you connect to the execution target server with protocol SSH and the general command plug-in outputs
KNAE08107-E and fails, the command that the specified in a general command plug-in may clear the
standard input. In that case, identify the command that is clearing the standard input and prevent clearing
the standard input. An example of how to prevent clearing of standard input is to specify < /dev/null
in the command.

To set a command:
1. Click the Remote Command tab in the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. In the Execution Method area of the Platform, click CLI Command.

3. Enter the command line in CLI Command, and then click the Save button.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 174

Figure 6-10: Platform (when CLI Command is selected for the execution method)

Related topics
• 6.4.7 Specifying commands in the CLI Command text box
• 6.4.8 Procedure for using the return value of a command or script as a flow branching condition (for values

outside the 0 to 63 range)

6.4.4 Method for specifying scripts
You can set a script for each OS to create plug-ins that match the OS on the operation target device. You can define a
script or command that exists and can be executed on the operation target device.

You can re-register the script file that has already been registered. The existing file is overwritten when the file is re-
registered.

Difference between the methods for specifying scripts
You can specify a script by attaching a script file that has been created, or by directly entering the script. The differences
between these two methods is described below.

When Attachment is selected:
If you use zip format, you can register a script composed of multiple files or multiple folders.
Note that compressed files with zip extension are renamed when you save plug-ins in the JP1/AO server. The file
name is changed to windows.zip or linux.zip, depending on the OS. You can download the file you registered by
selecting Attachment, to the terminal on which you perform JP1/AO operations via a Web browser. If you directly
enter a script, you cannot download the script file you defined.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 175

When Type in is selected:
In the Edit Remote Command dialog box, directly enter the content of the script you want to execute on the
operation target device. You can define a script or command that exists and can be executed on the operation target
device. In this case, you can define only one script file. The character set and linefeed code for the script to be saved
are fixed depending on the OS on the operation target device.
Therefore, if you want to register a script file composed of multiple files or if you want to set any character set and
linefeed code you want, select Attachment.

The following table describes the differences in character sets and linefeed codes that are set and how to register files,
between the settings for Script specification method.

Table 6-14: Difference between the methods of setting scripts

Item When Attachment is selected When Type in is selected

Windows Linux Windows Linux

Registration of a file Can be registered. Can be registered.

Registration of multiple files Can be registered. Cannot be registered.

Character set for the script to
be saved

The character set for the registration file is set. The default character set for the
OS on the JP1/AO server

UTF-8

Linefeed code for the script to
be saved

The linefeed code for the registration file is set. CR+LF LF

Notes on creating script files
Note the following when you create a script file:

• Use ASCII characters for a script file. You cannot use the following characters:

• Control characters ('\u0000' to '\u001F', or '\u007F' to '\u009F')

• Question marks (?), asterisks (*), double quotation marks ("), right angle brackets (>), left angle brackets (<),
vertical bars (|), and colons (:)

• You cannot use multi-byte characters for file path and file name.

• The scripts executed in plug-ins can have return values in the range from 0 to 63.

• Plug-ins and service templates must be designed in such a way that standard output and standard error output produce
less than 100 KB of data. When the standard output or standard error output of a plug-in exceeds 100 KB, the script
is immediately stopped and the plug-in terminates with an error. In this scenario, the results of execution of the script
cannot be guaranteed.

• The locale used when a script is executed differs, depending on the OS on the operation target device. For details
about the locale set for the operation target device, see 6.1.6 Locale set for operation target devices during plug-in
execution.

• Interactive commands and script that seek user input and commands that do not end automatically using a GUI
display or the like cannot be executed.

• If you connect to the execution target server with protocol SSH and the general command plug-in outputs
KNAE08107-E and fails, the command that the specified in a general command plug-in may clear the standard
input. In that case, identify the command that is clearing the standard input and prevent clearing the standard input.
An example of how to prevent clearing of standard input is to specify < /dev/null in the command.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 176

Tip
For details about the setting of return values when a command or script is executed, see 6.4.9 Return values
of content plug-ins.

Related topics
• 6.4.5 Procedure for setting scripts (when attaching created scripts)
• 6.4.6 Procedure for setting scripts (when directly entering scripts)
• 6.4.8 Procedure for using the return value of a command or script as a flow branching condition (for values

outside the 0 to 63 range)
• 6.4.10 Relationship of command and script return values to the return values of plug-ins and steps

6.4.5 Procedure for setting scripts (when attaching created scripts)
You can set the script to be executed on the operation target host, by specifying an attached file.

To attach a script that has already been created:
1. Click the Remote Command tab on the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. In the Execution Method part of the Platform area, select the Script option.

3. In the CLI Command text box, enter the command that executes the script.
Although only one script file can be registered, you can register a script that consists of several files and folders in
a hierarchical structure by compressing the files into a zip archive. If the script is a single file, specify the file name
in the CLI Command text box. If the script is a zip archive containing multiple files, specify a relative path whose
current directory is the location where the archive will be extracted.

Figure 6-11: Platform (when Attachment is selected for the script specification method)

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 177

4. In the Script specification method area, select the Attachment option.

5. In the File area, click Browse and register the script.

Operation result
A script file is set.

Related topics
• 6.4.4 Method for specifying scripts
• 6.4.7 Specifying commands in the CLI Command text box

6.4.6 Procedure for setting scripts (when directly entering scripts)
You can set the script to be executed on the operation target host, by directly entering the script.

To directly enter a script:
1. Click the Remote Command tab in the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. In the Execution Method area in the Platform, select the Script option.

3. In the CLI Command text box, enter the command that executes the script.

4. In the Script specification method area, select the Type in option.

5. Enter values in the File Name field and the Script text box.
In the File Name field, enter the name of the file in which to store the code entered in the Script text box. In the
Script text box, enter the script code.

Figure 6-12: Platform (when Type in is selected for the script specification method)

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 178

Operation result
A script file is set.

Related topics
• 6.4.4 Method for specifying scripts
• 6.4.7 Specifying commands in the CLI Command text box

6.4.7 Specifying commands in the CLI Command text box
The information you can enter in the CLI Command text box depends on the option specified for Execution Mode
and whether you choose to specify the value of an input property as an argument of the command you are executing.

In the CLI Command text box, you can specify characters other than control characters (\u0000 to \u001F and \u007F
to \u009F). However, JP1/AO does not check the validity of the command entered in the CLI Command text box.
Therefore, enter a command for which validation has been completed.

Note that special characters specified in the CLI Command text box, such as those used to indicate environment
variables, will not be escaped. However, depending on the selection of Operating System, the following characters are
automatically escaped when the values of mapped input properties are passed to the command line:

• In Windows: %

• In UNIX: $, `, \, "

When mapping an input property as a command line argument, enclose the value of the argument in double quotation
marks (for example, "?dna_property-key-of-plug-in-property?"). When executing a PowerShell script, you can enclose
the value in double or single quotation marks.

If Operating System is Windows and the value of an input property contains a double-quotation mark, an error will
occur when the plug-in is executed.

When Script is specified for Execution Method
Create the script to be executed on the target device, and enter the command that calls the script in the CLI Command
text box. If the script is a single file, specify the file name. If the script is a zip archive containing multiple files, specify
a relative path whose current directory is the location where the archive will be extracted.

The script is copied to a temporary folder under the folder specified in Execution Directory.

If Operating System is Linux, the command line is automatically prefixed with ./ when the command is executed. You
do not need to manually add the prefix. If you specify ./ in the command line, the script file appears after ././ but still
works normally. Special characters, such as those used to indicate environment variables in the command line, are not
escaped.

The following shows how to enter information in the CLI Command text box when the Script option is specified for
Execution Method:

Example of specifying information in the CLI Command text box
cmd.exe /q /c "AAA.bat bbb ccc"

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 179

Example of script file (AAA.bat) contents

If the value in Operating System is Windows, the command is converted to a batch file and executed on the operation
target device. For this reason, the results of the command might differ from those of the same command executed at the
command prompt.

When CLI Command is specified for Execution Method
Enter the command to be executed on the operation target device directly in the CLI Command text box. You do not
need to create a script.

The following shows how to enter information in the CLI Command text box when the CLI Command option is
specified for Execution Method:

Example of specifying information in the CLI Command text box
zzz.exe aaa bbb

When specifying input property values as command arguments
To specify the value of an input property in an argument of a command, specify ?dna_property-key-of-plug-in-
property? in the CLI Command text box.

Example of specifying information in the CLI Command text box
scriptA.sh -xx ?dna_input01? -yy ?dna_input02?

In this example, ?dna_input01? is replaced with the value of the plug-in property input01, and ?dna_input02? is replaced
with the value of the plug-in property input02.

When specifying a non-standard script
JP1/AO executes scripts using cmd.exe when the operation target device is running Windows, and the user's login shell
when the device is running UNIX. If you want to run a non-standard script, you need to define the instructions required
to run the executable file that implements the script.

The following shows an example of running a PowerShell script from the command prompt and establishing a connection
with vCenter:

Example of specifying information in the CLI Command text box

powershell -executionPolicy RemoteSigned -command ".\vsphereConnectChallenge.ps1 '
?dna_vCenterServerName?' '?dna_userName?' '?dna_password?' '?dna_portNumber?' '?dn
a_protocol?'; exit $LASTEXITCODE" 2>&1

• PowerShell cannot execute scripts by default. By specifying powershell -executionPolicy
RemoteSigned in the command line, you can execute a local PowerShell script on an operation target device
of JP1/AO.

• Here, ?dna_property-key? is a variable replaced with the value of a property. Enclose ?dna_property-key? with
double or single-quotation marks.#

This allows the properties specified in the CLI Command text box to be passed to the shell even if the property
has a null value.
If you enclose a property with double-quotation marks (") in PowerShell and that property has a null value,
PowerShell skips the property. If you enclose it in single-quotation marks ('), the property is interpreted as a null

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 180

value and not skipped. By avoiding double-quotation marks ("), you can ensure that the script is executed as
originally defined in terms of the order and content of arguments.

Related topics
• 6.4.9 Return values of content plug-ins
• 6.4.10 Relationship of command and script return values to the return values of plug-ins and steps
• 6.4.11 Information output to standard output by plug-ins
• 6.4.14 Specifying Execution Directory

6.4.8 Procedure for using the return value of a command or script as a
flow branching condition (for values outside the 0 to 63 range)

When a command or script executed in a plug-in returns a value outside the 0 to 63 range, you can use the return value
as the branch condition for a flow by following the procedure below.

To use the return value of a command or script as the branch condition of a flow:
1. When creating or editing a plug-in, specify the Script option for Execution Mode in the Platform.

2. Create a script that outputs the return value of the command it executes to standard output.

3. In the Edit Output Filter dialog box, enter a regular expression that assigns the return value of the command or
script output to standard output to an output property of the plug-in.

4. Configure output property mapping so that the value of the plug-in output property assigned in step 3 is assigned to
a service property (variable).

5. Configure a branch by property value plug-in (which is a basic plug-in) to judge the value of the service property
(variable) assigned in step 4.

Operation result
The return value is set as the branch condition for a flow.

Related topics
• 6.4.10 Relationship of command and script return values to the return values of plug-ins and steps
• branch by property value plug-in in the JP1/Automatic Operation Service Template Reference

6.4.9 Return values of content plug-ins
The following table lists the return values of content plug-ins.

Table 6-15: Return values of content plug-ins

Return value Description

0 to 63# The meaning of the return value differs between content plug-ins.

64 A command executed in the content plug-in terminated with a return value outside the 0 to 63 range.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 181

Return value Description

65 The connection to the JP1/AO server failed. For example, the JP1/AO server might have stopped during plug-in
execution.

66 The following user is mapped to the JP1 user:
• A user who does not belong to the Administrators group
• A user with UAC enabled who is not the built-in Administrator of the Administrators group

68 The system cannot find information for the applicable job execution ID.

70 The connection to the remote host failed.

71 One of the following reasons applies:
• An attempt to call a command failed.
• An attempt to move to the execution directory failed.
• An attempt to set an environment variable failed.

72 One of the following reasons applies:
• An attempt to acquire the execution status of a command failed.
• The total data output to the standard output and standard error output exceeds 100KB.

73 File transfer failed.

74 File deletion failed.

76 The connection timed out.

77 The host name of the remote host could not be resolved.

78 Authentication with the remote host failed for one of the following reasons:
• Password authentication failed.
• Public key authentication has not been set up on the operation target device.
• In public key authentication, the private key does not match the pass phrase.
• In public key authentication, the private key does not correspond to the public key registered in the operation

target device.
• In public key authentication, an invalid private key was used.
• Keyboard interactive authentication failed.

80 Task execution has stopped.

81 The plug-in was called in an invalid status.

83 The environment of the JP1/AO server is corrupted.

84 Information about the specified plug-in could not be obtained.

86 The specified property value is invalid.

127 An unspecified error has occurred.

#
For plug-ins created in the Service Builder Home window, the return values are the same as for the command or
script the plug-in is executing. If the plug-in is a content plug-in provided by JP1/AO, see the description of the
content plug-in in the manual JP1/Automatic Operation Service Template Reference.

Related topics
• 6.4.10 Relationship of command and script return values to the return values of plug-ins and steps

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 182

6.4.10 Relationship of command and script return values to the return
values of plug-ins and steps

In most circumstances, the return value of a command or script serves as the return value of the plug-in. When content
plug-ins and general command plug-ins execute commands and scripts on connection destinations, the return value of
the command or script is used as the return value of the plug-in. This does not apply to the terminal command plug-in,
which does not set the return value of the command or script as the return value of the plug-in.

You can use values in the range from 0 to 63 as the return value of a command or script. If the command or script returns
a value outside this range, the plug-in returns 64, indicating that the returned value was outside the 0 to 63 range. If the
command or script could not be executed, the plug-in returns a value of 65 or higher that indicates the cause of the
failure.

Although the return value of the plug-in is generally the return value of the step, the values might differ in certain
circumstances, such as an error occurring during plug-in execution. In this case, take the appropriate action based on
the return value of the step.

Related topics
• 6.4.8 Procedure for using the return value of a command or script as a flow branching condition (for values

outside the 0 to 63 range)

6.4.11 Information output to standard output by plug-ins
The standard output and standard error output of the commands and scripts specified in the CLI Command text box
serve as the standard output of the plug-in.

However, plug-ins and service templates must be designed so that the standard output of the plug-in does not exceed
100 KB. If the standard output of a plug-in exceeds this size, the command is immediately forcibly terminated and the
plug-in ends in an error. In this situation, the results of execution of the command cannot be guaranteed.

The size of standard output includes the data added by JP1/AO. For this reason, you need to include some leeway over
the standard output and standard error output of the plug-in when estimating the standard output of a plug-in.

Size of plug-in standard output (when the operation target device is running UNIX)
Number of linefeed codes (LF) × bytes

When the operation target device is running UNIX, the carriage return character CR (0x0d) is replaced with the linefeed
character LF (0x0a) in standard output and standard error output. LF (0x0a) is appended to the end of standard output
and standard error output if the last character is not a linefeed character (CR/LF/CR+LF).

• LF (0x0a) is left unchanged.

• CR (0x0d) is replaced with LF (0x0a).

• CR+LF (0x0d0a) is replaced with LF+LF (0x0a0a).

Related topics
• 6.4.12 Procedure for mapping standard output and standard error output to output properties

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 183

6.4.12 Procedure for mapping standard output and standard error output
to output properties

You can map the standard output and standard error output of a command or script to an output property.

By default, the output filters are blank for properties in the list of mapping definition of output properties. This means
that the entire standard output and standard error output of commands and scripts is stored in output properties. To
extract values from standard output and standard error output and map them to output properties, define regular
expressions in the Edit Output Filter dialog box.

To map standard output or standard error output to an output property:
1. Click the Remote Command tab in the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. Select a property in the list of mapping definitions of output properties, and then click the pencil icon.
Only output properties that you registered when setting the plug-in properties that appear in the list of mapping
definitions of output properties.

3. In the Edit Output Filter dialog box, enter a PCRE-compliant regular expression for the output filter, and then click
the OK button.

Figure 6-13: Edit Output Filter dialog box

Tip
You can also edit the filter by entering the new filter directly in the text box for the output filter.

4. You can verify the output filter you set by entering a sample of standard output and standard error output in the
Verification of the Output Filter > Standard Output / Standard Error Output text box. The results of the test
appear in Results.

