
Compatibility Guide

3021-3-J12-10(E)

uCosminexus Application Server

Notices

■ Relevant program products
See the Release Notes.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law,
and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI, Cosminexus, DABroker, HA Monitor, HiRDB, JP1, OpenTP1, TPBroker, uCosminexus, XDM are either
trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
AIX is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft, Active Directory are trademarks of the Microsoft group of companies.
Microsoft, SQL Server are trademarks of the Microsoft group of companies.
Microsoft, Windows are trademarks of the Microsoft group of companies.
Microsoft, Windows Server are trademarks of the Microsoft group of companies.
Microsoft is a trademark of the Microsoft group of companies.
Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source
community for development tool providers.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

■ Issued
Aug. 2022: 3021-3-J12-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2022, Hitachi, Ltd.

Compatibility Guide 2

Preface

For details on the prerequisites before reading this manual, see the Release Notes.

■ Non-supported functionality
Some functionality described in this manual is not supported. Non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management Server management portal

• Remote installation functionality for the UNIX edition

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

Compatibility Guide 3

Contents

Notices 2
Preface 3

Part 1: Application Server Functionality

1 Application Server Functionality 19
1.1 Classifications of functionality 20
1.1.1 Functionality that serves as an application execution platform 22
1.1.2 Functionality for operating and maintaining the application execution platform 23
1.1.3 Correspondence between functionality and manuals 24
1.2 Explanations of the functionality in this manual 27
1.2.1 Meaning of explanation categories 27
1.2.2 Examples of tables indicating explanation categories 27
1.3 Major functionality changes in Application Server 11-00 29
1.3.1 Simplifying implementation and setup 29
1.3.2 Supporting the standard and existing functionality 29
1.3.3 Maintaining and improving reliability 30
1.3.4 Other purposes 30

Part 2: V9 Compatibility Mode

2 Overview of V9 Compatibility Mode 31
2.1 V9 compatibility mode and recommended mode 32

3 How to Use V9 Compatibility Mode 33
3.1 The method of specifying V9 compatibility mode when creating a new J2EE server 34
3.1.1 When using the Smart Composer functionality 34
3.1.2 When using the management portal (INTENTIONALLY DELETED) 34
3.1.3 When using a J2EE server command 34
3.1.4 When using the development environment instant setup functionality (INTENTIONALLY

DELETED) 35
3.2 The method of performing an update installation to migrate an existing J2EE server 36
3.3 Checking the J2EE server compatibility mode 37
3.4 Precautions on use 38

4 Functionality of V9 Compatibility Mode and Recommended Mode 39
4.1 Functional differences between V9 compatibility mode and recommended mode 40

Compatibility Guide 4

5 Web Server Integration 41
5.1 Organization of this chapter 42
5.2 Distributing requests with the Web server (Redirector) 44
5.2.1 Mechanism of request distribution with the Redirector 44
5.2.2 User-defined file for setting the request distribution method (When the Smart Composer

functionality is used) 47
5.2.3 User-defined file for setting the request distribution method (When the Smart Composer

functionality is not used) 47
5.2.4 Points to be considered during Web server integration 49
5.3 Distributing requests by URL pattern 51
5.3.1 Overview of distributing requests by URL pattern 51
5.3.2 Types of URL patterns and priority of applicable patterns 52
5.3.3 Execution environment settings (When the Smart Composer functionality is used) 55
5.3.4 Execution environment settings (When the Smart Composer functionality is not used) 58
5.4 Distributing requests by the round-robin format 61
5.4.1 Overview of distributing requests by the round-robin format 61
5.4.2 Examples of request distribution in the round-robin format 62
5.4.3 Defining request distribution in the round robin format 62
5.4.4 Execution environment settings (When the Smart Composer functionality is used) 63
5.4.5 Execution environment settings (When the Smart Composer functionality is not used) 66
5.4.6 Precautions related to request distribution in the round-robin format 69
5.5 Distributing requests by the POST data size 71
5.5.1 Overview of distributing requests by the POST data size 71
5.5.2 Examples of distributing requests by the POST data size 72
5.5.3 Request distribution conditions 74
5.5.4 Definition for distributing requests by the POST data size 74
5.5.5 Execution environment settings (When the Smart Composer functionality is used) 75
5.5.6 Execution environment settings (When the Smart Composer functionality is not used) 79
5.6 Communication timeout (Web server integration) 83
5.6.1 Communication timeout when sending and receiving a request 84
5.6.2 Setting the communication timeout when sending and receiving a response 89
5.6.3 Setting the communication timeout 92
5.6.4 Setting the communication timeout when sending and receiving a request (When the Smart

Composer functionality is used) 92
5.6.5 Setting the communication timeout when sending and receiving a request (When the Smart

Composer functionality is not used) 94
5.6.6 Setting the communication timeout when sending and receiving a response (When the Smart

Composer functionality is used) 96
5.6.7 Setting the communication timeout when sending and receiving a response (When the Smart

Composer functionality is not used) 98
5.7 Specifying the IP address (Web server integration) 100
5.7.1 Bind address specification functionality 100
5.7.2 Execution environment settings (J2EE server settings) 100

Compatibility Guide 5

5.7.3 Precautions for specifying the IP address in Web server integration 100
5.8 Error page customization with the Web server integration functionality 102
5.8.1 Overview of error page customization 102
5.8.2 Mechanism of error page customization 103
5.8.3 Execution environment settings (When the Smart Composer functionality is used) 104
5.8.4 Execution environment settings (When the Smart Composer functionality is not used) 107
5.8.5 Precautions related to error page customization 109
5.9 Viewing the top page by specifying the domain name 110
5.9.1 Viewing the top page by specifying the domain name 110
5.9.2 Execution environment settings (When the Smart Composer functionality is used) 111
5.9.3 Execution environment settings (When the Smart Composer functionality is not used) 112
5.10 Notification of gateway information to a Web container 114
5.10.1 Gateway specification functionality 114
5.10.2 Execution environment settings (When the Smart Composer functionality is used) 115
5.10.3 Execution environment settings (When the Smart Composer functionality is not used) 116
5.10.4 Precautions related to reporting the gateway information to a Web Container 117
5.11 Controlling the number of concurrently executing threads in the Web container 120
5.11.1 Mechanism for controlling the number of concurrently executing threads (Web container) 120
5.11.2 Execution environment settings (J2EE server settings) 121
5.12 Objects for communication with redirector 122
5.13 Explicit heap tuning 123
5.13.1 How to estimate the memory size of Explicit heap (Estimating memory size used in J2EE server) 123
5.13.2 Memory size used by the object for communicating with redirector 123
5.13.3 How to estimate using statistical information 124

6 In-Process HTTP Server 130
6.1 Organization of this chapter 131
6.2 Overview of in-process HTTP server 132
6.2.1 Using the in-process HTTP server 132
6.2.2 Functionality available in the in-process HTTP server 133
6.2.3 Execution environment settings (J2EE server settings) 133
6.3 Controlling the number of connections from the Web client 135
6.3.1 Overview of controlling the number of connections from the Web client 135
6.3.2 Execution environment settings (J2EE server settings) 136
6.4 Controlling the number of request processing threads 137
6.4.1 Overview of controlling the number of request processing threads 137
6.4.2 Execution environment settings (J2EE server settings) 141
6.5 Controlling the flow of requests by controlling the number of concurrent connections from the

Web client 142
6.5.1 Controlling the number of concurrent connections from the Web client 142
6.5.2 Execution environment settings (J2EE server settings) 144
6.6 Controlling the flow of requests by controlling the number of concurrently executing threads 147

Compatibility Guide 6

6.6.1 Overview of controlling the flow of requests by controlling the number of concurrently
executing threads 147

6.6.2 Execution environment settings (J2EE server settings) 147
6.7 Request distribution with the redirector 149
6.7.1 Distributing requests by URL pattern 149
6.7.2 Response customization 149
6.7.3 Execution environment settings (J2EE server settings) 150
6.7.4 Precautions related to request distribution with the redirector 153
6.8 Controlling the communication with the Web client by persistent connection 154
6.8.1 Controlling communication by Persistent Connection 154
6.8.2 Execution environment settings (J2EE server settings) 155
6.9 Communication timeout (In-process HTTP server) 157
6.9.1 Overview of the communication timeout 157
6.9.2 Execution environment settings (J2EE server settings) 159
6.10 Specifying the IP address (In-process HTTP server) 160
6.10.1 Bind address specification functionality 160
6.10.2 Execution environment settings (J2EE server settings) 160
6.10.3 Precautions related to IP address specification in the in-process HTTP server 161
6.11 Controlling access by limiting the hosts that are allowed access 162
6.11.1 Limiting the hosts that are allowed access 162
6.11.2 Execution environment settings (J2EE server settings) 162
6.12 Controlling access by limiting the request data size 164
6.12.1 Limiting the request data size 164
6.12.2 Execution environment settings (J2EE server settings) 165
6.13 Controlling access by limiting the HTTP-enabled methods 167
6.13.1 Limiting the HTTP-enabled methods 167
6.13.2 Execution environment settings (J2EE server settings) 167
6.14 Customizing responses to the Web client using HTTP responses 169
6.14.1 Customizing the HTTP response header 169
6.14.2 Execution environment settings (J2EE server settings) 169
6.15 Error page customization (In-process HTTP server) 171
6.15.1 Error page that can be customized 171
6.15.2 Implementation required for customizing the error page 172
6.15.3 Execution environment settings (J2EE server settings) 172
6.15.4 Precautions related to error page customization 174
6.16 Notification of gateway information to a Web container 175
6.16.1 Gateway specification functionality 175
6.16.2 Execution environment settings (J2EE server settings) 176
6.16.3 Precautions related to reporting the gateway information to the Web container 177
6.17 Output of log and trace 179
6.17.1 Log and trace output by the in-process HTTP server 179
6.17.2 Customizing the access log of the in-process HTTP server 179

Compatibility Guide 7

6.18 URI decode functionality 184
6.18.1 Overview of URI decode functionality 184
6.18.2 Execution environment settings (J2EE server settings) 185
6.18.3 Precautions for using the URI decode functionality 185
6.19 Settings for acquiring the in-process HTTP server log 187
6.20 cjtracesync (synchronize trace file information for in-process HTTP server) 189
6.21 Precautions when operating SOAP applications 190
6.21.1 Precautions when stopping the J2EE server using the in-process HTTP server 190

7 Cosminexus JAX-RS Engine (JAX-RS 1.1) 191
7.1 Cosminexus JAX-RS engine in V9 compatibility mode (JAX-RS 1.1) 192

8 How to Use JPA with Application Server 193
8.1 Organization of this chapter 194
8.2 Features of JPA 195
8.2.1 Advantages of applications using JPA 195
8.2.2 Entity class 196
8.2.3 JPA provider 197
8.3 JPA functionality that can be used with Application Server 198
8.3.1 Available JPA providers 198
8.3.2 Available components 199
8.3.3 Supported application formats 200
8.3.4 Supported class loader configuration 201
8.3.5 available resource adapters 201
8.4 EntityManager 203
8.4.1 Methods provided with EntityManager 203
8.4.2 Types of EntityManager 203
8.4.3 Transaction control and EntityManager 204
8.4.4 Persistence unit 205
8.5 Persistence context 206
8.5.1 EntityManager and persistence context 206
8.5.2 Persistence context when the container-managed EntityManager is used 207
8.5.3 Persistence context when the application-managed EntityManager is used 209
8.6 How to obtain the container-managed EntityManager 210
8.6.1 Method of injecting EntityManager in the application 210
8.6.2 Method of looking up EntityManager from the application 212
8.6.3 Overriding the @PersistenceContext definition using the DD 214
8.7 How to obtain the application-managed EntityManager 216
8.7.1 Method of injecting EntityManagerFactory in the application 216
8.7.2 Method of looking up EntityManagerFactory from the application 218
8.7.3 Overriding the @PersistenceUnit definition using the DD 219
8.8 Definitions in persistence.xml 221

Compatibility Guide 8

8.8.1 Attributes specified in the <persistence-unit> tag 221
8.8.2 Tags specified under the <persistence-unit> tag 221
8.9 Allocating persistence.xml 227
8.10 JPA interfaces 228
8.10.1 javax.persistence.EntityManager interface 228
8.10.2 javax.persistence.EntityManagerFactory interface 234
8.11 Notes on setting up applications 236
8.11.1 Notes on allocating the entity classes 236
8.11.2 Reference scope of the persistence unit name 236
8.11.3 Items checked when the application is deployed 237
8.11.4 Notes on using the JPA with Application Server 239
8.11.5 Notes when the Cosminexus JPA functionality is not used 239
8.12 javax.persistence package 241
8.12.1 @AssociationOverride 245
8.12.2 @AssociationOverrides 246
8.12.3 @AttributeOverride 246
8.12.4 @AttributeOverrides 247
8.12.5 @Basic 248
8.12.6 @Column 249
8.12.7 @ColumnResult 251
8.12.8 @DiscriminatorColumn 252
8.12.9 @DiscriminatorValue 253
8.12.10 @Embeddable 254
8.12.11 @Embedded 254
8.12.12 @EmbeddedId 254
8.12.13 @Entity 255
8.12.14 @EntityListeners 256
8.12.15 @EntityResult 256
8.12.16 @Enumerated 257
8.12.17 @ExcludeDefaultListeners 258
8.12.18 @ExcludeSuperclassListeners 259
8.12.19 @FieldResult 259
8.12.20 @GeneratedValue 260
8.12.21 @Id 261
8.12.22 @IdClass 262
8.12.23 @Inheritance 263
8.12.24 @JoinColumn 263
8.12.25 @JoinColumns 266
8.12.26 @JoinTable 267
8.12.27 @Lob 269
8.12.28 @ManyToMany 269

Compatibility Guide 9

8.12.29 @ManyToOne 271
8.12.30 @MapKey 273
8.12.31 @MappedSuperclass 273
8.12.32 @NamedNativeQueries 274
8.12.33 @NamedNativeQuery 274
8.12.34 @NamedQueries 276
8.12.35 @NamedQuery 277
8.12.36 @OneToMany 278
8.12.37 @OneToOne 280
8.12.38 @OrderBy 282
8.12.39 @PersistenceContext 283
8.12.40 @PersistenceContexts 284
8.12.41 @PersistenceProperty 285
8.12.42 @PersistenceUnit 286
8.12.43 @PersistenceUnits 287
8.12.44 @PostLoad 287
8.12.45 @PostPersist 288
8.12.46 @PostRemove 288
8.12.47 @PostUpdate 288
8.12.48 @PrePersist 288
8.12.49 @PreRemove 289
8.12.50 @PreUpdate 289
8.12.51 @PrimaryKeyJoinColumn 289
8.12.52 @PrimaryKeyJoinColumns 291
8.12.53 @QueryHint 291
8.12.54 @SecondaryTable 292
8.12.55 @SecondaryTables 294
8.12.56 @SequenceGenerator 294
8.12.57 @SqlResultSetMapping 296
8.12.58 @SqlResultSetMappings 297
8.12.59 @Table 298
8.12.60 @TableGenerator 299
8.12.61 @Temporal 302
8.12.62 @Transient 302
8.12.63 @Version 303
8.12.64 Correspondence between the annotations and O/R mapping 303

9 Cosminexus JPA Provider 306
9.1 Organization of this chapter 307
9.2 Cosminexus JPA Provider 308
9.2.1 Processing in Cosminexus JPA Provider 308
9.2.2 Functionality provided by Cosminexus JPA Provider 310

Compatibility Guide 10

9.2.3 Preconditions for using Cosminexus JPA Provider 310
9.2.4 Estimating the number of DB Connector connections 312
9.3 Updating a database using entities 313
9.4 Entity operations by EntityManager 314
9.4.1 Transition of entity states 314
9.4.2 persist operation for the entities 316
9.4.3 remove operation for the entities 317
9.4.4 Obtaining the entities from the database 318
9.4.5 Synchronization with the database 318
9.4.6 Separate and merge operations of an entity from the persistence context 321
9.4.7 managed entity 322
9.5 Defining the mapping information between the database and Java objects 324
9.6 Entity relationships 325
9.6.1 Relationship types 325
9.6.2 Annotations for relationships 326
9.6.3 Direction of relationships 327
9.6.4 Default mapping (bi-directional relationship) 327
9.6.5 Default mapping (unidirectional relationship) 330
9.7 Cache functionality of the entity objects 335
9.7.1 Processing of the cache functionality 335
9.7.2 Cache reference forms and cache types 337
9.7.3 Scope of the cache functionality 340
9.7.4 Notes on using the cache functionality 340
9.8 Auto-numbering of the primary key values 344
9.9 Database operations based on the query language 345
9.10 Optimistic lock 346
9.10.1 Optimistic lock processing 346
9.10.2 Exception processing when optimistic lock fails 347
9.10.3 Notes on using the optimistic lock 348
9.11 Pessimistic lock in JPQL 350
9.12 Creating an entity class 351
9.12.1 Defining the mapping between an entity class and database 351
9.12.2 Requirements for creating entity classes 351
9.12.3 Specifying the access methods for the entity class fields 352
9.12.4 Creating the accessor method 353
9.12.5 Types of persistence fields and persistence properties of the entities 354
9.12.6 Specifying the primary key in the entities 355
9.12.7 Default mapping rules for the persistence fields and persistence properties 359
9.13 Procedure for inheriting an entity class 360
9.13.1 Inheritance class types 360
9.13.2 Inheritance mapping strategy 361

Compatibility Guide 11

9.14 Procedure for using EntityManager and EntityManagerFactory 363
9.14.1 Entity lifecycle management with EntityManager 363
9.14.2 How to set up EntityManager and EntityManagerFactory 363
9.14.3 Notes on the API functions of EntityManager 364
9.15 Procedure for specifying the callback method 365
9.15.1 Location for specifying the callback method 365
9.15.2 Implementing the callback methods 366
9.15.3 Order of invoking the callback methods 367
9.16 Procedure for referencing and updating the database with the query language 369
9.16.1 Procedure for referencing and updating the database with JPQL 369
9.16.2 Procedure for referencing and updating the database with the native query 372
9.16.3 Specifying the range of query result items 376
9.16.4 Specifying the flush mode 377
9.16.5 Specifying a query hint 377
9.16.6 Notes on executing a query 378
9.17 JPQL coding method 379
9.17.1 JPQL syntax 379
9.17.2 SELECT statement 380
9.17.3 SELECT clause 380
9.17.4 FROM clause 382
9.17.5 WHERE clause 385
9.17.6 GROUP BY clause and HAVING clause 389
9.17.7 ORDER BY clause 389
9.17.8 Bulk UPDATE statement and Bulk DELETE statement 390
9.17.9 Notes on using JPQL 391
9.17.10 Exceptions thrown when queries are used 392
9.18 Defining persistence.xml 394
9.18.1 Defining the cache functionality of the entity objects 394
9.18.2 Notes on data source specification 394
9.19 Settings in the execution environment 395
9.19.1 J2EE server settings 395
9.19.2 DB Connector settings 395
9.20 Precautions on application development 397
9.20.1 Precautions when using LAZY fetch in @OneToOne and @ManyToOne in Cosminexus 09-60

or a later environment 397
9.21 If a problem occurs in the JPA Application 398
9.21.1 Exception occurrence by user application 398
9.21.2 Errors occurred in a performance screen 399
9.21.3 Data used in troubleshooting 399
9.22 Scope of support for the annotations included in the javax.persistence package 401
9.22.1 Annotations that depend on the JPA Provider 401
9.22.2 Annotations that do not depend on the JPA Provider 404

Compatibility Guide 12

10 Web Container 405
10.1 Functionality of filtering requests and responses 406
10.1.1 Servlet filter provided by Application Server (built-in filter) 406
10.1.2 Examples of recommended filter chain 408
10.1.3 Definition in the DD 408
10.1.4 Execution environment settings (Web application settings) 408
10.2 HTTP response compression functionality 409
10.2.1 Overview of HTTP response compression filter 409
10.2.2 Conditions for using the HTTP response compression filter 410
10.2.3 Executing the applications that use the HTTP response compression filter 413
10.2.4 Definition in the DD 414
10.2.5 Examples of the DD definitions 418
10.2.6 Execution environment settings (Web application settings) 421
10.3 Precautions related to the Web container 423
10.4 Precautions for implementing servlets and JSPs 424
10.4.1 Common precautions for implementing servlets and JSPs 424
10.4.2 Precautions related to the specifications that are added or changed in the EL2.2 specifications 440

Part 3: Reference (V9 Compatibility Mode)

11 Files Used in J2EE Servers 441
11.1 Details on the files used on J2EE servers 442
11.1.1 usrconf.properties (User property file for J2EE servers) 442

12 Files Used by the Smart Composer Functionality 459
12.1 Parameters applicable to logical Web servers 460
12.1.1 Parameters that set up the redirector action definition for Cosminexus HTTP Server 460
12.1.2 Parameters used for setting up the worker definition 462
12.2 Parameters applicable to logical J2EE servers 464
12.2.1 Parameters used for setting up the user properties for the J2EE server 464

13 Files Used with JPA 471
13.1 List of files used in Cosminexus JPA Provider 472
13.2 persistence.xml 473
13.2.1 Details of persistence.xml 473
13.2.2 Cosminexus JPA Provider-specific properties that can be specified in the <property> tag 476
13.3 O/R mapping files 479
13.3.1 Elements below entity-mappings 490
13.3.2 Elements below persistence-unit-metadata 491
13.3.3 Elements below table-generator 493
13.3.4 Elements below named-query 494
13.3.5 Elements below named-native-query 494

Compatibility Guide 13

13.3.6 Elements below sql-result-set-mapping 495
13.3.7 Elements below mapped-superclass 495
13.3.8 Elements below entity 500
13.3.9 Elements under embeddable 511
13.3.10 Other elements 512
13.4 Query hint 520

14 Files Used in Web Server Integration 521
14.1 List of files used in Web server integration 522
14.2 Details on files used in Web server integration 523
14.2.1 isapi_redirect.conf (Redirector action definition file for Microsoft IIS) 523
14.2.2 mod_jk.conf (Redirector action definition file for Cosminexus HTTP Server) 526
14.2.3 uriworkermap.properties (Mapping definition file for Microsoft IIS) 534
14.2.4 workers.properties (Worker definition file) 535

15 Performance Analysis Trace 541
15.1 Overview of performance analysis traces 542
15.2 Overview of the trace based performance analysis of Application Server 543
15.3 Output information of the trace based performance analysis file (for the trace based performance

analysis) 544
15.4 Analyzing the Response Time of a Web Server 545
15.4.1 Identifying the Request for Which Timeout Occurred 545
15.4.2 Investigating the Log Using the Root Application Information 546
15.5 Overview on trace collection points and PRF trace collection levels of performance analysis trace 548
15.5.1 Trace collection point 548
15.5.2 PRF trace collection level 554
15.6 Trace collection points of a redirector 556
15.6.1 Trace collection points and PRF trace collection levels 556
15.6.2 Trace information that can be collected 558
15.7 Trace collection points of a Web container (trace of request processing) 560
15.7.1 Trace Get Point and the PRF Trace Get Level 560
15.7.2 Trace information that can be collected 561
15.7.3 Trace collection points and PRF trace collection levels (when an in-process HTTP server is used) 563
15.7.4 Trace information that can be collected 566
15.8 Trace collection points of a Web container (session trace) 568
15.8.1 Trace Get Point and the PRF Trace Get Level (Session Trace) 568
15.8.2 Trace information that can be collected 571
15.9 Trace collection points of a Web container (filter trace) 575
15.9.1 Trace collection points of a Web container when the processing terminates normally (filter trace) 575
15.9.2 Trace collection points of a Web container when an exception occurs (filter trace) 581
15.10 Trace collection points of a Web container (trace of the database session failover functionality) 586

Compatibility Guide 14

15.10.1 Trace collection points and trace information that can be collected during request processing for
creating an HTTP session (Trace of the database session failover functionality) 586

15.10.2 Trace collection points and trace information that can be collected during request processing for
updating an HTTP session (Trace of database session failover functionality) 591

15.10.3 Trace collection points and trace information that can be collected during request processing for
disabling an HTTP session (Trace of database session failover functionality) 596

15.10.4 Trace collection points and trace information that can be collected during request processing for
disabling an HTTP session through valid period monitoring (Trace of database session failover
functionality) 601

15.11 Trace collection points in a JPA 604
15.11.1 Trace collection points and trace information that can be collected when the persistent context

of application management is used 604
15.11.2 Trace collection points and trace information that can be collected when the persistent context

of container management is used 611
15.12 Trace collection points of the Cosminexus JPA provider 646
15.12.1 Trace collection points and trace information that can be collected during the acquisition or

release processing of EntityManagerFactory 646
15.12.2 Trace collection points and trace information that can be collected during the acquisition

processing of EntityManager 648
15.12.3 Trace collection points and trace information that can be collected during the operation of

EntityManager 649
15.12.4 Trace collection points and trace information that can be collected during the release processing

of EntityManager 651
15.12.5 Trace collection points and trace information that can be collected during the operation of Query 652
15.12.6 Trace collection points and trace information that can be collected during the operation of

EntityTransaction 656
15.12.7 Trace collection points and trace information that can be collected in the case of callback method

to the user 658
15.12.8 Trace collection points and trace information that can be collected during binary conversion of

the entity class 660
15.12.9 Trace collection points and trace information that can be collected during transaction linkage with

the transaction manager 661
15.12.10 Trace collection points and trace information that can be collected during the connection

operation of the DB Connector 663
15.13 Trace collection points of CDI 667
15.13.1 Trace collection points of CDI and the trace information that can be collected 667

16 Output Log Information and Log Acquisition Settings 671
16.1 Log Information Output for Each Functionality 672
16.1.1 Cosminexus JPA Provider operation log 672
16.2 Settings for acquiring the in-process HTTP server log 674

17 System Design Guide (V9 Compatibility Mode) 676
17.1 Points to be considered for performance tuning 677
17.1.1 Viewpoints for performance tuning 677
17.1.2 Items that can be tuned for each type of application 679

Compatibility Guide 15

17.2 Tuning Method 682
17.2.1 Tuning of J2EE server and Web server (including redirector) 682
17.3 Optimizing the number of concurrent executions 683
17.3.1 Controlling the number of request-processing threads in a Web server 683
17.3.2 Controlling the number of concurrent executions of a Web application 684
17.4 Setting a timeout 689
17.4.1 Points where a timeout can be set 689
17.4.2 Setting the timeout in a Web front-end system 694
17.4.3 Tuning parameters for setting the timeout 696
17.5 Optimizing the operations of the Web application 699
17.5.1 Tuning parameters for optimizing the operations of the Web application 699
17.6 Tuning other items 702
17.7 TCP/UDP port numbers used by Application Server 704

Part 4: Other Compatibility Functionality

18 Functionality Compatible with the Basic and Development
Functionality (Connecting a Database by Using DABroker Library)
(INTENTIONALLY DELETED) 711

18.1 (INTENTIONALLY DELETED) 712

19 Functionality Compatible with the Basic and Development
Functionality (Using Annotations in EJB 2.1 and Servlet 2.4)
(INTENTIONALLY DELETED) 713

19.1 (INTENTIONALLY DELETED) 714

20 Settings for Using the Connection Pool Clustering Functionality 715
20.1 Functionality for connection pool clustering 716
20.1.1 Connecting to Oracle using Oracle RAC 717
20.1.2 Overview of connection pool clustering 719
20.1.3 Resource adapters used 721
20.1.4 Connection pool clustering operations 724
20.1.5 Procedure for stopping or starting a connection pool manually 731
20.1.6 Settings required for clustering a connection pool 733
20.2 Resource connections 734
20.2.1 Procedure for resource adapter settings (To use connection pool clustering) 734
20.3 Settings for connecting to the database (in the case of a cluster connection pool) 737
20.3.1 Overview of a cluster connection pool 737
20.3.2 Setting the DB Connector for a member resource adapter 740
20.3.3 Setting the DB Connector for a root resource adapter 743
20.3.4 Starting and stopping the DB Connector for a member resource adapter 746
20.3.5 Starting and stopping the DB Connector for a root resource adapter 747

Compatibility Guide 16

20.3.6 Checking the state of the connection pool 748
20.3.7 Suspending the connection pool 749
20.3.8 Resuming the connection pool 749
20.4 Overview of settings and operations 750
20.4.1 Settings for connecting to the database (in the case of cluster connection pool) 750
20.5 Resource operation commands to be used on a J2EE server 751

cjresumepool (restart member connection pool) 751
cjsuspendpool (suspend member connection pool) 753

20.6 HITACHI Connector Property file 755
20.6.1 Properties that you can specify in the <config-property> tag set up for DB Connector 755

21 Asynchronous Parallel Processing of Threads 758
21.1 Organization of this chapter 759
21.2 Overview of the asynchronous parallel processing of threads 760
21.2.1 Procedure for the asynchronous parallel processing of threads 760
21.2.2 Java EE functionality that you can use in the asynchronous parallel processing of threads 761
21.2.3 Compatibility with Timer and Work Manager for Application Servers 765
21.3 Asynchronous timer processing by using TimerManager 768
21.3.1 Methods of scheduling threads by using TimerManager 768
21.3.2 Life cycle of TimerManager 770
21.3.3 State transition of TimerManager 771
21.3.4 Multiple schedules of TimerManager 772
21.3.5 Developing applications by using TimerManager 772
21.4 Asynchronous thread processing by using WorkManager 776
21.4.1 Daemon Work and non-daemon Work 776
21.4.2 Thread pool and queues used in non-daemon Work 777
21.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work 777
21.4.4 Developing applications by using WorkManager 780
21.4.5 Settings in the execution environment 786

Appendixes 787
A Installing the redirector functionality 788
A.1 Installing the redirector functionality (In Windows) 788
A.2 Installing the redirector functionality (In UNIX) 789
B Tuning Parameters for Performing the Performance Tuning with Methods other than the

Recommended Procedures 792
B.1 Tuning parameters for specifying the timeout (methods other than the recommended procedures) 792
B.2 Tuning parameters for optimizing the operations of the Web application (methods other than the

recommended procedures) 795
B.3 Tuning parameters for a persistent connection (methods other than the recommended

procedures) 797
C Error Status Code 798
C.1 Error status codes returned by the Web container 798

Compatibility Guide 17

C.2 Error status codes returned by the Redirector 800
C.3 Error status codes returned by the in-process HTTP server 802
D Precautions related to Cosminexus HTTP Server Settings 804
D.1 Precautions for restarting Cosminexus HTTP Server 804
D.2 Precautions related to the redirector log 805
D.3 Precautions for upgrading Cosminexus HTTP Server 805
E Microsoft IIS Settings 806
E.1 Microsoft IIS 10.0 settings 806
F Contract Between the JPA Provider and EJB Container 812
F.1 Runtime-related contract 812
F.2 Deployment-related contract 817
G BNF for JPQL 822
H Main Functionality Changes in Each Version 826
H.1 Main functionality changes in 09-87 826
H.2 Main functionality changes in 09-80 826
H.3 Main functionality changes in 09-70 827
H.4 Main functionality changes in 09-60 828
H.5 Main functionality changes in 09-50 829
H.6 Main functionality changes in 09-00 832
H.7 Main functionality changes in 08-70 835
H.8 Main functionality changes in 08-53 838
H.9 Main functionality changes in 08-50 839
H.10 Main functionality changes in 08-00 842
I Glossary 846

Index 847

Compatibility Guide 18

Part 1: Application Server Functionality

1 Application Server Functionality

This chapter describes the classifications and purpose of the Application Server functionality, and
the manuals corresponding to the functionality. This chapter also describes the functionality that
changed in this version.

Compatibility Guide 19

1.1 Classifications of functionality

The Application Server product is used to build an environment for executing applications mainly on a J2EE server
compliant with Java EE 7 and for developing applications that run in an execution environment. You can use a variety
of functionality, such as functionality compliant with Java EE standard specifications and functionality independently
extended on Application Server. By selecting and using functionality according to your goals and intended use, you can
build and operate highly reliable systems that have excellent processing performance.

We can classify the Application Server functionality into the following two general categories:

• Functionality that serves as an application execution platform

• Functionality for operating and maintaining the application execution platform

The two categories can be subdivided further according to the positioning and intended use of the functionality. Manuals
for the Application Server are provided according to the functionality classifications.

The following figure shows the classifications of Application Server functionality and the corresponding manuals.

1. Application Server Functionality

Compatibility Guide 20

Figure 1‒1: Classifications of Application Server functionality and corresponding manuals

#1
uCosminexus Application Server is omitted from the manual names.

#2
On the Application Server, you can execute SOAP Web Services and RESTful Web Services. Depending on
what you want to do, see the following manuals in addition to the uCosminexus Application Server Web Service
Development Guide.

When developing and executing a SOAP application:

• uCosminexus Application Server SOAP Application Development Guide

When ensuring security of SOAP Web Services and SOAP applications:

• uCosminexus Application Server XML Security - Core User Guide

• uCosminexus Application Server Web Service Security Users Guide

1. Application Server Functionality

Compatibility Guide 21

For details about XML processing, see the following:

• uCosminexus Application Server XML Processor User Guide

The following subsections describe the functionality classifications and corresponding manuals.

1.1.1 Functionality that serves as an application execution platform
This functionality serves as a platform for executing online businesses and batch businesses implemented as applications.
Choose the functionality that you want to use according to the intended use of the system and requirements.

Before building a system or developing an application, you need to determine whether you want to use the functionality
that serves as an application execution platform.

The following describes each classification of the functionality that serves as the application execution platform:

(1) Basic functionality for operating applications (basic and development
functionality)

This includes the basic functionality for operating applications (J2EE applications). This main functionality is the J2EE
server functionality.

Application Server provides Java EE 7-compliant J2EE servers. In addition to providing functionality that complies with
the standard specifications, a J2EE server also provides original functionality for Application Server.

The basic and development functionality can be further subdivided into three categories according to the status of J2EE
applications that use the functionality. Manuals for the Application Server functionality are also separated according to
this classification.

The following is an overview of each type:

• Functionality for executing web applications (web containers)
This category includes the web container functionality that serves as the execution platform for web applications, and
the functionality achieved by linking with a web container and web server.

• Functionality for executing Enterprise Bean (EJB containers)
This category includes the EJB container functionality that serves as the execution platform for Enterprise Bean. This
category also includes the EJB client functionality for invoking Enterprise Bean.

• Functionality used in both web applications and Enterprise Beans (Common container functionality)
This category includes functionality that can be used for both web applications operating in web containers and
Enterprise Bean operating in an EJB container.

(2) Functionality for developing Web Services
This includes the functionality that serves as the execution and development environment of Web Services.

Application Server provides the following engines:

• The JAX-WS engine for binding SOAP messages according to the JAX-WS specifications

• The JAX-RS engine for binding RESTful HTTP messages according to the JAX-RS specifications

1. Application Server Functionality

Compatibility Guide 22

(3) Extended functionality unique to Application Server, used to improve
reliability and performance (extended functionality)

This includes extended functionality unique to Application Server. This also includes the functionality implemented by
using processes other than J2EE server processes, such as processes for a batch server, CTM, and a database.

On Application Server, a variety of functionality has been extended to improve the reliability of the system and to
achieve stable operation. Functionality has also been extended to operate applications other than J2EE applications
(batch applications) in a Java environment.

(4) Functionality for ensuring the security of systems (security
management functionality)

This functionality is used to ensure the security of Application Server-based systems. The functionality includes
functionality such as authentication functionality for preventing unauthorized access and encryption functionality for
preventing information leakage in communication channels.

1.1.2 Functionality for operating and maintaining the application
execution platform

This functionality is used to effectively operate and maintain the application execution platform. After system operation
starts, use this functionality as necessary. However, depending on the functionality, you might need to specify settings
and implement applications in advance.

Based on the functionality classifications, this section describes the functionality used to operate and maintain the
application execution platform.

(1) Functionality for daily operations, such as starting and stopping a
system (operation functionality)

This includes the functionality used in daily operations, such as starting and stopping systems or applications, and
replacing applications.

(2) Functionality for monitoring system usage (watch functionality)
This includes the functionality used for monitoring system usage and resource depletion. This classification also includes
the functionality that outputs information used for auditing, such as the system operation history.

(3) Functionality for operating systems by linking with another product
(linkage functionality)

This includes the functionality that is implemented by linking with another product, such as a JP1 product or
cluster software.

(4) Functionality for troubleshooting (maintenance functionality)
This includes the functionality for troubleshooting. This classification also includes the functionality for displaying
information to be referenced during troubleshooting.

1. Application Server Functionality

Compatibility Guide 23

(5) Functionality for migrating from an earlier version of the product
(migration functionality)

This includes the functionality for migrating from an earlier version of Application Server to a later version.

(6) Functionality for compatibility with an earlier version of the product
(compatibility functionality)

This includes the functionality for compatibility with an earlier version of Application Server. For compatible
functionality, we recommend that you migrate the product to the corresponding recommended functionality.

1.1.3 Correspondence between functionality and manuals
Manuals for Application Server functionality are separated according to the functionality classifications.

The following table shows the functionality classifications and corresponding manuals.

Table 1‒1: Functionality classifications and the corresponding functionality guides

Category Functionality Manuals#1

Basic and
development
functionality

Web container Web Container
Functionality Guide

Using JSF and JSTL

Using JAX-RS 2.0

WebSocket

NIO HTTP server

Servlet and JSP implementation

EJB container EJB Container
Functionality Guide

EJB client

Precautions when implementing Enterprise Bean

Naming management Common Container
Functionality Guide

Resource connections and transaction management

Invoking Application Server from OpenTP1 (TP1 inbound integrated function)

Using JPA 2.1

CJMS provider

Using JavaMail

Using CDI on Application Server

Using Bean Validation on Application Server

Java Batch

JSON-P

Concurrency Utilities

Application property management

1. Application Server Functionality

Compatibility Guide 24

Category Functionality Manuals#1

Using annotations

Formatting and deploying J2EE applications

Container extension library

Extended
functionality

Executing applications using the batch server Expansion Guide

Scheduling and load balancing of requests by using CTM

Scheduling batch applications

Inheriting the session information between the J2EE servers (Session
failover functionality)

Database session failover functionality

Controlling Full GC using the Explicit Memory Management functionality

Output of the application user log

CORBA/OTM gateway functionality

Security
management
functionality

Authentication using the integrated user management Security
Management Guide

Authentication using application settings

Using TLSv1.2 for SSL/TLS communication

Controlling by using the management functionality of the load balancers that uses
API-based direct connections

Operation
functionality

Starting and stopping the system Operation, Monitoring, and
Linkage Guide

Operation of J2EE applications

Watch functionality Monitoring operation information (Statistics collection functionality)

Monitoring resource depletion

Audit log output functionality

Database audit trail linkage functionality

Output of operation information using management commands

Automatic execution of processing based on management event notifications and
management actions

Collecting operation statistics of CTM

Output of the console log

Linkage
functionality

Operating a system linked with JP1

Centralized system monitoring (Linking with JP1/IM)

Automatic operation of systems by using jobs (Linking with JP1/AJS)

Linking with cluster software

Node switching system for models managed for each host (Linking with
cluster software)

1-to-1 node switching system (Linking with cluster software)

Mutual node switching system (Linking with cluster software)

N-to-1 recovery system (Linking with cluster software)

1. Application Server Functionality

Compatibility Guide 25

Category Functionality Manuals#1

Maintenance
functionality

Troubleshooting-related functionality Maintenance and
Migration Guide

Analyzing performance using the performance analysis trace

JavaVM functionality of products (hereafter, might be abbreviated as JavaVM)

Migration
functionality

Migrating from an earlier version of Application Server

Migrating to recommended functionality

Compatibility
functionality

Functionality for compatibility with basic and development functionality Compatibility Guide#2

Functionality for compatibility with extended functionality

#1
uCosminexus Application Server is omitted from the manual names.

#2
This manual.

1. Application Server Functionality

Compatibility Guide 26

1.2 Explanations of the functionality in this manual

This section describes the meaning of the categories used when explaining functionality in this manual, and describes
an example of a table used to describe the categories.

1.2.1 Meaning of explanation categories
The explanations of functionality written in this manual are subdivided into the following five categories. Select and read
the explanations according to your goals in referencing the manual.

• Explanation
This describes the functionality. This describes the purpose, features, and mechanism of the functionality. Read this
if you want an overview of the functionality.

• Implementation
This describes the methods, such as the coding method and the DD writing method. Read this if you
develop applications.

• Settings
This describes how to specify property settings for building systems. Read this if you build a system.

• Operations
This describes the operation method. This describes the operating procedures and the execution examples of
commands to be used. Read this if you operate the system.

• Precautions
This describes the general precautions when using the functionality. Make sure you read the precautions.

1.2.2 Examples of tables indicating explanation categories
A table indicates the categories into which functionality explanations are subdivided. The table title is Organization of
this chapter or Organization of this section.

The following is an example of a table indicating the categories used to explain some functionality.

Example of a table indicating the categories used to explain some functionality
Table X-1 Organization of this chapter (XX functionality)

Category Title Reference

Explanation What is the XX functionality? X.1

Implementation Implementation of applications X.2

Definitions in DD and cosminexus.xml# X.3

Settings Settings in the execution environment X.4

Operation Operations using the XX functionality X.5

Precaution Precautions when using the XX functionality X.6

#
For details on cosminexus.xml, see 13. Managing Application Attributes in the uCosminexus Application Server Common Container
Functionality Guide.

1. Application Server Functionality

Compatibility Guide 27

Tip

Property settings for applications that do not contain cosminexus.xml
In an application that does not contain cosminexus.xml, specify or change properties after importing
the properties to the execution environment. You can also change the properties that are already set in the
execution environment.
To specify the application settings in the execution environment, use server management commands and
property files. For details on application settings for server management commands and property files, see
3.5.2 Procedure for setting the properties of a J2EE application in the manual uCosminexus Application
Server Application Setup Guide.
The tags specified in the property files correspond to DD or cosminexus.xml. For the correspondence
between DD or cosminexus.xml and the property file tags, see 2. Cosminexus Application Property
File (cosminexus.xml) in the manual uCosminexus Application Server Application and Resource Definition
Reference Guide.
Note that the properties specified in each property file can also be specified in the HITACHI Application
Integrated Property File.

1. Application Server Functionality

Compatibility Guide 28

1.3 Major functionality changes in Application Server 11-00

This section describes the major functionality changes in Application Server 11-00 and the purpose of each change.

This section describes the following content:

• This section gives an overview of the functionality changes and describes the main updates to functionality in
Application Server 11-00. For details on the functionality, see the description in the Reference location column.
The Reference manual column and Reference location column provide the locations of the main descriptions of
the functionality.

• uCosminexus Application Server is omitted from the manual names in the Reference manual column.

1.3.1 Simplifying implementation and setup
The following table lists the changes to simplify installation and setup.

Table 1‒2: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference location

Supporting Windows
Server in the
development environment

Windows Server OS has been added to the operating
systems that support uCosminexus Developer, so
that you can build an application development
environment in a cloud environment.

-- --

1.3.2 Supporting the standard and existing functionality
The following table describes the changes to support the standard and existing functionality.

Table 1‒3: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e location

Supporting the Servlet 3.0
and 3.1

Servlet 3.0 asynchronous servlets and Servlet 3.1
asynchronous I/O APIs are now supported.

Web Container
Functionality Guide

7.1

Supporting EL 3.0 EL 3.0 is now supported. Web Container
Functionality Guide

2.3.3

Supporting JSF 2.2 JSF 2.2 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting JAX-RS 2.0 JAX-RS 2.0 is now supported. Web Container
Functionality Guide

Chapter 4

Supporting WebSocket 1.0 WebSocket 1.0 is now supported. Web Container
Functionality Guide

Chapter 5

Adding the NIO HTTP
server functionality

Instead of the conventional redirector functionality and in-
process HTTP server functionality, the NIO HTTP server
functionality was added as an in-process HTTP server that
supports non-blocking I/O processing, such as asynchronous
servlet and WebSocket.

Web Container
Functionality Guide

Chapter 6

1. Application Server Functionality

Compatibility Guide 29

Item Overview of changes Reference manual Referenc
e location

Supporting JPA 2.1 JPA 2.1 is now supported, and a JPA provider supporting JPA
2.1 can be used.

Common Container
Functionality Guide

Chapter 5

Supporting CDI 1.2 CDI 1.2 is now supported. Common Container
Functionality Guide

Chapter 8

Supporting BV 1.1 Bean Validation 1.1 is now supported. Common Container
Functionality Guide

Chapter 9

Supporting Java Batch 1.0 Batch Applications for the Java Platform (Java Batch) 1.0 is
now supported.

Common Container
Functionality Guide

Chapter 10

Supporting JSON-P 1.0 Java API for JSON Processing (JSON-P) 1.0 is now supported. Common Container
Functionality Guide

Chapter 11

Supporting Concurrency
Utilities 1.0

Concurrency Utilities for Java EE 1.0 is now supported. Common Container
Functionality Guide

Chapter 12

Supporting
WebSocket communication

The functionality to relay WebSocket communication from the
HTTP Server to J2EE servers was added.

HTTP Server User Guide 4.15

1.3.3 Maintaining and improving reliability
The following table lists the changes to maintain and improve reliability.

Table 1‒4: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e location

Changing the encrypted
communication module

mod_ssl is now used as the encrypted communication
module for the HTTP Server.

HTTP Server User Guide Chapter 5,
Appendix
H

1.3.4 Other purposes
The following table lists the changes for other purposes.

Table 1‒5: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e location

Addition of V9
compatibility mode

The V9 compatibility mode was added to maintain
compatibility with version 9 for users who migrate from
version 9 or an earlier version of J2EE server.

Maintenance and
Migration Guide

10.3.3

1. Application Server Functionality

Compatibility Guide 30

Part 2: V9 Compatibility Mode

2 Overview of V9 Compatibility Mode

This chapter provides an overview on V9 compatibility mode for systems that emphasize
compatibility with version 9 or earlier.

Compatibility Guide 31

2.1 V9 compatibility mode and recommended mode

On Application Server 11-00, functionality for which compatibility with 09-87 and earlier versions cannot be maintained
has changed to support the new Java EE 7 specifications, such as Servlet 3.1 and WebSocket 1.0. For this reason, when
migrating a system designed for version 09-87 or earlier to an environment that uses version 11-00 or later, some design
changes are required.

Therefore, V9 compatibility mode is provided for systems where compatibility with 09-87 and earlier versions is
important. The V9 compatibility mode does not use the new functionality of 11-00. On a J2EE server configured in
V9 compatibility mode, operation is equivalent to 09-87, and part of the functionality discontinued in 11-00 and later
versions can also be used.

Also, the mode that does not use the V9 compatibility mode is called recommended mode. In the recommended mode,
you can use the new functionality of 11-00, but cannot use the functionality discontinued in 11-00 and later versions.

2. Overview of V9 Compatibility Mode

Compatibility Guide 32

3 How to Use V9 Compatibility Mode

The following two methods are available for using V9 compatibility mode.

- The method of specifying V9 compatibility mode when creating a new J2EE server

- The method of performing an upgrade installation to migrate an existing J2EE server created in
version 09-87 or earlier of Application Server

This chapter describes how to use these methods.

Compatibility Guide 33

3.1 The method of specifying V9 compatibility mode when creating a new
J2EE server

In the following four situations, use the method of specifying V9 compatibility mode when creating a new J2EE server:

• When using the Smart Composer functionality

• When using the management portal

• When using a J2EE server command

• When using the development environment instant setup functionality

3.1.1 When using the Smart Composer functionality
When using the Smart Composer functionality to create a new system that includes a logical J2EE server in V9
compatibility mode, specify V9 as the value of the manager.j2ee.compat parameter, which sets compatibility
mode for the J2EE server. This parameter is in the parameters specified for the logical J2EE server in the Easy Setup
definition file.

The following example shows items specified in the Easy Setup definition file.

(Example of items specified in the Easy Setup definition file)

<?xml version="1.0" encoding="UTF-8"?>
<model-definition
xmlns="http://www.cosminexus.com/mngsvr/schema/ModelDefinition-2.5">
 <web-system>
 <name>MyCompatWebSystem</name>
 <tier>
 ...
 <configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>manager.j2ee.compat</param-name>
 <param-value>V9</param-value>
 </param>
 ...

For details, see 4.11.1 Parameters used for setting up the compatibility mode of the J2EE server in the manual
uCosminexus Application Server Definition Reference Guide.

3.1.2 When using the management portal (INTENTIONALLY DELETED)
(INTENTIONALLY DELETED)

3.1.3 When using a J2EE server command
When creating a new J2EE server in V9 compatibility mode by using the cjsetup command for setting up a J2EE
server, specify -compat V9 for the command line argument of the cjsetup command.

3. How to Use V9 Compatibility Mode

Compatibility Guide 34

The following shows an example of executing the cjsetup command.

(Example of executing the cjsetup command)

cjsetup MyCompatJ2EEServer -compat V9

For details, see cjsetup (set up or unsetup J2EE server) in 2.2 Commands used for operating J2EE servers in the manual
uCosminexus Application Server Command Reference Guide.

3.1.4 When using the development environment instant setup
functionality (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

3. How to Use V9 Compatibility Mode

Compatibility Guide 35

3.2 The method of performing an update installation to migrate an existing
J2EE server

If you perform an update installation to migrate a J2EE server set up in version 09-87 or earlier to an environment that
uses version 11-00 or later, the already set up existing J2EE server automatically uses V9 compatibility mode.

For details on performing an upgrade installation to migrate from an earlier version, see Chapter 10 in the manual
uCosminexus Application Server Maintenance and Migration Guide.

3. How to Use V9 Compatibility Mode

Compatibility Guide 36

3.3 Checking the J2EE server compatibility mode

You can check in which mode the already set up J2EE server is operating by checking the KDJE60001-I message that is
output to the message log when the J2EE server starts. The KDJE60001-I messages shown in recommended mode and
V9 compatibility mode are as follows:

In recommended mode:

KDJE60001-I
The J2EE server will start as 'Java EE Container Mode'. (container versio
n = V11)

In V9 compatibility mode:

KDJE60001-I
The J2EE server will start as 'Java EE Container Mode'. (container versio
n = V9)

3. How to Use V9 Compatibility Mode

Compatibility Guide 37

3.4 Precautions on use

• For a J2EE server that is already set, you cannot switch it from recommended mode to V9 compatible mode, or switch
from V9 compatible mode to recommended mode. Execute the unsetup operation for the J2EE server, and then set
up again.

• To delete only the logical J2EE server from a system built by using the Smart Composer functionality and
management portal, and then create a logical J2EE server with the same real server name but in a different mode, use
the cjsetup command to execute the unsetup operation for the J2EE server before creating the logical J2EE server.
For details on the cjsetup command, see cjsetup (set up or unsetup J2EE server) in 2.2 Commands used for
operating J2EE servers in the manual uCosminexus Application Server Command Reference Guide.

3. How to Use V9 Compatibility Mode

Compatibility Guide 38

4 Functionality of V9 Compatibility Mode and
Recommended Mode

This chapter describes the functionality of V9 compatibility mode and recommended mode.

Compatibility Guide 39

4.1 Functional differences between V9 compatibility mode and
recommended mode

The following shows compatible functionality that is available only in V9 compatibility mode and new functionality that
is available only in recommended mode on version 11-00 and later of Application Server. Functionality not described
in this section is usable in both V9 compatible mode and recommended mode.

Table 4‒1: Availability of each functionality by mode

Functionality Recomm
ended
mode

V9
compatib
ility mode

Location of description

NIO HTTP server functionality Y N uCosminexus Application Server Web Container Functionality Guide

Web server integration functionality
(Redirector functionality)

N Y 5. Web Server Integration in this manual

In-process HTTP server functionality N Y 6. In-Process HTTP Server in this manual

Servlet 3.0 asynchronous
servlet functionality

Y N uCosminexus Application Server Web Container Functionality Guide

Servlet 3.1 Y N

WebSocket 1.0 Y N uCosminexus Application Server Web Container Functionality Guide

Java Batch 1.0 Y N uCosminexus Application Server Common Container
Functionality Guide

Concurrency Utilities for Java EE 1.0 Y N uCosminexus Application Server Common Container
Functionality Guide

JSON-P 1.0 Y N uCosminexus Application Server Common Container
Functionality Guide

CDI 2.1 Y N uCosminexus Application Server Common Container
Functionality Guide

Bean Validation 1.1 Y N uCosminexus Application Server Common Container
Functionality Guide

JSF 2.2 Y N uCosminexus Application Server Web Container Functionality Guide

JAX-RS 2.0 Y N uCosminexus Application Server Web Container Functionality Guide

Cosminexus JAX-RS engine (JAX-
RS 1.1)

N Y 7. Cosminexus JAX-RS Engine (JAX-RS 1.1) in this manual

JPA 2.1 support provider Y N uCosminexus Application Server Common Container
Functionality Guide

JPA 1.0 support provider (CJPA
provider functionality)

N Y 9. Cosminexus JPA Provider in this manual

JPA container functionality N Y 8. How to Use JPA with Application Server in this manual

HTTP response
compression functionality

N Y 10.2 HTTP response compression functionality in this manual

Legend:
Y: Available
N: Not available

4. Functionality of V9 Compatibility Mode and Recommended Mode

Compatibility Guide 40

5 Web Server Integration

This chapter describes the functionality related to Web server integration.

Compatibility Guide 41

5.1 Organization of this chapter

Application Server provides the redirector functionality for Web server integration. A redirector refers to a library
provided in the Web container. By registering the redirector in the Web server, you will be able to process a specific
requests, from the HTTP requests for the Web server, in the specified Web container and distribute and process the
requests in multiple Web containers.

The following table lists the functionality and the corresponding reference sections for each functionality related to the
Web server integration:

Table 5‒1: Functionality and the corresponding reference sections of each functionality related to
Web server integration

Functionality Reference

Distributing requests with the Web server (Redirector) 5.2

Distributing requests by URL pattern 5.3

Distributing requests by the round-robin format 5.4

Distributing requests by the POST data size 5.5

Communication timeout (Web server integration) 5.6

Specifying the IP address (Web server integration) 5.7

Error page customization (Web server integration)# 5.8

Viewing the top page by specifying the domain name 5.9

Notification of Gateway Information to a Web Container 5.10

Controlling the number of concurrently executed threads for each Web container 5.11

Objects for communication with redirector 5.12

Explicit heap tuning 5.13

#
Functionality available only when you use Cosminexus HTTP Server as the Web server. You cannot use this functionality in the case of using
Microsoft IIS.

Furthermore, in the case of Web server integration, you can also use the SSL-based authentication and the data encryption
functionality of Cosminexus HTTP Server or the SSL-based authentication and the data encryption functionality of
Microsoft IIS.

For SSL-based authentication and data encryption in Cosminexus HTTP Server, see 7.2.2 SSL setup with Cosminexus
HTTP Server in the manual uCosminexus Application Server Security Management Guide. For details on how to
set SSL for Microsoft IIS, see the help of SSL for Microsoft IIS. You can use this functionality only in the Web
redirector environment.

Environment settings required for Web server integration
The following environment settings are required for the Web server integration:

• When Smart Composer is used
See Appendix D Precautions related to Cosminexus HTTP Server Settings and set up the environment of
Cosminexus HTTP Server.

• When Smart Composer is not used
Set up the environment of one of the following Web servers:

5. Web Server Integration

Compatibility Guide 42

• Cosminexus HTTP Server (Appendix D)

• Microsoft IIS (Appendix E)

5. Web Server Integration

Compatibility Guide 43

5.2 Distributing requests with the Web server (Redirector)

This section explains the distribution of requests with the redirector.

You can use this functionality only when you use the Web server integration functionality. To distribute requests, you
must define distribution for the host on which the Web server or the redirector is running.

The following table describes the organization of this section:

Table 5‒2: Organization of this section (Distributing requests with the Web server (redirector))

Category Title Reference

Description Mechanism of request distribution with the redirector 5.2.1

User-defined file for setting the request distribution method (When the Smart Composer
functionality is used)

5.2.2

User-defined file for setting the request distribution method (When the Smart Composer
functionality is not used)

5.2.3

Notes Points to be considered during Web server integration 5.2.4

Note:
There is no specific description of Implementation, Settings, and Operations for this functionality.

Note that the required definitions differ according to the type of the Web server used. Also, if the type of the Web server
used is Cosminexus HTTP Server, the definitions also differ according to the type of the functionality used for the system
building. The following table lists the types of Web servers and the definitions to be used:

Table 5‒3: Web server types and the definitions to be used

Type of the
Web server

Type of system
building function

Definitions

Cosminexus
HTTP Server

Smart Composer functionality • Definition of Easy Setup definition file
• Definition of workers.properties
• Definition of mod_jk.conf

Other than Smart
Composer functionality

• Definition of workers.properties
• Definition of mod_jk.conf

Microsoft IIS -- • Definition of workers.properties
• Definition of uriworkermap.properties
• Definition of isapi_redirect.conf

Legend:
--: Not applicable

For details on distributing requests by redirection when using the in-process HTTP server, see 6.7 Request distribution
with the redirector.

5.2.1 Mechanism of request distribution with the Redirector
If you use the redirector, from among the HTTP requests sent to the Web server, specific requests can be processed in
the specified Web container, and requests can be processed by distributing to multiple Web containers.

5. Web Server Integration

Compatibility Guide 44

In the case of distributing requests with the redirector, use the Web container execution process, called the worker
process# that runs behind the Web server. A worker process is used to process requests including servlets and JSPs,
via the redirector. Data exchange between the Web server and a worker process is based on TCP/IP and is executed
through a specific port number set by the user. To specify the redirector settings, use the setup unit that abstracts the Web
container called worker. The worker includes a worker indicating a stand-alone J2EE server and a worker indicating
a J2EE server in a cluster configuration. The worker that forwards requests to the J2EE server is called a forwarding
worker. A forwarding worker is the ajp13 type worker.

#
A worker process actually acts as a J2EE server.

(1) Patterns to transfer the requests
The patterns to transfer requests from the redirector to the worker process are as follows:

• Transfer from one Web server to one worker process

• Transfer from one Web server to multiple worker processes

Note that the mechanism of request distribution is not affected even if the Web server and the worker processes are present
on the same machine or on different machines.

The following figures show the patterns to transfer requests from the redirector to the worker process:

Figure 5‒1: Transfer from one Web server to one worker process

5. Web Server Integration

Compatibility Guide 45

Figure 5‒2: Transfer from one Web server to multiple worker processes

To distribute the requests to multiple Web containers, define the worker processes of multiple Web containers as the
distribution destinations, in the redirector registered in the Web server.

(2) Request distribution method
The methods to distribute requests with the redirector include:

• Distributing by URL pattern
Use this method when you want to execute a specific processing in a single Web container, and when you want to
distribute a process to multiple Web containers.
You can use this method when there is one worker process, as well as when there are multiple worker processes.

• Distributing in round-robin format with a load balancer
Use this method when you want to distribute a process to multiple Web containers.

• Distributing by the POST data size
Use this method when you want to distribute a process to multiple Web containers. You can specify this distribution
method only when the Web server used is Cosminexus HTTP Server.
Note that you cannot use this distribution method when the following functionality are used:

• Session failover functionality

• Distributing requests by the round robin format

To create a worker process, define the following attributes in a file (workers.properties) called the worker
definition file:

• Worker name

• Worker type

• Host name or IP address of the Web server on which the worker is running

• Port number received by the worker

5. Web Server Integration

Compatibility Guide 46

The following workers are already defined in a standard workers.properties file. When the Web server and the
Web container are operated on the same host, you need not change these parameters.

Worker attributes Parameter

Worker name worker1

Worker type ajp13

Host name Localhost

Port number 8007

For details on how to define a worker process, see 14.2.4 workers.properties (Worker definition file).

5.2.2 User-defined file for setting the request distribution method (When
the Smart Composer functionality is used)

To distribute requests, edit the following user-defined files in a text editor and specify the worker, mapping between the
URL pattern and worker, and the redirector operations.

• Easy Setup definition file
Specify the worker definition, the worker-wise parameters, and the mapping between the URL pattern and workers.
Use this file to set up request distribution by URL pattern. For request sorting by using the round-robin format and
request sorting by using the POST data size, the settings are output to the free-tier physical tier.

• workers.properties (Worker definition file)
Specify the worker definition and the worker-wise parameters. Use this file to set up request distribution by the round
robin format and the request distribution by the POST data size.

• mod_jk.conf (Redirector action definition file)
Specify the mapping between the URL pattern and workers and specify the redirector operations, such as which URL
patterns will be forwarded to the Web container with the requests sent to Cosminexus HTTP Server. Use this file to
set up request distribution by the round robin format and the request distribution by the POST data size.

For details on the Easy Setup definition file, see 4.3 Easy Setup definition file in the manual uCosminexus Application
Server Definition Reference Guide. For details on the Worker definition file, see 14.2.4 workers.properties (Worker
definition file). For details on the Redirector Operation definition file, see 14.2.1 isapi_redirect.conf (Redirector action
definition file for Microsoft IIS).

5.2.3 User-defined file for setting the request distribution method (When
the Smart Composer functionality is not used)

To distribute requests, edit the following user-defined files in a text editor and specify workers, mapping between the
URL pattern and workers, and the redirector operations.

The files to be setup depend on the used Web server. The common user-defined files and the user-defined files for
each Web server are separately described here. For details on the user-defined file httpsd.conf, see the manual
uCosminexus Application Server HTTP Server User Guide. For details on other user definition files, see Part 3 Reference
(V9 Compatibility Mode).

5. Web Server Integration

Compatibility Guide 47

(1) Common user-defined files
The common user-defined files for Cosminexus HTTP Server and Microsoft IIS are as follows:

• workers.properties (worker definition file)
Specify the worker definitions and the parameters for each worker.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\web\redirector\workers.properties

• In UNIX
/opt/Cosminexus/CC/web/redirector/workers.properties

• usrconf.properties (user property file)
Set the communication timeout when the Web container receives a request from the redirector.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\server\usrconf\ejbs\server-
name\usrconf.properties

• In UNIX
/opt/Cosminexus/CC/server/usrconf/ejb/server-name/usrconf.properties

(2) User-defined files for Cosminexus HTTP Server
The user-defined files for Cosminexus HTTP Server are as follows:

• mod_jk.conf (redirector action definition file)
Specify the redirector operations for Cosminexus HTTP Server.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\web\redirector\mod_jk.conf

• In UNIX
/opt/Cosminexus/CC/web/redirector/mod_jk.conf

• httpsd.conf (Cosminexus HTTP Server Definition file)
Specify the directive (parameter that defines the execution environment of the Web server) for defining the operating
environment of Cosminexus HTTP Server.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\httpsd\conf\httpsd.conf

• In UNIX
/opt/hitachi/httpsd/conf/httpsd.conf

(3) User-defined files for Microsoft IIS
The user-defined files for Microsoft IIS are as follows:

• uriworkermap.properties (mapping definition file)
Specifies the mapping between the URL pattern and worker in Microsoft IIS.

5. Web Server Integration

Compatibility Guide 48

The storage location of this file is as follows:
Cosminexus-installation-directory\CC\web\redirector\uriworkermap.properties

• isapi_redirect.conf (redirector action definition file)
Specify the redirector operations for Microsoft IIS.
The storage location of this file is as follows:
Cosminexus-installation-directory\CC\web\redirector\isapi_redirect.conf

(4) Notes
The followings are the notes related to the user-defined files:

• During the overwrite installation, the user-defined file is not overwritten.

• For the processing of the worker definition file and the Web server definition file when performing the upgrade
installation, see 10. Migrating from Application Server of Earlier Versions (In the J2EE Server Mode) in the
uCosminexus Application Server Maintenance and Migration Guide.

• The maximum number of characters in one line of the redirector definition file is 1,023. Specify settings within this
character count.

• In the following user-defined files, if several parameters are specified with the same name, the value of the parameter
specified first is used for operations:

• isapi_redirect.conf
• workers.properties
• uriworkermap.properties

5.2.4 Points to be considered during Web server integration
This section explains the points to be considered when integrating with the Web server.

(1) Upper limit value of the request headers and response headers that
can be sent and received by the Web container

When integrating with the Web server, an upper limit is set on the size of the request headers and the response headers
that can be sent and received by the Web container. The respective upper-limit value is 16 KB. Note that you cannot send
and receive the headers exceeding 16 KB.

(2) Points to be considered when using Cosminexus HTTP Server
You cannot use the virtual host functionality of the HTTP Server when a Web server is integrated.

To perform different redirections for each virtual host, use the management portal or Smart Composer to build multiple
HTTP Servers on the same host, and then set a redirector for each HTTP Server.

(3) Points to be considered when using the Microsoft IIS
The points to be considered when using the Microsoft IIS are explained below:

• When multiple Web sites are built by Microsoft IIS, you cannot integrate simultaneously with these Web sites. When
you are building multiple Web sites, set a redirector in each Web site.

5. Web Server Integration

Compatibility Guide 49

• Change the URL information for the requests transferred to the Web container with the redirector for Microsoft IIS.
Use the changed request URL in the ISAPI filter.
Consequently, you cannot acquire the request URL received first by the Microsoft IIS with the ISAPI filter executed
after the redirector for Microsoft IIS. If you want to acquire the request URL received by Microsoft IIS with the ISAPI
filter, you need to set a higher priority order for the ISAPI filter as compared to the redirector for Microsoft IIS. Note
that when you need to change the priority order of the redirector for Microsoft IIS to Medium or Low in order to
adjust the priority order of the ISAPI filter, specify the priority order with the filter_priority key of the action
definition file of the redirector for Microsoft IIS. For the filter_priority key, see 14.2.1 isapi_redirect.conf
(Redirector action definition file for Microsoft IIS).

• When integrating with Microsoft IIS, even if you specify the following HTTP request headers in the Web client, you
cannot receive these request headers in a Web application:

• tomcaturl
• tomcatquery
• tomcatworker
• tomcattranslate

These HTTP request headers are used in the redirector.

• When integrating with Microsoft IIS, you cannot specify settings for distributing requests by the POST data size.

5. Web Server Integration

Compatibility Guide 50

5.3 Distributing requests by URL pattern

This section explains the distribution of requests by the URL patterns.

You can distribute the requests by the URL patterns included in an HTTP request. Consequently, only a specific
processing can be executed in the Web container, and a processing can be distributed to multiple Web containers
depending on the contents of the processing.

The following table describes the organization of this section.

Table 5‒4: Organization of this section (Distributing requests by the URL pattern)

Category Title Reference

Description Overview of distributing requests by URL pattern 5.3.1

Types of URL patterns and priority of applicable patterns 5.3.2

Settings Execution environment settings (When the Smart Composer functionality is used) 5.3.3

Execution environment settings (When the Smart Composer functionality is not used) 5.3.4

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.3.1 Overview of distributing requests by URL pattern
Define the requests transferred to the Web container according to the mapping between the URL pattern and the worker
process. The redirector can switch the Web containers that transfer the requests, depending on the set URL pattern.

For example, you can define "Process the HTTP request containing the URL /examples/ in a Web container", and
"Process the HTTP request containing the URL /examples1/ in Web container A, and the HTTP request containing
the URL /examples2/ in Web container B".

The following figures show the examples of request distribution with the redirector:

Figure 5‒3: Request distribution with the redirector (when distributing and transferring specific
requests to the Web container)

5. Web Server Integration

Compatibility Guide 51

Figure 5‒4: Request distribution with the redirector (when distributing and transferring requests to
multiple Web containers)

5.3.2 Types of URL patterns and priority of applicable patterns
This section describes the types of URL patterns that you can specify for URL mapping of the Redirector and the priority
of applicable patterns.

(1) Types of URL patterns
You can specify the following four types of URL patterns for the URL mapping of the redirector:

• Complete path specification
This is a completely matching pattern.

URL format:
/path
When specifying only the route, use "/".

Characters you can specify in /path:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is /examples/jsp/index.jsp, and the URL is /examples/jsp/index.jsp,
it indicates a match.

• Path specification
In this pattern, the paths are matching.

URLformat:
/path/*
When specifying all requests, use /*.

5. Web Server Integration

Compatibility Guide 52

Characters you can specify in /path:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is /examples/*, and the URL is /examples/jsp/index.jsp, it indicates
a match.

• Extension specification
In this pattern, the extensions are matching. This pattern is applicable to all the hierarchies below the specified path.

URL format:
/path/*.extension
When specifying all the paths, use /*.extension.

Characters you can specify in path and extension:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is /examples/*.jsp, and the URL is /examples/jsp/index.jsp, it indicates
a match.

• Suffix specification
In this pattern, suffixes are matching. This pattern is applicable to all the hierarchies below the specified path.

URL format:
/path/*suffix
When specifying all the paths, use /*suffix.

Characters you can specify in path and suffix:
Specify a string having at least one of the following characters:
Single byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is /examples/servlet/*Servlet, and the URL is /examples/servlet/
HelloServlet, it indicates a match.

Important note

The following are the notes on specifying a URL pattern:

• A URL pattern must not begin with anything but "/". In Windows, if you specify a character other
than "/", the KDJE41012-E message is output and the mapping is ignored. In any other OS, a
message is displayed and Cosminexus HTTP Server fails to start.

• A "*", when used as a wildcard, cannot be specified before the /* in a URL pattern. If you specify
anything other than "/" just before the first "*" in a URL pattern, the URL pattern is treated as a
Complete path specification and /* is not treated as a wildcard even if it is a part of the URL.

• Do not describe multiple mappings of the same URL pattern. The behavior in case you specify
multiple mappings, is as follows.

5. Web Server Integration

Compatibility Guide 53

The former URL pattern mapping is used in the Complete path specification and the
Path specification. The latter mapping is used in the case of Extension specification and
Suffix specification.

• You must use only valid values in path, extension, and suffix. If you use an invalid character in a URL
pattern, some types of characters might not be forwarded to the Web container.

• The string length of extension or suffix must be at least one character long. If the length is shorter
than one character, the Extension specification outputs the KDJE41041-W message, and the mapping
is ignored. In the Suffix specification, the value that you specify is treated as a URL pattern of the
Path specification.

(2) Priority of applicable patterns
Among the mapping to these four URL patterns, the URL pattern with the highest priority is Complete path specification.
When the URL does not match with Complete path specification, path matching is judged in the following order, and
the applicable URL pattern is decided:

1. When the URL does not match with Complete path specification
The longest matching URL pattern from among Path specification, Extension specification, and Suffix specification
is applied. Longest match refers to the longest matching URL from the beginning ("/") until the high order path
of "*".
The URL in which the following two mappings are defined is illustrated below as an example:

Mapping definition:
/examples/* worker1
/examples/jsp/* worker2

In this case, when the URL is /examples/jsp/index.jsp, the mapping of worker2 is applied, and when the
URL is /examples/test/index.jsp, the mapping of worker1 is applied.

2. In addition to the conditions of 1, when multiple longest matching Path specification, Extension specification, and
Suffix specification URL patterns are present
Extension specification or Suffix specification is given priority over Path specification.
The URL in which the following two mappings are defined is illustrated below as an example:

Mapping definition:
/examples/jsp/* worker1
/examples/jsp/*.jsp worker2

In this case, when the URL is /examples/jsp/index.jsp, the mapping of worker2 is applied, and when the
URL is /examples/jsp/test.html, the mapping of worker1 is applied.

3. In addition to the conditions of 1 and 2, when multiple longest matching Extension specification and Suffix
specification URL patterns are present
The URL pattern specified later is given priority.
The URL in which the following two mappings are defined is illustrated below as an example:

Mapping definition:
/examples/*.jsp worker1
/examples/*jsp worker2

When URL is specified in this order, the mapping of worker2 is applied when the URL is /
examples/jsp/index.jsp.

5. Web Server Integration

Compatibility Guide 54

Important note

You must note the following points when judging the priority of applicable patterns:

• If a request URL includes a query (string after a "?" mark in the URL), the query part is not used when
comparing with the URL pattern.
Example:
If the request URL is /examples/jsp/index.jsp?query=foo, the URL used for comparison
is /examples/jsp/index.jsp.

• If a request URL includes a parameter (string from a semicolon (;)), the parameter part is not used when
comparing with the URL pattern.
Example:
If the request URL is /examples/jsp/index.jsp;jsessionid=0000, the URL used for
comparison is /examples/jsp/index.jsp.

• A request URL path is first normalized and then the URL is compared with the URL pattern to judge
whether both the URLs match.
Example:
If a request URL is /examples/../examples/./jsp//index.jsp, the URL used for
comparison is /examples/jsp/index.jsp.

• A URL pattern is never normalized. Therefore, a URL pattern that includes ./ or ../ does not match
with the request URL.

• In Windows, an extension of a URL pattern specified in the Extension specification is not case sensitive.

5.3.3 Execution environment settings (When the Smart Composer
functionality is used)

Distributing requests by the URL patterns included in the HTTP requests enables you to execute only the specific
processes in the Web container and to distribute requests to multiple Web containers according to the processing contents.
Note that, when you use 'Distributing requests by URL pattern' method, as a principle, the requests are distributed in the
Web application. Define the URL pattern as an operation of the redirector.

(1) Setup procedure
To set the distribution of requests by the URL pattern:

1. Define the workers and mapping between the URL pattern and workers in the Easy Setup definition file.
Specify the list of worker names, worker types (set ajp13), port number, and host name.
If mapping is already defined, delete or replace the definition.

2. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix D Precautions related to Cosminexus HTTP Server Settings.

(2) Settings in the Easy Setup definition file
Specify the definition for distributing requests by the URL pattern in the <configuration> tag of the logical Web
server (web-server) in the Easy Setup definition file.

5. Web Server Integration

Compatibility Guide 55

The following table lists the definitions in the Easy Setup definition file for distributing requests by the URL pattern:

Table 5‒5: Definitions in the Easy Setup definition file for distributing requests by the URL pattern

Category Parameter Description

Worker
definitions

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type (ajp13, lb, or post_size_lb).

worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.
This parameter can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_co
de

Specifies the error status code used when the creation of the error page is entrusted to
the Web server.

Definition of
mapping between
the URL pattern
and worker

JkMount Specifies some combination of workers specified in the URL pattern
and worker.list.

Note:
Define the name of the workers specified in the worker.list parameter in worker-name.

For details on the Easy Setup definition file and the parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(3) Example settings
The following figure shows the distribution of requests by the URL patterns.

Figure 5‒5: Example of distribution of requests by the URL patterns

In this example, the Web application app1 is deployed on host A and the Web application app2 is deployed on host B.
By including the name of the Web application you want to process in the URL pattern of the request, the request with the

5. Web Server Integration

Compatibility Guide 56

URL pattern /app1/* can be processed on the host A and the request with the URL pattern /app2/* can be processed
on the host B. The worker name of the host A is worker1 and the worker name of the host B is worker2.

An example of the Easy Setup definition file is described below. To distribute the requests to multiple Web containers,
specify the worker processes of multiple Web containers as the distribution destinations, in the redirector registered in the
Web server. Also, the URL pattern /app1/* are mapped with worker1 and the URL pattern /app2/* are mapped
with worker2.

Note that to implement this configuration, you must distribute requests to multiple Web systems.

Example of Easy Setup definition file

...
<param>
 <param-name>JkMount</param-name>
 <param-value>/app1/* worker1</param-value>
 <param-value>/app2/* worker2</param-value>
</param>
<param>
 <param-name>worker.list</param-name>
 <param-value>worker1, worker2</param-value>
</param>
<param>
 <param-name>worker.worker1.port</param-name>
 <param-value>8007</param-value>
</param>
<param>
 <param-name>worker.worker1.host</param-name>
 <param-value>hostA</param-value>
</param>
<param>
 <param-name>worker.worker1.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker1.cachesize</param-name>
 <param-value>64</param-value>
</param>
<param>
 <param-name>worker.worker2.port</param-name>
 <param-value>8007</param-value>
</param>
<param>
 <param-name>worker.worker2.host</param-name>
 <param-value>hostB</param-value>
</param>
<param>
 <param-name>worker.worker2.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker2.cachesize</param-name>
 <param-value>64</param-value>
</param>
...

5. Web Server Integration

Compatibility Guide 57

5.3.4 Execution environment settings (When the Smart Composer
functionality is not used)

Distributing requests by the URL patterns included in the HTTP requests enables you to execute only the specific
processes in the Web container and to distribute requests to multiple Web containers according to the processing contents.
Note that, when you use 'Distributing requests by URL pattern' method, as a principle, the requests are distributed in the
Web application. Define the URL pattern as an operation of the redirector.

(1) Setup procedure
To set the distribution of requests by the URL pattern:

1. Define the worker in workers.properties.
Specify the list of worker names, worker types (set ajp13), port number, and host name.
The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

2. When using Cosminexus HTTP Server, define the mapping between the URL pattern and worker in mod_jk.conf.
When using Microsoft IIS, define the mapping between the URL pattern and worker in uriworkermap.properties.
If mapping is already defined, delete or replace the definition.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 14.2.3
uriworkermap.properties (Mapping definition file for Microsoft IIS).

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix D Precautions related to Cosminexus HTTP Server Settings or
Appendix E Microsoft IIS Settings.

(2) Example settings
The following figure shows the distribution of requests by the URL patterns.

5. Web Server Integration

Compatibility Guide 58

Figure 5‒6: Example of distribution of requests by the URL patterns

In this example, the Web application app1 is deployed on host A and the Web application app2 is deployed on host B.
By including the name of the Web application you want to process in the URL pattern of the request, the request with the
URL pattern /app1/* can be processed on the host A and the request with the URL pattern /app2/* can be processed
on the host B. The worker name of host A is worker1 and the worker name of host B is worker2.

An example of the workers.properties file is shown below. To distribute the requests to multiple Web containers,
specify the worker processes of multiple Web containers as the distribution destinations, in the redirector registered in
the Web server.

Example of workers.properties (In Windows)

worker.list=worker1, worker2

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64

Example of workers.properties (In UNIX)

worker.list=worker1, worker2

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13

Examples of the mod_jk.conf and uriworkermap.properties files are shown below. Here, the URL
pattern /app1/* are mapped with worker1 and the URL pattern /app2/* are mapped with worker2.

5. Web Server Integration

Compatibility Guide 59

Example of mod_jk.conf (In Cosminexus HTTP Server)

JkMount /app1/* worker1
JkMount /app2/* worker2

Example of uriworkermap.properties (In Microsoft IIS)

/app1/*=worker1
/app2/*=worker2

5. Web Server Integration

Compatibility Guide 60

5.4 Distributing requests by the round-robin format

This section explains the distribution of requests by the round-robin format.

The following table describes the organization of this section.

Table 5‒6: Organization of this section (Distributing requests by the round-robin format)

Category Title Reference

Description Overview of distributing requests by the round-robin format 5.4.1

Examples of Request Distribution in the Round-robin Format 5.4.2

Defining request distribution in the round robin format 5.4.3

Settings Execution environment settings (When the Smart Composer functionality is used) 5.4.4

Execution environment settings (When the Smart Composer functionality is not used) 5.4.5

Notes Precautions related to request distribution in the round-robin format 5.4.6

Note:
There is no specific description of Implementation and Operations for this functionality.

When Web containers are deployed with a cluster configuration, by using the redirector, requests are distributed in
round-robin format to the respective Web containers. By referencing the session ID appended to each request, the
redirector distributes the requests so that the requests from the same Web client are always transferred to the same Web
container. However, if the session cookie name is changed from the default JSESSIONID to another name, the operation
of transferring requests from the same Web client to the same Web container is not guaranteed.

If the processing efficiency of the Web containers to which requests are distributed is different, you can adjust the
proportion of load on each host by defining load parameters. When distributing requests in the round-robin format, as a
prerequisite, you must deploy the same Web application on each Web container performing the distribution processing.

5.4.1 Overview of distributing requests by the round-robin format
For distribution of requests in the round-robin format with a cluster configuration, use a worker definition called load
balancer. The list of worker processes that act as the distribution destinations is defined in the load balancer. Based on
this definition, requests are distributed to the worker processes in the round-robin format.

An HTTP request is distributed. The HTTP requests belonging to the same session, however, are distributed to the same
worker as the previous distribution destination.

Reference note

During the Web server integration, if you specify request distribution with the round-robin format in the
redirector settings, the worker name will be added in the session ID of HttpSession. Also, regardless of
whether the settings for adding the server ID are specified, the server ID will not be added in the session ID
of HttpSession.

5. Web Server Integration

Compatibility Guide 61

5.4.2 Examples of request distribution in the round-robin format
The following figure shows an example of request distribution with the load balancer.

Figure 5‒7: Example of request distribution with the load balancer

5.4.3 Defining request distribution in the round robin format
The following load balancer is already defined in a standard workers.properties file.

#worker.list=loadbalancer1

#worker.loadbalancer1.type=lb
#worker.loadbalancer1.balanced_workers=worker1, worker2

Set the type of the worker in worker.loadbalancer1.type. Set the name of the worker process to which the
request is to be distributed in worker.loadbalancer1.balanced_workers. In workers.properties,
lb and worker1, worker2 are defined respectively as loadbalancer1.

This definition is, however, described as a comment. Consequently, when using the above-mentioned load balancer,
delete the hash mark (#) present at the beginning of the corresponding rows of workers.properties.

You can define the ratio of request distribution in lbfactor parameter of each worker definition that is the distribution
target. Larger the lbfactor, larger is the ratio of requests transferred to the worker process.

For example, when requests are distributed to two worker processes, namely worker1 and worker2, the ratio of request
distribution is defined as follows in the lbfactor parameter of the worker definition:

• lbfactor parameter of worker1: 2.0

• lbfactor parameter of worker2: 1.0

In this case, worker1 is in charge of double the number of Web clients of worker2.

5. Web Server Integration

Compatibility Guide 62

5.4.4 Execution environment settings (When the Smart Composer
functionality is used)

By defining the list of workers that act as the distribution destinations in the load balancer, requests are distributed to the
workers in the round-robin format.

If you set a load balancing value in each worker that acts as the distribution destination and define the request distribution
ratio, you can adjust the proportion of load on each host. Since the redirector distributes requests with the round-robin
format for each HTTP request at this ratio, higher the ratio for a worker the greater will be the proportion of forwarded
requests. However, the HTTP requests belonging to the same session are distributed to the same worker as the last time.

(1) Setup procedure
To set the distribution of requests by the round-robin format, specify the settings using the following procedure:

1. Define the load balancer and worker in workers.properties.

Definitions for the load balancer
Specify the list of worker names, worker types (specify lb), and list of workers for load balancing.

Definitions for each worker
Specify the worker types (specify ajp13), port number, host name, and the load balancing value.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If mapping is already defined, delete or replace the definition.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix D Precautions related to Cosminexus HTTP Server Settings.

(a) Notes
• When you use load balancing with the redirector and if a failure is detected in a worker, the worker is excluded from

the choices for redirect destination workers for 60 seconds from the detection of failure. Therefore, even if the failure
is recovered, the worker might not be used for a maximum of 60 seconds.

• In UNIX, when the server processes of Cosminexus HTTP Server are generated or destroyed according to the load,
multiple server processes are allocated by the worker defined first in workers.properties. Also, even if the
number of server processes is fixed, the server process to which the request is allocated is uncertain, and therefore, if
you specify the same load balancing value, round-robin might not occur. Unless destroyed, the server processes are
allowed to increase according to the load, and therefore you must specify a directive in such a way so that the server
processes are not generated or destroyed in a short time.
Specify the httpsd.conf directive of Cosminexus HTTP Server in such a way so that the following conditions
are fulfilled:

Conditions Meaning

MaxSpareServers ≥ MaxClients The server processes increase up to MaxClients and stay resident even after the
processing ends.

5. Web Server Integration

Compatibility Guide 63

Conditions Meaning

MaxRequestsPerChild 10000 The HTTP request is processed 10,000 times and then the server process is terminated
to refresh the operations (10,000 is the recommended value). Specify an adequately
large value for the number of J2EE servers that act as the distribution destinations.

StartServers = MaxClients You specify this condition to start all the server processes first.

(b) Example specification of directive

StartServers 256
MaxClients 256
MaxSpareServers 256
MaxRequestsPerChild 10000

(2) Settings in workers.properties and mod_jk.conf
Define the settings for distributing requests by the round-robin format in workers.properties and
mod_jk.conf. The following table lists the keys defined in workers.properties and mod_jk.conf:

Table 5‒7: Keys defined in workers.properties and mod_jk.conf (When distributing requests by the
round-robin format)

Types of files Key name Description

workers.pro
perties

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type. Specify lb in the load balancer and ajp13 in the worker
for load balancing.

worker.worker-
name.balanced_workers

Specifies the list of workers for load balancing.

worker.worker-
name.lbfactor

Specifies the load balancing value.

worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.
This key can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_co
de

Specifies the error status code used when the creation of the error page is entrusted to
the Web server.

mod_jk.conf JkMount Specifies some combination of workers specified in the URL pattern
and worker.list.

Note:
In worker-name, define the worker name specified in the worker.list key or the worker.worker-name.balanced_workers key.

The following table lists the parameters that you can specify for each worker type:

5. Web Server Integration

Compatibility Guide 64

Table 5‒8: Keys that can be specified for each worker type

Key name Worker type (value specified in worker.worker-name.type)

Load balancer
(Specify lb)

Worker
(Specify ajp13)

worker.worker-name.host -- Y

worker.worker-name.port -- Y

worker.worker-name.type Y Y

worker.worker-name.balanced_workers Y --

worker.worker-name.lbfactor -- O

worker.worker-name.cachesize -- O

worker.worker-name.receive_timeout -- O

worker.worker-name.delegate_error_code -- O

Legend:
Y: Can be specified
--: Cannot be specified
O: Can be optionally specified

(3) Example settings
The following figure shows the distribution of requests by the round-robin format.

Figure 5‒8: Example of distribution of requests by the round-robin format

In this example, the requests under /examples are equally distributed on host A and on host B. The worker name in
host A is worker1 and the worker name in host B is worker2.

An example of the workers.properties file is shown below. The load balancer and worker are defined here. Since
the requests are distributed at an equal rate, 1 is specified as the load balancing value for both worker1 and worker2.

5. Web Server Integration

Compatibility Guide 65

Example of workers.properties (In Windows)

worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.lbfactor=1

Example of workers.properties (In UNIX)

worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.lbfactor=1

An example of the mod_jk.conf file is shown below. The load balancer name loadbalancer1 is specified here.

Example of mod_jk.conf

JkMount /examples/* loadbalancer1

5.4.5 Execution environment settings (When the Smart Composer
functionality is not used)

By defining the list of workers that act as the distribution destinations in the load balancer, the requests are distributed
to the workers with the round-robin format.

If you specify a load balancing value in each worker that acts as the distribution destination and define the request
distribution ratio, you can adjust the proportion of load on each host. Since the redirector distributes requests with the
round-robin format for each HTTP request at this ratio, higher the ratio for a worker the greater will be the proportion
of forwarded requests. However, the HTTP requests belonging to the same session are distributed to the same worker of
the last time.

5. Web Server Integration

Compatibility Guide 66

(1) Setup procedure
To set the distribution of requests by the round-robin format, use the following procedure:

1. Define the load balancer and worker in workers.properties.

Definitions of load balancer
Specify the list of worker names, worker types (specify lb), and list of workers for load balancing.

Definitions for each worker
Specify the worker types (specify ajp13), port number, host name, and the load balancing value.

The default value is defined in workers.properties that is provided as standard. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

2. When using Cosminexus HTTP Server, define the mapping between the URL pattern and worker in mod_jk.conf.
When using Microsoft IIS, define the mapping between the URL pattern and worker in uriworkermap.properties.
If a mapping is already defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 14.2.3
uriworkermap.properties (Mapping definition file for Microsoft IIS).

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix D Precautions related to Cosminexus HTTP Server Settings or
Appendix E Microsoft IIS Settings.

(a) Notes
• When you perform load balancing in redirector and if a failure is detected in a worker, that worker is excluded from

the choices of the redirect destination workers for the period of 60 seconds after the failure is detected. Therefore,
even if the failure is recovered, the worker might not be used for a maximum period of 60 seconds.

• When you use Microsoft IIS and specify multiple worker processes on which the redirector is running, and if two
or more workers are set, many requests are allocated to the worker defined initially in workers.properties that is the
initial redirect destination.
Also, allocation of a request to a work process is dependent on the Microsoft IIS control and therefore, even if the
same load balancing value is specified, there are cases when a round-robin is not performed.
In such cases, by setting the number of application pools to one, a round robin can be performed even for the first
redirect allocation destination.

• In UNIX, when the server processes of Cosminexus HTTP Server are generated or destroyed according to the load,
more requests are allocated by the worker defined first in workers.properties. Also, even if the number of server
processes is fixed, the server process to which the request is allocated is uncertain, and therefore if you specify the
same load balancing value, the round-robin might not occur. Unless the server process is destroyed, the server process
is allowed to increase according to the load, so you must specify a directive in such a way so that the server processes
are not generated or destroyed in a short time.
Specify the httpsd.conf directive of Cosminexus HTTP Server in such a way so that the following conditions
are fulfilled:

5. Web Server Integration

Compatibility Guide 67

Conditions Meaning

MaxSpareServers ≥ MaxClients The server processes increase up to MaxClients and stay resident even after the
processing ends.

MaxRequestsPerChild 10000 The HTTP request is processed 10,000 times and then the server process is terminated
to refresh the operations (10,000 is the recommended value). Specify an adequately
large value for the number of J2EE servers that act as the distribution destinations.

StartServers = MaxClients You specify this condition to start all the server processes first.

(b) Example specification of directive

StartServers 256
MaxClients 256
MaxSpareServers 256
MaxRequestsPerChild 10000

(2) Settings in workers.properties and mod_jk.conf
The settings in workers.properties and mod_jk.conf are the same settings that are specified when Smart
Composer is used. For details, see 5.4.4(2) Settings in workers.properties and mod_jk.conf.

(3) Example settings
The following figure shows the distribution of requests by the round-robin format.

Figure 5‒9: Example of distribution of requests by the round robin format

In this example, the requests under /examples are equally distributed on host A and on host B. The worker name in
host A is worker1 and the worker name in host B is worker2.

An example of the workers.properties file is shown below. The load balancer and worker will be defined
here. Since the requests are distributed at an equal rate, 1 is specified as the load balancing value for both worker1
and worker2.

5. Web Server Integration

Compatibility Guide 68

Example of workers.properties (In Windows)

worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.lbfactor=1

Example of workers.properties (In UNIX)

worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.lbfactor=1

Examples of the mod_jk.conf and uriworkermap.properties files are shown below. The load balancer name
loadbalancer1 will be specified here.

Example of mod_jk.conf (in Cosminexus HTTP Server)

JkMount /examples/* loadbalancer1

Example of uriworkermap.properties (In Microsoft IIS)

/examples/*=loadbalancer1

5.4.6 Precautions related to request distribution in the round-robin format
The precautions related to request distribution in the round-robin format for the redirector are as follows:

• Sending requests to the Web container when the J2EE application is not running
When distributing requests with the round-robin format, requests are sent to the Web container even when the J2EE
application is not running. Therefore, you must isolate all the Web containers from the system, and then implement
the changes in J2EE applications.

5. Web Server Integration

Compatibility Guide 69

• Disabling of health check by the load balancer
When the load balancer and request distribution with the round-robin format are combined and used, requests are
normally forwarded to the Web container by the redirector even if a failure occurs in the J2EE server. As a result, the
failure on the J2EE server cannot be detected in the load balancer and the Web container cannot be monitored.

5. Web Server Integration

Compatibility Guide 70

5.5 Distributing requests by the POST data size

This section explains the distribution of requests by the POST data size.

The following table describes the organization of this section.

Table 5‒9: Organization of this section (Distributing requests by the POST data size)

Category Title Reference

Description Overview of distributing requests by the POST data size 5.5.1

Examples of Distributing Requests by the POST Data Size 5.5.2

Request distribution conditions 5.5.3

Definition for distributing requests by the POST data size 5.5.4

Settings Execution environment settings (When the Smart Composer functionality is used) 5.5.5

Execution environment settings (When the Smart Composer functionality is not used) 5.5.6

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.5.1 Overview of distributing requests by the POST data size
When Web containers are deployed with a cluster configuration, by using the redirector, requests are distributed by the
POST data size to the respective Web containers. If you use this functionality, you can forward the very long POST
data requests with a long processing time to the specific Web containers. As a result, you can avoid the decrease in
the throughput of requests other than the very long POST data requests or can avoid the decrease in response time.
When distributing requests in this method, as a prerequisite, you must deploy a Web application on each Web container
performing the distribution processing. However, the Web applications deployed on each J2EE server is not required to
be the same.

For distributing requests by the POST data size in the cluster configuration, use the worker definition called POST
request-distributing worker. The list of worker processes that act as the distribution destinations is defined in the POST
request-distributing worker. Based on this definition, requests are distributed to the worker processes by the POST data
size. The worker process that acts as the distribution destination of the POST request-distributing worker is called POST
request-forwarding worker.

The HTTP requests are distributed to the POST request-forwarding worker.

Important note

Even when the session is managed with control based on HTTP Cookie or URL rewriting, if distribution by
POST data size is specified, the request distribution destination is determined by the POST data size. Therefore,
the session ID of the HttpSession is not inherited even when the request is from the same client.

For example, if HttpSession session ID is generated on J2EE server 1 and the request is forwarded to J2EE
server 2, a new HttpSession session ID is generated on J2EE server 2. In this case, if J2EE server 1 is
accessed again, the HttpSession session ID generated on J2EE server 2 is being used in the client, so a
new HttpSession session ID is generated on J2EE server 1. Therefore, the session of the HttpSession
is not inherited.

5. Web Server Integration

Compatibility Guide 71

Note that when the HttpSession session ID is generated on J2EE server 1 and a request is forwarded to
J2EE server 2, in that case if HttpSession session ID is not generated on J2EE server 2, the HttpSession
session ID of J2EE server 1 will be used as it is, when you re-access the J2EE server 1.

5.5.2 Examples of distributing requests by the POST data size
For distributing requests by the POST data size, the value set as the upper limit of the POST data size will differ depending
on whether the request forwarded to the POST request-distributing worker can be limited or not.

• When the request forwarded to the POST request-distributing worker can be limited
The requests fulfilling the following conditions are forwarded to the POST request-distributing worker:

• The request is a POST data request.

• The POST data size of the request is less than 200 MB.

If the request can be limited, the range of very long POST data that you want to process can also be limited. Set an
upper limit for each request-forwarding worker so that a request of a specific POST data size is forwarded to a worker
that is processing a very long POST data request.
The following figure shows a distribution example of requests by the POST data size when the requests can
be limited:

Figure 5‒10: Example of distribution of requests by the POST data size (When the request can
be limited)

In this figure, two POST request-forwarding workers are prepared. An upper limit is set for the POST data size in
such a way so that the requests with POST data size between 100 MB and 200 MB are forwarded to worker process
B. If the POST data size of the request is less than the upper limit, the request is distributed to the respective POST
request-forwarding worker. If the POST data size of a request is applicable to multiple POST request-forwarding
workers, the request is distributed to the POST request-forwarding worker with the smallest POST data size upper
limit. For example, a request with POST data size 80 MB is applicable to both workers, but is distributed to worker
process A.

• When the request forwarded to the POST request-distributing worker cannot be limited

5. Web Server Integration

Compatibility Guide 72

If the request cannot be limited, set the maximum value as the upper limit for the POST data size of the worker that
processes very long POST data.
The following figure shows a distribution example of requests by the POST data size when the request cannot
be limited:

Figure 5‒11: Example of distribution of requests by the POST data size (When the request
cannot be limited)

In this figure, 2 POST request-forwarding workers are prepared and upper limit is set for the POST data size in each
of the workers. Maximum value is set in the upper limit for the POST data size of worker process B in such a way so
that all the requests of very long POST data are processed in worker process B. POST data requests that are more than
the upper limit of worker process A (100 MB or more) are forwarded to the worker process B. Note that in this case, if
non-POST data requests and requests that cannot reference the POST data size are forwarded, these requests are not
distributed by the request-distributing workers, so an error occurs and the redirector returns the error status code 400.

While distributing requests by the POST data size, if requests not fulfilling the request distribution conditions are
forwarded to the POST request-distributing worker, and error occurs and the redirector returns the error status code 400.
For details on the request distribution conditions, see 5.5.3 Request distribution conditions.

If you want to process requests that do not fulfill the request distribution conditions, you must set up the worker process
to forward that request. The worker process that forwards requests which do not fulfill the request distribution conditions
is called a default worker. The default worker settings are optional.

The following figure shows an example in which the requests cannot be limited, and the requests not fulfilling the request
distribution conditions are forwarded to the default worker:

5. Web Server Integration

Compatibility Guide 73

Figure 5‒12: Example of distribution of requests by the POST data size (When the default worker
is set)

In this figure, settings are specified in such a way so that the requests that do not fulfill the request distribution conditions
are forwarded to the worker process A of the default worker.

5.5.3 Request distribution conditions
The requests distributed to the POST request-forwarding worker must fulfill the following conditions:

Conditions of the requests distributed to the POST request-forwarding worker
• The request method is POST.

• The request has a Content-Length header (body data is not in chunk format).

• The value of the Content-Length header of the request is less than the POST data size set in the worker.

A request that does not fulfill even one of these conditions is distributed to the default worker. If the default worker is
not set, an error occurs and an error with error status code 400 is returned.

5.5.4 Definition for distributing requests by the POST data size
The following workers that are used for distributing requests by the POST data size are already defined in a standard
workers.properties file.

5. Web Server Integration

Compatibility Guide 74

#worker.list=postsizelb1
#worker.postsizelb1.type=post_size_lb
#worker.postsizelb1.post_size_workers=worker1,worker2
#worker.postsizelb1.default_worker=worker1

Set the type of the worker in worker.postsizelb1.type. In
worker.postsizelb1.post_size_workers, set the worker process name of the POST request-forwarding
worker that forms the target of distribution. In worker.postsizelb1.default_worker, set the default worker.
In workers.properties, define post_size_lb in the worker type, worker1 and worker2 in the POST
request-forwarding worker, and worker1 in the default worker as postsizelb1.

This definition is, however, described as a comment. Therefore, when using the POST request-distributing worker of this
definition, delete the hash mark (#) at the beginning of the applicable line in workers.properties.

Specify the POST data size for distributing the request in the post_data parameter of the worker definition
in workers.properties.

For example, use the postsizelb1 definition that is provided by default to define the following POST data size in
the 2 POST request-forwarding workers named worker1 and worker2 respectively:

• post_data parameter for worker1: 100m

• post_data parameter for worker2: 200m

In this case, the requests of size less than 100 MB are distributed to worker1 and the requests of size between 100 MB
to 200 MB are distributed to worker2. If the request-distributing worker distributes a request of size 200 MB or more,
the request is forwarded to worker1 that is set as the default worker.

5.5.5 Execution environment settings (When the Smart Composer
functionality is used)

By defining the list of workers that act as the distribution destinations in the POST request-distributing worker, requests
are distributed to the workers by the POST data size.

Set the upper limit for the POST data size and define the request distribution destination in the POST request-forwarding
worker that acts as the distribution destination. As a result, request processing of very long POST data size with a long
processing time is distributed to a specific host. The redirector distributes the requests to each HTTP request with the
upper limit of the POST data size, so you can avoid the decrease in throughput of requests other than the very long
POST data requests and can avoid the decrease in response time. Note that when the upper limit of the POST data size
is specified, the value of the POST data size is given priority even if the HTTP request belongs to the same session.

(1) Setup procedure
To specify settings for distributing requests by the POST data size, use the following procedure:

1. Define the POST request-distributing worker and POST request-forwarding worker in workers.properties.

Definitions for POST request-distributing worker
Specify the list of worker names, worker types (specify post_size_lb), and list of workers for distribution
by the POST data size. As needed, set the default worker.

5. Web Server Integration

Compatibility Guide 75

Definitions for each POST request-forwarding worker
Specify the worker types (specify ajp13), port number, host name, and the upper limit of the POST data size.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If a mapping is defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix D Precautions related to Cosminexus HTTP Server Settings.

(2) Settings in workers.properties and mod_jk.conf
Define the settings for distributing requests by the POST data size in workers.properties and mod_jk.conf.
The following table lists the keys defined in workers.properties and mod_jk.conf.

Table 5‒10: Keys defined in workers.properties and mod_jk.conf (When distributing requests by
the POST data size)

Types of files Key name Description

workers.pro
perties

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type. Specify post_size_lb in the POST request-
distributing worker and ajp13 in the POST request-forwarding worker that forms
the target for distribution.

worker.worker-
name.post_size_workers

Specifies the list of workers that form the target of distribution by the POST data size.

worker.worker-
name.post_data

Specifies the upper limit (bytes) of the POST data size for the request.

worker.worker-
name.default_worker

Specifies the worker (default worker) for forwarding the requests if the worker
applicable to the request distribution destination is not in the POST request-
forwarding worker within the cluster configuration.

worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.
This key can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_co
de

Specifies the error status code used when the creation of the error page is entrusted to
the Web server.

mod_jk.conf JkMount Specifies some combination of workers specified in the URL pattern
and worker.list.

5. Web Server Integration

Compatibility Guide 76

Note:
In worker-name, define the worker name specified in the worker.list key or worker.worker-name.post_size_workers key.

The following table lists the keys that you can specify for each worker type:

Table 5‒11: Keys that can be specified for each worker type

Key name Worker type (value specified in worker.worker-name.type key)

POST request-distributing worker
(Specify post_size_lb)

POST request-forwarding worker
(Specify ajp13)

worker.worker-name.host -- Y

worker.worker-name.port -- Y

worker.worker-name.type Y Y

worker.worker-name.post_size_workers Y --

worker.worker-name.post_data -- Y

worker.worker-name.default_worker O --

worker.worker-name.cachesize -- O

worker.worker-name.receive_timeout -- O

worker.worker-name.delegate_error_code -- O

Legend:
Y: Can be specified
--: Cannot be specified
O: Can be optionally specified

(3) Example settings
The figure below shows the distribution of requests by POST data size. This figure shows an example when the requests
cannot be limited:

5. Web Server Integration

Compatibility Guide 77

Figure 5‒13: Example of distribution of requests by the POST data size

In this example, among the requests under /examples, the requests with POST data size of less than 100 MB are
distributed to host A and the requests with POST data size between 100 MB and 200 MB are distributed to host B. The
requests that do not fulfill the request distribution conditions are distributed to the host A that is set as the default worker.
The worker name of the host A is worker1 and the worker name of the host B is worker2. For details on the request
distribution conditions, see 5.5.3 Request distribution conditions.

An example of the workers.properties file is described here. The POST request-distributing worker, POST
request-forwarding worker, and default worker is defined here. As the upper limit of POST data size, 100m is specified
for worker1 and 2048m is specified for worker2 (maximum value of the upper limit for POST data size). In the
default worker, worker1 is specified.

Example of workers.properties (In Windows)

worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.post_data=2048m

5. Web Server Integration

Compatibility Guide 78

Example of workers.properties (In UNIX)

worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.post_data=2048m

An example of the mod_jk.conf file is shown below. POST request-distributing worker postsizelb1 is
specified here.

Example of mod_jk.conf

JkMount /examples/* postsizelb1

Reference note

You can also set the upper limit for the POST data size in the LimitRequestBody directive of
httpsd.conf (Cosminexus HTTP Server definition file). For details on the LimitRequestBody
directive, see the uCosminexus Application Server HTTP Server User Guide.

5.5.6 Execution environment settings (When the Smart Composer
functionality is not used)

By defining the list of workers that act as the distribution destinations in the POST request-distributing worker, requests
are distributed to the workers by the POST data size.

Set the upper limit for the POST data size and define the request distribution destination in the POST request-forwarding
worker that acts as the distribution destination. As a result, request processing of very long POST data size with a long
processing time is distributed to a specific host. The redirector distributes the requests to each HTTP request with the
upper limit of the POST data size, so you can avoid the decrease in throughput of requests other than the very long POST
data requests and can avoid the decrease in the response time. Note that when the upper limit of the POST data size is
specified, the value of the POST data size is given priority even if the HTTP request belongs to the same session.

Important note

When integrating with Microsoft IIS, you cannot specify settings for distributing requests by the POST data size.

(1) Setup procedure
To specify settings for distributing requests by the POST data size, you use the following procedure:

5. Web Server Integration

Compatibility Guide 79

1. Define the POST request-distributing worker and POST request-forwarding worker in workers.properties.

Definitions for POST request-distributing worker
Specify the list of worker names, worker types (specify post_size_lb), and list of workers for distribution
by the POST data size. As needed, set the default worker.

Definitions for each POST request-forwarding worker
Specify the worker types (specify ajp13), port number, host name, and the upper limit of the POST data size.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If a mapping is already defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see , Appendix D Precautions related to Cosminexus HTTP Server Settings.

(2) Example settings
The figure below shows the distribution of requests by POST data size. This figure shows an example for the case when
request is not limited:

Figure 5‒14: Example of distribution of requests by the POST data size

In this example, among the requests under /examples, the requests with POST data size of less than 100 MB are
distributed to host A and the requests with POST data size between 100 MB and 200 MB are distributed to host B. The
requests that do not fulfill the request distribution conditions are distributed to the host A that is set as the default worker.

5. Web Server Integration

Compatibility Guide 80

The worker name of the host A is worker1 and the worker name of the host B is worker2. For details on the request
distribution conditions, see 5.5.3 Request distribution conditions.

An example of the workers.properties file is shown below. The POST request-distributing worker, POST
request-forwarding worker, and default worker are defined here. As the upper limit of POST data size, 100m is specified
for worker1 and 2048m is specified for worker2 (maximum value of the upper limit for POST data size). In the
default worker, worker1 is specified.

Example of workers.properties (In Windows)

worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.post_data=2048m

Example of workers.properties (In UNIX)

worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.post_data=2048m

An example of the mod_jk.conf file is shown below. POST request-distributing worker postsizelb1 will be
specified here.

Example of mod_jk.conf

JkMount /examples/* postsizelb1

5. Web Server Integration

Compatibility Guide 81

Reference note

You can also set the upper limit for the POST data size in the LimitRequestBody directive of
httpsd.conf (Cosminexus HTTP Server definition file). For details on the LimitRequestBody
directive, see the uCosminexus Application Server HTTP Server User Guide.

5. Web Server Integration

Compatibility Guide 82

5.6 Communication timeout (Web server integration)

This section describes communication timeout in Web server integration.

When you use the functionality for Web server integration, you can set the communication timeout for receiving requests
and sending responses between the client and the Web server, and also between the Web server and the Web container.
When the response is awaited due to the network and application failure, you can detect the occurrence of failure from
the occurrence of a timeout, if the communication timeout is set.

The following table describes the organization of this section.

Table 5‒12: Organization of this section (Communication timeout (Web server integration))

Category Title Reference

Description Communication timeout when sending and receiving a request 5.6.1

Communication timeout when sending and receiving a response 5.6.2

Settings Setting the communication timeout 5.6.3

Setting the communication timeout when sending and receiving a request (When the Smart
Composer functionality is used)

5.6.4

Setting the communication timeout when sending and receiving a request (When the Smart
Composer functionality is not used)

5.6.5

Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is used)

5.6.6

Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is not used)

5.6.7

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

When you use the Web server integration functionality, set the communication timeout for the communication indicated
by the four arrows in the following figure. In the case of communication between the redirector and the Web container,
you can set the communication timeout in both the redirector and Web container. In the case of sending requests, you
can set the communication timeout when the redirector sends the requests and the Web container receives the requests.
Similarly, when sending responses, you can set the communication timeout when the Web container sends the responses
and the redirector receives the responses. The following figure shows the communication for which timeout can be set.

5. Web Server Integration

Compatibility Guide 83

Figure 5‒15: Communication for which timeout can be set

The setting of communication timeout is explained separately for receiving of a request and sending of a response.

5.6.1 Communication timeout when sending and receiving a request
This section explains the setting of communication timeout for sending and receiving requests when the Web server
integration functionality is used. The following figure shows the locations to set the communication timeout for sending
and receiving requests.

Figure 5‒16: Locations to set the communication timeout for sending and receiving requests

When you use the Web server integration functionality, set the communication timeout at the locations marked with a
O sign in the figure. The locations to set the communication timeout are explained below. The numbers in the figure
correspond to the numbers in the following explanation:

1. When a request is received by the Web server (Client - Web server)
Set the communication timeout when the Web server receives a request from the client. Set the communication
timeout in the Web server.
For details on the failures that can be detected by setting the communication timeout when the request is received by
the Web server, see (1) When a request is received by the Web server explained below.

2. When a request is sent by the redirector (Redirector - Web container)
Set the communication timeout when a request is sent from the redirector to the Web container. Set the
communication timeout in the redirector.

5. Web Server Integration

Compatibility Guide 84

For details on the failures that can be detected by setting a communication timeout when the request is sent by the
redirector, see (2) When a request is sent by the redirector explained below.

3. When a request is received by the Web container (Redirector - Web container)
Set the communication timeout when the Web container receives a request from the redirector. Set the
communication timeout in the Web container.
For details on the failures that can be detected by setting a communication timeout when the request is received by
the Web container, see (3) When a request is received by the Web container explained below.

(1) When a request is received by the Web server
You can set the timeout period in the Web server, for receiving a request transferred from the client. You can detect
the occurrence of failure in the client by using the communication timeout that was set up. You can detect the
following failures:

Detectable failures
• The host on which the client is running is down.

• A network failure occurs between the client and the Web server.

• A failure occurs in client application.

(2) When a request is sent by the redirector
You can set the timeout period in the redirector, for sending a request to the Web container. When the set timeout period
is exceeded and a timeout occurs, a message is output to the error log of Cosminexus HTTP Server.

(a) Communication timeout that can be set and detectable failures
You can set the timeout to the following two time-periods when a request is sent by the redirector:

• The time to establish a connection for sending request to the Web container

• The time to send a request to the Web container

You can detect the occurrence of failure in the Web container or on the network using the communication timeout that
was set up. You can detect the following failures:

Detectable failures
• The host on which the Web container is running is down.

• A network failure occurs between the redirector and the Web container.

(b) Retrying sending of requests
If a request cannot be sent temporarily from the redirector, you can retry sending the request. A request might not be sent
temporarily in the following cases:

• In the case of temporary failure of the network

• When requests are centralized in the Web container during establishment of a connection, and a request for
establishing connection overflows temporarily from the listen queue

• When a Web container is yet to start completely

You can retry establishing a connection, and sending request headers. The following figure shows the flow of
retry process.

5. Web Server Integration

Compatibility Guide 85

Figure 5‒17: Flow of retry process when requests are sent to the Web container

Retry is executed when a timeout occurs in A or B of the figure. Retry is not executed when processing fails at C or D
of the figure, and timeout occurs. The connection is closed and an error is returned to the client. Note that the failure of
processing at C or D in the figure indicates failure in receiving request body from the Web server, or failure in sending
request body to the Web container.

Tip

In the case of C or D in the figure, the processing of the request may have started already in the Web container.
If you execute retry in the case of failure in receiving the request body from the Web server, or in the case of
failure in sending the request body to the Web container, the send process may be duplicated, and therefore, retry
is not done.

The retry operation in the case of failure in processing at A and B in the figure is explained below:

• Retry operation in the case of failure in processing at A in the figure
After sending a request from the redirector to the Web container for establishment of a connection, if the power supply
to the host on which the Web container is running is disrupted or a network failure occurs, the operation is performed
as follows:

5. Web Server Integration

Compatibility Guide 86

1. If the set timeout period elapses, a message indicating the occurrence of timeout during establishment of the
connection is output.

2. Retry establishing connection only for specified number of times.

Note that if a connection cannot be established in spite of retrying for the specified number of times, a message
indicating failure in sending request is output, and an error (status code 500) is returned to the client.

• Retry operation in the case of failure in processing at B part in the figure
After a connection is established successfully, or the request header is sent to the Web container, if the power supply
to the host on which the Web container is running is disrupted and a network failure occurs, perform the operation
as follows:

1. If the set timeout period elapses, a message indicating the occurrence of timeout when sending a request is output.

2. Close the connection that was used for sending the request header.

3. Retry sending the request header only for specified number of times.
Note that at this point, the operation depends upon whether the connections are available in the connection cache.
- When connections are available in the connection cache
Use a connection in the connection cache and retry the process from sending the request header.
- When there are no connections in the connection cache
Re-establish a connection, and then retry sending the request header.

Note that if the request header cannot be sent in spite of retrying for the specified number of times, a message
indicating failure in sending request is output, and status code 500 is returned to the client.

• Retry operation when a request is distributed using a load balancer
The following figure shows the retry operation when you use a load balancer to distribute a request:
Note that in this figure, a request is first distributed to Web container 1 and then to Web container 2, and the retry
frequency is set as three times.

Figure 5‒18: Retry operation when a request is distributed using a load balancer

The retry operation shown in the figure is as follows:

1. Sending request to the Web container 1
A request is sent to Web container 1. Retry operation is performed in the case of failure in establishing a
connection to Web container 1, or failure in sending the request header. Retry is executed up to three times.

2. Sending request to the Web container 2
If the retry operation fails three times in Web container 1, the request is transferred to Web container 2. When the
request is transferred, retry is counted again from 1, and hence, retry is executed up to three times even in Web
container 2.

3. Error notification to the client
If the process of establishing a connection or sending the request header fails three times even in Web container
2, an error (status code 500) is returned to the client.

5. Web Server Integration

Compatibility Guide 87

Reference note

A request is transferred only to the set number of Web containers.

(3) When a request is received by the Web container
You can set a timeout period in the Web container, for receiving a request transferred from the redirector. You can
detect the occurrence of failure in the redirector using the communication timeout that was set up. You can detect the
following failures:

Detectable failures
• The host on which the Web server is running is down.

• A network failure occurs between the Web server and the Web container.

• Timeout occurred in the Web container before the processing between the client and the Web server completes.
This implies that when the data size requested by the Web container was being read between the client and the
Web server, the communication timeout set in the Web container occurred before the data is read completely, due
to insufficient communication speed between the client and the Web server.

The following table describes the conditions for occurrence of communication timeout and the operations after the
timeout occurs.

Table 5‒13: Conditions for occurrence of communication timeout and the operations after
occurrence

Conditions for occurrence of communication timeout Operations after occurrence

In the case all the following conditions are satisfied when a request
is received:
• The request contains a body data.
• The body data is not in the chunk format.
• After the reading process starts, a failure occurs in the host on

which the redirector is running, or in the network between the
redirector and the Web container.

• Request is not processed.
• Message KDJE39188-E is output to the message log.

In the case all the following conditions are satisfied when using API#

in the servlet (JSP):
• The request contains a body data.
• The body data is not in the chunk format.
• After the reading process starts, a failure occurs in the host on

which the redirector is running, or in the network between the
redirector and the Web container.

• java.lang.IllegalStateException occurs.
• The connection to the redirector is closed, and thereafter you

cannot read or write the data.
• Message KDJE39188-E is output to the message log.

In the case all the following conditions are satisfied when POST data is
read by using the java.io.BufferedReader class acquired by
getReader method of javax.servlet.ServletRequest
class or javax.servlet.ServletInputStream class in the
servlet (JSP):
• The request contains a body data.
• After the reading process starts, a failure occurs in the host on

which the redirector is running, or in the network between the
redirector and the Web container.

• java.net.SocketTimeoutException occurs.
• The connection to the redirector is closed, and thereafter you

cannot read or write the data.
• Message KDJE39188-E is output to the message log.

#
Indicates the case of using the getParameter method, getParameterMap method, getParameterNames method, and
getParameterValues method of javax.servlet.ServletRequest.

5. Web Server Integration

Compatibility Guide 88

5.6.2 Setting the communication timeout when sending and receiving a
response

This section explains the setting of communication timeout for sending and receiving responses when the Web server
integration functionality is used. The following figure shows the locations to set the communication timeout for sending
and receiving responses:

Figure 5‒19: Locations to set the communication timeout for sending and receiving responses
(when the Web server integration functionality is used)

When you use the Web server integration functionality, set the communication timeout at the locations marked with a
O sign in the figure. The locations to set the communication timeout are explained below. The numbers in the figure
correspond to the numbers in the following explanation:

1. When a response is sent by the Web container (Web container - redirector)
Set the communication timeout when a response is sent from the Web container to the redirector. Set the
communication timeout in the Web container.
For details on the failures that you can detect by setting the communication timeout when a response is sent by the
Web container, see (1) When a response is sent by the Web container explained below.

2. When a response is received by the redirector (Web container - redirector)
Set communication timeout when the redirector receives a response from the Web container. Set the communication
timeout in the redirector.
For details on the failures that you can detect by setting communication timeout when response is received by the
redirector, see (2) When a response is received by the redirector explained below.

3. When a response is sent by the Web server (Web server - Client)
Set communication timeout when a response is sent from the Web server to the client. Set the communication timeout
in the Web server.
For details on the failures that you can be detect by setting the communication timeout when a response is sent by
the Web server, see (3) When a response is sent by the Web server explained below.

(1) When a response is sent by the Web container
You can set a timeout period in the Web container, for sending a response to the redirector. You can detect the occurrence
of failure in the redirector using the communication timeout that was set up. You can detect the following failures:

Detectable failures
• The host on which the redirector is running is down.

• A network failure occurs between the Web container and the redirector.

5. Web Server Integration

Compatibility Guide 89

When the communication timeout occurs, KDJE39507-E (timeout occurred when sending a response) is output to the
message log. The following table describes the conditions for occurrence of communication timeout and the operations
after the timeout occurs.

Table 5‒14: Conditions for occurrence of communication timeout and the operations after
occurrence

Timing of occurrence of
communication timeout

Operation of the method after
occurrence of communication timeout

Operation of servlets or
JSPs after occurrence of
communication timeout

When response data is sent to
the client by using the method of
javax.servlet.ServletOutputStream
class acquired by getOutputStream method of
javax.servlet.ServletResponse class,
in the servlet

Exception
java.net.SocketTimeoutExcepti
on occurs.

Since the connection to the redirector is
closed, you cannot send or receive the
request data and the response data.

When response data is sent to the client by
using the method of java.io.PrintWriter
class acquired by getWriter method of
javax.servlet.ServletResponse class,
in the servlet

The send process is interrupted and returned. • The checkError method of
java.io.PrintWriter class
returns true.

• Since the connection to the
redirector is closed, you cannot send
or receive the request data and the
response data.

When response data is sent to
the client by using the method of
javax.servlet.jsp.JspWriter class,
in JSP

Exception
java.net.SocketTimeoutExcepti
on occurs.

Since the connection to the redirector is
closed, you cannot send or receive the
request data and the response data.

When the response data of static contents is sent to
the client

-- --

Legend:
--: Not applicable

(2) When a response is received by the redirector
When a request is sent to the Web container, the redirector awaits for a response from the Web container. You can set
the timeout for this response waiting time. You can detect the occurrence of failure in the Web container using the
communication timeout that was set up. You can detect the following failures:

Detectable failures
• The host on which the Web container is running is down.

• A network failure occurs between the Web container and the redirector.

• A Web application failure occurs in the Web container.

The following failures occur in the Web application:

Web application failures
• A response is not returned due to an infinite loop in the servlets or JSPs processing.

• The Enterprise Bean and database are invoked as an extension of servlets or JSPs, and response from them
is awaited.

• Dead lock occurs in the Web application.

• The Web application does not catch up with the server processing and is running slow during the peak access.

5. Web Server Integration

Compatibility Guide 90

Operation after communication timeout in the redirector
When communication timeout occurs, the redirector disconnects the connection to the Web container, and returns
error with status code 500 to the client.

Tip

Operation when timeout occurs during processing of an application

Even if the redirector times out during processing in the Web container, you cannot detect that the redirector
has timed out, in the Web container.

You can detect the timeout in the redirector once the processing of the Web container finishes, and a response
is transferred to the redirector. In such a case, however, since the redirector has already disconnected the
connection to the Web container, an error occurs when sending a response. The following figure illustrates
the operation when a timeout occurs during processing of an application.

Figure 5‒20: peration when a timeout occurs during processing of an application

The figure is explained below.

1. When a timeout occurs in the redirector, a request is sent for disconnecting the connection to the
Web container.

2. Redirector sends an error code to the Web server.

3. When processing of the application in the Web container finishes, a response is sent to the redirector.
However, since the connection between the redirector and the Web container is already disconnected in
1, a communication error occurs.

(3) When a response is sent by the Web server
You can set a timeout period in the Web server, for sending data to the client. You can detect the occurrence of failure
in the client by using the communication timeout that was set up. You can detect the following failures:

Detectable failures
• The host on which the client is running is down.

• A network failure occurs between the client and the Web server.

5. Web Server Integration

Compatibility Guide 91

• A failure occurs in client application.

5.6.3 Setting the communication timeout
This section describes the communication timeout settings between a client and a Web server and between a Web server
(redirector) and a Web container.

You set a communication timeout when sending and receiving requests or when sending and receiving responses. The
method of specifying communication timeout differs according to the availability of Smart Composer. The following
table lists the communication timeout setting method and the corresponding reference sections:

Table 5‒15: Setting method and references of communication timeout (Web server integration)

Set up timing Usage of Smart Composer

Used Not used

When sending and receiving a request 5.6.4 5.6.5

When sending and receiving a response 5.6.6 5.6.7

Note that you can also set communication timeout in the EJB client that invokes EJB. Specify the settings in the EJB
client during J2EE application development. For the setting method, see 2.11.5 Timeout of RMI-IIOP communications
in the uCosminexus Application Server EJB Container Functionality Guide.

5.6.4 Setting the communication timeout when sending and receiving a
request (When the Smart Composer functionality is used)

You set the communication timeout for sending and receiving requests between the client and Web server and the
redirector and Web Container.

The following are the methods of setting a communication timeout in each of these cases:

(1) Settings in the Web server for receiving requests
Specify the communication timeout in the Web server, when receiving the requests from the client into the Web server.
You can use Cosminexus HTTP Server as the Web server.

(a) How to set
Set the communication timeout for the receiving process of requests forwarded from the client in httpsd.conf.

• Waiting time for the request receiving process
In the Timeout directive, set the waiting time (seconds) for the process of receiving requests from the client. The
default value of the Timeout directive is 300 seconds. Note that the value set here is shared with the communication
timeout for the process of sending data to the client. For details on the communication timeout for the process of
sending data to the client, see 5.6.6(3) Settings in the Web server for sending responses.

(b) Precautions for setup
To set the timeout for receiving requests in the Web server, take into consideration the network configuration and traffic
status between the client and the Web server and specify a time in which the occurrence of failure can be determined.

5. Web Server Integration

Compatibility Guide 92

(2) Settings in the redirector for sending requests
When sending a request from the redirector to the Web container, first establish a connection with the Web container. You
can set the communication timeout for sending requests from the redirector to the Web container when the connection
is established and when the request is sent. You can also set the retry frequency to be used when an attempt to establish
connection and to send the request header fails.

(a) How to set
Specify the communication timeout for establishing the connection and the request sending process and the retry
frequency from the redirector in the Easy Setup definition file.

• Communication timeout in establishing connection
Set the waiting time (seconds) for the process of establishing a connection with the Web container in the
JkConnectTimeout parameter in the <configuration> tag of the logical Web server (web-server). The
default value of the JkConnectTimeout parameter is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the JkSendTimeout
parameter in the <configuration> tag of the logical Web server (web-server). The default value of the
JkSendTimeout parameter is 100 seconds.

• Retry frequency for establishing a connection and sending a request
Set the retry frequency for establishing a connection and sending a request to the Web container in the
JkRequestRetryCount parameter in the <configuration> tag of the logical Web server (web-server). The
default value of the JkRequestRetryCount parameter is three times.

(b) Precautions for setup
Take the followings into consideration when you specify the communication timeout value for sending requests and the
retry frequency set up in the redirector:

• The retry frequency includes the first connection established and the first request sent. Therefore, if the first
connection or request sending process fails, the retrying of connection or request sending process is counted as the
second time.

• If you specify 0 as the communication timeout for establishing a connection and for the request sending process or if
you set a longer time than the re-send timer for establishing a connection and sending data by TCP, the TCP timeout
value is applied to communication timeout value.

(3) Settings in the Web Container for receiving requests
Set the communication timeout when the Web container receives a request from the redirector, to the Web container.

(a) How to set
Set the communication timeout for the process of receiving requests forwarded from the redirector in the Easy Setup
definition file:

• Timeout for the request receiving process
Set the waiting time (seconds) for the process of receiving requests from the redirector in
webserver.connector.ajp13.receive_timeout parameter in the <configuration> tag of
the logical J2EE server (j2ee-server). The default value of the parameter is 100 seconds.

5. Web Server Integration

Compatibility Guide 93

(b) Precautions for setup
Take the followings into the consideration when you specify the timeout value set in the Web container for
receiving requests:

• Set a value bigger than the time set in the timeout for receiving Web server requests.
If a value smaller than the time specified as the timeout for receiving Web server requests is set, when network failure
occurs in the client and between the client and Web server, timeout occurs in the Web container before the Web server.
In this case, one cannot determine whether the failure has occurred in the Web server or in the client.

• If data must be received from the client, set the time in which data can be received taking into consideration the
communication speed with the client.

• When failure occurs in the redirector while the data is being sent to the Web container, the failure is detected by the
timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

5.6.5 Setting the communication timeout when sending and receiving a
request (When the Smart Composer functionality is not used)

You set the communication timeout for sending and receiving requests between the client and the Web server and between
the redirector and the Web container.

The following are the methods for setting the communication timeout in each of the cases:

(1) Settings in the Web server for receiving requests
In the Web server, you specify the communication timeout for receiving the requests from the client in the Web server.
You can use either Cosminexus HTTP Server or Microsoft IIS as the Web server.

(a) How to set
Set the communication timeout for the process of receiving requests forwarded from the client in the following files:

• httpsd.conf (In Cosminexus HTTP Server)
In the Timeout directive, set the waiting time (seconds) for the process of receiving requests from the client. The
default value of the Timeout directive is 300 seconds. Note that the value set here is shared with the communication
timeout for the process of sending data to the client. For details on the communication timeout for the process of
sending data to the client, see 5.6.6(3) Settings in the Web server for sending responses.

• isapi_redirect.conf (In Microsoft IIS)
Set the waiting time (seconds) for the process of receiving requests from the client in the
receive_client_timeout key.

(b) Precautions for setup
To set the timeout for receiving requests in the Web server, take into consideration the network configuration and traffic
status between the client and the Web server and specify a time in which the occurrence of failure can be determined.

(2) Settings in the redirector for sending requests
When sending a request from the redirector to the Web container, first establish a connection with the Web container. You
can set the communication timeout for sending requests from the redirector to the Web container when the connection

5. Web Server Integration

Compatibility Guide 94

is established and when the request is sent. You can also set the retry frequency to be used when an attempt to establish
connection and to send the request header fails.

(a) How to set
Specify the communication timeout for establishing the connection and the request sending process and the retry
frequency from the redirector in the following files:

• mod_jk.conf (In Cosminexus HTTP Server)

• Communication timeout in establishing connection
Set the waiting time (seconds) for the process of establishing a connection with the Web Container in the
JkConnectTimeout key. The default value of the JkConnectTimeout key is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the JkSendTimeout
key. The default value of the JkSendTimeout key is 100 seconds.

• Retry frequency for establishing a connection and sending a request
Set the retry frequency for establishing a connection and sending a request to the Web container in the
JkRequestRetryCount key. The default value of the JkRequestRetryCount key is three times.

• isapi_redirect.conf (In Microsoft IIS)

• Communication timeout in connection process
Set the waiting time (seconds) for the process of establishing a connection with the Web container in the
connect_timeout key. The default value of the connect_timeout key is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the send_timeout
key. The default value of the send_timeout key is 100 seconds.

• Retry frequency for establishing a connection and sending a request
Set the retry frequency for establishing a connection and sending a request to the Web container in the
request_retry_count key. The default value of the request_retry_count key is three times.

(b) Precautions for setup
Take the followings into the consideration when you specify the communication timeout value for sending requests and
the retry frequency set in the redirector:

• The retry frequency includes the first connection established and the first request sent. Therefore, if the first
connection or request sending process fails, the retrying of connection or request sending process is counted as the
second time.

• If you specify 0 as the communication timeout for establishing a connection and for the request sending process or if
you set a longer time than the re-send timer for establishing a connection and sending data by TCP, the TCP timeout
value is applied to communication timeout value.

(3) Settings in the Web container for receiving requests
Set the communication timeout when the Web container receives a request from the redirector, to the Web container.

(a) How to set
Set the communication timeout for the process of receiving requests forwarded from the redirector in the following file:

5. Web Server Integration

Compatibility Guide 95

• usrconf.properties
Set the waiting time (seconds) for the process of receiving requests from the redirector in the
webserver.connector.ajp13.receive_timeout key.

(b) Precautions for setup
Take the followings into consideration when you specify the timeout value set in the Web container for receiving requests:

• Set a value bigger than the time set in the timeout for receiving Web server requests.
If a value smaller than the time specified as the timeout for receiving Web server requests is set, and network failure
occurs in the client and between the client and Web server, the timeout occurs in the Web container before the Web
server. In this case, you cannot determine whether the failure has occurred in the Web server or in the client.

• If data needs to be received from the client, set the time in which data can be received taking into consideration the
communication speed with the client.

• When failure occurs in the redirector while the data is being sent to the Web Container, the failure is detected by the
timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

5.6.6 Setting the communication timeout when sending and receiving a
response (When the Smart Composer functionality is used)

You set the communication timeout for sending and receiving responses between the Web container and the redirector
and between the Web server and the client.

The followings are the methods for setting the communication timeout in each of the cases:

(1) Settings in the Web container for sending responses
In the Web container, you specify the communication timeout for the process of sending a response from the Web
container to the redirector. Set the waiting time for sending a response from the Web container in the Easy Setup
definition file.

• Timeout for the response sending process
Set the timeout (seconds) for sending a response from the Web container in the
webserver.connector.ajp13.send_timeout parameter in the <configuration> tag of the logical
J2EE server (j2ee-server). The default value of the parameter is 600 seconds.

(2) Settings in the redirector for receiving responses
Set communication timeout when the redirector receives a response from the Web container, to the redirector.

(a) How to set
Set the waiting time for the response from the Web container in the Easy Setup definition file.

• Timeout for the response receiving process
Set the response waiting time (seconds) for each worker in the worker.worker-name.receive_timeout
parameter in the <configuration> tag of the logical J2EE server (j2ee-server). The default value of the
parameter is 3600 seconds. If you want to set communication timeout for J2EE applications, define and map workers
for each J2EE application.

5. Web Server Integration

Compatibility Guide 96

(b) Precautions for setup
You can detect Web application failure by the timeout in receiving a response in the redirector. Therefore, depending on
the operation state, consider the time required for processing Web applications and set a value from which failure can
be detected as the communication timeout value.

Take the followings into the consideration when you set the timeout value for receiving responses in the redirector:

• Set a time longer than the time required for processing the Web applications in communication timeout.
If the set timeout value is shorter than the Web application processing time, even if the Web application is processing
normally, the timeout is determined in the redirector and an error is returned to the client.

• Consider the waiting time based on the controlling of the number of concurrently executing threads at the peak of
the Web container.
Because of the controlling of the number of concurrently executing threads, at the peak of the Web Container, there
might be requests awaiting processing. Therefore, if controlling the number of concurrently executing threads is set,
you must specify the communication timeout considering the extension of the request processing time. For details
on settings for controlling the number of concurrently executed threads for each Web container, see 5.11 Controlling
the number of concurrently executing threads in the Web container. For details on settings for controlling the number
of concurrently executed threads for each Web application, see the manual uCosminexus Application Server Web
Container Functionality Guide. For details on settings for controlling the number of concurrently executed threads
for each URL group, see the manual uCosminexus Application Server Web Container Functionality Guide.

• When failure occurs in the Web container while the data is being sent to the redirector, the failure is detected by the
timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

(3) Settings in the Web server for sending responses
In the Web server, you set the communication timeout for sending a response to the client.

(a) How to set
Set the waiting time for the response from the client in httpsd.conf.

• Communication timeout for the data sending process
Set the communication timeout in the Timeout directive. Note that the communication timeout specified in
the Timeout directive is specified both as the communication timeout for the request receiving process and
the communication timeout for the response sending process. Therefore, you cannot set a different time in
the communication timeout for the request receiving process and the communication timeout for the response
sending process.
For details on the communication timeout for the process of receiving requests from clients, see 5.6.4(1) Settings in
the Web server for receiving requests.

(b) Precautions for setup
To set the timeout for sending responses in the Web server, take into the consideration the network configuration and
traffic status between the client and the Web server and specify adequate time for sending and receiving data with
the client.

Also, for the timeout value set in the Web server for sending responses, specify a value smaller than the timeout value in
the Web container for sending responses. If the timeout for sending responses in the Web server is greater than timeout
for sending responses in the Web container, and a failure occurs between the client and Web server, the timeout in the
Web container for sending a response to the redirector might occur earlier than the timeout in the Web server for sending

5. Web Server Integration

Compatibility Guide 97

response to the client. In this case, one cannot determine whether the failure has occurred between the client and the Web
server or between the redirector and Web container.

5.6.7 Setting the communication timeout when sending and receiving a
response (When the Smart Composer functionality is not used)

You set the communication timeout for sending and receiving responses between the Web container and the redirector
and between the Web server and the client.

The following are the methods for setting a communication timeout in each of the cases:

(1) Settings in the Web container for sending responses
In the Web container, you specify the communication timeout for the process of sending a response from the Web
container to the redirector. Set the waiting time for sending a response from the Web container in the following file:

• usrconf.properties
Set the timeout (seconds) for sending a response from the Web container in the
webserver.connector.ajp13.send_timeout key. The default value is 600 seconds.

(2) Settings in the redirector for receiving responses
Set the communication timeout when the redirector receives a response from the Web container, to the redirector.

(a) How to set
Set the waiting time for the response from the Web container in the following file:

• workers.properties
Set the response waiting time (seconds) for each worker in the worker.worker-name.receive_timeout key.
If you want to set a communication timeout for J2EE applications, define and map workers for each J2EE application.

(b) Precautions for setup
You can detect Web application failure by a timeout in receiving a response in the redirector. Therefore, depending on
the operation state, consider the time required for processing Web applications and set a value from which failure can
be detected as the communication timeout value.

Take the following into the consideration when you set the timeout value for receiving responses in the redirector:

• Set a time longer than the time required for processing the Web applications in the communication timeout.
If the set timeout value is shorter than the Web application processing time, the timeout is determined in the redirector
and an error is returned to the client even if the Web application is processing normally.

• Consider the waiting time based on the controlling of the number of concurrently executing threads at the peak of
the Web container.
Because of the controlling of the number of concurrently executing threads, at the peak of the Web container,
there might be requests awaiting processing. Therefore, if server management commands are used to specify the
control of the number of concurrently executing threads, you must specify the communication timeout considering
the extension of the request processing time. For details on settings for controlling the number of concurrently
executed threads for each Web container, see 5.11 Controlling the number of concurrently executing threads in
the Web container. For details on settings for controlling the number of concurrently executed threads for each

5. Web Server Integration

Compatibility Guide 98

Web application, see the manual uCosminexus Application Server Web Container Functionality Guide. For details
on settings for controlling the number of concurrently executed threads for each URL group, see the manual
uCosminexus Application Server Web Container Functionality Guide.

• When failure occurs in the Web container while the data is being sent to the redirector, the failure is detected by the
timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

(3) Settings in the Web server for sending responses
In the Web server, you can set the communication timeout for sending a response to the client.

(a) How to set
Set the waiting time for the response from the client in the following files:

• httpsd.conf (In Cosminexus HTTP Server)
Set the communication timeout in the Timeout directive. Note that the communication timeout specified in
the Timeout directive is specified both as the communication timeout for the request receiving process and
the communication timeout for the response sending process. Therefore, you cannot set the different time for
the communication timeout of the request receiving process and for the communication timeout of the response
sending process.
For details on the communication timeout for the process of receiving requests from clients, see 5.6.4(1) Settings in
the Web server for receiving requests.

• MinFileBytesPerSec property (In Microsoft IIS)
Set the communication timeout in the MinFileBytesPerSec property. In the MinFileBytesPerSec
property, specify the throughput (byte/second) of the response data sent from the Web server to the
client. The communication timeout occurs when the response data throughput falls below the value set in
MinFileBytesPerSec. Note that, the default value for a communication timeout is 240 byte/second.
For details on the settings, see the manual Microsoft IIS.

(b) Precautions for setup
To set the timeout for sending responses in the Web server, take into consideration the network configuration and traffic
status between the client and the Web server and specify adequate time for sending and receiving data with the client.

Also, as the timeout value set in the Web server for sending responses, specify a value smaller than the timeout value in
the Web container for sending responses. If the timeout for sending responses in the Web server is greater than timeout
for sending responses in the Web container, when failure occurs between the client and the Web server, the timeout in the
Web container for sending a response to the redirector might occur earlier than the timeout in the Web server for sending
response to the client. In this case, one cannot determine whether the failure has occurred between the client and the Web
server or between the redirector and the Web container.

5. Web Server Integration

Compatibility Guide 99

5.7 Specifying the IP address (Web server integration)

This section describes the control of communication with the Web client by specifying the IP address in Web
server integration.

The following table describes the organization of this section.

Table 5‒16: Organization of this section (Specifying the IP address (Web server integration))

Category Title Reference

Description Bind address specification functionality 5.7.1

Settings Execution environment settings (J2EE server settings) 5.7.2

Notes Precautions for specifying the IP address in Web server integration 5.7.3

Note:
There is no specific description of Implementation and Operations for this functionality.

5.7.1 Bind address specification functionality
In a Web container, you can explicitly specify the IP address to be used in Web server integration. This functionality is
called the Bind address specification functionality. By using the bind address specification functionality, you can specify
the setting so that only a single specific IP address is used for a host having multiple physical network interfaces or single
physical network interface, when executing with a host.

Customize the properties of the J2EE server to set the bind IP address. For details on customizing the J2EE server
operation settings, see 5.7.2 Execution environment settings (J2EE server settings).

5.7.2 Execution environment settings (J2EE server settings)
To specify the IP address in Web server integration, you must set up the J2EE server.

Implement the J2EE server settings in the Easy Setup definition file. To define the IP address in Web server integration,
specify the following parameter in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file:

webserver.connector.ajp13.bind_host
Specifies the IP address or host name used when the Web server integration functionality is used.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

5.7.3 Precautions for specifying the IP address in Web server integration
The following are the precautions for specifying the IP address in Web server integration:

• When the host name or the IP address is set, only requests for connecting to the specified IP address can be received.
Instead of setting the IP address, a connection to any IP address on that host can be received, by specifying the wild

5. Web Server Integration

Compatibility Guide 100

card address. By default, the setting is specified to use the wild card address. When using the wild card address, note
the following points:

• If the specified host name cannot be resolved in the hosts file or DNS, start the server by using the wild
card address.

• If the specified host name or IP address is a remote host, start the server by using the wild card address.

5. Web Server Integration

Compatibility Guide 101

5.8 Error page customization with the Web server integration functionality

When the client accesses a non-existent resource, and a servlet in which an exception occurred, the Web container returns
an error status code. An error page corresponding to the error status code returned from the Web container is displayed
in the client. In an application server, instead of the error pages displayed in the client, pages created by the user can be
displayed in the client. This is called error page customization.

This section describes the customization of the error page with the Web server functionality when the system is integrated
with the Web server.

The following table describes the organization of this section.

Table 5‒17: Organization of this section (Error page customization (Web server integration))

Category Title Reference

Description Overview of error page customization 5.8.1

Mechanism of error page customization 5.8.2

Settings Execution environment settings (When the Smart Composer functionality is used) 5.8.3

Execution environment settings (When the Smart Composer functionality is not used) 5.8.4

Notes Precautions related to error page customization 5.8.5

Note:
There is no specific description of Implementation and Operations for this functionality.

Important note

You can use the error page customization with the Web server functionality, only when you use the Web server
integration functionality. You can use the error page customization functionality only in Cosminexus HTTP
Server. You cannot use this functionality in Microsoft IIS.

5.8.1 Overview of error page customization
The methods to customize the error pages include: Customization with the <error-page> tag of web.xml specified
in Servlet specifications and customization with the Web server functionality. However, the error page used when the
redirector returns an error such as when the communication between the redirector and Web container fails cannot
be customized with the method of using the <error-page> tag of web.xml. Use the Web server functionality to
customize the error page when the redirector returns an error. The following table describes the error locations and the
corresponding error page customization methods:

Table 5‒18: Error locations and the corresponding error page customization methods

Error location Customization method

Method of using the Web server functionality Method of using the <error-page> tag
of web.xml

Web container Y Y

Redirector Y --

5. Web Server Integration

Compatibility Guide 102

Legend:
Y: Can be customized
--: Cannot be customized

For details on the conditions for occurrence of an error in the Web container, and the corresponding error status codes,
see Appendix C Error Status Code.

5.8.2 Mechanism of error page customization
This section describes the mechanism of the process of error page customization when an error occurs in the Web
container and when an error occurs in the redirector.

When an error occurs in the Web container
The redirector receives the error status codes sent from the Web container. The redirector assigns creation of error
pages to the Web server, and the Web server sends the user created pages corresponding to the error status codes to
the client. As a result, the pages created by the user are displayed in the client.
The following figure shows the processing flow of error page customization:

Figure 5‒21: Processing of displaying error pages created by the user (when the Web server
functionality is used)

Stages 1 to 3 of the figure are explained below:

1. If the client accesses a non-existent resource, the Web container sends error 404 to the Web server.

2. When the redirector receives error 404, it requests the Web server to generate an error page corresponding to error
404, based on the setting information#.

3. The Web server returns the error page missing.html corresponding to error 404 to the client according to the
setting information#.

When an error occurs in the redirector
If an error occurs in the redirector, the redirector requests the Web server to generate an error page corresponding to
the occurred error, on the basis of the setup information. The Web server sends the user-created page corresponding
to the error status code to the client, based on the setup information#. As a result, the pages created by the user are
displayed in the client.

#
To customize the error pages, you need to specify the relationship between the error status code and the error
page, beforehand.
The following figure shows an overview of the relationship.

5. Web Server Integration

Compatibility Guide 103

Figure 5‒22: Specifying the relationship between the error status code and the error page
(by using the Web server functionality)

When an error occurs, in order to display the error page created by the user instead of the error page displaying
the error status code, you associate the error page created by the user to a specific error status code. When an error
with the applicable error status code occurs, the error page corresponding to the error status code is sent to the
client, on the basis of the information set in the Web server (Cosminexus HTTP Server).

5.8.3 Execution environment settings (When the Smart Composer
functionality is used)

This section describes the settings for the error page customization.

(1) How to set
Define the association between the error status code and the error page in the following files:

• Easy Setup definition file
Specify the error status code that you want to associate with the error page in the worker.worker-
name.delegate_error_code parameter in the <configuration> tag of the logical Web server (web-
server).
For details on the Easy Setup definition file and the parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

• httpsd.conf
Associate the error status code and the file name of the corresponding error page in the ErrorDocument directive.
For details on httpsd.conf (HTTP Server definition file), see the uCosminexus Application Server HTTP Server
User Guide.

(a) Precautions when specifying the error status codes
Take the following precautions when specifying the error status codes in the Easy Setup definition file:

• Specify the error status code for each worker.

• The worker type that can specify the error status code is only ajp13. If the worker type is lb (settings specified for
load balancing based on the round-robin format) and post_size_lb (settings specified for distributing requests
based on the POST data size), the specified contents are ignored.

• The specifiable error status code is listed in the following table. The error page cannot be associated with error status
codes other than the followings:

5. Web Server Integration

Compatibility Guide 104

Table 5‒19: Error status codes that can be associated with error pages

Error status codes Explanation

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

422 Unprocessible Entity

423 Locked

424 Failed Dependency

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

507 Insufficient Storage

510 Not Extended

(b) Precautions for specifying the ErrorDocument directive
Take the following precautions when you specify the ErrorDocument directive in httpsd.conf:

• When using the local URL in the ErrorDocument directive, specify a URL that the redirector will not forward
to the Web container.

5. Web Server Integration

Compatibility Guide 105

• When the URL pattern /* is mapped to a worker in the redirector settings such as for using the root context, all the
requests are forwarded to the Web container. Therefore, in the ErrorDocument directive, set the resources on the Web
container by using the complete URL.
The following is the example settings for displaying error404.jsp under the root context on the Web container
when the root context is used and the error status code 404 occurs. The hostA is the host operating the Web server.

Example:
ErrorDocument 404 http://hostA/error404.jsp

Also, when the Web container is not running, the redirector returns an error with error status code 500. Therefore,
for customizing the error page when the Web container is not running, you must specify other Web server resources
for the error status code 500 using the complete URL, in the ErrorDocument directive.

(2) Example settings
The following example describes the error page customization:

Example of Easy Setup definition file

...
<param>
 <param-name>worker.list</param-name>
 <param-value>worker1</param-value>
</param>
<param>
 <param-name>worker.worker1.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker1.host</param-name>
 <param-value>host1</param-value>
</param>
<param>
 <param-name>worker.worker1.delegate_error_code</param-name>
 <param-value>404</param-value>
</param>
...

Define the error status code '404(Not Found)' in the worker.worker-
name.delegate_error_code parameter.

Example of httpsd.conf

Description of httpsd.conf#
...
ErrorDocument 404 /missing.html

The error status code and the file name of the corresponding error page are associated. When an error with error status
code '404(Not Found)' occurs, the missing.html file is displayed.
For details on the ErrorDocument directive, see the uCosminexus Application Server HTTP Server User Guide.

5. Web Server Integration

Compatibility Guide 106

5.8.4 Execution environment settings (When the Smart Composer
functionality is not used)

This section describes the settings for error page customization.

(1) How to set
Define the association between the error status code and error page in the following files:

• workers.properties
Specify the error status code that you want associated with the error page in the worker.worker-
name.delegate_error_code key.
For details on workers.properties (worker definition file), see 14.2.4 workers.properties (Worker
definition file).

• httpsd.conf
Associate the error status code and the file name of the corresponding error page in the ErrorDocument directive.
For details on httpsd.conf (HTTP Server definition file), see the uCosminexus Application Server HTTP Server
User Guide.

Precautions related to workers.properties settings
• Specify the error status code for each worker.

• The worker type that can specify the error status code is only ajp13. If the worker type is lb (settings specified
for load balancing based on the round-robin format), the specified contents are ignored.

• The specifiable error status code is listed in the following table. The error page cannot be associated with error
status codes other than the followings:

Table 5‒20: Error status codes that can be associated with error pages

Error status codes Explanation

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

5. Web Server Integration

Compatibility Guide 107

Error status codes Explanation

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

422 Unprocessible Entity

423 Locked

424 Failed Dependency

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

507 Insufficient Storage

510 Not Extended

Precautions for specifying the ErrorDocument directive
• When using the local URL in the ErrorDocument directive, specify a URL that the redirector will not forward to

the Web Container.

• When the URL pattern /* is mapped to a worker in the redirector settings such as for using the root context, all
the requests are forwarded to the Web container. Therefore, in the ErrorDocument directive, set the resources
on the Web container by using the complete URL.
The following example describes the settings for displaying error404.jsp under the root context on the Web
container when the root context is used and the error status code 404 occurs. The hostA is the host operating
the Web server.
ErrorDocument 404 http://hostA/error404.jsp
Also, when the Web container is not running, the redirector returns an error with error status code 500. Therefore,
for customizing the error page when the Web container is not running, you must specify other Web server
resources for the error status code 500 using the complete URL, in the ErrorDocument directive.

(2) Example settings
The following is an example of error page customization:

Example of workers.properties

Description of worker definition file
worker.list=worker1

worker.worker1.type=ajp13
worker.worker1.host=host1
worker.worker1.port=8007
worker.worker1.delegate_error_code=404

Define the error status code '404(Not Found)' in the worker.worker-name.delegate_error_code key.

5. Web Server Integration

Compatibility Guide 108

Example of httpsd.conf

Description of httpsd.conf#
...
ErrorDocument 404 /missing.html

The error status code and the file name of the corresponding error page are associated. When an error with error status
code '404(Not Found)' occurs, the missing.html file is displayed.
For details on the ErrorDocument directive, see the uCosminexus Application Server HTTP Server User Guide.

5.8.5 Precautions related to error page customization
Note the following points when customizing the error pages with the Web server functionality, in the case of using the
Web server integration functionality:

• You can use the error page customization functionality only in Cosminexus HTTP Server. For this reason,
when integrating with the Microsoft IIS, even if error page customization is set in workers.properties, it
becomes invalid.

• When the Web application supports the Servlet 2.3 specifications and you use the error page customization
functionality with the <error-page> tag of web.xml specified in the Servlet specifications, the Web container
returns the result of access to the pages described in the <error-page> tag, as the status code. Therefore, if an
error does not occur in access to the pages described in the <error-page> tag , this functionality does not work.

• If the settings for error page customization are specified only in either the worker definition (the
workers.properties or Easy Setup definition file) or httpsd.conf, then even if the specified error
occurs in the Web container, the file set by the user is not displayed.
If the error status code entrusted with the generation of the error page is only specified in the worker definition (the
ErrorDocument directive of httpsd.conf is not defined), the error page returned when the error with that error
status code occurs is the page that is automatically generated by Cosminexus HTTP Server.

5. Web Server Integration

Compatibility Guide 109

5.9 Viewing the top page by specifying the domain name

When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed. You can use this functionality only when you
use the Web server integration functionality. Files such as index.html and index.jsp are called welcome files.

This section describes the viewing of the top page by specifying the domain name.

The following table describes the organization of this section.

Table 5‒21: Organization of this section (Viewing the top page by specifying the domain name)

Category Title Reference

Description Viewing the top page by specifying the domain name 5.9.1

Settings Execution environment settings (When the Smart Composer functionality is used) 5.9.2

Execution environment settings (When the Smart Composer functionality is not used) 5.9.3

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.9.1 Viewing the top page by specifying the domain name
To display the top page only by specifying the domain name, you need to deploy the welcome file in the root context.
Root context refers to a context whose context root# is a null character (name is not specified in the context root).

#
The unit of management that compile the Web applications is called a context. The root path of this context is called
a context root. When accessing a Web application, specify the context root on the URL.
The following figure explains the context and the context root:

Figure 5‒23: Context and context root

The following settings are required to display the top page only by specifying the domain name:

• Settings of the redirector
The root context is accessed via the Web server. Consequently, you need to specify the settings in the URL
mapping definition of the redirector, so that the corresponding URL is redirected. Specify the settings in either
mod_jk.conf (in Cosminexus HTTP Server) or uriworkermap.properties (in Microsoft IIS).

• Settings of the application
Specify a null character in the context root of the imported J2EE application.

5. Web Server Integration

Compatibility Guide 110

(1) Notes
Note the following points when using the 'Viewing the top page by specifying the domain name' functionality:

• Accessed hierarchy when the context root and the root context have the same hierarchies
When the context root and the root context have the same hierarchies, the hierarchy of the context root is accessed.
An example is shown below.

Example:
In this example, the context root of Web application A is example, while the context root of Web application
B is a null character, and both the Web applications have the hierarchy called example.

Figure 5‒24: Example of accessed hierarchy when the context root and root context have
the same hierarchies

In this case, when http://host-name/example is accessed, example/index.jsp of Web application A
that has a context root is executed.
If, however, the directory contains forward and include, and for example forward in the directory is
accessed, URL is forwarded to the index.jsp of the root context.

• Configuration in the Web application
You cannot use ejb and web at the beginning of the URL.

Examples of URLs in which you cannot use the ejb and web at the beginning:
http://host-name:port-number/ejb/
http://host-name:port-number/web/

For this reason, do not configure a Web application to be deployed as the root context, so that ejb or web is at
the beginning.

• How to display in a message text
In the messages output to the console and log files, the context root is displayed as a null character.

5.9.2 Execution environment settings (When the Smart Composer
functionality is used)

This section describes the settings for viewing the top page by specifying the domain name.

When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed.

5. Web Server Integration

Compatibility Guide 111

(1) How to set
To view the top page by specifying the domain name:

1. Specify the root context.
The root context is a context in which the name is not specified for the context root. The specification of the root
context differs according to the operation mode.
For defining the context root for the J2EE application, see 9.11.1 Defining the context root of a J2EE application in
the uCosminexus Application Server Application Setup Guide.

2. Specify distribution of requests to the root context in the redirector.
Specify the distribution of requests to the root context in the Easy Setup definition file.
For details about the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(2) Example settings
The following is an example of settings for distributing requests to the root context.

To view the top page of a Web application by specifying only the domain name in the URL, specify settings in the URL
mapping definition of the redirector in such a way so that the requests are distributed to the root context. For example,
to distribute root context to worker1 and /examples to worker2, specify as follows:

Example of Easy Setup definition file

...
<param>
 <param-name>JkMount</param-name>
 <param-value>/* worker1</param-value>
 <param-value>/examples/* worker2</param-value>
</param>
...

5.9.3 Execution environment settings (When the Smart Composer
functionality is not used)

This section describes the settings for viewing the top page by specifying the domain name.

When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed.

(1) How to set
To view the top page by specifying the domain name:

1. Specify the root context.
The root context is a context in which the name is not specified for the context root. The specification of the root
context differs according to the operation mode.
Use the server management commands to specify the root context when you define the J2EE application properties.
To set the root context as the context root, specify a null character. For defining the context root for the J2EE

5. Web Server Integration

Compatibility Guide 112

application, see 9.11.1 Defining the context root of a J2EE application in the uCosminexus Application Server
Application Setup Guide.

2. Specify distribution of requests to the root context in the redirector.
Specify the distribution of requests to the root context in mod_jk.conf when using Cosminexus HTTP Server as
the Web server and in uriworkermap.properties when using Microsoft IIS as the Web server.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf
(Redirector action definition file for Cosminexus HTTP Server).
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 14.2.3
uriworkermap.properties (Mapping definition file for Microsoft IIS).

(2) Example settings
An example of settings for distributing requests to the root context is as follows.

To view the top page of a Web application by specifying only the domain name in the URL, specify settings in the URL
mapping definition of the redirector in such a way so that the requests are distributed to the root context. For example,
to distribute root context to worker1 and /examples to worker2, specify as follows:

Example of mod_jk.conf (in Cosminexus HTTP Server)

JkMount /* worker1
JkMount /examples/* worker2

Example of uriworkermap.properties (In Microsoft IIS)

/*=worker1
/examples/*=worker2

5. Web Server Integration

Compatibility Guide 113

5.10 Notification of gateway information to a Web container

This section describes the reporting of the gateway information to a Web container.

This functionality notifies a Web container of gateway information so that the Web container can properly redirect to a
welcome file or Form authentication window.

The following table describes the organization of this section.

Table 5‒22: Organization of this section (Reporting the gateway information to a Web Container)

Category Title Reference

Description Gateway specification functionality 5.10.1

Settings Execution environment settings (When the Smart Composer functionality is used) 5.10.2

Execution environment settings (When the Smart Composer functionality is not used) 5.10.3

Notes Precautions related to reporting the gateway information to a Web Container 5.10.4

Note:
There is no specific description of Implementation and Operations for this functionality.

5.10.1 Gateway specification functionality
If a gateway such as an SSL accelerator or a load balancer is placed between a client and a Web server, when the Web
container automatically redirects to a welcome file or the Form authentication window, the Web container may not
properly create a forwarding URL because the container cannot acquire the information about the gateway.

To avoid this problem, you can use the gateway specification functionality. This functionality notifies a Web container of
gateway information so that the Web container can properly redirect to a welcome file or Form authentication window.

The gateway specification functionality is used in the following case:

• When an SSL accelerator is placed between a client and Web server:
Even if a client accesses an SSL accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which
causes the Web container to assume that the access uses HTTP. For this reason, HTTP is used for the URL scheme
for the welcome file or Form authentication window that is the redirection destination.
In this situation, by using the gateway specification function to specify that the scheme be always considered as
HTTPS, you can ensure that accesses are properly redirected.

• When a request without a Host header needs to be redirected away from the Web server that received
the request:
When redirecting a request without a Host header, the host name and the port number of the redirection destination
URL will be the host name and the port number of the Web server that receives the request.
Use the gateway specification functionality when the host name and port number of the URL accessed by the client
is different from the Web server that receives the request, such as when a load balancer is deployed before the Web
server. As a result, the host name and port number accessed from the client are specified, so the request can be
redirected properly.

Note that in the case of Web server integration, when accessing a redirector via multiple different routes (such as when
HTTP requests are transferred to the Web container from multiple gateways), the gateway specification functionality
cannot be used. To use the gateway specification functionality in the case of Web server integration, use a configuration
in which there is one access route to the Web Container.

5. Web Server Integration

Compatibility Guide 114

5.10.2 Execution environment settings (When the Smart Composer
functionality is used)

This section describes the settings to use the gateway specification functionality.

When a gateway such as an SSL accelerator or load balancer is placed between a client and a Web server, you can use
the gateway specification functionality to report the gateway information to the Web container and can properly redirect
the access to the top page of the Web application or Form authentication window.