Operation result
The value extracted by the output filter is displayed in the Results area.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 184

Related topics
• 6.4.13 Specifying Output Filter

6.4.13 Specifying Output Filter
This section describes how to store the standard output of a command or script in an output property.

By defining a PCRE-compliant regular expression in the Output Filter field, you can extract character strings from the
standard output and standard error output of a command or script, and store them in the output property of a plug-in.

Important
• The parts grouped by parentheses are extracted by the regular expression.

• If you specify multiple groups in the regular expression, only values that match the first group are stored
in the output property of the plug-in.

• If the regular expression applies to multiple value ranges, only the first range of values is stored in the
output property of the plug-in. Multiple value ranges cannot be stored in an output property.

• If you specify "(.*)", You can extract the character string from the beginning to the line feed of the
character string including the line feed, such as the execution result of any command.

The following describes how to specify a regular expression that stores the standard output of a command or script in
an output property:

• Key: output01
• Output Filter: DATE=(.*)

When you specify an output filter in this way, the value immediately following DATE= in standard output is stored in
the output property output01.

To store the return value of a script in an output property, define the plug-in and create a script as follows:

• In the Platform , specify the Script option for Execution Method.

• Create a script whose standard output displays the return value of the command or script in a format that is filtered
by the regular expression specified in the output filter.

6.4.14 Specifying Execution Directory
This section describes how to specify the absolute path to the folder in which scripts or commands are executed. For
the execution directory, specify characters that can be used with the commands of the OS on the JP1/AO server and of
the OS on the operation target device.

Do not enclose the path to the execution directory by double quotation marks (") or single quotation marks (') even if
the path contains a space character. If you enclose the path by quotation marks, execution of the plug-in fails. Also, you
must create the execution directory on the operation target host in advance, and if necessary, change the permissions.
At least, you need to grant necessary permissions to users who execute plug-ins.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 185

If the OS on the operation target host is Windows, create the execution directory on the same drive with the working
folder. If the execution directory is not correctly created in advance, execution of plug-ins might fail.

You can specify the execution directory in Execution Directory, or in the user-specified properties file
(config_user.properties) or connection-destination property file (connection-destination-name.properties). The
execution directory is set according to the following order of priority:

1. The value specified in Execution Directory

2. The value specified for the common.executionDirectory key in the connection-destination property file (connection-
destination-name.properties)

3. The value specified for the plugin.remoteCommand.executionDirectory.wmi key (when the operation target host is
running Windows) or the plugin.remoteCommand.executionDirectory.ssh key (when the operation target host is
running UNIX) in the user-specified properties file (config_user.properties).

4. The value of the %TEMP% environment variable (when the operation target host is running Windows) or /tmp
(when the operation target host is running UNIX)

Note that the behavior of JP1/AO differs as follows, depending on the value specified for Execution Method.

When Script is specified for Execution Method
A script is copied to the temporary folder that has a unique name and is specified in Execution Directory. The script
is executed in the temporary folder. Note that the copied script and temporary folder are deleted after execution of the
script finishes.

When CLI Command is specified for Execution Method
The command line is executed by using the directory specified in Execution Directory.

6.4.15 Procedure for adding and editing environment variables
You can add environment variables to remote commands, or edit existing environment variables.

To add or edit an environment variable:
1. Click the Remote Command tab in the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. In the Platform area, under Details > Environment Variables, click the Add button. To edit an existing environment
variable, select the environment variable and click the Edit icon.

Figure 6-14: Create Environment Variable dialog box

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 186

3. In the dialog box that appears, set the name and value for the environment variable, and then click the OK button.

Operation result
The environment variable is set.

Related topics
• 6.4.1 Procedure for editing platforms
• 6.4.16 Procedure for deleting environment variables

6.4.16 Procedure for deleting environment variables
You can delete environment variables defined for remote commands.

To delete an environment variable:
1. Click the Remote Command tab in the Create Custom Plug-in or Edit Custom Plug-in dialog box.

2. In the Platform dialog box, under Details > Environment Variables, select the environment variable you want to
delete, and then click the Delete icon.

3. A dialog box (confirmation screen) appears asking you to confirm that you want to delete the environment
variable. Click OK.

Operation result
The environment variable is deleted.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 187

6.5 Using resource files to set plug-in display information

This section describes how to assign resource files to plug-ins, and define the information to be displayed in windows
for each Web browser locale. For example, you can display plug-in names in the language that is appropriate for the
locale of the Web browser.

6.5.1 Procedure for setting plug-in resource files
You can set the information displayed for a plug-in by entering settings in a plug-in resource file. You can edit the plug-
in resource file directly by downloading the file and overwriting it.

You cannot set display information for plug-ins in released service templates.

To set a plug-in resource file:
1. In the Service Builder Home window, from the Custom Plug-in Actions pull-down menu, select Set Resources.

2. In the Custom Plug-in List dialog box, select a plug-in, and then click the Set Resources button.

3. In the Set the Plug-in Resources dialog box, click the link to the plug-in resource file, and download the file.

Figure 6-15: Set the Plug-in Resources dialog box

4. Edit the plug-in resource file you downloaded.

5. Click the Refresh button, select the plug-in resource file you edited, and upload the file.
If the plug-in resource file you uploaded is not named plugin_language-code.properties.txt, an error occurs.

6. In the conformation dialog box, click the OK button.

Important
When you upload the plug-in resource file, the existing file is overwritten with the contents of the new
file. Take care not to upload the wrong file.

language-code is a two-character language code (ja, en, or zh) as defined in ISO-639

Operation result
Display information of the plug-in is set according to the contents of the resource file.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 188

Related topics
• 6.5.2 Format of plug-in resource files
• 6.5.3 Correspondence between properties in plug-in resource files and information displayed for plug-ins

6.5.2 Format of plug-in resource files
A plug-in resource file defines the items displayed in the JP1/AO user interface. The file has the following format:

• The file name of the plug-in resource file is plugin_language-code.properties.txt.
language-code is a two-character language code (ja, en, or zh) as defined in ISO-639.

• Define the file contents in the format property-key delimiting-character setting-value. As the delimiting character,
you can use an equals sign (=), a colon (:), a tab character (\t), or a single-byte space.
For example, enter a definition in the format plugin.displayName=TestPlugin.

• Enter one property key and setting per line.

• Property keys can be 1 to 128 characters long, and can contain the following characters:

• Single-byte alphanumeric characters

• Single-byte hyphens (-)

• Single-byte underscores (_)

• Single-byte periods (.)

• Characters must be encoded in UTF-8.

• If you define the same property key in the file more than once, the value of the last occurrence of the property key
applies.

• Lines that begin with a hash mark (#) are handled as comments.

• Property keys are case sensitive.

• To specify a character string that contains a forward slash (\), specify two forward slashes (\\) instead.

• Lines that consist only of single-byte spaces are ignored.

• On each line of the plug-in resource file, the property key is the character string from the first character that is not
a single-byte space to the character immediately preceding the first delimiting character.

• The setting value is the string from the first non-delimiting character after the delimiting character following the
property key to the last character of the line.
For example, the following line represents the property key abc with the setting value =\tc:
abc\t=\tc
However, if the character immediately following the first delimiting character is = or :, the setting value is the
character string from the next character that is not a single-byte space or \t to the end of the line.
For example, the following line in the plug-in resource file represents the property key abc with the setting value =
\tc:
abc\t=\t=\tc

• Surrogate pair characters are ignored.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 189

6.5.3 Correspondence between properties in plug-in resource files and
information displayed for plug-ins

You can set the display information for plug-ins from the user interface. This information is also defined in the plug-in
resource file. The following table lists the correspondence between the display information of a plug-in and the properties
in the plug-in resource file.

Table 6-16: Correspondence between properties in plug-in resource file and display information

Plug-in display information Property in plug-in resource file

Plug-in name plugin.displayName

Vendor name plugin.vendorDisplayName

Description plugin.shortDescription

Input property name / Output property name property.property-key.displayName

Input property description / Output property description property.property-key.description

6.5.4 Plug-in resource files automatically generated when plug-ins are
created

When a plug-in is created, a plug-in resource file is automatically generated. Two types of plug-in resource files can be
generated: plug-in resource files that use the same language as the Web browser locale, and plug-in resource files for
English. However, if the locale of the Web browser is English, only the one for English is generated.

The values shown in the following table are set for the generated plug-in resource files.

Table 6-17: Default values of display information defined in plug-in resource files (when plug-ins
are created)

Display information to be defined Value set by default

Same language as the Web browser
locale

Resource file for English that is
automatically generated#

Vendor name Value specified when the plug-in is created,
copied, or edited

Vendor ID

Plug-in name Plug-in ID

Description for the plug-in Blank

Plug-in input property name, plug-in output
property name

Property key

Plug-in input property description, plug-in
output property description

Blank

#
If the Web browser locale is English, see the Same language as the Web browser locale column for the contents of
the generated plug-in resource file.

The following gives examples of plug-in resource files that are automatically generated when you create plug-ins.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 190

Values specified in the window

Vendor ID: test.vendor
Plug-in ID: test.plugin
Plug-in version: 10.00.00
Plug-in name: test.plugin
Vendor name: test.vendor
Description: This plugin is for testing purposes.

Generated plug-in resource file

plugin.vendorDisplayName=test.vendor
plugin.displayName=test.plugin
plugin.shortDescription=This plugin is for testing purposes.

6.5.5 Plug-in resource files updated when plug-ins are edited
If you edit and save a plug-in, the plug-in resource file for the same language as the Web browser locale is updated.

However, if you add or delete the definition of display information or update property keys, the change is also applied
(for consistency) to plug-in resource files for languages other than the Web browser locale.

If you add the definition of display information, the values described in the table below are added to the definition in
the plug-in resource files for languages other than the Web browser locale. If you update a property key when you update
the definition of display information, the values in the plug-in resource files for languages other than the Web browser
locale are automatically overwritten and set with the values in the table below. Therefore, if you want to view the old
information (the information prior to being overwritten), back up the plug-in resource files for languages other than the
Web browser locale.

Table 6-18: Values of display information to set in plug-in resource files

Display information to define Value to be set

Plug-in input property name, plug-in output property name Property key

Plug-in input property description, plug-in output property description Blank

If you delete the definition of display information, the corresponding definition information is also deleted from the
plug-in resource files for languages other than the Web browser locale.

To set display information for languages other than the Web browser locale, you need to manually create, edit, and
upload the plug-in resource file. When you create a plug-in resource file manually, we recommend that you download
and use the plug-in resource file for a locale for which display information has been set.

6.5.6 Displaying plug-ins by using a Web browser with a locale for which
the plug-in resource file has not been created

If you display plug-ins by using a Web browser with a locale for which the plug-in resource file has not been created,
the plug-in resource file for English is loaded, and the window is displayed.

6. Creating and editing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 191

In addition to creating or editing plug-ins, you can also copy or delete them.

7 Managing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 192

7.1 Copying plug-ins

This section describes how to copy development plug-ins or release plug-ins.

7.1.1 Procedure for copying plug-ins
You can copy a development plug-in or release plug-in to create a new development plug-in that retains the settings of
the original. Use this procedure when you want to develop a new plug-in based on an existing plug-in, or to create a
modified version of an existing plug-in.

To copy a plug-in:
1. In the Service Builder Home window, from the Custom Plug-in Actions pull-down menu, select Copy.

2. In the Custom Plug-in List dialog box, select the plug-in you want to copy in the Release tab or Develops tab, and
then click the Copy button.

3. In the Copy Custom Plug-in dialog box, change at least one from plug-in ID, plug-in version, and vendor ID, and
then click the Save button.
You cannot specify a vendor ID that begins with com.hitachi.software.dna because such IDs are reserved by
JP1/AO. If the vendor ID of the original plug-in begins with com.hitachi.software.dna, the vendor ID and vendor
name are removed when the plug-in is copied.

Figure 7-1: Copy Custom Plug-in dialog box

Tip
To copy a plug-in while editing a service template, select the plug-in you want to copy on the Developing
Plug-in or Released Plug-in tab of the Flow tab of the Service Builder Edit window, and then click the
Copy button.

7. Managing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 193

Operation result
The plug-in is copied and you can then set the definition information for the plug-in.

Related topics
• 6.2.3 Items to set in plug-in definition information
• 6.2.2 Procedure for editing plug-in definition information

7. Managing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 194

7.2 Deleting plug-ins

This section describes how to delete development plug-ins or release plug-ins.

7.2.1 Procedure for deleting plug-ins
You can delete plug-ins that appear in the Developing tab and Releases tab in the Custom Plug-in List dialog box.
When you delete a plug-in, the definition of the plug-in is deleted from the JP1/AO server, and the plug-in disappears
from the Component area in the Flow tab of the Service Builder Edit window.

However, you cannot delete a plug-in that is being used by a development service template or a release service template.
Nor can you delete a plug-in if a development service template has been built that uses that plug-in as a step. In this
scenario, delete the step from the development service template, and build the service template again. You will then be
able to delete the plug-in.

To delete a plug-in:
1. In the Service Builder Home window, from the Custom Plug-in Actions pull-down menu, select Delete.

2. In the Release tab or Developing tab of the Custom Plug-in List dialog box, select the plug-in you want to delete,
and then click the Delete button.

Figure 7-2: Custom Plug-in List dialog box (delete)

Tip
You can delete a plug-in while editing a service template by selecting the plug-in you want to delete in the
Developing Plug-in or Released Plug-in tab of the Flow tab of the Service Builder Edit window, and
then clicking the Delete button.

Operation result
The plug-in is deleted.

7. Managing plug-ins

JP1/Automatic Operation Service Template Developer's Guide 195

After creating a service template, you can perform a validation process to make sure that the service
template operates as intended in the active environment.

8 Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 196

8.1 Overview of service template validation

This section describes the general procedure for validating service templates and provides an overview of building,
debugging, and operation testing.

8.1.1 General procedure for validating service templates
After creating or editing a service template, build and debug the service template to check for problems in flow transitions
and plug-in processing. If problems are found, edit the affected service template or plug-in, and then build and debug
the service template again. When all problems have been resolved, perform an operation test by executing the service
in the development environment.

The following figure shows the general procedure for validating service templates.

Figure 8-1: General procedure for validating service templates

Building
1. After creating or editing a service template, build the service template to prepare it for the operation check.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 197

Debugging
1. If the build process is successful, debug the service template to find problems in flow or in the plug-ins. When you

debug the service template, a debug service and debug task are generated.

2. Check the execution results of the debug task. If any problem is found, amend the service template, and then rebuild
and debug the amended service template.
Repeat the process of amending, building, and debugging the service template until all problems are resolved.

Operation test
1. After all problems have been resolved, perform an operation test by creating and executing the service in the

development environment.
Check the execution results. If any problems are found, amend the affected service template or plug-in, and then
rebuild and debug the amended service template.

If there are no further problems, release the service template.

Note that you can perform debugging and operation tests on an as-needed basis.

Related topics for building service templates
• 8.1.2 Overview of building

• 8.2 Building service templates

Related topics for debugging service templates
• 8.1.3 Overview of debugging

• 8.3 Debugging service templates

• 8.4  Managing debug tasks

Related topics for testing the operation of service templates
• 8.1.4 Overview of operation tests

• 8.5 Testing the operation of service templates

8.1.2 Overview of building
Building is the process of preparing a service template you created or edited in the Service Builder window for
validation. When building is successful, the service template is packaged so that it can be debugged and used for creating
a service.

Objective
Building is performed to prepare a development service template for validation. The service template you have built is
packaged as a debug configuration service template, and then imported to the JP1/AO server.

Number of executions
You can build a service template any number of times. If the debugging or operation test reveals a problem with the
service template, you must repeat the series of operations, from amending the development service template or
development plug-in to building, debugging, and testing its operation, until all problems are resolved.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 198

If you edit and rebuild a service template that has already been debugged, JP1/AO deletes the debug service and debug
task that were previously generated. If you rebuild a service template after testing its operation, JP1/AO deletes the
service that was previously generated and archives the task. For details about the services and tasks archived and deleted
during build operations, see A.1 (5) Deletion and archiving of service templates, services, and tasks during build and
release operations.