(1) How to set
To use the gateway specification functionality:

1. Specify the gateway host name, port number, and URL scheme for redirect destination for each redirector.

2. Restart the Web server.

Specify the gateway host name, port number, and URL scheme for redirect destination in the Easy Setup definition file.
Specify the following parameters in the <configuration> tag of the logical Web server (web-server):

• Host name: JkGatewayHost
• Port number: JkGatewayPort
• URL scheme for redirect destination: JkGatewayHttpsScheme

For details about the Easy Setup definition file and the parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(2) Example settings
The following figure shows the example settings for the gateway specification functionality:

Figure 5‒25: Example settings for the gateway specification functionality

In this example, an SSL accelerator is placed between the client and Web server. Even if a client accesses an SSL
accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which causes the Web container to assume
that the access uses HTTP. For this reason, HTTP is used for the URL scheme for the top page of the Web application
or Form authentication window that is the redirection destination. In this situation, by using the gateway specification
function to specify that the scheme be always considered as HTTPS, you can ensure that accesses are properly redirected.

An example of the Easy Setup definition file is described below. Specify On in the JkGatewayHttpsScheme
parameter so that the URL scheme for redirect destination is always considered to be HTTPS.

5. Web Server Integration

Compatibility Guide 115

Example of Easy Setup definition file

...
<param>
 <param-name>JkGatewayHost</param-name>
 <param-value>host1</param-value>
</param>
<param>
 <param-name>JkGatewayPort</param-name>
 <param-value>4443</param-value>
</param>
<param>
 <param-name>JkGatewayHttpsScheme</param-name>
 <param-value>On</param-value>
</param>
...

5.10.3 Execution environment settings (When the Smart Composer
functionality is not used)

This section describes the settings to use the gateway specification functionality.

When a gateway such as an SSL accelerator or load balancer is placed between a client and a Web server, you can use
the gateway specification functionality to report the gateway information to the Web Container and can properly redirect
the access to the top page of the Web application or Form authentication window.

(1) How to set
To use the gateway specification functionality:

1. Specify the gateway host name, port number, and URL scheme for redirect destination for each redirector.

2. Restart the Web server.

Specify the gateway host name, port number, and URL scheme for redirect destination in mod_jk.conf when using
Cosminexus HTTP Server as the Web server and in isapi_redirect.conf when using Microsoft IIS as the Web
server. The keys specified are as follows:

For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 14.2.2 mod_jk.conf (Redirector
action definition file for Cosminexus HTTP Server).

For details on isapi_redirect.conf (redirector operation definition file for Microsoft IIS), see 14.2.1
isapi_redirect.conf (Redirector action definition file for Microsoft IIS).

• In mod_jk.conf
Host name: JkGatewayHost key
Port number: JkGatewayPort key
URL scheme for redirect destination: JkGatewayHttpsScheme key

• In isapi_redirect.conf
Host name: gateway_host key
Port number: gateway_port key

5. Web Server Integration

Compatibility Guide 116

URL scheme for redirect destination: gateway_https_scheme key

(2) Example settings
The following figure shows the example settings for the gateway specification functionality:

Figure 5‒26: Example settings for the gateway specification functionality

In this example, an SSL accelerator is placed between the client and Web server. Even if a client accesses an SSL
accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which causes the Web container to assume
that the access uses HTTP. For this reason, HTTP is used for the URL scheme for the top page of the Web application
or Form authentication window that is the redirection destination. In this situation, by using the gateway specification
function to specify that the scheme be always considered as HTTPS, you can ensure that accesses are properly redirected.

Examples of the mod_jk.conf and isapi_redirect.conf files are shown below. Specify On in the
JkGatewayHttpsScheme key of mod_jk.conf and true in the gateway_https_scheme key of
isapi_redirect.conf so that the URL scheme for redirect destination is always considered to be HTTPS.

Example of mod_jk.conf (in Cosminexus HTTP Server)
JkGatewayHost host1
JkGatewayPort 4443
JkGatewayHttpsScheme On

Example of isapi_redirect.conf (In Microsoft IIS)
gateway_host=host1
gateway_port=4443
gateway_https_scheme=true

5.10.4 Precautions related to reporting the gateway information to a Web
Container

The following are cautionary notes on using the gateway specification functionality:

Specifying the host name and port number of an URL where an access is redirected:
A browser usually sends a request with the Host header appended, so it is not necessary to specify the host name or
port number for an URL where access is to be redirected.
Note that you can check whether or not the request has the Host header by calling the getHeader method of the
javax.servlet.http.HttpServletRequest class, with the Host argument specified.

5. Web Server Integration

Compatibility Guide 117

Servlet API behavior:
Using the gateway specification functionality causes some servlet API functions to behave differently. Take care
when using API functions with a Web application.
When you use the gateway specification functionality, the behavior of some servlet API functions changes. The
following describes the precautions on servlet APIs when using the gateway specification functionality for each
method to be used:

• The sendRedirect method of the javax.servlet.http.HttpServletResponse class
When you specify a relative URL for the argument, and if the request does not have the Host header, the host name
and port number of the URL of the redirection destination are the values specified by the gateway specification
functionality. When you specify a relative URL for the argument and use the gateway specification functionality
to specify that a scheme is to be considered as https, the scheme of the URL of the redirection destination is
always https.

• The getRequestURL method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that a scheme is to be considered as https, the
return value is always a URL starting with https://.

• The getServerName method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify the host name of the URL of the redirection
destination, and if the request does not have the Host header, the return value is the value you specified.

• The getServerPort method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify the port number of the URL of the redirection
destination, and if the request does not have the Host header, the return value is the value you specified. When
you use the gateway specification functionality to specify the host name of the URL of the redirection destination,
and if the port number is omitted, the return value is 80 when the request scheme is http, and 443 when the
request scheme is https.

• The getScheme method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that the scheme is to be considered as https,
the return value is always https.

• The isSecure method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that the scheme is to be considered as https,
the return value is always true.

• The getAttribute method of the javax.servlet.ServletRequest interface
The following attributes cannot be obtained even if you used the gateway specification functionality to specify
that the scheme is to be considered as https:
- javax.servlet.request.cipher_suite (When Microsoft IIS is used for the Web server, this
attribute cannot be obtained regardless of whether the gateway specification functionality is used.)
- javax.servlet.request.key_size
- javax.servlet.request.X509Certificate

The <transport-guarantee> tag in web.xml:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, a request
to a Web server will be considered to use HTTPS even if the request actually uses HTTP. Note that this prevents an
access from being redirected to an URL that uses HTTPS, even if you specify INTEGRAL or CONFIDENTIAL in
the <transport-guarantee> tag in web.xml.

5. Web Server Integration

Compatibility Guide 118

The Secure attribute for cookies:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, when
a session ID generated by a Web container is returned to the client by the session cookie, the Secure attribute is
appended to the cookie.

Communicating with the Web server without passing the gateway:
When you enable the gateway specification functionality in the redirector, you cannot perform direct HTTP
communication without unless passing through the gateway, such as the SSL accelerator and load balancer, in the
Web server.

5. Web Server Integration

Compatibility Guide 119

5.11 Controlling the number of concurrently executing threads in the Web
container

This section describes the settings for controlling the number of concurrently executing threads in the Web Container.

The following table describes the organization of this section.

Table 5‒23: Organization of this section (Controlling the number of concurrently executing threads
in the Web Container)

Category Title Reference

Description Mechanism for controlling the number of concurrently executing threads (Web container) 5.11.1

Settings Execution environment settings (J2EE server settings) 5.11.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.11.1 Mechanism for controlling the number of concurrently executing
threads (Web container)

The following figure shows the mechanism of controlling the number of concurrently executing threads in the
Web container:

Figure 5‒27: Controlling the number of concurrently executing threads in the Web container

For example, if two Web applications are deployed on the Web container, and 5 is set as the number of concurrently
executing threads, the number of threads that you can concurrently execute in two Web applications will be 5.

Even when the access is centralized in one of the multiple Web applications deployed on the Web container, by setting
the number of concurrently executing threads in the Web container, you can assign the threads to the Web application in
which the access is centralized. The following figure shows this mechanism:

5. Web Server Integration

Compatibility Guide 120

Figure 5‒28: Handling of threads when the access is centralized (For Web containers)

As shown in the figure, when two Web applications are deployed on the Web container and 5 is set as the number of
concurrently executing threads, all the five threads are assigned to the Web application 1 if the requests are concentrated
in Web application 1.

On the other hand, the requests for the Web application 2 are accumulated in the pending queue of the Web container until
the request processing of the Web application 1 is complete. Note that the requests accumulated in the pending queue of
the Web container are executed in a sequence, after the request processing is complete.

5.11.2 Execution environment settings (J2EE server settings)
Implement the J2EE server settings in the Easy Setup definition file. To define the settings for controlling the
number of concurrently executing threads in the Web container, specify one of the following parameters in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

• webserver.connector.ajp13.max_threads
Set the maximum number of concurrently executing threads in the entire Web container. Specify this parameter in
the case of Web server integration.

• webserver.connector.inprocess_http.max_execute_threads
Set the maximum number of concurrently executing threads in the entire Web container. Specify this parameter when
using the in-process HTTP server.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

5. Web Server Integration

Compatibility Guide 121

5.12 Objects for communication with redirector

The Web container secures and releases the Explicit memory block area. The objects for communication used for
communication between a Web container and a redirector are usually reused as a permanent connection, and retained
when the Web server is being started.

If the connection is disconnected or reconnected due to the occurrence of failure between the Web container and
the redirector, the objects for communication are destroyed and regenerated. At that time, the destroyed objects for
communication remain in the Tenured area.

To prevent this, on a J2EE server, place the objects for communication between a Web container and a redirector in the
Explicit heap and thus prevent unnecessary objects from remaining in the Tenured area and inhibit a Full GC.

This section describes the flow of placing Explicit memory blocks corresponding to the timing of establishing and
disconnecting communication.

When communication is established
When connection is established, one Explicit memory block is created for one connection. The objects for
communication with the redirector are placed in the created Explicit memory block.

When communication is disconnected
When communication is disconnected, release of one Explicit memory block is reserved for each object, for
communication with the redirector placed in the Explicit memory block.
The release is reserved immediately after communication is disconnected. The Explicit memory blocks reserved for
release are actually released when the copy GC or Full GC is executed after that. At that time, all the areas reserved
for release, are released.

5. Web Server Integration

Compatibility Guide 122

5.13 Explicit heap tuning

This section describes about the Explicit heap tuning.

5.13.1 How to estimate the memory size of Explicit heap (Estimating
memory size used in J2EE server)

The settings to use the Explicit Memory Management functionality are required as a prerequisite for tuning Explicit
heap. The Explicit Memory Management functionality is enabled when -XX:+HitachiUseExplicitMemory
is specified as the start option of JavaVM. In J2EE servers, there are default settings to use the Explicit Memory
Management functionality. Also, the objects responsible for increasing the memory size of the Tenured area are set to be
allocated in Explicit heap. Therefore, always estimate the memory size of Explicit heap required for the objects allocated
by J2EE servers.

If the memory size of Explicit heap is not estimated properly, the Explicit Memory Management functionality is
not effective.

In a J2EE server, deploy the following objects that cause increase in the memory size of the Tenured area, in Explicit heap:

• Object for communicating with redirector

• Object related to the HTTP session

You can calculate the memory size of Explicit heap used by the object for communicating with redirector, from the
setup value of the definition file. For details about how to estimate, see 5.13.2 Memory size used by the object for
communicating with redirector.

The memory size of Explicit heap used by the object related to HTTP session is actually estimated after acquiring
information by running an application. For details on how to estimate the memory size, see 7.11.2 Memory size used by
the object related to the HTTP session in the manual uCosminexus Application Server System Design Guide.

As a result of estimating the memory size of Explicit heap, if the memory size of Explicit heap used by the
object related to the HTTP session is extremely large, correct the application design by referencing Appendix
A Efficient Usage of the Explicit Heap Used in an HTTP Session in the manual uCosminexus Application
Server System Design Guide. When estimating the HTTP session in V9 compatibility mode, specify false for
the ejbserver.server.eheap.ajp13.enabled user property of the J2EE server, so that the object for
communication with the redirector is not placed in the Explicit heap.

5.13.2 Memory size used by the object for communicating with redirector
The memory size of Explicit heap used by the object for communicating with redirector is estimated by the
following formula:

Memory-size-used-by-the-object-for-communicating-with-redirector
=memory-size-used-in-one-connection#×number-of-connections-with-the-redirect
or

5. Web Server Integration

Compatibility Guide 123

#
The memory size used in one connection differs depending on the use of the automatic allocation functionality of the
Explicit Memory Management functionality. The following is the memory size used in one connection depending
on the use of the automatic allocation functionality of the Explicit Memory Management functionality.

Table 5‒24: Memory size used in one connection depending on the use of the automatic
allocation functionality of the Explicit Memory Management functionality

Item
number

Whether the automatic allocation functionality of the
Explicit Memory Management functionality is used

Memory size used in one connection

1 Y 144 kilobytes

2 -- 128 kilobytes

Legend:
Y: Automatic allocation functionality of the Explicit Memory Management functionality is used.
--: Automatic allocation functionality of the Explicit Memory Management functionality is not used.

Use the maximum connections setup in the Web server as number-of-connections-with-the-redirector when system
configuration of the Web server and Web container is arranged in a 1-to-1 ratio.

Location for setting maximum connections differs depending on the Web server and the type of the OS used. The
following table describes the setup locations:

Table 5‒25: Setup locations of maximum connections

Web server OS Setup location

Cosminexus HTTP Server Windows ThreadsPerChild directive of httpsd.conf (Cosminexus HTTP Server
definition file)

UNIX MaxClients directive of httpsd.conf (Cosminexus HTTP Server
definition file)

Microsoft IIS Windows 'Maximum connections' set in the <performance> tag of the Web
site property.

5.13.3 How to estimate using statistical information
You can use the statistical information to check the actual usage of Explicit heap with a J2EE server after J2EE server
starts operating and for implementing the J2EE server tests. This section describes the procedure for checking the usage
of Explicit heap using statistical information.

For details about the output contents of the statistical information and the settings to output the statistical information,
and output destination of the statistics file, see 3.3 Statistics File Output Functionality in the uCosminexus Application
Server Operation, Monitoring, and Linkage Guide.

(1) Concept of estimations using statistical information
When estimating using statistical information, the memory size of the Explicit heap area required in the system is
as follows:

1. Memory size of the Explicit heap area used in HTTP session

2. Memory size of the Explicit heap area used in container excluding the area mentioned in point 1.

5. Web Server Integration

Compatibility Guide 124

3. Memory size of the Explicit heap area used in applications and JavaVM

4. Memory size (size-of-the-Survivor-area-of-Java-heap ×2) of the Explicit heap area used to manage Explicit memory
block by JavaVM

You can confirm the memory size of points 1 to 3 from statistical information. In point 4, you can use the memory
size of size-of-the-Survivor-area-of-Java-heap×2 when the automatic release function of Explicit Memory Management
is enabled.

The following table describes the examples using the Explicit heap area mentioned in the points 1 to 3. The points 1 to
3 correspond to the item numbers 1 to 3 in the table:

Table 5‒26: Concrete example of items using the Explicit heap area

No. Explicit heap area Concrete example of using the Explicit heap area

1 The Explicit heap area used in a
HTTP session

HTTP session

2 The Explicit heap area used in a container • Objects used for communicating with the redirector
• Objects used for managing HTTP sessions

3 The Explicit heap area used in
applications and JavaVM

• Application
• JavaVM

(2) Precautions when acquiring statistical information used in estimation
Acquire the statistical information used for estimations in the actual environment or an environment same as the
actual environment.

When the following items differ from the actual environment, you cannot estimate the appropriate memory size using
the statistical information:

• Properties set up in each definition file and values specified in options

• Number of Web applications registered on a server

• Number of connections with the redirector

• Size of the data processed by business applications

• Data processed at regular intervals

Furthermore, specify an option to set a maximum value for the size of the Explicit heap area to avoid completely used
status of the Explicit heap area when acquiring the statistical information for estimation.

When you acquire statistical information in a status where maximum size of the Explicit heap area is insufficient, the
Explicit heap area would be in a completely used state. You cannot estimate properly if the statistical information is
acquired in a state whereby the Explicit area is completed used. You can confirm whether the Explicit heap area is in a
completed used status by checking that the value of EHeapSize.HighWaterMark of statistical information is same
as the value of maximum size of the Explicit heap area. The Explicit heap area is in completed used status when the
value of EHeapSize.HighWaterMark of statistical information is same as the value of maximum size of the Explicit
heap area.

(3) How to estimate
The following points describe how to estimate based on the statistical information:

5. Web Server Integration

Compatibility Guide 125

(a) Memory size of the Explicit heap area used by HTTP session
To calculate the memory size used by the HTTP session, you can use the format for calculating the memory size of the
Explicit heap used by the HTTP session described in 7.11.2 Memory size used by the object related to the HTTP session
in the manual uCosminexus Application Server System Design Guide. Here, you can confirm the "Memory size used on
one session" included in formula from the statistical information.

Memory size used in one session corresponds to the "Maximum size of Explicit memory block" output to statistical
information. In the "Maximum size of Explicit memory block", the size of maximum items used is output from the
Explicit memory block released in the statistical information collection interval. Therefore, round-out in unit of 64
kilobytes and estimate the Explicit heap. Additionally, when using the automatic allocation functionality of the Explicit
Memory Management functionality, add 16 kilobytes, and then estimate the Explicit heap.

When estimating, please see the following values. Also, the number of sessions required in the system correspond to
"Number of Explicit memory blocks":

• Maximum size of Explicit memory blocks acquired in HTTP session (Value
of HTTPSessionEMemoryBlockMaxSize.HighWaterMark)

• Number of Explicit memory blocks acquired in HTTP session (Value
of HTTPSessionEMemoryBlockCount.HighWaterMark)

(b) Memory size of the Explicit heap area used in container
The memory size of the Explicit heap area used in the container corresponds to "Explicit heap size used in container"
of statistical information. Use the maximum value (value of ContainerEHeapSize.HighWaterMark) from the
acquired value for the statistical information used for estimation.

(c) Memory size of the Explicit heap area used in applications and JavaVM
The memory size of the Explicit heap area used in applications and JavaVM corresponds to
"Explicit heap size used in applications" value of statistical information. Use the maximum value
(ApplicationEHeapSize.HighWaterMark) from the acquired value for the statistical information used
for estimation.

(4) Procedure to confirm the statistical information
This point describes the procedure to confirm the statistical information. This point also describes the confirmation
procedures with estimation formula of statistical information in (3) as an example. For details about the output contents
of the statistical information file, see 3.3 Statistics File Output Functionality in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide.

Estimation formula

memory-size-of-the-required-Explicit-heap-area
=(value-where-HTTPSessionEMemoryBlockMaxSize.HighWaterMark-is-rounded-out-in
-64-kilobytes-unit
×HTTPSessionEMemoryBlockCount.HighWaterMark)
+ ContainerEHeapSize.HighWaterMark
+ ApplicationEHeapSize.HighWaterMark
+ size-of-the-Survivor-area-of-Java-heap
×2(only-when-explicit-memory-management-automatic-release-function-is-enable
d)

The following points describe how to confirm the respective values:

5. Web Server Integration

Compatibility Guide 126

(a) Memory size of the Explicit heap area used by HTTP session
Confirm the memory size of the Explicit heap area used by
HTTP session from the HTTPSessionEMemoryBlockMaxSize.HighWaterMark and
HTTPSessionEMemoryBlockCount.HighWaterMark values output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
by HTTP sessions:

Figure 5‒29: Example to output statistical information of memory size of the Explicit heap area used
by HTTP sessions

The maximum value of HTTPSessionEMemoryBlockMaxSize.HighWaterMark is 410472 bytes (400.85
kilobytes) acquired at 11:00:31 in the 1. in above figure.

If you round-out this value in unit of 64 kilobytes, the value would be 448 kilobytes. The maximum value of
HTTPSessionEMemoryBlockCount.HighWaterMark is 57 acquired at 11:04:31 in the 2. in above figure.

The value acquired by multiplying these two values would be the memory size of the Explicit heap area used by
HTTP session.

(b) Memory size of the Explicit heap area used in container
Confirm the memory size of the Explicit heap area used by the container from
ContainerEHeapSize.HighWaterMark value output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
in container:

5. Web Server Integration

Compatibility Guide 127

Figure 5‒30: Example to output statistical information of memory size of the Explicit heap area used
in container

The maximum value of ContainerEHeapSize.HighWaterMark is 6815744 bytes (6656 kilobytes) acquired
after 10:50:31 in the 1. in above figure.

This is the memory size of the Explicit heap area used in container.

(c) Memory size of the Explicit heap area used by applications and JavaVM
Confirm the memory size of the Explicit heap area used by applications and JavaVM from
ApplicationEHeapSize.HighWaterMark value output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
by applications and JavaVM:

5. Web Server Integration

Compatibility Guide 128

Figure 5‒31: Example to output statistical information of memory size of the Explicit heap area used
by applications and JavaVM

The maximum value of ApplicationEHeapSize.HighWaterMark is 2424832 bytes (2368 kilobytes) acquired
at 10:53:31 in the 1. in above figure.

(d) Memory size of the required Explicit heap area
The following is the memory size of the required Explicit heap area acquired from the statistical information described
in (a) to (c):

448 (kilobytes)× 57 + 6656 (kilobytes) + 2368 (kilobytes)=34560 (kilobytes)
 34 megabytes

When the auto-release functionality of Explicit Memory Management is enabled, a value with "Survivor-area-size-of-
Java-heap × 2" added becomes the final estimated size of the Explicit heap area.

5. Web Server Integration

Compatibility Guide 129

6 In-Process HTTP Server

This chapter describes the settings for the in-process HTTP server functionality.

Compatibility Guide 130

6.1 Organization of this chapter

Application Server provides an in-process HTTP server as Web server functionality. The in-process HTTP server is
Web server functionality provided in the J2EE server processes. Since the J2EE server processing receives the HTTP
request directly without passing through the Web server, you can use the Web server functionality with better processing
performance than during the Web server integration.

The following table lists the functionality and the reference sections corresponding to the functionality of the in-process
HTTP server:

Table 6‒1: Functionality and reference sections corresponding to each functionality of in-process
HTTP server

Functionality Reference

Overview of in-process HTTP server 6.2

Controlling the number of connections from the Web client 6.3

Controlling the number of request processing threads 6.4

Controlling the flow of requests by controlling the number of concurrent connections from the Web client 6.5

Controlling the flow of requests by controlling the number of concurrently executing threads 6.6

Request distribution with the redirector 6.7

Controlling the communication with the Web client by Persistent Connection 6.8

Communication timeout (In-process HTTP server) 6.9

Specifying the IP address (In-process HTTP server) 6.10

Controlling access by limiting the hosts that are allowed access 6.11

Controlling access by limiting the request data size 6.12

Controlling access by limiting the HTTP-enabled methods 6.13

Customizing responses to the Web client using HTTP responses 6.14

Error page customization (in-process HTTP server) 6.15

Notifying the gateway information to the Web container 6.16

Output of log and trace 6.17

URI decode functionality 6.18

Settings for acquiring the in-process HTTP server log 6.19

cjtracesync (synchronize trace file information for in-process HTTP server) 6.20

Precautions when operating SOAP applications 6.21

6. In-Process HTTP Server

Compatibility Guide 131

6.2 Overview of in-process HTTP server

This section provides an overview of the in-process HTTP server.

The following table describes the organization of this section.

Table 6‒2: Organization of this section (Overview of in-process HTTP server)

Category Title Reference

Description Using the in-process HTTP server 6.2.1

Functionality available in the in-process HTTP server 6.2.2

Settings Execution environment settings (J2EE server settings) 6.2.3

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.2.1 Using the in-process HTTP server
The in-process HTTP server is the Web server functionality provided in the J2EE server processes.

As the J2EE server processing receives the HTTP request directly without passing through the Web server, you can use
the Web server functionality with even better processing performance than during the Web server integration. Therefore,
for a system that emphasizes performance, Hitachi recommends that you use the in-process HTTP server.

However, there are comparative differences in the functionality provided in Cosminexus HTTP Server and Microsoft
IIS, you check the differences in the functionality, and then determine whether to use the in-process HTTP server.
Furthermore, you cannot use the in-process HTTP server and the Web server integration functionality simultaneously.
When you design the system, you must choose which functionality you will use, in advance.

To use the in-process HTTP server, the prerequisites are as follows:

• The in-process HTTP server must be deployed within the internal network in failover instead of deploying the server
in DMZ that is accessible from the external networks to which unauthorized access is assumed. In a system accessed
from external networks such as Internet, you must build a system in which a proxy server is deployed on DMZ and
forwarded to the in-process HTTP server within the internal network.

• In the in-process HTTP server, only HTTP is supported. HTTPS is not supported. To use HTTPS, the SSL accelerator
or reverse proxy of Cosminexus HTTP Server is a prerequisite.

• You can use the in-process HTTP server to access only the Web applications deployed on the J2EE server. Note that
you cannot deploy static contents alone, but only when you execute request distribution with the redirector and error
page customization, you can specify static contents that are not included in the Web application.

Take note of the following when using the in-process HTTP server:

• If you stop the J2EE server by executing the cjstopsv command, during the TCP connection
of the Web client and the in-process HTTP server, the J2EE server does not stop, until the
Web client disconnects the TCP connection of the in-process HTTP server or the timeout specified
in the webserver.connector.inprocess_http.persistent_connection.timeout key of
usrconf.properties (user property file for the J2EE server) occurs. If you want to stop the J2EE server
regardless of the disconnection of the TCP connection from the Web client or the timeout occurrence, forcibly stop
the J2EE server by specifying the -f option in the cjstopsv command.

6. In-Process HTTP Server

Compatibility Guide 132

Customize the J2EE server properties to specify the settings for the in-process HTTP server. For details on customizing
the operation settings for the J2EE server, see 6.2.3 Execution environment settings (J2EE server settings).

Tip

The in-process HTTP server is not the default server.

6.2.2 Functionality available in the in-process HTTP server
The following table lists the functionality available in the in-process HTTP server and the reference section of
each functionality:

Table 6‒3: Functionality available in the in-process HTTP server and references

Functionality name Reference

Controlling the number of connections from the Web client 6.3

Controlling the number of request processing threads from the Web client 6.4

Controlling the flow of requests Controlling the number of concurrent connections from the Web client 6.5

Controlling the number of concurrently executing threads# 6.6

Request distribution with the redirector 6.7

Controlling communication with the
Web client

Controlling communication by Persistent Connection 6.8

Communication timeout that can be set in the in-process HTTP server 6.9

IP address specification used in the in-process HTTP server# 6.10

Controlling access from the Web client Limiting the hosts that are allowed access 6.11

Limiting the request data size 6.12

Limiting the HTTP-enabled methods 6.13

Customizing the responses to the
Web client

Customizing the HTTP response header 6.14

Customizing the error page 6.15

Notifying the gateway information to the Web container# 6.16

Output of log and trace 6.17

#
The functionality is not different when the in-process HTTP server is not used (when the Web server integration functionality is used).

6.2.3 Execution environment settings (J2EE server settings)
This section describes how to set up the in-process HTTP server.

To receive HTTP requests by using the Web server functionality provided in the J2EE server processes, the system must
be built with a configuration using the in-process HTTP server functionality.

Procedure:

6. In-Process HTTP Server

Compatibility Guide 133

1. Enabling the in-process HTTP server functionality.
Define the specifications for the in-process HTTP server by specifying true in the
webserver.connector.inprocess_http.enabled parameter in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file. By default, false is specified. For details on the
Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

2. Specify settings for controlling the number of connections from the Web client and controlling the number of request
processing threads.
By adjusting the number of request processing threads according to the performance of the host that operates the
server and the status of access from the client, you can improve the performance of the in-process HTTP server. For
details on settings, see 6.3 Controlling the number of connections from the Web client and 6.4 Controlling the number
of request processing threads.
Note the following when you set up the in-process HTTP server:

• If a large number of requests need to be processed immediately after the server starts, specify a big value as the
number of request processing threads to be created when the server starts.

• Note that if you increase the maximum number of spare threads, you can promptly support sudden increase in
access, but a lot of resources will be consumed.

3. Specify settings for controlling access from the Web client.
By enhancing the security for connections and requests sent from the client, you can prevent unauthorized access and
attacks on the server from outside. For details on settings, see 6.11 Controlling access by limiting the hosts that are
allowed access, 6.12 Controlling access by limiting the request data size, and 6.13 Controlling access by limiting the
HTTP-enabled methods.

4. As and when required, specify settings for the functionality that can be used in the in-process HTTP server.
For details on the functionality available in the in-process HTTP server, see 6.2.2 Functionality available in the
in-process HTTP server.

6. In-Process HTTP Server

Compatibility Guide 134

6.3 Controlling the number of connections from the Web client

By controlling the number of connections and number of request processing threads from the Web client and by
optimizing the number of request processing threads, you can constantly control the load on the J2EE server and maintain
a stable and high throughput. For details on controlling the number of request processing threads, see 6.4 Controlling the
number of request processing threads.

This section describes the controlling of the number of connections from the Web client.

The following table describes the organization of this section.

Table 6‒4: Organization of this section (Controlling the number of connections from the Web client)

Category Title Reference

Description Overview of controlling the number of connections from the Web client 6.3.1

Settings Execution environment settings (J2EE server settings) 6.3.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

In the in-process HTTP server, you can control the number of request processing threads created by the in-process HTTP
server by setting the number of Web clients that can connect simultaneously. Also, by pooling the constant number of
request processing threads that are not running as the spare threads, the processing required for adding and deleting the
request processing threads is restrained to the minimum.

6.3.1 Overview of controlling the number of connections from the Web
client

In the in-process HTTP server, you set the maximum number of Web clients and proxy servers connecting simultaneously
and control the number of request processing threads. The in-process HTTP server creates the request processing threads
for the number of connections from the Web client, and therefore, the maximum number of connections from the
Web client becomes the upper limit for the number of request processing threads that are created by the in-process
HTTP server.

Note that the connection requests from the client are registered in the TCP/IP Listen queue and are passed to the request
processing threads. The connection requests from the client exceeding the upper limit for the number of connections are
accumulated in the Listen queue. When the connection requests from the client accumulated in the Listen queue exceed
the specified maximum value, the client fails to connect to the server.

The following figure shows an overview of controlling the number of connections from the Web client:

6. In-Process HTTP Server

Compatibility Guide 135

Figure 6‒1: Overview of controlling the number of connections from the Web client

6.3.2 Execution environment settings (J2EE server settings)
Specify the definition for controlling the number of connections from the Web client in the <configuration> tag
of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definition in the Easy Setup definition file for controlling the number of connections from
the Web client:

Table 6‒5: Definition in the Easy Setup definition file for controlling the number of connections from
the Web client

Parameter to be specified Setting contents

webserver.connector.inprocess_http.m
ax_connections

Specifies the maximum number of connections with the Web client and proxy server.
The in-process HTTP server creates the request processing threads for the number of
connections from the Web client, and therefore, the value specified here becomes the
upper limit for the number of request processing threads.

webserver.connector.inprocess_http.b
acklog

The HTTP requests exceeding the upper limit for the number of connections from
the Web client are accumulated in the Listen queue. Specify the maximum number of
registrations in the Listen queue in this parameter.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

6. In-Process HTTP Server

Compatibility Guide 136

6.4 Controlling the number of request processing threads

By controlling the number of connections and number of request processing threads from the Web client and by
optimizing the number of request processing threads, you can constantly control the load on the J2EE server and
maintain a stable and high throughput. For details on controlling the number of connections from the Web client, see 6.3
Controlling the number of connections from the Web client.

This section describes the controlling of the number of request processing threads. The following table describes the
organization of this section.

Table 6‒6: Organization of this section (Controlling the number of request processing threads)

Category Title Reference

Description Overview of controlling the number of request processing threads 6.4.1

Settings Execution environment settings (J2EE server settings) 6.4.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.4.1 Overview of controlling the number of request processing threads
After the request processing threads are created when the in-process HTTP server starts, the status of the request
processing threads and the number of threads are monitored periodically. When requests are concentrated in the
in-process HTTP server, the request processing threads are added and the adequate number of spare threads is pooled in
advance. When there are few requests, the extra pooled spare threads will be deleted.

The controlling of the number of request processing threads is executed as follows:

1. When the J2EE server starts, the specified number of request processing threads is created.

2. While the J2EE server is running, the number of request processing threads is monitored.

3. During monitoring, if the number of spare threads is smaller than the specified minimum value, the request processing
threads are added and pooled as the spare threads. Also, if the number of spare threads is greater than the specified
maximum value, the extra spare threads are deleted.
Note that you can also maintain the number of threads created when the J2EE server starts. When maintaining the
number of threads created at startup, if the total number of request processing threads and spare threads is less than
the number of threads created when the Web server starts, even if the number of spare threads exceeds the maximum
value, the spare threads are not deleted. For example, if the number of threads created when the Web server starts is
8 and the maximum number of spare threads is 5, the spare threads are not deleted in the case when the number of
request processing threads is 2 and the number of spare threads is 6.

The transition of the number of request processing threads is explained with the following examples:

• Transition example 1
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Number of registrations in the Listen queue: 100

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 5

6. In-Process HTTP Server

Compatibility Guide 137

• Maximum number of spare threads: 10

• Maintenance of the number of threads created when the J2EE server starts: Disabled

The following figure shows the transition example for the number of request processing threads:

Figure 6‒2: Transition example for the number of request processing threads

Stages 1. to 7. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 4 requests are received, the number of spare threads becomes 4 and since this number is less than the
minimum value, 1 thread is added.

3. When the processing of the 4 requests ends, the number of spare threads becomes 9. Since this number is less
than the maximum value and more than the minimum value, the current state is maintained.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but the maximum
number of connections from the Web client is reached, therefore, the spare threads add only 1 thread.

5. When the processing of 13 requests ends, the number of spare threads exceeds the maximum value, so 4 threads
are deleted.

6. When 7 requests are received, the number of spare threads is less than the minimum value, so 2 threads are added.

7. When the processing of 8 requests ends, the number of spare threads exceeds the maximum value, so 3 threads
are deleted.

• Transition example 2
By setting the maximum number of spare threads equal to the maximum number of connections from the Web client,
you can continue to use the request processing threads created once without deleting them.
The transition example for the number of request processing threads when the maximum number of spare threads is
equal to the maximum number of connections from the Web client is as follows:
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Maximum number of registrations in the Listen queue: 100

6. In-Process HTTP Server

Compatibility Guide 138

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 5

• Maximum number of spare threads: 15

• Maintenance of the number of threads created when the J2EE server starts: Disabled

The following figure shows the transition example for the number of request processing threads, when the maximum
number of spare threads is equal to the maximum number of connections from the Web client:

Figure 6‒3: Transition example for the number of request processing threads when the
maximum number of spare threads is equal to the maximum number of connections
from the Web client

Stages 1. to 7. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 4 requests are received, the number of spare threads becomes 4 and since this number is less than the
minimum value, 1 thread is added.

3. When the processing of the 4 requests ends, the number of spare threads becomes 9. Since this number is less
than the maximum value and more than the minimum value, the current state is maintained.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but so that the total
number of request processing threads does not exceed the maximum number of connections from the Web client,
spare threads add only 1 thread.

5. When the processing of 13 requests ends, the number of spare threads becomes 14, but this number is less than
the maximum value and more than the minimum value, so the current state is maintained.

6. When 7 requests are received, the number of spare threads becomes 7, but this number is less than the maximum
value and more than the minimum value, so the current state is maintained.

7. When the processing of 8 requests ends, the number of spare threads becomes 15, but this number is less than the
maximum value and more than the minimum value, so the current state is maintained.

• Setup example 3

6. In-Process HTTP Server

Compatibility Guide 139

The following is a transition example for the number of request processing threads when the number of threads
created at server startup is maintained:
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Maximum number of registrations in the Listen queue: 100

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 3

• Maximum number of spare threads: 5

• Maintenance of the number of threads created when the J2EE server starts: Enabled

The following figure shows the transition example for the number of request processing threads when the number
of threads created at server startup is maintained:

Figure 6‒4: Transition example for the number of request processing threads when the number
of threads created at J2EE server startup is maintained

Stages 1. to 8. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 6 requests are received, the number of spare threads becomes 2. Since this number is less than the minimum
value, 1 thread is added.

3. When the processing of the 6 requests ends, the number of spare threads becomes 9 and the maximum value is
exceeded, but in order to maintain the number of threads created at server startup, only 1 thread is deleted.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but so that the total
number of request processing threads does not exceed the maximum number of connections from the Web client,
spare threads add only 1 thread.

6. In-Process HTTP Server

Compatibility Guide 140

5. When the processing of 7 requests ends, the number of spare threads becomes 8 and exceeds the maximum value,
so 3 threads are deleted.

6. When 3 requests are received, the number of spare threads becomes 2 and is less than the minimum value, so 1
thread is added.

7. When the processing of 1 request ends, the number of spare threads becomes 4, but this number is less than the
maximum value and more than the minimum value, so the current status is maintained.

8. When the processing of 9 requests ends, the number of spare threads becomes 13. This number is more than the
maximum value, but in order to maintain the number of threads at J2EE server startup, only 5 threads are deleted.

6.4.2 Execution environment settings (J2EE server settings)
Specify the definition for controlling the number of request processing threads in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for controlling the number of request
processing threads:

Table 6‒7: Definitions in the Easy Setup definition file for controlling the number of request
processing threads

Parameter to be specified Setting contents

webserver.connector.inprocess_http.i
nit_threads

Specify the number of request processing threads created when the J2EE server starts.

webserver.connector.inprocess_http.m
in_spare_threads

Specify the minimum number of spare threads. If the number of spare threads is less
than the specified minimum value, the request processing threads are added and are
pooled as the spare threads.

webserver.connector.inprocess_http.m
ax_spare_threads

Specify the maximum number of spare threads. If the number of spare threads is more
than the specified maximum value, the surplus spare threads are deleted. By setting
the maximum number of spare threads equal to the maximum number of connections
from the Web client, you can continue to use the request processing threads created
once without deleting them.

webserver.connector.inprocess_http.k
eep_start_threads

Specify whether or not to maintain the request processing threads created when the
J2EE server starts.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

6. In-Process HTTP Server

Compatibility Guide 141

6.5 Controlling the flow of requests by controlling the number of
concurrent connections from the Web client

This section describes the controlling of the flow of requests by controlling the number of concurrent connections from
the Web client.

The following table describes the organization of this section.

Table 6‒8: Organization of this section (Controlling the flow of requests by controlling the number
of concurrent connections from the Web client)

Category Title Reference

Description Controlling the number of concurrent connections from the Web client 6.5.1

Settings Execution environment settings (J2EE server settings) 6.5.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.5.1 Controlling the number of concurrent connections from the Web
client

In the in-process HTTP server, you control the number of concurrent connections from the Web client by specifying the
maximum number of connections from the Web client along with the number of requests for which connection is rejected.

When the number of connections from the Web client increases or if the load on the J2EE server increases with the effect
of the J2EE applications, the Web client can instantly receive a response by rejecting the receipt of requests from the
Web client and by returning an error immediately. As a result, the load on the J2EE server is controlled constantly and
the response time for the request can be maintained.

The value obtained by subtracting the number of requests for which the connection is rejected from the maximum number
of connections by the Web client is the number of requests for which connection is approved by the Web client.

The following figure shows an overview of controlling the number of concurrent connections from the Web client:

6. In-Process HTTP Server

Compatibility Guide 142

Figure 6‒5: Overview of controlling the number of concurrent connections from the Web client

For example, assuming the maximum number of connections from the Web client is 40 and the number of requests for
which connection is rejected is 1, the number of Web clients that can concurrently process the requests by connecting to
the in-process HTTP server is 39. If the number of threads that are processing the requests becomes 39, the remaining
1 thread continues to return an error for the received requests until the number of request processing threads (under
processing) will reduce. The following figure shows an example of controlling the number of concurrent connections
from the Web client:

Figure 6‒6: Example of controlling the number of concurrent connections from the Web client

By controlling the number of concurrent connections from the Web client, an error with the status code 503 is returned
to the Web client for the request for which connection is rejected. At this time, if you customize the error page returned
to the client, you can customize the response message or redirect to another server.

6. In-Process HTTP Server

Compatibility Guide 143

For details on the settings for customizing the responses to the Web client (in the in-process HTTP server), see
6.14 Customizing responses to the Web client using HTTP responses and 6.15 Error page customization (In-process
HTTP server).

Important note

When displaying a page with a frame or a page with an inserted image, the multiple requests might be received
from the Web client. In this case, the pages displayed by controlling the number of concurrent connections from
the Web client might result in partial errors.

6.5.2 Execution environment settings (J2EE server settings)
To control the number of concurrent connections from the Web client, you must set a J2EE server.

The setting method and example of controlling the number of concurrent connections from the Web client are
described here.

(1) How to set
Specify the definition for controlling the number of concurrent connections from the Web client in the following
parameter in the <configuration> tag of the logical J2EE server (j2ee-server), in the Easy Setup definition file:

webserver.connector.inprocess_http.rejection_threads
Specifies the number of requests for which connection is rejected.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

Important note

When displaying a page with a frame or a page with an image inserted, multiple requests might be received from
the Web client. In this case, the pages displayed by the controlling of the number of concurrent connections from
the Web client might result in partial errors.

(2) Example settings
The example of settings for controlling the number of concurrent connections from the Web client is described here.

The following is an example of settings wherein the upper limit of number of request processing threads is 40 and the
number of request processing threads for which the connection is rejected is 1:

...
<param>
 <param-name>webserver.connector.inprocess_http.max_connections</param-nam
e>
 <param-value>40</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-na
me>
 <param-value>1</param-value>

6. In-Process HTTP Server

Compatibility Guide 144

</param>
...

In this example, the number of Web clients that can process requests concurrently after connection is 39. If the number
of threads that are processing requests reaches 39, the remaining 1 thread keeps returning error to the Web client.

By controlling the number of concurrent connections from the Web client, an error of the status code 503 (Service
Unavailable) is returned to the Web client for the requests for which connection is rejected. At this time if you customize
the error page returned to the client, you can customize the response message or redirect to another server. The following
are the setting examples for each of these cases. For details on customizing the error page, see 6.15 Error page
customization (In-process HTTP server).

• To customize the response message
The following is an example of settings for returning a specific file as the response body to the Web client when the
connection from the Web client is rejected:

...
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-
name>
 <param-value>3</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.list</param-
name>
 <param-value>REJECTION_1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
status</param-name>
 <param-value>503</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
file</param-name>
 <param-value>C:/data/busy.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
file.content_type=text/html; charset</param-name>
 <param-value>ISO-8859-1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
request_url</param-name>
 <param-value>/*</param-value>
</param>
...

In this example, 503 is specified in the error status code, C:/data/busy.html is specified in the corresponding
error page file, 'text/html; charset=ISO-8859-1 (Media-Type is text/html and ISO-8859-1
character set is used)' is specified in the Content-Type header of the response, and /* is specified in the URL
pattern. Therefore, when error status code '503' occurs, regardless of the request URI, the contents of C:/data/
busy.html file are returned as a response.

• To redirect a request to another server

6. In-Process HTTP Server

Compatibility Guide 145

The following is an example of settings for redirecting a request for which connection is rejected to another server:

...
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-
name>
 <param-value>3</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.list</param-
name>
 <param-value>REJECTION_1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
status</param-name>
 <param-value>503</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
redirect_url</param-name>
 <param-value>http://host1/busy.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.
request_url</param-name>
 <param-value>/*</param-value>
</param>
<param>
...

In this example, 503 is specified in error status code, http://host1/busy.html is specified in the
corresponding error page file, and /* is specified in the URL pattern. Therefore, when error status code '503' occurs,
regardless of the request URI, all the requests are redirected to the http://host1/busy.html URL.

6. In-Process HTTP Server

Compatibility Guide 146

6.6 Controlling the flow of requests by controlling the number of
concurrently executing threads

This section describes the controlling the flow of requests by controlling the number of concurrently executing threads.

The following table describes the organization of this section.

Table 6‒9: Organization of this section (Controlling the flow of requests by controlling the number
of concurrently executing threads)

Category Title Reference

Description Overview of controlling the flow of requests by controlling the number of concurrently
executing threads

6.6.1

Settings Execution environment settings (J2EE server settings) 6.6.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.6.1 Overview of controlling the flow of requests by controlling the
number of concurrently executing threads

In the Web container, the servlet requests are processed in multi-threads. At this time, you can set an upper limit on the
number of threads that can be executed concurrently for avoiding the decrease in performance due to slashing. If you set
an appropriate number of threads, you can tune the performance as per the access status.

6.6.2 Execution environment settings (J2EE server settings)
To control the number of concurrently executing threads in the Web container, you must set up a J2EE server.

This section describes the settings for controlling the number of concurrently executing threads in the Web container.

The methods for controlling the number of concurrently executing threads include the controlling in Web container, in
Web application, and in URL group.

(1) Controlling in the Web container
To control the number of concurrently executing threads in the Web container, set the maximum number of threads
that can be executed concurrently in the entire Web container. The number of threads set here is shared in all the Web
applications deployed on the Web container.

Specify the definition for controlling the number of concurrently executing threads in the Web container in the following
parameter within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

webserver.connector.inprocess_http.max_execute_threads
Set the maximum number of threads that you can concurrently execute in the entire Web container.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

6. In-Process HTTP Server

Compatibility Guide 147

(2) Controlling in the Web application
Note that when you control the number of concurrently executing threads in the Web application, you also need to
simultaneously specify the settings to control the number of threads in the Web container.

Specify settings for controlling the number of concurrently executing threads in the Web application using the Easy Setup
definition file and the server management commands. The method of setup is the same as is used for the Web server
integration functionality. For details on how to set the number of concurrently executing threads for each Web application
when the Web server integration functionality is used, see the manual uCosminexus Application Server Web Container
Functionality Guide.

(3) Controlling in the URL group
To control the number of concurrently executing threads in the URL group, you must also specify settings for controlling
the number of concurrently executing threads in the Web application and the settings for controlling the number of
threads in the Web container simultaneously.

Specify settings for controlling the number of concurrently executing threads in the URL group by using the server
management commands. The method of setup is the same as is used for the Web server integration functionality. For
details on how to set the number of concurrently executing threads for each URL group when the Web server integration
functionality is used, see the manual uCosminexus Application Server Web Container Functionality Guide.

6. In-Process HTTP Server

Compatibility Guide 148

6.7 Request distribution with the redirector

This section explains the distribution of requests with the redirector.

In the in-process HTTP server, you can distribute the requests by the URL patterns included in an HTTP request. You
can also customize the responses for the distributed requests and return them to the client.

This section describes the distribution of requests by the URL pattern and the process of customizing the responses. The
section also provides an overview of the settings for request distribution with the redirector.

The following table describes the organization of this section.

Table 6‒10: Organization of this section (Request distribution with the redirector)

Category Title Reference

Description Distributing requests by URL pattern 6.7.1

Response customization 6.7.2

Settings Execution environment settings (J2EE server settings) 6.7.3

Notes Precautions related to request distribution with the redirector 6.7.4

Note:
There is no specific description of Implementation and Operations for this functionality.

6.7.1 Distributing requests by URL pattern
In the in-process HTTP server, of the HTTP requests for the in-process HTTP server, you can distribute and process
requests for a specific URL to a specified Web container. As a result, when the Web application is moved to another J2EE
server due to the reasons such as changes in the system configuration, the request to the old URL can be forwarded to
the new URL.

Also, in the distribution of requests by redirecting to the in-process HTTP server, the requests for specific Web
applications and specific servlets and JSPs in the Web application can be temporarily redirected to another Web server.
In the in-process HTTP server, the requests are redirected regardless of whether the resources for the requested servlets
and JSPs actually exist. The redirection is given a higher priority than the servlets and JSPs. Therefore, when the requests
to the servlets and JSPs match with the redirected URL, the servlets and JSPs are not executed.

6.7.2 Response customization
You can also customize a specific file to return as a response for the requests to a specific URL. If the status code of
the response for the request to a redirected URL is 300 to 307, the response body is auto-generated and the response
is returned to the client. You can also use a specified file as the response body. When you specify the file, specify the
Content-Type header of the response as well.

For details on the status code for which the response is auto-generated and for the settings for request distribution with
the redirector (in the in-process HTTP server), see 6.7.3 Execution environment settings (J2EE server settings).

6. In-Process HTTP Server

Compatibility Guide 149

6.7.3 Execution environment settings (J2EE server settings)
This section describes the settings for distributing requests with the redirector.

(1) Overview
In the in-process HTTP server, you can distribute requests by the URL pattern included in the HTTP request. You can
also customize the response for the distributed request and return a specific file to the client. When the response status
code for the request to a redirected URL is 300, the response body is auto-generated and the response is returned to the
client. Also, you can use a specified file as a response body. When you specify the file, also specify the Content-Type
header of the response.

The auto-generated response body is as follows:

<HTML><HEAD>
<TITLE>Status code and explanation</TITLE>
</HEAD><BODY>
<H1>Status code and explanation</H1>
</BODY></HTML>

The status code for which the response body is auto-generated and the description is as follows:

• 300 Multiple Choices

• 301 Moved Permanently

• 302 Found

• 303 See Other

• 305 Use Proxy

• 307 Temporary Redirect

When the reading of the file used as the response body during request processing fails, if 300 is specified as the status
code, the response body is auto-generated and returned to the client. If 200 is specified as the status code, status 500 error
is returned to the client.

(2) How to set
Specify the definition for distributing requests with the redirector in the <configuration> tag of the logical J2EE
server (j2ee-server), in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for distributing requests with the redirector:

Table 6‒11: Definitions in the Easy Setup definition file for distributing requests with the redirector

Parameter to be specified Setting contents

webserver.connector.inprocess_http.r
edirect.list

Specifies the redirect definition name.

webserver.connector.inprocess_http.r
edirect.redirect-difinition-name.request_url

Specifies the URL of the redirected request as an absolute path beginning with a
forward slash (/).

webserver.connector.inprocess_http.r
edirect.redirect-difinition-
name.redirect_url

Specifies the URL for redirecting the request. Note that when 200 is specified as the
status code, the URL cannot be specified.

6. In-Process HTTP Server

Compatibility Guide 150

Parameter to be specified Setting contents

webserver.connector.inprocess_http.r
edirect.redirect-difinition-name.status

Specifies the response status code used when redirection is executed.

webserver.connector.inprocess_http.r
edirect.redirect-difinition-name.file

Specifies the file to be used as the response body when a specific file is returned to
the client as a response. Note that when 200 is specified as the status code, the file to
be used must be specified.

webserver.connector.inprocess_http.r
edirect.redirect-difinition-
name.file.content_type

Specifies the Content-Type header of the file to be used as the response body when
a specific file is returned as a response to the client.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

Important note

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from
that HTML, the file might not be properly displayed in the browser.

• If the value specified in the redirect URL matches with the value specified for the request URL, note that the
client keeps redirecting the requests.

• When a session is managed by URL rewriting, the session cannot be inherited even if the request is redirected
to the same Web application as the request URL.

(3) Example settings
An example of settings for request distribution with the redirector is as follows:

• Setup example 1
An example of request distribution with the redirector is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.redirect.list</param-nam
e>
 <param-value>REDIRECT_1,REDIRECT_2</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.reque
st_url</param-name>
 <param-value>/index.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.redir
ect_url</param-name>
 <param-value>http://host1/new_dir/index.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.statu
s</param-name>
 <param-value>302</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.reque
st_url</param-name>
 <param-value>/old_dir/*</param-value>

6. In-Process HTTP Server

Compatibility Guide 151

</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.redir
ect_url</param-name>
 <param-value>http://host1/new_dir/</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.statu
s</param-name>
 <param-value>301</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.file<
/param-name>
 <param-value>C:/data/301.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.file.
content_type</param-name>
 <param-value>text/html; charset=ISO-8859-1</param-value>
</param>
...

In this example, REDIRECT_1 and REDIRECT_2 are used as the redirect definition names. In REDIRECT_1, the
request to /index.html is redirected to http://host1/new_dir/index.html with status code '302'. In
REDIRECT_2, the requests to /old_dir/ are redirected under http://host1/new_dir/ with status '301'.
Also, C:/data/301.html is used as the response body and text/html; charset=ISO-8859-1 is used
as the Content-Type header.

• Setup example 2
When a wild card is used as a request URL and a value ending with a forward slash (/) is specified in the redirect
URL, the value set in the Location header of the response becomes 'Value specified in the redirect URL' + 'Actual
path from the wild card of the request URL'.

...
<param>
 <param-name>webserver.connector.inprocess_http.redirect.list</param-nam
e>
 <param-value>REDIRECT_3</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_3.reque
st_url</param-name>
 <param-value>/dir1/*</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_3.redir
ect_url</param-name>
 <param-value>http://host/dir2/</param-value>
</param>
...

In this example, when the actual request URL is /dir1/subdir1/index.html, http://host/dir2/
subdir1/index.html is set in the Location header. Note that even when a wild card is used in the request
URL, if the redirect URL does not end with a forward slash (/), the value of the Location header is the same as the
redirect URL.

6. In-Process HTTP Server

Compatibility Guide 152

When redirect is executed, if a query string is added to the actual request URL, the value set in the Location header
is a value wherein the query string is added to the value specified for the redirect URL. You can also specify a value
with the query string added in the redirect URL. In this case, if a query string is also added to the actual request URL,
the value set in the Location header is a value wherein the request query string is added behind the value specified
for the redirect URL.

6.7.4 Precautions related to request distribution with the redirector
The precautions related to request distribution with the redirector are as follows:

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from that HTML,
the file might not be properly displayed in the browser.

• If the value specified in the redirect URL matches with the value specified for the request URL, note that the client
keeps redirecting the requests.

• When a session is managed by URL rewriting, the session cannot be inherited even if the request is redirected within
the Web application.

6. In-Process HTTP Server

Compatibility Guide 153

6.8 Controlling the communication with the Web client by persistent
connection

This section describes the controlling of communication with the Web client by Persistent Connection.

The following table describes the organization of this section.

Table 6‒12: Organization of this section (Controlling communication with the Web client by
Persistent Connection)

Category Title Reference

Description Controlling communication by Persistent Connection 6.8.1

Settings Execution environment settings (J2EE server settings) 6.8.2

Note:
There is no specific description of Implementation and Operations for this functionality.

6.8.1 Controlling communication by Persistent Connection
The persistent connection is functionality used for connecting the TCP connection established between the Web client
and the in-process HTTP server and keep using the TCP connection between multiple HTTP requests. By using the
persistent connection, the time required for establishing a connection between the Web client and Web server is reduced
and an attempt is made to reduce the processing time and lessen the communication traffic.

In the in-process HTTP server, you set up the following items to control communication by the Persistent Connection:

• Upper limit for the number of persistent connections
By setting the upper limit for the number of persistent connections, you control the number of Web clients that can
continuously process requests with one TCP connection. If the number of TCP connections exceeds the specified
upper limit, the connection disconnects after the processing of the request ends. As a result, you can secure the
threads for processing the new requests and prevent the request processing threads from being used exclusively by
a specific client.

• Upper limit for the request processing frequency of persistent connection
By setting the maximum value for the request processing frequency of the persistent connection, you can control the
processing when there are continuous requests from the same Web client.
When the request processing frequency of the persistent connection exceeds the specified upper limit, the connection
disconnects after the processing of the request ends. As a result, you can prevent the request processing threads from
being used exclusively by a specific client.

• Persistent connection timeout
By setting a timeout for the request waiting time of the persistent connection, you control the request waiting time
of the persistent connection. If there is no request to process requests until the specified timeout period expires, the
TCP connection disconnects. As a result, you can prevent the TCP connection from being continuously occupied in
an unused state. Also, even if you specify 0 for the request waiting time of Persistent Connection so that a timeout
does not occur, if the number of requests exceeds the upper limit on the number of requests that can be processed,
the connection is disconnected.

Note that a disconnected Web client will try to connect and send requests again.

6. In-Process HTTP Server

Compatibility Guide 154

6.8.2 Execution environment settings (J2EE server settings)
To use controlling of communication by the persistent connection, you must set up the J2EE server.

This section describes the settings and examples for controlling communication by the persistent connection.

(1) Setting up the J2EE server
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for controlling
communication by the persistent connection in the <configuration> tag of the logical J2EE server (j2ee-server) in
the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for controlling communication by the
persistent connection.

Table 6‒13: Definitions in the Easy Setup definition file for controlling communication by persistent
connection

Parameter to be specified Setting contents

webserver.connector.inprocess_http.p
ersistent_connection.max_connections

Specifies the upper limit for the number of persistent connections to control
the number of Web clients that can process requests continuously with one
TCP connection.

webserver.connector.inprocess_http.p
ersistent_connection.max_requests

Specifies the upper limit for the request processing frequency of the persistent
connection to control the processing when there are continuous requests from the
same Web client.

webserver.connector.inprocess_http.p
ersistent_connection.timeout

Specifies the timeout value for persistent connection to control the request waiting
time of the persistent connection.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

(2) Example settings
The following is an example of settings for controlling communication by the persistent connection:

...
<param>
 <param-name>webserver.connector.inprocess_http.persistent_connection.max_c
onnections</param-name>
 <param-value>5</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.persistent_connection.max_r
equests</param-name>
 <param-value>100</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.persistent_connection.timeo
ut</param-name>
 <param-value>15</param-value>
</param>
...

6. In-Process HTTP Server

Compatibility Guide 155

In this example, when the number of TCP connections exceeds 5 or when the request processing frequency exceeds 100,
the TCP connection disconnects after the processing of the request ends. Also, if there is no request to process requests
even after the timeout period of 15 seconds passes, the TCP connection disconnects.

6. In-Process HTTP Server

Compatibility Guide 156

6.9 Communication timeout (In-process HTTP server)

This section describes the controlling of communication with the Web client through communication timeout in the
in-process HTTP server.

The following table describes the organization of this section.

Table 6‒14: Organization of this section (Communication timeout (in-process HTTP server))

Category Title Reference

Description Overview of the Communication Timeout 6.9.1

Settings Execution environment settings (J2EE server settings) 6.9.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.9.1 Overview of the communication timeout
When using the in-process HTTP server, you can set communication timeout for receiving a request and sending a
response between the Web client and the in-process HTTP server. When the response is awaited due to the network and
application failure, you can detect the occurrence of failure from the occurrence of timeout, if the communication timeout
is set.

When you use the in-process HTTP server, set the timeout for the communication indicated by the two arrows in the
following figure.

Figure 6‒7: Communication for which timeout can be set (When using the in-process HTTP server)

As shown in the figure, communication timeout is set for receiving requests and sending responses. The setting of
communication timeout is explained separately for receiving of a request and sending of a response.

Note that when data timeout occurs while receiving a request from the Web client and sending a response to the Web
client, a Web client or network failure is assumed and the connection with the Web client is disconnected, so a response
is not returned.

(1) Communication timeout when receiving a request
The following figure shows the locations to set the communication timeout for receiving requests.

6. In-Process HTTP Server

Compatibility Guide 157

Figure 6‒8: Locations to set the communication timeout for receiving requests (When using the in-
process HTTP server)

When using the in-process HTTP server, you set a timeout for the communication between the Web client and the
in-process HTTP server.

By setting a timeout for the communication between the Web client and the in-process HTTP server, you can detect the
following failures in the client:

• The host on which the Web client is running is down.

• A network failure occurred between the Web client and the in-process HTTP server

• A failure occurs in client application.

(2) Communication timeout when sending a response
The following figure shows the locations to set the communication timeout for sending responses.

Figure 6‒9: Locations to set the communication timeout for sending responses (When using the in-
process HTTP server)

When using the in-process HTTP server, you set a timeout for the communication between the in-process HTTP server
and the Web client.

By setting a timeout for the communication between the in-process HTTP server and the Web client, you can detect the
following failures:

• The host on which the Web client is running is down.

• A network failure occurred between the Web client and the in-process HTTP server.

• A failure occurs in client application.

6. In-Process HTTP Server

Compatibility Guide 158

6.9.2 Execution environment settings (J2EE server settings)
To set up a communication timeout for the in-process HTTP server, you must set up the J2EE server.

This section describes the settings and examples of communication timeout in the in-process HTTP server.

You set up communication timeout when receiving requests and when sending responses. The setting of communication
timeout is described separately for receiving of a request and sending of a response.

(1) Communication timeout settings for receiving requests
You set the communication timeout for receiving requests between the client and the in-process HTTP server.

Specify the communication timeout for receiving requests in the in-process HTTP server with the following parameters
within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.receive_timeout
Specifies the waiting time for the process of receiving a request from the client.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

(2) Communication timeout settings for sending responses
You set the communication timeout for sending responses between the in-process HTTP server and the client.

Specify the communication timeout for sending responses in the in-process HTTP server with the following parameters
within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.send_timeout
Specifies the waiting time for the process of sending a response to the client.

For details on the Easy Setup definition file and parameters to specify, see Part 3 Reference (V9 Compatibility Mode).

(3) Example settings
An example of settings for communication timeout in the in-process HTTP server is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.receive_timeout</param-nam
e>
 <param-value>300</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.send_timeout</param-name>
 <param-value>600</param-value>
</param>
...

In this example, 300 seconds is specified as the request receiving timeout and 600 seconds as the response
sending timeout.

6. In-Process HTTP Server

Compatibility Guide 159

6.10 Specifying the IP address (In-process HTTP server)

This section describes the controlling of communication with the Web client by specifying the IP address in the in-process
HTTP server.

The following table describes the organization of this section.

Table 6‒15: Organization of this section (Specifying the IP address (in-process HTTP server))

Category Title Reference

Description Bind address specification functionality 6.10.1

Settings Execution environment settings (J2EE server settings) 6.10.2

Notes Precautions related to IP address specification in the in-process HTTP server 6.10.3

Note:
There is no specific description of Implementation and Operations for this functionality.

Reference note

The functionality is not different when in-process HTTP server is not used (when the Web server integration
functionality is used). For details on the functionality, see 5.7 Specifying the IP address (Web server integration).

6.10.1 Bind address specification functionality
In the Web container, you can explicitly specify the IP address to be used in the in-process HTTP server. This functionality
is called the Bind address specification functionality. By using the bind address specification functionality, you can
specify the setting so that only a single specific IP address is used for a host having multiple physical network interfaces
or single physical network interface, when executing with a host.

6.10.2 Execution environment settings (J2EE server settings)
To specify the IP address of the in-process HTTP server, you must set the J2EE server.

This section describes the settings for the IP address of the in-process HTTP server.

Specify the IP address of the in-process HTTP server in the following parameters in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.bind_host
Specifies the host name or IP address to be used in the in-process HTTP server.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

6. In-Process HTTP Server

Compatibility Guide 160

6.10.3 Precautions related to IP address specification in the in-process
HTTP server

The precautions related to IP address specification in the in-process HTTP server are as follows:

• When the host name or the IP address is set, only requests for connecting to the specified IP address can be received.
Instead of setting the IP address, a connection to any IP address on that host can be received, by specifying the wild
card address. By default, the setting is specified to use the wild card address. When using the wild card address, note
the following points:

• If the specified host name cannot be resolved in the hosts file or DNS, start the server by using the wild
card address.

• If the specified host name or IP address is a remote host, start the server by using the wild card address.

6. In-Process HTTP Server

Compatibility Guide 161

6.11 Controlling access by limiting the hosts that are allowed access

To prevent unauthorized access of the J2EE server, you can control the hosts that can access the J2EE server. By default,
access from all the hosts is allowed. By specifying the host name or the IP address of the host that is allowed access
beforehand, you can allow access only from a specific host and prevent unauthorized access.

This section describes the controlling of access by limiting the hosts that are allowed access to the J2EE server.

Table 6‒16: Organization of this section (Controlling access by limiting the hosts that are allowed
access)

Category Title Reference

Description Limiting the hosts that are allowed access 6.11.1

Settings Execution environment settings (J2EE server settings) 6.11.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.11.1 Limiting the hosts that are allowed access
To limit the hosts, set the host name or IP address of the hosts that are allowed access. In such a case, if you specify an
asterisk (*) in place of the host name and the IP address, access from all hosts is allowed. When the hosts that are allowed
access are specified by the host name, the name of the host is resolved on starting the J2EE server. Note that even if
the local host is not explicitly specified, the access is always allowed. Normally, for the systems that are accessed from
external networks, you specify the IP address of the proxy server.

The precautions when the host that is allowed access is specified in the host name are as follows:

Notes

• You need to specify the host name resolvable in the hosts file or DNS. If the host name cannot be resolved, the
server is started by the default settings.

• The host name is resolved when the J2EE server is started, and hence, longer time is taken for starting the server.
The changed IP address may not be applied after starting the server.

6.11.2 Execution environment settings (J2EE server settings)
To specify settings for limiting the hosts that are given the access, you must set up the J2EE server.

This section describes the settings and examples for limiting the hosts that are given the access.

(1) How to set
Specify the settings for limiting the hosts that are given the access in the following parameter within the
<configuration> tag of the logical J2EE server (j2ee-server), in the Easy Setup definition file.

webserver.connector.inprocess_http.permitted.hosts
Specifies the host name or IP address of the host that is given the access.

6. In-Process HTTP Server

Compatibility Guide 162

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Important note

The precautions when the host that is given the access is specified in the host name are as follows:

• You need to specify the host name resolvable in the hosts file or DNS. If the host name is not resolvable, the
J2EE server is started with the default settings (access is given for all the hosts).

• The host name is resolved when the J2EE server is started, and hence, longer time is taken for starting the
J2EE server. The changed IP address may not be applied after starting the server.

(2) Example settings
The following is the setting example for limiting the hosts that are given the access:

...
<param>
 <param-name>webserver.connector.inprocess_http.permitted.hosts</param-nam
e>
 <param-value>host1,host2</param-value>
</param>
...

In this example, access is given only for host1 and host2 and access from other hosts is not allowed.

6. In-Process HTTP Server

Compatibility Guide 163

6.12 Controlling access by limiting the request data size

In the in-process HTTP server, by receiving only the request data that is less than a constant size, you can reject the receipt
of invalid request data, control the load on the server, and maintain stable operations.

This section describes the controlling of access by limiting the request data size.

The following table describes the organization of this section.

Table 6‒17: Organization of this section (Controlling access by limiting the request data size)

Category Title Reference

Description Limiting the request data size 6.12.1

Settings Execution environment settings (J2EE server settings) 6.12.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.12.1 Limiting the request data size
In the in-process HTTP server, by receiving only the request data that is less than a constant size, you can reject the receipt
of invalid request data, control the load on the server, and maintain stable operations.

Set the following items to implement access control by limiting the request data size:

• Limiting the length of the request line
Control the access by setting an upper limit on the length of the request line. The length of a request line includes the
HTTP method, URI (including the query string), the HTTP version, and the linefeed (2 bytes) indicating the end of
the request line.
If the length of the received request line exceeds the upper limit, an error of status code 414 is returned to the
Web client.

• Limiting the number of HTTP headers
Control the access by setting the upper limit for the number of HTTP headers included in the HTTP request.
If the number of HTTP headers included in the received HTTP request exceeds the upper limit, an error of status code
400 is returned to Web client.

• Limiting the request header size
Control access by setting the upper limit for the request header size of the HTTP request.
If the HTTP header size of the received HTTP request exceeds the upper limit, an error of status code 400 is returned
to Web client.

• Limiting the request body size
Control access by setting the upper limit for the body size of the HTTP request. In the in-process HTTP server, the
body size of the HTTP request is determined by the value of the Content-Length header included in the request header.
If the body size of the HTTP request exceeds the upper limit, an error of status code 413 is returned to Web client.
When the request body is sent in a chunk format, the data up to the specified upper limit is read inside the servlet. If
the data exceeds the upper limit, an exception (IOException) is thrown in the servlet, but the processing of the
servlet continues. Based on the result of data read up to the specified upper limit in the client that sent the request,
the response created by the application is returned.

6. In-Process HTTP Server

Compatibility Guide 164

Tip

If the gateway device such as SSL accelerator and load balancer exist or if the proxy server is deployed and
the gateway equipment and proxy server have the functionality for controlling the request data size, you must
set a value less than the value set in the control functionality.

6.12.2 Execution environment settings (J2EE server settings)
To specify the settings for limiting the request data size, you must set up a J2EE server.

This section describes the settings and examples for limiting the request data size:

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for limiting the request data
size in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for limiting the request data size:

Table 6‒18: Definitions in the Easy Setup definition file for limiting the request data size

Parameter to be specified Setting contents

webserver.connector.inprocess_http.l
imit.max_request_line

Specifies the upper limit of the request line.

webserver.connector.inprocess_http.l
imit.max_headers

Specifies the upper limit for the number of HTTP headers included in the
HTTP request.

webserver.connector.inprocess_http.l
imit.max_request_header

Specifies the upper limit for the request header size of the HTTP request.

webserver.connector.inprocess_http.l
imit.max_request_body

Specifies the upper limit for the body size of the HTTP request.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Tip

If the gateway device such as SSL accelerator and load balancer exist or if the proxy server is deployed and the
gateway device and proxy server have the functionality for controlling the request data size, you must set a value
less than the value set in the control functionality.

(2) Example settings
An example of settings for limiting the request data size is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.limit.max_request_line</par
am-name>
 <param-value>1024</param-value>

6. In-Process HTTP Server

Compatibility Guide 165

</param>
<param>
 <param-name>webserver.connector.inprocess_http.limit.max_headers</param-na
me>
 <param-value>100</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.limit.max_request_header</p
aram-name>
 <param-value>8192</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.limit.max_request_body</par
am-name>
 <param-value>16384</param-value>
</param>
...

6. In-Process HTTP Server

Compatibility Guide 166

6.13 Controlling access by limiting the HTTP-enabled methods

This section describes the controlling of access by limiting the HTTP-enabled methods.

The following table describes the organization of this section:

Table 6‒19: Organization of this section (Controlling access by limiting the HTTP-enabled methods)

Category Title Reference

Description Limiting the HTTP-enabled methods 6.13.1

Settings Execution environment settings (J2EE server settings) 6.13.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.13.1 Limiting the HTTP-enabled methods
In the in-process HTTP server, you reject the receipt of requests containing HTTP-disabled methods by limiting the
HTTP-enabled methods for the HTTP request. As a result, you can prevent the unauthorized access of the resources on
the server. By default, you can use the DELETE method, HEAD method, GET method, OPTIONS method, POST method,
and PUT method.

To limit the HTTP methods, specify the method names of the HTTP-enabled methods. The value defined in RFC2616
must be used for the value set as the HTTP-enabled method. However, an asterisk (*) cannot be used in the method name
string. If an asterisk (*) is specified instead of the method name, all the methods can be used.

If a request containing an HTTP-disabled method is received, an error of status code 405 is returned to the Web client.

Note that if a request containing the OPTIONS method is sent for the static contents, a method excluding the disabled
methods for the in-process HTTP server from the enabled methods (GET method, POST method, TRACE method, and
OPTIONS method) is returned for the static contents in the Allow header included in the response by default. In the
case of servlets and JSPs, limiting the HTTP-enabled methods depends on the implementation of the Web application.

6.13.2 Execution environment settings (J2EE server settings)
To specify settings for limiting the HTTP-enabled methods, you must set up the J2EE server.

This section describes the settings and examples for limiting the HTTP-enabled methods.

(1) How to set
Specify the settings for limiting the HTTP-enabled methods in the following parameter in the <configuration> tag
of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

webserver.connector.inprocess_http.enabled_methods
Specifies the method name of an HTTP-enabled method.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

6. In-Process HTTP Server

Compatibility Guide 167

Tip

If a request containing the OPTIONS method is sent for the static contents, a request excluding the disabled
methods for the in-process HTTP server from the enabled methods (GET method, POST method, TRACE
method, and OPTIONS method) is returned for the static contents by default. In the case of servlets and JSPs,
limiting the HTTP-enabled methods depends on the implementation of the Web application.

(2) Example settings
The following is the setting example for limiting the HTTP-enabled methods. Note that the following example shows
the default settings:

...
<param>
 <param-name>webserver.connector.inprocess_http.enabled_methods</param-nam
e>
 <param-value>GET,HEAD,POST,PUT,DELETE,OPTIONS</param-value>
</param>
...

In this example, access is allowed for the GET method, HEAD method, POST method, PUT method, DELETE method,
and OPTIONS method and access is rejected for the TRACE method.

6. In-Process HTTP Server

Compatibility Guide 168

6.14 Customizing responses to the Web client using HTTP responses

This section describes the customizing of responses to the Web client using HTTP responses.

The following table describes the organization of this section:

Table 6‒20: Organization of this section (Customizing responses to the Web client using HTTP
responses)

Category Title Reference

Description Customizing the HTTP response header 6.14.1

Settings Execution environment settings (J2EE server settings) 6.14.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.14.1 Customizing the HTTP response header
This section describes the customizing of the HTTP response header.

In the in-process HTTP server, you can customize the information that is automatically set up in the Server header of the
HTTP response. By default, CosminexusComponentContainer is automatically setup.

The value defined in RFC2616 must be used for the value that is automatically set up in the Server header. If the use of
Server header is specified in the servlets and JSPs, that setting is given priority.

6.14.2 Execution environment settings (J2EE server settings)
To specify settings for customizing the HTTP response header, you must set up the J2EE server.

This section describes the settings and examples for customizing the HTTP response header.

(1) How to set
Specify the settings for customizing the HTTP response header in the following parameter in the <configuration>
tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.response.header.server
Specifies the string that is automatically set up in the Server header of the HTTP response.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example settings
The following is the setting example for customizing the HTTP response header:

...
<param>
 <param-name>webserver.connector.inprocess_http.response.header.server</par

6. In-Process HTTP Server

Compatibility Guide 169

am-name>
 <param-value>GyoumuServer/1.0</param-value>
</param>
...

In this example, GyoumuServer/1.0 is specified as the Server header value.

6. In-Process HTTP Server

Compatibility Guide 170

6.15 Error page customization (In-process HTTP server)

If the client access non-existent resources the in-process HTTP server returns the error status code and error page, and
the error page generated by the in-process HTTP server is displayed to the client. In the in-process HTTP server, a
user-created page can be displayed to the client instead of this error page. This is called error page customization.

This section describes the customization of the responses to the Web client with the error page.

The following table describes the organization of this section:

Table 6‒21: Organization of this section (Error page customization (in-process HTTP server))

Category Title Reference

Description Error page that can be customized 6.15.1

Implementation Implementation required for customizing the error page 6.15.2

Settings Execution environment settings (J2EE server settings) 6.15.3

Notes Precautions related to error page customization 6.15.4

Note:
There is no specific description of Operations for this functionality.

6.15.1 Error page that can be customized
When an error such as the access to non-existent resources occurs, a user-created error page can be displayed to the client
instead of the error page displaying the error status code.

By using the error page customization with the in-process HTTP server, you can control error page customization
corresponding to a specific status code and error page customization corresponding to a request URL in the Web
Container at the same time. You can also customize the error page even when you cannot customize the error page with
the Web applications in the following cases:

• When the context corresponding to the request does not exist (status code 404)

• When an attempt is made to process the request with a context that is in the process of stopping (status code 503)

• When the in-process HTTP server returns an error status code

For details on the error status codes returned by the in-process HTTP server, see Appendix C.3 Error status codes returned
by the in-process HTTP server.

In the in-process HTTP server, you can customize the following error pages:

• Error page customization corresponding to the status codes
You can customize the error pages corresponding to the status codes 400 and 500.
By customizing the error pages corresponding to the status code, you can send the files corresponding to the status
code and execute redirection corresponding to the status code.

• Sending the files corresponding to the status code
You can return to the client a specific file as a response body for the customized status code. In this case, specify
the Content-Type header value of the response.
Note that if the reading of the file fails during request processing, the default error page is used.

• Redirection corresponding to the status code

6. In-Process HTTP Server

Compatibility Guide 171

You can redirect to a specific URL for the customized status code. In the case of redirection, specify 302 as the
response status code and the redirect URL in the Location header.
When sending a file corresponding to the status code, redirection cannot be executed.

• Error page customization corresponding to the request URLs
You can specify a request URL and customize the error page for a specific URL. When the request URL is specified,
the customized error page is returned to the client only when an error occurs in the request processing matching with
the specified URL.

6.15.2 Implementation required for customizing the error page
To customize the error page with the in-process HTTP server, use the sendError method of the
javax.servlet.http.HttpServletResponse interface, and set the response status code. Note that if you use
the setStatus method (such as when the setStatus method is used in JSP), customization might not be executed
by the in-process HTTP server. However, even if you use the sendError method, if the Web application fulfills one
of the following conditions, the error page is not customized by the in-process HTTP server:

• If an exception is thrown during the execution of the sendError method

• When error page customization is specified in the Web application and when an error occurs, the execution of the
error page as per the settings terminates normally#

#
Normal termination of error page execution implies the satisfaction of the following conditions:

• An exception that cannot be caught in the error page does not occur.

• The status code ends with a value other than 400 to 599.

6.15.3 Execution environment settings (J2EE server settings)
To customize the error pages, you must set up the J2EE server.

This section describes the settings and examples for error page customization.

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for error page customization
in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for the error page customization:

Table 6‒22: Definitions in the Easy Setup definition file for error page customization

Parameter to be specified Setting contents

webserver.connector.inprocess_http.e
rror_custom.list

Specifies the definition name for error page customization.

webserver.connector.inprocess_http.e
rror_custom.error-page-customising-definition-
name.status

Specifies the error status code that customizes the error page to customize the error
page in association with the error status code.

6. In-Process HTTP Server

Compatibility Guide 172

Parameter to be specified Setting contents

webserver.connector.inprocess_http.e
rror_custom.error-page-customising-definition-
name.file

Specifies the file to be returned to the client as a response body to send a file
corresponding to the error status code.

webserver.connector.inprocess_http.e
rror_custom.error-page-customising-definition-
name.file.content_type

Specifies the value of the Content-Type header when a file specified in
the webserver.connector.inprocess_http.error_custom.error-
page-customizing-definition-name.file parameter is sent to the client as a
response body.

webserver.connector.inprocess_http.e
rror_custom.error-page-customising-definition-
name.redirect_url

Specifies the redirection destination URL when redirecting in compliance with the
error status code.

webserver.connector.inprocess_http.e
rror_custom.error-page-customising-definition-
name.request_url

Specifies the request URL that applies error page customization when customizing
the error page in association with the request URL.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example of settings
The following is the setting example of settings for the error page customization:

...
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.list</param-na
me>
 <param-value>ERR_CUSTOM_1,ERR_CUSTOM_2</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.s
tatus</param-name>
 <param-value>404</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.f
ile</param-name>
 <param-value>C:/data/404.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.f
ile.content_type</param-name>
 <param-value>text/html; charset=ISO-8859-1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.s
tatus</param-name>
 <param-value>503</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.r
edirect_url</param-name>
 <param-value>http://host1/503.html</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.r

6. In-Process HTTP Server

Compatibility Guide 173

equest_url</param-name>
 <param-value>/dir1/*</param-value>
</param>
...

In this example, ERR_CUSTOM_1 and ERR_CUSTOM_2 are used as the error page customizing definition names.
In ERR_CUSTOM_1, when the response status code is '404', C:/data/404.html is returned to the client.
text/html; charset=ISO-8859-1 is used as the Content-Type header value. In ERR_CUSTOM_2, when
the request is a URL beginning with /dir1/ and the response status code is '503', the request is redirected to
http://host1/503.html.

6.15.4 Precautions related to error page customization
The precautions related to error page customization by the in-process HTTP server are as follows:

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from that HTML,
the error page might not be properly displayed.

• Note that depending on the browser settings, if the status code indicates an error and if the size of the response body
is small, the response body MIGHT be replaced by a browser-specific message. Note that in the default error page
displayed when an error page is not specifically customized, the size of the response body is small.

• If the value specified in the redirect URL matches with the value specified for the request URL and if the same error
status occurs after redirection, note that the client keeps redirecting the requests.

• When redirect corresponding to the status code is implemented, the query string added to the request URL when an
error occurs, is not added to the redirect URL. Also, when a session is managed by URL rewriting, the session cannot
be inherited even if the request is redirected to the same Web application as the error page.

6. In-Process HTTP Server

Compatibility Guide 174

6.16 Notification of gateway information to a Web container

This section describes the reporting of the gateway information to the Web container.

The following table describes the organization of this section:

Table 6‒23: Organization of this section (Reporting of the gateway information to the Web container)

Category Title Reference

Description Gateway specification functionality 6.16.1

Settings Execution environment settings (J2EE server settings) 6.16.2

Notes Precautions related to reporting the gateway information to the Web Container 6.16.3

Note:
There is no specific description of Implementation and Operations for this functionality.

Reference note

The functionality is not different when in-process HTTP server is not used (when the Web server integration
functionality is used). For details on the functionality, see 5.10 Notification of gateway information to a
Web container.

6.16.1 Gateway specification functionality
If a gateway such as an SSL accelerator or a load balancer is placed between a client and an in-process HTTP server,
when the Web container automatically redirects to a welcome file or the Form authentication window, the Web container
may not properly create a forwarding URL because the container cannot acquire the information about the gateway.

To avoid this problem, you can use the gateway specification functionality. This functionality notifies a Web container of
gateway information so that the Web container can properly redirect to a welcome file or Form authentication window.

The gateway specification functionality is used in the following case:

• When an SSL accelerator is placed between a client and in-process HTTP server:
Even if a client accesses an SSL accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which
causes the Web container to assume that the access uses HTTP. For this reason, HTTP is used for the URL scheme
for the welcome file or Form authentication window that is the redirection destination.
In this situation, by using the gateway specification function to specify that the scheme be always considered as
HTTPS, you can ensure that accesses are properly redirected.

• When a request without a Host header needs to be redirected away from the in-process HTTP server that
received the request
When redirecting a request without a Host header, the host name and port number of the redirection destination URL
becomes the host name and port number of the Web server that receives the request.
Use the gateway specification functionality when the host name and port number of the URL accessed by the client
is different from the Web server or in-process HTTP server that receives the request, such as when a load balancer
is deployed before the Web server or in-process HTTP server. As a result, the host name and port number accessed
from the client are specified, so the request can be redirected properly.

6. In-Process HTTP Server

Compatibility Guide 175

Note that when using the in-process HTTP server, gateway specification functionality cannot be used if multiple different
routes are used for accessing one Web container (when HTTP requests are forwarded to the Web container from multiple
gateways). To use the gateway specification functionality in the in-process HTTP server, use a configuration in which
there is one access route to the Web container.

6.16.2 Execution environment settings (J2EE server settings)
To specify settings for reporting the gateway information to the Web Container, you must set up a J2EE server.

This section describes the settings and examples for reporting the gateway information to the Web container.

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Define the settings for reporting the gateway
information to the Web container in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file.

The following table lists the definitions in the Easy Setup definition file for reporting the gateway information to the
Web container:

Table 6‒24: Definitions in the Easy Setup definition file for reporting the gateway information to the
Web container

Parameter to be specified Setting contents

webserver.connector.inprocess_http.g
ateway.https_scheme

Specifies the scheme of the redirection destination URL.

webserver.connector.inprocess_http.g
ateway.host

Specifies the gateway host name.

webserver.connector.inprocess_http.g
ateway.port

Specifies the gateway port number.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example settings
An example of settings for the gateway specification functionality is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.gateway.host</param-name>
 <param-value>host1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.gateway.port</param-name>
 <param-value>4443</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.gateway.https_scheme</param
-name>
 <param-value>true</param-value>

6. In-Process HTTP Server

Compatibility Guide 176

</param>
...

In this example, the gateway specification functionality is used to specify settings so that the scheme is always considered
to be HTTPS.

6.16.3 Precautions related to reporting the gateway information to the
Web container

The following are cautionary notes on using the gateway specification functionality:

Specifying the host name and port number of an URL where an access is redirected:
A browser usually sends a request with the Host header appended, so it is not necessary to specify the host name or
port number for an URL where access is to be redirected.
Note that you can check whether or not the request has the Host header by calling the getHeader method of the
javax.servlet.http.HttpServletRequest interface, with the Host argument specified.

Servlet API behavior:
Using the gateway specification functionality causes some servlet API functions to behave differently. Take care
when using API functions with a Web application.
The following describes the precautions on servlet APIs when using the gateway specification functionality for each
method to be used:

• The sendRedirect method of the javax.servlet.http.HttpServletResponse class
When you specify a relative URL for the argument, and if the request does not have the Host header, the host name
and port number of the URL of the redirection destination are the values specified by the gateway specification
functionality. When you specify a relative URL for the argument and use the gateway specification functionality
to specify that the scheme is to be considered as https, the scheme of the URL of the redirection destination
is always https.

• The getRequestURL method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that the scheme is to be considered as https,
the return value is always a URL starting with https://.

• The getServerName method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify the host name of the URL of the redirection
destination, and if the request does not have the Host header, the return value is the value you specified.

• The getServerPort method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify the port number of the URL of the redirection
destination, and if the request does not have the Host header, the return value is the value you specified.
When you use the gateway specification functionality to specify the host name of the URL of the redirection
destination, and if the port number is omitted, the return value is 80 when the request scheme is http, and 443
when the request scheme is https.

• The getScheme method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that the scheme is to be considered as https,
the return value is always https.

• The isSecure method of the javax.servlet.ServletRequest interface
When you use the gateway specification functionality to specify that the scheme is to be considered as https,
the return value is always true.

6. In-Process HTTP Server

Compatibility Guide 177

• The getAttribute method of the javax.servlet.ServletRequest interface
The following attributes cannot be obtained even when you used the gateway specification functionality to
specify that a scheme is to be considered as https:
- javax.servlet.request.cipher_suite (When Microsoft IIS is used for the Web server, this
attribute cannot be obtained regardless of whether the gateway specification functionality is used.)
- javax.servlet.request.key_size
- javax.servlet.request.X509Certificate

The <transport-guarantee> tag in web.xml:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, a request
to a Web server will be considered to use HTTPS even if the request actually uses HTTP. Note that this prevents an
access from being redirected to an URL that uses HTTPS, even if you specify INTEGRAL or CONFIDENTIAL in
the <transport-guarantee> tag in web.xml.

The Secure attribute for cookies:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, when
a session ID generated by a Web container is returned to the client by the session cookie, the Secure attribute is
appended to the cookie.

6. In-Process HTTP Server

Compatibility Guide 178

6.17 Output of log and trace

This section describes the log and trace output by the in-process HTTP server.

The following table describes the organization of this section:

Table 6‒25: Organization of this section (Output of log and trace)

Category Title Reference

Description Log and trace output by the in-process HTTP server 6.17.1

Settings Customizing the access log of the in-process HTTP server 6.17.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

6.17.1 Log and trace output by the in-process HTTP server
The in-process HTTP server outputs the log and trace described in the following table to support application
development, for performance analysis during operations, and for troubleshooting during a failure:

Table 6‒26: Log and trace output by the in-process HTTP server

Types of log and trace Description

Access log Outputs the result of request and response processing from the Web client. This log is used for
analyzing the communication with the Web client.
By analyzing the access log, you can analyze the files requested from the Web client and the
performance information and session tracking information of the in-process HTTP server.

Performance analysis trace Outputs the performance analysis information of the sending and receiving of requests and the
information for troubleshooting in the case of failure in the in-process HTTP server.
The performance analysis trace is converted to a CSV format and can be used to analyze the
bottlenecks in the entire system in combination with the performance analysis information output
by the functionality of other J2EE servers. For details on the performance analysis trace, see 15.1
Overview of performance analysis traces.

Thread trace Trace for maintenance.

Communication trace Trace for maintenance.

6.17.2 Customizing the access log of the in-process HTTP server
The in-process HTTP server outputs the access log, performance analysis trace, thread trace, and communication trace
for supporting application development, for performance analysis during operations, and for troubleshooting during
failure. You can change the number and size of these files. You can also customize the log output format in the access log.

This section describes the customization of the access log output format in the in-process HTTP server. For details on
changing the number and size of the access log and trace files in the in-process HTTP server, see 16.2 Settings for
acquiring the in-process HTTP server log.

(1) Customization procedure
To customize the access log output format:

6. In-Process HTTP Server

Compatibility Guide 179

1. Define the format name of the access log.
To create a new format, add the new format name in the webserver.logger.access_log.format_list
parameter in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

Example settings

...
<param>
 <param-name>webserver.logger.access_log.format_list</param-name>
 <param-value>formatA</param-value>
</param>
...

For creating a new format, reference the access log format provided by default. For details on the format, see (2)
Access log format.

2. Define the output format for the access log.
Define the access log output format in the format specified in format-name with the
webserver.logger.access_log.format-name parameter within the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file. Specify the argument for the access log format in
the output format definition.

Example settings

...
<param>
 <param-name>webserver.logger.access_log.formatA</param-name>
 <param-value>%h %u %t "%r" %>s HostHeader="%{host}i
"</param-value>
</param>
...

For details on the specifiable format arguments, see (3) Arguments of the access log format.

3. Specify the format that will be used to output the access log.
Specify the format name that will be used to output the access log with the
webserver.logger.access_log.inprocess_http.usage_format parameter within the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. An access log is
output in the format specified here:

Example settings

...
<param>
 <param-name>webserver.logger.access_log.inprocess_http.usage_format</
param-name>
 <param-value>formatA</param-value>
</param>
...

(2) Access log format
Application Server provides two types of formats namely common (default format) and combined (extended format) as
the access log formats of the in-process HTTP server. When creating a new format, reference these formats.

6. In-Process HTTP Server

Compatibility Guide 180

(a) Output format
The output format of access log is described below. Note that Δ indicates one-byte space. Also, for the convenience of
expression, the log is output across multiple lines, but the log is actually output in one line.

The output format of a default format is as follows:

Host-name-or-IP-address-of-Web-clientΔRemote-log-nameΔAuthentication-user-na
me
ΔStart-time-of-Web-client-request-processingΔRequest-line
ΔFinal-status-codeΔNumber-of-bytes-sent-excluding-the-HTTP-header

The output format of an extended format is described below:

Host-name-or-IP-address-of-Web-clientΔRemote-log-nameΔAuthentication-user-na
me
ΔStart-time-of-Web-client-request-processingΔRequest-line
ΔFinal-status-codeΔNumber-of-bytes-sent-excluding-the-HTTP-header
Δ"Referer-header-contents"Δ"User-Agent-header-contents"

The underlined part is the difference between the default format and extended format. In the extended format, Referer
header contents and User-Agent header contents is output in addition to the output contents of the default format.

(b) Example of output
An example of access log output in the default format is as follows:

10.20.30.40 - user [20/Dec/2004:15:45:01 +0900] "GET /index.html HTTP/1.1" 2
00 8358
10.20.30.40 - user [20/Dec/2004:15:45:01 +0900] "GET /left.html HTTP/1.1" 20
0 2358
10.20.30.40 - user [20/Dec/2004:15:45:01 +0900] "GET /right.html HTTP/1.1" 2
00 4358

An example of access log output in the extended format is as follows:

10.20.30.40 - - [18/Jan/2005:13:06:10 +0900] "GET / HTTP/1.0" 200 38 "-" "Mo
zilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"
10.20.30.40 - - [18/Jan/2005:13:06:25 +0900] "GET /demo/ HTTP/1.0" 500 684 "
-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

(3) Arguments of the access log format
The following table lists the arguments of the access log format that are specified when you define the output format of
the format:

Table 6‒27: List of arguments of the access log format

Format
arguments

Output contents Example of output

%% % Sign %

%a IP address of the Web client 10.20.30.40

6. In-Process HTTP Server

Compatibility Guide 181

Format
arguments

Output contents Example of output

%A IP address of the J2EE server 10.20.30.100

%b Number of bytes sent excluding the HTTP header
('-' in the case of 0 bytes)

2048

%B Number of bytes sent excluding the HTTP header
('0' in the case of 0 bytes)

1024

%h Host name or IP address of the Web client
(IP address when the host name cannot be acquired)

10.20.30.40

%H Request protocol HTTP/1.1

%l Remote log name#1

(Always '-')

-

%m Request method GET

%p Port number that receives the request from the Web client 80

%q Query string
(Begins with '?'. If the query string does not exist, null character)

?id=100&page=15

%r Request line GET /index.html HTTP/1.1

%>s Final status code
(Internally redirected value is not output)

200

%S#2 User's session ID
('-' if the session ID does not exist)

00455AFE4DA4E7B7789F247B8F
E5D605

%t Start time of the Web client request processing
(Unit: seconds, output format: dd/MMM/YYYY:HH:mm:ss Z)

[18/Jan/
2005:13:06:10 +0900]

%T Time required for processing the Web client request
(Unit: seconds)

2

%d Start time of the Web client request processing
(Unit: milliseconds, output format: dd/MMM/YYYY:HH:mm:ss.nnn Z
(nnn indicates milliseconds))

[18/Jan/
2005:13:06:10.152 +0900]

%D Time required for processing the Web client request
(Unit: milliseconds)

2000

%u Basic authentication user name, Form authentication user name
('-' when the authentication user name does not exist)

user

%U Request file path /index.html

%v Local host name of the J2EE server server

%{foo}I#3 Contents of request header foo
('-' when foo header does not exist)

In the case of %{Host}i,
www.example.com:8888

%{foo}c Of the Cookie information sent by the Web client, contents of Cookie
name foo
('-' when the Cookie name does not include foo)

In the case of %{JSESSIONID}c,
00455AFE4DA4E7B7789F247B8F
E5D605

%{foo}o#3 Contents of response header foo
('-' when the foo header does not exist)

In the case of %{Server}o,
CosminexusComponentContain
er

6. In-Process HTTP Server

Compatibility Guide 182

#1
The remote log name is the user name in the Web client that can be acquired with the Identification protocol defined in RFC 1413.

#2
The session ID displayed in %S is the value of the Cookie name 'JSESSIONID'.

#3
The same header name might be sent multiple times in one HTTP request or HTTP response. In this case, the contents of the header read first
will be output.

Important note

If there is an error in the specification of the format argument, the default format is used. The example of the use
of the default format is as follows:

• When strings not existing in the list of format arguments (example: %G) is specified

• When 0 characters (such as %{}i) are specified in the request header contents, response header contents,
and Cookie name.

Reference note

If the default format and extended format are coded in the format arguments, the format is as follows:

• Default format
%h %l %u %t "%r" %>s %b

• Extended format
%h %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"

6. In-Process HTTP Server

Compatibility Guide 183

6.18 URI decode functionality

You can use the URI decode functionality in the Web server integration and the in-process HTTP server.

This section describes the URI decode functionality.

The following table describes the organization of this section:

Table 6‒28: Organization of this section (URI decode functionality)

Category Title Reference

Description Overview of URI decode functionality 6.18.1

Settings Execution environment settings (J2EE server settings) 6.18.2

Notes Precautions for using the URI decode functionality 6.18.3

Note:
There is no specific description of Implementation and Operations for this functionality.

6.18.1 Overview of URI decode functionality
The URI decode functionality is used for decoding the URL-encoded strings included in the servlet path of request URIs
and in the additional path information of Application Server. However, the context path is not decoded.

To execute a Web application that does not use decoded URIs, you must not use the URI decode functionality or you must
manage at the Web application machine.

The following is the description of "Servlet APIs affected when URI decode functionality is used", "Functionality
using decoded strings", "Character code used for decoding", and "Execution procedure for decoding and normalizing
character strings":

(1) Servlet APIs affected when using the URI decode functionality
For using the URI decode functionality, a decoded URI is considered as a return value in the following methods of the
javax.servlet.http.HttpServletRequest interface:

• getPathInfo method

• getPathTranslated method

• getServletPath method

However, in the getRequestURI and getRequestURL methods, a non-decoded URL is considered as a
return value.

(2) Functionality using decoded strings
For using the URI decode functionality, the decoded strings are used in the following processes:

• Matching with URL pattern of servlets and JSPs

• Matching with default mapping

• Matching with static contents

6. In-Process HTTP Server

Compatibility Guide 184

• Matching with URL pattern of filter

• Matching with the <error-page> tag of web.xml or with the errPage attribute of the page directive of JSPs

• Matching with URL pattern for restricting access

• Determining URL for login authentication

• Forward and include request

• Matching with URL pattern for HTTP response compression filter

• Matching with URL pattern to control the number of concurrently executed threads in the URL group

However, the context path is not decoded and is handled as the original string, so the value "404 Not Found" is considered
as a return value, when the context path does not match with the context root.

The matching for the decoded character string is not performed in the following functionality of Application Server:

• Error page customization functionality of the in-process HTTP server

• Request distribution functionality by redirecting the in-process HTTP server

(3) Character code used for decoding
For using the URI decode functionality, the character code used for decoding is UTF-8.

(4) Execution procedure for decoding and normalizing character strings
URLs used in the matching processes after decoding are normalized in the request URIs sent from clients.

6.18.2 Execution environment settings (J2EE server settings)
To use the URI decode functionality, you must set up a J2EE server.

Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for the URI decode
functionality in webserver.http.request.uri_decode.enabled within the <configuration> tag of
the logical J2EE server (j2ee-server) in the Easy Setup definition file. With this parameter, specify whether to use the
URI decode functionality or not.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

6.18.3 Precautions for using the URI decode functionality
This section describes the precautions for using the URI decode functionality.

(1) Execution procedure for decoding and normalizing character strings
The URIs, normalized after decoding, are used for matching the URL patterns with the servlet path.

The URIs, normalized without decoding, are used for matching the context root with the context path.

6. In-Process HTTP Server

Compatibility Guide 185

(2) Attributes of request
The decoded values are also stored in the attributes that are added in requests during the forward or include processing.
The following table describes whether the stored values are decoded for each attribute specified in requests during the
forward or include processing:

Processi
ng

Attribute Decoding the stored value

Forward javax.servlet.forward.request_uri N

javax.servlet.forward.context_path N

javax.servlet.forward.servlet_path Y

javax.servlet.forward.path_info Y

javax.servlet.forward.query_string N

Include javax.servlet.include.request_uri N

javax.servlet.include.context_path N

javax.servlet.include.servlet_path Y

javax.servlet.include.path_info Y

javax.servlet.include.query_string N

Legend:
Y: Decoded
N: Not decoded

For details on each attribute and the values stored in each attribute, see Servlet specifications.

(3) Inheriting HTTP session
The context path is not decoded and is handled as the original string, so the HTTP session is inherited.

6. In-Process HTTP Server

Compatibility Guide 186

6.19 Settings for acquiring the in-process HTTP server log

This section describes the items that can be set up for acquiring the in-process HTTP server log.

In the in-process HTTP server, the access log, trace based performance analysis, thread trace, and the communication
trace are output for supporting the application development, for performance analysis at operation time, and for
troubleshooting at failure detection time. For these files, you can change the number of files and the file size in the Easy
Setup definition file.

The following table describes the settings that you can change for acquiring the in-process HTTP server log and
parameters of the Easy Setup definition file corresponding to the items.

Table 6‒29: Settings for acquiring the in-process HTTP server log

Log or trace Items Corresponding parameters of the Easy Setup definition file

Access log Availability access log output webserver.logger.access_log.inprocess_http.ena
bled in the <configuration> tag on a logical J2EE server (j2ee-
server)
(By default access log is output)

Access log file name webserver.logger.access_log.inprocess_http.fil
ename in the <configuration> tag on a logical J2EE server
(j2ee-server)

File size of the access log webserver.logger.access_log.inprocess_http.fil
esize in the <configuration> tag on a logical J2EE server
(j2ee-server)

Number of files of access log webserver.logger.access_log.inprocess_http.fil
enum in the <configuration> tag on a logical J2EE server (j2ee-
server)

Format name of the access log webserver.logger.access_log.format_list in the
<configuration> tag on a logical J2EE server (j2ee-server)#

Output format of access log webserver.logger.access_log.format-name in the
<configuration> tag on a logical J2EE server (j2ee-server)#

Format when the access log is output webserver.logger.access_log.inprocess_http.usa
ge_format in the <configuration> tag on a logical J2EE
server (j2ee-server)#

Trace based
performance analysis

-- Specify acquisition condition, when you want to execute the cprfed
command for performing a daily system operation same as for
other trace based performance analysis. For details on acquiring the
performance analysis trace file, see 15. Performance Analysis Trace.

Thread trace Number of files of thread trace webserver.logger.thread_trace.inprocess_http.f
ilenum in the <configuration> tag on a logical J2EE server
(j2ee-server)

File size of thread trace File size of the thread trace = (((A+B) × 32,786)+ 32,914) byte
A= Value of
webserver.connector.inprocess_http.max_connect
ions parameter in the <configuration> tag on a logical J2EE
server (j2ee-server)
B=For 0, the value of the
webserver.connector.inprocess_http.send_timeout
parameter is 0, and when other than 0, the value is 1
in the <configuration> tag on a logical J2EE server (j2ee-server)

6. In-Process HTTP Server

Compatibility Guide 187

Log or trace Items Corresponding parameters of the Easy Setup definition file

Communication trace Number of files of the
communication trace

webserver.logger.communication_trace.inprocess
_http.filenum in the <configuration> tag on a logical J2EE
server (j2ee-server).

File size of the communication trace File size of the communication trace=(((A+B) × 172,050)+128) byte
A=Value of
webserver.connector.inprocess_http.max_connect
ions parameter in the <configuration> tag on a logical J2EE
server (j2ee-server)
B=For 0, the value of the
webserver.connector.inprocess_http.send_timeout
parameter is 0, and when other than 0, the value is 1
in the <configuration> tag on a logical J2EE server (j2ee-server).

Legend:
--: Not applicable

#
In the access log, you can customize the log output format by defining the format with the above-mentioned keys. For customization of the
access log of the in-process HTTP server, see 6.17.2 Customizing the access log of the in-process HTTP server.

6. In-Process HTTP Server

Compatibility Guide 188

6.20 cjtracesync (synchronize trace file information for in-process HTTP
server)

This section describes the cjtracesync command, which synchronizes the trace files used by the in-process
HTTP server.

Format

cjtracesync [-h] [-thr|-comm] server-name

Function

When the in-process HTTP server is used, this command synchronizes the thread trace and communication trace
information with the information in the shared memory. When the in-process HTTP server is being used and you want to
obtain failure information without using Management Server functionality, execute this command immediately before
obtaining the information.

Arguments

-h
Displays the command's usage.

-thr
Specifies that thread trace information is to be retrieved. If the -thr option and the -comm option are both omitted,
the command updates the information for both the thread trace and the communication trace.

-comm
Specifies that communication trace information is to be retrieved. If the -thr option and the -comm option are both
omitted, the command updates the information for both the thread trace and the communication trace.

server-name
Specifies the name of the J2EE server for which trace information is to be retrieved. A server name must be specified.

Return values

0:
The command terminated normally.

1:
The command terminated abnormally.

9:
The command could not be executed because there are no administrator privileges (in Windows).

6. In-Process HTTP Server

Compatibility Guide 189

6.21 Precautions when operating SOAP applications

The following describes precautions when operating SOAP applications.

6.21.1 Precautions when stopping the J2EE server using the in-process
HTTP server

If you try to stop a J2EE server while an in-process HTTP server is being used, the J2EE server might not stop or might
take a long time to stop.

This problem occurs when all of the following conditions are met:

• An attempt is made to stop the J2EE sever.

• An in-process HTTP server is being used on the Web server on the SAOP service side.

• Either a large value or 0 is specified as the value
of webserver.connector.inprocess_http.persistent_connection.timeout.

• A SOAP client whose connection pooling is enabled either is connected with a SOAP service that is running or has
connected with such a SOAP service at least once.

The following describes the symptoms that might occur with this problem, by specification and method of stopping:

• If a large value is specified for
webserver.connector.inprocess_http.persistent_connection.timeout for the in-process
HTTP server
When the cjstopsv command is used to stop the J2EE server, KDJE39514-W is output, and it might take up to
the number of seconds specified for this property.

• If 0 is specified for
webserver.connector.inprocess_http.persistent_connection.timeout for the in-process
HTTP server
The J2EE server might not stop.

• If Management Server is used to stop the server
The KEOS20011-E message might be output to indicate that the attempt to stop the logical server failed, and the
server might be forcibly stopped.

When you execute the cjstopsv command, if KDJE39514-W is output and it might take a long time for the J2EE server
to stop, stop the J2EE server by re-executing the cjstopsv command with the -f option specified.

When using Management Server to stop the J2EE server, and if you have set a stop monitoring time, the processing is
forcibly stopped when the stop monitoring time has passed. If you did not set a stop monitoring time, stop the J2EE server
by performing the following steps:

1. On the management portal, click the Start/Stop Logical Server anchor.

2. In the Server View tab, from Logical J2EE server, click J2EE Server and then J2EE Server Name.

3. Click the Start/Stop tab.

4. Click the Forcibly Stop button.

6. In-Process HTTP Server

Compatibility Guide 190

7 Cosminexus JAX-RS Engine (JAX-RS 1.1)

This chapter describes the Cosminexus JAX-RS engine in V9 compatibility mode.

Compatibility Guide 191

7.1 Cosminexus JAX-RS engine in V9 compatibility mode (JAX-RS 1.1)

Cosminexus JAX-RS engine (JAX-RS 1.1) is the only JAX-RS functionality that can be used in V9 compatibility mode.
For details on the Cosminexus JAX-RS engine (JAX-RS 1.1), see the manual uCosminexus Application Server Web
Service Development Guide.

7. Cosminexus JAX-RS Engine (JAX-RS 1.1)

Compatibility Guide 192

8 How to Use JPA with Application Server

This chapter gives an overview of the JPA and describes how to use JPA with Application Server.

Compatibility Guide 193

8.1 Organization of this chapter

The JPA is a specification aimed at simplifying the designing and coding of the database-related processing and is
used for mapping Java objects and relational database (O/R mapping). By using the JPA, you can operate the database
information as a Java object (entity), and set up a system efficiently.

This chapter gives an overview of JPA and describes the JPA usage with Application Server. The following table
describes the organization of this chapter.

Table 8‒1: Organization of this chapter (Using JPA with Application Server)

Category Title Reference location

Description Features of JPA 8.2

JPA functionality that can be used with Application Server 8.3

EntityManager 8.4

Persistence context 8.5

Implementation How to obtain a container-managed EntityManager 8.6

How to obtain an application-managed EntityManager 8.7

Definitions in persistence.xml 8.8

Allocating persistence.xml 8.9

JPA interfaces 8.10

Notes Notes on setting up applications 8.11

Note:
There is no specific description of Settings and Operations for this functionality.

8. How to Use JPA with Application Server

Compatibility Guide 194

8.2 Features of JPA

This section describes features of the applications using JPA.

8.2.1 Advantages of applications using JPA
The following contents can be realized, if you use an application using JPA:

• By concealing the O/R mapping and database access processing, the user programming becomes easy.

• By using annotations, the cost of creating the definition file is reduced and coding is implemented using POJO (Plain
Old Java Object).

• By setting up the default values, the amount of coding by the user can be reduced.

• Cosminexus JPA provider conforms to the JPA specifications, and therefore, you can merge the applications used
with other JPA providers.

This section compares the data access models when the JPA is not used and when the JPA is used, and describe the
advantages of applications using the JPA.

(1) Data access model when the JPA is not used
To access a database from a J2EE application when the JPA is not used, you can use the data access model shown in the
following figure to create an application.

Figure 8‒1: Database access model when JPA is not used

This section describes the above figure.

With the data access model shown in the figure, you create a class called DAO corresponding to the table to hide the SQL
statement from the business logic. With the DAO class, you create a process to issue an SQL statement using the JDBC
interface. The flow of processing shown in the figure is as follows:

1. With an EJB where the business logic is coded, DAO is used to read the data from a database.

2. The acquired data is stored in an object called DTO.

3. The DTO object returns to the Web component. With the Web component, the data acquired from the database is
output to a Web page.

8. How to Use JPA with Application Server

Compatibility Guide 195

With such a data access model, if the data model of the database becomes more complex, the number of DAO, SQL, and
DTO classes that must be created also increases. The creation of DAO, SQL, and DTO involves monotonous manual
work, so this decreases the productivity of an application development.

(2) Data access model when the JPA is used
The following figure shows a data access model when the JPA is used.

Figure 8‒2: Database access model when the JPA is used

When the JPA is used, you create a class corresponding to the lines in the database table. This class is called an entity
class. With an EJB where the business logic is coded, you can code the processing as if the object of this entity class is
directly stored in the database.

The description of the figure is as follows:

1. The JPA engine called the JPA provider issues an SQL statement for the database. Also, the JPA provider
automatically synchronizes the status of the entity object and the database table.

2. The entity object can pass the obtained data to the Web component as is.

If you use the JPA, you need not create DTO. Furthermore, the entity class can also be automatically generated from the
database table schema by using a development tool such as Eclipse. Because you do not need to create the DAO, SQL,
and DTO classes that were the reason of decreased productivity in the past data access models, you can further improve
the productivity of the applications.

For details about the entity classes and the JPA providers, see 8.2.2 Entity class and 8.2.3 JPA provider.

8.2.2 Entity class
When you use the JPA, you create a class that forms a data container with applications. This class is called the entity class.
Normally, you create the entity class so that one object of the entity class corresponds to one line in the database table.
You create an entity class using the normal Java class (POJO). Special interfaces need not be implemented.

You specify the mapping for the values of the entity class fields and the columns of the database table where the values
are stored, using annotations in the items such as the entity class fields. However, the CoC concept has been introduced
in JPA in order to improve the easy development. If you do not specify mapping explicitly, the default mapping rules are
applied. For example, if the mapping of fields is not explicitly specified, the corresponding column is presumed from
the field name and mapped.

8. How to Use JPA with Application Server

Compatibility Guide 196

8.2.3 JPA provider
The JPA provider is a JPA implementation that provides the following mapping functionality, API, and query language.
The following functionality is provided with the JPA provider:

• Functionality for mapping Java objects and a database

• API encapsulating the database processing

• Query language that can be commonly used in the JPA specifications

The advantage of using the JPA provider is that you can design an application without knowing the processing related to
database exchanges. Also, by using the query language JPQL available with the JPA provider, you can also send a query
even if you are unfamiliar with the database.

The following figure shows the mapping functionality provided by JPA providers.

Figure 8‒3: Overview of the mapping functionality provided by JPA providers

This section describes the above figure.

An entity class is prepared in the application and an entity object is generated from the entity class. By changing the
contents of the entity object, the user changes the database contents. As a result, the user can update the database contents
without knowing the database processing.

The JPA provider maps the entity objects to the database records. The JPA provider also executes the search, insert, delete,
or update processing implemented by the user for the database.

The generated entity object is managed by EntityManager. If the value of an entity object field is changed, EntityManager
automatically detects the change and applies the change to the database table.

During the following processing, EntityManager is invoked:

• To add the data of the entity class object in the database table.

• To search the data already stored in the database and to extract the data as an entity class object.

For details on EntityManager, see 8.4 EntityManager.

8. How to Use JPA with Application Server

Compatibility Guide 197

8.3 JPA functionality that can be used with Application Server

This section describes the JPA providers, components, and resource adapters that can be used with Application Server,
when the JPA is used.

8.3.1 Available JPA providers
The JPA provider is an engine that provides the EntityManager functionality. The JPA providers that can be used with
Application Server include Cosminexus JPA provider and the JPA providers provided by other vendors. The following
points describe the usage of each of these JPA providers:

(1) When Cosminexus JPA provider is used
Cosminexus JPA provider is a JPA provider provided with Application Server. Cosminexus JPA provider provides the
Cosminexus JPA provider-specific functionality in addition to the functionality based on the JPA 1.0 specifications. For
an overview of Cosminexus JPA provider, notes on application implementation, and the usage methods of Cosminexus
JPA provider, see 9. Cosminexus JPA Provider.

(2) When the JPA providers from other vendors are used
The JPA providers are provided by other vendors. The JPA specifications clearly specify the interfaces between
JPA providers and Application Server, and therefore you can also use JPA providers provided by other vendors and
conforming to the JPA 1.0 specifications with Application Server.

When you use the other JPA providers from Application Server, you must specify the following settings:

• Specifying JAR files
You use one of the following methods to specify the JAR file containing the JPA provider implementation:

• Specify the JAR file under the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file. To specify a JAR file, you specify add.class.path in the <param-name> tag and the
JAR file in the <param-value> tag. For details on the Easy Setup definition file and parameters to specify,
see 12.2.1 Parameters used for setting up the user properties for the J2EE server.

• Include JAR files in J2EE applications as a library.

• Definitions in persistence.xml
In the <provider> tag of persistence.xml, specify the implementation class name of
javax.persistence.PersistenceProvider provided by the used JPA provider. For details, see 8.8.2(2)
<provider> tag.

To use the functionality for monitoring the J2EE application execution time provided with Application Server, you must
add the JPA provider classes and entity classes into the protected area list. For details on how to add a class into the
protected area list, see 2.2.5 criticalList.cfg (Protected areas list file) in the uCosminexus Application Server Definition
Reference Guide.

Reference note

With the execution of applications using the JPA, you can use the trace based performance analysis functionality
provided with Application Server.

8. How to Use JPA with Application Server

Compatibility Guide 198

• When Cosminexus JPA provider is used as the JPA provider
The trace based performance analysis can be output with both Application Server and Cosminexus
JPA provider.

• When a JPA provider from other vendors is used
You can only use the trace based performance analysis output by Application Server.

Note that with Application Server, the trace based performance analysis is output by the EntityManagerFactory,
EntityManager, EntityTransaction, and Query APIs of the javax.persistence package. Furthermore, the
trace based performance analysis related to the entity life cycle callback is output with the JPA provider.

For an overview of the trace based performance analysis, see 15.2 Overview of the trace based performance
analysis of Application Server. For key points on output of the performance analysis trace, see 15. Performance
Analysis Trace.

8.3.2 Available components
With Application Server, you can use the JPA with EJBs and Web applications. You can also use the JPA when user
threads are used from Web applications. Note that you cannot use the JPA in the following environments or libraries:

• EJB client application environment

• J2EE application client environment

• Container extension library

The following table lists the components that can use the JPA.

Table 8‒2: Components that can use the JPA

Components JPA usage

EJB Stateless Session Bean (EJB 3.0 and later)#1 Y

Stateful Session Bean (EJB 3.0 and later)#1 Y

Stateless Session Bean (earlier than EJB 3.0) N

Stateful Session Bean (earlier than EJB 3.0) N

Interceptor Y

Message-driven Bean N

Entity Bean N

Web application Servlet, filter, event listener (Servlet 2.5 and later) Y

JSP, JSP tag handler, JSP event listener, JSP tag library event
listener #2 (Servlet 2.5 and later)

Y

Servlet, filter, event listener (earlier than Servlet 2.5) N

JSP, JSP tag handler, JSP event listener, JSP tag library event
listener (earlier than Servlet 2.5)

N

Legend:
Y: Available
N: Not available

8. How to Use JPA with Application Server

Compatibility Guide 199

#1
With Application Server, you cannot specify the JPA definition using EJB 3.0 ejb-jar.xml. Therefore, you use annotations such as
@PersistenceUnit and @PersistenceContext to define the references for the persistence units and persistence contexts.

#2
With Application Server, you cannot use annotations in the JSP tag library event listener. To use the JPA functionality in the JSP tag library event
listener, you use <persistence-unit-ref> tag and the <persistence-context-ref> tag of web.xml to define the references
for the persistence units and persistence contexts.

Important note

If true is specified in the metadata-complete attribute of web.xml in Servlet 2.5 and later, the Web
component annotations are not read. Therefore, you cannot use annotations to define the references for the
persistence contexts or persistence units. However, you can define the references in web.xml.

8.3.3 Supported application formats
A J2EE application using the JPA is deployed on Application Server in one of the following formats:

• Archive-format J2EE applications
• Exploded-archive format J2EE applications

You can also replace a J2EE application that uses a deployed JPA. For the archive format, use the redeploy functionality
and for the exploded archive format, use the reload functionality.

Note that when you use the reload functionality, updates are not detected for the O/R mapping file. However, the O/R
mapping file is re-read when the file is reloaded. The following table describes the targets for update detection and the
re-reading during reload.

Table 8‒3: Targets for update detection and re-reading when reload is executed

Target classes and files Update detection Re-reading

Entity class Y Y

Mapped super class Y Y

Embedded class Y Y

persistence.xml Y Y

O/R mapping file
(When orm.xml is allocated under META-INF)

N Y

O/R mapping file
(When orm.xml is allocated to the location
specified in the <mapping-file> tag
of persistence.xml)

Y Y

Legend:
Y: Target
N: Not a target

For details on archive-format J2EE applications and exploded archive-format J2EE applications, see the manual
uCosminexus Application Server Common Container Functionality Guide.

8. How to Use JPA with Application Server

Compatibility Guide 200

Important note

When you use an application with the JPA in the exploded archive format, do not delete the class or library JAR
while the application is running. If the class or library JAR is deleted, Application Server and JPA provider might
perform unexpected operations.

8.3.4 Supported class loader configuration
The J2EE applications using the JPA support the class loaders listed in the following table.

Table 8‒4: Class loaders supported in a J2EE application using the JPA

Class loaders Support

Default class loader configuration Y

Class loader configuration used when local call optimization is performed # Y

Class loader configuration for downward compatibility N

Legend:
Y: Supported
N: Not supported

Note:
The class loader configuration for the downward compatibility is used only in the basic mode and therefore, not supported.

#
Indicates the following specification in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup
definition file:
<param-name>ejbserver.rmi.localinvocation.scope</param-name>
<param-value>all</param-value>

8.3.5 available resource adapters
When you execute a J2EE application that uses the JPA, with Application Server, you can use a resource adapter with the
connection factory interface javax.sql.DataSource. You can use DB Connector as the resource adapter provided
with Application Server.

Also, you must deploy the resource adapter you want to use as the J2EE resource adapter. In the case of the J2EE
applications using the JPA, you cannot include and deploy the resource adapter in the J2EE application.

The following table lists the resource adapters available with Application Server.

Table 8‒5: Resource adapters available with Application Server

Connection factory interface Deploy format of the resource adapter Usage from the JPA

javax.sql.DataSource Deployed as a J2EE resource adapter Y

Included and deployed in the J2EE application N

Other than javax.sql.DataSource -- N

Legend:
Y: Available

8. How to Use JPA with Application Server

Compatibility Guide 201

N: Not available
--: Not applicable

For details on the resource adapters available when you use Cosminexus JPA provider, see 9.2.3(3) Available
DB Connectors.

8. How to Use JPA with Application Server

Compatibility Guide 202

8.4 EntityManager

The EntityManager is an object that has an interface for registering and deleting entities for the database. This section
gives an overview of EntityManager.

8.4.1 Methods provided with EntityManager
The EntityManager provides methods. The typical methods are as follows:

• persist method (equivalent to SQL INSERT)
The method used to add an entity object that executes new in the application, into the database.

• find method (equivalent to SQL SELECT)
The method used to search an entity object from the database.

• remove method (equivalent to SQL DELETE)
The method used to delete an entity object from the database.

The entity objects searched using the find method from EntityManager and the entity objects passed to EntityManager
using the persist method are managed by EntityManager. If a field value of an entity object managed by
EntityManager is changed, EntityManager automatically detects the change and applies the change to the database table.

With the JPA, an entity object managed by EntityManager is called a managed entity. By default, when a transaction is
concluded, the entity is no longer managed by EntityManager. An entity that is no longer managed by EntityManager is
called a detached entity.

8.4.2 Types of EntityManager
The types of EntityManager include the container-managed EntityManager and the application-managed
EntityManager. The following is a description of each type:

(1) Container-managed EntityManager
The method entrusts the creation and destruction of EntityManager to the container. If you use a container-managed
EntityManager, you can code an application without being aware of the generation and destruction of EntityManager.
The following points describe how to obtain and how to destroy the container-managed EntityManager.

• How to obtain the container-managed EntityManager
To obtain the container-managed EntityManager, you use the DI or JNDI lookup in the application. EntityManager
obtained using this method is EntityManager created by the container. You can use EntityManager obtained from a
container as it is during the application coding.
For details on how to obtain the container-managed EntityManager from an application, see 8.6 How to obtain the
container-managed EntityManager.

• How to destroy the container-managed EntityManager
The creation and destruction of EntityManager need not be coded in the application.

8. How to Use JPA with Application Server

Compatibility Guide 203

(2) Application-managed EntityManager
In this method, the application explicitly creates and destroys EntityManager. The life cycle is managed
explicitly by application coding. The following points describe how to obtain and how to destroy the application-
managed EntityManager.

• How to obtain the application-managed EntityManager
You use EntityManagerFactory to create EntityManager in the application. To obtain EntityManagerFactory, you use
the DI or JNDI lookup in the application.
For details on how to obtain the application-managed EntityManager, see 8.7 How to obtain the application-
managed EntityManager.

• How to destroy the application-managed EntityManager
You invoke the close method of EntityManager to destroy EntityManager.

8.4.3 Transaction control and EntityManager
The following two types of EntityManager are available depending on how the transactions are controlled:

• JTA entity manager
EntityManager in which the transactions are controlled by the JTA.

• Resource local entity manager
EntityManager in which the transactions are controlled by the EntityTransaction API.

The following table describes the relationship between the types of EntityManager and the transaction control methods.

Table 8‒6: Relationship between types of EntityManager and transaction control methods

Types of EntityManager Transaction control method

JTA Resource local

Container-managed EntityManager Y#1 N

Application-managed EntityManager #2 Y Y

Legend:
Y: Transaction can be controlled
N: Transaction cannot be controlled
JTA: JTA entity manager
Resource local: Resource local entity manager

#1
The transaction is necessarily controlled by the JTA.

#2
You can select whether to control the transaction using the JTA or whether the application controls the transaction, by explicitly using the
EntityTransaction API. When the EntityTransaction API is used, the transaction becomes a resource local transaction. Even if
the JTA transaction exists, the transaction is controlled regardless of the JTA transaction.

You specify whether you want to use the JTA entity manager or the resource local entity manager in the definition of the
persistence unit. For details on how to specify definitions in the persistence unit, see 8.8.1(2) transaction-type attribute.

8. How to Use JPA with Application Server

Compatibility Guide 204

8.4.4 Persistence unit
You must define the following information, when the JPA is used from the application:

• Information about the entity classes in the application

• Information about the mapping between the entity classes and the database tables

• Information about the data source for the JPA provider to obtain the database connection

The unit that defines this information is called the persistence unit.

You define the persistence unit in persistence.xml. When the JPA is used in the Java EE environment,
persistence.xml is allocated in the determined location in the EJB-JAR, WAR, or EAR files when the user
packages the application.

You can include multiple persistence unit definitions in the persistence.xml file. You can also include multiple
persistence.xml files in one application. As a result, you can define multiple persistence units in one application.
When multiple persistence units are defined in an application, you specify the persistence unit to be used by the
application in the unitName attribute of @PersistenceContext. Note that when the persistence unit to be used
can be identified uniquely, such as when only one persistence unit is defined in the application, you can omit the
unitName attribute.

8. How to Use JPA with Application Server

Compatibility Guide 205

8.5 Persistence context

The EntityManager caches the entity objects to be updated and the searched entity objects. The persistence context is the
cache of the entity objects cached by EntityManager.

8.5.1 EntityManager and persistence context
The following figure shows a relationship between EntityManager and persistence context.

Figure 8‒4: Relationship between EntityManager and persistence context

The EntityManager inserts the managed entity object in the persistence context and manages the entity objects. When
the application passes the entity object to the persist method or updates the field value of the managed entity object,
the status of the entity object in the persistence context is changed. EntityManager synchronizes the statuses of the entity
objects in the persistence context and the database table just before the transaction is committed. In order to apply the
statuses of the entity objects within the persistence context to the database table, the update SQL statements are issued
collectively at this time. As a result, the database locking time is shortened, and therefore you can improve the concurrent
executability and update the data efficiently.

(1) Types of EntityManager
You decide whether to use the container-managed EntityManager or the application-managed EntityManager depending
on the relationship between the persistence context and transaction.

• When the persistence context needs to be automatically propagated along with the JTA transaction
You use the container-managed EntityManager. If you use the container-managed EntityManager, the persistence
context is automatically propagated along with the JTA transaction. Therefore, when multiple components are
invoked in one JTA transaction, EntityManager used in the same JTA transaction can be associated with the same
persistence context.
As a result, the application need not pass the EntityManager references to the arguments used when the references
are invoked from one component in another component.

• When the application needs to use the persistence context independently from the JTA transaction
You use the application-managed EntityManager. If you use the application-managed EntityManager, when you use
another EntityManager in the same JTA transaction also, this EntityManager does not share the persistence context
and has an independent persistence context.

8. How to Use JPA with Application Server

Compatibility Guide 206

(2) Types of persistence context
The persistence contexts are of two types depending on the lifetime:

• Transaction scope persistence context
• Extended persistence context

For the container-managed EntityManager, you can choose the type of persistence context. You specify the type of
persistence context in the type attribute of @PersistenceContext. The default type is the transaction scope
persistence context.

Note that the extended persistence context is always used for the application-managed EntityManager. You cannot
choose the type of persistence context.

8.5.2 Persistence context when the container-managed EntityManager is
used

When you use the container-managed EntityManager, the life cycle of the persistence context is managed by the
container and the persistence context is automatically propagated along with the JTA transaction. You can choose the
transaction scope persistence context or the extended persistence context as the type of the persistence context life cycle.

The following sections describe the respective persistence contexts:

(1) Transaction scope persistence context
With the JPA specifications, the persistence context having the same life cycle as the transaction is called the transaction
scope persistence context.

The EntityManager has the same life cycle as that of the transaction by default. Therefore, the updates cached in the
persistence context of EntityManager are applied to the database when the transaction is committed.

(a) Life cycle of persistence context
The life cycle of the transaction scope persistence context is as follows:

• Creating the persistence context
The transaction scope persistence context is created when the container-managed EntityManager is first invoked in
a JTA transaction.
The created persistence context is associated with the JTA transaction.
After that, when the container-managed EntityManager is used in the same JTA transaction, this persistence context
is used.

• Destroying the persistence context
When the JTA transaction is committed or rolled back, the transaction scope persistence context is destroyed.

If the container-managed EntityManager is invoked outside the transaction, all the entities loaded from the database are
immediately detached when the invocation of the EntityManager method ends.

(2) Extended persistence context
With the Java EE environment, if EntityManager is used from the Stateful Session Bean, you can set the same persistence
context lifetime as the Stateful Session Bean lifetime. In this case, the updates are applied to the database every time the

8. How to Use JPA with Application Server

Compatibility Guide 207

transaction is committed, but the entity objects managed in the persistence context are stored in the managed status as
are across multiple transactions. The persistence context with the same life cycle as the Stateful Session Bean is called
the extended persistence context in the JPA.

The extended persistence context is created simultaneously when the Stateful Session Bean is created and is associated
with that Stateful Session Bean. Thereafter, the extended persistence context is destroyed simultaneously when the
Stateful Session Bean is destroyed.

When the Stateful Session Bean creates another Stateful Session Bean and when the definition is such that the creating
Stateful Session Bean and the created Stateful Session Bean both use the extended persistence context, the persistence
context on the creating side is inherited on the created machine. The persistence context is inherited regardless of whether
the transaction is active when the Stateful Session Bean is created. If the persistence context is inherited when the Stateful
Session Bean is created, the persistence context is destroyed when all the Stateful Session Beans sharing that persistence
context are destroyed.

(3) Extended persistence context and transactions
The extended persistence context exists from the time the EntityManager instance is created until the instance
is closed. The extended persistence context supports multiple transactions and the invocation outside the
EntityManager transaction.

The relationship with transactions is as follows:

• If EntityManager is invoked within the transaction scope or if the stateful session beans bound by the persistence
context are invoked in the transaction scope, the entities managed by EntityManager participate in the transaction.

• Regardless of whether the transaction is running, the persist, remove, merge, and refresh operations might
be performed. In this case, EntityManager participates in the transaction and the updates are applied in the database
when the transaction is committed.

• Even after the transaction is committed, the references to the entity object are stored. The entity object is managed
by EntityManager and is updated as an object managed between transactions (managed entity).

(4) Propagation of persistence context
When the container-managed EntityManager is used, the persistence context is propagated using the JTA transaction and
might be associated with multiple EntityManager. However, the persistence context is only propagated with the same
Application Server. The persistence context is not propagated in a remote Application Server.

The following points separately describe the propagation of the persistence context for the states when a component
is invoked:

If the JTA transaction does not exist or the persistence context is not associated with the JTA transaction when
the component is invoked

The persistence context is not propagated. The operations when EntityManager is invoked from this component are
as follows:

• When EntityManager using the transaction scope persistence context is invoked, a new persistence context
is created.

• When EntityManager using the extended persistence context is invoked, the extended persistence context
associated with the invoked Stateful Session Bean is used.

• If the JTA transaction exists when EntityManager is invoked, the persistence context is associated with the
JTA transaction.

8. How to Use JPA with Application Server

Compatibility Guide 208

If the JTA transaction is propagated and the persistence context is associated with the JTA transaction when the
component is invoked

The operations when EntityManager is invoked from this component are as follows:

• If another persistence context is associated with the JTA transaction although the component is the Stateful
Session Bean that already has the extended persistence context, the container throws EJBException.

• When EntityManager using the transaction scope persistence context is invoked, the persistence context
associated with the propagated JTA transaction is used.

8.5.3 Persistence context when the application-managed EntityManager
is used

When you use the application-managed EntityManager, the application directly invokes EntityManagerFactory of the
JPA provider and manages the EntityManager life cycle and the creation and destruction of the persistence context. The
life cycle of the application-managed persistence context can manage life cycles across multiple transactions.

(1) Managing the EntityManager life cycle
With the application, you use the close and isOpen methods of EntityManager to manage the life cycle of the
application-managed EntityManager. If you invoke the close method of EntityManager, EntityManager, persistence
context associated with EntityManager, and the other resources are released. After the close method is invoked, do
not invoke methods other than EntityManager getTransaction method and isOpen method with the application.
If other methods are invoked, IllegalStateException is thrown. If the close method is invoked when the
transaction is active, the persistence context remains stored until the transaction is concluded. The isOpen method of
EntityManager returns true until EntityManager is closed and false after EntityManager is closed.

(2) Life cycle of persistence context
The life cycle of the application-managed persistence context is as follows:

• Creating the persistence context
The persistence context is created when the createEntityManager method of EntityManagerFactory
is invoked.

• Destroying the persistence context
The persistence context is destroyed when the close method of EntityManager is invoked.

The application-managed persistence context is independent of the transaction. Therefore, this persistence context is not
propagated along with the JTA transaction.

(3) Notes on using the JTA entity manager
When the JTA entity manager is used in the application-managed EntityManager, the invocation of
joinTransaction of EntityManager when the application creates EntityManager outside the JTA transaction
scope is the responsibility of the application. The application must report EntityManager that the transaction has started,
so invoke the joinTransaction method of EntityManager after the transaction starts.

8. How to Use JPA with Application Server

Compatibility Guide 209

8.6 How to obtain the container-managed EntityManager

To obtain the container-managed EntityManager from the J2EE application, use one of the following methods:

• Method of injecting EntityManager in the application field and setter method by using the DI
• Method of looking up EntityManager by using the JNDI from the application

The following sections describe each of the methods.

8.6.1 Method of injecting EntityManager in the application
The following two more methods are available for injecting EntityManager in the application fields and in the
setter method:

1. Method of adding @PersistenceContext in the field or method at the inject destination

2. Method of specifying definitions in the <persistence-context-ref> tag of a DD (web.xml)

However, you cannot specify the JPA definition using EJB 3.0 ejb-jar.xml with Application Server. Therefore, if
you want to use the JPA in an EJB, use the method specified in point 1.

The following is a description of the methods:

(1) Method of using @PersistenceContext
When you use @PersistenceContext to inject EntityManager, you add @PersistenceContext in the
field and setter method where EntityManager is to be injected. The attributes that can be specified in
@PersistenceContext are as follows:

(a) unitName attribute
In the unitName attribute, you specify the name of the persistence unit defined in persistence.xml. However,
when the persistence unit to be used can be uniquely identified, such as when only one persistence unit is defined in the
EJB-JAR and WAR or EAR file, you can omit the unitName attribute. For details on the persistence unit used when
the unitName attribute is omitted, see 8.11.2 Reference scope of the persistence unit name.

(b) type attribute
In the type attribute, you specify the life cycle type of the persistence context. You can specify
PersistenceContextType.TRANSACTION or PersistenceContextType.EXTENDED.

• When PersistenceContextType.TRANSACTION is specified
The transaction scope persistence context is used and the transaction lifetime and the persistence context lifetime
becomes the same.

• When PersistenceContextType.EXTENDED is specified
The extended persistence context is used and the Stateful Session Bean lifetime and the persistence context lifetime
becomes the same.
Note that @PersistenceContext in which PersistenceContextType.EXTENDED is specified in the
type attribute can only be added in the field or method of the Stateful Session Bean.

When the type attribute is omitted, the default value is PersistenceContextType.TRANSACTION.

8. How to Use JPA with Application Server

Compatibility Guide 210

(c) properties attribute
In the properties attribute, you can specify the properties for the JPA provider used for setting up a persistence unit.
The properties specified here are passed to the JPA provider when EntityManager is obtained from the JPA provider.

(d) name attribute
When you use injection, normally you need not specify the name attribute, but if specified, EntityManager is registered
in the JNDI Namespace (java:comp/env) with the name specified in the name attribute. An example of using
@PersistenceContext to inject EntityManager is as follows:

@Stateless
public class InventoryManagerBean implements InventoryManager {
 @PersistenceContext(unitName="myUnit")
 private EntityManager em;
 ...
}

(2) Method of using the <persistence-context-ref> tag of the DD
When you use a DD to inject EntityManager, you define the following tags in the <persistence-context-ref>
tag of the DD:

(a) <description> tag
In the <description> tag, the user can freely code the explanation for the EntityManager references to be defined.
Even if this tag is specified, the specified contents do not affect the operations of the application. You can also omit
this tag.

(b) <persistence-context-ref-name> tag
In the <persistence-context-ref-name> tag, specify the name with which EntityManager is registered
in the JNDI Namespace. The specified name is the relative path from java:comp/env. The JNDI registration
name of EntityManager is not mandatory, but JPA specifications recommend that the name be set under
java:comp/env/persistence.

(c) <persistence-unit-name> tag
In the <persistence-unit-name> tag, you specify the name of the persistence unit defined in
persistence.xml. However, when the persistence unit to be used can be uniquely identified, such as when only one
persistence unit is defined in the EJB-JAR and WAR or EAR, you can omit the <persistence-unit-name> tag.
For details on the persistence unit used when the <persistence-unit-name> tag is omitted, see 8.11.2 Reference
scope of the persistence unit name.

(d) <persistence-context-type> tag
In the <persistence-context-type> tag, you specify the life cycle type of the persistence context. You specify
Transaction or Extended.

• When Transaction is specified
The transaction scope persistence context is used and the transaction lifetime and the persistence context lifetime
becomes the same.

• When Extended is specified

8. How to Use JPA with Application Server

Compatibility Guide 211

The extended persistence context is used and the Stateful Session Bean lifetime and the persistence context lifetime
becomes the same.
Note that the <persistence-context-ref> tag in which Extended is specified in the <persistence-
context-type> tag can only be defined for the Stateful Session Bean.

When the <persistence-context-type> tag is omitted, the default value is Transaction.

(e) <persistence-property> tag
In the <persistence-property> tag, you can specify the properties for the JPA provider used for setting up the
persistence unit. The properties specified here are passed to the JPA provider when EntityManager factory is obtained
from the JPA provider. You can omit this tag.

(f) <injection-target> tag
In the <injection-target-class> tag of the <injection-target> tag, you specify the inject destination
class. In the <injection-target-name> tag of the <injection-target> tag, you specify the field name or
setter method name at the inject destination. An example of defining the <persistence-context-ref> tag
in web.xml and injecting EntityManager is as follows:

...
<web-app>
 ...
 <servlet>
 <display-name>InventoryManagerServlet</display-name>
 <servlet-name>InventoryManagerServlet</servlet-name>
 <servlet-class>com.hitachi.InventoryManagerServlet</servlet-class>
 </servlet>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management application.
 </description>
 <persistence-context-ref-name>persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>InventoryManagement</persistence-unit-name>
 <persistence-context-type>Transaction</persistence-context-type>
 <injection-target>
 <injection-target-class>
 com.hitachi.InventoryManagerServlet
 </injection-target-class>
 <injection-target-name>em</injection-target-name>
 </injection-target>
 </persistence-context-ref>
 ...
</web-app>
...

8.6.2 Method of looking up EntityManager from the application
The following two more methods are available for using the JNDI to look up EntityManager from the application:

8. How to Use JPA with Application Server

Compatibility Guide 212

1. Method of adding @PersistenceContext in the class for looking up EntityManager and defining the
EntityManager references

2. Method of defining the <persistence-context-ref> tag in the DD (web.xml) and defining the
EntityManager references

However, you cannot specify the JPA definition using EJB 3.0 ejb-jar.xml with Application Server. Therefore, if
you want to use the JPA in an EJB, use the method specified in point 1.

The following sections describe the methods:

(1) Method of using @PersistenceContext
When you use @PersistenceContext to define the EntityManager references, add @PersistenceContext in
the class that executes lookup.

The attributes that can be specified in @PersistenceContext are as follows:

(a) name attribute
In the name attribute, you specify the lookup name with which the application code will look up EntityManager.
The specified lookup name is the relative path from java:comp/env. The lookup name of EntityManager is not
mandatory, but the JPA specifications recommend that the name be set up under java:comp/env/persistence.

For @PersistenceContext the same attributes are used that are used as other attributes in 8.6.1 Method of injecting
EntityManager in the application. Note that only the Stateful Session Bean can look up EntityManager in the extended
scope. Also, for adding multiple @PersistenceContext in one class, you add @PersistenceContexts
in the class and specify the array of @PersistenceContext as the value attribute. An example of using
@PersistenceContext to look up EntityManager from SessionContext is as follows:

@Stateless
@PersistenceContext(name="persistence/OrderEM")
public class MySessionBean implements MyInterface {
 @Resource SessionContext ctx;
 public void doSomething() {
 ...
 EntityManager em = (EntityManager)ctx.lookup("persistence/OrderEM");
 ...
 }
}

An example of using @PersistenceContext to look up EntityManager from InitialContext is as follows:

@Stateless
@PersistenceContext(name="persistence/InventoryAppMgr")
public class InventoryManagerBean implements InventoryManager {
 public void updateInventory(...) {
 ...
 Context initCtx = new InitialContext();
 EntityManager em = (EntityManager)
 initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");
 ...
 }
}

8. How to Use JPA with Application Server

Compatibility Guide 213

(2) Method of using the <persistence-context-ref> tag of the DD
When you use the DD to define the EntityManager references, define the following tags in the <persistence-
context-ref> tag of the DD:

(a) <persistence-context-ref-name> tag
In the <persistence-context-ref-name> tag, specify the lookup name with which the application code
will look up EntityManager. The specified lookup name is the relative path from java:comp/env. The lookup
name of EntityManager is not mandatory, but the JPA specifications recommend that the name be set under
java:comp/env/persistence.

For the <persistence-context-ref> tag, the same tags are used that are used as other tags in 8.6.1 Method
of injecting EntityManager in the application. However, when EntityManager is obtained with the JNDI lookup, you
cannot specify <injection-target>. Note that only the Stateful Session Bean can look up EntityManager in the
extended scope.

An example of defining <persistence-context-ref> in web.xml is as follows:

...
<web-app>
 ...
 <servlet>
 <display-name>InventoryManagerServlet</display-name>
 <servlet-name>InventoryManagerServlet</servlet-name>
 <servlet-class>com.hitachi.InventoryManagerServlet</servlet-class>
 </servlet>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>InventoryManagement</persistence-unit-name>
 <persistence-context-type>Transaction</persistence-context-type>
 </persistence-context-ref>
 ...
</web-app>
...

8.6.3 Overriding the @PersistenceContext definition using the DD
If the <persistence-context-ref> tag is defined in the DD when @PersistenceContext is mentioned
in the application, the contents defined in the annotation are overwritten by the contents defined in the DD.
In this case, the mapping between the annotations and DD is determined with the mapping between the name
attribute of @PersistenceContext and the <persistence-context-ref-name> tag present under the
<persistence-context-ref> tag of the DD. Note that even if the name attribute is not explicitly specified in
@PersistenceContext, the name attribute contains the default value.

The precautions to be taken when the attributes specified in @PersistenceContext are overridden with the DD tags
are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 214

(1) <persistence-unit-name> tag and unitName attribute
The <persistence-unit-name> tag of the DD overrides the unitName attribute of
@PersistenceContext. Normally, if you change the persistence unit name, the application stops operating,
so take care when you define the DD and annotations.

(2) <persistence-context-type> tag and type attribute
The <persistence-context-type> tag of the DD overrides the type attribute of @PersistenceContext.
Normally, if you change the life cycle type of the persistence context, the application stops operating, so take care when
you define the DD and annotations.

(3) <persistence-property> tag and properties attribute
The properties specified in the <persistence-property> tag of the DD are added to the properties specified in the
properties attribute of @PersistenceContext. However, if the property name is the same, the property value
is overridden.

(4) <injection-target> tag
The injection target cannot be overridden. Note that when the <injection-target> tag is coded in the DD,
accurately specify the fields and methods in which @PersistenceContext is added.

8. How to Use JPA with Application Server

Compatibility Guide 215

8.7 How to obtain the application-managed EntityManager

When the application-managed EntityManager is used, the application uses EntityManagerFactory to create
EntityManager. There are two methods by which the application obtains EntityManagerFactory:

• Method of using the DI to inject EntityManagerFactory in the application field and setter method

• Method of using the JNDI from the application to look up EntityManagerFactory

The following is a description of the methods:

8.7.1 Method of injecting EntityManagerFactory in the application
The following two more methods are available for injecting EntityManagerFactory in the application fields and
setter method:

1. Method of adding @PersistenceUnit in the field or method at the inject destination

2. Method of specifying a definition in the <persistence-unit-ref> tag of the DD (web.xml)

However, you cannot specify the JPA definition using EJB 3.0 ejb-jar.xml with Application Server. Therefore, if
you want to use the JPA in an EJB, use the method specified in point 1.

The following sections describe the methods:

(1) Method of using @PersistenceUnit
When you use @PersistenceUnit to inject EntityManagerFactory, add @PersistenceUnit in the field
and setter method where EntityManagerFactory is to be injected. The attributes that can be specified in
@PersistenceUnit are as follows:

(a) unitName attribute
In the unitName attribute, you specify the name of the persistence unit defined in persistence.xml. However,
when the persistence unit to be used can be uniquely identified, such as when only one persistence unit is defined in the
EJB-JAR and WAR or EAR, you can omit the unitName attribute. For details on the persistence unit used when the
unitName attribute is omitted, see 8.11.2 Reference scope of the persistence unit name.

(b) name attribute
When you use injection, normally you need not specify the name attribute, but if you specify, EntityManager is registered
in the JNDI Namespace (java:comp/env) with the name specified in the name attribute. An example of using
@PersistenceUnit to inject EntityManagerFactory is as follows:

@Stateless
public class InventoryManagerBean implements InventoryManager {
 @PersistenceUnit(unitName="myUnit")
 private EntityManagerFactory emf;
 ...
}

8. How to Use JPA with Application Server

Compatibility Guide 216

(2) Method of using the <persistence-unit-ref> tag of the DD
When you use the DD to inject EntityManagerFactory, define the following tags in the <persistence-unit-ref>
tag of the DD:

(a) <persistence-unit-ref-name> tag
In the <persistence-unit-ref-name> tag, you specify the name with which EntityManagerFactory is
registered in the JNDI Namespace. The specified name is the relative path from java:comp/env.

The JNDI registration name of EntityManagerFactory is not mandatory, but the JPA specifications recommend that the
name be set under java:comp/env/persistence.

(b) <description> tag
In the <description> tag, you can freely code the EntityManagerFactory references to be defined. Even if this
element is specified, the specified contents do not affect the operations of the application. You can also omit this tag.

(c) <persistence-unit-name> tag
In the <persistence-unit-name> tag, you specify the name of the persistence unit defined in
persistence.xml. However, when the persistence unit to be used can be uniquely identified, such as when only one
persistence unit is defined in the EJB-JAR and WAR or EAR, you can omit the <persistence-unit-name> tag.
For details on the persistence unit used when the <persistence-unit-name> tag is omitted, see 8.11.2 Reference
scope of the persistence unit name.

(d) <injection-target> tag
In the <injection-target-class> tag of the <injection-target> tag, you specify the inject destination
class. In the <injection-target-name> tag of the <injection-target> tag, you specify the field name
or setter method name at the inject destination. An example of defining the <persistence-unit-ref> tag in
web.xml and injecting EntityManagerFactory is as follows:

...
<web-app>
 ...
 <servlet>
 <display-name>InventoryManagerServlet</display-name>
 <servlet-name>InventoryManagerServlet</servlet-name>
 <servlet-class>com.hitachi.InventoryManagerServlet</servlet-class>
 </servlet>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management application.
 </description>
 <persistence-unit-ref-name>persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>InventoryManagement</persistence-unit-name>
 <injection-target>
 <injection-target-class>
 com.hitachi.InventoryManagerServlet
 </injection-target-class>
 <injection-target-name>emf</injection-target-name>
 </injection-target>
 </persistence-unit-ref>

8. How to Use JPA with Application Server

Compatibility Guide 217

 ...
</web-app>
...

8.7.2 Method of looking up EntityManagerFactory from the application
The following two more methods are available for using the JNDI to look up EntityManagerFactory from the application:

1. Method of adding @PersistenceUnit in the class for looking up EntityManagerFactory and defining the
EntityManagerFactory references

2. Method of defining the <persistence-unit-ref> tag in the DD (web.xml) and defining the
EntityManagerFactory references

However, you cannot specify the JPA definition using EJB 3.0 ejb-jar.xml with Application Server. Therefore, if
you want to use the JPA in an EJB, use the method specified in 1.

The following sections describe the methods:

(1) Method of using @PersistenceUnit
When you use @PersistenceUnit to define the EntityManagerFactory references, you add @PersistenceUnit
in the class that executes lookup. The attributes that can be specified in @PersistenceUnit are as follows:

(a) name attribute
In the name attribute, you specify the lookup name with which the application code will look up EntityManagerFactory.
The specified lookup name is the relative path from java:comp/env. The lookup name of EntityManagerFactory is
not required, but the JPA specifications recommend that the name be set up under java:comp/env/persistence.

For @PersistenceUnit, the same attributes are used that are used as the other attributes in 8.7.1 Method of injecting
EntityManagerFactory in the application. Note that to add multiple @PersistenceUnit in one class, you add
@PersistenceUnits in the class and specify the array of @PersistenceUnit as the value attribute. An
example of using @PersistenceUnit to look up EntityManagerFactory from SessionContext is as follows:

@Stateless
@PersistenceUnit(name="persistence/InventoryAppDB")
public class InventoryManagerBean implements InventoryManager {
 @Resource SessionContext ctx;
 public void updateInventory(...) {
 ...
 EntityManagerFactory emf = (EntityManagerFactory)
 ctx.lookup("persistence/InventoryAppDB");
 EntityManager em = emf.createEntityManager();
 ...
 }
}

An example of using @PersistenceUnit to look up EntityManagerFactory from InitialContext is as follows:

@Stateless
@PersistenceUnit(name="persistence/InventoryAppDB")

8. How to Use JPA with Application Server

Compatibility Guide 218

public class InventoryManagerBean implements InventoryManager {
 public void updateInventory(...) {
 Context initCtx = new InitialContext();
 EntityManagerFactory emf = (EntityManagerFactory)
 initCtx.lookup("java:comp/env/persistence/InventoryAppDB");
 EntityManager em = emf.createEntityManager();
 ...
 }
}

(2) Method of using the <persistence-unit-ref> tag of the DD
When you use the DD to define the EntityManagerFactory references, define the <persistence-unit-ref> tag
of the DD:

(a) <persistence-unit-ref-name> tag
In the <persistence-unit-ref-name> tag, specify the lookup name with which the application code will
look up EntityManagerFactory. The specified lookup name is the relative path from java:comp/env. The lookup
name of EntityManagerFactory is not mandatory, but the JPA specifications recommend that the name be set under
java:comp/env/persistence.

For the <persistence-unit-ref> tag, the same tags are used that are used as the other tags in 8.7.1 Method of
injecting EntityManagerFactory in the application. However, when EntityManagerFactory is obtained with the JNDI
lookup, you cannot specify <injection-target> tag. An example of defining <persistence-unit-ref> in
web.xml is as follows:

...
<web-app>
 ...
 <servlet>
 <display-name>InventoryManagerServlet</display-name>
 <servlet-name>InventoryManagerServlet</servlet-name>
 <servlet-class>com.hitachi.InventoryManagerServlet</servlet-class>
 </servlet>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>InventoryManagement</persistence-unit-name>
 </persistence-unit-ref>
 ...
</web-app>
...

8.7.3 Overriding the @PersistenceUnit definition using the DD
If the <persistence-unit-ref> tag is defined in the DD when @PersistenceUnit is mentioned in
the application, the contents defined in the annotation are overwritten by the contents defined in the DD. In this

8. How to Use JPA with Application Server

Compatibility Guide 219

case, the mapping between the annotations and DD is determined with the mapping between the name attribute
of @PersistenceUnit and the <persistence-unit-ref-name> tag present under the <persistence-
unit-ref> tag of the DD. Note that even if the name attribute is not explicitly specified in @PersistenceUnit,
the name attribute contains the default value.

The precautions to be taken when the attributes specified in @PersistenceUnit are overridden with the DD tags are
as follows:

(1) <persistence-unit-name> and unitName attribute
The <persistence-unit-name> tag of the DD overrides the unitName attribute of @PersistenceUnit.
Normally, if you change the persistence unit name, the application stops operating, so take care when you make changes.

(2) <injection-target> tag
The injection target cannot be overridden with the DD. Note that when the <injection-target> tag is coded in
the DD, you must accurately specify the fields and methods in which @PersistenceContext is added.

8. How to Use JPA with Application Server

Compatibility Guide 220

8.8 Definitions in persistence.xml

You define the persistence unit information by using the <persistence-unit> tag of persistence.xml. This
section describes the attributes of the <persistence-unit> tag and the tags specified under the <persistence-
unit> tag.

Note that the space and linefeed characters added at the beginning and end of values specified in the attributes of the
<persistence-unit> tag and in the tags specified under the <persistence-unit> tag are ignored.

For details on the tags in persistence.xml, see 13.2 persistence.xml.

8.8.1 Attributes specified in the <persistence-unit> tag
In the <persistence-unit> tag, you specify the name attribute and transaction-type attribute.

(1) name attribute
You specify the name of the persistence unit to be defined. The name specified here is referenced from the
unitName attribute of @PersistenceUnit or @PersistenceContext in the case of annotations. Also, in
the case of the DD, the name specified here is referenced from the <persistence-unit-name> tag under the
<persistence-context-ref> tag or under the <persistence-unit-ref> tag.

You cannot omit the name attribute. Also, when the JPA is used with Application Server, you cannot specify null in the
name attribute. Specify a string of at least 1 character.

(2) transaction-type attribute
In the persistence unit to be defined, you specify whether the JTA will control the transaction or whether the application
will control the transaction by using javax.persistence.EntityTransaction.

• When the transaction is controlled by the JTA
Specify JTA in the transaction-type attribute. When you specify JTA, you must also specify the <jta-
data-source> tag at the same time.

• When the application controls the transaction by using EntityTransaction
Specify RESOURCE_LOCAL in the transaction-type attribute. When you specify RESOURCE_LOCAL, you
must also specify the <non-jta-data-source> tag at the same time.

Note that if the transaction-type attribute is omitted, the default value is JTA.

8.8.2 Tags specified under the <persistence-unit> tag
The tags listed in the following table are specified under the <persistence-unit> tag.

Table 8‒7: Tags specified under the <persistence-unit> tag

Specified tags Settings

<description> tag Describes the persistence unit.

8. How to Use JPA with Application Server

Compatibility Guide 221

Specified tags Settings

<provider> tag Specifies the JPA provider used.

<jta-data-source> tag
<non-jta-data-source> tag

Specifies the JTA data source or non-JTA data source used in the
JPA provider.

<mapping-file> tag Specifies the O/R mapping file used.

<jar-file> tag Specifies the name of the JAR file containing the entity class,
embeddable class, and mappedsuper class.

<class> tag Specifies the entity class, embeddable class, and
mappedsuper class.

<exclude-unlisted-classes> tag Specifies whether to handle the class as a Persistence class.

<properties> tag Specifies the JPA provider-specific properties.

The following points describe respective tags:

(1) <description> tag
The user can freely code the explanation about the persistence unit. The contents specified here do not affect the
operations of the application. Note that you can omit this tag.

(2) <provider> tag
Specifies the JPA provider used in the persistence unit. You specify the implementation class name of the
javax.persistence.spi.PersistenceProvider interface of the JPA provider with the fully qualified
name containing the package name. You can omit this tag.

If this tag is omitted, the default JPA provider specified in the Easy Setup definition file is used. Also, when this tag is
omitted and the default JPA provider is not specified in the Easy Setup definition file, Cosminexus JPA provider is used
as the JPA provider.

If the application depends on a specific JPA provider functionality and behavior, make sure to specify the
<provider> tag.

Tip

To specify the default JPA provider in the Easy Setup definition file, specify
ejbserver.jpa.defaultProviderClassName in the <param-name> tag of the logical J2EE
server and specify the name of the default JPA provider class in the <param-value> tag.

Note that if the ejbserver.jpa.overrideProvider parameter is specified in the <param-
name> tag of the logical J2EE server in the Easy Setup definition file, the name of the JPA
provider class specified in the <param-value> tag of the ejbserver.jpa.overrideProvider
parameter is used on a higher priority than the value specified in the <provider> tag and the
ejbserver.jpa.defaultProviderClassName parameter.

For details on the parameters to be specified in the Easy Setup definition file, see 12.2.1 Parameters used for
setting up the user properties for the J2EE server.

The following table describes the priority for determining the JPA provider used in the persistence unit.

8. How to Use JPA with Application Server

Compatibility Guide 222

Table 8‒8: Priority for determining the JPA provider used in the persistence unit

Priority JPA provider to be used

1 Value specified in ejbserver.jpa.overrideProvider property of the Easy Setup definition file

2 Value specified in the <provider> tag of persistence.xml

3 Cosminexus JPA provider
(The JPA provider can also be changed by using the ejbserver.jpa.defaultProviderClassName
parameter of the Easy Setup definition file)

(3) <jta-data-source> tag and <non-jta-data-source> tag
Specifies the JTA data source or non-JTA data source used by the JPA provider. The value specified here is
product-dependent as per the JPA specifications, but define the data source references with Application Server as follows:

• When referencing a resource adapter conforming to Connector 1.0
Specify the "display-name-of-resource-adapter" or "optional-name-of-resource-adapter".

• When referencing a resource adapter conforming to Connector 1.5
Specify the "display-name-of-resource-adapter!connection-definition-identifier" or "optional-name-of-resource-
adapter".

The specified value is interpreted as "display-name-of-resource-adapter" or "display-name-of-resource-adapter!
connection-definition-identifier" and the relevant resource adapter is searched. If the relevant resource adapter does
not exist, the specified value is interpreted as "optional-name-of-resource-adapter" and the relevant resource adapter
is searched.

The resource adapter to be referenced must be deployed as a J2EE resource adapter (method of deploying the resource
adapter as a standalone module). Start the resource adapter before starting the application containing the persistence unit.

You can omit the <jta-data-source> tag and <non-jta-data-source> tag. If the tags
are omitted, the value specified in the ejbserver.jpa.defaultJtaDsName parameter or
ejbserver.jpa.defaultNonJtaDsName parameter of the Easy Setup definition file is used. However, these
properties do not have default values.

If a value is specified in the ejbserver.jpa.overrideJtaDsName parameter or
ejbserver.jpa.overrideNonJtaDsName parameter, this value is used on higher priority
than the value specified in the <jta-data-source> tag and <non-jta-data-source>
tag and the value specified in the ejbserver.jpa.defaultJtaDsName parameter and
ejbserver.jpa.defaultNonJtaDsName parameter.

You must specify LocalTransaction or XATransaction in the transaction support level of the resource adapter
specified in the <jta-data-source> tag. You must also specify NoTransaction in the transaction support level
of the resource adapter specified in <non-jta-data-source>.

The following table lists the priority for determining the JTA data source and non-JTA data source used in the
persistence unit.

8. How to Use JPA with Application Server

Compatibility Guide 223

Table 8‒9: Priority for determining the JTA data source and non-JTA data source used in the
persistence unit

Priority JPA provider to be used

1 Value specified in the ejbserver.jpa.overrideJtaDsName property or
ejbserver.jpa.overrideNonJtaDsName property of the Easy Setup definition file

2 Value specified in the <jta-data-source> or <non-jta-data-source> element
of persistence.xml

3 Value specified in the ejbserver.jpa.defaultJtaDsName property or
ejbserver.jpa.defaultNonJtaDsName property of the Easy Setup definition file

Important note

If a resource adapter display name containing characters other than one-byte alphanumeric characters and
underscore (_) is specified in the <jta-data-source> tag or <non-jta-data-source> tag of
persistence.xml, replace that character with an underscore (_). However, if the replaced display name is
duplicated with another resource adapter display name or optional name, note that the persistence unit might
perform operations using an unintended data source.