Assigned status
After building, a service template is set to Debug status. Only users in the Admin or Develop role can view and work
with service templates in Debug status and the services and tasks created from those service templates.

Output destinations of service templates
When you build a service template, a service template package is created in one of the following folders with the name
vendor-ID_name_version_d.st:

In a Windows non-cluster system
JP1/AO-installation-folder\develop\output

In a Linux non-cluster system
/var/opt/jp1ao/develop/output

In a Windows cluster system
shared-folder-name\develop\output

In a Linux cluster system
shared-folder-name/develop/output

Related topics
• 2.1 Overview of development service templates and release service templates
• 8.1.1 General procedure for validating service templates
• 8.2.1 Procedure for building service templates
• A.1 Reference information for build and release operations

8.1.3 Overview of debugging
Debugging is the process of using the Service Builder Debug window to check the operation of a service template you
have built, and identify problems in its flow or plug-ins. When you debug a service template, a debug service and debug
task are created. The debug process involves executing this debug task.

If debugging reveals a problem, stop debugging and then edit the affected service template or plug-in and then correct
the problem.

Objective
Debugging is performed to make sure the flow and plug-ins of a service template are working as intended. For example,
you can confirm that property mapping is configured correctly and that the flow branches as intended in the design
based on the conditions for executing subsequent steps. In the Service Builder Debug window, you can:

• Execute debug tasks while checking the flow transitions at all hierarchical levels (including hierarchy flows and
repeated execution flows) and the results of plug-in processing.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 199

• Execute debug tasks while making sure that property values are assigned correctly according to the property mapping
settings.

• If you detect a problem with a plug-in, you can change property values and return value of any step and re-execute
the debug task. This allows you to check the plug-in processing and flow transitions when a given value is assigned
as the step-property value or return value.

Number of executions
You can debug a service template any number of times. If debugging reveals a problem with the service template, you
must repeat the series of operations, from amending the development service template or development plug-in to building
and debugging, until all problems are resolved.

Debug services
A debug service is generated and executed during debugging of a service template. One debug service is generated per
service template. If you debug a service template that has already been debugged, JP1/AO deletes the previously
generated debug service, and then creates a new one.

Note that debug services appear in the Service Name column in the Tasks window (Debug tab), but do not appear in
the Services window.

Debug tasks
A debug task is generated for a debug service during debugging of a service template. If you debug a service template
that has already been debugged, JP1/AO deletes the previously generated debug task, and then creates a new one.

Debug tasks appear in the Service Builder Debug window and Tasks window (Debug tab). Only users in the Admin
or Develop role can view and work with debug tasks.

Note that debug tasks do not appear in the task summary.

Related topics
• 2.1 Overview of development service templates and release service templates
• 8.1.1 General procedure for validating service templates
• 8.3.2 General procedure for debugging service templates
• 8.3.3 Functions used during debug operations
• 8.3.4 Example of debugging service templates

8.1.4 Overview of operation tests
An operation test is the process of creating a service from a service template you have built, and then executing the
service in the development environment to confirm that the service template is ready for real-world use.

If the operation test reveals a problem, you can edit the service template or plug-in in the Service Builder window.

Objective
An operation test is performed by executing a service generated from the service template to confirm that the service
operates correctly in the active environment. You can also test the usability of the service template by creating and
executing services from the Services window in a way that reflects real-world use. For example, you can specify a

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 200

schedule type of the service to confirm that the operation is appropriate for your purpose, and to make sure that the
properties are visible or values can be edited.

Number of executions
You can perform any number of operation tests for a given service template. If the operation test reveals a problem with
the service template, you must repeat the series of operations, from amending the development service template or
development plug-in to building, debugging, and testing its operation, until all problems are resolved.

Related topics
• 2.1 Overview of development service templates and release service templates
• 8.1.1 General procedure for validating service templates
• 8.5.1 Procedure for testing the operation of service templates
• Managing services in the JP1/Automatic Operation Administration Guide
• Executing services in the JP1/Automatic Operation Administration Guide
• Managing Tasks in the JP1/Automatic Operation Administration Guide

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 201

8.2 Building service templates

This section describes how to build service templates.

8.2.1 Procedure for building service templates
When you select and build a service template, a service template package is created and imported to the JP1/AO server.
You can then debug and test the service template.

Important
If you edit the definition of a plug-in that is placed as a step in a flow, the mapping settings defined for the
step might become inconsistent with the step properties. In this case, an error will occur when you build
the service template. If an error occurs, resolve the mismatch by reviewing the property settings and plug-
in placement.

To build a service template:
1. In the Service Builder Edit window, click Debug.

2. In the confirmation window, click OK.
The results of the build process appear in the Build / Release Result dialog box. If the build is successful, the
Perform Debugging dialog box appears.

Figure 8-2: Build / Release Result dialog box

3. If you want to then debug the service template, click OK in the Perform Debugging dialog box. For details about
how to start debugging, see 8.3.5 Procedure for starting debugging.
If you do not want to debug the service template, click Cancel.

If an error occurs during the build process, a message dialog box indicating the cause of the error prompts you to amend
the flow. At this time, the Error button appears at the upper right of the Service Builder Edit window. After closing
the message dialog box, you can view the message by clicking the Error button. This button remains on screen until
you close the Service Builder Edit window.

If the service template you are working with has already been released or deleted by another user, an error occurs and
the build process fails.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 202

Related topics
• 1.2.4 Notes when an interrupt operation is performed in the Service Builder window
• 8.1.1 General procedure for validating service templates
• 8.1.2 Overview of building
• A.1 Reference information for build and release operations

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 203

8.3 Debugging service templates

You can use the Service Builder Debug window to debug service templates.

8.3.1 Service Builder Debug window
The Service Builder Debug window is used to debug service templates. This window is displayed by clicking OK in
the Perform Debugging dialog box.

Figure 8-3: Service Builder Debug window

The following describes the items displayed in this window.

Back to Editor button
When you click this button, the Service Builder Debug window closes and the Service Builder Edit window
appears. At this time, the debug task that is running is forcibly stopped.

Important
You must use the Back to Editor button to close the Service Builder Debug window. If you use another
button to close the Web browser, the debug task will remain running and you will be unable to edit the
service template on which it is based. If you used a button other than the Close button to close the
Service Builder Debug window, use the Tasks window to stop the debug task.

Debug area
This area is used to specify settings when executing a debug task and performing operations on a debug task that is
in progress.

Enter Response button
You can enter a response to a debug task that is waiting for a response.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 204

Resubmit pull-down menu
You can retry a debug task that is in Completed or Failed status. You can select the retry method from Retry
the Task, Retry From Failed Step, or Retry From Next To Failed Step.

Resume button
Resumes execution of an interrupted debug task.

Interrupt button
Interrupts execution of a debug task.

Forcibly Stop button
Forcibly stops execution of a debug task.

Step Into button
Executes the interrupted step up to the next point in that step at which execution can be interrupted.

Step Over button
Executes the interrupted step and then stops execution at the point in the next step at which step execution is
interrupted.

Step Return button
Executes the steps in the flow at the second or lower level and then stops execution at the first point in the upper
flow at which step execution can be interrupted.

Set Break Point button
Sets breakpoints for a selected step. If breakpoints have already been set for the step you selected, you can cancel
them.

Debug Modes pull-down menu
You can specify whether to perform plug-in processing when executing a step.

Step Information area
Displays the step ID, step name, and status of the selected step.

Step Properties area
Displays the property values of the selected step. You can edit the property values by clicking . For input
properties of a step that uses service components, click the Edit pull-down menu to assign values in the Create
Service or Submit Service window. Click Import or Export to import or export the step properties by using a
property file.

Flow area
Displays the execution order of the steps as a flow. You can check the step status, whether breakpoints are set, and
whether the step can be interrupted.

Flow Tree area
This area is used to select the level of flow to be displayed in the flow area. The flow names defined in the service
template are displayed in hierarchical layers. If you click a flow name, the flows under that flow appear in the flow
area.

Task Log tab
Displays the task log data for the debug task that is in progress. You can download the contents of the task log.

Service Properties tab
Displays a list of service properties specified in the service template for each property group. However, variables
are not displayed.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 205

Break Points tab
Displays the names of steps for which breakpoints are set, and the level of the flow where the step is placed. Click
the Remove All Break Points button to cancel all the breakpoints. Right-click a displayed step to cancel breakpoints
or select that step in the flow area.

8.3.2 General procedure for debugging service templates
If the build process is successful, debug the service template to find problems in its flow or plug-ins.

The following describes the general procedure for debugging a service template.

1. If you do not expect any problems when executing all plug-ins in the service template, you must first execute the
debug task without pausing between steps.
Make sure that there are no problems with the flow transitions or the processing of the plug-ins.
If the service template contains any component that you do not want to execute at this time, skip this step and start
from step 2.

2. If you find a problem with a flow transition or the processing of a plug-in, interrupt the execution between steps
during debugging to identify the precise location and nature of the problem. You can set breakpoints for any step.
If necessary, you can also check the operation by changing the values of input and output properties. You can debug
the service template any number of times from the Resubmit pull-down menu in the Service Builder Debug
window.

3. In the Service Builder Edit window, amend the service template.

4. Build and debug the service template again, repeating steps 1 to 4 until all problems are resolved.

5. Make sure that all problems have been resolved, and then finish the debugging.

Tip
After executing a debug task, you do not need to perform the build operation again if you repeat the
debugging without amending the service template.

Related topics
• 8.1.1 General procedure for validating service templates
• 8.1.2 Overview of building
• 8.1.3 Overview of debugging
• 8.3.3 Functions used during debug operations
• 8.3.4 Example of debugging service templates

8.3.3 Functions used during debug operations
The table below describes the functions relating to debugging of service templates. When debugging service templates,
use the functions that are appropriate for your purpose.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 206

Table 8-1: Functions used during debug operations

Function Description Reference

Setting up debug
tasks

You can specify the definition information of the debug service and debug task, the task
log output level, and information about debug service properties.

8.3.5 Procedure for starting
debugging

Setting up step
execution

You can execute a debug task without pausing between steps (like execution of normal
tasks), or by interrupting a step before and after processing of the plug-in. A combination
of the following methods can be used for steps in a debug task.
• Do not stop after each step

Like execution of a normal task, processing of the debug task proceeds without
pausing between steps. You can check the execution results of the debug task and
identify steps where problems occur.

• Stop after each step
Execution of the debug task pauses before or after plug-in processing for a selected
step. This allows you to check the property values and return values.

8.3.9 Operations for
interrupting step executions
during debugging

Skipping plug-in
processing

You can skip plug-in processing and continue processing as if execution of the step has
been completed.

8.3.11 Procedure for skipping
plug-in processing during
debugging

Checking
property
mapping settings

You can display the values of step properties in the Debug area. By viewing this
information together with the service property values displayed on the Service
Properties tab, you can check whether property mapping is configured correctly.

8.3.13 Procedure for
checking property mapping
settings during debugging

Changing
information in a
step

You can change a property value and return value of a step to any value.
• You can interrupt a step before the plug-in processing for that step is performed, and

then change the values of input properties.
• After plug-in processing is skipped or executed, you can interrupt a step and then

change the values of output properties or a return value.

8.3.14  Procedure for
changing step property values
or return value during
debugging

Retrying tasks You can use the following ways to retry a failed debug task:
• Resubmit

You can execute the debug task as a new one without rebuilding it.
• Retry From Failed Step

You can resume task execution from the failed step.
• Retry From Next To Failed Step

You can resume task execution from the next step, as if the failed step had finished
normally.

8.3.19 Procedure for
debugging a service template
again without rebuilding,
8.3.20 Procedure for retrying
a task from a failed step during
debugging, and 8.3.21 
Procedure for retrying a task
from the step after the failed
step during debugging

Displaying flow
information

You can use the following ways to display the flow of a debug task:
• Flow view

In the Service Builder Debug window and Tasks window, you can view the status
of steps and the flow transitions at each hierarchical level.

• Flow Tree view
In the Service Builder Debug window, you can view flow hierarchies in tree format.
You can also identify interrupted steps in each flow hierarchy.

8.3.22 Displaying debug task
flow, 8.3.23 Displaying the
flow tree of a debug task, 8.4 
Managing debug tasks

Displaying task
logs

The contents of the task log can always be displayed on the Task Log in the Service
Builder Debug window. You can configure JP1/AO to automatically refresh and
download the contents of the task log.

8.4.3 Procedure for checking
task log entries for debug tasks

Managing debug
tasks

You can do the following for debug tasks:
• Check the progress
• Check detailed information
• Stop execution
• Forcibly stop
• Delete

8.4  Managing debug tasks

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 207

Related topics
• 8.3.2 General procedure for debugging service templates
• 8.3.4 Example of debugging service templates

8.3.4 Example of debugging service templates
When debugging a service template, users need to adjust various settings according to the aspects of the service template
they want to check.

The following shows an example of the operations a user performs when debugging a service template.

This example describes the procedure for debugging a service template in the following scenario:

Problems with service template being debugged

Problem 1:
There is a problem with mapping settings between a service property and input property of Step A.

User objectives

Objective 1:
Check the execution results of other steps before amending the service template.

Objective 2:
If a problem is found in the property mapping, prevent processing of the plug-in in the step.

Objective 3:
Change the step property of Step B, and then check the results of processing of Plug-in B.

Objective 4:
Check the results of processing of Plug-in C.

Figure 8-4: Example of debugging a service template

1. The debug task starts, and then Step A is automatically interrupted before processing of Plug-in A is performed.
When Step A is interrupted, in the Debug area, check the value of step property Input A. Make sure that the value
of service property Input 1 has been mapped correctly in the Service Properties tab.
This process allows you to identify the problem with the mapping settings of step property Input A (Problem 1).

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 208

2. A problem is found in the property mapping. Therefore, according to Objectives 1 and 2, you must skip the processing
of Plug-in A to proceed with the debug task. In the Debug area, from the Debug Modes pull-down menu, select
Run plugin in dry-run mode.

3. To change the step property value and perform processing of Plug-in B as described in Objective 3, click the Step
Over button () to advance the debug task up to the point before the processing of Plug-in B.
Processing of Plug-in A is skipped and execution of Step A ends. Then, Step B is interrupted before the processing
of Plug-in B is performed.

4. In the Debug area, from the Debug Modes pull-down menu, select Run plugin in execution mode.

5. Change the value of the input property of Step B.

6. In the Debug area, click the Resume button ().
After processing of Plug-in B is performed, Step C is executed according to the subsequent-step execution condition,
and then the debug task terminates.

7. To meet Objectives 3 and 4, check the execution results of Steps B and C in the Debug area, flow area, and Task
Log tab.

8. In the Service Builder Debug window, click Back to Editor.
The Service Builder Debug window closes.

9. In the Flow tab of the Service Builder Edit window, amend the property mapping settings for Step A.

10. Save the service template, and then debug the service template again.

Related topics
• 8.1.1 General procedure for validating service templates
• 8.1.2 Overview of building
• 8.1.3 Overview of debugging
• 8.3.2 General procedure for debugging service templates
• 8.3.3 Functions used during debug operations
• 8.3.9 Operations for interrupting step executions during debugging

8.3.5 Procedure for starting debugging
If the build process of a service template is successful, you can start debugging. To do this, you must specify the definition
information for the debug service and debug task, task log output level, and debug service property information.

Note that schedule type is set to immediate execution when debugging is performed.

To start debugging:
1. In the Perform Debugging dialog box, specify the definition information for the debug service and debug task, task

log output level, and debug service property information.
To specify properties, from the Edit pull-down menu, select From Create Service Window or From Create
Request Window, and then specify the properties in the window that appears. You can also read properties from
the property file.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 209

Figure 8-5: Perform Debugging dialog box

2. Click OK.

Operation results
The Service Builder Debug window appears, and then execution of the debug task starts.

After the debug task starts, the first step is interrupted before processing of the plug-in for that step is performed. You
can resume execution of the step by clicking Resume in the Debug area.

Important
• The Perform Debugging dialog box shows the status of the service template when it was built the last

time by the current debugging user. If another user edits and builds the same service template after the
debugging user, the changes do not apply to the contents of the service template shown in the Perform
Debugging dialog box.

• A debug task is forcibly terminated in the following circumstances:
• The JP1/AO server stops.
• Failover to another node in a cluster system occurs.