(4) <mapping-file>, <jar-file>, <class>, and <exclude-unlisted-classes>
tag

The following two methods are available for specifying the entity class, embeddable class, mapped superclass included
in the persistence unit:

1. Method specified explicitly by using the O/R mapping file and the <class> tag

2. Method that is not specified explicitly and uses auto-search by JPA provider

A description of method 1 is as follows:

(a) Specifying the classes using the O/R mapping file
If an XML file named orm.xml is allocated under META-INF at the persistence unit root or under META-INF in
another JAR file referenced with the <jar-file> tag from the persistence unit, the file is automatically handled as an
O/R mapping file even if the file is not specified in the <mapping-file> tag. Furthermore, if the name of the XML
file that can be loaded on the class path is specified in the <mapping-file> tag, that XML file is also handled as an
O/R mapping file. If one persistence unit contains multiple O/R mapping files, the mapping information is read from all
the O/R mapping files. However, the operations for duplicate mapping defined between multiple O/R mapping files are
not provided.

(b) Specifying the JAR file that searches the persistence class
In the <jar-file> tag, you can specify the JAR file containing the persistence class and O/R mapping file.
From the JAR file specified in the <jar-file> tag, the class in which @Entity, @Embeddable, and
@MappedSuperclass are added is searched and the mapping information is obtained automatically. If META-INF/
orm.xml exists in the specified JAR file, the mapping information is also obtained from orm.xml. Note that you can
also use the <jar-file> tag and the <mapping-file> tag together.

The JAR files that can be specified in the <jar-file> tag must be included in the class path. The following JAR files
can be specified:

8. How to Use JPA with Application Server

Compatibility Guide 224

• JAR file placed in the EAR root

• JAR file placed in the library directory of the EAR file

• EJB-JAR

• JAR file placed in WEB-INF/lib in the WAR

However, you cannot specify the JAR file placed in WEB-INF/lib in the WAR in the <jar-file> tag of the
persistence unit defined in the EAR level or EJB-JAR level. This is because the JAR file placed in WEB-INF/lib in
the WAR is loaded using the WEB application class loader and, therefore, can only be referenced from the components
in the WAR.

Also, you can only specify the JAR file included in the same WAR from the <jar-file> tag of the persistence unit
defined in the WAR level. This is because the classes included in the JAR file allocated to a location other than the same
WAR might be loaded using the class loader before the deployment of the persistence unit defined in the WAR level. In
such cases, the conversion of the byte code by the JPA provider might not be performed correctly.

In the <jar-file> tag, specify the relative path from the persistence unit root to the JAR file. The following is an
example of specification:

Example 1
The specification of the relative path shown in the following figure is described below:

• The EAR lib contains myEntities.jar that stores the entity class.

• Specify myEntities.jar in the <jar-file> tag of META-INF/persistence.xml of EJB-JAR
placed in the EAR root.

In this figure, the persistence unit root becomes EJB-JAR, so specify the relative path from EJB-
JAR to myEntities.jar. The relative path is lib/myEntities.jar. Therefore, specify lib/
myEntities.jar in the <jar-file> tag.

Example 2
The specification of the relative path shown in the following figure is described below:

• The EAR root contains myEntities.jar that stores the entity class.

• Specify myEntities.jar in the <jar-file> tag of META-INF/persistence.xml of lib/
myPersistenceUnit.jar in EAR.

8. How to Use JPA with Application Server

Compatibility Guide 225

In this figure, the persistence unit root becomes myPersistenceUnit.jar, so specify the relative path from
myPersistenceUnit.jar to myEntities.jar. The relative path is ../myEntities.jar. Therefore,
specify ../myEntities.jar in the <jar-file> tag.

Example 3
The specification of the relative path shown in the following figure is described below:

• WEB-INF/lib of the WAR contains myEntities.jar that stores the entity class.

• Specify myEntities.jar in the <jar-file> tag of WEB-INF/classes/META-INF/
persistence.xml of the WAR.

In this figure, the persistence unit root becomes WEB-INF/classes of the WAR, so specify the relative path from
WEB-INF/classes to myEntities.jar. The relative path is ../lib/myEntities.jar. Therefore,
specify ../lib/myEntities.jar in the <jar-file> tag.

(c) Specifying the persistence class list explicitly
If you use the <class> tag, you can explicitly specify the persistence class list. The mapping information is obtained
from the annotation added in the specified class. Note that you can also use the <class> tag in combination with the
<mapping-file> tag and <jar-file> tag.

(d) Allocating the persistence class with the added annotation to the persistence unit
root

From the persistence unit root, the persistence class in which @Entity, @Embeddable, and @MappedSuperclass
are added is automatically searched. The mapping information is obtained from the annotation added in the class. If you
do not want to add the annotation-added class, which is allocated to the persistence unit root, in the persistence unit, you
must specify the <exclude-unlisted-classes> tag beforehand.

(5) <properties> tag
You can specify the vendor-specific properties of the JPA provider. If you specify properties that cannot be
understood by the JPA provider, the properties are ignored. Note that you cannot specify properties beginning with
javax.persistence in <properties>.

If you specify properties with property names beginning with the prefix ejbserver.jpa.emfprop. as the system
properties, the properties with the prefix removed are added in the persistence unit properties.

8. How to Use JPA with Application Server

Compatibility Guide 226

8.9 Allocating persistence.xml

You allocate persistence.xml in the EJB-JAR, WAR, or EAR. Make sure that you place persistence.xml
under META-INF. The path with persistence.xml under META-INF is called the persistence unit root.

The locations in which persistence.xml can be allocated are as follows:

• META-INF/persistence.xml of EJB-JAR

• WEB-INF/classes/META-INF/persistence.xml of the WAR

• META-INF/persistence.xml in the jar file placed under WEB-INF/lib of the WAR

• META-INF/persistence.xml in the jar file placed in the EAR root directory

• META-INF/persistence.xml in the jar file placed in the EAR library directory

You can define multiple persistence units in one persistence.xml. You must name the persistence unit. However,
you cannot define multiple persistence units with duplicated names in one EJB-JAR, WAR, or EAR.

The class managed with the persistence unit defined in EAR is loaded using the application class loader and can be
referenced from all the components in the application.

Furthermore, when the same entity class is referenced from the components in different EJB-JAR and WAR, the
referenced class is the same unique class even if the persistence units are different.

8. How to Use JPA with Application Server

Compatibility Guide 227

8.10 JPA interfaces

This section introduces the JPA interfaces and describes the javax.persistence.EntityManager interface and
javax.persistence.EntityManagerFactory interface.

8.10.1 javax.persistence.EntityManager interface
This section describes the interface definition and the notes on the
javax.persistence.EntityManager interface.

(1) Definition of the interface
package javax.persistence;

/**
* Interface for operating the persistence context.
*
* EntityManager instance is associated with the persistence context.
* The persistence context is a set of entity instances and
* the entity instance is unique for each
* perpetuated entity.
* The entity instances and their life cycles
* are managed in the persistence context.
* The EntityManager interface defines the methods for operating the * persis
tence context and is used for
* creating or deleting the perpetuated entity instances,
* searching the entity based on the primary key, and for executing
* the entity query.
*
* Define the set of entities that can be managed by EntityManager
* using the persistence unit.
* The persistence unit defines the group of entity classes used
* by the application and also defines the mapping between the entity
* classes and the database.
*/
public interface EntityManager {

 /**
 * The instance is set to managed and is perpetuated.
 * @param entity instance of the persistent entity
 * @throws EntityExistsException When the entity already exists
 * (When persist method is invoked, EntityExistsException is thrown
 * or EntityExistsException or another PersistenceException
 * is thrown during flush or commit)
 * @throws IllegalArgumentException When the argument is not an entity
 * @throws TransactionRequiredException When the container-managed
 * EntityManager specifying PersistenceContextType.TRANSACTION
 * is invoked when the transaction does not exist
 */
 public void persist(Object entity) ;

 /**
 * The entity status is merged with the current persistence context
 * @param entity Entity

8. How to Use JPA with Application Server

Compatibility Guide 228

 * @return instance where the status is merged with the persistence context
 * @throws IllegalArgumentException When the instance is not an entity
 * or is a removed entity
 * @throws TransactionRequiredException When the container-managed
 * EntityManager specifying PersistenceContextType.TRANSACTION
 * is invoked when the transaction does not exist.
 */
 public <T> T merge(T entity) ;

 /**
 * entity instance is deleted.
 * @param entity Entity
 * @throws IllegalArgumentException Instance is not an entity
 * or is a detached entity
 * @throws TransactionRequiredException When the container-managed
 * EntityManager specifying PersistenceContextType.TRANSACTION
 * is invoked when the transaction does not exist.
 */
 public void remove(Object entity) ;

 /**
 * Searches the primary key.
 * @param entityClass Entity class
 * @param primaryKey Primary key
 * @return Instance of the searched entity
 * null when the entity does not exist
 * @throws IllegalArgumentException When the entityClass argument
 * is not an entity type or if the primaryKey argument is not the
 * valid type as the primary key of that entity
 */
 public <T> T find(Class<T> entityClass, Object primaryKey) ;

 /**
 * The status obtains the delayed fetch instance.
 * When the requested entity does not exist in the database,
 * When the instance status is accessed for the first time
 * EntityNotFoundException is thrown.
 * (when getReference is invoked, the JPA provider is also allowed
 * to throw EntityNotFoundException)
 * If the application does not access the instance while
 * Entity Manager is open, do not expect that the instance status
 * can be accessed during detach
 * @param entityClass Entity class
 * @param primaryKey Primary key
 * @return Instance of the searched entity
 * @throws IllegalArgumentException When the entityClass argument
 * is not an entity type or the primaryKey argument is not a
 * valid type as the primary key of that entity
 * @throws EntityNotFoundException When the entity status cannot
 * be accessed
 */
 public <T> T getReference(Class<T> entityClass, Object primaryKey) ;

 /**
 * The persistence context status is flushed in the database.
 * @throws TransactionRequiredException When the transaction does
 * not exist
 * @throws PersistenceException When flush fails

8. How to Use JPA with Application Server

Compatibility Guide 229

 */
 public void flush() ;

 /**
 * Specifies the flush mode applied to all the objects
 * included in the persistence context.
 * @param flushMode Flush mode
 */
 public void setFlushMode(FlushModeType flushMode) ;

 /**
 * Obtains the flush mode applied to all the objects
 * included in the persistence context.
 * @return flushMode Flush mode
 */
 public FlushModeType getFlushMode() ;

 /**
 * Sets the lock mode of the entity objects
 * included in the persistence context.
 * @param entity Entity
 * @param lockMode Lock mode
 * @throws PersistenceException When an unsupported
 * lock invocation is performed
 * @throws IllegalArgumentException When the instance is not an entity
 * or is a detached entity
 * @throws TransactionRequiredException When the transaction
 * does not exist
 */
 public void lock(Object entity, LockModeType lockMode) ;

 /**
 * Instance status is refreshed to the database status.
 * If the instance status is changed, the status is
 * overwritten by the database status.
 * @param entity Entity
 * @throws IllegalArgumentException When the argument is not an entity
 * or does not have the managed status
 * @throws TransactionRequiredException When the container-managed
 * EntityManager specifying PersistenceContextType.TRANSACTION
 * is invoked when the transaction does not exist
 * @throws EntityNotFoundException When the entity already
 * does not exist in the database
 */
 public void refresh(Object entity) ;

 /**
 * Clears the persistence context and all the managed entities
 * are detached.
 * If the entity has changes that were not flushed in the database
 * the entity is not perpetuated.
 */
 public void clear() ;

 /**
 * Checks if the instance is included in the current
 * persistence context.
 * @param entity Entity

8. How to Use JPA with Application Server

Compatibility Guide 230

 * @return true if included
 * @throws IllegalArgumentException When the argument is not an entity
 */
 public boolean contains(Object entity) ;

 /**
 * Creates a Query instance for executing
* JPQL(Java Persistence Query language) statement
 * @param qlString Java Persistence Query statement
 * @return New Query instance
 * @throws IllegalArgumentException When the query statement is not valid
 */
 public Query createQuery(String qlString) ;

 /**
 * Creates a Query instance for executing the named query
* (JPQL or native SQL).
 * @param name Name of the query defined in the Meta data
 * @return New Query instance
 * @throws IllegalArgumentException If the query with the specified
 * name is not defined.
 */
 public Query createNamedQuery(String name) ;

 /**
 * Creates a Query instance for executing the native SQL statement
* (update statement and delete statement)
 * @param sqlString Native SQL statement
 * @return New Query instance
 */
 public Query createNativeQuery(String sqlString) ;

 /**
 * Creates a Query instance for executing the native SQL query.
 * @param sqlString Native SQL statement
 * @param resultClass Class of the instance that forms the
 * return value
 * @return New Query instance
 */
 public Query createNativeQuery(String sqlString, Class result-
 Class) ;

 /**
 * Creates a Query instance for executing the native SQL query.
 * @param sqlString Native SQL statement
 * @param resultSetMapping Result set mapping name
 * @return New Query instance
 */
 public Query createNativeQuery(String sqlString, String result-
 SetMapping) ;

 /**
 * Reports EntityManager that the JTA transaction is active.
 * This method is invoked by the application
 * to associate the application-managed JTA entity manager that was
 * created outside the transaction scope
 * with the current JTA transaction.
 * @throws TransactionRequiredException When the transaction

8. How to Use JPA with Application Server

Compatibility Guide 231

 * does not exist
 */
 public void joinTransaction() ;

 /**
 * Returned when the lower provider objects exist.
 * The return value of this method depends on the implementation,
 * but when the container-managed EntityManager is used in
 * Cosminexus Component Container,
 * the EntityManager object of the JPA provider is returned.
 * @return EntityManager object of the JPA provider
 * /
 public Object getDelegate() ;

 /**
 * Closes the application-managed EntityManager.
 * After the close method is invoked, all the methods other than
 * getTransaction and isOpen (returning false) of the Query object
 * obtained from EntityManager instance and EntityManager
 * throw IllegalStateException.
 * If this method is invoked when EntityManager
 * is associated with an active transaction, the persistence context
 * continues to exist until the transaction is concluded.
 * @throws IllegalStateException For the container-managed
 * EntityManager
 */
 public void close() ;

 /**
 * Returns whether EntityManager is open.
 * @return Returns true until EntityManager closes.
 */
 public boolean isOpen() ;

 /**
 * Returns the resource level transaction object.
 * Used by the EntityTransaction instance to start and commit
 * multiple transactions serially.
 * @return EntityTransaction instance
 * @throws IllegalStateException When this method is invoked with
 * the JTA entity manager
 */
 public EntityTransaction getTransaction() ;

}

(2) Notes
• When the transaction scope persistence context is used, the persist, merge, remove, and refresh

methods must be invoked in the transaction context. If the transaction context does not exist,
javax.persistence.TransactionRequiredException is thrown.

• The find and getReference methods can also be invoked outside the transaction context. When the transaction
scope persistence context is used, the resulting entity has a detached status. When the extended persistence context
is used, the resulting entity has a managed status.

8. How to Use JPA with Application Server

Compatibility Guide 232

• The Query and EntityTransaction objects obtained from EntityManager can be used while EntityManager
is open.

• If the argument of the createQuery method is not a valid JPQL (Java Persistence Query Language),
IllegalArgumentException is thrown or the execution of the query fails. If the native query is incorrect and
if the definition of the result set is not compatible with the query result, PersistenceException is thrown when
the query is executed and the execution of the query fails. When possible, PersistenceException wraps the
database exceptions.

• If a runtime exception is thrown in the method of the EntityManager interface, the transaction is rolled back.

• The close, isOpen, joinTransaction, and getTransaction methods are used for managing the
application-managed EntityManager.

• With the EJB specifications, the following methods can invoke the EntityManager methods in the Stateless
Session Bean:

• Business method of the business interface or component interface

• Business method

• Interceptor method

• Timeout callback method

The EntityManager methods cannot be invoked with the constructor, the setter method (including
setSessionContext method) of the DI, and the life cycle callback method (PostConstruct and
PreDestroy). If the EntityManager methods are invoked in the unpermitted locations, the KDJE56538-E
message is displayed and java.lang.IllegalStateException is thrown.

• With the EJB specifications, the following methods can invoke the EntityManager methods in the Stateful
Session Bean:

• Life cycle callback method (PostConstruct and PreDestroy)

• Business method of the business interface or component interface

• Business method

• Interceptor method

• afterBegin and beforeCompletion methods of SessionSynchronization
The EntityManager methods cannot be invoked with the constructor, the setter method of the DI, and
afterCompletion method of SessionSynchronization. If the EntityManager methods are invoked in
unpermitted locations, the KDJE56538-E message is displayed and java.lang.IllegalStateException
is thrown.

Note the following points as well when you use the JPA with Application Server:

• EntityManager that the application obtains by using inject, JNDI lookup, and EntityManagerFactory becomes the
proxy class of EntityManager provided by Application Server and not the EntityManager object provided by the
JPA provider. If you use the getDelegate() method of this proxy class, you can obtain the EntityManager
object provided by the JPA provider. However, when the container-managed EntityManager is used, the container
manages the EntityManager life cycle, so do not invoke the close() method of the EntityManager object
obtained by using the getDelegate() method, from the application.

• If the getDelegate() method of EntityManager is invoked when the transaction scope persistence context is used
and when transaction does not exist, the container cannot close the returned EntityManager. In this case, you must
invoke EntityManager.close() with the application.

8. How to Use JPA with Application Server

Compatibility Guide 233

8.10.2 javax.persistence.EntityManagerFactory interface
This section describes the interface definition and the notes on the
javax.persistence.EntityManagerFactory interface.

(1) Definition of the interface
package javax.persistence;

/**
* The EntityManagerFactory interface is used
* to obtain the application-managed EntityManager by the application.
* When the application ends the use of EntityManagerFactory,
* the application must close EntityManagerFactory.
* After EntityManagerFactory is closed,
* all EntityManagers created from EntityManagerFactory are
* treated as closed.
*/
public interface EntityManagerFactory {
 /**
 * Creates a new EntityManager.
 * Whenever this method is invoked, a new EntityManager instance
 * is returned.
 * The isOpen method of EntityManager returned by this method returns
 * true.
 * @return New EntityManager
 */
 public EntityManager createEntityManager() ;

 /**
 * A new EntityManager is created by using the specified property
 * map.
 * Whenever this method is invoked, a new EntityManager instance
 * is returned.
 * The isOpen method of EntityManager returned by this method returns
 * true.
 * @param map Map storing the EntityManager properties
 * @return New EntityManager
 */
 public EntityManager createEntityManager(Map map) ;

 /**
 * Closes factory and releases all the resources
 * stored in factory.
 * After factory is closed, if method other than isOpen is invoked,
 * IllegalStateException is thrown. The isOpen method returns
 * false.
 * If EntityManagerFactory is closed, all EntityManagers created
 * from factory are also treated as closed.
 */
 public void close() ;

 /**
 * Returns whether factory is open.
 * @return True until factory is closed
 */
 public boolean isOpen() ;

8. How to Use JPA with Application Server

Compatibility Guide 234

}

(2) Notes
• You can include vendor-specific properties of the JPA provider in the map passed to createEntityManager.

The properties that cannot be recognized by the JPA provider are ignored.

• With the EJB specifications, the following methods can invoke the EntityManagerFactory methods in the Stateless
Session Bean:

• Life cycle callback method (PostConstruct and PreDestroy)

• Business method of the business interface or component interface

• Business method

• Interceptor method

• Timeout callback method

The EntityManagerFactory methods cannot be invoked with the constructor and the setter method (including the
setSessionContext method) of the DI.

• With the EJB specifications, the following methods can invoke the EntityManagerFactory methods in the Stateful
Session Bean:

• Life cycle callback method (PostConstruct and PreDestroy)

• Business method of business interface or component interface

• Business method

• Interceptor method

• The afterBegin and beforeCompletion methods of SessionSynchronization.

The EntityManagerFactory methods cannot be invoked with the constructor, the setter method of the dependency
injection, and the afterCompletion method of SessionSynchronization.

8. How to Use JPA with Application Server

Compatibility Guide 235

8.11 Notes on setting up applications

This section describes the notes on setting up the applications running on Application Server and using the JPA.

8.11.1 Notes on allocating the entity classes
With Application Server, package the entity classes in the EARs, EJB-JARs, or WARs, at the locations decided in the
JPA specifications. Do not add the entity classes in the system class path.

When an entity class is loaded with the application class loader or the Web application class loader, the byte code of
the class is converted using the JPA provider in order to implement operations such as Lazy fetch. If the entity class is
included in the system class path, the byte code conversion does not work because the entity class is loaded with the
system class loader. Therefore, the JPA provider does not operate properly.

8.11.2 Reference scope of the persistence unit name
The components, such as the EJBs and servlets, included in the application, reference the used persistence
unit by specifying the persistence unit name in the unitName attribute of @PersistenceUnit and
@PersistenceContext and in the <persistence-unit-name> tag under the <persistence-context-
ref> tag or under the <persistence-unit-ref> tag defined in the DD. However, the persistence unit scope that
can be referenced from each component is as follows:

• The persistence units defined in the EJB-JARs or WARs can be referenced from the components included in the
EJB-JARs or WARs.

• The persistence unit defined in the EAR file can be referenced from all the components included in the EAR file.

If the name of the persistence unit defined in the EAR file and the name of the persistence unit defined in the EJB-JARs
or WARs are duplicated, from the components in the EJB-JAR or WAR, the persistence units defined with a narrower
scope are given priority. For example, if persistence units with the same name are defined in the EAR and WAR files,
from the components included in the WAR file, the persistence unit defined in the WAR file is visible on priority. The
persistence unit existing in the EAR file is not visible.

(1) Persistence unit used when the persistence unit name is omitted
If you omit the persistence unit name referenced by the components when the JPA is used with Application Server, the
persistence unit used is determined with the following rules:

• If only one persistence unit is defined in the EJB-JAR or WAR that contains components, that persistence unit is used.

• If persistence unit is not defined in the EJB-JAR or WAR that contains components and only one persistence unit is
defined in the EAR, the persistence unit in the EAR is used.

Note that if the following conditions are fulfilled, one persistence unit cannot be identified, so the persistence unit name
cannot be omitted:

• When two or more persistence units are defined in the EJB-JAR or WAR that contains components

• If persistence unit is not defined in the EJB-JAR or WAR that contains components and two or more persistence units
are defined in the EAR

8. How to Use JPA with Application Server

Compatibility Guide 236

(2) Explicitly referencing the EAR-level persistence unit using # syntax
If the name of the persistence unit defined in the EAR and the name of the persistence unit defined in the EJB-JAR
or WAR are duplicated, from the components in the EJB-JAR or WAR, the persistence units defined with a narrower
scope are visible on priority. However, by using # syntax in the reference name of the persistence unit, you can explicitly
reference the persistence unit defined in the EAR. When you use # syntax, specify the persistence unit name as follows:

Relative-path-from-the-EJB-JAR-or-WAR-containing-components-to-the-persistence-unit-root#Name-of-the-
persistence-unit

For example, when the persistence unit myPersistenceUnit included in lib/persistenceUnitRoot.jar
of the EAR file is referenced from the EJB included in ejbs/myEjbs.jar of the EAR file, the referenced persistence
unit name is ../lib/persistenceUnitRoot.jar#myPersistenceUnit.

8.11.3 Items checked when the application is deployed
The following items are checked when an application using the JPA is deployed on the J2EE server:

• Checking the persistence unit definitions

• Checking the EntityManager and EntityManagerFactory references

The following is a description of the checks:

(1) Checking of the persistence unit definition
The following points describe the contents checked in the persistence unit definition:

(a) Validation of persistence.xml
Validates whether persistence.xml included in the application is in accordance with the
persistence_1_0.xsd schema. If an error is found during the validation, the error message KDJE56526-E
is output and the deployment is cancelled.

(b) Checking of the persistence unit name
Checks whether the persistence unit name is null. If the persistence unit name is null, the error message KDJE56505-E
is output and the deployment is cancelled.

Also, checks whether persistence units with duplicated names are defined in the application EAR files or in one EJB-JAR
or WAR. If persistence units with duplicated names are defined, a warning message KDJE56500-W is output and the
deployment continues. Note that in this case, only one persistence unit is actually deployed.

(c) Checking whether the data source referenced by the persistence unit exists
The contents checked differ depending on the transaction type of the persistence unit.

• When the transaction type of the persistence unit is the JTA
The following table lists the contents checked and the operations to be performed when an error occurs during
the check.

8. How to Use JPA with Application Server

Compatibility Guide 237

Table 8‒10: Checked contents and operations to be performed when an error occurs during the
check (for the JTA transaction type)

Checked contents Operations when an error occurs during the check

The JTA data source (the data source specified in the <jta-data-
source> tag of persistence.xml or the default value specified
in the system properties) used in the persistence unit is specified.

The error message KDJE56527-E is output and the deployment
is cancelled.

The resource adapter that provides the JTA data source exists. The error message KDJE56529-E is output and the deployment
is cancelled.

The resource adapter that provides the JTA data source is running.

The transaction support level of the resource adapter is
LocalTransaction or XATransaction.

The error message KDJE56531-E is output and the deployment
is cancelled.

The connection factory interface of the resource adapter
is javax.sql.DataSource.

The error message KDJE56533-E is output and the deployment
is cancelled.

• When the transaction type of the persistence unit is RESOURCE_LOCAL
The following table lists the contents checked and the operations to be performed when an error occurs during
the check.

Table 8‒11: Checked contents and operations to be performed when an error occurs during the
check (for the RESOURCE_LOCAL transaction type)

Checked contents Operations when an error occurs during the check

The non-JTA data source (the data source specified in the <non-
jta-data-source> tag of persistence.xml or the default
value specified in the system properties) used in the persistence unit
is specified.

The error message KDJE56528-E is output and the deployment
is cancelled.

The resource adapter that provides the non-JTA data source exists. The error message KDJE56530-E is output and the deployment
is cancelled.

The resource adapter that provides the non-JTA data source is running.

The transaction support level of the resource adapter
is NoTransaction.

The error message KDJE56532-E is output and the deployment
is cancelled.

The connection factory interface of the resource adapter
is javax.sql.DataSource.

The error message KDJE56533-E is output and the deployment
is cancelled.

(d) Checking the provider class specified in the persistence unit
Checks whether the JPA provider class (class specified in the <provider> tag of persistence.xml) used by the
persistence unit can be loaded from the application. If the loading of the class fails, the error message KDJE56503-E is
output and the deployment is cancelled.

(e) Checking whether the JAR file referenced by the persistence unit exists
Checks whether the JAR file (JAR file specified in the <jar-file> tag of persistence.xml) referenced by the
persistence unit exists. If the JAR file does not exist, the error message KDJE56506-E is output and the deployment
is cancelled.

(f) Checking the contents defined in the persistence unit using the JPA provider
The JPA provider generates the persistence unit from the contents of persistence.xml parsed by the JPA container.
If the persistence unit definition has a problem and if the JPA provider returns an error, the error message (KDJE56539-E)
is displayed and the deployment is cancelled.

8. How to Use JPA with Application Server

Compatibility Guide 238

(2) Checking the EntityManager and EntityManagerFactory references
The following points describe the contents checked in the EntityManager and EntityManagerFactory references:

(a) Checking the existence of the persistence unit
In the EntityManager and EntityManagerFactory references defined in the EJB and Web components, check whether
the specified persistence unit name is an actually referable persistence unit name. Also, if the persistence unit name
is omitted, check whether the persistence unit to be used can be identified. If an error is found in this check, the error
message KDJE56501-E is output and the deployment is cancelled.

(b) Checking the transaction type for the container-managed EntityManager
Check whether the transaction type of the persistence unit is the JTA when the container-managed EntityManager is used.
If an error occurs in this check, the error message KDJE56534-E is output and the deployment is cancelled.

(c) Checking if the extended persistence context is used from outside the Stateful
Session Bean

When EXTENDED is specified as the persistence context type with the EntityManager references, check whether the
location where the references are defined is the Stateful Session Bean. If the references are defined in a location other
than the Stateful Session Beans, the error message KDJE56535-E is output and the deployment is cancelled.

8.11.4 Notes on using the JPA with Application Server
The EntityManager type that the application can obtain is the proxy class of EntityManager provided by Application
Server and not the EntityManager object provided by the JPA provider.

The EntityManager object can be obtained by using injection, JNDI lookup, or EntityManagerFactory.

Note that to use injection for obtaining EntityManager, you set up javax.persistence.EntityManager as the
field or method argument type that injects EntityManager.

Also, you cannot cast EntityManager obtained with injection, JNDI lookup, or EntityManagerFactory in the
EntityManager implementation class of the JPA provider.

If you need to obtain the EntityManager object of the JPA provider, use the getDelegate method of the
EntityManager proxy object obtained with injection, JNDI lookup, or EntityManagerFactory.

8.11.5 Notes when the Cosminexus JPA functionality is not used
With the Cosminexus JPA functionality, when persistence.xml is included in an application,
persistence.xml is read by default regardless of whether the Cosminexus JPA functionality is used. If
persistence.xml cannot be interpreted with Application Server, the application fails to start.

To avoid this situation, when persistence.xml is included in the application and you do not want to use the
Cosminexus JPA functionality, specify true in the ejbserver.jpa.disable property of the J2EE server.

As a result, persistence.xml is no longer read with Application Server.

8. How to Use JPA with Application Server

Compatibility Guide 239

Also, regardless of the value specified in the ejbserver.jpa.disable property, the JPA version that can be used
with Application Server is JPA 1.0.

8. How to Use JPA with Application Server

Compatibility Guide 240

8.12 javax.persistence package

This section describes the list of annotations included in the javax.persistence package and the precautions to
be taken when specifying annotations.

You can also specify the mapping information in an O/R mapping file instead of the annotations. For details on
the correspondence between the annotations and the O/R mapping files, see 8.12.64 Correspondence between the
annotations and O/R mapping.

Precautions when specifying an annotation
• With the Cosminexus JPA, the annotations included in the javax.persistence package are not supported

in the attributes related to the DDL output functionality.

• When specifying the same column name more than once in an annotation, arrange the upper case and lower
case characters.

• If field names or method names are allocated in the column name, character strings are considered as upper
case characters strings and used with Cosminexus JPA. If you want to specify a column name in the supported
annotation, use upper case characters.

• The access type is decided according to the location at which the annotation is provided. However, if the access
type exists in both, the field and property, the settings of the field will be enabled.

• The property name is decided as follows depending on the character string acquired by removing get or set
(is) from the access method:
- If the first two characters are in upper case, the string is used as it is.
- If the first two characters are not in upper case, the first character is converted into lower case, and the string
is used.
- For a single character, the first character is converted into lower case, and the string is used.

List of annotations

Annotation classification Annotation name Overview

Entity annotation @Entity Indicates that the class is an entity.

Annotations related to the tables
or columns

@Column Specifies the mapping between the persistence field
or the persistence property, and the columns of
the database.

@JoinColumn Specifies the external key column for the binding table
or a column of the binding-destination table that is
referenced from the external key column by correlating
the entity classes.

@JoinColumns Used when multiple @JoinColumn are
coded concurrently.

@JoinTable This annotation specifies the binding table set up in the
following classes:
• Owner side class when ManyToMany relationship

is specified.
• Class with single-sided OneToMany relationship.

@PrimaryKeyJoinColumn Specifies the column used as the external key, when
binding with other tables.

@PrimaryKeyJoinColumns Used when multiple @PrimaryKeyJoinColumn
are coded concurrently.

@SecondaryTable Specifies a secondary table in the entity class.

8. How to Use JPA with Application Server

Compatibility Guide 241

Annotation classification Annotation name Overview

@SecondaryTables Used when multiple @SecondaryTable are
coded concurrently.

@Table Specifies a primary table in the entity class.

@UniqueConstraint If you want to generate CREATE statement for the
primary table or secondary table, include the unique
constraints, and then specify.
Note that this annotation is not supported with
Cosminexus JPA provider CJPA provider.

Annotations related to the ID @EmbeddedId Specifies the compound primary key of a class that can
be embedded.

@GeneratedValue Specifies the method for automatically generating and
allotting a unique value to the primary key column.

@Id Specifies the properties or fields of the primary key of
the entity class.

@IdClass Specifies the compound primary key class mapped to
multiple fields or properties of the entity class.

@SequenceGenerator Specifies the settings of the sequence generator that
creates the primary key.

@TableGenerator Specifies the settings of the generator that creates the
primary key.

Lock annotation @Version Specifies the version field or the version property
for using the optimistic lock functionality.

Annotations related to mapping @Basic Indicates the type of mapping to the simplest
database column.

@Embeddable Specifies an embedded class.

@Embedded Specifies the persistence property or the persistence
field indicating the instance value of the
embedded class within the entity class at the
embedding destination.

@Enumerated Specifies the persistence field or the persistence
property as the enumeration type.

@Lob Specifies the persistence field or the persistence
property of the large object type supported by
the database.

@MapKey Specifies the map key used for object identification
within the map, when a non-owner entity
class is indicated by the java.util.Map
type in the OneToMany relationship or the
ManyToMany relationship.

@OrderBy Specifies the order in which the collection is evaluated
when the entity information is acquired.

@Temporal Specifies in the persistence property or
persistence field having the type that
expresses the time (java.util.Date
and java.util.Calendar).

@Transient Specifies the field or property of a non-persisting entity
class, mapped superclass, or embedded class.

8. How to Use JPA with Application Server

Compatibility Guide 242

Annotation classification Annotation name Overview

Annotations related to the relationship @ManyToMany Indicates that the specified class has a ManyToMany
relationship, and also specifies the multiple
relationships from the owner entity class to the non-
owner entity class.

@ManyToOne Indicates that the specified class has the ManyToOne
relationship, and also specifies the relationship to the
non-owner entity class.

@OneToMany Indicates that the specified class has the OneToMany
relationship, and also specifies the multiple
relationships from the owner entity class to the non-
owner entity class.

@OneToOne Indicates that the specified class has the OneToOne
relationship, and also specifies the single relationship
between entity classes.

Annotations related to inheritance
and overriding

@AssociationOverride Overrides the settings used in the ManyToOne
relationship or the OneToOne relationship specified in
a mapped superclass and embedded class.

@AssociationOverrides Used when multiple @AssociationOverride are
coded concurrently.

@AttributeOverride Overrides the following mapping information:
• Properties or fields specified by @Basic (or

applied by default)
• Properties or fields specified by @Id

@AttributeOverrides Used when multiple @AttributeOverride are
coded concurrently.

@DiscriminatorColumn Specifies the column used for identification in the
SINGLE_TABLE strategy or JOINED strategy.
This annotation is added to an entity class that becomes
a superclass by inheriting an entity class.

@DiscriminatorValue Specifies the value of the column used for identification
in the SINGLE_TABLE strategy or JOINED strategy.

@Inheritance Specifies the inheritance mapping strategy used in the
entity class hierarchy.

@MappedSuperclass Specifies a mapped superclass.

Annotations related to queries @ColumnResult Specifies the column for mapping the query results of
an SQL to the entity class.

@EntityResult Specifies the entity class in which the query results of
the SQL are to be mapped.

@FieldResult Specifies the field in which the query results of the SQL
are to be mapped.

@NamedNativeQueries Used when multiple @NamedNativeQuery are
coded concurrently.

@NamedNativeQuery Specifies a named query in the SQL.

@NamedQueries Used when multiple @NamedQuery are
coded concurrently.

@NamedQuery Specifies a named query of JPQL.

8. How to Use JPA with Application Server

Compatibility Guide 243

Annotation classification Annotation name Overview

@QueryHint Specifies a database-specific query hint.

@SqlResultSetMapping Specifies the result set mapping of an SQL query.

@SqlResultSetMappings Used when multiple @SqlResultSetMapping are
coded concurrently.

Annotations related to event callback# @EntityListeners Specifies the callback listener class used in the entity
class or mapped superclass.

@ExcludeDefaultListeners This annotation excludes the default listener for the
following classes:
• Entity class
• Mapped superclass
• Subclass of the entity class or mapped superclass

@ExcludeSuperclassListener
s

This annotation excludes the superclass listener for the
following classes:
• Entity class
• Mapped superclass
• Subclass of the entity class or mapped superclass

@PostLoad This annotation indicates the callback method invoked
after the SELECT statement is issued in the database.

@PostPersist This annotation indicates the callback method invoked
after the INSERT statement is issued in the database.

@PostRemove This annotation indicates the callback method invoked
after the DELETE statement is issued in the database.

@PostUpdate This annotation indicates the callback method invoked
after the UPDATE statement is issued in the database.

@PrePersist This annotation indicates the callback method invoked
before the INSERT statement is issued in the database.

@PreRemove This annotation indicates the callback method invoked
before the DELETE statement is issued in the database.

@PreUpdate This annotation indicates the callback method invoked
before the UPDATE statement is issued in the database.

Annotations related to the
reference of EntityManager
and EntityManagerFactory

@PersistenceContext Defines the container-managed EntityManager.

@PersistenceContexts Used when multiple @PersistenceContext are
coded concurrently.

@PersistenceProperty Sets up properties in the container-
managed EntityManager.

@PersistenceUnit Defines the persistence unit for
the EntityManagerFactory.

@PersistenceUnits Used when multiple @PersistenceUnit are
coded concurrently.

#
For details on the callback method, see 9.15 Procedure for specifying the callback method.

8. How to Use JPA with Application Server

Compatibility Guide 244

8.12.1 @AssociationOverride

(1) Description
This annotation overrides the settings used in the ManyToOne relationship or the OneToOne relationship specified in
a mapped superclass and an embedded class.

When @AssociationOverride is not specified, the external key column is mapped in the same way as the
original mapping.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @AssociationOverride:

Element name Optional/Required Element description

name Required This element specifies the name of the field or property having the related mapping
that is to be overridden.

joinColumns Required This element specifies an array of @JoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the field or property having the related mapping that is to be overridden.

Default value
None

(b) joinColumns element

Type
JoinColumn[]

Description
This element specifies an array of @JoinColumn.
The definition of the mapped superclass or embedded class is applied as the mapping type.
You can specify the value within the specifiable range of the arrays of @JoinColumn. For details, see
8.12.24 @JoinColumn.

Default value
None

8. How to Use JPA with Application Server

Compatibility Guide 245

8.12.2 @AssociationOverrides

(1) Description
This annotation is specified when multiple @AssociationOverride are coded concurrently.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @AssociationOverrides:

Element name Optional/Required Element description

value Required This element specifies an array of @AssociationOverride.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
AssociationOverride[]

Description
This element specifies an array of @AssociationOverride.
You can specify the value within the specifiable range of the arrays of @AssociationOverride. For details, see
8.12.1 @AssociationOverride.

Default value
None

8.12.3 @AttributeOverride

(1) Description
This annotation overrides the following mapping information:

• Properties or fields specified by @Basic (applied by default)

• Properties or fields applied by default

• Properties or fields specified by @Id

To override the settings of @Column defined in the mapped superclass and embedded class, apply the field or property
of the entity class and embedded class in which the mapped superclass is inherited.

If @AttributeOverride is not specified, the column is mapped with the original mapping before override.

If @AttributeOverride is defined in the entity class of a unit that does not have an inheritance relationship, the
operation is performed; however, the operation cannot be guaranteed.

The applicable targets are class, method, and field.

8. How to Use JPA with Application Server

Compatibility Guide 246

(2) Element
The following table lists the @AttributeOverride attributes.

Element name Optional/Required Element description

name Required This element specifies the name of the field or property in which the mapping
is overridden.

column Required This element specifies the @Column to be overridden.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the field or property in which mapping is overridden.

Default value
None

(b) column element

Type
Column

Description
This element specifies the @Column to be overridden.
The definition of the embeddable class or mapped superclass is applied as the mapping type.
You can specify the value within the specifiable range of @Column. For details, see 8.12.6 @Column.

Default value
None

8.12.4 @AttributeOverrides

(1) Description
The annotation to be specified when you want to code multiple @AttributeOverride concurrently.

Applicable elements are class, method, and field.

(2) Element
The following table lists the @AttributeOverrides attributes:

Element name Optional/Required Element description

value Required This element specifies an array of @AttributeOverride.

8. How to Use JPA with Application Server

Compatibility Guide 247

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
AttributeOverride[]

Description
Attribute that specifies the array of @AttributeOverride.
Specifiable values are within the range of the specifiable values for @AttributeOverride array. For details, see
8.12.3 @AttributeOverride.

Default value
None

8.12.5 @Basic

(1) Description
This annotation indicates the type of mapping to the simplest database column.

This annotation can be applied to the properties or instance variables of the following persistence types:

• Java primitive type

• Primitive type wrapper class

• java.lang.String
• java.math.BigInteger
• java.math.BigDecimal
• java.util.Date
• java.util.Calendar
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp
• byte[]
• Byte[]
• char[]
• Character[]
• enums
• User-defined serialize type

The applicable targets are method and field.

8. How to Use JPA with Application Server

Compatibility Guide 248

(2) Element
The following table lists the elements of @Basic:

Element name Optional/Required Element description

fetch Optional This element specifies the specification value of the fetch strategy.

optional Optional This element specifies whether or not a null value can be used in the field or property.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) fetch element

Type
FetchType

Description
This element specifies the specification value of the fetch strategy.
FetchType.EAGER or FetchType.LAZY can be specified.
Furthermore, the fetch attribute is ignored in Cosminexus JPA provider CJPA provider, and the default
FetchType.EAGER is usually applied. For details on the fetch attribute, see 9.4.5 Synchronization with
the database.

Default value
FetchType.EAGER

8.12.6 @Column

(1) Description
This annotation specifies the mapping between the persistence field or persistence property, and the columns of
the database.

Even when @Column is not specified explicitly in the persistence property or persistence field, the persistence property
or persistence field is handled as if @Column were specified. In such a case, the default values will be applied in each
element value of @Column.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @Column:

Element name Optional/
Required

Element description

name Optional This element specifies the column name.

unique Optional This element specifies whether or not the property is a unique key.
Note that Cosminexus JPA provider does not support this attribute.

8. How to Use JPA with Application Server

Compatibility Guide 249

Element name Optional/
Required

Element description

nullable Optional This element specifies whether or not a null value can be specified in the database column.
Note that Cosminexus JPA provider does not support this attribute.

insertable Optional This element specifies whether or not to include the column specified by @Column in the INSERT
statement of the SQL.

updatable Optional This element specifies whether or not to include the column specified by @Column in the UPDATE
statement of the SQL.

columnDefini
tion

Optional This element is used to describe the constraints added to the column in the DDL, when the CREATE
statement is output.
Note that Cosminexus JPA provider does not support this attribute.

table Optional This element specifies the table name that includes the column.

length Optional This element specifies the length of a column.
Note that Cosminexus JPA provider does not support this attribute.

precision Optional This element specifies the accuracy of a column. This element is specified when the column is
numeric type.
Note that Cosminexus JPA provider does not support this attribute.

scale Optional This element specifies the scale of a column. This element is specified when the column is
numeric type.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the column name.
The column name that can be specified depends on the database specifications.

Default value
Property name or field name in which this annotation is specified

(b) insertable element

Type
boolean

Description
This element specifies whether or not to include the column specified by @Column in the INSERT statement of the
SQL. You can specify either true or false.
These values imply the following meaning:
true: The column specified by @Column is included in the INSERT statement of the SQL.
false: The column specified by @Column is not included in the INSERT statement of the SQL.

Default value
true

8. How to Use JPA with Application Server

Compatibility Guide 250

(c) updatable element

Type
boolean

Description
This element specifies whether or not to include the column specified by @Column in the UPDATE statement of the
SQL. You can specify either true or false.
These values imply the following meaning:
true: The column specified by @Column is included in the UPDATE statement of the SQL.
false: The column specified by @Column is not included in the UPDATE statement of the SQL.

Default value
true

(d) table element

Type
String

Description
This element specifies the table name that includes the column.
The table name that can be specified depends on the database specifications.

Default value
Primary table name

8.12.7 @ColumnResult

(1) Description
This annotation specifies the column for mapping the query results of an SQL to the entity class

The applicable targets are the columns of @SqlResultSetMapping.

(2) Element
The following table lists the elements of @ColumnResult:

Element name Optional/Required Element description

name Required This element specifies the name or optional name of the columns of SELECT clause.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

8. How to Use JPA with Application Server

Compatibility Guide 251

Description
This element specifies the name or optional name of the columns of SELECT clause.
The column name that can be specified depends on the database specifications.

Default value
None

8.12.8 @DiscriminatorColumn

(1) Description
This annotation specifies the column for identification used in the SINGLE_TABLE strategy or JOINED strategy. This
annotation is added to an entity class that becomes a superclass by inheriting an entity class.

The applicable target is class.

(2) Element
The following table lists the elements of @DiscriminatorColumn:

Element name Optional/Required Element description

name Optional This element specifies the name of the column for identification.

discriminatorType Optional This element specifies the type of the column for identification.

columnDefinition Optional This element is used to describe the constraints added to the column for identification
in the DDL, when the CREATE statement is output.
Note that Cosminexus JPA provider does not support this attribute.

length Optional This element specifies the length when the column for identification is a
character string.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the column for identification.
The column name that can be specified depends on the database specifications.
Specify the same value (matching the upper case and lower case characters) for the name element as that for the
name element of @Column.

Default value
"DTYPE"

8. How to Use JPA with Application Server

Compatibility Guide 252

(b) discriminatorType element

Type
DiscriminatorType

Description
This element specifies the type of the column for identification.
You can specify the following values:

• DiscriminatorType.STRING
• DiscriminatorType.CHAR
• DiscriminatorType.INTEGER

Default value
DiscriminatorType.STRING

8.12.9 @DiscriminatorValue

(1) Description
This annotation specifies the value of the column for identification used in the SINGLE_TABLE strategy or JOINED
strategy. You can specify this annotation in a superclass or subclass.

The applicable target is class.

Note the following points:

• The settings of @DiscriminatorValue are not inherited. @DiscriminatorValue must be set up in each
entity class.

• The settings of @DiscriminatorValue must match the type specified in discriminatorType and length
specified in length of @DiscriminatorColumn.

• If the discriminatorType of @DiscriminatorColumn is INTEGER, make note of the following points:

• In @DiscriminatorValue, specify only an integer that does not include 0 or a blank at the beginning.

• You cannot omit @DiscriminatorValue. If omitted, the operation will not be guaranteed.

• If the discriminatorType of @DiscriminatorColumn is other than INTEGER, you can omit
@DiscriminatorValue. In such a case, the operation is performed by assuming that the value specified
in value is the class name of the entity.

(2) Element
The following table lists the elements of @DiscriminatorValue:

Element name Optional/Required Element description

value Required This element specifies the value to be set up in the column for identification.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 253

(a) value element

Type
String

Description
This element specifies the value to be set up in the column for identification.
The value that can be specified depends on the type of the column for identification.

Default value
Entity name

8.12.10 @Embeddable

(1) Description
This annotation indicates an embedded class.

An embedded class is a class that can be embedded as a field within the entity class.

The applicable target is class.

(2) Element
@Embeddable does not have attributes.

8.12.11 @Embedded

(1) Description
This annotation specifies the persistence property or persistence field indicating the instance value of the embedded class
within the entity class.

If you want to override the column mapping declared within the embedded class, use either @AttributeOverride
or @AttributeOverrides.

The applicable targets are method and field.

(2) Element
@Embedded does not have attributes.

8.12.12 @EmbeddedId

(1) Description
This annotation specifies the compound primary key of an embedded class.

8. How to Use JPA with Application Server

Compatibility Guide 254

This annotation is added in the persistence property or persistence field of an embeddable class owned by the entity.

When using @EmbeddedId, you cannot specify multiple @EmbeddedIds or specify @Id besides @EmbeddedId.

When you add @Transient to a field of the embedded class, the compound primary key will not be applicable for
that field.

The applicable targets are method and field.

(2) Element
@EmbeddedId does not have attributes.

8.12.13 @Entity

(1) Description
This annotation specifies that the class is an entity.

The class name of the entity class does not include the package name. Note the following points during specification:

• Make sure that the entity name is a unique name within the persistence unit.

• You cannot set up the reserved characters of JPQL. If you set up the reserved characters, the operation will not
be guaranteed.

The applicable target is class.

(2) Element
The following table lists the elements of @Entity:

Element name Optional/Required Element description

name Optional This element specifies a logical name for the entity class. It becomes an abstract
schema name in JPQL.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies a logical name for the entity class. It becomes an abstract schema name in JPQL.
The value that can be specified depends on the specifications of JPQL.

Default value
Class name of the class in which @Entity is specified

8. How to Use JPA with Application Server

Compatibility Guide 255

8.12.14 @EntityListeners

(1) Description
This annotation specifies the callback listener class used in the entity class or mapped superclass.

The applicable target is class.

(2) Element
The following table lists the elements of @EntityListeners:

Element name Optional/Required Element description

value Required This element specifies the callback listener class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
Class[]

Description
This element specifies the callback listener class.
The value that can be specified is class.

Default value
None

8.12.15 @EntityResult

(1) Description
This annotation specifies the entity class in which the query results of the SQL are to be mapped.

The applicable target is the entities element of @SqlResultSetMapping.

(2) Element
The following table lists the elements of @EntityResult:

Element name Optional/Required Element description

entityClass Required This element specifies the result class.

fields Optional This element specifies the arrays of @FieldResult.

discriminatorColu
mn

Optional This element specifies the name or optional name of the column for identification
within the SELECT clause that determines the type of the entity instance.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 256

(a) entityClass element

Type
Class

Description
This element specifies the result class.
The value that can be specified is the class name.

Default value
None

(b) fields element

Type
FieldResult[]

Description
This element specifies an array of @FieldResult.
You can specify the value within the specifiable range of the arrays of @FieldResult. For details, see
8.12.19 @FieldResult.

Default value
Blank array

(c) discriminatorColumn element

Type
String

Description
This element specifies the name or optional name of the column for identification within the SELECT clause that
determines the type of the entity instance.
The value that can be specified is the name or optional name of the column specified in the table.

Default value
Blank array

8.12.16 @Enumerated

(1) Description
This annotation specifies the persistence field or persistence property as the enumeration type.

This annotation can be used along with @Basic. You can specify ORDINAL (numeric type) and STRING (character
string type) in the enumeration type.

In the following cases, ORDINAL (numeric type) is specified as the enumeration type:

• When the enumeration type is not specified in the value element

• When @Enumerated is not specified

8. How to Use JPA with Application Server

Compatibility Guide 257

The applicable targets are method and field.

(2) Element
The following table lists the elements of @Enumerated:

Element name Optional/Required Element description

value Optional This element specifies the type used for mapping the enumeration type.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
EnumType

Description
This element specifies the type used for mapping the enumeration type.
You can specify either of the following values:

• EnumType.ORDINAL: Numeric type

• EnumType.STRING: Character string type

Default value
EnumType.ORDINAL

8.12.17 @ExcludeDefaultListeners

(1) Description
This annotation excludes the default listener for the following classes:

• Entity class

• Mapped superclass

• Subclass of the entity class or mapped superclass

Note that the default listener can be specified only in the XML descriptor.

The applicable target is class.

(2) Element
@ExcludeDefaultListeners does not have attributes.

8. How to Use JPA with Application Server

Compatibility Guide 258

8.12.18 @ExcludeSuperclassListeners

(1) Description
This annotation excludes the superclass listener for the following classes:

• Entity class

• Mapped superclass

• Subclass of the entity class or mapped superclass

The applicable target is class.

(2) Element
@ExcludeSuperclassListeners does not have attributes.

8.12.19 @FieldResult

(1) Description
This annotation specifies the field in which the query results of the SQL are to be mapped.

The applicable target is the field element of @EntityResult.

(2) Element
The following table lists the elements of @FieldResult:

Element name Optional/Required Element description

name Required This element specifies the name of the persistence field or persistence property of
the class.

column Required This element specifies the name or optional name of the column of SELECT clause.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the persistence field or persistence property of the class.

Default value
None

8. How to Use JPA with Application Server

Compatibility Guide 259

(b) column element

Type
String

Description
This element specifies the name or optional name of the column of SELECT clause.
The column name or optional name that can be specified depends on the database specifications.

Default value
None

8.12.20 @GeneratedValue

(1) Description
This annotation specifies the method for automatically generating and allotting a unique value to the primary key
column. This annotation is applicable to the field or property of the primary key of entity class or mapped superclass
containing @Id.

The primary key value is generated by the following four methods. Depending on the generation method selected, the
base table and database sequence object must be prepared beforehand. For details on each of the generation methods, see
the description about the strategy element.

• GenerationType.AUTO
• GenerationType.IDENTITY
• GenerationType.SEQUENCE
• GenerationType.TABLE

The applicable targets are method and field.

(2) Element
The following table lists the elements of @GeneratedValue:

Element name Optional/Required Element description

strategy Optional This element specifies the method for generating the primary key value of the
entity class.

generator Optional This element specifies the name element set up in @SequenceGenerator or
@TableGenerator to be used.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) strategy element

Type
GenerationType

8. How to Use JPA with Application Server

Compatibility Guide 260

Description
This element specifies the method for generating the primary key value of the entity class.
The following four types of values can be specified:

• GenerationType.AUTO
For generating the primary key value, select the most appropriate procedure in each database.
When Oracle or HiRDB is used as the database, the processing is same as GenerationType.TABLE.

• GenerationType.IDENTITY
The primary key value is generated using the identity column of the database.
If Oracle is used as the database, the processing is same as GenerationType.SEQUENCE.
If HiRDB is used as the database, the processing is same as GenerationType.TABLE.

• GenerationType.SEQUENCE
The primary key value is generated using the database sequence object.
If HiRDB is used as the database, the processing is same as GenerationType.TABLE.

• GenerationType.TABLE
The primary key value is generated using a table for maintaining the primary key value.

Default value
GenerationType.AUTO

(b) generator element

Type
String

Description
This element specifies the name element set up in @SequenceGenerator or @TableGenerator to be used.

Default value
The following names are assumed depending on the value of the strategy element:

• In the case of GenerationType.AUTO
"SEQ_GEN"

• In the case of GenerationType.SEQUENCE
"SEQ_GEN_SEQUENCE"

• In the case of GenerationType.TABLE
"SEQ_GEN_TABLE"

8.12.21 @Id

(1) Description
This annotation specifies the properties or fields of the primary key of entity class.

@Id is applicable in the entity class or mapped superclass.

8. How to Use JPA with Application Server

Compatibility Guide 261

The column of the database mapped to the field or property in which @Id is specified is assumed as the primary key
column of the primary table. When the column name of the primary key column is not specified using @Column, the
column name of the primary key column becomes the name of the field or property in which @Id is specified.

Note that if @Version is specified in a field in which @Id is specified, @Id becomes invalid.

The applicable targets are method and field.

(2) Element
@Id does not have attributes.

8.12.22 @IdClass

(1) Description
This annotation specifies the compound primary key class mapped to multiple fields or properties of the entity class.

This annotation is applicable to the mapped superclass or entity class.

The name and type of the field or property of the compound primary key class must match with that of the field or property
of the primary key of entity class. The name and type specified in this annotation must correspond to the name and type
of the property or field of primary key of the entity in which @Id is added.

The applicable target is class.

(2) Element
The following table lists the elements of @IdClass:

Element name Optional/Required Element description

value Required This element specifies the compound primary key class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
Class

Description
This element specifies the compound primary key class.
The value that can be specified is the class name.

Default value
None

8. How to Use JPA with Application Server

Compatibility Guide 262

8.12.23 @Inheritance

(1) Description
This annotation specifies the inheritance mapping strategy used in the inheritance hierarchy of an entity.

@Inheritance is specified in the parent entity class of inheritance hierarchy.

The following are two types of inheritance mapping strategy available with Cosminexus JPA provider:

• SINGLE_TABLE (single table for each class hierarchy)

• JOINED (binding subclass strategy)

For details on the inheritance mapping strategy, see 9.13.2 Inheritance mapping strategy.

The applicable target is class.

(2) Element
The following table lists the elements of @Inheritance:

Element name Optional/Required Element description

strategy Optional This element specifies the type of inheritance mapping strategy.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) strategy element

Type
InheritanceType

Description
This element specifies the type of inheritance mapping strategy used in an entity.
The following two types of values can be specified:

• InheritanceType.SINGLE_TABLE: This strategy is used to map all classes in the inheritance hierarchy
to a single table.

• InheritanceType.JOINED: This strategy is used to map the top most (parent class) of the inheritance
hierarchy to a single table, and map each subclass with a subclass-specific mapping.

Default value
InheritanceType.SINGLE_TABLE

8.12.24 @JoinColumn

(1) Description
This annotation specifies the external key column for the binding table, or the column name of the binding-destination
table that is referenced from the external key column, when the entity classes are correlated. Always specify the column
that acts as the primary key of the binding-destination table.

8. How to Use JPA with Application Server

Compatibility Guide 263

When multiple external key columns exist, use @JoinColumns, and specify @JoinColumn for each relation.
When multiple @JoinColumn are specified, specify the name element and referencedColumnName element in
each annotation.

When @JoinColumn is not specified explicitly, it is assumed that a single external key column is specified in the
persistence property or persistence field that specifies the relation. Also, the default value is applied to each element value
of @JoinColumn.

Furthermore, if the changes made in a single column of the field and the changes made by correlating the cascade
operation are performed concurrently, consistency might not be achieved. Therefore, when the column specified in
the name element and the referencedColumnName element is defined in a field of the entity, the insertable
element and the updatable element must be set to false. With this, only the changes made in the field will be applied
to the database, but the changes made due to the correlation of the cascade operation will not be applied to the database.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @JoinColumn:

Element name Optional/Required Element description

name Optional This element specifies the external key column name used to bind the target tables.

referencedColumnN
ame

Optional This element specifies the column name of the binding-destination table that is
referenced from the external key column specified in the name element.

unique Optional This element specifies whether or not the property is a unique key.
Note that Cosminexus JPA provider does not support this attribute.

nullable Optional This element specifies whether or not a null value can be specified in the
database column.
Note that Cosminexus JPA provider does not support this attribute.

insertable Optional This element specifies whether or not to include the column specified by
@JoinColumn in the INSERT statement of the SQL.

updatable Optional This element specifies whether or not to include the column specified by
@JoinColumn in the UPDATE statement of the SQL.

columnDefinition Optional This element is used to describe the constraints added to the external column in the
DDL, when the CREATE statement is output.
Note that Cosminexus JPA provider does not support this attribute.

table Optional This element specifies the table name that includes the external key column.

The details of attributes that are supported in Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the external key column name used to bind the target tables.
The location of existence of the external key column is different for each type of the entity relationship. The location
of existence of the external key column for each type of the entity relationship is as follows:

• In the case of OneToOne relationship or ManyToOne relationship

8. How to Use JPA with Application Server

Compatibility Guide 264

Within the local entity table

• In the case of ManyToMany relationship
Within the binding table of @JoinTable

The values that can be specified depend on the specifications of the database column name.

Default value

• When a single external key column is specified in the local entity, and nothing is specified in the value of
the name element
name-of-the-related-property-or-field-within-the-local-entity_name-of-the-referenced-primary-key-column

• When the related property and field that is being referenced does not exist (example: when @JoinTable
is used)
name-of-the-referenced-entity_name-of-the-referenced-primary-key-column

(b) referencedColumnName element

Type
String

Description
This element specifies the column name of the binding-destination table that is referenced by the external key column
specified in the name element.
The column name of the binding-destination table exists at the following locations:

• When the relationship annotation is used
Within the referenced table

• When @JoinTable is used
Within the entity table of the owner entity

Note
When binding is defined as a part of reverse binding, the location will be within the table of the non-owner
entity class.

The column names that can be specified depend on the database specifications.

Default value
Column name of the primary key of the table referenced from the external key

Note
If a single external key column is specified, the default value will be applied.

(c) insertable element

Type
boolean

Description
This element specifies whether or not to include the column specified by @JoinColumn in the INSERT statement
of the SQL. You can specify either true or false.
These values imply the following meaning:
true: The column specified by @JoinColumn is included in the INSERT statement of the SQL.
false: The column specified by @JoinColumn is not included in the INSERT statement of the SQL.

8. How to Use JPA with Application Server

Compatibility Guide 265

Default value
true

(d) updatable element

Type
boolean

Description
This element specifies whether or not to include the column specified by @JoinColumn in the UPDATE statement
of the SQL. You can specify either true or false.
These values imply the following meaning:
true: The column specified by @JoinColumn is included in the UPDATE statement of the SQL.
false: The column specified by @JoinColumn is not included in the UPDATE statement of the SQL.

Default value
true

(e) table element

Type
String

Description
This element specifies the table name that includes the external key column.
The table name that can be specified depends on the database specifications.

Default value
Primary table name

8.12.25 @JoinColumns

(1) Description
This annotation is specified when multiple @JoinColumn that indicate the same relationship are coded concurrently.
@JoinColumns defines the mapping of the compound external key.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @JoinColumns:

Element name Optional/Required Element description

value Required This element specifies an array of @JoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 266

(a) value element

Type
JoinColumn[]

Description
This element specifies an array of @JoinColumn.
The values can be specified within the specifiable range of the arrays of @JoinColumn.

Default value
None

8.12.26 @JoinTable

(1) Description
This annotation specifies the binding table set up in the following classes:

• Owner class when the ManyToMany relationship is specified

• Class containing a single-direction OneToMany relationship

When the name element is not specified, the name of the binding table becomes as follows:

owner-table-name_non-owner-table-name

The applicable targets are method and field.

(2) Element
The following table lists the elements of @JoinTable:

Element name Optional/Required Element description

name Optional This element specifies the name of the binding table.

catalog Optional This element specifies the catalog name of the binding table.
Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the binding table.

joinColumns Optional This element specifies the external key column of the binding table that references
the primary table of the owner entity.

inverseJoinColumn
s

Optional This element specifies the external key column of the binding table that references
the primary table of the non-owner entity.

uniqueConstraints Optional This element specifies the unique constraints of the table.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 267

(a) name element

Type
String

Description
This element specifies the name of the binding table.
The table name that can be specified depends on the database specifications.

Default value
owner-table-name_non-owner-table-name

(b) schema element

Type
String

Description
This element specifies the schema name of the table.
The value that can be specified depends on the specifications of the database schema name.

Default value
Default schema of the database used

(c) joinColumns element

Type
JoinColumn[]

Description
This element specifies the external key column of the binding table that references the primary table of the
owner entity. This element specifies an array of @JoinColumn. The external key column name of the binding
table is specified in the name element, while the referenced column name of the owner is specified in the
referencedColumnName element of @JoinColumn.
The column names that can be specified depend on the database specifications.

Default value
External key of @JoinColumn

(d) inverseJoinColumns element

Type
JoinColumn[]

Description
This element specifies the external key column of the binding table that references the primary table of the non-owner
entity. This element specifies an array of @JoinColumn. The external key column name of the binding table is
specified in the name element, while the column of the binding-destination table that is referenced by the external
key column is specified in the referencedColumnName element of @JoinColumn.
The values that can be specified depend on the specifications of the database column name.

Default value
External key column of @JoinColumn

8. How to Use JPA with Application Server

Compatibility Guide 268

8.12.27 @Lob

(1) Description
This annotation specifies the persistence field or persistence property of the large object type supported by the
database. This annotation can be used together with @Basic.

@Lob contains the binary type (Blob) and character type (Clob). The type of @Lob is determined based on the type
of the persistence field or persistence property. For a character string and character type, the type of @Lob is Clob, and
in other cases, the type is Blob.

The applicable targets are method and field.

(2) Element
@Lob does not have attributes.

8.12.28 @ManyToMany

(1) Description
This annotation specifies the multiple relationships from an owner entity class having a ManyToMany relationship to
a non-owner entity class.

The ManyToMany relationship includes the owner and non-owner, irrespective of bi-direction or single direction. If the
relationship is bi-directional, the binding table can be specified in any direction.

If the Collection element type is specified using Generics, the non-owner entity class is not required to be
specified. In other cases, make sure to specify it.

Furthermore, when you specify @ManyToMany, note the settings of the following annotations:

• The elements of the same annotations for @OneToMany are same as that of @ManyToMany.

• If the properties or fields in which @ManyToMany is defined have the same name in the owner and non-owner
classes, do not use the default settings (when the joinColumns element and inverseJoinColumns element
is not specified) of @JoinTable.

• For the bi-directional relationship, the value of the binding table is updated based on the information of the owner.
Even if the mapping information is changed in the entity class in which the mappedBy element is specified, the
information will not be applied in the binding table.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @ManyToMany:

Element name Optional/Required Element description

targetEntity Optional This element specifies the non-owner entity class.

cascade Optional This element specifies the operations to be cascaded.

8. How to Use JPA with Application Server

Compatibility Guide 269

Element name Optional/Required Element description

fetch Optional This element specifies the specification value of the fetch strategy.

mappedBy Optional This element specifies the name of the field or property that maintains a relationship
in the owner entity class, when added in the elements of the non-owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element

Type
Class

Description
This element specifies the non-owner entity class.
The specification of this element is optional when the collection property is defined using Generics. In other cases,
you must always specify this element.

Default value
The type in which the collection contains parameters
Note: Set up only when the collection property is defined using Generics.

(b) cascade element

Type
CascadeType[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

• CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are cascaded
to the related destination.

• CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

• CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related destination.

Default value
Not to be cascaded

(c) fetch element

Type
FetchType

Description
This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 9.4.5
Synchronization with the database.
The following two types of values can be specified:

8. How to Use JPA with Application Server

Compatibility Guide 270

• EAGER strategy: Requests in which the data must be fetched eagerly

• LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.LAZY

(d) mappedBy element

Type
String

Description
This element specifies the name of the field or property that maintains a relationship in the owner entity class, when
added in the elements of the non-owner entity class.
When this element is specified, the relationship becomes bi-directional. For a bi-directional relationship, the value of
the binding table is updated based on the information of the owner. Even when the mapping information is changed
in the non-owner entity class (the entity class in which the mappedBy element is specified), the information will not
be applied in the binding table.

Default value
None

8.12.29 @ManyToOne

(1) Description
This annotation indicates that the class in which @ManyToOne is specified has a ManyToOne relationship, and also
specifies the relationship from the owner entity class to the non-owner entity class.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @ManyToOne:

Element name Optional/Required Element description

targetEntity Optional This element specifies the non-owner entity class.

cascade Optional This element specifies the operations to be cascaded.

fetch Optional This element specifies the specification value of the fetch strategy.

optional Optional This element specifies whether or not a null value can be set up for all non-primitive
type fields and properties.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element

Type
Class

8. How to Use JPA with Application Server

Compatibility Guide 271

Description
This element specifies the non-owner entity class.

Default value
Type of the field and property in which the annotation is added

(b) cascade element

Type
CascadeType[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

• CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are cascaded
to the related destination.

• CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

• CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related destination.

Default value
Not to be cascaded

(c) fetch element

Type
FetchType

Description
This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 9.4.5
Synchronization with the database.
The following two types of values can be specified:

• EAGER strategy: Requests in which the data must be fetched eagerly

• LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.EAGER

(d) optional element

Type
boolean

Description
This element specifies whether or not a null value can be set up for all non-primitive type fields and properties. The
following values can be specified:

• true: A null value can be set up for all non-primitive type fields and properties.

8. How to Use JPA with Application Server

Compatibility Guide 272

• false: A null value cannot be specified for all non-primitive type fields and properties.

Default value
true

8.12.30 @MapKey

(1) Description
This annotation specifies the map key used for object identification within the map when the non-owner entity class is
indicated by the java.util.Map type, in the OneToMany relationship or ManyToMany relationship.

When the name element is not specified, the primary key of the correlated entity is used as the map key.

If mapping is done as @IdClass when the primary key is a compound primary key, the compound primary key is used
as the map key.

If a persistence field or persistence property other than the primary key is used as the map key, the unique key constraints
related to the map key can be included.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @MapKey:

Element name Optional/Required Element description

name Optional This element specifies the name of the persistence field or persistence property of the
non-owner entity class that is used as the map key.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the persistence field or persistence property of the non-owner entity class that is
used as the map key.

Default value
Name of the primary key field or property of the non-owner entity class

8.12.31 @MappedSuperclass

(1) Description
This annotation specifies a mapped superclass.

8. How to Use JPA with Application Server

Compatibility Guide 273

A mapped superclass is used for inheritance. Hence, there are no tables corresponding to this class. Except for mapping
to a subclass, and the inheritance of the related mapping information, the mapped superclass is mapped to the table in
the same way as an entity.

The mapping information can be overridden in the subclass using @AttributeOverride.

The applicable target is class.

(2) Element
@MappedSuperclass does not have attributes.

8.12.32 @NamedNativeQueries

(1) Description
This annotation is specified when multiple @NamedNativeQuery are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @NamedNativeQueries:

Element name Optional/Required Element description

value Required This element specifies an array of @NamedNativeQuery.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
NamedNativeQuery[]

Description
This element specifies an array of @NamedNativeQuery.
The values can be specified within the specifiable range of the arrays of @NamedNativeQuery. For details, see
8.12.33 @NamedNativeQuery.

Default value
None

8.12.33 @NamedNativeQuery

(1) Description
This annotation specifies a named query in the SQL. This annotation can be applied to an entity class and
mapped superclass.

8. How to Use JPA with Application Server

Compatibility Guide 274

The applicable target is class.

(2) Element
The following table lists the elements of @NamedNativeQuery:

Element name Optional/Required Element description

name Required This element specifies the name of the named query.

query Required This element specifies the SQL string.

hints Optional This element specifies an array of @QueryHint.

resultClass Optional This element specifies the class in which the SQL results are applied.

resultSetMapping Optional This element specifies the name indicated in the name element
of @SqlResultSetMapping.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the named query.
The value that can be specified is a character string.

Default value
None

(b) query element

Type
String

Description
This element specifies the SQL string.
The SQL that can be specified depends on the specifications of the database used.

Default value
None

(c) hints element

Type
QueryHint[]

Description
This element specifies an array of @QueryHint.
You can specify the value within the specifiable range of the arrays of @QueryHint. For details, see
8.12.53 @QueryHint.

8. How to Use JPA with Application Server

Compatibility Guide 275

Default value
Blank array

(d) resultClass element

Type
Class

Description
This element specifies the class in which the SQL results are applied.
The resultClass element is specified when the class, in which you want to map the execution results of the query,
exists. Do not specify the resultClass element and resultSetMapping element concurrently.
The value that can be specified is the class name.

Default value
void.class

(e) resultSetMapping element

Type
String

Description
This element specifies the name indicated in the name element of @SqlResultSetMapping in which the result
set is defined.
This element is specified when the SQL results are to be mapped to any result set.
Do not specify the resultClass element and resultSetMapping element concurrently.
You can specify the value within the specifiable range of the name element of @SqlResultSetMapping. For
details, see 8.12.57(2)(a) name element.

Default value
Null character string

8.12.34 @NamedQueries

(1) Description
This annotation is specified when multiple @NamedQuery are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @NamedQueries:

Element name Optional/Required Element description

value Required This element specifies an array of @NamedQuery.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 276

(a) value element

Type
NamedQuery[]

Description
This element specifies an array of @NamedQuery.
You can specify the value within the specifiable range of the arrays of @NamedQuery. For details, see
8.12.35 @NamedQuery.

Default value
None

8.12.35 @NamedQuery

(1) Description
This annotation specifies a named query of JPQL. This annotation can be applied to an entity class and
mapped superclass.

The applicable target is class.

(2) Element
The following table lists the elements of @NamedQuery:

Element name Optional/Required Element description

name Required This element specifies the name of the named query.

query Required This element specifies the query string of JPQL.

hints Optional This element specifies an array of @QueryHint.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the named query.
The value that can be specified is a character string.

Default value
None

(b) query element

Type
String

8. How to Use JPA with Application Server

Compatibility Guide 277

Description
This element specifies the query string of JPQL.
The value that can be specified depends on the specifications of JPQL.

Default value
None

(c) hints element

Type
QueryHint[]

Description
This element specifies an array of @QueryHint.
You can specify the value within the specifiable range of the arrays of @QueryHint. For details, see
8.12.53 @QueryHint.

Default value
Blank array

8.12.36 @OneToMany

(1) Description
This annotation specifies the multiple relationships from an owner entity class having the OneToMany relationship to
a non-owner entity class.

The elements of the same annotations for @OneToMany are same as that of @ManyToMany.

If the Collection element type is specified using Generics, the non-owner entity class is not required to be
specified. In other cases, make sure to specify it.

Furthermore, to achieve a bi-directional relationship, always specify the mappedBy element at the non-owner side.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @OneToMany:

Element name Optional/Required Element description

targetEntity Optional This element specifies the non-owner entity class.

cascade Optional This element specifies the operations to be cascaded.

fetch Optional This element specifies the specification value of the fetch strategy.

mappedBy Optional This element specifies the name of the field or property that maintains a relationship
in the owner entity class, when added in the elements of the non-owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 278

(a) targetEntity element

Type
Class

Description
This element specifies the non-owner entity class.
The specification of this element is optional when a collection property is defined using Generics. In other cases,
you must always specify this element.

Default value
The type in which the collection contains parameters
Note: Set up only when the collection property is defined using Generics.

(b) cascade element

Type
CascadeType[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

• CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are cascaded
to the related destination.

• CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

• CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related destination.

Default value
Not to be cascaded

(c) fetch element

Type
FetchType

Description
This attribute defines the fetch strategy of data from database. For details on the fetch strategy, see 9.4.5
Synchronization with the database.
The following two types of values can be specified:

• EAGER strategy: Requests in which the data must be fetched eagerly

• LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.LAZY

8. How to Use JPA with Application Server

Compatibility Guide 279

(d) mappedBy element

Type
String

Description
This element specifies the name of the field or property that maintains a relationship in the owner entity class, when
added in the elements of the non-owner entity class.
When this element is specified, the relationship becomes bi-directional.

Default value
None

8.12.37 @OneToOne

(1) Description
This annotation indicates that the specified class has OneToOne relationship, and also specifies the single relationship
between entity classes.

Furthermore, to achieve a bi-directional relationship, always specify the mappedBy element at the non-owner side.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @OneToOne:

Element name Optional/Required Element description

targetEntity Optional This element specifies the non-owner entity class.

cascade Optional This element specifies the operations to be cascaded.

fetch Optional This element specifies the specification value of the fetch strategy.

optional Optional This element specifies whether or not a null value can be set up for all non-primitive
type fields and properties.

mappedBy Optional This element specifies the name of the field that maintains a relationship in the owner
entity class, when added in the elements of the non-owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element

Type
Class

Description
This element specifies the non-owner entity class.

Default value
Type of the field and property in which the annotation is added

8. How to Use JPA with Application Server

Compatibility Guide 280

(b) cascade element

Type
CascadeType[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

• CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are cascaded
to the related destination.

• CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

• CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the
related destination.

• CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related destination.

Default value
Not to be cascaded

(c) fetch element

Type
FetchType

Description
This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 9.4.5
Synchronization with the database.
The following two types of values can be specified:

• EAGER strategy: Requests in which the data must be fetched eagerly

• LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.EAGER

(d) optional element

Type
boolean

Description
This element specifies whether or not a null value can be set up for all non-primitive type fields and properties. The
following values can be specified:

• true: A null value can be set up for all non-primitive type fields and properties.

• false: A null value cannot be specified for all non-primitive type fields and properties.

Default value
true

8. How to Use JPA with Application Server

Compatibility Guide 281

(e) mappedBy element

Type
String

Description
This element specifies the name of the field that maintains a relationship in the owner entity class, when added in the
elements of the non-owner entity class. When this element is specified, the relationship becomes bi-directional.

Default value
None

8.12.38 @OrderBy

(1) Description
This annotation specifies the order in which the information is maintained in the collection, when the entity information
is acquired.

The applicable targets are method and field.

(2) Element
The following table lists the elements @OrderBy:

Element name Optional/Required Element description

value Optional This element is specified when the entities are to be acquired in an order based on the
fields or properties other than the primary key.

The details of attribute for mapping with Cosminexus JPA provider are as follows:

(a) value element

Type
String

Description
This element is specified when the entities are to be acquired in an order based on the fields or properties other than
the primary key. The fields or properties for which the order is to be specified are demarcated by comma (,).
The order of collection is specified after the fields or properties. The following values can be specified. If the order
is not specified, the ascending order is assumed.

• ASC: Ascending order

• DESC: Descending order

In the fields or properties specified in the value element, specify the column that stores the values for which you
can perform the comparative calculation.

Default value
Ascending order based on the primary key of the entity class

8. How to Use JPA with Application Server

Compatibility Guide 282

8.12.39 @PersistenceContext

(1) Description
This annotation defines the reference of a container-managed EntityManager. This annotation is added to the class to be
looked up.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @PersistenceContext:

Element name Optional/Required Element description

name Optional This element specifies the lookup name of the EntityManager.

unitName Optional This element specifies the name of the persistence unit defined in the
persistence.xml file.

type Optional This element specifies the type of lifecycle of the persistence context.

properties Optional This element specifies the vendor-dependent properties specified
in @PersistenceProperty.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the lookup name of the EntityManager.
You are not required to specify this element when using a DI.

Default value
Null character string

(b) unitName element

Type
String

Description
This element specifies the name of the persistence unit defined in the persistence.xml file.
When the unitName element is specified, set the same name for the persistence unit used by EntityManagerFactory
that can be accessed by the JNDI name space.

Default value
Null character string

8. How to Use JPA with Application Server

Compatibility Guide 283

(c) type element

Type
PersistenceContextType

Description
This element specifies the type of lifecycle of the persistence context.
The following two types of values can be specified:

• TRANSACTION: Persistence context of the transaction scope

• EXTENDED: Extended persistence context

Default value
TRANSACTION

(d) properties element

Type
PersistenceProperty[]

Description
This element specifies the vendor-dependent properties of the JPA Provider specified
in @PersistenceProperty.
You can specify the value within the specifiable range of the arrays of @PersistenceProperty. For details, see
8.12.41 @PersistenceProperty.
When the properties element is specified, the properties that cannot be recognized are ignored.

Default value
Blank array

8.12.40 @PersistenceContexts

(1) Description
This annotation is specified when multiple @PersistenceContext are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @PersistenceContexts:

Element name Optional/Required Element description

value Required This element specifies an array of @PersistenceContext.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

8. How to Use JPA with Application Server

Compatibility Guide 284

(a) value element

Type
PersistenceContext[]

Description
This element specifies an array of @PersistenceContext.
You can specify the value within the specifiable range of the arrays of @PersistenceContext. For details, see
8.12.39 @PersistenceContext.

Default value
None

8.12.41 @PersistenceProperty

(1) Description
This annotation sets up properties in the container-managed EntityManager.

Currently, no properties can be used.

The applicable target is the properties element of @PersistenceContext.

(2) Element
The following table lists the elements of @PersistenceProperty:

Element name Optional/Required Element description

name Required This element specifies the name of the property.

value Required This element specifies the value of the property.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the property.