• If you close your Web browser during the debugging, the debug task is interrupted, and you will be
unable to execute subsequent processing. In this case, you need to log in again and stop the debug task
in the Debug area of the Tasks window. Note that the Service Builder Debug window you closed does
not re-appear. To execute the debug task again, you need to rebuild the service template, and then restart
debugging.

• After you build the service template, if another user builds the same service template before you start
the debugging, an error occurs when you click OK in the Perform Debugging dialog box.

• A single JP1/AO system can execute a maximum of 10 plug-ins concurrently in a debug task. For details
about the maximum number of plug-ins that can be executed concurrently and what happens when the

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 210

number exceeds this limit, see Maximum number of concurrently executable plug-ins in a task in the
JP1/Automatic Operation Administration Guide.

• The status of debug tasks is subject to JP1 event reporting and email notification.

Related topics
• 8.3.6 Settings used when starting debugging
• 8.3.3 Functions used during debug operations
• 8.3.7 Procedure for debugging without pausing between steps
• 8.3.9 Operations for interrupting step executions during debugging

8.3.6 Settings used when starting debugging
In the Perform Debugging dialog box, you can specify the definition information for the debug service and debug task,
task log output level, and debug service property information.

Table 8-2: Items displayed in the Perform Debugging dialog box

Item Description

Service Name Enter the name of the debug service. The default is [DEBUG]name-of-service-template-to-be-executed.

Tags Enter the tag of the debug service. The default is tag-of-service-template-to-be-executed.

Task Enter the name of the debug task. The default is [DEBUG]name-of-service-template-to-be-
executed_current-time(YYYYMMDDhhmmss).

Description Enter the description of the debug task. This field is empty by default.

Service Group Select the service group in which to register the debug service. The default is DefaultServiceGroup.

Task Log Level Select the level of messages output to the task log. The default is 40.
The log output level you select applies only to the debug task. It has no effect on the existing, shared, built-
in service property (com.hitachi.software.dna.sys.task.log.level).

Properties The values of the input properties of the service are displayed. Default values are assigned according to the
service property definitions set when creating the service template.
To change property values, from the Edit pull-down menu, select From Create Service Window or From
Create Request Window, and then change the properties in the window that appears. You can also click
Import to enter values from the property file or click Export to output the specified values.
Note that the property values set in this area are specific to the debug task, and do not affect service share
properties elsewhere in the system. Therefore, the values you set will not affect other services that reference
the service share properties.
To reset the service property values to the default values specified for the service template, click Restore
Default.

Related topics
• Overview of property files in the JP1/Automatic Operation Administration Guide

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 211

8.3.7 Procedure for debugging without pausing between steps
When you start the debug task, step execution is interrupted before processing of the plug-in contained in the first step
is performed. Then, like normal tasks, you can execute the debug task without pausing between steps. At this time, you
cannot change step property values or the return value.

Procedure for debugging without pausing between steps:
1. If breakpoints are set for the step, on the Break Points tab, click the Remove All Break Points button.

2. In the Debug area, from the Debug Modes pull-down menu, select the item appropriate for what you want to do
with the plug-ins.
For example, if you want to confirm that the task terminates normally or check for problems with flow
transitions, select Run plugin in execution mode. If you want to skip processing of all plug-ins up to the step with
a breakpoint specified, select Run plugin in dry-run mode.

3. In the Debug area, click the Resume button ().

Operation results
The debug task is executed without pausing up to the specified breakpoint. In the Service Builder Debug window,
check the execution results and, if necessary, edit the service template or plug-ins.

Related topics
• 8.3.5 Procedure for starting debugging
• 8.3.6 Settings used when starting debugging
• 8.3.22 Displaying debug task flow
• 8.4.3 Procedure for checking task log entries for debug tasks

8.3.8 Timing with which step execution can be interrupted
A step can be interrupted before and after processing of a plug-in contained in that step is performed.

Before processing of a plug-in means the time immediately after input properties are generated after step execution is
started. At this time, the status of the step is Interrupted.

After processing of a plug-in means the time immediately after output properties and return value are output. At this
time, the status of the step is Interrupted (After Execution).

When a step is interrupted, you can change the step property values and return value. This allows you to check the plug-
in processing and flow transitions by specifying any values for step properties or return value, thus reviewing problems
with plug-in processing and flow. If you interrupt a step before processing of a plug-in, you can then select whether to
perform the plug-in processing.

Note, however, that step execution cannot be interrupted for some plug-ins.

Tip
• Immediately after debugging starts, step execution is automatically interrupted before processing of the

plug-in in the first step.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 212

• If a plug-in returns a value of 65 or greater during processing, debug task processing continues even if
you attempt interruption after processing of the plug-in. This might occur if the value of an input property
of the step is specified incorrectly or if JP1/AO is unable to connect to the OS of the operation target
device.

Related topics
• 8.3.9 Operations for interrupting step executions during debugging
• 8.3.10 Step information that can be changed when step execution is interrupted

8.3.9 Operations for interrupting step executions during debugging
When you execute a debug task, you can specify the next point to go (where step execution was interrupted) in the
Debug area. The table below describes the operations to execute steps during debugging. Perform appropriate operations
to proceed with debugging.

Table 8-3: Operations for interrupting step executions during debugging

Operation What to do Available
when:

Description Example use case

Resume# Click the Resume button
().

The step is
interrupted.

Resumes execution of the interrupted
step. Processing starts at the point
before processing of a plug-in in the
nearest step with a breakpoint set and
continues through to the end of the
debug task.

• You want to execute the
debug task up to the step with
a breakpoint set.

• You want to execute the
debug task through to the end
without pausing between
steps.

Interrupt Click the Interrupt button
().

The step is in
progress.

Executes the step up to the nearest
point at which the step can be
interrupted, and then interrupts the
step.

• A debug task is executed by
mistake without specifying
step interrupts.

Step into# Click the Step Into button
().

The step is
interrupted.

Executes the step up to the next point
at which the step can be interrupted,
and then interrupts the step. For a
layering step, repeated step, or service
step, the steps in the subordinate flow
are also interrupted.

• You want to proceed with
debugging while checking
step information before and
after plug-in processing.

• You want to proceed with
debugging while changing
the step's output property
values or return value.

Step over# Click the Step Over button
().

The step is
interrupted.

Executes the step and then stops
execution at the first point in the next
step at which execution can be
interrupted. For a layering step,
repeated step, or service step, the steps
in the subordinate flow are executed
without interruption.

• You want to perform
debugging while checking
the results of plug-in
processing step by step.

• You want to perform
debugging while changing
input properties of the step
and checking plug-in
processing.

Step return# Click the Step Return
button ().

The step is
interrupted.

In most cases, this operation is used for
a flow subordinate to a layering step,
repeated step, or service step. This
operation executes steps up to the first

• You want to check only the
first step in the repeated
processing, and skip other
steps.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 213

Operation What to do Available
when:

Description Example use case

Step return# Click the Step Return
button ().

The step is
interrupted.

point at which execution can be
interrupted in the upper flow and
interrupts execution there.
For the top-level flow, this operation
executes steps to the end of the debug
task.

• You want to check only the
first step in the repeated
processing, and skip other
steps.

Break
points#

• To set breakpoints:
Select the step for which
you want to set
breakpoints, and then
click the Set Break Point
button ().

• To cancel the breakpoint
settings:
Select the step for which
you want to cancel the
breakpoint settings, and
then click the Set Break
Point button ().

• To cancel all breakpoint
settings:
On the Break Points tab,
click the Remove All
Break Points button.

The Service
Builder
Debug
window is
displayed.

Sets breakpoints before and after plug-
in processing in the selected step.
When you perform the resume
operation, step execution continues up
to the breakpoint you have set.

• You want to check step
information before and after
plug-in processing for a
certain step.

• You want to skip plug-in
processing for a certain step.

#
You can perform the same operation by right-clicking the step icon in the flow area.

The figures below display the points at which step execution is interrupted when the step-into, step-over, and step return
operations are performed.

Note that if you perform the step-into, step-over, or step return operation, appears on the icon of the next step in
the flow area.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 214

If step-into operation is repeated after the debug task started
Figure 8-6: Points at which execution is interrupted by step-into operation

Step execution is interrupted before and after processing of all plug-ins including those subordinate to the flow plug-
in. However, execution cannot be interrupted after the flow plug-in has started. Therefore, execution is interrupted before
plug-in processing of Step E, rather than after plug-in processing of Step B.

If step-over operation is repeated after the debug task has started
Figure 8-7: Points at which execution is interrupted by step-over operation

Execution is interrupted before plug-in processing of each step. However, execution of steps is not interrupted in the
flow that is subordinate to the flow plug-in.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 215

If step-return operation is performed for the flow subordinate to the flow plug-in
Figure 8-8: Points at which execution is interrupted by step-return operation

After all steps in the flow subordinate to the flow plug-in are executed, processing returns to the upper-level flow, and
then execution is interrupted before plug-in processing of Step E.

Related topics
• 8.3.8 Timing with which step execution can be interrupted
• 8.3.10 Step information that can be changed when step execution is interrupted
• 8.3.11 Procedure for skipping plug-in processing during debugging
• 8.3.12 Plug-ins that cannot be interrupted or skipped during debugging
• 8.3.14  Procedure for changing step property values or return value during debugging

8.3.10 Step information that can be changed when step execution is
interrupted

You can change step information for the debug task while step execution is interrupted during debugging. If problems
with plug-ins are found during debugging, you can check the operation by changing property values and the return value
of the step.

Step information you can change varies depending on when the step is interrupted.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 216

Table 8-4: Step information that can be changed while a step is interrupted

Item If the step is interrupted before plug-in processing If the step is interrupted
after plug-in processing

If plug-in processing is
performed

If plug-in processing is
skipped

Values of input properties of the step# Y Y N

Values of output properties of the step# N N Y

Return value of the step N N Y

Legend:
Y: Can be changed. N: Cannot be changed

#
You cannot change the information in the following cases:

• Property mapping is configured.

• The property of the step contained in the service component is set to be hidden or prohibited from editing in the
Crate Service window or Submit Service window.

Related topics
• 8.3.8 Timing with which step execution can be interrupted
• 8.3.12 Plug-ins that cannot be interrupted or skipped during debugging
• 8.3.14  Procedure for changing step property values or return value during debugging

8.3.11 Procedure for skipping plug-in processing during debugging
You can skip processing of plug-ins that you do not want to execute during debugging. To skip plug-in processing,
specify the output property values and return value of the step on the assumption that the plug-in processing is performed.
This allows you to assess the effect the subsequent-step execution conditions have on the status transitions of steps and
tasks, flow transitions, and the processing of subsequent steps.

To skip plug-in processing:
1. Interrupt the step that contains the plug-in you want to skip before processing of that plug-in is performed.

2. In the Debug area, from the Debug Modes pull-down menu, select Run plugin in dry-run mode.

3. Execute the step until plug-in processing is performed, and then interrupt execution. If breakpoints are set for the
step containing the plug-in you want to skip, click the Resume button (). If no breakpoints are set, click the
Step Into button ().

4. In the Step Properties area, click for the return value, and then specify the desired value.
The return value you specify determines the status transitions and the flow transitions of steps and tasks, subject to
the subsequent-step execution conditions.

5. If necessary click for an output property, and then specify the desired value.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 217

Tip
If you have configured output property mapping, the output property value you specify for the step is
applied to the service property (output property or variable) to which the output property is mapped. If
you do not specify a value, the service property (output property or variable) to which the output property
is mapped will have a null value.

Operation results
If you perform an operation that executes a process, debug task processing goes on according to the specified return
value and output property.

Related topics
• 8.3.5 Procedure for starting debugging
• 8.3.9 Operations for interrupting step executions during debugging
• 8.3.12 Plug-ins that cannot be interrupted or skipped during debugging
• 8.3.14  Procedure for changing step property values or return value during debugging
• 3.4.4 Overview of subsequent step conditions

8.3.12 Plug-ins that cannot be interrupted or skipped during debugging
Some plug-ins cannot be interrupted even if you attempt to interrupt step execution during debugging. If one of these
plug-ins is encountered during debugging, the flow automatically advances to the succeeding step.

Table 8-5: Ability to interrupt plug-ins

No. Plug-in name Can be
interrupted

Can be
skipped

1 Basic plug-ins General command plug-in Y Y

2 File-transfer plug-in Y Y

3 Repeated Execution Plug-in Y Y

4 Email Notification Plug-in Y Y

5 User-Response Wait Plug-in Y Y

6 Standard Output Plug-in Y Y

7 Terminal connect plug-in Y Y

8 Terminal command plug-in Y Y

9 Terminal disconnect plug-in Y Y

10 Flow plug-in C N

11 Interval plug-in Y Y

12 Branch by returncode plug-in C N

13 Test value plug-in Y Y

14 Abnormal-end plug-in Y Y

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 218

No. Plug-in name Can be
interrupted

Can be
skipped

15 Basic plug-ins Branch by property value plug-in C N

16 JavaScript plug-in Y Y

17 File Export Plug-in Y Y

18 Web Client Plug-in Y Y

19 Content plug-ins Y Y

20 Service component C N#

21 Incompatible steps in service templates created in versions of JP1/AO earlier than 10-10 N N

Legend:
Y: Can be interrupted or skipped. N: Cannot be interrupted or skipped. C: Can be interrupted before the plug-in
processing is performed, but cannot be interrupted after the plug-in is executed.

#
A step that contains service components cannot be skipped. However, whether steps in the subordinate flow can be
skipped is determined by plug-ins contained in each step.

8.3.13 Procedure for checking property mapping settings during
debugging

During debugging, you can check whether the values of service properties and step properties are mapped as intended.

By viewing the Debug area and Service Properties tab, you can make sure that the same values are assigned to step
properties and the service properties to which they are mapped.

To check the mapping settings during debugging, check the property values at the following timing:

• For mapping between step input properties and service input properties or variables:
Check the property values while the step is interrupted before the step processing is performed.

• For mapping between step output properties and service output properties or variables:

• If step processing is skipped, check the property values when the step is resumed after you specify the output
properties and return value of the step.

• Check the property values when resuming a step that was interrupted after step processing.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 219

Figure 8-9: Window for checking property mapping settings

To check the property mapping settings:
1. In the flow area, select the step for which you want to check the step property values.

The Debug area displays the input properties and output properties of the step you selected.

2. Click the Service Properties tab at the bottom of the Service Builder Debug window.
The values of the service properties are displayed.

3. In the Debug area and Service Properties tab, make sure that the same value appears in the Property Value columns
for the step property and the mapped service property.

Operation results
You can confirm that the property values are inherited as specified in mapping. If a mapped service property is different
from the design or if displayed values are not appropriate, you must correct the problem in the Service Builder Edit
window.

Important
If you specify parallel as the foreachMode property of a repeated execution plug-in, values of service
properties updated in a repeated execution flow executed in parallel do not appear in the Service Properties
tab.

Related topics
• 8.3.9 Operations for interrupting step executions during debugging
• 8.3.16 Displaying step property values and return values during debugging

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 220

8.3.14  Procedure for changing step property values or return value during
debugging

When step execution is interrupted, you can change the values of step properties or return value to any value. If you
change an input property value before executing a plug-in, you can see how different property values affect the processing
of the plug-in. If you change an output property value or return value after executing or skipping a plug-in, you can see
how different property values or return values affect the processing of subsequent steps and the flow transition.

For details about the conditions for changing step property values and return value, see 8.3.10 Step information that
can be changed when step execution is interrupted.

To change a step property value or return value during debugging:
1. In the flow area, select a step that is in Interrupted status.

2. In the Debug area, in the Step Properties area, click for the property or return value you want to change.

3. In the Edit Step Property dialog box, enter the desired value. When you change the value of a step property, you
can select Yes for the Multiline radio button to set a property value including linefeed.

Figure 8-10: Edit Step Property dialog box

4. Click OK.

Operation results
If you perform an operation that executes a step, debug task processing goes on according to the specified step property
or return value.

Tip
• You can set step property values imported from a property file. You can also export the values specified

in the Service Builder Debug window to a property file.

• You cannot specify surrogate pair characters or control characters (excluding linefeed and tab characters)
for the value of a step property. However, if you have specified a property value containing surrogate
pair characters or control characters (excluding linefeed and tab characters) during service template
development, that step property value is retained and displayed in the Debug area.

Related topics
• 8.3.15 Importing and exporting step properties in the Service Builder Debug window
• 8.3.9 Operations for interrupting step executions during debugging

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 221

• 8.3.17 Effect of changing values of step properties during debugging

8.3.15 Importing and exporting step properties in the Service Builder
Debug window

You can use the Service Builder Debug window to specify the values of input properties of a step in the property file,
and output the specified step properties and return values to the property file.

Importing step properties
In the Service Builder Debug window, click Import to apply the predefined property file settings to the Step Properties
area. Property values can be applied to the properties with displayed in the Step Properties area.

When you import properties in the Service Builder Debug window, an error occurs if at least one inappropriate value
(a value that does not meet the data type or restriction condition) is specified for a property.

If any of the following conditions exists, application of the property value is skipped and then the number of skipped
properties is displayed after the import is completed:

• The value of the property cannot be changed (in the Step Properties area, is not displayed for the property).

• The value field of the property is not defined in the json-format property file.

• Null is defined in the value field of the property in the json-format property file.

If properties that do not exist in a selected step are defined, the number of such properties is displayed after the import
is completed.

Exporting step properties
In the Service Builder Debug window, click the Export button to output the values of the properties displayed in the
Step Properties area to the property file.

At this time, the name of the output property file is step_properties.json. The return value is output as the
reserved.debugger.exitCode property key.

Note that when step properties are exported, the type field is not output (excluding step properties of service components).

Related topics
• Overview of property files in the JP1/Automatic Operation Administration Guide

8.3.16 Displaying step property values and return values during
debugging

The following describes the conditions under which the values of input and output properties of a step appear in the
Step Properties area during debugging.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 222

Table 8-6: Conditions for displaying step property values

Type Displayed step Displayed when:

Input property of a step Step containing plug-ins that can be interrupted, and branch by property value plug-
ins

Plug-in execution begins

Output property of a step Step containing plug-ins that can be interrupted Plug-in processing ends

Return value All steps Plug-in processing ends

Related topics
• 8.3.12 Plug-ins that cannot be interrupted or skipped during debugging

8.3.17 Effect of changing values of step properties during debugging
During debugging you can change the values of step properties and the return values. If you change the value of a step
property, the value of the service property to which the step property is mapped does not change automatically. However,
changing an output property of a step might indirectly change the value of a service property (output property or variable)
depending on how output property mapping is configured.

The figure below shows an example of the behavior of a service template affected by changing the values of input and
output properties of a step while executing a step. This example assumes that the service template is defined as described
below.

Figure 8-11: Example of service template configuration

Property mapping definition

Step A

• Input property Input 1 of the service is mapped to Input A1 of Step A

• Output property Output A1 of Step A is mapped to Variable 1 of the service.

Step B

• Variable 1 of the service is mapped to Input B1 of Step B.

• Input 1 of the service is mapped to Input B2 of Step B.

• Output B1 of Step B is mapped to Output 1 of the service.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 223

Behavior when a property value is changed

Behavior when changing an input property of a step
If you change the value of Input A1 of Step A before executing Plug-in A, Plug-in A uses the new value when it
runs. This does not change the value of the service input property Input 1 to which the step input property Input A1
is mapped. Therefore, the step input property Input B is assigned the original value specified for the input property
of the service.

Behavior when changing an output property of a step
If you change the value of the output property Output A1 of the step after executing Plug-in A, the new value is
assigned to Variable 1 to which Output A1 is mapped. The input property Input B1 of the step also takes the new
value.

8.3.18 Procedure for handling debug tasks that are waiting for a response
(response entry)

If a debug task requires a user response during execution, you can enter a response in the Debug area.

To respond to a debug task that is waiting for a user response:
1. Make sure that the debug task is in Waiting for Input status. Then, in the Debug area, click the Enter Response

button ().

2. In the Enter Response dialog box, confirm the message, and then click the button associated with the action you
want to perform.

3. In the Information dialog box, click OK.

Operation results
Depending on the response you entered, the plug-in processing of the step resumes or stops.

8.3.19 Procedure for debugging a service template again without
rebuilding

After executing a debug task, you can debug the same service template again by executing the debug task from the
Service Builder Debug window displayed. In this case, you do not need to rebuild the service template.

You can rerun debugging if the debug task is in Completed or Failed status. If you want to execute a debug task while
another debug task is running, you must forcibly stop the currently running debug task.

When you rerun debugging, JP1/AO deletes the existing debug service and debug task, and then generates a new debug
service and debug task.

To execute a new debug task without rebuilding the service template:

1. In the Debug area, from the Resubmit pull-down menu (), select Retry the Task.

2. In the Perform Debugging dialog box, specify the definition information for the debug service and debug task, task
log output level, and debug service property information.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 224

3. Click OK.

Operation results
The debug task is executed.

Important
• The Perform Debugging dialog box displays the service template as it was configured when last built

by the user who performs debugging. If another user edits and builds the same service template in the
meantime, the changes do not apply to the contents of the service template displayed in this dialog box.

• You can debug a service template again without rebuilding it only while the Service Builder Debug
window is displayed. If you close the Service Builder Debug window by clicking the Back to Editor
button or logging out of JP1/AO, you need to rebuild the service template before debugging it.

Related topics
• 8.3.2 General procedure for debugging service templates
• 8.3.6 Settings used when starting debugging
• 8.4.5 Procedure for forcibly stopping debug tasks

8.3.20 Procedure for retrying a task from a failed step during debugging
If a debug task fails partway through, you can retry the task from the failed step.

By retrying from a failed step, you can resume the debug task with the same task ID and the original property values.
You can use this approach when the cause of the failure has been resolved. For example, a step that fails due to a
temporary problem with the network can be retried when the network connection is available again.

For details about retrying tasks, such as exceptions when property values are inherited and the possibility of retry
depending on the status of a debug task, see Retrying tasks in the JP1/Automatic Operation Administration Guide.

To retry a task from a failed step during debugging:
1. Make sure that the debug task is in Failed status. Then, in the Debug area, from the Resubmit pull-down menu

(), select Retry From Failed Step.

A dialog box appears in which you can confirm that you want to retry the task from the failed step.

2. Click OK.

Operation results
The task is re-executed from the failed step.

Related topics
• 8.3.21 Procedure for retrying a task from the step after the failed step during debugging
• Retrying tasks in the JP1/Automatic Operation Administration Guide

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 225

8.3.21 Procedure for retrying a task from the step after the failed step
during debugging

When a debug task fails partway through, you can retry the task from the step after the failed step.

By retrying from the step after the failed step, you can resume the debug task with the same task ID and the original
property values. This approach is appropriate in situations where there is no need to execute the failed step. When you
retry a task from the step after the failed step, processing of the task continues as if the failed step had ended normally.
You can use this approach when you find a problem in a step, but want to continue executing the debug task and deal
with the problem later.

For details about retrying tasks, such as exceptions when property values are inherited and the possibility of retry
depending on the status of a debug task, see Retrying tasks in the JP1/Automatic Operation Administration Guide.

To retry a task from the step after a failed step during debugging:
1. Make sure that the debug task is in Failed status. Then, in the Debug area, from the Resubmit pull-down menu

(), select Retry From Next To Failed Step.

A dialog box appears in which you can confirm that you want to retry the task from the step after the failed step.

2. Click OK.

Operation results
The task is re-executed from the failed step.

Related topics
• 8.3.20 Procedure for retrying a task from a failed step during debugging
• Retrying tasks in the JP1/Automatic Operation Administration Guide

8.3.22 Displaying debug task flow
You can display a flow that represents the debug task you are executing.

In the flow area in the Service Builder Debug window, the steps in the debug task appear in the order in which they
are executed.

Step icons include the icon that indicates the status of a step and the breakpoint icon (). If the step contains a flow

plug-in, repeated execution plug-in, or a service component, an arrow icon () appears at the lower right of the step
icon. Clicking the arrow icon displays the subordinate flow.

When you rest your mouse pointer on the step icon, the step name and the status of the step are displayed. For executed
steps, the start time, end time, and return value of the step are also displayed.

Tip
For details about step statuses, see Step statuses in the JP1/Automatic Operation Administration Guide.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 226

Figure 8-12: Displaying the flow of a debug task

In the flow area, the border around the icon of an interrupted step is highlighted as follows.

Figure 8-13: Icon of interrupted step (example)

In the flow area, steps with plug-ins that cannot be interrupted have an icon with a darker background as shown below.

Figure 8-14: Example icon of steps with plug-ins that cannot be interrupted and steps in subordinate
flows of Repeated Execution plug-ins (before execution)

If the service template has a hierarchical structure, right-clicking the darker background of the image showing the steps
in a subordinate flow displays the following menu, which allows you to move to the upper flow or root flow.

Figure 8-15: Menu displayed by right-clicking the darker background of the image showing steps
in a subordinate flow

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 227

Right-clicking a step icon displays the following menu, which allows you to perform the step execution action, display
the task log, and select View Details to open the View Step Attributes dialog box. For a flow plug-in, Repeated
Execution Plug-in, or service component, selecting Open displays the subordinate flow.

Figure 8-16: Menu displayed by right-clicking a step icon

Figure 8-17: View Step Attributes dialog box

Related topics
• 8.3.24 Displaying a repeated execution flow during debugging
• 8.3.25 Information displayed for repeated execution plug-ins and repeated execution flows during

debugging

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 228

8.3.23 Displaying the flow tree of a debug task
The name of the service template appears at the top level of the flow tree. Lower levels are represented by the name of
the step that executes the flow plug-in, Repeated Execution Plug-in, or service component.

During debugging, an interruption icon is displayed for hierarchical levels whose steps are interrupted (in a status
requiring user intervention).

Figure 8-18: Example of interruption icon (when a step in Flow plug-in 2 is interrupted)

To find interrupted steps during debugging, look for hierarchical levels with interruption icons in the flow tree. By
selecting a level with the interruption icon, you can identify the interrupted step from the flow that appears.

Interruption icons are not displayed for levels that are above the level containing the interrupted step in the hierarchy.
Note that the status of the step that represents the flow plug-in or Repeated Execution Plug-in itself and the status of
the repeated execution flow are not displayed in the flow tree.

Related topics
• 8.3.24 Displaying a repeated execution flow during debugging
• 8.3.25 Information displayed for repeated execution plug-ins and repeated execution flows during

debugging

8.3.24 Displaying a repeated execution flow during debugging
For steps that execute a Repeated Execution Plug-in during debugging, a flow for each iteration is displayed in the level
below the Repeated Execution Plug-in. This is called a repeated execution flow. Repeated execution flows appear in
the flow area and the Flow Tree area as soon as execution of a Repeated Execution Plug-in starts (and remain displayed
during and after execution of the plug-in).

The name of a repeated execution flow is displayed in Step [iteration-number]:input-value-(reserved.loop.input) format.
Displayed repeated execution flow names that are 65 characters or longer are truncated after the 64th character. If the
Input Properties value contains control characters, the name is truncated after the 64th character after removing the
control characters. Note that the iteration-number is a two-digit number.

The following shows an example of a Repeated Execution Plug-in executed when hostA,hostB,hostC is specified for
the input property of the Repeated Execution Plug-in (inputProperties). In this example, the displayed flow names are
Step[01]:hostA, Step[02]:hostB, and Step[03]:hostC.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 229

Figure 8-19: Flow display for repeated execution flows

Figure 8-20: Flow tree view of repeated execution flows

Note that repeated execution flows for all iterations are displayed regardless of whether the repeated execution method
is parallel or serial.

However, if you log out during debugging, information about iterations might no longer be displayed for repeated
execution flows that are in Waiting for Loop Execution status.

If you set breakpoints for a step in the subordinate flow before executing the Repeated Execution Plug-in, the breakpoint
settings are applied to the same step in the repeated execution flow displayed after the processing is performed. If you
set or cancel breakpoints for a step in a repeated execution flow after repeated execution flows are displayed, the
breakpoint settings are applied to the same step in other repeated execution flows.

Related topics
• 8.3.24 Displaying a repeated execution flow during debugging
• 8.3.23 Displaying the flow tree of a debug task
• 8.3.25 Information displayed for repeated execution plug-ins and repeated execution flows during

debugging

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 230

8.3.25 Information displayed for repeated execution plug-ins and
repeated execution flows during debugging

The table below describes the information displayed for repeated execution plug-ins and repeated execution flows when
a step that includes a repeated execution plug-in is executed during debugging. This information does not appear until
the step has started executing.

Table 8-7: Information displayed for repeated execution flows

Item Description

Repeated execution method (parallel or serial) The value of the foreachMode property of the step that contains the Repeated Execution
Plug-in is displayed.

Iteration number (reserved.loop.index,
reserved.loop.indexN)

This information is combined with the applicable Input Properties value to give the
name of the repeated execution flow.
For the comma-separated values specified in the inputProperties property for the step
that contains the Repeated Execution Plug-in, this information indicates the position
(number) of the parameter that corresponds to the current execution. For details about
the reserved properties reserved.loop.index and
reserved.loop.indexN, see the topic 3.6.8 List of reserved properties.

Input Properties (reserved.loop.input,
reserved.loop.inputN)

This information is combined with the iteration number to give the name of the repeated
execution flow.#

For the comma-separated values specified in the inputProperties property for the step
that contains the Repeated Execution Plug-in, this information indicates the value that
corresponds to the current iteration of the flow. For details about the reserved properties
reserved.loop.input and reserved.loop.inputN, see the topic 3.6.8 
List of reserved properties.

Repeated execution result (true or false) The value of the outputResult property for the step that contains the Repeated
Execution Plug-in is displayed.

Output value (reserved.loop.output) The value of the outputProperties output property for the step that contains the
Repeated Execution Plug-in is displayed.
This value has been specified for reserved.loop.output by output property mapping in
the repeated execution flow.

#
Repeated execution flow names that are 65 characters or longer are truncated after the 64th character. If the Input
Properties value contains control characters, names are truncated after the 64th character after removing the control
characters.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 231

8.4  Managing debug tasks

You can perform the following operations for debug tasks in addition to execution:

• Check the progress

• Check detailed information

• Check and download the task log

• Stop execution

• Forced stop

• Deletion

8.4.1 Procedure for checking progress of debug tasks from the Tasks
window

From the Tasks window, you can view the progress of debug tasks as a flow. For example, you use the Tasks window
to check the status of steps in a debug task after closing the Service Builder Debug window, or check the status of a
step in a debug task executed by another user.

To view the progress of a debug task from the Tasks window:
1. In the Tasks window, click the Debug tab.

For details about how to check the progress of debug tasks from the Tasks window, see Checking task statuses
from the Tasks window in the JP1/Automatic Operation Administration Guide.

Important
JP1/AO automatically deletes debug tasks (and archives tasks) whose retention period has expired and tasks
exceeding the total number of tasks (including normal tasks) that can be retained. This takes place once a
day at the same time as the automatic archiving of normal tasks. Tasks are deleted or archived by date from
the task with the oldest end date. You can change the retention period for debug tasks, the total number of
tasks that can be retained, and the timing of automatic deletion in the user-specified properties file
(config_user.properties). For details about the automatic archiving of tasks, see Automatically archiving
tasks and deleting task histories in the JP1/Automatic Operation Administration Guide.

Operation results
You can check the progress of debug tasks.

Related topics
• 8.3.23 Displaying the flow tree of a debug task
• 8.3.24 Displaying a repeated execution flow during debugging
• User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration Guide
• Step statuses in the JP1/Automatic Operation Administration Guide

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 232

8.4.2 Procedure for checking details about debug tasks from the Task
Details window

In the Task Details window, you can check information such as the property values specified for the service during
debugging and the task log. For example, you can use the Task Details window to check the information after closing
the Service Builder Debug window, or check details about a debug task executed by another user.

To check details about debug tasks from the Task Details window:
1. In the Tasks window, click the Debug tab.

For information on how to check details about debug tasks from the Tasks window, see Viewing detailed task
information in the JP1/Automatic Operation Administration Guide.

Operation results
You can check details about the debug tasks.

8.4.3 Procedure for checking task log entries for debug tasks
The following describes how to view the information output to the task log by a debug task. You cannot view the task
log for a debug task that is in Waiting status. You can also download the task log to a folder of your choice, under any
file name.

You can view the task log for a running debug task from the Service Builder Debug window.