Default value
None

(b) value element

Type
String

Description
This element specifies the value of the property.

8. How to Use JPA with Application Server

Compatibility Guide 285

You can specify the value depends on the specifications of the properties specified in the name element.

Default value
None

8.12.42 @PersistenceUnit

(1) Description
This annotation defines the reference of the EntityManagerFactory. This annotation is added to the class to be looked up.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @PersistenceUnit:

Element name Optional/Required Element description

name Optional This element specifies the lookup name of the EntityManagerFactory.

unitName Optional This element specifies the name of the persistence unit defined in the
persistence.xml file.

The details of attributes supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the lookup name of the EntityManagerFactory. This element specifies the name of the
EntityManagerFactory to be registered in the JNDI name space.
The value that can be specified is a character string.
You are not required to specify this element when using a DI.

Default value
Null character string

(b) unitName element

Type
String

Description
This element specifies the name of the persistence unit defined in the persistence.xml file.
When the unitName element is specified, set the same name for the persistence unit used by EntityManagerFactory
that can be accessed by the JNDI name space.

Default value
Null character string

8. How to Use JPA with Application Server

Compatibility Guide 286

8.12.43 @PersistenceUnits

(1) Description
This annotation is specified when multiple @PersistenceUnit are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @PersistenceUnits:

Element name Optional/Required Element description

value Required This element specifies the arrays of @PersistenceUnit.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
PersistenceUnit[]

Description
This element specifies the arrays of @PersistenceUnit.
You can specify the value within the specifiable range of the arrays of @PersistenceUnit. For details, see
8.12.42 @PersistenceUnit.

Default value
None

8.12.44 @PostLoad

(1) Description
This annotation indicates the callback method invoked after an entity is read from the cache or after the SELECT
statement is issued in the database. This annotation is applicable in the methods of the entity class, mapped superclass,
or entity listener class.

The applicable target is method.

(2) Element
@PostLoad does not have attributes.

8. How to Use JPA with Application Server

Compatibility Guide 287

8.12.45 @PostPersist

(1) Description
This annotation indicates the callback method invoked after the INSERT statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element
@PostPersist does not have attributes.

8.12.46 @PostRemove

(1) Description
This annotation indicates the callback method invoked after the DELETE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element
@PostRemove does not have attributes.

8.12.47 @PostUpdate

(1) Description
This annotation indicates the callback method invoked after the UPDATE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element
@PostUpdate does not have attributes.

8.12.48 @PrePersist

(1) Description
This annotation indicates the callback method invoked before the INSERT statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

8. How to Use JPA with Application Server

Compatibility Guide 288

The applicable target is method.

(2) Element
@PrePersist does not have attributes.

8.12.49 @PreRemove

(1) Description
This annotation indicates the callback method invoked before the DELETE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element
@PreRemove does not have attributes.

8.12.50 @PreUpdate

(1) Description
This annotation indicates the callback method invoked before the UPDATE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element
@PreUpdate does not have attributes.

8.12.51 @PrimaryKeyJoinColumn

(1) Description
This annotation specifies the column used as the external key when binding with another table. This annotation is used
in the following cases:

• When the names of the primary key of the superclass and the primary key of the subclass of an entity are different
in the JOINED strategy of the inheritance mapping strategy

• When the primary table and secondary table are to be bound in @SecondaryTable#

• When the primary key of the non-owner entity class is used as an external key in the OneToOne relationship

#
Here, this annotation is used within @SecondaryTable.

8. How to Use JPA with Application Server

Compatibility Guide 289

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @PrimaryKeyJoinColumn:

Element name Optional/Required Element description

name Optional This element specifies the column name for binding the target tables.

referencedColumnN
ame

Optional This element specifies the column name of the primary key of binding-destination
table that is referenced by the column specified in the name element.

columnDefinition Optional This element is used to describe the constraints added to the column in the DDL, when
the CREATE statement is output.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the column name for binding the target tables.
The column name that can be specified depends on the database specifications.

Default value

• When the JOINED strategy is used
Column name of the primary key of primary table of the superclass

• When @SecondaryTable is used
Column name of the primary key of primary table

• When the OneToOne relationship is used
Column name of the primary key of target entity table

(b) referencedColumnName element

Type
String

Description
This element specifies the column name of the primary key of binding-destination table that is referenced by the
column specified in the name element. Specify the same value as the character string of the name element of
@Column. Arrange the upper case and lower case characters in the character string to be specified.
The column name that can be specified depends on the database specifications.
Even when the unique key constraints are used instead of specifying the primary key in the column in the OneToOne
relationship, the operation will continue, but will not be guaranteed.

Default value

• When the JOINED strategy is used
Column name of the primary key of primary table of the superclass

8. How to Use JPA with Application Server

Compatibility Guide 290

• When @SecondaryTable is used
Column name of the primary key of primary table

• When the OneToOne relationship is used
Column name of the primary key of target entity table

8.12.52 @PrimaryKeyJoinColumns

(1) Description
This annotation is specified when multiple @PrimaryKeyJoinColumn are coded concurrently.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @PrimaryKeyJoinColumns:

Element name Optional/Required Element description

value Required This element specifies an array of @PrimaryKeyJoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
PrimaryKeyJoinColumn[]

Description
This element specifies an array of @PrimaryKeyJoinColumn.
You can specify the value within the specifiable range of @PrimaryKeyJoinColumn. For details, see
8.12.51 @PrimaryKeyJoinColumn.

Default value
None

8.12.53 @QueryHint

(1) Description
This annotation specifies a database-specific query hint.

You can set up a pessimistic lock and the cache functionality of the entity.

The applicable target is the hints element of @NamedQuery or @NamedNativeQuery.

(2) Element
The following table lists the elements of @QueryHint:

8. How to Use JPA with Application Server

Compatibility Guide 291

Element name Optional/Required Element description

name Required This element specifies the name of the hint.

value Required This element specifies the value of the hint.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the hint to be used. The following value can be specified:
cosminexus.jpa.pessimistic-lock

This is the name of the hint that specifies whether or not to use a pessimistic lock.

Default value
None

(b) value element

Type
String

Description
This element specifies the value of the hint. The following values are specified based on the name of the hint specified
in the name element:

Specification value when cosminexus.jpa.pessimistic-lock is specified in the name element

• NoLock: Specified when the pessimistic lock is not used.

• Lock: Specified when the pessimistic lock is used. If the target table is already locked, unlocking is awaited.
The SQLs issued at this point are specified as follows, for each used database:
In Oracle: SELECT.... FOR UPDATE
In HiRDB: SELECT....WITH EXCLUSIVE LOCK

• LockNoWait: Specified when the pessimistic lock is used. If the target table is already locked, an exception
occurs. The SQLs issued at this point are specified as follows, for each used database:
In Oracle: SELECT.... FOR UPDATE NO WAIT
In HiRDB: SELECT....WITH EXCLUSIVE LOCK NO WAIT

Default value

When cosminexus.jpa.pessimistic-lock is specified in the name element
NoLock

8.12.54 @SecondaryTable

(1) Description
This annotation specifies the secondary table in the entity class.

8. How to Use JPA with Application Server

Compatibility Guide 292

This annotation is specified when the entity class is mapped in multiple tables of the database.

When @SecondaryTable is not specified within the entity class, all persistence properties or persistence fields of the
entity class will be mapped to the tables specified in the primary table.

The applicable target is class.

(2) Element
The following table lists the elements of @SecondaryTable:

Element name Optional/Required Element description

name Required This element specifies the secondary table name.

catalog Optional This element specifies the catalog name of the secondary table.
Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the secondary table.

pkJoinColumns Optional This element specifies the external key column used to bind the secondary table to the
primary table.

uniqueConstraints Optional This element specifies the unique key constraints in the table.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the secondary table name.
The table name that can be specified depends on the database specifications.

Default value
None

(b) schema element

Type
String

Description
This element specifies the schema name of the secondary table.
The schema name that can be specified depends on the database specifications.

Default value
Default schema name of the database used

(c) pkJoinColumns element

Type
PrimaryKeyJoinColumn[]

8. How to Use JPA with Application Server

Compatibility Guide 293

Description
This element specifies the external key column of the secondary table. This annotation is specified in the arrays
of @PrimaryKeyJoinColumn.
When this element is not specified, the external key column of the secondary table has the same name and type as
the primary key column of the primary table. Therefore, the secondary table references the primary key column of
the primary table.

Default value
You can specify the value within the specifiable range of the arrays of @PrimaryKeyJoinColumn. For details,
see 8.12.51 @PrimaryKeyJoinColumn.

8.12.55 @SecondaryTables

(1) Description
This annotation is specified when multiple @SecondaryTable are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @SecondaryTables:

Element name Optional/Required Element description

value Required This element specifies an array of @SecondaryTable.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
SecondaryTable[]

Description
This element specifies an array of @SecondaryTable.
You can specify the value within the specifiable range of the arrays of @SecondaryTable. For details, see
8.12.54 @SecondaryTable.

Default value
None

8.12.56 @SequenceGenerator

(1) Description
This annotation specifies the settings of the sequence generator that creates the primary key. The following settings are
required when using @SequenceGenerator:

8. How to Use JPA with Application Server

Compatibility Guide 294

• Specify GenerationType.SEQUENCE in the strategy element of @GeneratedValue.

• Set up the name specified in the generator element of @GeneratedValue to the name element
of @SequenceGenerator.

The sequence generator is specified in the fields or properties of the entity class or primary key. The scope of the sequence
generator name is enabled in the persistence unit.

When creating a sequence object, specify a positive integer in the increment interval (INCREMENT BY) between
sequential numbers, and in the initial value (START WITH) of the generated sequential number. When 1 is specified in
the initial value (START WITH), the primary key is generated from 1. The operation will not be guaranteed if a negative
value is specified.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @SequenceGenerator:

Element name Optional/Required Element description

name Required This element specifies the name specified in the generator element of the
@GeneratedValue annotation.

sequenceName Optional This element specifies the name of the database sequence object for acquiring an
existing primary key value, or an already defined primary key value.

initialValue Optional This element specifies the initial value when the generation of the primary key value
by the sequence object is started.
Note that Cosminexus JPA provider does not support this attribute. Ignore when the
value is specified.

allocationSize Optional This element specifies the size of allocating the primary key value from the sequence.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name specified in the generator element of the @GeneratedValue annotation.
The value that can be specified is a character string.

Default value
None

(b) sequenceName element

Type
String

Description
This element specifies the name of the database sequence object for acquiring an existing primary key value, or an
already defined primary key value.
The sequence object name that can be specified depends on the database specifications.

8. How to Use JPA with Application Server

Compatibility Guide 295

Default value
Specified value of the generator element of @GeneratedValue

(c) allocationSize element

Type
int

Description
This element specifies the allocation size of the primary key value from the sequence. The sequence object name that
can be specified depends on the database specifications.
The size that can be specified is a numeric value that is at least one more than the int type. Specify a value same as
the increment interval of the sequence object. The operation will not be guaranteed if you specify a different value.
Note that in this element, you can specify the maximum value used during execution. If you specify a large value for
acquiring the management area of the sequence number, the java.lang.OutOfMemoryError exception will
occur during the execution.

Default value
50

8.12.57 @SqlResultSetMapping

(1) Description
This annotation specifies the result set mapping of an SQL query.

The applicable target is class.

(2) Element
The following table lists the elements of @SqlResultSetMapping:

Element name Optional/Required Element description

name Required This element specifies the name of the result set mapping.

entities Optional This element specifies an array of @EntityResult.

columns Optional This element specifies an array of @ColumnResult.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the name of the result set mapping.
The value that can be specified is a character string.

8. How to Use JPA with Application Server

Compatibility Guide 296

Default value
None

(b) entities element

Type
EntityResult[]

Description
This element specifies an array of @EntityResult.
You can specify the value within the specifiable range of the arrays of @EntityResult. For details, see
8.12.15 @EntityResult.

Default value
Blank array

(c) columns element

Type
ColumnResult[]

Description
This element specifies an array of @ColumnResult.
You can specify the value within the specifiable range of the arrays of @ColumnResult. For details, see
8.12.7 @ColumnResult.

Default value
Blank array

8.12.58 @SqlResultSetMappings

(1) Description
This annotation is specified when multiple @SqlResultSetMapping are coded concurrently.

The applicable target is class.

(2) Element
The following table lists the elements of @SqlResultSetMappings:

Element name Optional/Required Element description

value Required This element specifies an array of @SqlResultSetMapping.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
SqlResultSetMapping[]

8. How to Use JPA with Application Server

Compatibility Guide 297

Description
This element specifies an array of @SqlResultSetMapping.
You can specify the value within the specifiable range of the arrays of @SqlResultSetMapping. For details, see
8.12.57 @SqlResultSetMapping.

Default value
None

8.12.59 @Table

(1) Description
This annotation specifies the primary table in the entity class.

Even when @Table is not specified explicitly in the entity class, the entity class is handled as if @Table were specified.
In such a case, the default value will be applied in each element of @Table.

If more than one table is specified for mapping the entities, use either @SecondaryTable or @SecondaryTables.

The applicable target is class.

(2) Element
The following table lists the elements of @Table:

Element name Optional/Required Element description

name Optional This element specifies the table name.

catalog Optional This element specifies the catalog name of the table.
Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the table.

uniqueConstraints Optional This element specifies the unique key constraints in the table.
Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the table name.
The table name that can be specified depends on the database specifications.

Default value
Entity name

8. How to Use JPA with Application Server

Compatibility Guide 298

(b) schema element

Type
String

Description
This element specifies the schema name of the table.
The schema name that can be specified depends on the database specifications.

Default value
Default schema name of the database used

8.12.60 @TableGenerator

(1) Description
This annotation specifies the settings of the generator that creates the primary key.

The following settings are required when using @TableGenerator:

• Specify GenerationType.TABLE in the strategy element of @GeneratedValue.

• Set up the name specified in the generator element of @GeneratedValue to the name element
of @TableGenerator.

The table generator is specified in the fields or properties of the entity class or primary key. The scope of the generator
name is enabled in the persistence unit.

Use the rows of the generator table when generating the primary key value in an entity.

When creating a table for managing the sequence, specify a positive integer in the initial value. If 0 is specified in the
initial value, the primary key will be generated from 1.

The applicable targets are class, method, and field.

(2) Element
The following table lists the elements of @TableGenerator:

Element name Optional/Required Element description

name Required This element specifies the generator name for the primary key value.

table Optional This element specifies the name of the table that maintains the generated primary
key values.

catalog Optional This element specifies the catalog name of the table that maintains the generated
primary key values.
Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the table that maintains the generated
primary key values.

pkColumnName Optional This element specifies the primary key column name of the table that maintains the
generated primary key values.

8. How to Use JPA with Application Server

Compatibility Guide 299

Element name Optional/Required Element description

valueColumnName Optional This element specifies the column name that maintains the final generated value.

pkColumnValue Optional This element specifies the primary key value of the table that maintains the generated
primary key values.

initialValue Optional This element specifies the value used for initializing the column that maintains the
recent generated values.
Note that Cosminexus JPA provider does not support this attribute. Ignore when the
value is specified.

allocationSize Optional This element specifies the size of allocating the primary key value from the generator.

uniqueConstraints Optional This element specifies the unique key constraints in the table that maintains the
generated primary key values.
Note that Cosminexus JPA provider does not support this attribute. Ignore when the
value is specified.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the generator name for the primary key value.
The value that can be specified is a character string.

Default value
None

(b) table element

Type
String

Description
This element specifies the name of the table that maintains the generated primary key values.
The table name that can be specified depends on the database specifications.

Default value
"SEQUENCE"

(c) schema element

Type
String

Description
This element specifies the schema name of the table that maintains the generated primary key values.
The schema name that can be specified depends on the database specifications.

Default value
Default schema name of the database used

8. How to Use JPA with Application Server

Compatibility Guide 300

(d) pkColumnName element

Type
String

Description
This element specifies the primary key column name of the table that maintains the generated primary key values.
The column name that can be specified depends on the database specifications.

Default value
"SEQ_NAME"

(e) valueColumnName element

Type
String

Description
This element specifies the column name that maintains the final generated value.
The column name that can be specified depends on the database specifications.

Default value
"SEQ_COUNT"

(f) pkColumnValue element

Type
String

Description
This element specifies the primary key value of the table that maintains the generated primary key values.
The value that can be specified depends on the type of column of the generated primary key.

Default value
Character string specified in the name element

(g) allocationSize element

Type
int

Description
This element specifies the allocation size of the primary key value from the generator.
The value that can be specified is a numeric value that is at least one more than the int type.
Note that you can specify the maximum value used during the execution in this element. If you specify a large value
for acquiring the management area of the sequence number, the java.lang.OutOfMemoryError exception
will occur during the execution.

Default value
50

8. How to Use JPA with Application Server

Compatibility Guide 301

8.12.61 @Temporal

(1) Description
This annotation is specified in the persistence property or persistence field having the type that expresses the time
(java.util.Date and java.util.Calendar). This annotation can be used along with @Basic.

However, @Version and @Temporal cannot be specified concurrently. Specify either of these annotations.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @Temporal:

Element name Optional/Required Element description

value Required This element is specified in the TemporalType enumeration type corresponding
to the database type.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
TemporalType

Description
This element is specified in the TemporalType enumeration type corresponding to the database type.
The following three types of values can be specified:

• TemporalType.DATE: Same as java.sql.Data.

• TemporalType.TIME: Same as java.sql.Time.

• TemporalType.TIMESTAMP: Same as java.sql.Timestamp.

Default value
None

8.12.62 @Transient

(1) Description
This annotation specifies the fields or properties of the following non-persisting classes:

• Entity class

• Mapped superclass

• Embedded class

The applicable targets are method and field.

8. How to Use JPA with Application Server

Compatibility Guide 302

The value of a field, in which @Transient is defined, is not persisted. However, since this value is stored in the
persistence context, you can acquire the setup value. Howeachou cannot acquire the value from another EntityManager.

(2) Element
@Transient does not have attributes.

8.12.63 @Version

(1) Description
This annotation specifies the version field or version property used to make use of the optimistic lock functionality.

The following types are supported by the version field or version property:

• int
• java.lang.Integer
• short
• java.lang Short
• long
• java.lang Long
• java.sql.Timestamp

Make note of the following points when using this annotation:

• You cannot specify @Version and @Temporal concurrently. Specify either of these annotations.

• Do not specify the version property in a table other than the primary table.

• In some applications, the field or property specified in @Version must not be updated.

• For bulk update, when multiple records are updated at once using SQL, the version field or version property
is not updated automatically. Therefore, when you use the optimistic lock for performing bulk update, you must
reference and update manually.

• You can set up only a single version field or version property for an entity class. If you set up multiple
version fields or version properties, only a single will be enabled. The sequence for enabling the settings is
not fixed.

The applicable targets are method and field.

(2) Element
@Version does not have attributes.

8.12.64 Correspondence between the annotations and O/R mapping
The following table describes the correspondence between the annotations and O/R mapping files:

8. How to Use JPA with Application Server

Compatibility Guide 303

Table 8‒12: Correspondence between the annotations and O/R mapping files

Annotation O/R mapping elements

@AssociationOverride <association-override>

@AssociationOverrides --

@AttributeOverride <element-override>

@AttributeOverrides --

@Basic <basic>

@Column <column>

@ColumnResult <column-result>

@DiscriminatorColumn <discriminator-column>

@DiscriminatorValue <discriminator-value>

@Embeddable <embeddable>

@Embedded <embedded>

@EmbeddedId <embedded-id>

@Entity <entity>

@EntityListeners <entity-listeners>

@EntityResult <entity-result>

@Enumerated <enumerated>

@ExcludeDefaultListeners <exclude-default-listeners>

@ExcludeSuperclassListeners <exclude-superclass-listeners>

@FieldResult <field-result>

@GeneratedValue <generated-value>

@Id <id>

@IdClass <id-class>

@Inheritance <inheritance>

@JoinColumn <join-column>

@JoinColumns --

@JoinTable <join-table>

@Lob <lob>

@ManyToMany <many-to-many>

@ManyToOne <many-to-one>

@MapKey <map-key>

@MappedSuperclass <mapped-superclass>

@NamedNativeQueries --

@NamedNativeQuery <named-native-query>

@NamedQueries --

8. How to Use JPA with Application Server

Compatibility Guide 304

Annotation O/R mapping elements

@NamedQuery <named-query>

@OneToMany <one-to-many>

@OneToOne <one-to-one>

@OrderBy <order-by>

@PersistenceContext --#

@PersistenceContexts --#

@PersistenceProperty --#

@PostLoad <post-load>

@PostPersist <post-persist>

@PostRemove <post-remove>

@PostUpdate <post-update>

@PrePersist <pre-persist>

@PreRemove <pre-remove>

@PreUpdate <pre-update>

@PrimaryKeyJoinColumn <primary-key-join-column>

@PrimaryKeyJoinColumns --

@QueryHint <hint>

@SecondaryTable <secondary-table>

@SecondaryTables --

@SequenceGenerator <sequence-generator>

@SqlResultSetMapping <sql-result-set-mapping>

@SqlResultSetMappings --

@Table <table>

@TableGenerator <table-generator>

@Temporal <temporal>

@Transient <transient>

@UniqueConstraint <unique-constraint>

@Version <version>

Legend:
--: Not applicable.

#
Not an annotation for O/R mapping.

8. How to Use JPA with Application Server

Compatibility Guide 305

9 Cosminexus JPA Provider

This chapter gives an overview of the Cosminexus JPA Provider functionality, describes the
application implementation methods, and the execution environment settings.

Compatibility Guide 306

9.1 Organization of this chapter

Cosminexus JPA Provider is a JPA provider that implements API functions and the internal processing determined in the
JPA specifications and is provided by Application Server provided to the user in the library format.

This chapter describes the Cosminexus JPA Provider functionality. The following table describes the organization of
this chapter.

Table 9‒1: Organization of this chapter (Cosminexus JPA Provider functionality)

Category Title Reference
location

Description Cosminexus JPA Provider 9.2

Updating a database using entities 9.3

Entity operations by EntityManager 9.4

Defining the mapping information between the database and Java objects 9.5

Entity relationships 9.6

Cache functionality of the entity objects 9.7

Auto-numbering of the primary key values 9.8

Database operations based on the query language 9.9

Optimistic lock 9.10

Pessimistic lock in JPQL 9.11

Implementation Creating an entity class 9.12

Procedure for inheriting an entity class 9.13

Procedure for using EntityManager and EntityManagerFactory 9.14

Procedure for specifying the callback method 9.15

Procedure for referencing and updating the database with the query language 9.16

JPQL coding method 9.17

Defining persistence.xml 9.18

Settings Settings in the execution environment 9.19

Note:
There is no specific description of Operations for this functionality.

9. Cosminexus JPA Provider

Compatibility Guide 307

9.2 Cosminexus JPA Provider

Cosminexus JPA Provider is the JPA provider provided by Application Server. The following figure shows the
positioning of Cosminexus JPA Provider.

Figure 9‒1: Positioning of Cosminexus JPA Provider

Cosminexus JPA Provider is the J2EE server functionality and uses JTA and JNDI to operate the database. The following
sections give an overview of the Cosminexus JPA Provider functionality.

9.2.1 Processing in Cosminexus JPA Provider
Cosminexus JPA Provider provides the following functionality:

• Mapping of the entity objects and database

• Managing the entity objects

• Data operations using JPQL

• Accessing the database through JDBC

To use JPA, you operate the interfaces provided by Cosminexus JPA Provider by using the user-created applications. The
following figure shows the processing executed in Cosminexus JPA Provider.

9. Cosminexus JPA Provider

Compatibility Guide 308

Figure 9‒2: Processing executed in Cosminexus JPA Provider

A description of the figure is as follows:

1. Cosminexus JPA Provider generates EntityManagerFactory from the persistence unit information defined
in persistence.xml.
A persistence unit is a logical group that collects information such as the classes to be mapped, O/R mapping
information, and the data sources. For details on a persistence unit, see 8.4.4 Persistence unit.

2. EntityManager is generated from the generated EntityManagerFactory.

3. EntityManager, query, or transaction is operated from the user application.

4. The entity object is operated through the persistence context from EntityManager, query, or transaction.

5. The changes in the entity object are applied to the database through the JDBC driver.

Note that there are two types of EntityManager:

• Container-managed EntityManager
EntityManager managed by the J2EE container

• Application-managed EntityManager
EntityManager managed by an application

For details on the types of EntityManager, see 8.5.1 EntityManager and persistence context.

Furthermore, a transaction manages operations such as the transaction commit and rollback. With Cosminexus JPA
Provider, you can use the resource local transaction as the transaction. To integrate with JTA transactions, use the
functionality provided by the J2EE container.

9. Cosminexus JPA Provider

Compatibility Guide 309

9.2.2 Functionality provided by Cosminexus JPA Provider
The following functionality is provided by Cosminexus JPA Provider.

Table 9‒2: Functionality provided by Cosminexus JPA Provider

Functionality Overview of functionality Standard/
Extended #

Reference
location

Updating a database using entities Updates the data in the database using the entities generated
from the user applications.

Standard 9.3,
9.4

Defining the mapping information
between the database and Java objects

The mapping information between the database and Java
objects can be defined with annotations or the O/R mapping file.

Standard 9.5

Entity relationship settings Sets up the relationship between the database tables by
using entities.

Standard 9.6

Entity object cache This functionality stores the content of the entity object of
EntityManager in the memory. When an entity object with
the same content is invoked, the entity object in the memory
is used.

Extended 9.7

Auto-numbering of primary key Cosminexus JPA Provider automatically stores the primary key
when the entity object is used to insert the data in the database.
Even if the user does not specify the primary key, a unique value
is stored.

Standard 9.8

Database operations based on the
query language

The database can be operated using the query language. With
Cosminexus JPA Provider, you can use JPQL or SQL as the
query language.

Standard 9.9

Optimistic lock This is one of the database locking methods. The data is updated
after confirming that the data in the database is not being
updated by another transaction. An optimistic lock does not lock
the data, so a deadlock does not occur.

Standard 9.10

Pessimistic lock in JPQL This is one of the database locking methods. A dedicated lock
is set for the record so that the record is not updated by another
transaction. A pessimistic lock is executed only when JPQL
is used.

Extended 9.11

#
Indicates whether the functionality is based on the JPA 1.0 specifications.
Standard: Indicates that the functionality is based on the JPA 1.0 specifications.
Extended: Indicates that the functionality is unique to Cosminexus JPA Provider.

For details on the functionality, see the sections mentioned in the Reference location column in the above table.

Also, you can collect PRF traces by using the CJPA provider. For details on key points of collecting PRF traces, see 15.
Performance Analysis Trace.

9.2.3 Preconditions for using Cosminexus JPA Provider
This section describes the preconditions for using Cosminexus JPA Provider.

(1) Available components
The components that use Cosminexus JPA Provider are EJB 3.0 and later in the case of EJBs and Servlet 2.5 and later
in the case of Web components. For details on the available components, see 8.3.2 Available components.

9. Cosminexus JPA Provider

Compatibility Guide 310

(2) Connectable databases
You can connect to the following databases when you use Cosminexus JPA Provider:

• Oracle

• HiRDB

(3) Available DB Connectors
Cosminexus JPA Provider uses DB Connector to update the database. You can use DB Connectors listed in the following
table with Cosminexus JPA Provider.

Table 9‒3: DB Connectors available with Cosminexus JPA Provider

Database used Transaction type Available DB Connector

Oracle LocalTransaction
NoTransaction

DBConnector_Oracle_CP.rar

XATransaction DBConnector_Oracle_XA.rar

Oracle RAC LocalTransaction
NoTransaction

DBConnector_Oracle_CP.rar
DBConnector_CP_ClusterPool_Root.rar
DBConnector_Oracle_CP_ClusterPool_Member.rar

HiRDB LocalTransaction
NoTransaction

DBConnector_HiRDB_Type4_CP.rar

XATransaction DBConnector_HiRDB_Type4_XA.rar

(4) Environment that cannot be used
You cannot use Cosminexus JPA Provider in the following environment:

• Execution environment for the batch applications

• Execution environment for the EJB client applications

(5) Using the method cancellation functionality
With Cosminexus JPA Provider, a unique binary code is embedded in the accessor method for OneToOne and
ManyToOne LAZY fetch. As a result, the accessor method is subject to method cancellation. Therefore, when LAZY
fetch is specified for the OneToOne relationship or ManyToOne relationship, the entity class, embeddable class, and
mapped super-class must be registered in the protected area.

Note that if the classes are not registered in the protected area, method cancellation might occur on the embedded binary
code. The operations when the classes are not registered in the protected area might not function properly.

Whether the classes are registered or not registered in the protected area, the following stack trace is output due to method
timeout. However, if the classes are registered in the protected area, method cancellation does not occur.

In the following example, the embedded EntityClass1._toplink_getmappingClass2 is invoked by
extending the EntityClass1.getMappingClass2 method invoked by the user. Consequently, a method timeout
occurs, but method cancellation does not occur.

message-id message(LANG=ja)
KDJE52703-W A timeout occurred while the user program was executing. (t

9. Cosminexus JPA Provider

Compatibility Guide 311

hreadID = 23794987, rootAPInfo = 10.209.11.124/5964/0x4828eb62000128e0, appl
ication = JPA_JavaEE_TP, bean = TestBean, method = doTest)
 jpa.test.annotation.onetoone.entity.EntityClass1._toplink_getmappingClas
s2(EntityClass1.java)
 locals:
 (jpa.test.annotation.onetoone.entity.EntityClass1)
this = <0x11e35878> (jpa.test.annotation.onetoone.entity.EntityClass1)
 at jpa.test.annotation.onetoone.entity.EntityClass1.
getMappingClass2(EntityClass1.java:34)
 locals:
 (jpa.test.annotation.onetoone.entity.EntityClass1)
this = <0x11e35878> (jpa.test.annotation.onetoone.entity.EntityClass1)

For details on registering the classes in the protected area, see 2.2.5 criticalList.cfg (Protected areas list file) in the
uCosminexus Application Server Definition Reference Guide.

(6) Using the annotation reference control functionality
When you use Cosminexus JPA Provider, you cannot use the annotation reference control functionality. If the annotation
reference control functionality is enabled, you cannot define the persistence context and persistence unit references.

9.2.4 Estimating the number of DB Connector connections
This section describes the estimation of the DB Connector resources required for using Cosminexus JPA Provider.

With Cosminexus JPA Provider, you obtain the DB Connector connections. The formula for estimating the number of
connections used by Cosminexus JPA Provider is as follows:

Formula for estimating the number of connections
Number of connections used by the Cosminexus JPA Provider applications
= Number of concurrent executions of applications using the JPA functionality #

In the applications using the JPA functionality, when EntityManager of multiple persistence units is used or
when the transactions used by EntityManager for invoking the business methods are different, a connection is
required for each EntityManager.

Important note

When the user acquires a connection separately from the JPA functionality, the number of connections can
be reduced by using the connection sharing functionality. For details on connection sharing, see the manual
uCosminexus Application Server Common Container Functionality Guide.

9. Cosminexus JPA Provider

Compatibility Guide 312

9.3 Updating a database using entities

With Cosminexus JPA Provider, you can update a database using entities.

To use the JPA, the user must create an entity class for handling the database tables as Java objects. If you use the entity
class, the data in the database is operated through Cosminexus JPA Provider. At this time, you operate the database
through the EntityManager interface provided by Cosminexus JPA Provider.

The database operations using the entity class are as follows:

1. Generating the entity class instance (entity object).

2. Passing the entity object to the argument of the EntityManager interface to operate the database.
To perform these operations, an entity class must be created.

EntityManager is an object used for operating the entities and controlling the states. The entity operations include
the persist operation, remove operation, merge operation, flush operation, and refresh operation. For details
on these operations, see 9.4.1 Transition of entity states.

9. Cosminexus JPA Provider

Compatibility Guide 313

9.4 Entity operations by EntityManager

The state of the entity is controlled by EntityManager provided with Cosminexus JPA Provider. This section
describes the entity operations in EntityManager.

9.4.1 Transition of entity states
An entity has a state. When you perform operations for an entity, the state of the entity changes. This section describes
the types of entity states, the operations executed for the entity, and the entity operations and state transition.

(1) Types of entity states
An entity has four types of states, namely new, managed, detached, and removed. The entity state is changed by
using the EntityManager method to operate an entity.

The following table lists and describes each entity state.

Table 9‒4: Entity state

State of entity instances Explanation

new A state in which the entity is newly generated.
A newly generated entity instance does not have a persistence identity, and is, therefore, not associated with
the persistence context.

managed A state in which the entity has a persistence identity associated with the persistence context and is managed
with the persistence context.

detached A state in which the entity has a persistence identity that is not associated with the persistence context.

removed A state in which the entity has a persistence identity and is associated with the persistence context. Also,
includes the state in which the entity instance is scheduled for deletion from the database.

(2) Operations for the entities
If the user searches the database records, Cosminexus JPA Provider stores the obtained data in the entity fields. Also,
when the user updates the database contents, the entity state is applied to the database by changing the state of the entity
registered in the persistence context and by committing the transaction. Thus, by executing operations for the entity, the
database information is updated.

The following table lists and describes the types of operations for the entities.

Table 9‒5: Types of operations for the entities

Operations Explanation

flush This operation applies the content of the entity object to the database.

merge In this operation, the entity object that was not managed by EntityManager is managed
by EntityManager.

persist This operation manages and perpetuates the entity object.

refresh This operation applies the database content to the entity object.

remove This operation sets the entity object to the state of scheduled deletion.

9. Cosminexus JPA Provider

Compatibility Guide 314

(3) Operations and state transition for the entities
The following figure shows the operations and the state transition for the entity instances.

Figure 9‒3: Operations and state transition for the entity instances

The following table describes the operations and state transition for the entities.

Table 9‒6: Transition of entity states

Operations State

new managed detached removed

persist managed#1 managed managed#1 managed

remove new removed Exception#2, #3 removed

merge • Copy source
new

• Copy destination
managed

• Copy source
managed

• Copy destination
managed

• Copy source
detached

• Copy destination
managed

Exception#3, #4

refresh Exception#2, #4 managed#5 Exception#2, #4 Exception#2, #4

commit -- #6 -- detached

rollback -- detached -- detached

flush -- managed -- detached

clear -- detached -- detached

Legend:
--: Not applicable

#1
If an exception occurs in the persist operation, the state enters the original state without being changed.

#2
The exception that occurs is IllegalArgumentException.

#3
If the corresponding line does not exist in the database, the operation is ignored.

9. Cosminexus JPA Provider

Compatibility Guide 315

#4
If an exception occurs, the state does not change and remains as the original.

#5
If the corresponding line does not exist in the database, EntityNotFoundException occurs.

#6
For a persistence context in the transaction scope, the state is detached. For an extended persistence context, the state is managed.

Furthermore, the operations when persist, remove, merge, and refresh are executed outside the transaction vary
according to the type of the persistence context.

• For a persistence context in the transaction scope
TransactionRequiredException occurs.

• For an extended persistence context
The state changes and the states are applied to the database when the next transaction is concluded.

(4) Propagation of operations to the entities
When the entities have a relationship and if you specify the cascade attribute of the annotation indicating the
relationship, the operations for the entity are propagated to the related entities. You can specify the values listed in the
following table in the cascade attribute.

Table 9‒7: Types of cascade attributes

Types of cascade attributes Explanation

CascadeType.ALL The persist, remove, merge, and refresh operations are propagated to the
relation destination.

CascadeType.PERSIST The persist operation is propagated to the relation destination.

CascadeType.REMOVE The remove operation is propagated to the relation destination.

CascadeType.MERGE The merge operation is propagated to the relation destination.

CascadeType.REFRESH The refresh operation is propagated to the relation destination.

9.4.2 persist operation for the entities
To execute the persist operation for the entities, invoke the persist method of EntityManager. If the
persist method of EntityManager is invoked and the persist processing is cascaded, the entity is managed in
the persistence and persistence context of the database.

The following table describes the state of the entity after the persist operation, for each entity state.

Table 9‒8: State of the entities in the persist operation

State of the entity State of the entity after the persist operation

new# The state changes to managed. The entity changed to managed is added into the database during or before transaction
commit or is added into the database as a result of the execution of the flush operation.

managed The persist operation is ignored. However, if PERSIST or ALL is specified in the cascade attribute for the
relationship from one entity to another entity, the persist operation is propagated to the entities referenced by
this entity.

9. Cosminexus JPA Provider

Compatibility Guide 316

State of the entity State of the entity after the persist operation

detached# If the line corresponding to the entity does not exist in the database, the state changes to managed. If the corresponding
line exists, EntityExistsException occurs.

removed The state changes to managed.

#: For Cosminexus JPA Provider, when the state of an entity is new or detached, the results of the transition of entity states differ according to
whether the data corresponding to the entity exists on the database. Note the following for Cosminexus JPA Provider:

• If an entity that is not perpetuated in the database is specified in the argument, the state changes to managed.

• If a line duplicating with the entity passed in an argument exists on the database and if that entity is managed with the persistence context,
EntityExistsException occurs during the persist processing.

• If a line duplicating with the entity passed in an argument exists on the database, but if the entity is not managed with the persistence context,
EntityExistsException or another PersistenceException occurs during flush and commit.

Important note

The entity is registered in the persistence context when the entity is perpetuated in the database and when the
entity information is read from the database. Note that after the entity state is changed to managed, if the
persistence processing is rolled back, the entity is not managed with the persistence context.

9.4.3 remove operation for the entities
To execute the remove operation for the entities, invoke the remove method of EntityManager. If the remove method
of EntityManager is invoked and the remove processing is cascaded, the state of the entity becomes removed. A
removed entity is deleted from the database by the transaction commit processing.

The following table describes the state of the entity after the remove operation, for each entity state.

Table 9‒9: State of entity in the remove operation

State of the entity Result of state transition

new The remove operation is ignored. However, if REMOVE or ALL is specified in the cascade attribute for the
relationship from one entity to another entity, the remove operation is propagated to the entities referenced by
this entity.

managed The state changes to removed. If REMOVE or ALL is specified in the cascade attribute for the relationship from
one entity to another entity, the remove operation is propagated to the entities referenced by this entity.

detached The state changes as follows:
• If the line corresponding to the detached entity passed in the argument exists in the database,
IllegalArgumentException is thrown during the remove operation.

• For Cosminexus JPA Provider, if the corresponding line does not exist in the database, the remove operation is
ignored. However, if REMOVE or ALL is specified in the cascade attribute for the relationship with other entities,
the remove operation is propagated to the entities referenced by this entity.

removed The remove operation is ignored. The operation is also not propagated to other entities.

Note 1: A removed entity is deleted from the database as a result of the execution of operations during transaction commit, before transaction
commit, or during flush operations.
Note 2: After the entity is deleted, the entity contents change to the contents immediately after the remove processing was invoked, however,
excluding the content immediately after the entity was generated.

9. Cosminexus JPA Provider

Compatibility Guide 317

9.4.4 Obtaining the entities from the database
By invoking the find method or getReference method of EntityManager, you can obtain the entities
corresponding to the primary key specified in the argument, from the database.

The entities returned by the find method or getReference method of EntityManager use the persistence
context of the transaction scope. Therefore, when the method is invoked within the transaction, the state changes to
managed. Also, if the find method or getReference method is invoked outside the transaction, the state changes
to detached.

The following table describes the state of entities obtained with the find operation or getReference operation.

Table 9‒10: State of entities obtained with the find operation or getReference operation

Persistence context State of the obtained entity

Persistence context of the transaction scope (outside the transaction) detached

Persistence context of the transaction scope (within the transaction) managed

Extended persistence context (outside the transaction) managed

Extended persistence context (within the transaction) managed

Note that for Cosminexus JPA Provider, the following points differ from the JPA specifications in the find operation
or getReference operation. Note that apart from these differences, there are no other functionality differences with
the JPA specifications.

• With the JPA specifications, in the getReference method of EntityManager, you can return Proxy to
the entity corresponding to the primary key given in the argument and not in the actual instance. However, with
Cosminexus JPA Provider, Lazy loading is not supported for @Basic. Therefore, with Cosminexus JPA Provider,
entity instance is returned as the return value of getReference instead of Proxy.
For details on the supported range of Lazy loading for a relationship, see 9.4.5(2) Reading the entity information from
the database.

• With Cosminexus JPA Provider, if an entity that does not exist between the find method and
getReference method is specified in the argument, a null value is returned with the find method. Also,
EntityNotFoundException is thrown with the getReference method.

9.4.5 Synchronization with the database
When the transaction commit or flush method is executed, the state of the entity is written to the database. On the other
hand, unless refresh is invoked explicitly, the state of the entity loaded in the memory is not refreshed.

This section describes writing of the entity information to the database and reading of the entity information from
the database.

(1) Writing the entity information to the database
This section describes the transition of entity states in the flush operation or transaction commit. The following table
describes the state transition results for each entity A state.

9. Cosminexus JPA Provider

Compatibility Guide 318

Table 9‒11: State transition of entity instances in the flush operation or transaction commit

State of entity A Result of state transition

new The flush operation is ignored.

managed Entity A is synchronized with the database.

removed Entity A is deleted from the database.

detached The flush operation is ignored.

Also, if entity A with the managed state has a relationship to entity B, the persist operation is cascaded according
to the conditions described in the following table by extending the flush processing.

Table 9‒12: Cascading of the flush processing and persist operation in commit for the related
entity B

Specification of the cascade
attribute of the relationship to
entity B

State of entity B Results

PERSIST or ALL is specified -- The persist operation is cascaded to entity B.

PERSIST or ALL is not specified new • In the flush operation
IllegalStateException occurs and the transaction is marked
for rollback.

• In the commit processing
IllegalStateException occurs and the transaction commit
operation fails.

managed Entity B is synchronized with the database.

removed • In the flush operation
IllegalStateException occurs and the transaction is marked
for rollback.

• In the commit processing
IllegalStateException occurs and the transaction commit
operation fails.

detached • When entity A is the owner of the relationship
The change in the relationship is synchronized with the database.

• When entity B is the owner of the relationship
An exception occurs. With Cosminexus JPA Provider, the operations in this
case are not supported.

Legend:
--: Not applicable

Note that if the flush method is invoked outside the transaction, TransactionRequiredException occurs.

Tip

Persistence relation for relationship and database

• A managed entity having a bi-directional relationship is perpetuated on the basis of the reference stored in
the owner side of the relationship. The application developer must create an application so that when changes
occur, the entity is stored in the owner side and the non-owner side respectively without conflicting with the
state of the entity on the memory.

9. Cosminexus JPA Provider

Compatibility Guide 319

• For unidirectional OneToOne and OneToMany, it is the developer's responsibility to guarantee that the
relation of the relationships defined in the entity and the relation between the database tables is matching.

(2) Reading the entity information from the database
If the refresh method of EntityManager is invoked, the changes performed in the entity until then are destroyed
and the state of the entity is overwritten by the database contents. At this time, if the corresponding line does not exist
in the database, EntityNotFoundException occurs.

If you invoke the refresh method of EntityManager when the state of entity is not managed,
IllegalArgumentException occurs.

(a) Timing when the entity information is read from the database
The entity is read from the database when the refresh method or find method is executed or when a query is issued.
The related entities can also be read at this time. This is called the fetch strategy. Specify the fetch strategy in the fetch
attribute of each relationship. Specify one of the following types in the fetch attribute:

• FetchType.EAGER
When the entity information is read from the database, the related field and entity information is read.

• FetchType.LAZY
When the field or relation destination is accessed for the first time, the entity is read from the database. This is called
Lazy loading.

If you specify FetchType.EAGER, the related field and entity information is read every time the entity information
is read from the database. Therefore, specify FetchType.LAZY to prevent the obtaining of unnecessary relation
destination entities.

The following table describes the supported range of the fetch attribute in Cosminexus JPA Provider.

Table 9‒13: Supported range of the fetch attribute for each relationship

Relationship annotation Supported range

@ManyToMany The default value is FetchType.LAZY.

@OneToMany The default value is FetchType.LAZY.

@OneToOne The default value is FetchType.EAGER. Note that if LAZY is specified, see (b).

@ManyToOne The default value is FetchType.EAGER. Note that if LAZY is specified, see (b).

@Basic The fetch attribute is ignored. The default FetchType.EAGER is always applied.

(b) LAZY fetch in @OneToOne and @ManyToOne
If you specify LAZY in the fetch strategy for a @OneToOne and @ManyToOne relationship, when the entity class is
loaded, the binary code is embedded in the getter method for the field specifying LAZY.

If you invoke the getter method, the relation destination entity is obtained from the database through the processing
of the embedded binary code. Because the binary code is embedded in the getter method, the getter method used
for accessing the field that forms the target of relation must be set up. Furthermore, @OneToOne or @ManyToOne must
be specified in that getter method.

9. Cosminexus JPA Provider

Compatibility Guide 320

Important note

The getter method determines the type of the relation destination entity from the targetEntity type of
the relationship. The type of class specified in targetEntity must be castable in the field or property type.

9.4.6 Separate and merge operations of an entity from the persistence
context

An entity separated from the persistence context is called a detached entity. The entity state becomes detached at the
following times:

• When a transaction in the persistence context of the transaction scope is committed

• When a transaction is rolled back

• When the persistence context is cleared (when EntityManager.clear() is invoked)

• When EntityManager is closed

• When the entity is serialized and the entity value is passed

The instance of the separated entity continues to exist outside the persistence context that is perpetuated and obtained.
The states of the entity and the database are not synchronized.

(1) Accessing a detached entity
An application can access the detached entity even after the persistence context ends. In this case, the entity fields and
relation destinations must already be fetched. The fields and the relation destination entities that are not fetched by the
detached entity cannot be accessed. Note that FetchType.EAGER is always applied to @Basic specified in the
field, so the relation destination entity and field information are already obtained.

To access a relationship from the detached entity, one of the following conditions must be satisfied:

• The entity instance is obtained using find()
• The entity is obtained by using a query or the entity is explicitly requested using the FETCH JOIN clause

• The persistence instance that is not a primary key is already accessed with the application

• The entity is already obtained from another valid entity by tracing the relation specified as fetch=EAGER

If unavailable instances are accessed and if available instances are accessed in a disabled state, an exception occurs.
However, when FetchType.LAZY is specified with Cosminexus JPA Provider, if you access un-fetched fields and
relation destination entities even if the entity is detached after EntityManager terminates, sometimes the value is
obtained from the database and the contents can be referenced.

(2) merge processing of an entity
By invoking the merge method of EntityManager or by cascading the merge processing, you can merge the
detached entity with the persistence context managed by EntityManager.

The following table describes the transition of entity states in the merge processing for each state of entity A.

9. Cosminexus JPA Provider

Compatibility Guide 321

Table 9‒14: Results of transition of entity states in the merge processing

State of entity A Results of state transition

new A new entity A' is created with managed state and the state of entity A is copied to entity A'. Note that the
entity of the merge argument remains new.

managed The merge operation is ignored. However, if MERGE or ALL is specified in the cascade attribute for the
relationship from entity A to other entities, the merge operation is propagated to the entities referenced by
entity A.

detached The state of entity A is copied to entity A' that has the same ID and already exists and is being managed,
or a new managed entity is created that is a copy of entity A. Note that the entity of the merge argument
remains detached.

removed IllegalArgumentException is thrown by the merge operation, or transaction commit fails. Note that
the state of entity A remains removed.

Note 1: If the relation from entity A to entity B is specified with cascade=MERGE or cascade=ALL, all the entity B are recursively merged
as entity B'. Entity B' is set in entity A'. Note that if entity A is in the managed state, entity A and entity A' are the same.
Note 2: If entity B is referenced when cascade=MERGE or cascade=ALL is not specified in the relation of entity A, when entity A is merged
with entity A' and if you trace the relation from entity A', you will finally reach the reference of the managed entity B' with the same persistence
identity as entity B.

With the JPA specifications, the fields marked as LAZY to imply that the field is not fetched, are ignored during merge.
However, with Cosminexus JPA Provider, @Basic operates as EAGER, therefore, all the fields that are not relationships
are subject to the merge processing.

Also, if the Version string is used in the entity, the version of the entity is checked during the merge operation and
during the flush and commit processing invoked after the merge operation. If the Version string does not exist, the
version of the entity is not checked with the merge operation. For details, see 9.10.1 Optimistic lock processing.

Note that Cosminexus JPA Provider does not support the processing to return to the persistence context using the entity
merge processing between vendors.

(3) Notes
• In Cosminexus JPA Provider, the managed entity becomes a detached entity due to transaction commit with the

persistence context of the transaction scope. On the other hand, with the extended persistence context, the managed
entity remains managed.

• If the transaction is rolled back in the transaction scope and in the extended persistence context, all the existing
managed instances and removed instances become detached. The state of the instance is the state existing when
the transaction is rolled back.

• If the transaction is rolled back, the state of the persistence context becomes the state existing at rollback, so the state
conflicts with the database state. Note that in Cosminexus JPA Provider, the version attribute state and the generated
state form conflicting states, therefore, if the merge operation is performed, an exception might occur.

9.4.7 managed entity
You can use the contains() method of EntityManager to obtain information about whether the entity instance
is being managed with the current persistence context.

This section describes the conditions for the return value of the contains() method.

• Conditions when the contains() method returns true

9. Cosminexus JPA Provider

Compatibility Guide 322

• When the entity is acquired from the database and is not deleted from EntityManager, or is not separated

• When the entity instance is generated and the persist method is executed for that entity or the persist
operation is propagated to that entity

• Conditions when the contains() method returns false
• When the entity instance is separated

• When the remove method is executed for the entity or the remove operation is propagated to the entity

• When the entity instance is generated and the persist method is not executed for that entity or the persist
operation is not propagated to that entity

The actual insert and delete processing in the database is delayed until the conclusion of the transaction. At the
same time, note that the propagation of persist and remove is applied immediately with the contains method.

Make sure that the entity instance is only managed using a single persistence context in the application. With
Cosminexus JPA Provider, the operations do not function properly when the same Java instance is managed with multiple
persistence contexts.

9. Cosminexus JPA Provider

Compatibility Guide 323

9.5 Defining the mapping information between the database and Java
objects

With Cosminexus JPA Provider, you can define the information for mapping the database and the Java objects. You define
the mapping information with an annotation or the O/R mapping file.

• Definition using an annotation
You define the mapping information directly in the entity class of the application.

• Definition using an O/R mapping file
An O/R mapping file is an XML file used for describing the mapping information. You use tags to define the
mapping information.

If the mapping information is defined in both annotations and O/R mapping file, the definition in the O/R mapping
file is given priority. Therefore, if you use the O/R mapping file to change the mapping information defined by using
annotations, you can change the mapping information without changing the application.

Determine whether you want to use an annotation or an O/R mapping file or you want to use the annotation and O/R
mapping file together, in accordance with the application creation policy.

9. Cosminexus JPA Provider

Compatibility Guide 324

9.6 Entity relationships

With an entity, the relation between the database tables can be expressed using a relationship. With Cosminexus JPA
Provider, you can set an entity relationship.

9.6.1 Relationship types
A relationship consists of a relation and a direction. The possible relations are OneToOne, ManyToOne, OneToMany, and
ManyToMany. Furthermore, the possible directions of each relation are unidirectional and bi-directional. The relations
and directions are combined to form the following seven types of relationship:

• Unidirectional OneToOne relationship

• Unidirectional ManyToOne relationship

• Unidirectional OneToMany relationship

• Unidirectional ManyToMany relationship

• Bi-directional OneToOne relationship

• Bi-directional ManyToOne/OneToMany relationship

• Bi-directional ManyToMany relationship

This section describes relationships using the employees and departments of a company as an example. The relation
between the employees and departments is as follows:

• The entity expresses the employees and departments respectively.

• The employees are assumed to belong to some department.

• A department maintains multiple employees.

• The departments are referenced from employees and the employees are referenced from departments.

This example expresses the bi-directional ManyToOne/ OneToMany relationship of entities. In this case, Many stands
for the employees and One stands for the department. The following figure shows the relation between the employee
entity and the department entity.

Figure 9‒4: Relation between the employee entity and the department entity

Note that in an entity, you can specify settings to propagate the operations to the relation destination entity. These settings
are called cascade. When you perform an operation for an entity and if cascade is specified, similar operations are
automatically executed even in the entities that have a relationship with the operated entity. If cascade is used, the user
can save the effort of performing operations for the relation destination entity.

9. Cosminexus JPA Provider

Compatibility Guide 325

9.6.2 Annotations for relationships
The entities handle the relation between tables as a relationship. When you handle a relationship with an entity, the
reference to another entity is stored as a field in the entity. In addition, set the following relationship annotations in the
persistence property or instance variable that references an entity:

• OneToOne (One-to-one)

• OneToMany (One-to-many)

• ManyToOne (Many-To-One)

• ManyToMany (Many-To-Many)

The following figure shows the relationship between entities and the relation between tables.

Figure 9‒5: Relationship between entities and relation between tables

If the relationship annotation is not specified for referencing the entity, the operations will not function properly. Note
that if the generic type is not used in the reference where collection is used, the target entity must be specified as the
relationship target.

Instead of using an annotation, you can also define a relationship using the O/R mapping file. However, note that when
a relationship is defined in the O/R mapping file and if the same definition is specified in the annotation, the definition
in the annotation is overwritten.

Default mapping in the relationship annotations
When the annotations for the OneToOne, OneToMany, ManyToOne, and ManyToMany relationships are applied,
the default mapping rules are applied. Similarly when a relationship is specified in the O/R mapping file, the default
mapping is applied.
When you use the default mapping of the relationship annotations, if the database tables and relations differ
from the default values specified in 9.6.4 Default mapping (bi-directional relationship) or 9.6.5 Default mapping
(unidirectional relationship), the SQL statement cannot be created correctly in the database query during execution.
An exception occurs.

9. Cosminexus JPA Provider

Compatibility Guide 326

9.6.3 Direction of relationships
A relationship includes a bi-directional relationship and a unidirectional relationship. When a bi-directional relationship
is handled, a relationship has an owner and a non-owner. A unidirectional relationship only has an owner. The owner of
a relationship can take decisions on updating a database relationship.

The following rules are applied to a bi-directional relationship:

• The non-owner of a bi-directional relationship specifies the owner based on the mappedBy element of
@OneToOne, @OneToMany, and @ManyToMany. With the mappedBy element, you specify the properties
or field names that reference the non-owner side using the owner entity.

• With the ManyToOne/OneToMany bi-directional relationship, set many as the owner. Therefore, the mappedBy
element cannot be specified in @ManyToOne.

• With the OneToOne bi-directional relationship, the entity on the side containing the external key becomes the owner.

• In the ManyToMany bi-directional relationship, any entity might be set as the owner.

A relationship annotation has a cascade attribute. If you specify the cascade attribute, you can propagate the
operations for the entities even for the reference destination entities. However, you can specify REMOVE in the cascade
attribute of the relationship annotation only for OneToOne or OneToMany. If cascade=REMOVE is applied for other
relations, the operations might not function properly. For details on the cascade attribute when the entities have
relationships, see 9.4.1(4) Propagation of operations to the entities.

Important note

Cosminexus JPA Provider does not implement the check for maintaining the consistency of relationships during
execution. Therefore, when you update the relationships during the execution of an application, even if the
update causes an inconsistency in the relationships, no warning or exception occurs.

Note that when a value is fetched from the database with collection relationships such as OneToMany or ManyToMany,
an empty collection is returned as the relationship value if the related entity does not exist.

9.6.4 Default mapping (bi-directional relationship)
This section describes the default mapping of a bi-directional relationship.

(1) Bi-directional OneToOne relationship
This section describes the default mapping of a bi-directional OneToOne relationship applied in the following conditions:

Conditions

• Entity A references the stand-alone instance of entity B and sets @OneToOne.

• Entity B references the stand-alone instance of entity A and sets @OneToOne. The persistence property (or field)
name that references entity B using entity A is specified in the mappedBy attribute of @OneToOne.

• Entity A is the relationship owner.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

9. Cosminexus JPA Provider

Compatibility Guide 327

• Table A must have the external key for table B. The name of the external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key string of table B
Note: Italics indicate a variable value.

Also, the external key string has the same type as the primary key of table B and is a unique key constraint.

Figure 9‒6: Default mapping in a bi-directional OneToOne relationship

(2) Bi-directional ManyToOne/ OneToMany relationship
This section describes the default mapping of a bi-directional ManyToOne/OneToMany relationship applied in the
following conditions:

Conditions

• Entity A references the stand-alone instance of entity B and sets @ManyToOne (or the corresponding XML tags
in the O/R mapping file).

• Entity B references the entity A collection and sets @OneToMany (or the corresponding XML tags in the O/R
mapping file). The mappedBy attribute is specified in @OneToMany. The mappedBy attribute specifies the
persistent property (or field) name set for referencing entity B with entity A.

• Entity A is the relationship owner.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Table A must have the external key for table B. The name of the external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key string of table B
Note: Italics indicate a variable value.

The external key string has the same type as the primary key of table B.

9. Cosminexus JPA Provider

Compatibility Guide 328

Figure 9‒7: Default mapping in a bi-directional ManyToOne/ OneToMany relationship

(3) Bi-directional ManyToMany relationship
This section describes the default mapping of a bi-directional ManyToMany relationship applied in the
following conditions:

Conditions

• Entity A references the entity B collection. @ManyToMany (or the corresponding XML element in the O/R
mapping file) is set in the collection.

• Entity B references the entity A collection. @ManyToMany (or the corresponding XML tags in the O/R mapping
file) is set in the collection and the mappedBy attribute is specified. The mappedBy attribute specifies the
persistent property (or field) name set for referencing entity B with entity A.

• Entity A is the relationship owner.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Apart from table A and B, a junction table named A_B where the name of the owner table appears at the
beginning, is necessary. This junction table has two external key strings.
The first external key string references table A and has the same type as the primary key of table A. The name
of this external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity B_ Name of the primary key of table A
The other external key string references table B and has the same type as the primary key of table B. The name
of this external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key of table B
Note: Italics indicate a variable value.

9. Cosminexus JPA Provider

Compatibility Guide 329

Figure 9‒8: Default mapping in a bi-directional ManyToMany relationship

9.6.5 Default mapping (unidirectional relationship)
A unidirectional relationship includes a Single-Valued relationship and a Multi-Valued relationship. The following
points describe each relationship:

• Unidirectional Single-Valued relationship
A unidirectional Single-Valued relationship is a relationship that references the stand-alone instance and where only
the owner exists.
Possible unidirectional Single-Valued relationships are unidirectional OneToOne relationships and unidirectional
ManyToOne relationships.

• Unidirectional Multi-Valued relationship
A unidirectional Multi-Valued relationship is a relationship that references the entity in the collection format and
where only the owner exists.
Possible unidirectional Multi-Valued relationships are unidirectional OneToMany relationships and unidirectional
ManyToMany relationships.

This section describes the default mapping of a unidirectional relationship.

(1) Unidirectional Single-Valued relationship
This section describes the default mapping of a unidirectional OneToOne relationship and a unidirectional
ManyToOne relationship.

(a) Unidirectional OneToOne relationship
This section describes the default mapping of a unidirectional OneToOne relationship applied in the
following conditions:

9. Cosminexus JPA Provider

Compatibility Guide 330

Conditions

• Entity A references the stand-alone instance of entity B and sets @OneToOne (or the corresponding XML tags
in the O/R mapping file).

• Entity A is not referenced from entity B.

• Entity A is the relationship owner.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Table A must have the external key for table B. The name of the external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key string of table B
Note: Italics indicate a variable value.

The external key string has the same type as the primary key of table B and is a unique key constraint.

Figure 9‒9: Default mapping in a unidirectional OneToOne relationship

(b) Unidirectional ManyToOne relationship
This section describes the default mapping of a unidirectional ManyToOne relationship applied in the
following conditions:

Conditions

• Entity A references the stand-alone instance of entity B and sets @ManyToOne (or the corresponding XML tags
in the O/R mapping file).

• Entity A is not referenced from entity B.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Table A must have the external key for table B. The name of the external key string is as follows:

9. Cosminexus JPA Provider

Compatibility Guide 331

Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key string of table B
Note: Italics indicate a variable value.

The external key string must have the same type as the primary key of table B.

Figure 9‒10: Default mapping in a unidirectional ManyToOne relationship

(2) Unidirectional Multi-Valued relationship
This section describes the default mapping of a unidirectional OneToMany relationship and a unidirectional
ManyToMany relationship.

(a) Unidirectional OneToMany relationship
This section describes the default mapping of a unidirectional OneToMany relationship applied in the
following conditions:

Conditions

• Entity A references the entity B collection. @OneToMany (or the corresponding XML tags in the O/R mapping
file) is set in the collection.

• Entity A is not referenced from entity B.

• Entity A is the relationship owner.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Apart from table A and B, a junction table named A_B where the name of the owner table appears at the
beginning, is necessary. This junction table has two external key strings.
The first external key string references table A and has the same type as the primary key of table A. The name
of this external key string is as follows:
Name of the external key string
Name of entity A_ Name of the primary key string of table A

9. Cosminexus JPA Provider

Compatibility Guide 332

The other external key string references table B, has the same type as the external key of table B, and is a unique
key constraint. The name of this external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key string of table B
Note: Italics indicate a variable value.

Important note

A unidirectional OneToMany relationship that uses a junction table as described in this example might
not be supported with JPA Providers other than Cosminexus JPA Provider. Note this when you operate
applications created with a unidirectional OneToMany relationship using JPA Providers other than
Cosminexus JPA Provider.

Figure 9‒11: Default mapping in a unidirectional OneToMany relationship

(b) Unidirectional ManyToMany relationship
This section describes the default mapping of a unidirectional ManyToMany relationship applied in the
following conditions:

Conditions

• Entity A references the entity B collection. @ManyToMany (or the corresponding XML tags in the O/R mapping
file) is set in the collection.

• Entity B does not reference entity A.

• The owner is entity A.

Applied default mapping

• Entity A is mapped to table A.

• Entity B is mapped to table B.

• Apart from table A and B, a junction table named A_B where the name of the owner table appears at the
beginning, is necessary. This junction table has two external key strings.

9. Cosminexus JPA Provider

Compatibility Guide 333

One of the external key strings references table A and has the same type as the external key of table A. The name
of this external key string is as follows:
Name of the external key string
Name of entity A_Name of the primary key of table A
The other external key string references table B and has the same type as the primary key of table B. The name
of this external key string is as follows:
Name of the external key string
Name of the relationship property (or field) of entity A_ Name of the primary key of table B
Note: Italics indicate a variable value.

Figure 9‒12: Default mapping in a unidirectional ManyToMany relationship

9. Cosminexus JPA Provider

Compatibility Guide 334

9.7 Cache functionality of the entity objects

The cache functionality of the entity objects is a functionality that stores the entity objects used by an application in
the memory. When you use the cache functionality of the entity objects, the entity objects cached in Cosminexus JPA
Provider are used if the same entity objects are operated. The data is not read from the database again, so the access to the
database is minimized and the load on the processing performance can be reduced. Note that this functionality is unique
to Cosminexus JPA Provider.

This section describes the cache functionality of the entity objects.

9.7.1 Processing of the cache functionality
If you use the cache functionality, when the same entity is read, the data is obtained from the cache instead of the database.
This section describes the procedure for processing the cache functionality, the cache registration and update timing, and
the procedure for updating the cache.

(1) Procedure for processing the cache functionality
The following figure shows the flow of processing of the cache functionality.

Figure 9‒13: Flow of processing of the cache functionality

A description of the above figure is as follows:

• Reading of the entity
When an entity is first read with methods such as find, the flow of processing is as follows:

1. The entity is read.

2. The data is obtained from the database.

3. The entity object of the obtained data is registered in the cache.

When the entity has a relationship and when you obtain the relationship destination entity, if the target entity exists in
the cache, the entity in the cache is referenced without accessing the database.

A cache exists for each persistence context.

(2) Cache registration and update timing
Registration and update in a cache is implemented at the following times:

9. Cosminexus JPA Provider

Compatibility Guide 335

• Cache registration timing
During the reading of an entity object (find operation) when the target cache does not exist

• Cache update timing

• When the entity is refreshed (refresh operation)

• When a transaction is committed

• When an exception occurs in the optimistic lock processing
Note that when the OptimisticLockException exception occurs in the optimistic lock processing, the
entity objects registered in the cache are deleted.

(3) Procedure for updating the cache
The following figure shows the flow of updating the cache.

Figure 9‒14: Updating the cache

A description of the figure is as follows:

1. The following operations are implemented for the entity object:

• refresh operation

• Transaction commit

2. During the refresh operation, the database is accessed.

3. The data existing in the persistence context is registered in the cache and the cache data is updated.

Note that the cache is registered even when JPQL is executed. The cache is registered if JPQL is executed when the target
cache does not exist. The cache data is used in JPQL as well, but the database is accessed irrespective of the presence
or absence of the cache data. Therefore, the cache-based processing performance cannot be expected to improve. For
details, see point (4).

The cache stores information for the entity objects; therefore, if the object returned during the execution of the query is
the entity itself, the cache is updated. The cache is not updated when other fields are specified. The JPQL examples when
the cache update is valid and when the update is invalid are as follows:

• JPQL example when the cache is updated

SELECT emp FROM Employee AS emp

• JPQL example when the cache is not updated

9. Cosminexus JPA Provider

Compatibility Guide 336

SELECT emp.id, emp.name, emp.address FROM Employee AS emp

(4) Relation between JPQL and cache
When all the entity objects are obtained with JPQL, if there is information registered in the cache, the cache information
is obtained. The cache functionality of Cosminexus JPA Provider requires a primary key that is the ID for identifying
the target entity. To obtain the primary key, the JPQL result must be obtained and at this time, the database is accessed.
The primary key is extracted from the database access results and the entity object is obtained from the cache. Also, if
the target data does not exist in the cache, the entity is created from the database information.

With JPQL, the database is accessed regardless of the presence or absence of the cache data. Therefore, for JPQL,
cache-based performance improvement cannot be expected.

9.7.2 Cache reference forms and cache types
There are three types of cache reference forms:

• Hard reference
This reference is not collected by GC.

• Weak reference (java.lang.ref.WeakReference)
If the reference is weakly reachable, the reference is collected by GC. Note that whether the cache reference is weakly
reachable depends on the specifications in java.lang.ref.WeakReference.
The examples of weak reference cache that are not collected with Cosminexus JPA Provider are as follows:

• Cache of an entity object registered in the persistence context

• Cache that references a non-weakly reachable cache using a relationship

• Cache wherein the cache of another entity object with an inheritance relationship is not weakly reachable, when
the entity inheritance strategy is used

• Soft reference (java.lang.ref.SoftReference)
This is a reference form that caches out when the remaining amount of memory decreases.
A soft reference is collected by GC depending on the consumption rate and survival time of a resource. The
specifications such as the collection timing and the selection of objects for collection depend on JavaVM.

The cache types differ depending on which form is used to reference the cache. The following table describes the mapping
of the cache reference forms and cache types.

Table 9‒15: Mapping of the cache reference forms and cache types

Cache reference forms Cache types

Hard reference Full

Hard reference + Weak reference#1 HardWeak

Weak reference + Soft reference#1 SoftWeak

Weak reference Weak

None#2 None

#1
The reference forms are combined.

9. Cosminexus JPA Provider

Compatibility Guide 337

#2
The entity object is not cached.

With Cosminexus JPA Provider, you can choose the cache type. Choose the type based on the application design
and environment. Specify the cache type in persistence.xml. For details on persistence.xml, see
13.2 persistence.xml.

The following points describe the cache types.

(1) Full
All the entities are cached with a hard reference.

If you specify Full in the cache type, the access to the database decreases, so the processing load decreases. However,
the memory continues to be occupied, therefore, the load on the memory increases.

Specify Full when the duration of the entity object is long and when the reference is created for a few entity objects
that require frequent access. Furthermore, when several entity objects are read, the memory load increases, so we do not
recommend using Full to update multiple records in a batch.

When Full is specified, the hard reference area is allocated with the specified cache size. If the hard reference area
exceeds the defined size, the area is increased based on the Hashtable specifications. The following figure shows the
image in the cache when Full is specified.

Figure 9‒15: Cache image for Full

(2) HardWeak
The entities are cached with a hard reference and weak reference.

When you want to store the entity object in a list, use a hard reference. Create the hard reference area with a fixed length
only up to the value specified in the cache size. If the cache size reaches the specified value, the old entity objects are
moved to the weak reference. At this time, the entity objects for which cache registration has not been used for the longest
time are moved sequentially to the weak reference. If the entity objects moved to the weak reference are used, the entity
objects are once again stored in the hard reference area.

If you specify HardWeak, you can use the entity objects with a long duration to efficiently control the memory used in
the cache.

If the state of insufficient memory occurs frequently in a system where SoftWeak is used, you cannot take advantage
of the soft reference; therefore, use HardWeak. The following figure shows the image in the cache for HardWeak.

9. Cosminexus JPA Provider

Compatibility Guide 338

Figure 9‒16: Cache image for HardWeak

In the case of HardWeak, the cache is stored with a hard reference in the hard reference cache area. Also, the cache is
stored with a weak reference in the weak reference cache area.

(3) SoftWeak
The entities are cached with a soft reference and weak reference.

You use the soft reference to store the entity objects in a list and create a soft reference area of a fixed length only up to
the value specified in the cache size. If the cache size reaches the specified value, the old entity objects are moved to the
weak reference area. At this time, the entity objects for which cache registration has not been used for the longest time are
moved sequentially to the weak reference. If the entity objects moved to the weak reference are used, the entity objects
are once again stored in the hard reference area.

If you specify SoftWeak, you can use the entity objects with a long duration to efficiently control the memory used in
the cache. Therefore, when you use the cache functionality, we recommend that you specify SoftWeak. The following
figure shows the image in the cache for SoftWeak.

Figure 9‒17: Cache image for SoftWeak

In the case of SoftWeak, the cache is stored with a soft reference in the soft reference cache area. Also, the cache is
stored with a weak reference in the weak reference cache area.

9. Cosminexus JPA Provider

Compatibility Guide 339

(4) Weak
All the entities are cached with a weak reference.

Therefore, all the entity objects are subject to GC. If you specify weak, the memory load decreases, but the cache might
be deleted due to GC. Use the Weak cache type in systems that do not place significance on the cache functionality of
the entity objects. The following figure shows the image in the cache for weak.

Figure 9‒18: Cache image for Weak

In the weak cache type, the entities are cached with a weak reference.

(5) NONE
No entity objects are cached. Use the None cache type if you want to destroy an entity object immediately after the entity
object is read from the database.

9.7.3 Scope of the cache functionality
The cache data is stored for each persistence context. Therefore, the data cannot be obtained from the cache even if the
entity object is invoked in another persistence context.

Note that the cache data is stored for the duration from the generation of the persistence context until the persistence
context is destroyed.

9.7.4 Notes on using the cache functionality
This section describes the notes on using the cache functionality of the entity objects.

(1) Notes on updating or deleting the data in a query
When JPQL and native query are used in the application to update and delete the data, the cache contents are not updated.
Execute operations such as the refresh operation to obtain the database contents again.

The cache data is read in the following operations; therefore, the data is not updated in the database:

1. The data is read into the entity object.
The entity data is registered in the cache as well.

2. The delete query containing the data read in 1 is executed.
The data is deleted by the execution of the delete query, but the cache is not deleted.

3. The same data as in 1 is read into the entity object.
Because the data is the same as 1, the data existing in the cache is read.

9. Cosminexus JPA Provider

Compatibility Guide 340

4. The data in 3 is flushed.
The applicable line does not exist in the database, so the add or update processing cannot be performed.

(2) Notes on multiple persistence contexts using a cache
By using the cache, you can reduce the database access frequency. However, on the other hand, a time lag occurs in the
data due to the cache and the frequency of optimistic lock exception might increase.

A cache exists for each persistence context. Therefore, multiple EntityManagers existing in pairs with the
persistence contexts are generated simultaneously, and if the entities with the same primary keys are operated at the same
time, even if the data is updated, the user might not be able to reference the updated data in a timely manner. Due to this,
the optimistic lock exception occurs easily.

The following points describe the mechanism and action for the occurrence of the optimistic lock exception.

(a) Example of optimistic lock exception
This section describes an example of cache for each persistence context in the environment shown in the following figure.

Figure 9‒19: Environment described in this example

In the figure, the cache and the database are consistent and data A is already stored in the cache.

1. In persistence context 1, the data is changed from A to B.
At this time, the contents of the cache and the database are identical, so an exception does not occur.

9. Cosminexus JPA Provider

Compatibility Guide 341

Figure 9‒20: Changes in data in persistence context 1

2. After the processing of 1 ends, A data is changed in persistence context 2.
The cache data is not changed; so the database data and the cache are inconsistent. Therefore, an exception is thrown
due to the optimistic lock.

Figure 9‒21: Changes in data in persistence context 2

In such an environment, if you use the cache, the non-updated cache is left behind and an exception might occur due to
the optimistic lock.

(b) Action
When an optimistic lock exception occurs, the relevant objects in the cache are deleted. Therefore, execute the find
method or the refresh method to obtain all the related data from the database once again. With this, you can
synchronize the cache data and the database.

(3) Notes on the cache registration and update timing
• When you use JPQL to obtain the pessimistic lock, the entity object returned when the query is executed is not

registered in the cache.

9. Cosminexus JPA Provider

Compatibility Guide 342

• When a native query is used to execute the query that sets the entity as the return value in
@SqlResultSetMapping, the entity object of the return value is stored in the cache.

• During the refresh operation of an entity, if OptimisticLockException occurs in another thread after
the entity object is read and the cache is deleted, the entity object is not registered in the cache even if the refresh
processing is executed.

9. Cosminexus JPA Provider

Compatibility Guide 343

9.8 Auto-numbering of the primary key values

The primary key numbering functionality automatically generates the primary key value when the entity object is used to
insert a record. Due to this functionality, even if the user does not specify the primary key value, a unique value is stored.
Cosminexus JPA Provider provides the primary key numbering functionality.

How to generate the primary key value
There are four methods for generating the primary key values:

• TABLE
In this method, you generate the primary key values by using a table to store the primary key values.

• SEQUENCE
In this method, you use the database sequence objects to generate the primary key values. However, if HiRDB
is used as the database, implement the same processing as that of TABLE with Cosminexus JPA Provider.

• IDENTITY
In this method, you use the identity column of the database to generate the primary key values. However,
with Cosminexus JPA Provider, the operations differ depending on the database type used.
In HiRDB, you implement the same processing as that of TABLE.
In Oracle, you implement the same processing as that of SEQUENCE.

• AUTO
You choose the generation method suitable for the database used. With Cosminexus JPA Provider, choose TABLE
for both HiRDB and Oracle.

Timing when the primary key values are numbered
In Cosminexus JPA Provider, the primary key values are numbered during the flush operation or when a transaction
is committed.

Example of SEQUENCE as the primary key value generation method
The following is an example of using SEQUENCE as the generation method of the primary key values. In this
example, a sequence object named EMP_SEQ is assumed to have been created beforehand.

@Entity
public class Employee {
...
 @SequenceGenerator(
 name="EMPLOYEE_GENERATOR",
 sequenceName="EMP_SEQ"

)
 @Id
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="EMPLOYEE_GENERATOR")
 @Column(name="EMPLOYEE_ID")
 public Integer getId() {
 return id;
 }
...
}

9. Cosminexus JPA Provider

Compatibility Guide 344

9.9 Database operations based on the query language

To use the JPA for operating the database data, implement the operation through the javax.persistence.Query
interface. Using the javax.persistence.Query interface enables you to execute operations, such as search,
update, and delete, for multiple records at the same time. To use the javax.persistence.Query interface, the user
uses the query language to operate the database.

With Cosminexus JPA Provider, you can use JPQL and SQL as the query language. A description of JPQL and SQL is
as follows:

• JPQL
JPQL is a query language defined in the JPA specifications. This language does not depend on the database and
operates for the entity class.

• SQL
SQL is a database-dependent query language. SQL is also called a native query. This language operates for the
database data.

For details on the database operations based on JPQL and SQL, see 9.16 Procedure for referencing and updating the
database with the query language. Furthermore, for details on the JPQL syntax, see 9.17 JPQL coding method.

9. Cosminexus JPA Provider

Compatibility Guide 345

9.10 Optimistic lock

With Cosminexus JPA Provider, you use EntityManager and persistence context to manage the entities to be
persisted. The changed entity information is applied to the database when the flush method or transaction commit
processing is executed. When the same line of the database might be updated at the same time in multiple transactions,
the data integrity must be ensured. Cosminexus JPA Provider provides the optimistic lock to ensure data integrity.

The optimistic lock is a lock functionality for making sure that the data is not updated by other applications from the
beginning of the data update processing until the update processing is complete. The optimistic lock does not lock the
database, and therefore, has the advantage that deadlocks do not occur.

This section describes the optimistic lock.

9.10.1 Optimistic lock processing
If you use the optimistic lock, Cosminexus JPA Provider checks whether the database data is being updated by other
applications, instead of the user. If the database data is being updated by other applications, Cosminexus JPA Provider
throws an exception and notifies the user that the data is being updated. Furthermore, Cosminexus JPA Provider marks
the transaction for rollback.

(1) Procedure for checking whether the data is updated
Whether the data is updated is checked by the presence or absence of update of the version column prepared in the
database table. If the data in the database is updated, the version number of the version column is updated. As a result,
the user understands that the database was updated by another application. The following table describes the states and
operations of the version column when the database is updated.

Table 9‒16: States and operations of the version column when the database is updated

State of the version column in
the table

Operation

When the value of the version column is
not updated

Cosminexus JPA Provider applies the entity information to the database. At this time, the value of
the version column in the database is updated.

When the value of the version column
is updated

Indicates that the database data is being updated by another application. Therefore, Cosminexus JPA
Provider throws OptimisticLockException and marks the transaction for rollback.

In this way, using the state of the version column, you can ensure that another transaction does not update the data during
the period from the reading of the entity until the database is updated.

(2) Checking the versions of the persistence fields and relationships
To use the optimistic lock, you check the versions of both persistence fields and relationships of the entities. To check the
versions, set the Version field (property) corresponding to the version column for the entity. Set the Version field
by using @Version or the <version> tag of the O/R mapping file.

The version of the entity is checked at one of the following timings:

• When the entity state is changed and that change is written to the database

• When the entity state is changed to managed by the merge processing#

9. Cosminexus JPA Provider

Compatibility Guide 346

#
The version is not only checked during the execution of merge, but also during flush or when the transaction
is committed.

When the version of the entity is determined to be old by the version check, OptimisticLockException occurs.
The transaction is also marked for rollback.

(3) Checking the versions during the flush operation or transaction
conclusion

You can check the version of the entity during the flush operation or transaction conclusion. To check the version,
specify the entity in the lock method of EntityManager. By using the lock method of EntityManager, you
can add the entity as a target for version check in the transaction and change the update policy of the version column.