To view the task log for a finished debug task or a debug task that was executed by another user, use the Tasks window.

For details about the information output to the task log, see Task log details in the JP1/Automatic Operation
Administration Guide.

To view the task log for a debug task from the Service Builder Debug window:
1. In the Service Builder Debug window, click the Task Log tab.

The contents of the task log of the debug task you are debugging appear on the Task Log tab.

Figure 8-21: Task Log tab

You can use the Task Log tab to perform actions such as setting the timing with which the contents of the task log are
refreshed, and downloading the task log information to a file. The following describes how to perform these actions.

• To download the task log:
Click Download.

• To manually update the task log:

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 233

Click Update.

• To automatically update the task log at regular intervals:
Select the Refresh Automatically check box.
When you select this check box, the task log is automatically updated each time the status of a step or task changes
while the debug task is running.

Tip
• If you right-click a step icon in the flow area and then select Show Step Log, the task log automatically

scrolls up to the location where the result of the step is displayed.

• When you retry a debug task or debug a debug task that has already been debugged, the Refresh
Automatically check box is selected automatically and the task log is updated.

• If the Refresh Automatically check box is selected, regardless of the task status, the task log is refreshed
and the scroll box on the Task Log tab scrolls to the bottom of the table.

To view the task log for a debug task from the Tasks window:
1. In the Tasks window, click the Debug tab.

For details about how to check the task log from the Tasks window, see Viewing detailed task information in the
JP1/Automatic Operation Administration Guide.

Important
• The task log size specified (in KB) in the property file (config_user.properties) determines the amount

of information displayed in the Task Log tab in the Task Details window and Service Builder Debug
window. This amount (in KB) of information is taken from the end of the task log data. The dialog boxes
do not display the entire contents of the task log.

• You can set the maximum log file size for debug tasks (in KB) in the user-specified properties file
(config_user.properties). If the maximum file size is exceeded, JP1/AO begins overwriting the oldest
information in the task log.

Related topics
• User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration Guide

8.4.4 Procedure for stopping debug tasks
The following describes how to stop a debug task that is still in progress. You can stop debug tasks that are in the status
of In Progress, Waiting for Input, or In Progress (with Error). Stopped tasks enter Failed status. However, if the user
stops a debug task while the final step is in progress, the debug task enters Completed status if the final step ends
normally.

If the debug task contains an interrupted step, the step is automatically resumed and then the debug task stops when the
step finishes executing.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 234

Tip
For details about the difference between stopping and forcibly stopping tasks, see Managing Tasks in the
JP1/Automatic Operation Administration Guide.

To stop debug tasks:
1. In the Tasks window, click the Debug tab.

2. In the list of tasks, select the debug tasks that you want to stop.

Tip
You can select multiple debug tasks by selecting check boxes beside the task names.

3. In the More Actions pull-down menu, click Stop Task.

4. In the Stop Task dialog box, confirm the debug tasks to be stopped, and then click OK.

5. In the Information dialog box, click OK.

Operation results
The selected debug tasks enter Failed status.

8.4.5 Procedure for forcibly stopping debug tasks
The following describes how to forcibly stop a debug task that is still in progress. You can forcibly stop debug tasks
that are in the status of In Progress, Waiting for Input, In Progress (with Error), or In Progress (Terminating).

If you want to stop a running debug task and perform the debug process again, you can forcibly stop the debug task
from the Service Builder Debug window.

If you inadvertently close the Web browser window from which you are using JP1/AO while a debug task is in progress,
use the Tasks window to forcibly stop the debug task. You can also use this window to forcibly stop a debug task
executed by another user.

Debug tasks that are forcibly stopped enter Failed status.

If the debug task contains an interrupted step, the debug task stops after the step is automatically resumed, without
executing the plug-in processing.

Tip
For details about the difference between stopping and forcibly stopping tasks, see Managing Tasks in the
JP1/Automatic Operation Administration Guide.

To forcibly stop a debug task from the Service Builder Debug window:
1. In the Debug area of the Service Builder Debug window, click the Forcibly Stop button ().

2. In the Information dialog box, click OK.

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 235

Operation results
The debug task enters Failed status.

To forcibly stop debug tasks from the Tasks window:
1. In the Tasks window, click the Debug tab.

2. In the list of tasks, select the debug tasks that you want to forcibly stop.

Tip
You can select multiple debug tasks by selecting check boxes beside the task names.

3. In the More Actions pull-down menu, click Forcibly Stop.

4. In the Forcibly Stop dialog box, confirm the debug tasks to be stopped forcibly, and then click OK.

5. In the Information dialog box, click OK.

Operation results
The selected debug tasks enter Failed status.

8.4.6 Procedure for deleting debug tasks
The following describes how to manually delete debug tasks that are no longer required. You can delete debug tasks
that are in Completed or Failed status.

If you want to delete debug tasks automatically, set a retention period for executed debug tasks in the user-specified
properties file (config_user.properties).

To manually delete debug tasks:
1. In the Tasks window, click the Debug tab.

2. In the list of tasks, select the debug tasks that you want to delete.

Tip
You can select multiple debug tasks by selecting check boxes beside the task names.

3. In the More Actions pull-down menu, click Delete Tasks.

4. In the Delete Tasks dialog box, confirm the debug tasks to be deleted, and then click OK.

Operation results
The debug tasks are deleted from the Debug tab.

Related topics
• User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration Guide

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 236

8.5 Testing the operation of service templates

When you have finished debugging a service template, you can perform an operation test before releasing the service
template.

8.5.1 Procedure for testing the operation of service templates
When you have finished debugging the service template and make sure that no problems remain, you can perform an
operation test in the development environment.

To test the operation of a service template:
1. After building the service template, create a service in the Services window.

Tip
In the Select Service Template dialog box, click the Show All Versions button to display the
development service templates that have been built. Click the Show Latest Version button to display
only the release service template.

2. Execute the service.

3. Check the execution results in the Tasks window.

4. If the results of the operation test reveal a problem with the service template, edit the affected service template or
plug-in.

Related topics
• Creating services in the JP1/Automatic Operation Administration Guide
• Executing Services in the JP1/Automatic Operation Administration Guide
• Managing Tasks in the JP1/Automatic Operation Administration Guide
• 8.1.1 General procedure for validating service templates
• 8.1.2 Overview of building
• 8.1.4 Overview of operation tests
• 8.2.1 Procedure for building service templates

8. Validating Service Templates

JP1/Automatic Operation Service Template Developer's Guide 237

Appendix

JP1/Automatic Operation Service Template Developer's Guide 238

A. Reference Information

This appendix provides reference information for users of JP1/AO.

A.1 Reference information for build and release operations

(1) Structure of debug and release processes and how they differ
The debug and release processes create a package of a service template. Perform a debug operation when you want to
validate a service template, and a release operation when you want to make the service template available in the active
environment.

The following figure shows the structure of the debug and release processes.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 239

Figure A-1: Structure of build and release processes

The following table lists the differences between build and release processes.

Table A-1: Differences between build and release

Operation Objective Number of
executions

Configuration type
assigned to service
template package

File name of service
template package

Can development
service template
be edited after
operation?

Build Validate a service
template

Any number of
times

Debug configuration vendor-
ID_name_version_d.st

Yes

Release Make a service
template available in
the active
environment

Once Release configuration vendor-ID_name_version.st No

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 240

Legend:
Yes: Can be edited. No: Cannot be edited.

Related topics
• (2) Configuration types assigned to service templates and plug-ins by debug and release operations
• (4) Ability to display window items by service template configuration type and the user role
• (5) Deletion and archiving of service templates, services, and tasks during build and release operations

(2) Configuration types assigned to service templates and plug-ins by
debug and release operations

JP1/AO assigns a configuration type to the service templates and plug-ins in a service template package (*.st) according
to its stage in the development process (debug or release). The following table lists the configuration types assigned to
service templates and plug-ins.

Table A-2: Configuration types assigned by build and release operations

Service template or plug-in Assigned configuration type

When built When released

Development service template Debug configuration Release configuration

Plug-in# Basic plug-in or release plug-in (release
configuration)

Release configuration Release configuration

Development plug-in (debug configuration) Debug configuration Release configuration

#
You cannot build or release individual plug-ins. A development plug-in becomes a release plug-in when you release
a service template that contains that plug-in. A development plug-in remains as such when you build a service
template that contains the plug-in.

Related topics
• (4) Ability to display window items by service template configuration type and the user role

(3) Build or release operations performed on multiple instances of the
same service template or plug-in

If you repeatedly build a service template during its development, or you build then later release a service template, the
same service template or plug-ins might have already been imported. The behavior of the build or release operation in
this scenario depends on the configuration type of the service template or plug-in.

Note that the same service template (or same plug-in) means a service template or plug-in with the same vendor ID,
service template ID (plug-in ID), and service template version (plug-in version). The plug-ins referred to below are
those used by the service template being built or released.

When building a service template
• The service template is overwritten.

• Development plug-ins in the service template you are building are overwritten.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 241

• Release plug-ins in the service template you are building are not overwritten.

When releasing a service template
• The service template is overwritten and becomes a release service template.

• Development plug-ins in the released service template become release plug-ins.

• Release plug-ins in the released service template are not overwritten.

(4) Ability to display window items by service template configuration type
and the user role

The configuration type of the service template and the role of the user determine whether service templates and elements
(services, tasks, and histories) created from service templates appear in the Services window and the Tasks window.
The following table describes whether these items appear in the user interface for each combination of configuration
type and user role.

Table A-3: Ability to display window items by service template configuration type and user role

Configuration type of the
service template

Managed element Displayed in the Services window and Tasks window

Admin
Develop

Modify Submit

Debug configuration Service template Y N N

Service Y N N

Task Y N N

History Y N N

Release configuration Service template Y Y N

Service Y Y Y

Task Y Y Y

History Y Y VO

Legend:
Y: Can be viewed and manipulated. VO: Can only be viewed. N: Cannot be viewed or manipulated.

(5) Deletion and archiving of service templates, services, and tasks during
build and release operations

When you build or release a development service template, JP1/AO automatically deletes service templates and services
and archives tasks. Debug services and debug tasks are automatically deleted.

Note that service templates and services are deleted and tasks archived even if the build or release process fails. Debug
services and debug tasks are also deleted.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 242

Figure A-2: Deletion and archiving of elements during build and release operations

A.2 Compatibility for service templates
This section describes the compatibility with earlier or later versions of JP1/AO.

(1) Compatibility for service templates and plug-ins created in the Service
Builder window

The following describes the compatibility for service templates and plug-ins created in the Service Builder.

Compatibility with later versions
Service templates are guaranteed to remain compatible with later versions. This means that you can work with
service templates that meet the conditions below in the Service Builder window. However, some displayed items
and operations might differ between versions.

• Service template packages (*.st) created by users in earlier versions

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 243

• Service templates and plug-ins imported to the JP1/AO server from an earlier version of JP1/AO

Compatibility with earlier versions
Service templates are not guaranteed to be backwards compatible. If you attempt to apply a service template created
in the Service Builder window to an earlier version of JP1/AO, an error might occur during the import process.

Compatibility with JP1/AO servers with different operating systems
User-created service templates can be imported to JP1/AO servers with different operating systems. However, the
following restrictions apply:

• Only ASCII characters can be used for default values of input properties of plug-ins, and the values of input
properties for plug-ins (or steps) in a flow.

• Only service templates created in JP1/AO 10-10 or later can be imported to a JP1/AO server that is running
Linux.

(2) Compatibility with steps in service templates created in earlier
versions of JP1/AO

Some steps in service templates created in versions of JP1/AO earlier than 10-10 are not compatible with JP1/AO 10-10.
This might prevent you from changing the processing in the step. The icon for steps that are incompatible with JP1/AO
10-10 is displayed in gray scale as shown below.

Figure A-3: Icon for incompatible steps

• You cannot change the processing defined in a step. You can only change the step ID, step name, and description.

• The default step ID is compatible.step.
If there are multiple incompatible steps at the same hierarchical level, _n is appended to the end of the step ID (where
_n is a unique integer greater than or equal to 2) to give a step ID in step-ID_n format. Step IDs are automatically
assigned by the system. The value of _n has no relationship with the position of the step in the flow.

• The description of a step is initially a null character.

A.3 Version changes

(1) Changes in version 13-00
• The following operating systems are no longer supported as a target of connection destinations :

• AIX

• HP-UX

• Solaris

(2) Changes in version 12-60
• The following operating systems are now supported:

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 244

• Windows Server 2022

• Red Hat Enterprise Linux 8

• Oracle Linux 8

• CentOS 8

• The tips for the procedure for directly specifying the input property values of steps were changed.

• Descriptions of the reserved property for property mapping were changed.

• Descriptions of setting items for the input property of a service were changed.

• Specify List Items was deleted from the items set for the input property of a service.

• Descriptions of the presentation format corresponding to the data types were changed.

• Descriptions of the data type of the items that can be set for the output property of a service were changed.

• Descriptions of the procedure for specifying the External Resource setting were added.

• The Javascript sample and descriptions were changed.

• Descriptions of the shared built-in service properties were changed.

• The items set for property groups were changed.

• The tips for copying a service template were changed.

• The description of inserting the input property in the command line when creating or editing a plug-in was changed.

• The description of "Important" for the specification method of Output Filter was changed.

• "Build" was changed to "debug".

• The description of the hierarchical flow plug-in in "Changes in version 11-10" was deleted.

(3) Changes in version 12-01
• Descriptions regarding the presentation format setting function were added, modified, and deleted.

• A description was added regarding the External Resource Provider function.

• Figures were replaced and descriptions were added or modified in accordance with the structural changes to the
following dialog boxes:

• Create Input Property for Service dialog box

• Edit Input Property for Service dialog box

• Create Output Property for Service dialog box

• Edit Output Property for Service dialog box

• An explanation was added to indicate that multi-byte characters cannot be used in the file path when a script file is
created.

(4) Changes in version 12-00
• The return values "1" and "2" of service components were added, and the explanation of the subsequent step

conditions was changed.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 245

(5) Changes in version 11-51
In the Specify Component Input Property Mapping Parameters dialog box or the Specify Component Output
Property Mapping Parameters dialog box, by selecting the View Property radio button, you can now display only
the properties that can be mapped. As such, the relevant descriptions were changed.

(6) Changes in version 11-50
• Descriptions of screen displays and procedures related to steps were changed.

• The descriptions of the following shared built-in service properties were deleted:

• com.hitachi.software.dna.sys.jp1.username

• com.hitachi.software.dna.sys.jp1.password

• The supplementary explanation for the procedure for importing service templates was deleted.

• Notes on command execution were added.

(7) Changes in version 11-10
• The Service Builder window was redesigned.

• Available Actions was added to the items that can be specified in the Edit Service Template Attributes dialog box.

• A description about the Next Steps tab that is displayed in the Step Properties area was added.

• The description about repeated steps was changed. A nested structure, where a maximum of three hierarchical levels
of repeated steps can be used, is now available.

• The description was changed because the labels for the conditions displayed in the Determine the return value
based on the threshold > Condition pull-down menu in the Create Step window and the Edit Step window were
changed.

• A description about conditional expressions that use arrows to indicate connections with subsequent steps was added.

• A description about the RESERVED PROPERTY dialog box, which displays the reserved properties related to
repeated execution plug-ins, was added.

• The reserved properties reserved.loop.indexN and reserved.loop.inputN were added.

• A description about the Select Reference Property window was added for cases where repeated execution plug-
ins are defined in a nested structure.

• Because JP1/AJS3 is no longer bundled with JP1/AO, descriptions related to return values were deleted.

• Regarding the interval plug-in, branch by returncode plug-in, abnormal-end plug-in, and branch by property value
plug-in, the specifications concerning the availability of interruption and skipping during debugging were changed.
The manual was revised accordingly.

• The reserved properties reserved.loop.indexN and reserved.loop.inputN were added to the information displayed
for repeated execution flows.

(8) Changes in version 11-01
• A note about the file sizes of imported service templates was added.

• An explanation was added noting that if you enable the Run as system account(Windows) option when creating
or editing a plug-in, commands and scripts will be executed on the connection destination host with the permissions
of the System account.

• The description of the information displayed in a flow was changed.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 246

• A cautionary note regarding the procedure for starting debugging was changed.