Cosminexus JPA Provider supports LockModeType.READ and LockModeType.WRITE as the timing for updating
the version column (LockModeType of the lock method). Regardless of the content specified in the update
timing for the version column, Cosminexus JPA Provider ensures that the following two events do not occur during
transaction conclusion:

• Dirty Read
Transaction T1 changes a line. Then, before T1 executes commit and rollback, another transaction T2 reads the same
line and obtains the changed value. Finally, T2 succeeds in commit.
Whether T1 executes commit or rollback is no longer important, but whether T1 performs commit or rollback before
or after commit by T2 becomes important.

• Un-Repeatable Read
Transaction T1 reads a line. Then, before T1 executes commit, another transaction T2 changes or deletes that line.
Finally, both the transactions succeed in commit.

If you specify LockModeType.WRITE as the LockModeType, the version column is forcefully updated even
when there is no change in the entity state. The version column is updated when flush or transaction commit is invoked.
Note that if the entity is deleted before the version column is updated, the update of the version column might be omitted.

9.10.2 Exception processing when optimistic lock fails
If you want to check the execution of an optimistic lock explicitly, invoke the flush() method. If an optimistic lock
exception occurs during the invocation of the flush() method, you can catch the exception processing and perform
the recovery processing. If the optimistic lock has no problems, the entity version is checked and the Version column
is updated by the flush() method.

A coding example of the exception processing is as follows:

try{
 em.flush();
} catch (OptimisticLockException e){
 // Exception processing
}

As shown in this example, by wrapping OptimisticLockException during the exception processing, you can
show the optimistic lock exception as an application exception. However, note that the transaction in this case is marked
for rollback and cannot be committed.

9. Cosminexus JPA Provider

Compatibility Guide 347

Note that with Cosminexus JPA Provider, the entity that causes the exception is not stored in
OptimisticLockException. The getEntity() method of OptimisticLockException always returns
a null value.

9.10.3 Notes on using the optimistic lock
This section describes the notes on using the optimistic lock.

(1) Notes on the Version field settings
The notes on the Version field settings are as follows:

• If the Version field is not set, the version of that entity is not checked. In this case, the user shall create an
application that maintains the consistency between the entity and the database.

• If the transaction contains entities for which the Version field is set and entities for which the Version field is
not set, the version is only checked for the entities where the Version field is set. Note that the non-inclusion of
a version in the entity does not affect the transaction conclusion processing.

• The user can reference the Version field value, but must not update the value. However, the user can update the
Version field value during bulk update processing.

(2) Notes on using the lock method
The notes on using the lock method are as follows:

• The lock method of EntityManager is not supported for entities that do not have the Version
field (property). If an entity that does not have a Version field (property) is specified and the
lock(entity, LockModeType.READ) or lock(entity, LockModeType.WRITE) is invoked,
PersistenceException occurs.

• When the state of an entity that has a Version field (property) is updated, regardless of whether the lock method
is invoked, the dirty read and un-repeatable read events do not occur.

• When you specify LockModeType.READ with Cosminexus JPA Provider, the UPDATE statement is issued to
check whether the database value corresponding to the entity is changed. Therefore, the UPDATE statement sets a
lock for the database. The UPDATE statement is issued during the execution of flush processing and when the
transaction is committed. The UPDATE statement is also issued when there is no change in the state of the entity
object. However, the statement is not issued if the entity is deleted.

(3) Exclusive control of clients in HiRDB
The optimistic lock of Cosminexus JPA Provider is a locking method that assumes that the database Isolation level is
accessed with Read Committed. If the database is HiRDB, the Isolation level is Repeatable Read by default;
therefore, you must change the level to Read Committed.

Set the Isolation level for each client in the PDISLLVL parameter of the data guarantee level of the client environment
variable. The default value is Repeatable Read (2). Therefore, change the value to Read Committed (1).
An example of a change in setting is as follows:

Example of change: PDISLLVL=1

9. Cosminexus JPA Provider

Compatibility Guide 348

Specify the client environment variable in the value of the environmentVariables property with the <config-
property> tag of the HITACHI Connector Property file or add the client environment variable in the configuration
file for the client environment variable group of HiRDB.

If the data guarantee level of the client environment variable is operated with the default Repeatable Read, a lock
is set in the shared mode. Therefore, note that if you combine the issue of reference series SQL such as the find method
and the issue of update series SQL such as the flush method, a deadlock occurs easily.

9. Cosminexus JPA Provider

Compatibility Guide 349

9.11 Pessimistic lock in JPQL

The pessimistic lock is the method of exclusively locking the target records when multiple transactions update the same
record on the database. If a transaction sets a pessimistic lock for a particular record, another transaction cannot reference
or update that record (however, in Oracle, the record can be referenced). A pessimistic lock is only available when JPQL
is used.

If you use a pessimistic lock, until the transaction that obtained the lock terminates, the lock awaits release. Therefore,
though the concurrent executions are not more than the optimistic lock, you can prevent the transaction commit errors
that occur in the optimistic lock.

How to specify a pessimistic lock
Implement the pessimistic lock by using the query hint supported by Cosminexus JPA Provider. Execute the
pessimistic lock by specifying the setHint() method of the Query method or by specifying @QueryHint in
the @NamedQuery attribute.

Example of implementing the pessimistic lock functionality
An example of implementing the pessimistic lock functionality is as follows:

Example of implementation 1
An example of specifying the pessimistic lock in the setHint() method of the Query method is as follows:

Query query = manager.createQuery("SELECT emp FROM Employee AS emp");
query.setHint("cosminexus.jpa.pessimistic-lock","Lock");

Example of implementation 2
An example of specifying the pessimistic lock in @QueryHint of the @NamedQuery attribute is as follows:

@NamedQuery(
name="employee_list",
query="SELECT emp FROM Employee AS emp",
hints={ @QueryHint(name="cosminexus.jpa.pessimistic-lock", value="Lock"
) }
)
@Entity
public class Employee{
...
}

Important note

The pessimistic lock is only available for JPQL. The pessimistic lock is not enabled even by specifying
the createNativeQuery method or by specifying @QueryHint in the hints attribute of
@NamedNativeQuery. The pessimistic lock is also not enabled by specifying the hint attribute of
the <named-native-query> tag in the O/R mapping file. Note that the locking specifications for
the pessimistic lock in Cosminexus JPA Provider conform to the specifications of the database used.

9. Cosminexus JPA Provider

Compatibility Guide 350

9.12 Creating an entity class

To create an application that uses the JPA, you define the entity class in the application. An entity class is used for handling
the database table records as Java objects. When a user performs the new operation in the application, an entity class
instance is generated.

This section describes the creation of a JPA application.

9.12.1 Defining the mapping between an entity class and database
An entity class is mapped to a line in the database table. The fields stored in the entity class are mapped to the values in
the table columns. If the user updates a field value for an entity class instance, Cosminexus JPA Provider also updates the
corresponding column of the database table. Therefore, the user can change the database state without issuing an SQL
statement for the database.

The following figure shows the mapping between an entity class and a database table.

Figure 9‒22: Mapping between the entity class and database table

You define the correspondence relationship between the entity fields and database columns in an annotation or the
O/R mapping file. You can define the correspondence in either an annotation or the O/R mapping file. However, if the
definition is specified in both, the settings in the O/R mapping file are given priority over the annotation. If different
values are specified for the same settings in the annotation and the O/R mapping file, the value in the annotation is
overwritten with the value in the O/R mapping file.

9.12.2 Requirements for creating entity classes
When you create an application that uses the JPA, you must follow the requirements for creating the entity classes and
the requirements for database mapping determined in the JPA specifications. The requirements for creating entity classes
are as follows:

• The entity class must be specified in @Entity or in the <entity> tag of the O/R mapping file.

• The entity class has a constructor without an argument.

• Do not set enum and interfaces as entity classes.

9. Cosminexus JPA Provider

Compatibility Guide 351

• The entity or the mapped super-class that form the root of the class hierarchy of the entity class must have a primary
key. Make sure that you define one primary key in the entity hierarchy.

• When the entity class instance is passed as a method argument with pass by value, you must implement the
Serializable interface.

• The state of the database column is expressed by the instance variable of the entity and the instance variable
corresponds to the JavaBean property. Do not change the value of the instance variable by direct access from the
client. Change the value through the accessor method (getter / setter method) or the business method.

• Set the persistent instance variable of the entity to an access level that can be referenced from private,
protected, or package.

• Declare the constructor without an argument as public or protected.

• Do not set the entity class to final. Also, do not set the persistence instance variable of the entity class and all the
methods to final.

With Cosminexus JPA Provider, if these conditions are not satisfied, an exception might occur. Note that even if an
exception does not occur, the operations might not function properly if an entity class that does not satisfy these
conditions is created.

Furthermore, for Cosminexus JPA Provider, do not associate one database column with multiple fields in the entity class.
If this condition is not satisfied, an exception might occur during the execution of the application. Even if the exception
does not occur, the operations might not function properly.

9.12.3 Specifying the access methods for the entity class fields
Cosminexus JPA Provider accesses the entity class fields when the entity state is written to the database and the database
state is read as an entity. The access method in this case is called access type. An access type includes properties and fields.
You specify the access type in an annotation or in the O/R mapping file. The following table describes the access types
and the specification methods.

Table 9‒17: Access types and specification methods

Access type Description Specification method

Annotation O/R mapping file

Property Method of obtaining the instance variable
through the getter method.

Specify the annotation in the
getter method of the field.

Specify PROPERTY in the
<access> tag.

Field Method of directly referencing the
instance variable.

Specify an annotation in the field. Specify FIELD in the
<access> tag.

If the access type is a property, the property stored by the entity is called the persistence property. Also, when the access
type is field, the entity field is called the persistence field.

Notes on the access types
Remember the following points when you specify the access types:

• If the access type is a field, Cosminexus JPA Provider directly accesses the persistence field. The instance variable
for which @Transient is not set is subject to persistence.

• If the access type is property, Cosminexus JPA Provider uses the accessor method to obtain the persistence
property value. The property for which @Transient is not set in the accessor method is subject to persistence.

9. Cosminexus JPA Provider

Compatibility Guide 352

• If the access type is property, you cannot set the mapping annotation in the setter method. In the case of
Cosminexus JPA Provider, the mapping annotation set in the setter method is ignored.

• You cannot set the mapping annotation in the field and property in which @Transient is specified or
<transient> tag is specified in the O/R mapping file. If the mapping annotation is set, an exception occurs
when the application starts.

• Set the accessor method of the property to public or protected. This is prohibited in the JPA specifications,
but is not checked with Cosminexus JPA. Also, even in the case of private, an exception does not occur.

• If the mapping annotation is applied to the accessor methods of both, the persistence field and the persistence
property, all the annotations set in the accessor method of the persistence property are ignored.

9.12.4 Creating the accessor method
This section describes the signature rules of the accessor method and the addition of the business logic to the
accessor method.

(1) Method signature rules of the accessor method
When Cosminexus JPA Provider accesses a persistence property, the accessor method of the property must follow the
same method signature rules as the following JavaBeans:

• T getProperty()
• void setProperty(T t)

For a property that returns the return value boolean, you can also change the name of the getter method to
isProperty. Note that when you use Cosminexus JPA Provider, an exception occurs when the application starts if
only the getter method or the setter method exists.

Also, when you handle collection values in the persistence fields and persistence properties, define the following
collection values in the interface:

• java.util.Collection
• java.util.Set
• java.util.List
• java.util.Map

If the persistence property becomes a collection value, set the accessor method signature to one of these interfaces or you
can also use the generic type of these collections (example: Set<T>).

(2) Adding the business logic to the accessor method
In addition to the setter / getter processing of the property, the accessor method can also include the business logic,
such as verifying the values. If the access type is property, the business logic operates when Cosminexus JPA Provider
invokes the accessor method.

In this case, however, note the following points:

9. Cosminexus JPA Provider

Compatibility Guide 353

• The order in which the accessor methods that load and store the persistent states are invoked, is not defined when
Cosminexus JPA Provider is executed. Therefore, the execution order of the logic included in getter is not
yet decided.

• For portability when the access type is property and lazy fetch is specified in the persistence property, we recommend
that you do not access the entity contents until the entity contents are fetched by Cosminexus JPA Provider.

• When the access type is property and when a logic that changes the value is added as the business logic, Cosminexus
JPA Provider does not guarantee data consistency.

If the Runtime exception occurs in the property accessor method, the current transaction is marked for rollback. If
Cosminexus JPA Provider reads the persistent contents of the entity and throws an exception in the accessor method used
for storing the contents, the transaction is rolled back. Also, the PersistenceException exception that wraps the
application exception occurs.

9.12.5 Types of persistence fields and persistence properties of the
entities

Set the persistence fields/ persistence properties of the entities to the following types:

• Java primitive type

• java.lang.String
• Other serialize types

• Primitive type wrapper class

• java.math.BigInteger
• java.math.BigDecimal
• java.util.Date
• java.util.Calendar
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp
• User-defined serialize type

• byte[]
• Byte[]
• char[]
• Character[]
• enum
• Entity type and the collection duplicable in the entity type

• Embeddable class

When you use Cosminexus JPA Provider, the operations might not function properly if you specify types other than those
mentioned above. An exception might also occur when the application is executed.

9. Cosminexus JPA Provider

Compatibility Guide 354

However, when you use Cosminexus JPA Provider, you must associate the instance variable type of the entity with the
database column type. The JDBC driver associates the Java types and the database types. With Cosminexus JPA Provider,
to connect to Oracle, you use Oracle JDBC Thin Driver provided by Oracle as the JDBC driver. To connect to HiRDB,
you use HiRDB Type4 JDBC Driver as the JDBC driver. The user must convert the types supported by the JDBC driver
as well as determine the instance variable type of the entity.

9.12.6 Specifying the primary key in the entities
With an entity, make sure that you specify the primary key in the class hierarchy. When you specify the primary key,
follow the below rules:

• For a simple (not complex type) primary key, specify @Id in the persistence field or persistence property or specify
the key in the O/R mapping file. Accordingly, associate the primary key with the entity fields.

• For a complex type primary key, specify the primary key class in a single field as @EmbeddedId or specify the
complex primary key as a field set using @IdClass and @Id.

• For a complex type primary key, create a class that contains the primary key, called the primary key class.

If these conditions are not satisfied, an exception occurs when you start the application.

Also, do not change the primary key value of the entity in the application. If the primary key value is changed in the
application, an exception occurs during execution.

(1) Primary key type
Set one of the following types for the simple or complex type primary keys:

• Java primitive type

• Type that wraps primitive

• java.lang.String
• java.util.Date
• java.sql.Date

Note that if the approximation type (for example, floating-point number type) is specified as the primary key, rounding
off errors and problems such as lack of reliability in the results of the equals method occur in Cosminexus JPA Provider.
Therefore, the operations when the approximation type is used in the primary key might not function properly with
Cosminexus JPA Provider. If java.util.Date is used in a field/ property as the primary key, the temporal type
attribute must be specified as the DATE type.

(2) Complex type primary key
The complex type primary key can be handled with an entity. The methods of specifying a complex type primary key in
the entity include the method of using the embedded class and the method of using @IdClass. The following points
describe each method:

(a) Method of using the embedded class
To use an embedded class, create a class that assigns @Embeddable and define the complex type primary key as a
field in that class. With the entity class, define the type field of the class that assigns @Embeddable and annotate
@EmbeddedId. The examples of entity class and embedded class are as follows:

9. Cosminexus JPA Provider

Compatibility Guide 355

• Example of an entity class

@Entity
public class Employee {
 private EmployeePK employeePK;

 public Employee(){
 }

 @EmbeddedId
 public EmployeePK getEmployeePK(){
 retrun this.employeePK;
 }

 public void setEmployeePK(EmployeePK employeePK){
 this.employeePK = employeePK;
 }
 ...
}

• Example of an embedded class

@Embeddable
public class EmployeePK {
 private String name;
 private int employeeId;

 public EmployeePK(){
 }

 public boolean equals(Object obj){
 ...
 }

 public int hashCode(){
 ...
 }
 ...
}

For details on the embedded class, see (3) Embedded class. Note that you can also use the O/R mapping file instead of
the annotation.

(b) Method of using @IdClass
To use @IdClass, define multiple instance variables corresponding to the primary key in the entity class and assign
@Id. Also, use @IdClass to specify the primary key class. With the primary key class, define a field or property with
the same name and type as the primary key defined in the entity. The examples of entity class and primary key class are
as follows:

• Example of an entity class

@Entity
@IdClass(EmployeePK.class)
public class Employee {
 private String name;
 private int employeeId;

9. Cosminexus JPA Provider

Compatibility Guide 356

 public Employee(){
 }

 @Id
 public String getName(){
 retrun this.name;
 }

 public void setName(String name){
 this.name = name;
 }

 @Id
 public int getEmployeeId(){
 retrun this.employeeId;
 }

 public void setName(int employeeId){
 this.employeeId = employeeId;
 }
 ...
}

• Example of a primary key class

public class EmployeePK implements Serializable {
 private String name;
 private int employeeId;

 public EmployeePK(){
 }

 public boolean equals(Object obj){
 ...
 }

 public int hashCode(){
 ...
 }
 ...
}

As in the case of the embedded class, you can use the O/R mapping file instead of the annotation. Note that the access
type of the primary key class is determined by the access type of the entity class corresponding to the primary key.

To handle a complex type primary key, use either an embedded class or @IdClass. However, follow the below rules:

• The primary key class must be public and must have a constructor without argument.

• When you use a persistence property, set the property of the primary key class to public or protected.

• The primary key class must be serializable.

• Define the equals and hashCode method with the primary key class. When the primary keys on the mapped
database are equal, true must be returned for equals and the hashCode value must be equal.

• The complex primary key must be mapped as an embedded class or must map multiple fields/properties of the
entity class.

9. Cosminexus JPA Provider

Compatibility Guide 357

• When a primary key class is mapped to the complex fields/properties of the entity class, match the field/property
name of the primary key of the primary key class with the name of the entity class. Also, unify the types.

With Cosminexus JPA Provider, the operations might not function properly if these conditions are not satisfied. If the
conditions are not satisfied, an exception might also occur when you start the application.

(3) Embedded class
If you prepare a class that brings together some fields for persistence, you can store the fields as entity fields. Such a class
is called an embedded class.

The embedded class is embedded in an entity and is mapped to the same database table as the entity. Therefore, unlike
the entity, the embedded class does not have a primary key.

When using the embedded class, the user specifies @Embeddable in the embedded class. Also, specify @Embedded
in the embedding destination field or property in the entity class that is embedded. Note that you can also define the
embedded class similarly in the O/R mapping file instead of the annotation.

You can also use the embedded class for defining the complex type primary key. In this case, specify @EmbeddedId
instead of @Embedded in the embedded entity class.

Make sure that you conform to the following creation requirements for the embedded class:

1. Make sure that the embedded class is defined in @Embeddable or in the <embeddable> tag of the O/R
mapping file.

2. Do not set enum and the interfaces as an embedded class.

3. When the entity class containing the embedded class is passed by value as a detached object, implement the
Serializable interface.

4. Do not set the embedded class, the persistence instance variables of the embedded class, and all the methods
to final.

5. The embedded class must have a constructor without an argument.

6. Declare the constructor without an argument as public or protected.

7. The instance variable of the embedded class must be referable from private, protected, or package.

8. Specify settings so that the persistence instance variable of the embedded class is not accessed directly from the
client. Do not access the persistence instance variable of the embedded class with the accessor method (getter/
setter method) of the entity and the other business methods.

With Cosminexus JPA Provider, if the conditions 1 and 2 are not satisfied, an exception occurs and the application fails
to start. Also, in the case of conditions 3 to 8, an exception might occur, but even if an exception does not occur, the
operations might not function properly.

You determine the access type of the embedded class using the access type of the entity class on the embedded side.

When using the embedded class, set one embedded hierarchy. Also, the embedded class object cannot be shared by
multiple entities. If these conditions are not satisfied, the operations might not function properly with Cosminexus
JPA Provider.

9. Cosminexus JPA Provider

Compatibility Guide 358

9.12.7 Default mapping rules for the persistence fields and persistence
properties

If the O/R mapping information is not specified for the persistence fields or persistence properties other than relationship,
the following default mapping rules are applied:

• For a class in which @Embeddable is annotated, the field/ property is mapped to the database according to the
specification in the entity in @Embedded.

• If the persistence field/ persistence property type is one of the following, the mapping method is the same as when
@Basic is defined:

• Java primitive type

• Primitive type wrapper

• java.lang.String
• java.math.BigInteger
• java.math.BigDecimal
• java.util.Date
• java.util.Calendar
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp
• byte[]
• Byte[]
• char[]
• Character[]
• enum
• Any type that implements Serializable

Note that the operations might not function properly if types other than those mentioned above are specified.

9. Cosminexus JPA Provider

Compatibility Guide 359

9.13 Procedure for inheriting an entity class

The inheritance of an entity class has the following features:

• An entity class can use either an abstract class or a concrete class. Apart from the abstract class and concrete class, you
can also define @Entity. Furthermore, both abstract class and concrete class can be mapped as entities and queries
can be issued for both the classes.

• An entity class can be inherited from another entity class.

• An entity class can inherit a non-entity class. A non-entity class can also inherit an entity class.

This section describes the inheritance class types and the inheritance mapping strategy of the entity classes.

9.13.1 Inheritance class types
The inheritance class types of an entity class include the abstract entity class, mapped super-class, and non-entity class.
The following is a description of each type:

(1) Abstract entity class
You can define an abstract class as an entity class. An abstract entity class differs from the concrete entity class in that an
abstract entity class cannot create an instance directly. An abstract entity class can be mapped as an entity and can also
be specified as a query target for operating/obtaining the subclass entity.

With a subclass, the accessor method of the property can be overridden. However, if the O/R mapping information on the
persistence fields and persistence properties is overridden in a subclass, the operations might not function properly. To
override the O/R mapping information in a subclass, use @AssociationOverride or @AttributeOverride.

You specify the abstract entity class in @Entity or the O/R mapping file.

(2) Mapped superclass
A mapped superclass is a class that can become the superclass of an entity class. You can define the persistence fields
and mapping information and also set a configuration to inherit the persistence fields and mapping information.

A mapped superclass cannot specify a specific table, so @Table cannot be specified. Therefore, the mapped superclass
cannot be set as an entity. Unlike the entity class, a mapped superclass cannot issue a query, so the mapped superclass
cannot be passed to the arguments of EntityManger and query operations. Also, a mapped superclass cannot be set
as a relationship target.

A mapped superclass can be defined as an abstract class as well as a concrete class. To define a class as a mapped
superclass, define @MappedSupperclass or <mapped-superclass> tag in the O/R mapping file. The mapping
information is provided for the inherited entity class.

A class designed as a mapped superclass can be mapped using the same method as the entity class, except when the
mapping can only be provided for the subclasses.

If an entity is applied as a subclass, the information specified in the mapped superclass is inherited in the subclass.
By using @AssociationOverride or the corresponding XML element in the O/R mapping file, the mapping
information can be overridden in the subclass.

9. Cosminexus JPA Provider

Compatibility Guide 360

(3) Non-entity class of the entity inheritance hierarchy
An entity class can have a superclass of a non-entity class. A superclass can be defined as a concrete class and
abstract class.

A superclass of a non-entity class has the following features:

• Only the behavior is inherited.

• The state is not persistent.

• All the inherited states are not persistent even in the inherited entity classes.

• A non-persistent state is not controlled by EntityManager.

• The annotation of a superclass is ignored.

Do not set a non-entity class in the method arguments of EntityManager and the Query interface and in the mapping
information. In Cosminexus JPA Provider, an exception occurs during the execution of the application.

9.13.2 Inheritance mapping strategy
When an entity is inherited, you can specify the method of mapping the class hierarchy to a table as the inheritance
mapping strategy. You specify the inheritance mapping strategy by using @Inheritance or the <inheritance>
tag of the <entity> tag in the O/R mapping file.

There are three types of inheritance mapping strategies:

• SINGLE TABLE strategy
The SINGLE TABLE strategy is a strategy method of mapping all the classes existing in the inheritance hierarchy
of the entity class to one table.

• JOINED strategy
The JOINED strategy is a strategy method of mapping the top-level of the class hierarchy to a single table.

• TABLE PER CLASS strategy
The TABLE PER CLASS strategy is a strategy method of mapping each class existing in the class hierarchy of the
entity class to separate tables.

However, with Cosminexus JPA Provider, the TABLE PER CLASS strategy is not available. If the TABLE PER CLASS
strategy is used when Cosminexus JPA Provider is used, an exception occurs when the application starts.

Important note

When you use Cosminexus JPA Provider, note the following points:

• You cannot combine and specify multiple inheritance strategies in a class hierarchy. Also, no check is
performed to verify whether multiple inheritance strategies are combined. If multiple inheritance strategies
are specified, the operations might not function properly.

• If the column specified in @DiscriminatorColumn is defined in an entity field, the value set in the
entity field is not applied to the database even if the persist operation and then commit is executed. The
value specified in @DiscriminatorValue or the default value is applied. Also, note that after commit,
the value set in the field before commit is stored as is.

9. Cosminexus JPA Provider

Compatibility Guide 361

These strategies are specified in the value of the enumeration type javax.persistence.DiscriminatorType.
The following points describe each strategy:

(1) SINGLE TABLE strategy
The SINGLE TABLE strategy is a strategy method of mapping all the classes present in the inheritance hierarchy of the
entity class to one table. Therefore, the table must have an identification column as the column for identifying the class.

Specify the identification column in @DiscriminatorColumn or in the O/R mapping file. The default identification
column name is DTYPE. If an identification column does not exist in the database, an exception occurs during the
execution of the application.

If you want to specify the value stored in the identification column, use @DiscriminatorValue or the
<discriminator-value> tag beneath the <entity> tag of the O/R mapping file.

Important note

When you use the SINGLE TABLE strategy, the user must be able to specify a null value in the table column
corresponding to the subclass field.

(2) JOINED strategy
The JOINED strategy is a strategy method of mapping the top-level of the class hierarchy to a single table. Each subclass
is indicated by the subclass-specific fields that are not inherited from the superclass and by different tables with the
primary key string that functions as the external key of the primary key for the superclass table.

In the case of the JOINED strategy, like in the case of the SINGLE TABLE strategy, the table to which the superclass is
mapped must have an identification column.

Important note

When using the JOINED strategy, binding must be executed multiple times during the generation of the subclass
instances. Therefore, if the hierarchy structure becomes deep, the performance might deteriorate. Also, JOIN
is necessary for issuing queries across the class hierarchy.

9. Cosminexus JPA Provider

Compatibility Guide 362

9.14 Procedure for using EntityManager and EntityManagerFactory

This section describes the procedure for using EntityManager and EntityManagerFactory that are used from
the application.

9.14.1 Entity lifecycle management with EntityManager
EntityManager is an object with an interface for executing the following operations for the database:

• Registering and deleting entities.

• Searching entities using the primary keys.

• Issuing a query across the entities.

If you register an entity for EntityManager, the entity state is perpetuated in the database at an appropriate time such
as when the transaction is committed.

Also, EntityManager has a relation with the persistence context that expresses the entity set. When you register the
entity in EntityManager, the entity belongs to a specific persistence context. Also, EntityManager manages the
entity lifecycle.

The entity set managed by EntityManager is defined with a unit called the persistence unit. You define the
persistence unit in the application configuration file persistence.xml.

The notes on the persistence context and persistence unit are as follows:

• The entity must be unique in the persistence context. Therefore, set one entity expressing the same line of the database
in the same persistence context. Note that if the persistence contexts are different, you can have multiple entities
expressing the same line in the database. For the locking method in the database in this case, see 9.10 Optimistic lock
or 9.11 Pessimistic lock in JPQL.

• Each persistence unit is mapped to a single database. For details on the definition, see 8.8 Definitions
in persistence.xml.

9.14.2 How to set up EntityManager and EntityManagerFactory
You set up the EntityManager and EntityManagerFactory you want to use in an application in an annotation
or the DD.

• EntityManagerFactory settings
• In an annotation: Specify the settings in @PersistenceUnit.

• In the DD: Specify the settings in the <persistence-unit-ref> tag.

• EntityManager settings
• In an annotation: Specify the settings in @PersistenceContext.

• In the DD: Specify the settings in the <persistence-context-ref> tag.

For details on annotations, see 8.12 javax.persistence package. For details on the tags to be set for DD, see the
uCosminexus Application Server Definition Reference Guide.

9. Cosminexus JPA Provider

Compatibility Guide 363

9.14.3 Notes on the API functions of EntityManager
This section describes the notes on the API functions provided by EntityManager. For details on the EntityManager
APIs, see 8.12 javax.persistence package.

• When EntityManager of transaction scope persistence context is used, the persist, merge, remove,
and refresh methods must be executed in the transaction context. If the transaction context does not exist,
javax.persistence.TransactionRequiredException is thrown.

• The find method and getReference method do not require execution in the transaction context. Therefore, if
EntityManager of transaction scope persistence context is used, the resulting entity has a detached state. Also,
if EntityManager of extended persistence context is used, the resulting entity has a managed state.

• If the argument of the createQuery method is not a valid JPQL string, the IllegalArgument exception is sent
and the execution of the query fails.

• If the executed native query does not match the specifications for the database to be connected to or if
the defined result set is not compatible with the query results, the execution of the query fails and the
PersistenceException exception is thrown when the query is executed.

• If a runtime exception is sent from a method of the EntityManager interface, the current transaction is marked
for rollback.

• The Query object obtained from EntityManager and the EntityTransaction object are enabled while
EntityManager is open.

9. Cosminexus JPA Provider

Compatibility Guide 364

9.15 Procedure for specifying the callback method

To receive an entity lifecycle, you can specify a method in the lifecycle callback method. The method defined as a
callback method is invoked corresponding to the persistence-related lifecycle event.

This section describes the location for specifying the callback method, the implementation methods, and the order
of invocation.

9.15.1 Location for specifying the callback method
You can specify the callback method at the following locations:

• In the entity class or mapped superclass

• Entity listener class associated with the entity class or mapped superclass

The entity listener class is a dedicated class for implementing the callback method. If you use the entity listener class,
you can separate the parts for implementing the callback method.

Specify the callback method in an annotation or the O/R mapping file. However, the default callback method is specified
in the O/R mapping file and cannot be specified in an annotation. Note that the default callback method indicates an entity
listener applied to all the entities in a persistence unit.

This section describes how to specify the callback listener.

(1) Specifying the callback method in an annotation
If you use an annotation for specifying the callback method, set the annotations listed and described in the following table
in the method. You can invoke the method in compliance with a lifecycle event.

Table 9‒18: Specifying the callback method using annotations

Annotation Executed contents

@PostLoad The callback method is executed after the entity is loaded in the persistence context or after the refresh
operation is applied. The method is executed after the entity is read from the cache or the SELECT statement
is issued for the database.

@PrePersist
@PreRemove

The callback method is invoked before EntityManager executes the persist or remove operation of
the entity. When the merge operation is applied and a new managed instance is created, the PrePersist
callback method is invoked for the managed instance after the entity state is copied. The PrePersist or
PreRemove callback methods are also invoked for all the instances where the operations are cascaded. The
PrePersist or PreRemove method is always invoked synchronously as a part of the persist, merge,
or remove operations.

@PostPersist
@PostRemove

The PostPersist and PostRemove callback methods are invoked after the entity is perpetuated or deleted
by the persist or remove operations.
These callback methods are also invoked for all the entities where the operations are cascaded. The
PostPersist or PostRemove methods are respectively invoked after the database insert or delete
operations are performed. These database operations are executed immediately after the persist, merge,
or remove operations or after the flush method is invoked. However, the database operations may also be
executed at the end of a transaction. The generated primary key can be used with the PostPersist method.

@PreUpdate
@PostUpdate

The PreUpdate and PostUpdate callback methods are respectively invoked before and after the database
update operation of the entity data.

9. Cosminexus JPA Provider

Compatibility Guide 365

Annotation Executed contents

These database operations are executed when the entity state is updated or when the state is flushed in the
database. However, the database operations might also be executed at the end of a transaction. When an
entity is perpetuated and then updated and when an entity is updated and then deleted in one transaction, the
PreUpdate and PostUpdate callback might not occur.

To use the entity listener class, you must specify the entity listener class by specifying @EntityListener for the
entity. The following is an example of specifying an entity listener class:

@Entity
@EntityListeners(CallbackListener.class)
public class Employee implements Serializable{
...
}

(2) Specifying the callback listener in the O/R mapping file
Specify the following settings to use the O/R mapping file for specifying the callback method:

• To specify the entity listener class and the callback method of that class, use the <entity-listener> tag of the
O/R mapping file. Specify the lifecycle listener method by using the <pre-persist> tag, <post-persist>
tag, <pre-remove> tag, <post-remove> tag, <pre-update> tag, <post-update> tag, and <post-
load> tag beneath the <entity-listener> tag.

• When you specify the callback method of the entity listener class, you can specify maximum one method for each
callback event by using the tags beneath the <entity-listener> tag.

• If you specify the <entity-listener> tag of the O/R mapping file for the lower tags of the <entity-
listeners> tag in the <persistence-unit-defaults> tag, you can specify the default callback method.

• If you specify the <entity-listener> tag in the lower tags of the <entity-listeners> tag existing in the
<entity> tag or <mapped-subclass> tag, the callback listener is specified for the entity or mapped superclass
and the subclasses.

• The callback listener is invoked in the order of listeners specified in the <entity-listeners> tag. For details
on the order for invoking the listeners, see 9.15.3 Order of invoking the callback methods.

9.15.2 Implementing the callback methods
The user implements the callback method as and when required. The callback method signature differs in the callback
method implemented in the entity class and mapped superclass and in the callback method of the entity listener class.

The callback method defined in the entity class and mapped superclass has the following signature:

void <METHOD>

The callback method defined in the entity listener class has the following signature:

void <METHOD>(Object)

In the argument Object, you specify the entity instance in which the callback method is executed.

9. Cosminexus JPA Provider

Compatibility Guide 366

(1) Notes on using the callback methods
Note the following regarding the callback methods. If the following conditions are not satisfied, an exception occurs at
application startup and the application fails to start:

• A constructor without argument must be specified in public.

• The public, private, protected, and package level access is allowed with the callback method. However,
static and final are not available.

• One class cannot have multiple lifecycle callback methods for the same lifecycle event. However, the same method
might be used in multiple callback events.

(2) Rules applied to the callback methods
The following rules are applied to the callback methods:

• With the callback method, the issuing of unchecked or runtime exceptions are allowed. The runtime exception
thrown by the callback method executed in the transaction rolls back the transaction. If multiple callback methods
are specified, after the runtime exception is thrown, the remaining callback methods are not executed.

• With the callback method, you can execute JNDI, JDBC, JMS, and Enterprise Bean.

• Do not perform the following operations with a callback method:

• Invoking EntityManager.

• Executing a query operation.

• Accessing other entity instances.

• Updating a relationship.

If a callback method is used for such methods, the operations might not function properly.

• If the callback method is invoked in the Java EE environment, the entity callback listener shares the naming context
of the components to be invoked. Furthermore, the callback method of the entity is invoked in the transaction and in
the security context of the invocation source components used when the callback method is invoked.

9.15.3 Order of invoking the callback methods
If multiple callback methods are defined for an entity, the invocation order follows the below rules:

1. The default listeners are invoked in the order defined in the O/R mapping file.
Unless @ExcludeDefaultListeners or the <exclude-default-listeners> tag of the O/R mapping
file is explicitly specified, the default listeners are applied to all the entities in the persistence unit.

2. The callback methods are invoked in the order specified in @EntityListeners.
Note that if you use the O/R mapping file, you can execute the following operations:

• Specifying the order of invoking the callback methods for the entities.

• Overriding the order specified in the annotations.

3. The callback method specified in the entity (or mapped superclass) is invoked.

9. Cosminexus JPA Provider

Compatibility Guide 367

(1) Invocation order in the inheritance hierarchy
If the entity listener is defined multiple times in the inheritance hierarchy of the entity class and mapped superclass, the
invocation order is as follows:

1. The default callback listener, if present, is invoked first.

2. The callback methods of the entity listener class are invoked sequentially from the listener specified in the superclass.
At this time, if items such as @EntityListener are specified, that order is followed.

3. After the callback methods of all the entity listeners are invoked, the callback methods defined in the entity (or
mapped superclass) are invoked sequentially from the listener specified in the superclass.

If the callback method is overridden in the subclass, the overridden method is not invoked. If the overridden callback
method specifies different lifecycle events or if the overridden callback method is not a lifecycle callback method, the
overridden method is invoked. Also, the callback method settings of the method are overridden.

(2) Excluding the callback methods
• If you specify @ExcludeDefaultListeners or the <exclude-default-listeners> tag of the O/R

mapping file, the default entity listener is not invoked in the entity class (or mapped superclass) and the subclasses.

• If @ExcludeSuperclassListeners or the <exclude-superclass-listeners> tag of the O/R
mapping file is applied to the entity class and mapped superclass, the listener callback method is not invoked
in that class and the subclasses. @ExcludeSuperclassListeners or the <exclude-superclass-
listeners> tag of the O/R mapping file does not exclude the invocation of the default entity listener.

• If you use the O/R mapping file to explicitly specify the default or superclass listener excluded for the entity and
mapped superclass, the default or superclass listener is applied to the entity and the subclasses.

9. Cosminexus JPA Provider

Compatibility Guide 368

9.16 Procedure for referencing and updating the database with the query
language

A query expresses a processing request (inquiry) for a database as a string. A query is used to issue commands
such as commands to search, update, and delete the data in a database to a system. To execute a query, use the
javax.persistence.Query interface. The types of query include JPQL and native query. This section describes
the procedure for referencing and updating the database with a query.

9.16.1 Procedure for referencing and updating the database with JPQL
JPQL is a query language used for searching and updating the database and for using the database functionality such as
the set function. While the SQL is a query language using a table as the target, JPQL is a query language defined in the
JPA specifications using an entity class as the target.

You can define a query in an annotation or the O/R mapping file. If an entity is defined in the same persistence unit as the
query, you can use the abstract schema type expressing the entity set in the query. Also, if you use the path expression, you
can use a query across the relationship defined in the persistence unit. For details on the path expression, see 9.17.4(2)
Path expression.

If you code and execute JPQL in an application, the SQL statements are issued for the database to be connected to in the
following order:

1. If JPQL is executed, Cosminexus JPA Provider interprets the JPQL contents.

2. Based on the annotation and O/R mapping file information coded in the target entity class, JPQL is set up in the SQL
statements specific to the database product to be connected to and then issued.

This section describes how to use JPQL.

(1) How to obtain the Query object
To use JPQL for obtaining the Query object, use the following methods of the EntityManager interface provided
by Cosminexus JPA Provider. This section describes the methods of the EntityManager interface.

(a) Query createQuery(String JPQL statement)
An example of coding createQuery is as follows. In the argument, specify the JPQL statement you want to execute.

Query q = em.createQuery(
 "SELECT c " +
 "FROM Customer c " +
 " WHERE c.name LIKE "Smith");

(b) Query createNamedQuery(String query name)
A query that can be given a name and defined in advance is called a named query. You define a named query by assigning
@NamedQuery in any entity class. Specify the query name in the name attribute of @NamedQuery and then specify
the JPQL statement in the query attribute.

In Cosminexus JPA Provider, you cannot specify multiple named queries with the same name. If multiple named queries
with the same name are specified, a warning message KDJE55535-W is output. If such multiple named queries with the
same name are specified in Cosminexus JPA Provider, there is no certainty about which query will be operated.

9. Cosminexus JPA Provider

Compatibility Guide 369

The following is an example of defining @NamedQuery. In this example, @NamedQuery is used and the query is
registered beforehand with the name findAllCustomersWithName. By passing the named query name registered
in the createNamedQuery method of the application, the query registered beforehand is obtained and used.

• Registering the query name in @NamedQuery
@NamedQuery(
 name="findAllCustomersWithName",
 query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)
@Entity
public class Customer {
...
}

• Example of coding the named query with the createNamedQuery method

@Stateless
public class MySessionBean {
...
 @PersistenceContext
 public EntityManager em;
 ...
 public void doSomething() {
 ...
 Query q = em.createNamedQuery("findAllCustomersWithName")
 .setParameter("custName", "Smith");
 }
}

Note that with the same persistence unit, you can also use the named query defined in another entity.

(2) How to specify the parameters
When you generate a query with JPQL, you can use a parameter in the conditional expression coded in the WHERE clause
and set the value dynamically. Set the parameter value with the setParameter method of the Query interface. The
parameters include location parameters and named parameters. The following is a description of each parameter:

Location parameters
Code a combination of question mark (?) and a numeric value in the location where you want to insert the parameter
in the WHERE clause. Specify the parameter value with the setParameter method of the Query interface. The
format and example of coding the location parameters is as follows:

• Coding format

Query setParameter(int location, Object value)

• Coding example

Query q = em.createQuery(
 "SELECT c FROM Customer c WHERE c.balance < ?1")
.setParameter(1, 20000);

9. Cosminexus JPA Provider

Compatibility Guide 370

Named parameters
Code a combination of ':' (colon) and any string (however, excluding the characters 0 to 9) in the location where you
want to insert the parameter in the WHERE clause. Specify the parameter value with the setParameter method
of the Query interface. The format and example of coding the named parameters is as follows:

• Coding format

Query setParameter(String parameter-name, Object value)

Do not specify ':' (colon) at the beginning of the parameter name. Also, the named parameters are case sensitive.

• Coding example

Query q = em.createQuery(
 "SELECT c FROM Customer c WHERE c.name LIKE :custName")
 .setParameter("custName", "John");

Note the following when you use parameters:

• Do not mix and use the location parameters and named parameters in one query. In Cosminexus JPA Provider, the
operations might not function properly if the parameters are mixed.

• In the setParameter method, specify as follows when you want to specify the java.util.Date type or
java.util.Calendar type objects as parameter values. Note that the time type of the parameter value must be
specified using the enumeration type TemporalType. For details, see the Java documentation.

• Query setParameter(int location, Date date, TemporalType time-type)
• Query setParameter(String parameter-name, Date date, TemporalType time-type)
• Query setParameter(int location, Calendar calendar, TemporalType time-type)
• Query setParameter(String parameter-name, Calendar calendar, TemporalType time-

type)

(3) Obtaining and executing the query results
You use the following methods of the Query interface to execute the generated query, to return the query results, and
to execute update query. The following points describe each method:

(a) Object getSingleResult()
Use this method to return the query result as a single object.

When you execute this method, the data is searched. As a result of the search, the single hit line is stored in the entity
object and returned with the Object type. The return value of the Object type must be cast in the target entity class.

If multiple lines are hit, the NonUniqueResultException exception occurs. If no lines are hit, the
NoResultException exception occurs.

(b) List getResultList()
Use this method to return the query result as a list.

When you execute this method, the data is searched. As a result of the search, the multiple hit lines are stored in the entity
object and returned in a list. Multiple lines are assumed to be returned as execution results; therefore, if no lines are hit,
an empty list is returned.

9. Cosminexus JPA Provider

Compatibility Guide 371

(c) int executeUpdate()
Use this method to execute the update query.

When you execute this method, a query will be executed to simultaneously delete or update multiple lines in a table. The
execution result returns the number of lines hit.

9.16.2 Procedure for referencing and updating the database with the
native query

With Cosminexus JPA Provider, as a query language other than JPQL, you can directly code a database-specific native
query and reference or update a database.

This section explains how to use native queries.

(1) How to obtain the Query object
To use native query for obtaining the Query object, you use the following methods of the EntityManager interface
provided by Cosminexus JPA Provider.

(a) Query createNativeQuery(String SQL statement)
An example of coding createNativeQuery is as follows. In the argument, specify the native query you want
to execute.

Query q = em.createNativeQuery(
 "SELECT o.id, o.quantity, o.item " +
 "FROM Order o, Item i " +
 "WHERE (o.item = i.id) AND (i.name = 'widget')");

(b) Query createNativeQuery(String SQL statement, Class result storing class)
An example of coding createNativeQuery is as follows. Specify the native query you want to execute in the first
argument and the class object for storing the execution result in the second argument.

Query q = em.createNativeQuery(
 "SELECT o.id, o.quantity, o.item " +
 "FROM Order o, Item i " +
 "WHERE (o.item = i.id) AND (i.name = 'book')",
 com.hitachi.Order.class);

In this example, if a query is executed, the collection of all the Order entities is returned for the item named book.

Note that if the query results specified in the SELECT clause and the class object specified in the argument are
inconsistent, an exception occurs.

(c) Query createNativeQuery(String SQL statement, String result set mapping name)
Specify the native query you want to execute in the first argument and the result set mapping name for storing the
execution result in the second argument. Specify the result set mapping with @SqlResultSetMapping. For details
on result set mapping, see (2) Result set mapping.

9. Cosminexus JPA Provider

Compatibility Guide 372

An example of defining @SqlResultSetMapping and an example of coding createNativeQuery are
as follows:

• Example of defining @SqlResultSetMapping
@SqlResultSetMapping(name="BookOrderResults",
 entities=@EntityResult(entityClass=com.hitachi.Order.class))

• Example of coding createNativeQuery
Query q = em.createNativeQuery(
 "SELECT o.id, o.quantity, o.item " +
 "FROM Order o, Item i " +
 "WHERE (o.item = i.id) AND (i.name = 'book')",
 "BookOrderResults");

In this example, if a query is executed, the collection of all the Order entities is returned for the item named book. By
using @SqlResultSetMapping, you can obtain the same results as the coding example when @NamedQuery is
used in 9.16.1(1) How to obtain the Query object.

Note that if the query results specified in the SELECT clause and the @SqlResultSetMapping settings specified
in the argument are inconsistent, an exception occurs.

(d) Query createNamedQuery(String query name)
Like JPQL, you can use the createNamedQuery method for a native query. In the native query, specify the named
native query name in the argument.

You define the named native query by assigning @NamedNativeQuery in any entity class. In the query name
argument, use the name specified in the name attribute of @NamedNativeQuery.

In Cosminexus JPA Provider, you cannot specify multiple named queries with the same name. If multiple named queries
with the same name are specified, a warning message KDJE55522-W is output. If such multiple named queries with the
same name are specified in Cosminexus JPA Provider, there is no certainty about which query will be operated.

The following is an example of using the createNamedQuery method. In this example, @NamedNativeQuery
is used and the query is registered beforehand with the name findBookOrder. By passing the named query name
registered in the createNamedQuery method of the application, the query registered beforehand is obtained and used.

• Registering the query name in @NamedNativeQuery
@NamedNativeQuery(name="findBookOrder",
 query="SELECT o.id, o.quantity, o.item " +"
 "FROM Order o, Item i " +
 "WHERE (o.item = i.id) AND (i.name = 'book')")
)
@Entity
public class Order {
...
}

• Example of coding the named native query with the createNamedQuery method

@Stateless
public class MySessionBean {
 ...
 @PersistenceContext

9. Cosminexus JPA Provider

Compatibility Guide 373

 public EntityManager em;
 ...
 public void doSomething() {
 ...
 Query q = em.createNamedQuery("findBookOrder ")
 }
}

Note that with the same persistence unit, you can also use the named native query defined in another entity.

(2) Result set mapping
Result set mapping is a functionality used for mapping and receiving the execution results of the native query in any entity
class and for receiving the execution results of the native query using the scalar value.

With result set mapping, the mapping information of the column values obtained as the execution results of the native
query is assigned to any entity class by specifying @SqlResultSetMapping.

(a) Coding format of @SqlResultSetMapping
The coding format of @SqlResultSetMapping is as follows:

@SqlResultSetMapping(
 name= Result-set-mapping-name,
 entities= Specify-the-entity-class-for-mapping-the-result-(@EntityResult-a
rray),
 columns= Specify-the-column-for-mapping-the-result-(@ColumnResult-array))

name attribute
Specify the result set mapping name.

entities attribute
Specify the @EntityResult array. The coding format of @EntityResult is as follows:

@EntityResult(
 entityClass= Specify-the-class-for-mapping-the-result,
 fields= Specify-the-field-for-mapping-the-result-(@FieldResult-array
))

In the entityClass attribute of @EntityResult, specify the entity class for storing the column value. In the
field attribute, specify the @FieldResult array.
The coding format of @EntityResult is as follows:

@FiledResult(
 name= Name-of-persistent-property-(or-field)-of-class,
 column= Column-name-of-SELECT-clause-(or-optional-name))

In the name attribute of @FieldResult, specify the persistence field name of the entity class specified in the
entityClass attribute of @EntityResult. Also, in the column attribute, specify the column name.

columns attribute
The columns attribute specifies the @ColumnResult array to receive the execution results of the native query
as a scalar value without being stored in the entity class. If you do not need to extract the scalar value, you need not
specify the columns attribute. In the name attribute of @ColumnResult, specify the column name for extracting
the value. The coding format of @ColumnResult is as follows:

9. Cosminexus JPA Provider

Compatibility Guide 374

@ColumnResult(
 name= Column-name-of-SELECT-clause-(or-optional-name))

Note that you can also specify the column name with the alias name specified by AS. If the SELECT clause contains
multiple columns with the same name, use the optional name of the column.

(b) Example of usage
In the following example, the query result for employee number 12003 is mapped from the employee table
(Employee) and department table (Department) to any entity class (EmployeeSetmap) and the scalar value
(EMP_MONTHLY_SALARY column) is received.

Specify the result set mapping name (NativeQuerySetMap) in the second argument of createNativeQuery and
execute the result set mapping.

• Example of coding the native query using result set mapping

query = em.createNativeQuery(
 "SELECT e.EMPLOYEE_ID AS EMP_EMPLOYEE_ID, " +
 "e.EMPLOYEE_NAME AS EMP_EMPLOYEE_NAME, " +
 "d.DEPARTMENT_NAME AS DEP_DEPARTMENT_NAME, " +
 "e.MONTHLY_SALARY AS EMP_MONTHLY_SALARY " +
 "FROM EMPLOYEE e, DEPARTMENT d " +
 "WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID " +
 "AND e.EMPLOYEE_ID = 12003",
 "NativeQuerySetMap");

• Optional entity class for storing the execution result of the native query

@Entity
public class EmployeeSetmap implements Serializable {
...
@Id
public int getEmployeeId() { return employeeId; }
public String getEmployeeName() { return employeeName; }
public String getDepartmentName() { return departmentName; }
...
}

• Example of coding @SqlResultSetMapping
@SqlResultSetMapping(
 name="NativeQuerySetmap",
 entities={ @EntityResult(
 entityClass=EmployeeSetmap.class,
 fields={ @FiledResult(
 name="employeeId",
 column="EMP_EMPLOYEE_ID"),
 @FiledResult(
 name="employeeName",
 column="EMP_EMPLOYEE_NAME"),
 @FiledResult(
 name="departmentName",
 column="DEP_DEPARTMENT_NAME") }) },
 columns={ @ColumnResult(
 name="EMP_MONTHLY_SALARY") }

9. Cosminexus JPA Provider

Compatibility Guide 375

Note that the Object type array for the result of executing the native query by executing @SqlResultSetMapping
is as follows:

Object[0]
Object of EmployeeSetmap class
(Values of EMP_EMPLOYEE_ID column, EMP_EMPLOYEE_NAME column, and DEP_DEPARTMENT_NAME
column are stored in each field)

Object[1]
Value of EMP_MONTHLY_SALARY column

(3) How to specify the parameters
As in the case of JPQL, the native query can set a value dynamically by using parameters. Code a combination of question
mark (?) and a numeric value in the location where you want to insert the parameter in the WHERE clause. Specify
the parameter value with the setParameter method of the Query interface. However, you cannot use the named
parameters of JPQL with the native query.

The coding format of the parameters is as follows:

Query setParameter(int location, Object value)

(4) Obtaining and executing the native query results
As in the case of JPQL, use the following Query interface methods for obtaining and executing the native query results:

• Object getSingleResult()
• List getResultList()
• int executeUpdate()

For details on these methods, see 9.16.1 Procedure for referencing and updating the database with JPQL.

9.16.3 Specifying the range of query result items
You can obtain only an optionally specified item from multiple query results and only the query result specified in the
starting position. To obtain this information, use the Query interface methods. This section describes the methods.

(1) setMaxResults method
To obtain only an optionally specified item from multiple query results, use the setMaxResults method of the Query
interface. The coding format of the setMaxResults method is as follows:

Query setMaxResults(int maximum-number-of-search-results)

In the method argument, specify the maximum number of search results.

9. Cosminexus JPA Provider

Compatibility Guide 376

(2) setFirstResult method
To obtain only the query result specified in the starting position, use the setFirstResult method. The coding format
of the setFirstResult method is as follows:

Query setFirstResult(int starting-position-of-search-results)

In the method argument, specify the starting position of the search results. Specify a numeric value beginning with 0 as
the starting position.

(3) Example usage of the Query interface methods
The examples of usage of the setMaxResults method and setFirstResult method are as follows. In this
example, five Employee objects are obtained sequentially from the tenth employee with the highest monthly salary
(e.monthlySalary) from the employee data (Employee).

Query query = em.createQuery("SELECT e FROM Employee AS e " +
 "ORDER BY e.monthlySalary DESC")
 .setFirstResult(9)
 .setMaxResults(5);
List resultList = query.getResultList();

(4) Notes
When you use the setFirstResult method to specify the starting position, the time period from the invocation of the
getResultList method and getSingleResult method until the obtaining of the result values varies depending
on the value specified in the argument. Typically, the time taken until the result value returns is in proportion to the value
of the starting position specified in the argument.

9.16.4 Specifying the flush mode
You can specify how the query would handle an uncommitted operation executed for an entity object. This is called
specifying the flush mode.

You set the flush mode with the setFlushMode method of the javax.persistence.Query interface. With
Cosminexus JPA Provider, you can only set AUTO as the value. You cannot specify COMMIT.

In FlushModeType.AUTO
When a query is executed in a transaction, the changes in all the entities existing in the persistence context that affect
the query results are applied to the query results.

This setting is applied to a query regardless of the flush mode of the setFlushMode method of the
EntityManager interface.

9.16.5 Specifying a query hint
During the execution of a query, you can specify a query hint as a vendor-dependent hint. With Cosminexus JPA Provider,
you specify a query hint when you use the pessimistic lock.

9. Cosminexus JPA Provider

Compatibility Guide 377

Specify the query hint at the following locations:

• The argument of the setHint() method of the Query object

• The argument @Hint of @NamedQuery
• The <hint> tag that is a lower element of the <named-query> tag in the O/R mapping file

If you specify a value outside the range specifiable in the query hint, an exception occurs. Note that the specified value
is not case sensitive.

The time when an exception occurs differs depending on the location where the query hint is specified. The timing for
the occurrence of an exception is as follows:

• In the setHint() method, when the application query is executed

• In the annotation, when the application is deployed

• In the O/R mapping file, when the application starts

For details on the query hints supported by CJPA provider, see 9.22 Scope of support for the annotations included in the
javax.persistence package when using annotations, and see 13.3 O/R mapping files when using O/R mapping files.

9.16.6 Notes on executing a query
This section describes the notes on executing a query.

• In the setMaxResults method or setFirstResult method, if a query in which collection contains FETCH
JOIN is executed, the results might be incorrect.

• The Query methods other than the executeUpdate method need not be executed in a transaction. Particularly,
the getResultList and getSingleResult methods need not be executed in a transaction.

• When the query is executed with EntityManager of the transaction scope persistence context, the resulting entity
has the detached state. When the query is executed with EntityManager of the extended persistence context,
all the entities have the managed state.

• The runtime exceptions other than NoResultException and NonUniqueResultException thrown from
the Query interface methods roll back the current transaction.

9. Cosminexus JPA Provider

Compatibility Guide 378

9.17 JPQL coding method

This section describes JPQL coding method.

9.17.1 JPQL syntax
A JPQL statement includes the SELECT statement, UPDATE statement, and DELETE statement.

You can dynamically specify a JPQL statement or statically define a JPQL statement using the annotation and O/R
mapping file tags. You can also specify parameters in all the JPQL statements.

JPQL is a typed language and all the expressions have a type. The abstract schema type defined in the expression
configuration and the identification variable, the type for evaluating the persistence fields and relationships, and the
literal type configure the expression types. For details on the syntax, see Appendix G BNF for JPQL.

Important note

In Cosminexus JPA Provider, an exception might occur if you use JPQL that does not conform to the BNF syntax.
Even if an exception does not occur, the operation might not function properly. Also, even if you use JPQL
that conforms to the BNF syntax, the operations might not function properly if the relevant functionality is not
supported in the database used.

(1) Abstract schema type
With JPQL, a query is issued for an entity. Therefore, the abstract schema of the target entity must be defined with the
query. The abstract schema type of the entity is defined based on the entity class and O/R mapping information provided
by the annotations or the O/R mapping file.

The abstract schema type indicates an entity class. The fields and the O/R mapping information of the annotation
configure the entity class.

The abstract schema type of the entity has the following fields:

• State field
A state field is a field or property in which a relationship-based relation does not exist in the persistence field or
persistence property of the entity class.

• Relation field
A relation field is a persistence field or persistence property associated by relationship with the entity class. If the
relationship is OneToMany or ManyToMany, the field is collection.

(2) Abstract schema name
With JPQL, you must specify the abstract schema type in order to indicate an entity. The name used for indicating the
abstract schema type is called the abstract schema name. You define the abstract schema name in the name attribute of
@Entity (or in the name attribute of the <entity> tag in the O/R mapping file). If the name attribute is not specified,
the name becomes the class name of the entity class (without package name).

The abstract schema name is specific to each persistence unit.

9. Cosminexus JPA Provider

Compatibility Guide 379

(3) Query domain
The query domain can reference the abstract schema type of all the entities defined in the persistence unit. The abstract
schema type of the other related entities can be referenced using the relation field defined in the abstract schema type.

9.17.2 SELECT statement
The SELECT statement contains the following clauses:

• SELECT clause
Specifies the value based on the type or set function of the object to be searched. Make sure that you specify the
SELECT clause.

• FROM clause
Specifies the range for which a search is applied. Make sure that you specify the FROM clause.

• WHERE clause
Used for narrowing down the search results. You can omit the WHERE clause.

• GROUP BY clause
Used for grouping the search results. You can omit the GROUP BY clause.

• HAVING clause
Used for filtering the grouped search results. You can omit the HAVING clause.

• ORDER BY clause
Used for the ordered classification of the search results. You can omit the ORDER BY clause.

If the SELECT clause and FROM clause are not specified in the SELECT statement, an exception occurs.

9.17.3 SELECT clause
The SELECT clause expresses the query results. One or more values are returned from the SELECT clause of the query.
You specify the following elements, demarcated by commas, in the SELECT clause. Note that the cluster demarcated by
commas is called a select expression.

• Identifier of the abstract schema or persistence field that is assigned an identifier

• Path expression

• Set function

• Constructor expression

Specify the DISTINCT keyword when you want to exclude the duplicated values from the query result.

An example of coding the SELECT clause is as follows:

SELECT e.employeeName, e.monthlySalary
FROM Employee AS e
WHERE e.monthlySalary < 150000

9. Cosminexus JPA Provider

Compatibility Guide 380

(1) Constructor expression
The constructor expression is used in the select expression of the SELECT clause that returns one or more Java instances.
The generated name specifies the fully qualified name.

The constructor expression can be obtained as a combination of some or all entity columns and the other related entity
columns. Note that the class that stores this result need not be an entity.

Specify the syntax of the constructor expression by assigning the NEW operator in the select expression. If the class that
stores the result is an entity, the state of the entity class instance becomes new. An example of coding the constructor
expression is as follows:

SELECT NEW com.hitachi.jpa.test.entity.EmployeeTmp
(e.employeeId, e.employeeName, d.departmentName)
FROM Department AS d, d.employees AS e
WHERE e.employeeId = 12003

(2) Set function
You can use the set function with the SELECT clause. The following table lists and describes the available set functions.

Table 9‒19: Set functions available in the SELECT clause of JPQL

Set function Argument Result type Result when the
applied value does
not exist

AVG Numeric type state field # Double type null

MAX Field type that can specify the order (numeric
type, string type, character type, or date type) #

Type of the applied field null

MIN Field type that can specify the order (numeric
type, string type, character type, or date type) #

Type of the applied field null

SUM Numeric type state field # • For the integer type: Long type
• For the floating point type:
Double type

• For the BigInteger type:
BigInteger type

• For the BigDecimal type:
BigDecimal type

null

COUNT Identification variable (when you specify the
path expression in the argument, specify the
state field or relation field)

Long type 0

Note
Regardless of whether DISTINCT is specified, the null value is removed before the set function is applied.

#
If the path expression is specified in the argument, you cannot specify the relation field.

For details on the syntax of the set function expression, see Appendix G BNF for JPQL.

9. Cosminexus JPA Provider

Compatibility Guide 381

(3) Execution results of the SELECT clause
The type of the query results defined in the SELECT clause of the query is one of the following. If multiple types are
present, the types are serialized.

• Entity abstract schema type

• Field type

• Set function results

• Constructor expression results

The result type of the SELECT clause is defined according to the result type of the select expression included in the
SELECT clause. If multiple select expressions are used in the SELECT clause, the query result is Object[] type. The
elements of this result match the order specified in the SELECT clause and with the result type of each select expression.

9.17.4 FROM clause
This section describes the FROM clause.

(1) Range variable declaration and identification variables
A range variable declaration is a declaration that codes the logical name of the entity class in the FROM clause and
then specifies AS and the identifier (AS can be omitted). The identifier of this range variable declaration is called the
identification variable. An example of range variable declaration and identification variable is as follows:

SELECT ... (omitted) ...

FROM Department AS dep

WHERE ... (omitted) ...

The part Department AS dep is the range variable declaration. Also, dep is the identification variable. The syntax
of the range variable declaration is as follows:

range_variable_declaration ::=
abstract_schema_name [AS] identification_variable

The syntax of the identification variable in the range variable declaration is the same as the SQL syntax. A description
of the syntax is as follows:

• The use of the keyword AS is optional.

• You cannot omit the identification variable. However, you can omit the AS specified between the abstract schema
and the identification variable. Specify the identification variable in the FROM clause.

• A reserved identifier cannot be used. If used, an exception occurs.

• The same name as another entity in the same persistence unit cannot be used. With Cosminexus JPA Provider, the
operations might not function properly if an entity with the same name is used.

• The identification variable is not case sensitive.

9. Cosminexus JPA Provider

Compatibility Guide 382

• You cannot specify the same name as the abstract schema name. With Cosminexus JPA Provider, the operations might
not function properly if the abstract schema with the same name is specified.

• The syntax must begin with a Java identifier character and all the other characters must be partial characters of the
Java identifier. If other characters are specified, an exception occurs. For the first character, use a character by which
the return value of the Character.isJavaIdentifierStart method becomes true (including underscore
(_) and dollar sign ($) characters). For the characters other than the first character, use a character by which the return
value of the Character.isJavaIdentifierPart method becomes true (however, question mark (?) is a
reserved word in JPQL and cannot be used).

• The reserved words in JPQL are as follows:
SELECT, FROM, WHERE, UPDATE, DELETE, JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH,
DISTINCT, OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN, EMPTY,
MEMBER, OF, IS, AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM,
POSITION, CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, and SOME
Note that UNKNOWN is not used in JPA 1.0, but is a reserved word in Cosminexus JPA Provider.

(2) Path expression
A path expression is an expression in which a period (.) is added after the identification variable and is used for
continuing the state field or relation field. Therefore, the path expression type becomes the state field or relation
field type.

You can build up a path expression further from the relation fields obtained by tracing the path expression. However, if
the path expression type that forms the base is a collection relation field, you cannot build a path expression. Creating
the path expression from the collection type becomes a structural error.

Note that if the relation field in the middle of the path expression is a null value, the path assumes that the value does not
exist, so the query result is not affected.

You can use the path expression with the syntax using inner join. For details on the path expression syntax, see
Appendix G BNF for JPQL.

Reference note

The types of relation fields are as follows:

• A collection relation field (collection_valued_association_field) is one in which the
relation field is specified using a collection. The collection relation field is indicated by OneToMany or
ManyToMany relation.

• A non-collection relation field (single_valued_association_field) is one in which the relation
field is specified using single-valued. The non-collection relation field is indicated by OneToOne or
ManyToOne relation.

• The embedded class field is the field name of the entity corresponding to the embedded class.

(3) Joins expression
The Joins expression is available in the FROM clause. The following table lists and describes the available
Joins expressions.

9. Cosminexus JPA Provider

Compatibility Guide 383

Table 9‒20: Joins expressions available in the FROM clause

Joins expression Contents Syntax name of BNF syntax #1

Inner Joins This expression binds two entity classes and extracts only the entity objects
with relation, in the fields to be related.

join, join_spec

Left Outer Joins This expression binds two entity classes and extracts the entity objects
with relation as well as the entity objects without relation, in the fields to
be related.

join, join_spec

Fetch Joins This expression binds two entity classes in the related fields. Note that a
relation exists between the entities due to relationship, so specify only one
entity class in the Select clause. #2

fetch_join

#1
For details on the syntax name of the BNF syntax, see Appendix G BNF for JPQL.

#2
When the entity is obtained using Fetch Joins, the information about the relation destination entity specified on the right is obtained at
the same time as the execution of the query. As a result, you can obtain the relation destination information without dependence on the fetch
strategy. An example of coding Fetch Joins is as follows:

SELECT emp FROM Employee AS emp JOIN FETCH emp.company

Notes on using the Join expression
The notes on using the Join expression are as follows:

Notes on Inner Joins
The keyword INNER is used optionally.

Notes on Left Outer Joins
The keyword OUTER is used optionally.

Notes on Fetch Joins
• With Fetch Joins, the entity information of two entities is specified in one entity. The information of the

specified entity and the information of another entity related to that entity are bound.
Note that in Cosminexus JPA Provider, you specify entities with relationship because the entities are bound
by one entity information. If entities without relationship are specified, an exception occurs.

• The relation referenced on the right side of JOIN FETCH must be a relation belonging to the entity
returned as a query result. In Cosminexus JPA Provider, if the relation does not belong to the entity, an
exception occurs.

• An identifier cannot be specified in the entity referenced on the right side of JOIN FETCH. Therefore, the
entity cannot be referenced in the query.

(4) Declaring the collection members
The identification variables for declaring the collection members are declared by using the reserved identifier IN. You
can obtain the collection value for the identification variable defined in the collection member expression, by using the
path expression. An example of coding the collection member expression is as follows:

SELECT emp.employeeId, emp.employeeName, dep.departmentName
FROM Department AS dep, IN (dep.employees) AS emp
WHERE dep.departmentId = 3

For details on the syntax of the collection member expression, see Appendix G BNF for JPQL.

9. Cosminexus JPA Provider

Compatibility Guide 384

(5) Notes
This section describes the notes on the FROM clause.

• Effect of the identification variable
Even if the identification variable declared in the FROM clause is not used in the WHERE clause, the declared
identification variable is applied to the query result.

• Notes on polymorphism
JPQL is a polymorphism. The specific entity class instances referenced explicitly by the FROM clause as well as the
subclasses become the target. Therefore, the instances that can be obtained using a query include subclass instances
that satisfy the query conditions.

9.17.5 WHERE clause
The WHERE clause is made up of conditional expressions used for searching the objects or variables that satisfy
the expression. The WHERE clause specifies the result of the select statement and the scope of the update and
delete operations.

(1) Conditional expressions that can be used in the WHERE clause
The following table describes the conditional expressions that can be used in the WHERE clause.

Table 9‒21: Conditional expressions that can be used in the WHERE clause

Expression Contents Syntax name of BNF syntax#

BETWEEN Evaluates whether the value is included in the scope specified for the field. between_expression

IN Evaluates that the value matches with some value specified in the field. in_expression

LIKE Evaluates that the value matches with the string after a wild card sign is allocated
in the field.

like_expression

IS [NOT] NULL Tests whether the value is a null value. null_comparison_expre
ssion

IS [NOT] EMPTY Tests whether the specified collection value is empty. empty_collection_comp
arison_expression

[NOT]
MEMBER [OF]

Tests whether the specified collection value is a collection member. When an
empty collection is expressed, the value of the MEMBER OF expression is FALSE
and the value of the NOT MEMBER OF expression is TRUE.

collection_member_exp
ression

EXISTS Determines the sub-query result. If one or more values exist, true is returned and
in other cases, false is returned.

exists_expression

ALL Compares a value with all the values returned by the sub-query. all_or_any_expression

ANY (SOME) Compares a value with some value returned by the sub-query. all_or_any_expression

Sub-query Results can be coded based on select. subquery

Functional
expression

See (2) Functional expressions. See the syntax of the
relevant function

#
For details on the syntax name of the BNF syntax, see Appendix G BNF for JPQL.

9. Cosminexus JPA Provider

Compatibility Guide 385

The notes on using the WHERE clause are as follows:

• IN expression
• If the field to be evaluated is null or unknown, the expression value becomes unknown.

• The list that defines the value set, demarcated by commas, for the IN expression, must have at least one or more
elements. In Cosminexus JPA Provider, an exception occurs if one or more elements do not exist.

• The field to be evaluated must have a string, numeric, or enum value.

• The literal and input parameter values, and the sub-query results must have the same abstract schema type as the
field to be evaluated. In Cosminexus JPA Provider, an exception occurs if the abstract schema type is not the same.

• LIKE expression
• If the value of string_expression or pattern_value indicated in the BNF syntax is null or
unknown, the value of the LIKE expression becomes unknown.

• If escape_character indicated in the BNF syntax is specified and if the value is null, the value of the
LIKE expression becomes unknown.

• In the specified pattern value, an underscore (_) corresponds to one character and a percent (%) character
corresponds to continuous characters (including continuous null characters). Note that the other characters
indicate the search string.

• The optional escape character is a string literal or character. Use the escape character to interpret the underscore
and percent characters of the pattern string as the standard characters.

• IS [NOT] NULL expression
If the specified collection value is null or unknown, the value of the IS [NOT] EMPTY expression
becomes unknown.

• [NOT] MEMBER [OF] expression
If the specified value is null or unknown, the return value becomes unknown.

• ALL expression or ANY (SOME) expression
• If the conditional operation is neither true nor false, the value becomes unknown.

• The comparison operators that can be used together are =, <, <=, >, >=, <>.

• The sub-query result type must be the same as the comparison operator type. In Cosminexus JPA Provider, an
exception occurs if the types are different.

• SOME is the synonym of ANY. #

This note is only applicable to ANY (SOME) expression.

• Sub-query
Used in the WHERE clause and HAVING clause. Cannot be used in the FROM clause.

(2) Function expression
With JPQL, the functions listed in the following table are available in the WHERE clause and HAVING clause. If the value
of the function expression argument is null or unknown, the value of the function expression becomes unknown.

Table 9‒22: Functions available with JPQL

Category Functions Return value Supplement to arguments

String function CONCAT Concatenated string of the argument --

9. Cosminexus JPA Provider

Compatibility Guide 386

Category Functions Return value Supplement to arguments

SUBSTRING String with the start position and length
specified in the argument

The second and third arguments specify the start
position and length of the returned sub-string as an
integer. The position of the beginning of the string
is 1.

TRIM String with a specific
character removed

If no character is to be removed, a space (blank)
is assumed. The optional trim character is the
character input string. If the trim method is not
specified, BOTH is used.

LOWER De-capitalized string --

UPPER Capitalized string --

LENGTH Integer value of the string length --

LOCATE Integer value of the given string and
the position where the string is first
found after searching from a specified
position (if the string is not found, 0)

The first argument indicates the string to be searched
and the second argument indicates the searched
string. The optional third argument indicates the
position of the character to start the search (by
default, the search is performed from the beginning).
The start position of the string is 1.

Arithmetical
function

ABS Absolute value with the same type
as the function argument (Integer,
Float, or Double)

A numerical value is passed as an argument.

SQRT Square root of the numerical value
passed in the argument (real number)

A numerical value is passed as an argument.

MOD Remainder of two numerical values
passed in the argument (integer)

Two integers are passed.

SIZE Number of collection
elements (integer)

Collection is passed.

Date and time
function

CURRENT_DATE Database date --

CURRENT_TIME Database time --

CURRENT_TIMEST
AMP

Database timestamp --

Legend:
--: Not applicable

(3) Notes
This section describes the notes on the WHERE clause.

(a) Priority of the operators
The priority of the operators is as follows:

1. Period (.)

2. Arithmetic operators
Unary operation (+, -), multiplication and division (*, /), addition and subtraction (+, -)

3. Comparison operators
=, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS [NOT] NULL, IS [NOT]
EMPTY, [NOT] MEMBER [OF]

9. Cosminexus JPA Provider

Compatibility Guide 387

4. Logical operators
NOT, AND, OR

(b) Notes on conditional expressions
• A conditional expression is made up of a conditional expression, comparison expression, and a logical operator,

and the evaluation result is made up of the path expression that forms a boolean value, boolean literal, and input
parameters of boolean type.

• An arithmetic expression is available in the comparison expression. An arithmetic expression is made up of other
arithmetic expressions and the four arithmetic operations. The result is made up of the path expression that forms a
numerical value, number literals, and the input parameters of the numerical type.

• An arithmetic operation uses numeric promotion.

• To specify the evaluation order of the expression, you can enclose the evaluation order in parentheses.

• The set function is only available in the conditional expression of the HAVING clause.

• In a conditional expression, do not use fields mapped as a serialized format or lobs.

(c) Notes on using literals
• Enclose a character literal in single quotes (example: 'literal'). For a string literal containing single quotes, use two

single quotes.

• As in the case of the JavaString literal, use Unicode character encoding for the query string literal.

• The use of Java escape expression is not supported in the query string literal.

• For the enum literal, you can use the literal of the Java enum literal syntax. The enum literal requires an enum
class name.

• The boolean literal is TRUE and FALSE. This literal is not case sensitive.

(d) Notes on identification variables
• The identification variable is an identifier declared in the FROM clause of the query, so the identification variable

cannot be declared in another clause. If the variable is declared in a clause other than the FROM clause, an exception
occurs. For all the identification variables used in the WHERE or HAVING clause of the SELECT statement or
DELETE statement, use the identification variables defined in the FROM clause.

• The range of the identification variables is determined by the WHERE clause and HAVING clause. An identification
variable can specify the collection members and instances of the abstract schema type of the entity, but cannot specify
the collection itself. If a collection is specified, an exception occurs.

(e) Notes on path expressions
In the path expression of the collection in the WHERE or HAVING clause, do not use values other than IS [NOT]
EMPTY expression and [NOT] MEMBER [OF] expression, or arguments for the SIZE operation as a part of the
conditional expression.

(f) Notes on input parameters
• The input parameters are available in the WHERE clause or HAVING clause of the query.

• Do not mix the location parameters and named parameters in one query. If the parameters are mixed, the operations
might not function properly.

• If the value of the input parameters is null, the value returned by the comparison operation or arithmetic operation
containing the input parameters becomes unknown.

9. Cosminexus JPA Provider

Compatibility Guide 388

For details on how to use the location parameters and the named parameters, see 9.16.1(2) How to specify the parameters.

9.17.6 GROUP BY clause and HAVING clause
With the GROUP BY clause, the query results are compiled for each group. With the HAVING clause, you can
specify conditions for narrowing down the query results further. After specifying the group, specify the HAVING
clause conditions.

If a query contains both the WHERE clause and GROUP BY clause, the WHERE clause is executed first, the format is
adjusted with the GROUP BY clause, and then filtering is performed according to the HAVING clause.

The items other than the set function appearing in the SELECT clause must also be specified in the GROUP BY clause.
With grouping, the null value is also included and is handled as a condition. The notes related to the GROUP BY clause
and HAVING clause are as follows:

• Entity-based grouping can be performed, but serialized fields and lob fields cannot be included. If serialized fields
and lob fields are specified with Cosminexus JPA Provider, an exception occurs.

• In the HAVING clause, search conditions are specified for the group items, so the set function applicable to the
group items must be specified. With Cosminexus JPA Provider, if the search conditions are not specified, an
exception occurs.

• Do not use the HAVING clause when the GROUP BY clause does not exist. If used, an exception occurs.

An example of coding the GROUP BY clause and HAVING clause is as follows:

SELECT e.department.departmentId
FROM Employee AS e
GROUP BY e.department.departmentId
HAVING COUNT(e.department.departmentId) <= 2

For details on the syntax of the GROUP BY clause and HAVING clause, see Appendix G BNF for JPQL.

9.17.7 ORDER BY clause
With the ORDER BY clause, the objects and values are placed in order and then the query results are returned. An
example of coding the ORDER BY clause is as follows:

SELECT e
FROM Employee AS e
ORDER BY e.monthlySalary DESC

A description of the ORDER BY clause is as follows:

• If one or more order items are specified, the priority is determined from the left to the right of the orderby item
elements and the left-most orderby item has the highest priority.

• The ORDER BY clause is specified when ASC is ascending and DESC is descending. Note that the default value
is ASC.

• The SQL rules are applied to the order when the null value exists.

9. Cosminexus JPA Provider

Compatibility Guide 389

• When the ORDER BY clause is used, the order of the query results is stored in the result of the query method.

For details on the syntax of the ORDER BY clause, see Appendix G BNF for JPQL.

Furthermore, the ORDER BY clause must satisfy the following conditions:

• The order items specified in the ORDER BY clause can be placed in order.

• The order items specified in the ORDER BY clause can be traced from the select expression of the
SELECT clause.

If these conditions are not satisfied, an exception might occur in Cosminexus JPA Provider. However, even if an
exception does not occur, the operations might not function properly.

9.17.8 Bulk UPDATE statement and Bulk DELETE statement
Update of multiple records in a batch is called bulk update. To perform bulk update, you use the Bulk UPDATE statement
and Bulk DELETE statement. The bulk UPDATE and DELETE operations are applied to a stand-alone entity class or
an entity class matching with the subclass. With the UPDATE statement, you define the identification variable in the
UPDATE clause, and with the DELETE statement, you define the identification variable in the FROM clause and specify
one type of entity.

Notes on using the Bulk UPDATE statement and Bulk DELETE statement:

• The delete operation is only applied to the entities of the specified class and the subclasses. The related entities
are not cascaded.

• The update value specified in the update operation (new_value) must be compatible with the allocated field type.
If the update value is not compatible, an exception occurs.

• The Bulk UPDATE statement executes the database update operation without setting the optimistic lock, so the
processing related to the optimistic lock is not executed. Therefore, the value in the version column must be
referenced and updated manually.

Important note

When you execute the Bulk UPDATE statement and the Bulk DELETE statement, note that mismatch
occurs between the database and the entities of the activated persistence context. The operations in the Bulk
UPDATE statement and the Bulk DELETE statement must be executed when separated from the transaction
or when the transaction is started.