• Changes were made to the step information that can be changed when step execution is interrupted.

(9) Changes in version 11-00

(a) Changes from the manual (3021-3-087-40)
• The following operating systems are now supported:

• Linux 7

• Oracle Linux 6 (x64)

• Oracle Linux 7

• CentOS 6 (x64)

• CentOS 7

• SUSE Linux 12

• The following operating systems are no longer supported:

• Linux 5 (AMD/Intel 64)

• Linux 5 Advanced Platform (AMD/Intel 64)

• The product was migrated from 32-bit Windows to 64-bit Windows.

• The installation folder was changed for the Windows version of JP1/AO and the Common Component.

• A description of using JP1/AO in English and Chinese-language environments was added.

• The structure and contents of the manual were changed to reflect the redesign of the JP1/AO interface.

• A function was added that exports service templates.

• A function was added to place a release service template as a service component in a flow of a service template.
Accordingly, the existing plug-ins and service components are now collectively called components.

• Descriptions about visibility and display settings for service properties were added.

• Functions were added to specify visibility and display settings for service properties and the property group to which
the service properties belong.

• A function was added to map step properties.

• Auto-completion of property values was added.

• A function was added to specify an image file for service overview as a custom file.

• A function was added that sets the following items in the service resource file:

• Service property name

• Service property description

• Step property name

• Step property description

• A description of property mapping was added.

• Descriptions about whether properties can be mapped depending on the visibility or data type were added.

• A function was added that elevates step properties to service properties.

• Tag management was added as a way to classify service templates and services. Accordingly, category management
was removed as a classification method.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 247

• Service groups were added as a way to manage resources. Accordingly, resource groups were removed.

• A function was added that imports and exports service properties.

• Step-into, step-over, step-return, and breakpoint setting were added as the functions for executing a debug task during
debugging.

• The following were added as the causes in the description of return value 71 of a content plug-in:

• An attempt to move to the execution directory failed.

• An attempt to set an environment variable failed.

• The total data output to the standard output and standard error output exceeds 100KB was added to the description
of return value 72 of a content plug-in.

• The name of a basic plug-in was changed from File-Forwarding Plug-in to File-Transfer Plug-in.

• The name of a basic plug-in was changed from Judge ReturnCode Plug-in to Branch by ReturnCode Plug-in.

• The name of a basic plug-in was changed from Judge Value Plug-in to Branch by Property Value Plug-in.

(b) Changes from the manual (3021-3-363-10(E))
• Linux was added as a supported operating system.

• The installation folder was changed for the Windows version of JP1/AO and the Common Component.

• The product was migrated from 32-bit Windows to 64-bit Windows.

• The structure and contents of the manual were changed to reflect the redesign of the JP1/AO interface.

• A procedure for changing a plug-in version was added as part of the addition of the plug-in version management
function.

• A description of the local execution function was added. This function allows users to start processes directly on
local hosts and perform tasks such as executing commands and copying files.

• Keyboard interactive authentication was added as an authentication method used for SSH connections with operation
target devices.

• Service groups were added as a way to manage resources. Accordingly, resource groups were removed.

• A function was added that exports service templates.

• A function was added to place a release service template as a service component in a flow of a service template.
Accordingly, the existing plug-ins and service components are now collectively called components.

• Descriptions about visibility and display settings for service properties were added.

• Functions were added to specify visibility and display settings for service properties and the property group to which
the service properties belong.

• A function was added to map step properties.

• Auto-completion of property values was added.

• A function was added to specify an image file for service overview as a custom file.

• A function was added that sets the following items in the service resource file:

• Service property name

• Service property description

• Step property name

• Step property description

• A description of property mapping was added.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 248

• Descriptions about whether properties can be mapped depending on the visibility or data type were added.

• A function was added that elevates step properties to service properties.

• Tag management was added as a way to classify service templates and services. Accordingly, category management
was removed as a classification method.

• A function was added that imports and exports service properties.

• Step-into, step-over, step-return, and breakpoint setting were added as the functions for executing a debug task during
debugging.

• The following were added as the causes in the description of return value 71 of a content plug-in:

• An attempt to move to the execution directory failed.

• An attempt to set an environment variable failed.

• The total data output to the standard output and standard error output exceeds 100KB was added to the description
of return value 72 of a content plug-in.

• The name of a basic plug-in was changed from File-Forwarding Plug-in to File-Transfer Plug-in.

• The name of a basic plug-in was changed from Judge ReturnCode Plug-in to Branch by ReturnCode Plug-in.

• The name of a basic plug-in was changed from Judge Value Plug-in to Branch by Property Value Plug-in.

(10) Changes in version 10-52

(a) Changes in the manual (3021-3-087-40)
• Linux was added as a supported operating system.

• A procedure for changing a plug-in version was added as part of the addition of the plug-in version management
function.

• A description of the local execution function was added. This function allows users to start processes directly on
local hosts and perform tasks such as executing commands and copying files.

• Keyboard interactive authentication was added as an authentication method used for SSH connections with operation
target devices.

• A description of characters that can be specified in the Command line text box was added.

(11) Changes in version 10-50

(a) Changes in the manual (3021-3-087-30)
• A description of the case in which the user wants to use a content plug-in provided by JP1/AO in service template

development was added.

• Public key authentication was added as an authentication method for operation target devices.

• An explanation that user profiles are not inherited when the OS of the operation target device is Windows was added.

• A description of the specification in the Command line text box to execute a non-standard script was added.

(b) Changes in the manual (3021-3-363-10(E))
• For the manual issued in December 2014 or later, the title and reference number were changed as shown below.

Before the change:
Job Management Partner 1/Automatic Operation GUI and Command Reference (3021-3-315(E))

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 249

After the change:
Job Management Partner 1/Automatic Operation GUI, Command, and API Reference (3021-3-366(E))

• Windows Server 2012 R2 was added as a supported operating system.

• Functionality was added to facilitate the debugging of service templates. The manual structure was changed to
accommodate this new functionality.

• A description of the case in which the user wants to use a content plug-in provided by JP1/AO in service template
development was added.

• Public key authentication was added as an authentication method for operation target devices.

• Release plug-ins can now be deleted.

• A description of reserved properties was added. Also, the following reserved properties were added:

• reserved.loop.index

• reserved.service.category

• reserved.service.name

• reserved.service.resourceGroupName

• reserved.step.path

• reserved.step.prevReturnCode

• reserved.task.description

• reserved.task.id

• reserved.task.name

• reserved.task.submitter

• reserved.task.url

• For the reserved.step.prevReturnCode reserved property, a description of a scenario in which the preceding step is
not executed when retrying a task was added.

• Subsequent-step execution conditions were added as information inherited when pasting a step or relational line.

• In addition to Windows and Linux, content plug-ins that execute commands and scripts in AIX, HP-UX, and Solaris
are now supported.

• The description of the execution user for commands and scripts by using content plug-ins was clarified.

• An explanation that user profiles are not inherited when the OS of the operation target device is Windows was added.

• A function was added to allow users to select whether to elevate user permission to root privilege when executing
a content plug-in. This function can be used when the OS of the operation target device is UNIX.

• A description was added regarding the conditions under which files can be transferred.

• The folder in which transferred files are stored can now be set in the property file (config_user.properties).

• The manual now mentions that certain commands must be installed in the OS of the operation target device before
executing content plug-ins.

• The ibm-943 character set used for communication by JP1/AO during plug-in execution was changed to ibm-943C.

• The manual now mentions that certain commands must be installed in the OS of the operation target device before
executing plug-ins.

• A description of the setting in the plugin.suPassword reserved plug-in property when execution with root privileges
is not specified was added.

• A description of the specification in the Command line text box to execute a non-standard script was added.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 250

• A cautionary note about specifying the command line for a content plug-in was added.

• A description of the return values of content plug-ins was added.

• A description of the relationship among the return values of executed commands or scripts, plug-ins, and steps was
added.

• A procedure for using a return value as the branching condition for a flow was added, for situations when a command
or script executed as a plug-in returns a value outside the 0 to 63 range.

• A section on the standard output of plug-ins was added.

• The manual now instructs users not to enclose the path of the execution directory in double or single-quotation
marks, even if the path contains spaces.

(12) Changes in version 10-12

(a) Changes in the manual (3021-3-087-20)
• Windows Server 2012 R2 was added as a supported operating system.

• Functionality was added to facilitate the debugging of service templates. The manual structure was changed to
accommodate this new functionality.

• For the reserved.step.prevReturnCode reserved property, a description of a scenario in which the preceding step is
not executed when retrying a task was added.

• Subsequent-step execution conditions were added to the information inherited when pasting a step or relational line.

• A function was added to allow users to select whether to elevate user permission to root privilege when executing
a content plug-in. This function can be used when the OS of the operation target device is UNIX.

• A description was added regarding the conditions under which files can be transferred.

• The folder in which transferred files are stored can now be set in the property file (config_user.properties).

• A description of the setting in the plugin.suPassword reserved plug-in property when execution with root privileges
is not specified was added.

• A description of the return values of content plug-ins was added.

• A description of the relationship among the return values of executed commands or scripts, plug-ins, and steps was
added.

• A procedure for using a return value as the branching condition for a flow was added, for situations when a command
or script executed as a plug-in returns a value outside the 0 to 63 range.

(13) Changes in version 10-11

(a) Changes in the manual (3021-3-087-10)
• Release plug-ins can now be deleted.

• A description of reserved properties was added. Also, the following reserved properties were added:

• reserved.loop.index

• reserved.service.category

• reserved.service.name

• reserved.service.resourceGroupName

• reserved.step.path

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 251

• reserved.step.prevReturnCode

• reserved.task.description

• reserved.task.id

• reserved.task.name

• reserved.task.submitter

• reserved.task.url

• In addition to Windows and Linux, content plug-ins that execute commands and scripts in AIX, HP-UX, and Solaris
are now supported.

• The description of the execution user for commands and scripts by using content plug-ins was clarified.

• The manual now mentions that certain commands must be installed in the OS of the operation target device before
executing content plug-ins.

• The ibm-943 character set used for communication by JP1/AO during plug-in execution was changed to ibm-943C.

• The manual now mentions that certain commands must be installed in the OS of the operation target device before
executing plug-ins.

• A cautionary note about specifying the command line for a content plug-in was added.

• A section on the standard output of plug-ins was added.

• The manual now instructs users not to enclose the path of the execution directory in double or single-quotation
marks, even if the path contains spaces.

A. Reference Information

JP1/Automatic Operation Service Template Developer's Guide 252

Index

A
ability to display window items by service template
configuration type and user role 242
active environments

reason for maintaining separate from development
environment 148

adding
service properties 109, 110

auto-completion
property values 78

B
basic plug-in 151
batch-updating

components used as steps to latest versions 101
build and release operations

configuration types of service templates and plug-ins
assigned by 241
reference information 239

build and release processes
structure and differences 239

build or release operations
performed on multiple instances of same service
template or plug-in 241

building
overview 198
service templates 202

C
changing

step property values or return value during
debugging 221

changing version
component used as step 103

character set
setting specific character set at plug-in execution157
used during plug-in execution 156

checking
details about debug tasks from Task Details window

233
progress of debug task from Tasks window 232
property mapping settings during debugging 219
task log entries for debug tasks 233

checking versions
components used as steps 101

command and script return values
relationship to return values of plug-ins and steps183

command or script return values
using as flow branching conditions (for values
outside 0 to 63 range) 181

commands
procedure for setting 174
required for plug-in execution 155
specifying in CLI Command text box 179

compatibility
steps in service templates created in earlier versions
of JP1/AO 244
service templates 243
service templates and plug-ins created in Service
Builder window 243

component 19
changing version to any specified version 103

component icons
image files that can be set for 164

component used as step
changing version 40

components
batch-updating to latest versions 101
checking versions 101
information inherited when changing versions 105
managing versions 100
overview of managing versions 100

Conditional expressions that use arrows to indicate a
connection with subsequent steps 75
content plug-in 151
content plug-ins

return values 181
copying

service templates 139
creating

flow hierarchy 69
credential types

plug-in 165
custom file

format 57
overview 54
setting for service template 55
switching for individual locales 56

JP1/Automatic Operation Service Template Developer's Guide 253

D
data type

whether properties can be mapped 88
debug task flow

displaying 226
debug tasks

managing 232
procedure for checking details from Task Details
window 233
procedure for checking progress from Tasks window

232
procedure for deleting 236
procedure for forcibly stopping 235
procedure for stopping 234

debug tasks that are waiting for response (response
entry)

procedure for handling 224
debugging

overview 199
service templates 204
service templates, example 208
settings used when starting 211
starting 209
without pausing between steps, procedure for 212

debugging again without rebuilding
service templates 224

definition
service resource file 61

deleting
debug tasks 236
service templates 142

deletion and archiving of service templates, tasks, and
services during build and release operations 242
development environments

reason for maintaining separate from active
environment 148

development plug-in 151
development service template 19, 49
development service templates

procedure for deleting 142
display settings

for properties 127
displaying

debug task flow 226
flow tree of debug task 229
repeated execution flow during debugging 229
step property values and return values during
debugging 222

dynamic changes to values set for the input properties
for services and plug-ins 117

E
editing

service properties 109
editing platform 172
editing plug-ins to apply to service templates

general procedure 38
effect of changing values of step properties during
debugging 223
elevating

step properties to service properties 92
environment variables

procedure for adding 186
procedure for deleting 187
procedure for editing 186

example of defining
step properties 93

Execution Directory
specifying 185

execution order
steps 77

executors
plug-in 152

exporting
service templates 146
step properties in Service Builder Debug window 222

F
file transfer

files transferred to UNIX systems 155
files transferred to Windows systems 154

flow 19
relationship to steps 68

flow hierarchy 69
flow tree of debug task

displaying 229
forcibly stopping

debug tasks 235
format

service resource file 60
functions used during debug operations 206

JP1/Automatic Operation Service Template Developer's Guide 254

G
general procedure

creating new service template 34
general procedure for debugging

service templates 206
general procedure for validating

service templates 197

H
handling

debug tasks that are waiting for response (response
entry) 224

I
If you specify CLI Command as the type 126
If you specify File as the type 126
If you specify JavaScript as the type 121
If you specify Script as the type 125
image files

that can be set for component icons 164
importing

service templates 147
service templates that contain steps using service
components 148
step properties in Service Builder Debug window 222

information displayed for repeated execution plug-ins
and repeated execution flows during debugging 231
information inherited

when versions of components are changed 105
input properties of services

items set for 111
input property values

directly specifying 83
interrupt operation

notes in Service Builder window 29
interrupting

step execution during debugging 213
items

set for variables 116
set for input properties of services 111
set for output properties of services 115

items to set
plug-in definition information 163

items to set for platform 173

M
managing

debug tasks 232
service templates 137

mapping
step property values 85

N
notes

service share properties 131
when interrupt operation is performed in Service
Builder window 29

O
operation test

overview 200
operations

that can be performed on relational lines 79
that can be performed on steps 79

Output Filter
specifying 185

output properties of services
items set for 115

overview
building 198
debugging 199
operation test 200
property mapping 87
service property 109
Service share properties 130
service template development 17
service template validation 197
subsequent step conditions 74

P
plug-in

available operations by plug-in type 152
credential types 165
executors 152
setting display information 188

plug-in definition information
items to set 163
procedure for editing 161

plug-in execution
locale settings for operation target devices 155

JP1/Automatic Operation Service Template Developer's Guide 255

plug-in input properties
items to set 168

plug-in output properties
items to set 169

plug-in processing
procedure for skipping during debugging 217

plug-in properties
overview 166
procedure for adding 166
procedure for deleting 171
procedure for editing 167
setting 166

plug-in resource file
automatically generated when plug-ins are created

190
correspondence between properties and displayed
information 190
displaying plug-ins 191

plug-in resource files
format 189
procedure for setting 188
updated when plug-ins are edited 191

plug-ins
copying 193
creating 150
creating and adding to service templates 39
creating definition information 159
deleting 195
displaying by using web browser with locale for
which plug-in resource file has not been created 191
editing 150
editing definition information 159
managing 192
overview 151
procedure for copying 193
procedure for creating 159
procedure for deleting 195
procedure for editing definition information 161
standard output 183
uniqueness 140

plug-ins that cannot be interrupted or skipped during
debugging 218
procedure

adding plug-in properties 166
copying plug-ins 193
deleting plug-in properties 171
deleting plug-ins 195
editing plug-in properties 167

setting commands 174
setting plug-in resource files 188
skipping plug-in processing during debugging 217

procedure for adding
service share properties 131

procedure for deleting
development service templates 142
property groups 136
service properties 129

procedure for setting
property groups 135

procedure for copying
service templates 139

Procedure for creating an External Resource 120
procedure for editing

service properties 109
procedure for editing platform 172
procedure for exporting

service templates 146
procedure for importing

service templates 147
procedure for releasing

service template 144
Procedure for setting External Resource 119
procedure for setting scripts

when attaching created scripts 177
when directly entering scripts 178

Procedure for using the function 118
procedure for viewing

service templates 138
properties

display settings 127
visibility 127
whether to be mapped depending on visibility or
data type 88

property groups
procedure for deleting 136
procedure for setting 135
setting 135

property mapping
overview 87

property mapping settings
procedure for checking during debugging 219

Property tab of Service Builder Edit window 107
property values

auto-completion 78
setting dynamically or statically 42

JP1/Automatic Operation Service Template Developer's Guide 256

R
reference information 239

build and release operations 239
relational lines

behavior when connected to multiple steps 80
information inherited when pasting 79
operations that can be performed 79
plug-ins when processing branches 81
restrictions 80

release
overview 143

release plug-in 151
release service template 19, 49
releasing

service templates 143
repeated execution flow during debugging

displaying 229
reserved property

list 94
reserved plug-in properties

specifying authentication information 169
specifying execution-target hosts 169

resource file
setting display information for service template 59

resource files
setting plug-in display information 188

retrying
task from failed step during debugging 225
task from step after failed step during debugging 226

return values
of content plug-ins 181

S
script specification method 175
scripts

method for specifying 175
procedure for setting 177, 178

Service Builder Debug window 204
Service Builder Edit window General tab 50
Service Builder Edit window Flow tab 66
Service Builder window 24

notes when interrupt operation is performed 29
service component 151
service properties

adding 109, 110
editing 109

general procedure for setting 44
procedure for deleting 129
procedure for editing 109
setting 106

service property
overview 109

service resource file
automatically generated at service template creation

63
updated when service template is edited 63
correspondence between properties and displayed
information 62
definition 61
displaying service template in Web browser whose
locale has no service resource file 64
format 60
setting 59

service share properties
notes 131
procedure for adding 131

Service share properties
overview 130

Service Share Properties 130
service template 19

active environment 19
adding processing 41
changing definition information 51
creating and adding plug-ins 39
creating and changing definition information 50
creating blank template 50
creating new 34
deleting processing 41
development environment 19
editing and reusing 36
editing definition information 37
elements involved in development 19
flow of development 16
list of development features 46
plug-in 19
procedure for releasing 144
setting custom file 55
setting definition information 48
setting display information in resource file 59
starting editing 28
tasks 31
tasks performed when creating 31
tasks performed when editing and reusing 32

JP1/Automatic Operation Service Template Developer's Guide 257

tasks performed when using existing service
template as is 32
transition of windows when developing 22
using existing template 45
windows used for development 22

service template definition information
items to set 52

service template development
flow 17

service template flow
creating 65
editing 65

service template validation
overview 197

service templates
building 202
compatibility for 243
copying 139
debugging 204
deleting 142
example of debugging 208
exporting 146
general procedure for debugging 206
general procedure for validating 197
importing 147
managing 137
procedure for building 202
procedure for copying 139
procedure for debugging again without rebuilding
224
procedure for exporting 146
procedure for importing 147
procedure for testing operation of 237
procedure for viewing 138
releasing 143
testing operation of 237
uniqueness 140
validating 196
viewing 138

service templates that contain steps using service
components

importing 148
setting

property groups 135
setting definition information

service template 48

settings
step definition information 74

shared built-in service properties
overview 132

standard error output
mapping to output properties 184

standard output
mapping to output properties 184
plug-ins 183

starting
debugging 209

step 19
changing version of component to any specified
version 103
definition information 74

step execution
interrupting during debugging 213

step information that can be changed when step
execution is interrupted 216
step properties

elevating to service properties 92
example of defining 93
importing and exporting in Service Builder Debug
window 222
overview 83
setting 83

step property values
mapping 85

step property values and return values
displaying during debugging 222

step property values or return value
procedure for changing during debugging 221

steps
adding 71
adding procedure 71
batch-updating components to latest versions 101
checking versions of components used as 101
defining execution order 77
directly specifying input property values 83
editing 71
editing procedure 73
information inherited when pasting 79
managing versions of components used as 100
operations that can be performed 79
overview of managing versions of components
used as 100
procedure for defining execution order 77
relationship to flow 68

JP1/Automatic Operation Service Template Developer's Guide 258

warning icon 98
stopping

debug tasks 234
subsequent step conditions

overview 74

T
task

procedure for retrying from failed step during
debugging 225
procedure for retrying from step after failed step
during debugging 226

task log entries for debug tasks
procedure for checking 233

testing
operation of service template 237
operation of service templates 237

timing with which step execution can be interrupted212

V
validating

service templates 196
variables

items set for 116
viewing

service templates 138
visibility

for properties 127
whether properties can be mapped 88

W
warning icon

steps 98

JP1/Automatic Operation Service Template Developer's Guide 259

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan

	JP1/Automatic Operation Service Template Developer's Guide
	Notices
	Summary of amendments
	Preface
	Contents
	1. Flow of Service Template Development
	1.1 Overview
	1.1.1 Flow of service template development
	1.1.2 Elements involved in service template development

	1.2 Main windows used to develop service templates
	1.2.1 Transition of windows when developing service templates
	1.2.2 Service Builder window
	1.2.3 Procedure for starting editing of service templates
	1.2.4 Notes when an interrupt operation is performed in the Service Builder window

	1.3 Contents and structure of tasks associated with service templates
	1.3.1 Contents and structure of tasks performed when creating a new service template
	1.3.2 Contents and structure of tasks performed when editing and reusing a service template
	1.3.3 Content and structure of tasks performed when using an existing service template as is

	1.4 General procedure for creating new service templates
	1.4.1 General procedure for creating new service templates

	1.5 General procedure when editing and reusing an existing service template
	1.5.1 General procedure when editing service template definition information
	1.5.2 General procedure for editing a plug-in and applying the result to a service template
	1.5.3 General procedure for creating new plug-ins and adding them to service templates
	1.5.4 General procedure for changing the version of a component used as a step
	1.5.5 General procedure for adding or deleting processing to or from a service template
	1.5.6 General procedure for dynamically or statically setting property values when executing services
	1.5.7 General procedure for setting service properties

	1.6 Using existing service templates provided by JP1/AO
	1.6.1 General procedure for using an existing service template provided by JP1/AO

	1.7 List of service template development features

	2. Setting Service Template Definition Information
	2.1 Overview of development service templates and release service templates
	2.2 Creating and changing the service template definition information
	2.2.1 Service Builder Edit window General tab
	2.2.2 Procedure for creating blank service templates
	2.2.3 Procedure for changing the service template definition information
	2.2.4 Items to set in service template definition information
	2.2.5 Overview of custom files to be set to service templates
	2.2.6 Procedure for setting custom files for service templates
	2.2.7 Switching custom files for individual locales of the Web browser
	2.2.8 Format of custom files

	2.3 Setting display information for service templates in resource files
	2.3.1 Procedure for setting service resource files
	2.3.2 Format of service resource file
	2.3.3 Definitions in service resource files
	2.3.4 Correspondence between information displayed in service templates and properties in service resource files
	2.3.5 Service resource files automatically generated when a service template is created
	2.3.6 Service resource files updated when a service template is edited
	2.3.7 Displaying a service template in a Web browser that is set to a locale for which no service resource file is available

	3. Creating and Editing Flows for Service Templates
	3.1 Service Builder Edit window Flow tab
	3.2 Relationship between flow and steps
	3.3 Creating flow hierarchies
	3.4 Adding and editing steps
	3.4.1 Procedure for adding steps
	3.4.2 Procedure for editing steps
	3.4.3 Settings in step definition information
	3.4.4 Overview of subsequent step conditions
	3.4.5 Conditional expressions that use arrows to indicate a connection with subsequent steps

	3.5 Defining the execution order of steps
	3.5.1 Procedure for defining the execution order of steps
	3.5.2 Auto-completion of property values
	3.5.3 Operations that can be performed on steps and relational lines
	3.5.4 Information inherited when pasting steps or relational lines
	3.5.5 Behavior when relational lines connect to multiple steps
	3.5.6 Scenarios where relational lines cannot be drawn
	3.5.7 Drawing relational lines when processing branches

	3.6 Setting step properties
	3.6.1 Overview of step properties
	3.6.2 Procedure for directly specifying the input property values of steps
	3.6.3 Procedure for mapping step property values
	3.6.4 Overview of property mapping
	3.6.5 Whether properties can be mapped depending on the visibility or data type
	3.6.6 Procedure for elevating step properties to service properties
	3.6.7 Example of defining step properties
	3.6.8 List of reserved properties
	3.6.9 Warning icon displayed for steps

	3.7 Managing the versions of components used as steps
	3.7.1 Overview of managing the versions of components used as steps
	3.7.2 Procedure for checking the versions of components used as steps
	3.7.3 Procedure for batch-updating components used as steps to the latest versions
	3.7.4 Procedure for changing the version of a component used as a step to any specified version
	3.7.5 Information inherited when the versions of components are changed

	4. Setting Service Properties
	4.1 Property tab of the Service Builder Edit window
	4.2 Editing and adding service properties
	4.2.1 Overview of service property
	4.2.2 Procedure for editing service properties
	4.2.3 Procedure for adding service properties
	4.2.4 Items set for input properties of services
	4.2.5 Items set for output properties of services
	4.2.6 Items set for variables
	4.2.7 About dynamic changes to values set for the input properties for services and plug-ins
	4.2.8 Visibility and display settings for properties
	4.2.9 Procedure for deleting service properties

	4.3 Service share properties
	4.3.1 Overview of service share properties
	4.3.2 Procedure for adding service share properties
	4.3.3 Notes on defining service share properties
	4.3.4 Overview of shared built-in service properties

	4.4 Setting property groups
	4.4.1 Procedure for setting property groups
	4.4.2 Procedure for deleting property groups

	5. Managing Service Templates
	5.1 Viewing service templates
	5.1.1 Procedure for viewing service templates

	5.2 Copying service templates
	5.2.1 Procedure for copying service templates
	5.2.2 Uniqueness of service templates and plug-ins

	5.3 Deleting development service templates
	5.3.1 Procedure for deleting development service templates

	5.4 Releasing service templates
	5.4.1 Overview of service template release
	5.4.2 Procedure for releasing a service template

	5.5 Exporting service templates
	5.5.1 Procedure for exporting service templates

	5.6 Importing service templates
	5.6.1 Procedure for importing service templates
	5.6.2 Importing service templates that contain steps using service components
	5.6.3 Reason for maintaining separate development and active environments

	6. Creating and editing plug-ins
	6.1 Overview of plug-ins
	6.1.1 Available operations by plug-in type
	6.1.2 Plug-in executors
	6.1.3 Files transferred to Windows systems
	6.1.4 Files transferred to UNIX systems
	6.1.5 Commands required for plug-in execution
	6.1.6 Locale set for operation target devices during plug-in execution
	6.1.7 Character set used for communication by JP1/AO during plug-in execution
	6.1.8 Setting a specific character set during plug-in execution

	6.2 Creating and editing plug-in definition information
	6.2.1 Procedure for creating plug-ins
	6.2.2 Procedure for editing plug-in definition information
	6.2.3 Items to set in plug-in definition information
	6.2.4 Image files that can be set for component icons
	6.2.5 Plug-in credential types

	6.3 Setting plug-in properties
	6.3.1 Overview of plug-in properties
	6.3.2 Procedure for adding plug-in properties
	6.3.3 Procedure for editing plug-in properties
	6.3.4 Items to set for plug-in input properties
	6.3.5 Items to set for plug-in output properties
	6.3.6 Reserved plug-in properties for specifying execution-target hosts and authentication information
	6.3.7 About dynamic changes to values set for the input properties for plug-ins
	6.3.8 Procedure for deleting plug-in properties

	6.4 Editing platforms
	6.4.1 Procedure for editing platforms
	6.4.2 Items to set for platforms
	6.4.3 Procedure for setting commands
	6.4.4 Method for specifying scripts
	6.4.5 Procedure for setting scripts (when attaching created scripts)
	6.4.6 Procedure for setting scripts (when directly entering scripts)
	6.4.7 Specifying commands in the CLI Command text box
	6.4.8 Procedure for using the return value of a command or script as a flow branching condition (for values outside the 0 to 63 range)
	6.4.9 Return values of content plug-ins
	6.4.10 Relationship of command and script return values to the return values of plug-ins and steps
	6.4.11 Information output to standard output by plug-ins
	6.4.12 Procedure for mapping standard output and standard error output to output properties
	6.4.13 Specifying Output Filter
	6.4.14 Specifying Execution Directory
	6.4.15 Procedure for adding and editing environment variables
	6.4.16 Procedure for deleting environment variables

	6.5 Using resource files to set plug-in display information
	6.5.1 Procedure for setting plug-in resource files
	6.5.2 Format of plug-in resource files
	6.5.3 Correspondence between properties in plug-in resource files and information displayed for plug-ins
	6.5.4 Plug-in resource files automatically generated when plug-ins are created
	6.5.5 Plug-in resource files updated when plug-ins are edited
	6.5.6 Displaying plug-ins by using a Web browser with a locale for which the plug-in resource file has not been created

	7. Managing plug-ins
	7.1 Copying plug-ins
	7.1.1 Procedure for copying plug-ins

	7.2 Deleting plug-ins
	7.2.1 Procedure for deleting plug-ins

	8. Validating Service Templates
	8.1 Overview of service template validation
	8.1.1 General procedure for validating service templates
	8.1.2 Overview of building
	8.1.3 Overview of debugging
	8.1.4 Overview of operation tests

	8.2 Building service templates
	8.2.1 Procedure for building service templates

	8.3 Debugging service templates
	8.3.1 Service Builder Debug window
	8.3.2 General procedure for debugging service templates
	8.3.3 Functions used during debug operations
	8.3.4 Example of debugging service templates
	8.3.5 Procedure for starting debugging
	8.3.6 Settings used when starting debugging
	8.3.7 Procedure for debugging without pausing between steps
	8.3.8 Timing with which step execution can be interrupted
	8.3.9 Operations for interrupting step executions during debugging
	8.3.10 Step information that can be changed when step execution is interrupted
	8.3.11 Procedure for skipping plug-in processing during debugging
	8.3.12 Plug-ins that cannot be interrupted or skipped during debugging
	8.3.13 Procedure for checking property mapping settings during debugging
	8.3.14 Procedure for changing step property values or return value during debugging
	8.3.15 Importing and exporting step properties in the Service Builder Debug window
	8.3.16 Displaying step property values and return values during debugging
	8.3.17 Effect of changing values of step properties during debugging
	8.3.18 Procedure for handling debug tasks that are waiting for a response (response entry)
	8.3.19 Procedure for debugging a service template again without rebuilding
	8.3.20 Procedure for retrying a task from a failed step during debugging
	8.3.21 Procedure for retrying a task from the step after the failed step during debugging
	8.3.22 Displaying debug task flow
	8.3.23 Displaying the flow tree of a debug task
	8.3.24 Displaying a repeated execution flow during debugging
	8.3.25 Information displayed for repeated execution plug-ins and repeated execution flows during debugging

	8.4 Managing debug tasks
	8.4.1 Procedure for checking progress of debug tasks from the Tasks window
	8.4.2 Procedure for checking details about debug tasks from the Task Details window
	8.4.3 Procedure for checking task log entries for debug tasks
	8.4.4 Procedure for stopping debug tasks
	8.4.5 Procedure for forcibly stopping debug tasks
	8.4.6 Procedure for deleting debug tasks

	8.5 Testing the operation of service templates
	8.5.1 Procedure for testing the operation of service templates

	Appendix
	A. Reference Information
	A.1 Reference information for build and release operations
	A.2 Compatibility for service templates
	A.3 Version changes

	Index