An example of coding the Bulk UPDATE statement and Bulk DELETE statement is as follows:

UPDATE EMPLOYEE
SET MONTHLY_SALARY = MONTHLY_SALARY + 1000
WHERE DEPARTMENT_ID = 3

DELETE FROM EMPLOYEE e
WHERE e.EMPLOYEE_NAME IS NULL AND e.monthlySalary IS EMPTY

For details on the syntax of the Bulk UPDATE statement and Bulk DELETE statement, see Appendix G BNF for JPQL.

9. Cosminexus JPA Provider

Compatibility Guide 390

9.17.9 Notes on using JPQL
This section describes the notes on using JPQL.

(1) Notes on the null value
• null value in the query result

• If the query result value corresponds to a relation field or state field with a null value, that null value is
returned as the result of the query method.

• You can use the IS NOT NULL syntax to remove the null value from the query result set.

• In the fields defined using the numeric series primitive type of Java, a null value cannot be generated as a
query result.

• null value in the comparison and conditional expressions
• If the reference target does not exist in the database, the value is assumed to be null. To search a null value,

you can only use the comparison conditions IS NULL and IS NOT NULL.

• If the null value is used in a condition other than IS NULL and IS NOT NULL and if that result depends on
the null value, the result becomes unknown.

• The result of the comparison or arithmetic operation of the null value is always an unknown value.

• The result of comparing two null values is an unknown value.

• The result of the comparison or arithmetic operation with an unknown value is always an unknown value.

• The boolean operator uses three-valued-logic. The following table describes the three-valued-logic expressions
for AND, OR, and NOT.

Table 9‒23: Three-valued-logic expression for AND (result of A AND B)

A B

True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table 9‒24: Three-valued-logic expression for OR (result of A OR B)

A B

True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

Table 9‒25: Three-valued-logic expression for NOT (result of NOT A)

A Result of NOT A

True False

False True

Unknown Unknown

9. Cosminexus JPA Provider

Compatibility Guide 391

(2) Notes on using JPQL in HiRDB
• You cannot specify location parameters and named parameters in the arguments of the following JPQL functions:
TRIM, SQRT, ABS, LENGTH, LOWER, MOD, LOCATE, UPPER, CONCAT, SUBSTRING, IS [NOT] NULL
If location parameters and named parameters are specified in the arguments of these functions, the operations might
not function properly. Note that if the location parameters and named parameters are specified, a HiRDB SQL
syntax error occurs and the PersistenceException exception containing the SQLException exception
might be thrown.
If you want to use the functionality of these functions, use the native query.

• You cannot specify the question mark (?) parameter on both sides of the four arithmetic operators (+, -, *, /)
and both sides of the comparison operators (=, >, >=, <, <=, <>). Also, you cannot specify the question mark (?)
parameter on one side of the comparison operators and a literal on the other side. If such a value is specified, the
operations might not function properly. If such a value is specified, a HiRDB SQL syntax error occurs and the
PersistenceException exception containing the SQLException exception might be thrown.
Instead of executing the four arithmetic operations and comparison operations in JPQL, execute the four arithmetic
operations and comparison operations before using JPQL and then use JPQL.

The examples of coding queries that cannot be used when JPQL is used in HiRDB are as follows:

Example 1 of query that cannot be used: Specifying a location parameter in the function argument

Query query1 = em.createQuery(
"SELECT o FROM TestEntity o "+
 "WHERE o.name=TRIM(LEADING FROM ?1)")
 .setParameter(1, " HitachiTaro");

Example 2 of query that cannot be used: Specifying a location parameter in the four arithmetic operators

int no_A=2;
int no_B=4;
Query query2 = em.createQuery(
"SELECT o FROM TestEntity o WHERE o.id = ?1 + ?2")
 .setParameter(1, no_A)
 .setParameter(2, no_B);

Example 3 of query that cannot be used: Specifying a location parameter in the comparison operators

int cmp_no=3;
Query query3 = em.createQuery(
"SELECT o FROM TestEntity o WHERE o.id = ?1 AND ?1 < 9")
 .setParameter(1, cmp_no);

9.17.10 Exceptions thrown when queries are used
In Cosminexus JPA Provider, if there is a syntactic error in a query-related annotation, an exception occurs when the
application is deployed. Also, if the arguments of the query-related method are invalid and if the specified string is not
a valid JPQL string, the IllegalArgumentException exception occurs or the execution of the query fails.

If the query is not valid for the database query that uses a native query or if the defined result set is not compatible with the
query result, the execution of the query fails. In Cosminexus JPA Provider, the PersistenceException exception
is thrown during the execution of the query.

9. Cosminexus JPA Provider

Compatibility Guide 392

(1) Exceptions thrown in the API functions of the query-related interfaces
in EntityManager

The exceptions thrown in the API functions of the query-related interfaces in EntityManager are as follows:

• If the query string of the createQuery method is incorrect, the IllegalArgumentException exception
is thrown.

• If the query is not defined with the name specified in the createNamedQuery method, the
IllegalArgumentException exception is thrown.

(2) Exceptions thrown in the API functions of the Query interface
The exceptions thrown in the API functions of the Query interface are as follows:

• If the JPQL UPDATE statement or DELETE statement is invoked with the getResultList method, the
IllegalStateException exception is thrown.

• If the query result does not exist, the NoResultException exception is thrown in the getSingleResult
method. Note that if there are two or more query results, the NonUniqueResultException exception is thrown.
If the JPQL UPDATE statement or DELETE statement is invoked, the IllegalStateException exception
is thrown.

• If the JPQL SELECT statement is invoked with the executeUpdate method, the IllegalStateException
exception is thrown. At this time, if the transaction does not exist, the TransactionRequiredException
exception is thrown.

• If the second argument of the setHint method is not correct for implementation, the
IllegalArgumentException exception is thrown.

• If the position of the arguments for the setParameter method does not match with the location parameter of
the query, or if the parameter name of the argument does not match with the parameter of the query string, the
IllegalArgumentException exception is thrown.

• If the arguments of the setMaxResults or setFirstResult method are negative, the
IllegalArgumentException exception is thrown.

For details on the API functions, see the Java documentation.

9. Cosminexus JPA Provider

Compatibility Guide 393

9.18 Defining persistence.xml

This section describes the definition for the cache functionality of the entity objects, which is a Cosminexus JPA
Provider-specific functionality, and the notes on data source specification for defining persistence.xml.

9.18.1 Defining the cache functionality of the entity objects
You define the cache functionality of the entity objects provided with Cosminexus JPA Provider in the <property>
tag of persistence.xml. The following table describes the definition of the cache functionality of the entity objects
in persistence.xml.

Table 9‒26: Definition of the cache functionality of the entity objects in persistence.xml

Specified properties Settings

cosminexus.jpa.cache.size.ENTITY Specify the cache size for caching the entity.

cosminexus.jpa.cache.size.default Specify the default cache size for caching the entity.

cosminexus.jpa.cache.type.ENTITY Specify the cache type of the entity.

cosminexus.jpa.cache.type.default Specify the default cache type of the entity.

cosminexus.jpa.target-database Specify the name of the database to be connected to.

For details on tags, see 13.2.2 Cosminexus JPA Provider-specific properties that can be specified in the <property> tag.

Reference note

The properties described here are properties unique to Cosminexus JPA Provider. In persistence.xml,
you can specify other properties defined in the JPA specifications. However, in Cosminexus JPA Provider, you
cannot use properties beginning with javax that are defined in the JPA specifications.

9.18.2 Notes on data source specification
With the data source specification in persistence.xml, you can use the user-specified Namespace functionality,
which is an Application Server functionality, to assign an optional name to the resource adapter. If you set an optional
name for the resource adapter in the persistence.xml settings, the optional name of the resource adapter must also
be defined in the HITACHI Connector Property file. For details, see 9.19 Settings in the execution environment.

9. Cosminexus JPA Provider

Compatibility Guide 394

9.19 Settings in the execution environment

To use Cosminexus JPA Provider, you must specify the J2EE server settings and the DB Connector settings.

9.19.1 J2EE server settings
You implement the J2EE server settings with the Easy Setup definition file. Specify the settings for the log files output
by Cosminexus JPA Provider in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file.

The following table describes the settings in the Easy Setup definition file for the log files output by Cosminexus
JPA Provider.

Table 9‒27: Settings in the Easy Setup definition file for the log files output by Cosminexus JPA
Provider

Specified parameters Settings

ejbserver.logger.channels.define.JPAOperationLogF
ile.filenum

Specify the number of operation log files.

ejbserver.logger.channels.define.JPAMaintenanceLo
gFile.filenum

Specify the number of maintenance log files.

ejbserver.logger.channels.define.JPAOperationLogF
ile.filesize

Specify the size of the operation log.

ejbserver.logger.channels.define.JPAMaintenanceLo
gFile.filesize

Specify the size of the maintenance log.

cosminexus.jpa.logging.level.operation.category Specify the log level of the operation log.

For details on the Easy Setup definition file and parameters to specify, see 12.2.1 Parameters used for setting up the user
properties for the J2EE server.

9.19.2 DB Connector settings
You implement the DB Connector settings with the server management commands and the HITACHI Connector
Property file.

The following table describes the settings in the HITACHI Connector Property file.

Table 9‒28: Settings in the HITACHI Connector Property file

Specified tags Settings

<resource-external-property>-<optional-name> tag If the optional name of the resource adapter is used in the
data source specification of persistence.xml, the optional
name of the resource adapter is set up. If the optional name of
the resource adapter is not used in persistence.xml, the
settings need not be specified.

<resource-external-property>-<res-auth> tag If the optional name of the resource adapter is used in the data
source specification of persistence.xml, make sure you
specify Container as the resource authentication method.

9. Cosminexus JPA Provider

Compatibility Guide 395

Specified tags Settings

<resource-external-property>-<res-sharing-
scope> tag

If the optional name of the resource adapter is used in the
data source specification of persistence.xml, make sure
you specify Shareable to specify whether the resource
connections will be shared.

<property>-<property-name> tag
<property>-<property-value> tag

Specify the information for connecting to the database.
• Specifying the user name

Specify User in the <property-name> tag and the
user name to be used for the database connection in the
<property-value> tag.

• Specifying the password
Specify Password in the <property-name> tag and
the password to be used for the database connection in the
<property-value> tag.

<connection-definition>-<transaction-support> tag Specify the transaction support level. Match the value
specified here with the value specified in the transaction-
type attribute of the <persistence-unit> tag
in persistence.xml.

For details on the HITACHI Connector Property file and the specified tags, see 20.6 HITACHI Connector Property file.

9. Cosminexus JPA Provider

Compatibility Guide 396

9.20 Precautions on application development

9.20.1 Precautions when using LAZY fetch in @OneToOne and
@ManyToOne in Cosminexus 09-60 or a later environment

When developing an application in Cosminexus 09-60 or a later environment, create an entity class that meets the
following conditions as the Java SE 6 source file. Also, specify settings so that Java SE 6 class files are generated when
the application is compiled.

• The entity class includes @OneToOne or @ManyToOne.

• FetchType.LAZY is specified for the fetch attribute of @OneToOne or @ManyToOne.

Note:
When compiling by using the javac command, you can generate Java SE 6 class files by using -target
and -source.

9. Cosminexus JPA Provider

Compatibility Guide 397

9.21 If a problem occurs in the JPA Application

This section describes the analysis procedure when a trouble occurs in an application using JPA.

This section describes an example of the model failure and the analysis procedure for the cause.

Note that the information, between each log output by Cosminexus JPA provider, is based on time, Thread ID/Process
ID, and PersistenceUnit name. You can raise a log level and acquire the data, when you cannot specify the cause in the
acquired log and the log is repeated.

9.21.1 Exception occurrence by user application
This point describes an analysis procedure implemented by a user when an exception occurs in a user application. The
timing, when the exception occurs, might be when starting an application (including deploy) or when executing the
application. This section describes the analysis procedure when an exception occurs in their respective timings.

(1) Exception occurrence when starting an application
The analysis procedure when an exception occurs while starting an application is as follows:

1. Checking message logs
Reference the message output by a message log. See the message manual and confirm the handling procedure of the
message ID that is output. Moreover, examine the countermeasures.

2. Checking application definitions
Review the contents of the definition information of annotation in the application, persistence.xml, settings
of O/R mapping files based on the contents of the message log and check whether there is any problem in the
setup contents. When the method of handling the message log involves contacting the maintenance personnel, and
when the cause of situations, such as not having any problem in the application process is not revealed, contact
maintenance personnel.

(2) Exception occurred when executing an application
This point describes an analysis procedure when an exception occurs while executing an application.

1. Checking message logs
Check the event of a failure from the message output to a message log. For details on the messages, see the manual
uCosminexus Application Server Messages.

2. Checking exception logs
Specify the point where an exception has occurred from the stack trace output to the exception log. To find out the
cause of the exception occurrence, check whether there is any problem in the process contents of the application.
Modify the application if there is any problem in the process.
When the method of handling the message log involves contacting the maintenance personnel, and when the causes of
situations, such as not having any problem in the application process are not revealed, contact maintenance personnel.

9. Cosminexus JPA Provider

Compatibility Guide 398

9.21.2 Errors occurred in a performance screen
This point describes an analysis procedure when a performance related failure occurs. For example, certain processes
require time. The performance related problem might occur when starting an application or when executing
the application.

When you start an application, if any performance related problem occurs, contact maintenance personnel. When you
execute the application, and if any performance related problem occurs, specify the location of the problem as per the
following procedure:

1. Checking PRF trace.
Specify the location where the process takes time from the contents of a PRF trace. Specify whether the cause of a
failure is in the user-implemented location or in the Cosminexus JPA Provider. Modify the application if there is any
problem in the user-implemented location. When the processes in the internal process of Cosminexus JPA provider
take time, contact maintenance personnel.

2. Checking operation logs
For checking the issued SQL, check operation logs.
For example, you can reference the issued SQL and confirm whether it is relevant to the following case or not:

• JOIN operation is executed repeatedly by reading the entity because JOINED is used in inheritance strategy.

• The entity managed by collection is operated, and therefore, SELECT is generated for each element
with extension.

For details on the operation log output to Cosminexus JPA provider, see 16.1.1 Cosminexus JPA Provider operation log.

9.21.3 Data used in troubleshooting
The following table shows the troubleshooting data and the acquisition source of the data that is required in the
Cosminexus JPA Provider, when a failure occurs in the system.

Table 9‒29: Troubleshooting data and data acquisition source required in Cosminexus JPA Provider

Troubleshooting data Acquisition source File name of the data

Message log snapshot (primary) Message log

Exception log snapshot (primary) Exception information when an
error occurs

Operation log of Cosminexus JPA Provider snapshot (primary) Operation log of CJPA

J2EE server definition information snapshot (primary) • Option definition file for J2EE server
• User property file for J2EE server
• Security policy file for J2EE server

Definition information of
applications included in
the operation directory of
J2EE server

persistence.xml snapshot (secondary) • Contents of EJB server
operation directory

• Contents of Web container
operation directory

O/R mapping file

Property file of EJB, WAR

Connector property file of DB Connector snapshot (secondary) Contents of Web container
operation directory

9. Cosminexus JPA Provider

Compatibility Guide 399

Troubleshooting data Acquisition source File name of the data

DB Connector log snapshot (primary) Operation log of the resource adaptor
that is deployed and used as a J2EE
resource adaptor

Trace based Performance Analysis snapshot (primary) PRF daemon and PRF command log

J2EE server thread dump Thread dump acquisition command

SQL trace of a database to
be connected (However, only
when the trace information
is collected)

• HiRDB
SQL trace

See the manual HiRDB SQL Reference

• For the Oracle
Trace file that is
acquired when setting
sql_trace=true in SQL
trace init.ora

See the manual of Oracle.

9. Cosminexus JPA Provider

Compatibility Guide 400

9.22 Scope of support for the annotations included in the
javax.persistence package

This section describes the scope of support for annotations included in the javax.persistence package.
Annotation is a language specification that allows you to annotate source code.

The components in which the annotations of the javax.persistence package can be used differ based on the
dependability on the JPA Provider. The annotations that depend on the JPA Provider and the annotations that do not
depend on the JPA Provider are described separately:

9.22.1 Annotations that depend on the JPA Provider
This point describes the applicability of the annotations that depend on the JPA Provider. The annotations that can be
coded in each component are as follows:

(1) WAR file (Servlet 3.0 compliant)
The following table lists the annotations that you can code in a WAR file:

Table 9‒30: Annotations (javax. persistence package) that can be coded in WAR file (Servlet 3.0
compliant)

Annotation
name

Servlet specifications JSP specifications Exce
ption
class

Mana
gedB
ean
(JSF)

Other
class

Servl
et

Servl
et
(API)

Servl
et
filter

Servl
et
filter
(API)

Event
listen
er

Event
listen
er
(API)

JSP
FILE

Tag handler Tag
librar
y
event
listen
er

Class
ic tag
handl
er

Simpl
e tag
handl
er

@Persiste
nceContex
t

Y -- Y -- Y -- -- Y Y N -- Y --

@Persiste
nceContex
ts

Y -- Y -- Y -- -- Y Y N -- Y --

@Persiste
nceProper
ty

Y -- Y -- Y -- -- Y Y N -- Y --

@Persiste
nceUnit

Y -- Y -- Y -- -- Y Y N -- Y --

@Persiste
nceUnits

Y -- Y -- Y -- -- Y Y N -- Y --

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not supported by standard specifications.

(2) WAR file (Supported by Servlet 2.5)
The following table lists the annotations that you can code in a WAR file:

9. Cosminexus JPA Provider

Compatibility Guide 401

Table 9‒31: Annotations (javax.persistence package) that can be coded in a WAR file (Supported
by Servlet 2.5)

Annotation name Servlet specifications JSP specifications Other
class

Servlet Servlet
filter

Event
listener

JSP file Tag handler Tag
library
event
listener

Classic
tag
handler

Simple
tag
handler

@PersistenceConte
xt

Y Y Y -- Y Y N --

@PersistenceConte
xts

Y Y Y -- Y Y N --

@PersistencePrope
rty

Y Y Y -- Y Y N --

@PersistenceUnit Y Y Y -- Y Y N --

@PersistenceUnits Y Y Y -- Y Y N --

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

(3) EJB-JAR file (EJB3.1/EJB3.0 compliant)
The following table lists the annotations that you can code in an EJB-JAR file:

Table 9‒32: Annotations (javax.persistence package) that can be coded in an EJB-JAR file
(Supported by EJB3.0)

Annotation name Enterprise Bean Ex
ce
pti
on
cla
ss

Ot
her
cla
ss

Interface Session Bean Entity Bean Message-driven
Bean

Intercept
or

Ot
her
tha
n
def
aul
t
Int
erc
ept
or

De
fau
lt
Int
erc
ept
or

@PersistenceConte
xt

-- Y -- N Y Y -- --

@PersistenceConte
xts

-- Y -- N Y Y -- --

@PersistencePrope
rty

-- Y -- N Y Y -- --

@PersistenceUnit -- Y -- N Y Y -- --

@PersistenceUnits -- Y -- N Y Y -- --

9. Cosminexus JPA Provider

Compatibility Guide 402

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

(4) Library JAR file (Servlets or JSPs)
The following table lists the annotations that you can code in a servlet or JSP of a library JAR file.

Table 9‒33: Annotations (javax.persistence package) that can be coded in a library JAR file
(Servlets or JSPs)

Annotation name Servlet specifications JSP specifications

Servlet Servlet
(API)

Servlet
filter

Servlet
filter
(API)

Event
listene
r

Event
listene
r (API)

JSP
FILE

Tag handler Tag
library
event
listene
r

Classi
c tag
handle
r

Simple
tag
handle
r

@PersistenceContex
t

-- -- Y -- Y -- -- Y Y N

@PersistenceContex
ts

-- -- Y -- Y -- -- Y Y N

@PersistenceProper
ty

-- -- Y -- Y -- -- Y Y N

@PersistenceUnit -- -- Y -- Y -- -- Y Y N

@PersistenceUnits -- -- Y -- Y -- -- Y Y N

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

(5) Library JAR file (Enterprise Bean, exception class, or other classes)
The following table lists the annotations that you can code in the Enterprise Beans, exception classes, or the other classes
of a library JAR file:

Table 9‒34: Annotations (javax.persistence package) that can be coded in a library JAR file
(Enterprise Beans, exception classes, or other classes)

Annotation name Enterprise Bean Exception
class

Interface Session
Bean

Entity Bean Message-
driven Bean

Interceptor

@PersistenceContext -- -- -- N Y --

@PersistenceContexts -- -- -- N Y --

@PersistenceProperty -- -- -- N Y --

@PersistenceUnit -- -- -- N Y --

@PersistenceUnits -- -- -- N Y --

9. Cosminexus JPA Provider

Compatibility Guide 403

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

9.22.2 Annotations that do not depend on the JPA Provider
Irrespective of the file type, you can use the annotations that do not depend on the JPA Provider, in the entity class.

For details on the list of annotations included in the javax.persistence package, see 8.12
javax.persistence package.

9. Cosminexus JPA Provider

Compatibility Guide 404

10 Web Container

This chapter describes the functionality that can be used only in V9 compatibility mode and
precautions related to the Web container (server infrastructure for executing servlets and JSP). Use
the Web container functionality when you execute a J2EE application with servlets or JSPs.

Compatibility Guide 405

10.1 Functionality of filtering requests and responses

This section describes the functionality for filtering the requests and responses.

The following table describes the organization of this section.

Table 10‒1: Organization of this section (Functionality for filtering requests and responses)

Category Title Reference

Description Servlet filter provided by Application Server (built-in filter) 10.1.1

Examples of recommended filter chain 10.1.2

Implementation Definition in the DD 10.1.3

Settings Execution environment settings (Web application settings) 10.1.4

Note:
There is no specific description of Operations and Notes for this functionality.

The filtering functionality available on Application Server is the functionality defined in the Servlet specifications and
the functionality provided with Application Server. Both of the above functions filter requests and responses of servlets
or JSPs.

The filtering functionality defined in the Servlet specifications wraps the requests before executing the servlets and JSPs
or the responses after executing the servlets and JSPs. As a result, you can perform operations such as changing the data
and acquiring the trace for the resources.

With the filtering functionality provided with Application Server, you can inherit the session information and compress
the HTTP responses. In Application Server, a servlet filter is provided for using this filtering functionality. The servlet
filter provided in Application Server is called a built-in filter. The following section explains the built-in filter provided
in Application Server.

10.1.1 Servlet filter provided by Application Server (built-in filter)
In Application Server, a servlet filter (built-in filter) is provided to use the following functionality:

• Compressing the HTTP responses
To compress the HTTP responses for the HTTP requests, Application Server provides an HTTP response
compression filter as the built-in filter.

The following table describes the types of built-in filters. Further, references of the functionality that you can use by
embedding the built-in filter in a Web application are also described.

Table 10‒2: Types of built-in filters

Type of built-in filter Description of functionality Reference manual Reference

HTTP response
compression filter

This functionality compresses the HTTP responses to the
HTTP requests for servlets, JSPs, and static contents, in the
gzip format.

This manual 10.2

Note that with Servlet 3.0 or later, you can define a filter by using an API and not the web.xml file. However you cannot
use an API to define a built-in filter.

10. Web Container

Compatibility Guide 406

The action of the built-in filter on HTTP requests and HTTP responses, the restrictions on the operation conditions of
the built-in filter are explained below:

(1) Action on the HTTP requests and HTTP responses
The built-in filter acts on the request header and the request body of the HTTP requests sent from the client, and may
delete, add, and change the information. In the same way, the built-in filter may also act on the response header and the
response body of the HTTP responses sent from the server. The following table describes the action of the built-in filter
on HTTP requests and HTTP responses:

Table 10‒3: Action of the built-in filter on HTTP requests and HTTP responses

Type of built-in filter Action on the HTTP request Action on the HTTP response

HTTP response
compression filter

-- When the response body is compressed, gzip is
specified in the Content-Encoding header. The response
body is compressed in gzip format.

Legend:
--: Not applicable

(2) Restriction on operation conditions
When you use the user filter and the built-in filter simultaneously, there are restrictions on the order in which the built-in
filter is invoked in the filter chain.

The following restrictions are explained for each built-in filter:

• Restriction on the location
This is the restriction on the location (invocation order) of the built-in filter in the filter chain.

• Restriction on operation conditions
This is a restriction on the operation conditions, such as the preconditions for operation of the built-in filter.

• Restriction on the other servlet filters deployed before and after the built-in filter
This is a restriction with respect to servlet filters that are deployed before and after the built-in filter.

(a) Restrictions on an HTTP response compression filter
The following table describes the restrictions on the HTTP response compression filter:

Table 10‒4: Restrictions on the HTTP response compression filter

Type of restriction Description

Restriction on the location --

Restriction on operation conditions --

Restriction on the other servlet filters
deployed before and after the built-
in filter

In the case of concurrent use of the HTTP response compression filter and servlet filter that changes
the settings of the Content-Length header or the Content-Encoding header by using the setHeader
method, addHeader method, setIntHeader method, or addIntHeader method of the
javax.servlet.http.HttpServletResponse interface, you need to deploy the servlet
filter after the HTTP response compression filter.

Legend:
--: Not applicable

10. Web Container

Compatibility Guide 407

10.1.2 Examples of recommended filter chain
The examples of recommended filter chain are explained below. Deploy the filters to form a chain in the following order:

Note that the general filters that act on the request body and the response body are assumed as user filters explained in
the examples.

• When using an HTTP response compression filter and a user filter (Filter A)
1. HTTP response compression filter

2. User filter (Filter A)

• When using an HTTP response compression filter and a user filter (Filter D)
1. HTTP response compression filter

2. User filter (Filter D)

10.1.3 Definition in the DD
Define the functionality for filtering requests and responses in web.xml.

For details on definitions of the filtering functionality for requests and responses in DD, see the following:

• For details on the HTTP response compression filter, see 10.2 HTTP response compression functionality.

10.1.4 Execution environment settings (Web application settings)
To define the functionality for filtering requests and responses you must set up the Web applications. Reference this
section only if you want to set or change the properties of Web applications that do not contain cosminexus.xml.

Implement the Web application settings in the execution environment by using the server management commands and
property files. To define the filtering for requests and responses, use the filter property file and WAR property file.

The tags specified in the filter property file and WAR property file correspond to the DD. For the definitions in the DD
(web.xml), see 10.1.3 Definition in the DD.

10. Web Container

Compatibility Guide 408

10.2 HTTP response compression functionality

This section describes the HTTP response compression functionality.

The HTTP response compression functionality compresses the HTTP responses for the HTTP requests to the servlets,
JSPs, and static contents in the gzip format. By using this functionality to compress the HTTP responses, you can reduce
the time required for communicating the HTTP responses between the Web container and Web client (browser).

This functionality is provided as a servlet filter that is embedded and runs in the Web application. This is called the HTTP
response compression filter.

The following table describes the organization of this section.

Table 10‒5: Organization of this section (HTTP response compression functionality)

Category Title Reference

Description Overview of HTTP response compression filter 10.2.1

Conditions for using the HTTP response compression filter 10.2.2

Implementation Executing the applications that use the HTTP response compression filter 10.2.3

Definition in the DD 10.2.4

Examples of the DD definitions 10.2.5

Settings Execution environment settings (Web application settings) 10.2.6

Note:
There is no specific description of Operations and Notes for this functionality.

10.2.1 Overview of HTTP response compression filter
If you enable the HTTP response compression functionality, the response body of the HTTP response is compressed in
a gzip format. The following figure shows an overview of HTTP response compression functionality.

Figure 10‒1: Overview of HTTP response compression functionality

To enable the HTTP response compression functionality, you need to embed the HTTP response compression filter
provided by Application Server, in the Web application. In the case of applying the HTTP response compression
functionality, add the filter definition of the HTTP response compression filter and the definition of the filter mapping to
the DD (web.xml) of Web application. In the case of applying the HTTP response compression functionality to a Web

10. Web Container

Compatibility Guide 409

application that is already deployed on a J2EE server, use the server management commands to add the filter definition
of the HTTP response compression filter and the definition of filter mapping.

10.2.2 Conditions for using the HTTP response compression filter
This section describes the conditions and precautions for using the HTTP response compression filter.

(1) Preconditions
To use the HTTP response compression functionality, the following preconditions need to be satisfied:

• gzip format compliant Web client
When the HTTP response compression functionality is enabled, you need to decompress HTTP responses that are
compressed in gzip format with the Web client. The Web client, therefore must support the gzip format. If the
Web client does not support the gzip format, HTTP responses are not compressed, even if the HTTP response
compression functionality is enabled.

• HTTP/1.1 compliant Web client
In HTTP response compression functionality, the value specified in the Accept-Encoding header of the HTTP request
determines whether the Web client supports the gzip format. The Web client is therefore required to support
HTTP/1.1 as defined in the specifications of the Accept-Encoding header.

(2) Required memory size
The memory required for the HTTP response compression functionality is obtained with the following formula:

Memory-required-for-the-HTTP-response-compression-functionality (bytes) = Number-of-concurrent-executions-
of-the-HTTP-requests-that-enable-the-HTTP-response-compression-functionality × Response-compression-
threshold (bytes)

The compression threshold is used for determining whether to compress the HTTP response depending on the size of
the HTTP response body. Only when the size of the HTTP response body exceeds the size defined in the compression
threshold, the HTTP response will be compressed. Note that the compression threshold is specified for HTTP requests.

Define the compression threshold in the DD (web.xml). When the size of the HTTP response is small, by defining
the compression threshold you ensure that the time required for HTTP response compression is not longer than the time
required for communication.

Decide an appropriate size for the compression threshold depending on the type of resources you want to compress and
the speed of communications line. Hitachi recommends that you acquire the size defined in the compression threshold
using the actual measurements and define the appropriate size.

(3) Conditions for enabling the HTTP response compression functionality
You can specify conditions for enabling the HTTP response compression functionality. The conditions that can be
specified are explained below.

• URL pattern of HTTP request
If the URL of the request to a Web application (in which the HTTP response compression filter is installed) matches
with the specified URL pattern, compress the response to that request.
The following figure shows an example with *.html specified as the URL pattern of the HTTP request that executes
the compression of HTTP response:

10. Web Container

Compatibility Guide 410

Figure 10‒2: Example with '*.html' specified as the UTL pattern of the HTTP request that
executes HTTP response compression

• Media-Type of HTTP response
If the value of the Media-Type included in the Content-Type header of the HTTP response matches with the specified
value, compress the HTTP response.
In the case of servlets or JSPs, the value of the Media-Type of HTTP response is set by the setContentType
method of a J2EE application. In the case of static contents, the Media-Type is the MIME type associated with
the extension.
The following figure shows an example with 'text/html' specified as the Media-Type of HTTP response that executes
the compression of HTTP response:

Figure 10‒3: Example with 'text/html' specified as the Media-Type of HTTP response that
executes HTTP response compression

• Body size of HTTP response

10. Web Container

Compatibility Guide 411

Set a threshold value to execute the compression of an HTTP response. If the body size exceeds this threshold value,
compress the HTTP response.
The following figure shows an example in which the HTTP response compression functionality is enabled by
specifying '200 bytes' as the body size of the HTTP response that executes the compression of HTTP response:

Figure 10‒4: Example with '200 bytes' specified as the body size of the HTTP response that
executes HTTP response compression

(4) Notes
Precautions related to the definition of the HTTP response compression filter

When using the HTTP response compression filter, after considering the action of the built-in filter on the HTTP
requests and HTTP responses and the restrictions on the order of the filter chain, you need to embed HTTP response
compression filter in a Web application. For details on the built-in filter, see 10.1.1 Servlet filter provided by
Application Server (built-in filter).
Note that with Servlet 3.0 or later, you can define a filter by using an API and not the web.xml file. However, you
cannot use an API to define a built-in filter.

Precautions related to error pages
In the Web applications that use the HTTP response compression functionality, you can customize the error pages
by using the following functionality:

• Error page customization with the Web server functionality

• Error page customization based on in-process HTTP server

• Error page customization with the <error-page> tag of web.xml
When using the error page with the <error-page> tag of web.xml, specify the servlet that acquires and uses
javax.servlet.ServletOutputStream from the static contents or response in the error page.
In the HTTP response compression functionality, you use javax.servlet.ServletOutputStream
acquired from the response object to output the compressed data. Therefore, java.io.PrintWriter cannot be
acquired from the response object in the servlet or JSP that generates an error page.

10. Web Container

Compatibility Guide 412

10.2.3 Executing the applications that use the HTTP response
compression filter

This section describes the precautions to be taken when developing applications that use the HTTP response
compression filter.

(1) Order of invocation when the HTTP response compression filter is
combined with other filters

The HTTP response compression filter must be invoked before the other filters specified in the HTTP response header.
When you use the setHeader method, addHeader method, setIntHeader method, and addIntHeader
method of javax.servlet.http.HttpServletResponse to use other filters that set Content-Length header
and Content-Encoding header, deploy the other filters after the HTTP response compression filter.

(2) Precautions related to HTTP response buffer
When the HTTP response compression functionality is enabled, the buffer with the size specified in the compression
threshold is installed before the HTTP response buffer. Data is written in the HTTP response buffer when the output data
exceeds the compression threshold.

Unless the compressed data size exceeds the HTTP response buffer size, the HTTP response is not written in the
Web client. If you are required to write the HTTP response in the Web client before the output data size exceeds the
compression threshold, you must explicitly invoke the flush method of the stream for response output#. However, if
the flush method or flushBuffer method of the javax.servlet.ServletResponse interface is invoked
before the output data size exceeds the compression threshold, the output data is written in the Web client without
being compressed.

#
The stream for response output indicates the following objects:

• javax.servlet.ServletOutputStream acquired by the getOutputStream method of the
javax.servlet.ServletResponse interface

• java.io.PrintWriter acquired by the getWriter method of the
javax.servlet.ServletResponse interface

• javax.servlet.jsp.JspWriter implicitly available in JSP

(3) Precautions related to the response header of the HTTP response
When the response body of the HTTP response is compressed with the HTTP response compression functionality, gzip
is specified in the Content-Encoding header and Accept-Encoding is specified in the Vary header of this HTTP response.
Nothing is specified in the Content-Length header.

Therefore, note the following points when you use the setContentLength method of the
javax.servlet.ServletResponse interface and when you use API# for adding and changing the response
header of the javax.servlet.http.HttpServletResponse interface:

• When you use one of the following APIs to add the filter for setting the Content-Length header and Content-Encoding
header, define in the DD (web.xml) that the API be executed after the filter for response compression:

• setContentLength method of the ServletResponse class

• API# for adding and changing the response header of the HttpServletResponse class

10. Web Container

Compatibility Guide 413

• When the response body of the HTTP response is compressed, the Content-Length header of the HTTP response
is not added even though the setContentLength method of the ServletResponse class and the API# for
adding and changing the response header of the HttpServletResponse class are used. The HTTP response for
which the Content-Length header is not added is sent in the chunk format to the client by the Web container.

• When the response body of the HTTP response is compressed, a value is not set in the Content-Encoding header even
though the API# for adding and changing the response header of the HttpServletResponse class is used. When
the response body is compressed, gzip is specified in the Content-Encoding header by the Web Container.

#
The API for adding and changing the response header indicates the following methods of the
javax.servlet.http.HttpServletResponse interface:

• setHeader method

• addHeader method

• setIntHeader method

• addIntHeader method

(4) Precautions related to data output for HTTP response
Note the following points when ServletOutputStream or PrintWriter is acquired with the
getOutputStream method or the getWriter method of the javax.servlet.ServletResponse interface
and the HTTP response is output:

• When you invoke the setContentType method of ServletResponse while the data is being written in
the HTTP response buffer by using ServletOutputStream or PrintWriter, even if HTTP response with
Media-Type specified for compression exists, the HTTP response is not compressed.
However, if an asterisk (*) is specified in the Media-Type to be compressed, the HTTP response is compressed.

• To compress the JSP output by specifying Media-Type, either specify the contentType attribute of the Page
directive or invoke the setContentType method of the ServletResponse class before the JSP buffer
is exceeded.

(5) Precautions for compressing HTTP responses in applications
For HTTP responses compressed in applications, specify settings so that the HTTP response compression functionality
is not enabled. If the HTTP response compression functionality is enabled for the HTTP responses compressed in
applications, the operations might not function properly.

10.2.4 Definition in the DD
This section describes the DD definitions required for using the HTTP response compression functionality.

To enable the HTTP response compression functionality, you must add the filter definition and filter mapping definition
in the DD of the Web applications. The HTTP response compression functionality is enabled only when requests exist
for the resources with the URL pattern mapped by the filter mapping definition.

Define the HTTP response compression functionality in web.xml.

The following table lists the definition of HTTP response compression functionality in the DD:

10. Web Container

Compatibility Guide 414

Table 10‒6: Definition of HTTP response compression functionality in the DD

Settings Specified tags Setting contents

Filter definition <filter-name> tag in
the <filter> tag

Specify the name of the filter you want to add. The set value is a fixed value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFilt
er

<filter-class> tag
in the <filter> tag

Specify the class name of the filter you want to add. The set value is a fixed value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFilt
er

Mapping of the
URL pattern and
HTTP response
compression rules

<param-name> tag
and <param-value>
tag in the <filter-
class><init-
param> tag

Specify the mapping of the URL pattern and the HTTP response
compression functionality.
For details, see 10.2.4(1) Mapping of the URL pattern and HTTP response
compression rules (url-mapping).

HTTP response
compression rules

Specify the compression rule name, Media-Type, and compression threshold as the
compression rules for HTTP response.
For details, see 10.2.4(2) HTTP response compression rules.

Filter mapping definition <filter-name> tag
in the <filter-
mapping> tag

Specify the filter name. The set value is a fixed value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFilt
er

<url-pattern> tag
in the <filter-
mapping> tag

Specify the mapping of the URL pattern or servlet class and the HTTP response
compression filter. The HTTP response compression functionality is enabled only
when requests exist for the resources with the URL pattern mapped by the filter
mapping definition.
The set value is optional.

The definition contents of the DD are described in the following examples of the DD definitions:

 ...
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</fil
ter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *: 1000;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt

10. Web Container

Compatibility Guide 415

er-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The part enclosed in the <filter> tag is the filter definition and the part enclosed in the <filter-mapping> tag is
the filter mapping definition. The value specified in the <filter-name> tag and <filter-class> tag of the filter
definition is fixed in the following package name:

com.hitachi.software.was.web.ResponseCompressionFilter

The contents defined in the <init-param> tag of the DD are as follows:

(1) Mapping of the URL pattern and HTTP response compression rules
(url-mapping)

The <init-param> tag of the DD specifies the mapping of the URL pattern that enables the HTTP response
compression functionality and the name of the HTTP response compression rule applied to the specified URL pattern.

The rules for specifying parameters and the mapping rules for URL pattern are as follows:

(a) Rules for specifying parameters
• The URL pattern is case-sensitive.

• The name of the HTTP response compression rule is case-sensitive.

• The URL pattern and HTTP response compression rule name are delimited by one-byte equal sign (=).

• Delimit multiple specifications with one-byte semicolon (;).

• If multiple URL patterns are applicable, the URL pattern specified earlier is used.

• The linefeed, tabs, and spaces in the parameter value are ignored.

• The one-byte semicolon (;) at the end of the parameter value is ignored.

(b) Mapping rules for URL pattern
The path match, extension match, and exact match mapping rules are applicable to the URL pattern defined in the
url-mapping parameter. The following shows the mapping rules:

• Path match
If a string beginning with / and ending with /* is specified as the URL pattern and if the relative path from the context
root of the request URL begins with the string excluding * from the URL pattern, the string is considered as matching.
Also, if /* is specified as the URL pattern, all the request URLs are considered to be matching.

Examples:
In the URL pattern /jsp/*, if the relative path from the context root of the request URL is /jsp/index.jsp,
the string is considered as matching.

• Extension match
If a string beginning with *. is specified as the URL pattern and if the string is the same as the string continuing after
*. of the request URL extension and URL pattern, the string is considered as matching.

Example:
In the URL pattern *.jsp, if the relative path from the context root of the request URL is /jsp/index.jsp,
the string is considered to be matching.

10. Web Container

Compatibility Guide 416

• Exact match
If a string other than those mentioned above begins with / as the specified URL pattern and if the relative path from
the context root of the request URL is exactly same as this URL pattern, the string is considered as matching.

Example:
In the URL pattern /jsp/index.jsp, if the relative path from the context root of the request URL is /
jsp/index.jsp, the string is considered as matching.

(2) HTTP response compression rules
The <init-param> tag of the DD specifies the Media-Type of the HTTP response to be compressed and the
compression threshold.

Media-Type
If the Media-Type specified as the condition is included in the HTTP response, the HTTP response will be
compressed with the HTTP response compression functionality.

Compression threshold
The compression threshold is specified as an integer value from 100 to 2,147,483,647. By default, compression
threshold 100 is applied to the all Media-Type.
The compression threshold is used for determining whether to compress the HTTP response depending on the size
of the HTTP response body. When the size of the HTTP response body exceeds the size defined in the compression
threshold, the HTTP response will be compressed with the HTTP response compression functionality.
When the size of the HTTP response is small, by defining the compression threshold you ensure that the time required
for HTTP response compression is not longer than the time required for communication.
An appropriate size is decided for the compression threshold depending on the type of resources you want to
compress and the speed of communications line; therefore, it is recommended that the size defined in the compression
threshold be acquired using actual measurements and be defined appropriately.

The following shows the rules for specifying parameters:

• If an asterisk (*) is specified in Media-Type, all Media-Type are shown. However, if each Media-Type is specified,
the specification for each Media-Type is given priority.

• Media-Type is case-insensitive.

• Media-Type and compression threshold are delimited with one-byte colon (:).

• Delimit multiple specifications with one-byte semicolon (;).

• If the same Media-Type is specified multiple times, the Media-Type specified later is used.

• The linefeed, tabs, and spaces in the parameter value are ignored.

• The one-byte semicolon (;) at the end of the parameter value is ignored.

(3) Notes
Take the following precautions when you set up the HTTP response compression filter:

• Check the validity of the filter initialization parameter when you initialize the filter for response compression. If a
problem occurs in the value defined in the initialization parameter, an error occurs in the filter initialization process
and the Web application will not start.

• If the request URL matches the URL pattern specified in the url-mapping parameter, but if the response
compression filter does not match the mapped URL pattern, the response compression rules specified in the
url-mapping parameter are not applied.

10. Web Container

Compatibility Guide 417

• If multiple URL patterns are mapped to the response compression filter, you need to specify the filter mapping
definition in such a way so that the request URL does not match with multiple URL patterns simultaneously. To
specify different response compression functionality for multiple URL patterns, specify multiple URL patterns in the
url-mapping parameter.

• If the Web application version is Servlet 2.4 or later versions, do not specify the <dispatcher> tag of
<filter-mapping>. Also, if FORWARD, INCLUDE, and ERROR is specified in the <dispatcher> tag, note
that an error will occur while starting the Web application and the application cannot be started.

10.2.5 Examples of the DD definitions
This section describes the examples of the DD definitions that use the HTTP response compression functionality as the
examples for each of the following cases:

• When the compression condition is specified for the body size of the HTTP response

• When the compression condition is specified for the URL pattern

• When the compression condition is specified for the Media-Type of the HTTP response

• When the compression conditions are combined and specified

(1) When the compression condition is specified for the body size of the
HTTP response

The following is an example of definition when the compression condition is specified for the body size of the
HTTP response:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</fil
ter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *:1000;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <url-pattern>/*</url-pattern>

10. Web Container

Compatibility Guide 418

</filter-mapping>
 ...
</web-app>

In the definition example, the HTTP response for accessing the URL pattern /* and the body size exceeding 1,000 bytes
is compressed.

(2) When the compression condition is specified for the URL pattern
The following is an example of definition when the compression condition is specified for the URL pattern:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</fil
ter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /app/dir/*=rule1;
 *.html=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *:100;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <url-pattern>/app/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /app/* and fulfilling the following
conditions is compressed:

• HTTP response for which the HTTP request URL pattern is /app/dir/* and the body size exceeds 100 bytes

• HTTP response for which the HTTP request URL pattern is *.html and the body size exceeds 100 bytes

(3) When the compression condition is specified for the Media-Type of the
HTTP response

The following is an example of definition when the compression condition is specified for the Media-Type of
HTTP response:

10. Web Container

Compatibility Guide 419

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</fil
ter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 text/html:500;
 application/pdf:1000;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /* and fulfilling the following conditions
is compressed:

• HTTP response for which Media-Type is text or html and the body size exceeds 500 bytes

• HTTP response for which Media-Type is application or pdf and the body size exceeds 1,000 bytes

(4) When the compression conditions are combined and specified
You can also combine and define the compression conditions as shown in the following example:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</fil
ter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /app/dir1/*=rule1;
 /app/dir2/*=rule2;

10. Web Container

Compatibility Guide 420

 *.html=rule3;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *:500;
 application/pdf:1000;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule2</param-name>
 <param-value>
 application/pdf:2000;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule3</param-name>
 <param-value>
 *:100;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filt
er-name>
 <url-pattern>/app/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /app/* and fulfilling the following
conditions is compressed:

• HTTP response for which the HTTP request URL pattern is /app/dir1/*, Media-Type is other than application
or pdf, and the body size exceeds 500 bytes

• HTTP response for which the HTTP request URL pattern is /app/dir1/*, Media-Type is application or pdf, and
the body size exceeds 1,000 bytes

• HTTP response for which the HTTP request URL pattern is /app/dir2/*, Media-Type is application or pdf, and
the body size exceeds 2,000 bytes

• HTTP response for which the HTTP request URL pattern is *.html and the body size exceeds 100 bytes

10.2.6 Execution environment settings (Web application settings)
To use HTTP response compression based on filtering, you must set up the Web application.

Reference the Web application settings only to set or change the properties of Web applications that do not
contain cosminexus.xml.

10. Web Container

Compatibility Guide 421

Implement the Web application settings in the execution environment using the server management commands
and property files. To define HTTP response compression based on filtering, use the filter property file and WAR
property file.

The tags specified in the filter property file and WAR property file correspond to the DD. For details on definitions in
the DD (web.xml), see 10.2.4 Definition in the DD and 10.2.5 Examples of the DD definitions.

10. Web Container

Compatibility Guide 422

10.3 Precautions related to the Web container

The maximum size of POST data that can be handled by the Web container in V9 compatibility mode is 2 GB. Also, the
maximum size of the POST data that can be handled is regulated depending on the settings of the Web container, and the
settings of the Web server and redirector in front of the Web container.

10. Web Container

Compatibility Guide 423

10.4 Precautions for implementing servlets and JSPs

This section describes the precautions for implementing servlets and JSPs.

The following table describes the organization of this section.

Table 10‒7: Organization of this section (Precautions for implementing servlets and JSPs)

Titles Reference

Common precautions for implementing servlets and JSPs 10.4.1

Precautions related to the specifications that are added or changed in the EL2.2 specifications 10.4.2

10.4.1 Common precautions for implementing servlets and JSPs
This section describes the common precautions for implementing servlets and JSPs as the application programs running
on the Application Server.

(1) J2EE application version requirements for Web application operations
For each Web application version, the following table lists the J2EE version to which the J2EE application conforms and
that forms the prerequisite for Web application operations:

Table 10‒8: J2EE version to which the J2EE application conforms

Version of J2EE specifications to which the J2EE
application conforms

Servlet specifications corresponding to the Web applications

3.0 2.5 2.4 2.3 2.2

Java EE 6 Y Y Y Y Y

Java EE 5 N Y Y Y Y

J2EE1.4 N N Y Y Y

J2EE1.3 N N L Y Y

J2EE1.2 N N L L Y

Legend:
Y: Available
L: Limited (since the version of the J2EE specifications is updated to 1.4 when importing the J2EE application)
N: Not available

(2) Supported range of Web applications
The Web application version is identified by the version information of the Servlet specifications described in web.xml.
A Web application of a higher version can use the functionality of a lower version. A Web application of a lower version
cannot use the functionality of a higher version.

The following table describes the range of functionality available for each Web application version:

10. Web Container

Compatibility Guide 424

Table 10‒9: Supported range of Web applications

Version of the
Web
application

Servlet JSP Tag library#1

3.0 2.5 2.4 2.3 2.2 2.2 2.1 2.0 1.2 1.1 2.1 2.0 1.2 1.1

3.0 Y Y Y Y Y N#2 Y Y Y Y Y Y Y Y

2.5 N Y Y Y Y N Y Y Y Y Y Y Y Y

2.4 N N Y Y Y N N Y Y Y N Y Y Y

2.3 N N N Y Y N N N Y Y N N Y Y

2.2 N N N N Y N N N N Y N N N Y

Legend:
Y: Available
N: Not available

#1
The tag library version indicates the version of the tag library descriptor (TLD file).

#2
A web.xml compatible with JSP 2.2 can be read. However, any tag added to JSP 2.2 is ignored.

Note that if the functionality of a later version is used from a Web application of an earlier version, an error might occur.
The following table describes the errors in each version:

Table 10‒10: Errors that occur if functionalities of Servlet 3.0 are used from a Web application that
is compatible with Servlet 2.2, 2.3, 2.4, or 2.5 specifications

Specifications Functionality used Operation in the event of an error

Servlet 3.0 Invoking new API The program does not check whether an API of the Servlet 3.0 specification is being
used. To avoid any abnormal operation, do not call the API.

Using new annotations For handling errors occurring due to annotations, see 14. Using Annotations in the
uCosminexus Application Server Common Container Functionality Guide.

JSP 2.2 New EL API The program does not check whether an API of EL2.2 specification is being used. To
avoid any abnormal operation, do not call the API.

For details on operation and precautions when upgrading the Web application version from the Servlet 2.2 specifications,
Servlet 2.3 specifications, Servlet 2.4 specifications, or Servlet 2.5 specifications to the Servlet 3.0 specifications, see
the manual uCosminexus Application Server Web Container Functionality Guide.

Table 10‒11: Errors when Servlet 2.5 functionality is used from a Web application corresponding
to Servlet 2.2, 2.3, or 2.4 specifications

Specifications Functionality used Error processing

Servlet 2.5 Invoking new API The check whether the API added in the Servlet 2.5 specifications is
used, is not performed. The operations when the API is invoked do not
function properly, so do not invoke the API.

Using new annotations For the processing when an annotation is used and an error occurs,
see 14. Using annotations in the uCosminexus Application Server
Common Container Functionality Guide.

JSP 2.1 Attributes of the new directive#1 KDJE39145-E message is output in the servlets log and KDJE39186-E
message is output in the message log#2 and a translation error occurs.

10. Web Container

Compatibility Guide 425

Specifications Functionality used Error processing

TLD 2.1 If the following TLD file exists when the Web application starts,
the KDJE39293-W message is output in the message log and the
processing is not performed:
• TLD file specified in the <tablib-location> element in the

<taglib> element of web.xml
• TLD file deployed under the /META-INF directory in the Jar file

under the /WEB-INF/lib directory

If a TLD file other than the above exists when the Web application
starts, the KDJE39293-W message is output in the message log during
JSP compilation and the processing is not performed.
If JSP compilation occurs when the application is accessed the first
time, the KDJE39145-E message is output in the servlets log and the
KDJE39186-E message is output in the message log#2 and a translation
error occurs.

EL addition functionality • Dedicated processing is not implemented for the Enum type added
in JSP 2.1. The processing is same as for the general classes.
However, if the EL API of the JSP 2.0 specifications that is
deprecated in the JSP 2.1 specifications is used, regardless of
the Web application version, the API is processed in the EL
functionality range of the JSP 2.0 specifications.

• EL with #{} format is displayed as a string.
• "\#" is not handled as an escape sequence, and is displayed as a

string "\#".

#1
If an undefined directive is specified in the JSP specifications for XXX using the format <jsp:directive.XXX/> on the JSP page or if an
undefined standard action is specified in the JSP specifications for XXX using the format <jsp:XXX>, the definition contents are output as is.

#2
The details of JSP compilation error are output in KDJE39145-E and the reporting of translation error is output in KDJE39186-E.

For details on operation and precautions when upgrading the Web application version from the Servlet 2.2 specifications,
Servlet 2.3 specifications, or Servlet 2.4 specifications to the Servlet 2.5 specifications, see the manual uCosminexus
Application Server Web Container Functionality Guide.

Table 10‒12: Errors when using the functionality of Servlet 2.4 specifications from a Web application
corresponding to Servlet 2.2 or 2.3 specifications

Specifications Functionality used Error processing

Servlet 2.4 Invoking new API The check for whether the API added in the Servlet 2.4 specifications
is used, is not performed. The operations when the API is invoked do
not function properly, so do not invoke the API.

Registering new listener The KDJE39297-W message is output in the message log when the
Web application starts and the listener definition is ignored.

JSP 2.0 New directive and new standard action#1 The KDJE39145-E message is output in the servlets log and the
KDJE39186-E message is output in the message log#2, and a
translation error occurs.

Tag files When TLD is not used
The tagdir attribute that is a new attribute is assumed to be
invalid in the taglib directive, the KDJE39145-E message is
output in the servlets log and the KDJE39186-E message is output
in the message log#2, and a translation error occurs.

When TLD is used
A TLD 2.0 usage error occurs.

10. Web Container

Compatibility Guide 426

Specifications Functionality used Error processing

TLD 2.0 The following TLD files are checked when the Web application starts.
When applicable, the KDJE39293-W message is output in the message
log and the file is ignored:
• TLD file specified in <taglib><tablib-location>

of web.xml
• TLD file deployed under /META-INF in the Jar file under /
WEB-INF/lib

The TLD files other than above-mentioned are checked during the
JSP compilation. When the JSP file is compiled, such as during the
initial access, the KDJE 39145-E message is output in the servlets log
and the KDJE39186-E message is output in the message log#2, and a
translation error occurs.

Simple Tag Handler The KDJE39145-E message is output in the servlets log and the
KDJE39186-E message is output in the message log#2, and a
translation error occurs.

#1
If an undefined directive is specified in the JSP specifications for XXX using the format <jsp:directive.XXX/> on the JSP page or if an
undefined standard action is specified in the JSP specifications for XXX using the format <jsp:XXX>, the definition contents are output as it is.

#2
The details of JSP compilation error are output in KDJE39145-E and the reporting of translation error is output in KDJE39186-E.

For details on operation and precautions when upgrading the Web application version from the Servlet 2.2 specifications
or Servlet 2.3 specifications to the Servlet 2.4 specifications, see the manual uCosminexus Application Server Web
Container Functionality Guide.

Note that even if you use the Servlet 2.3 functionality from the Web applications corresponding to the Servlet 2.2
specifications, when imported, the application is rewritten by the Web application conforming to the Servlet 2.3
specifications, and therefore, the application is processed normally and error is not reported.

(3) Notes on using the transaction and JDBC connection
To use a transaction in the servlets and JSPs, acquire the JDBC connection with the applicable service method and release
the connection before the applicable service method ends. In the servlets and JSPs where the transaction is running, the
use of the following JDBC connections is not supported:

• Use of the JDBC connection on the thread generated by the service methods of the servlets and JSPs.

• Use of the JDBC connection in the service methods of the other servlets and JSPs invoked from the service methods
of the servlets and JSPs.

• Use of the JDBC connection acquired with the init method of the service methods of the servlets and JSPs.

• Use of the JDBC connection stored in the instance variable.#

#
When the servlets and JSPs of SingleThreadModel are used, the JDBC connection can be stored in the
instance variable.

(4) Notes related to package name specification
If a class with an invalid package name is used in the servlets and JSPs, an error with status code 500 occurs when the
class is accessed from the browser. For example, even if a created class file is deployed correctly and accessed from the
browser, if the package name declaration is invalid, the applicable class is not found. In this case, an error with status
code 500 is returned.

10. Web Container

Compatibility Guide 427

(5) Notes for using cookies
• Do not use cookies containing double-byte codes such as Japanese characters. If such cookies are used, the HTTP

session used in the servlets and JSPs might be lost.

• When managing a session with a cookie, the session generated using the servlets or JSPs accessed in the URL by the
host name is not inherited in the servlets or JSPs accessed in the URL with the IP address specified instead of the host
name (and vice versa).

(6) Notes related to display of input values with special meanings
When the input values of characters with special meanings such as "<" and ">" in forms are displayed as it is, malicious
users might use the tags such as <SCRIPT>, <OBJECT>, <APPLET>, <EMBED> that can execute scripts and cause
important security-related problems. A processing must be added for the application developer to inspect the data entered
by a user and the characters with special meanings must be excluded.

(7) Notes related to error page display after response commit
After the response is committed in the servlets or JSPs, even if an error such as an exception occurs, the following error
pages are not displayed in the browser:

• Error pages specified in web.xml
• Error pages specified in the errorPage attribute of the JSP page directive

The Web container commits the response automatically when the response buffer becomes full apart from the case
in which the user commits the response by invoking the flushBuffer method of the ServletResponse
class explicitly.

To check whether the response is committed in the servlets or JSPs, use the isCommitted method of the
ServletResponse class. Also, you can change the buffer size using the setBufferSize method of the
ServletResponse class in the case of servlets and by specifying the buffer attribute of the page directive for JSPs.

(8) Improving the performance when using the PrintWriter and JSPWriter
class

By reducing the frequency of invoking the print method and the println method of the PrintWriter class
and the JSPWriter class, you can reduce the access frequency and improve the performance. For example, use the
StringBuffer class and invoke the println method finally to reduce the frequency of invoking the print and
println methods.

(9) Notes on referencing the error information by
javax.servlet.error.XXXXX

The javax.servlet.error.XXXXX attributes defined in the Servlet 2.3 specifications are used for referencing the
error information that causes the execution of the error page in the servlets or JSPs specified in the <error-page> tag
of web.xml. Do not reference these attributes from servlets or JSPs other than those specified in the <error-page>
tag of web.xml.

10. Web Container

Compatibility Guide 428

(10) Notes on accessing files
To access a file, make sure you specify the absolute path. If you specify a relative path, the J2EE server tries to use the
relative path to find the target path from the execution directory. If you specify the relative path in the getRealPath
method of the ServletContext class, the relative path in the directory that deploys the WAR file is acquired.

Furthermore, when you access a file, make sure that you close the file. If you access a file in the WAR file deployment
directory and do not close the file, you cannot perform the normal un-deployment on the J2EE server. If the file not closed
even when the path under the WAR file deployment directory is not specified, events such as the files cannot be deleted
when the J2EE server is running occur.

(11) Error page settings when an exception occurs
If an exception occurs while accessing the JSPs and servlets, the exception status code is returned to the browser by the
default processing in the Web Container. To change this default processing, specify the JSP errorPage or set the error page
in web.xml.

(12) Notes related to acquisition of the class loader
To use the following methods by acquiring the class loader of the Cosminexus Component Container from the code in
the J2EE application, use the java.net.JarURLConnection class:

• getResource(String).openConnection().getInputStream()
• getResource(String).openStream()

In the process in which these methods are invoked, the openConnection method of the
java.net.JarURLConnection class is invoked and the JAR file specified in the applicable URL is opened. This
JAR file remains open unless the close method is explicitly invoked and cannot be deleted. Do not use these methods
in the J2EE application. Also, when the operations for the JAR file are required and when using the openConnection
method of the java.net.JarURLConnection class, make sure that you invoke the close method of the
JarFile instance that the getJarFile method of the java.net.JarURLConnection returns.

(13) Notes on using the URLConnection class
When the java.net.URLConnection class uses the setUseCaches(boolean) method to acquire the
connection for the specified URL, you can specify whether or not to use the cache information. When the
setUseCaches(false) method is specified for the URLConnection class, the target object is generated
for each connection. When the URLConnection class is used from the code in the J2EE application, memory might
be insufficient for the J2EE server JavaVM.

(14) Notes related to the loading of the native library
Do not use the System.loadLibrary method to load the native library from the servlets and JSPs. If the
native library is loaded with the servlets and JSPs, the error java.lang.UnsatisfiedLinkError might occur
depending on the constraints of the JNI specifications. If you must load the native library, create the container extension
library that invokes the System.loadLibrary method and implement settings so that the container extension library
is referenced from the servlets and JSPs. For creating the container extension library, see 16. Container Extension Library
in the uCosminexus Application Server Common Container Functionality Guide.

10. Web Container

Compatibility Guide 429

(15) Using user thread
You can generate and use threads from the servlets and JSPs that form the application. The thread that a user explicitly
generates in a program is called a user thread.

The user threads are classified as follows depending on the operation method after generating the threads (lifecycle):

• Threads operating within the scope of the service method and the init method.

• Threads operating in the background of the service method and the init method.

Usage conditions of the user thread
• The user thread cannot be used in the Enterprise Bean (since the generation of threads from the Enterprise Bean

is prohibited in the EJB specifications).

The following points describe the lifecycle when using the user threads:

(a) When the threads operate within the scope of the service method and init method
In this model, the processing of the user thread is completed with the service method and the init method. The
following figure shows the flow of processing in this model:

Figure 10‒5: Processing when the thread operates within the scope of the service method and the
init method

The user thread will be generated within the invocation scope of the service method and the init method. The
service method and the init method wait for the processing of the user thread by the join method to complete,
and then the methods are returned.

(b) When the threads operate in the background of the service method and the init
method

In this model, the user thread is generated with the service method and the init method, and then the user thread
is operated in the background. The following figure shows the flow of processing in this model:

10. Web Container

Compatibility Guide 430

Figure 10‒6: Processing when the threads operate in the background of the service method and
the init method

The service method and the init method that generated the user thread will be returned without waiting for the
processing to complete after the user thread is generated. However, after the application is stopped, the J2EE service
cannot be used from the user thread. Therefore, no problem occurs if a user thread is stopped by a contextDestroyed
method of javax.servlet.ServletContextListener or a JSP or servlet destroy method invoked by the
stopping of an application.

(16) Persistence of session information
The Web container does not support the persistence of the session information. Irrespective of whether the session
information in the Web container is normal or abnormal, the information is lost once the Web container exits. If you want
to maintain the session information, use the session failover functionality.

Furthermore, when the <distributable> tag is specified in web.xml or when the not Serializable object is
registered as the session information, IllegalArgumentException does not occur.

(17) Messages output when the init method and destroy method are not
overridden

If you initialize or terminate the servlets that do not override the init method and the destroy method, the log of the
following format is output in the servlets log:

• Message ID: KDJE39037-I
• Message text: path="aa....aa" :bb....bb: init#

aa....aa
Indicates the context path starting with a forward slash (/).

10. Web Container

Compatibility Guide 431

bb....bb
Indicates the servlets name specified in the <servlet-name> tag of web.xml. In the case of servlets with
default mapping, the name is org.apache.catalina.INVOKER.class-name.

#
In the case of the init method, the name is init and in the case of destroy method, the name is
destroy. The output messages are the log output in the init method and destroy method of the
javax.servlet.GenericServlet class respectively. Therefore, these messages are not output in the
servlets that override the init method or the destroy method.

Also, in the case of JSP, if the init method and the destroy method are not overridden in the base class of JSP
specified in the extends attribute of the page directive, a similar message is output. In this case, servlets name is
com.hitachi.software.web.servlet-name.jsp. If the extends attribute of the page directive is not
specified in JSP, only the init method log is output and the destroy method log is not output.

However, for both servlet and JSP, when the init method and the destroy method of the superclass are invoked by
overriding the init method and the destroy method, this message is output.

(18) javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object

The javax.servlet.error.exception attribute of the javax.servlet.ServletRequest object is
separately described as follows for the case in which exception is thrown in the Servlet and when exception is thrown
in the JSP file:

(a) When an exception is thrown in the servlet

When the exception class thrown in the servlet is java.lang.Error or an inherited class
The exception of the javax.servlet.ServletException class is set in the
javax.servlet.error.exception attribute of the javax.servlet.ServletRequest object.
The exception thrown in the servlet can be acquired using the getRootCause method of the
javax.servlet.ServletException class.

When the exception class thrown in the servlet is a class other than java.lang.Error or an inherited class
The exception thrown in the servlet is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

(b) When an exception is thrown in the JSP file
• When the error page is a JSP file

When the error page is specified in the <error-page> tag of web.xml
The error page specified in the <error-page> tag of web.xml is described separately for JSP 2.0 and later
versions and JSP 1.2 version.
JSP 2.0 and later versions
The exception thrown in the JSP file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.
JSP 1.2
If the exception class thrown in the JSP file is one of the following classes, the exception
thrown in the JSP file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

10. Web Container

Compatibility Guide 432

- java.io.IOException or an inherited class
- java.lang.RuntimeException or an inherited class
- javax.servlet.ServletException or an inherited class
If the exception class thrown in the JSP file is other than the above-mentioned classes, the exception of
the javax.servlet.ServletException class is set in the javax.servlet.error.exception
attribute of the javax.servlet.ServletRequest object. The exception thrown in the JSP file can be
acquired using the getRootCause method of the javax.servlet.ServletException class.

When the error page is specified in the errorPage attribute of the page directive
The error page specified in the errorPage attribute of the page directive is described separately for the case
in which true is specified and when false is specified in the isErrorPage attribute of the page directive
in the error page.
When true is specified in the isErrorPage attribute of the page directive in the error page
The exception thrown in the JSP file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.
When false is specified in the isErrorPage attribute of the page directive in the error page
A value is not set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

• When the error page is a Servlet
When the error page is specified in the <error-page> tag of web.xml

The exception thrown in a servlet is the same as in the case in which the error page is a JSP file when the error
page is specified in the <error-page> tag of web.xml.

When the error page is specified in the errorPage attribute of the page directive
A value is not set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

(19) Operating Web applications containing binary data
Note the following items to the Web applications containing binary data:

• When executing the requests to the binary data sent from the client
Do not acquire PrintWriter from the response object in the filter applied in the request to the binary data.

• When the servlets or JSPs that process the requests sent from the client are to be dispatched
Do not acquire PrintWriter from the response object in the following locations:

• In the filter applied in the request to the binary data

• In the servlets or JSPs to be dispatched to the binary data

Reference note

Binary data means static contents in which the MIME type mapped to the extension does not begin with
"text/" or static contents for which mapping does not exist.

(20) Notes related to response character encoding
If the character encoding of the response body in the JSPs or servlets is UTF-16 (16 bit UCS conversion format), the
character encoding might not be displayed correctly by the browser. In this case, use UTF-16BE (big-endian byte order

10. Web Container

Compatibility Guide 433

of the 16 bit UCS conversion format) or UTF-16LE (little-endian byte order of the 16 bit UCS conversion format) for
the character encoding of the JSPs or servlets.

(21) Return values of the getServerName method and getServerPort
method of the javax.servlet.ServletRequest interface

This point describes the return values of the getServerName method and the getServerPort method.

In Servlet 2.4 and later specifications, the return values of the getServerName method and the getServerPort
method differ depending on the availability of the Host header. The following table lists the return values of the
getServerName method and the getServerPort method in the Servlet 2.4 and later specifications:

Table 10‒13: Return values of the getServerName method and getServerPort method (In Servlet
2.4 or later specifications)

Presence of
Host header

Return value of the getServerName method Return value of the getServerPort method

Yes Part before the colon (:) of the Host header Part after the colon (:) of the Host header

No Resolved server name or IP address Port number of the server that receives the connection
with the client

In Application Server, the return values of the getServerName method and the getServerPort method are
acquired depending on the combination of the HTTP requests and the functionality used. Note that when the Host header
is not included in the HTTP 1.1 request, 400 error occurs according to the HTTP 1.1 specifications. Furthermore, the
HTTP 1.1 specifications define that if the request URI of the request line is an absolute URI, use the host of the request
URI for the host and ignore the contents of the Host header. Though not explicitly mentioned in the Servlet specifications,
the host name included in the request line URI is given priority based on the HTTP specifications.

The following table lists the return values of the getServerName method and the getServerPort method
obtained depending on the combination of the HTTP requests and the functionality used. For details on the return values
of the getServerName method and getServerPort method when the gateway specification functionality is used,
see Table 10-13.

Table 10‒14: Return values of the getServerName method and getServerPort method (In the
application server)

HTTP request Functionality used Return value of the
getServerName method

Return value of the
getServerPort method

Presence
of the
Host
header

URI type
of the
request
line

Yes Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name of Host header Port number of Host header

In-process HTTP server Host name of Host header Port number of Host header

No Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name or IP address of the
Web server#2

Port number of the Web server

10. Web Container

Compatibility Guide 434

HTTP request Functionality used Return value of the
getServerName method

Return value of the
getServerPort method

Presence
of the
Host
header

URI type
of the
request
line

In-process HTTP server Host name or IP address of the
J2EE server#1

Port number of the in-process
HTTP server

#1
Return value of the java.net.InetAddress.getLocalHost method or the getHostName method.

#2
Value specified in the ServerName directive when Cosminexus HTTP Server is used. For details on the ServerName directive, see the
uCosminexus Application Server HTTP Server User Guide.

The following table lists the return values of the getServerName method and the getServerPort method when
you use the gateway specification functionality:

Table 10‒15: Return values of the getServerName method and getServerPort method when you
use the gateway specification functionality (in the Application Server)

HTTP request Functionality used Return value of the
getServerName method

Return value of the
getServerPort method

Presence
of the
Host
header

URI type
of the
request
line

Yes Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name of Host header Port number of Host header

In-process HTTP server Host name of Host header Port number of Host header

No Absolute
URI

Web server integration Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

In-process HTTP server Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

(22) Acquiring the root cause exception specified in the constructor of the
javax.servlet.ServletException class

With the Application Server, you can acquire the root cause exception specified in the constructor
ServletException(String, Throwable) or ServletException(Throwable) using the getCause
method. Note that you can also acquire the exception using the getRootCause method. However, with versions prior
to 07-60 version, the getCause method returns null.

This point describes the compatibility parameters and notes related to the acquisition of the root cause exception specified
in the constructor of the javax.servlet.ServletException class.

• Compatibility parameters

10. Web Container

Compatibility Guide 435

To perform the same operations as are operated with the versions prior to 07-60 version, specify true in
the compatibility parameter webserver.servlet_api.exception.getCause.backcompat in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. For details on the
parameters, see the uCosminexus Application Server Definition Reference Guide.
The following table lists the differences in the return values of the getCause method
and the getRootCause method depending on the value specified in the compatibility
parameter webserver.servlet_api.exception.getCause.backcompat.

Table 10‒16: Differences in the return values of the getCause method and getRootCause
method depending on the value specified in
webserver.servlet_api.exception.getCause.backcompat

Method Value specified in webserver.servlet_api.exception.getCause.backcompat

true false

getCause() N Y

GetRemoteUser() Y Y

Legend:
Y: Returns the root cause exception
N: Returns null

Note that the contents specified in the compatibility parameter are also applied to the operations of the getCause
method and the getRootCause method of the javax.servlet.jsp.JspException class.

• Notes
When the root cause exception can be acquired by implementing the getCause method, you
cannot invoke initCause(Throwable) for the ServletException object generated by the
constructor ServletException(String, Throwable) or ServletException(Throwable). If
initCause(Throwable) is invoked, the java.lang.IllegalStateException exception is thrown.

(23) Notes related to the execution of the flush method for the
javax.servlet.ServletOutputStream object

With the Application Server, even if the flush method is executed after executing the close method for the
javax.servlet.ServletOutputStream object obtained from the javax.servlet.ServletResponse
object, the java.io.IOException exception is not thrown.

(24) Normalizing request URIs
With Application Server, the character strings included in request URIs are used in the following matching processes
after normalizing the request URIs:

• Matching context path and context root

• Matching URL pattern of servlets and JSPs

• Matching default mapping

• Matching static contents

• Matching URL pattern of filter

• Matching with the <error-page> tag of web.xml or with the errPage attribute of the page directive of JSPs

• Matching URL pattern for restricting access

10. Web Container

Compatibility Guide 436

• Determining URL for login authentication

• Forwarding and including requests

• Matching URL pattern for HTTP response compression filter

• Matching URL pattern to control the number of concurrently executing threads in the URL group

• Error page customization of the in-process HTTP server

• Request distribution by redirecting the in-process HTTP server

(25) Return value of the getRequestURI and getRequestURL methods of
the javax.servlet.http.HttpServletRequest interface

The normalized URL is considered as a return value in the getRequestURI and getRequestURL methods of the
javax.servlet.http.HttpServletRequest interface.

(26) Specifying a Servlet or JSP mapped to a URL in the welcome file
When a request URL must be forwarded to the welcome file without matching it with a Servlet or JSP mapped to the
URL, the forwarding-destination welcome file is selected as follows in the Web container:

First of all, from the specified welcome file name, the static contents and JSP file candidate are selected on priority. If
no corresponding item exists, the candidate of the Servlet or JSP for which URL mapping is performed is selected.

The notes on the welcome file are as follows:

• Limitations based on the welcome file forwarding method
The welcome file is forwarded based on HTTP redirect (the browser redirects to HTTP status code 302). This
forwarding method has some limitations that must be noted when designing the URL.

• When a POST request is received, the information of the request body sent from the browser cannot be inherited
in the welcome file at the forwarding destination. Only when the posted information is in the form input format
(Content-Type is application/x-www-form-urlencoded), the information can be inherited by
assigning to the query string of the forwarding-destination URL of the welcome file created by the Web
container. However, even in this case, consideration must be given to the fact that when the information of the
request body is large in size, the forwarding-destination URL becomes too long, and the information is visible
as is in the address bar of the browser in the form of the query string.

• When the doGet method is not implemented in the Servlet of the forwarding-destination welcome file, 400
Bad Request (for other than HTTP/1.1) or 405 Method Not Allowed (for HTTP/1.1) is displayed on
the browser.

• When you invoke the include method of the javax.servlet.RequestDispatcher interface from the
Web application, then in spite of specifying the directory in which the welcome file exists as the URL to be
included, the contents of the welcome file of the forwarding destination are not inserted.

• Adding the welcome file in an environment for which JSP pre-compilation is complete
When adding the JSP file specified in the welcome file to a Web application for which JSP pre-compilation is
complete, you must again perform JSP pre-compilation after adding the JSP file. When you do not perform JSP
pre-compilation again, the welcome file is not forwarded properly.

• Specifying a servlet whose servlet class cannot be referenced in the welcome file
Do not specify a servlet whose servlet class cannot be referenced in the welcome file. When you specify a servlet
whose servlet class cannot be referenced, the welcome file is not forwarded properly.

• Requesting the welcome file to a path in which no directory exists

10. Web Container

Compatibility Guide 437

When a request is sent to the path of a directory that does not exist as a resource within the Web application, the
welcome file is not forwarded even when the request URL ends with a forward slash (/).

(27) Starting and stopping order of the servlet, filter and listener
If you start a Web application, perform the initialization process in the order below before starting the receipt of requests,
according to the Servlet 2.4 specifications. In Cosminexus Application Server, the initialization process is performed in
the same order even in Web applications of Servlet2.3 or earlier versions. The order of starting the servlets, filters, and
listeners at the time of starting the Web application is as follows:

1. Starting the listener (generating an instance#1, invoking methods of the @PostConstruct annotation and the
contextInitialized method of ServletContextListener#2)

2. Starting the filter (generating an instance#1, invoking the methods of @PostConstruct annotation and the
init method)

3. Starting Servlet/JSP specified in the load-on-startup tag (generating an instance#1, invoking method of the
@PostConstruct annotation and the init method)

#1: In Servlet 3.0 or later, you can dynamically add the servlets, filters, and listeners by API calling. However, for the
servlets, filters, and listeners for which the definition is added by the API calling that specifies the instances, the instance
has already been generated and hence the Web container does not generate an instance.

#2: Even if an exception occurs while invoking the contextInitialized() method of the listener, the system
outputs the message of KDJE39103-E and continues the process of starting the Web application.

Note that for servlets for which the execution of the initialization process at the time of Web application startup is not
specified with the load-on-startup element in web.xml, the system generates the instances of the servlet and invokes
the init() method at the time of the initial request execution.

At this time, the instance generation and the init() method invocation of the servlet is performed before the filter.

The order of stopping the servlets, filters, and listeners at the time of stopping the Web application is as follows:

1. Stopping the already started Servlet/JSP (invoking the destroy method or the methods of the
@PreDestroy annotation)

2. Stopping the filter (invoking the destroy method or the methods of the @PreDestroy annotation)

3. Stopping the listener (invoking the methods of the @PreDestroy annotation)

(28) Accessing the static contents within a Web application
You can use any one of the methods such as GET, HEAD, POST, TRACE, and OPTIONS, to access the static contents
within a Web application.

When you use the POST method, same details of the static contents are sent as a response, as when you use the
GET method.

(29) Precautions related to character encoding
In the same Web application, use the same character encoding in the error page specified in web.xml as the character
encoding used for the servlets and JSPs that use character encoding in the HTTP response.

10. Web Container

Compatibility Guide 438

(30) Return value when only the part after equal (=) sign is used in the
query character string

When only the part after equal sign ("=") is specified in the query character string of a request (for example, in the
case of http://localhost/application/getparam.jsp?=param), the return value of the Servlet API
that obtains the request parameter of javax.servlet.ServletRequest differs depending on the type of Web
server in use.

The following are the respective return values of Servlet APIs for each type of the Web server:

• When using the Web server integration functionality of a simple Web server

• getParameter method
When you specify a blank character (""), the parameter specified after the equal sign ("=") is returned.

• getParameterMap method
The java.util.Map object that includes the parameter for which a blank character ("") acts as a key,
is returned.

• getParameterNames method
The java.util.Enumeration object that includes a blank character (""), is returned.

• getParameterValues method
When you specify a blank character (""), the parameter specified after the equal sign ("=") is returned.

• When using the in-process HTTP server

• getParameter method
Even if you specify a blank character (""), null is returned.

• getParameterMap method
A blank java.util.Map object is returned.

• getParameterNames method
A blank java.util.Enumeration object is returned.

• getParameterValues method
Even if you specify a blank character (""), null is returned.

(31) containsHeader method of javax.servlet.http.HttpServletResponse
instance

The following response headers are sometimes automatically set to responses, by the Web container. You cannot use
the containsHeader method of the javax.servlet.http.HttpServletResponse interface to check
whether such response headers are set for responses.

• For Web server integration

• Content-Length
• Content-Type
• Set-Cookie

• For the in-process HTTP server

• Connection
• Content-Language

10. Web Container

Compatibility Guide 439

• Content-Length
• Content-Type
• Date
• Server
• Set-Cookie
• Transfer-Encoding

(32) Precautions related to the libraries of Application Server
If you include the libraries of Application Server in J2EE applications, it may lead to incorrect operations during the start
and execution of the application import, due to reasons like a conflict in the library version. Therefore, do not include
the libraries of Application Server in a J2EE application, except for cases where inclusion of the libraries is specified as
a method of using the product.

10.4.2 Precautions related to the specifications that are added or changed
in the EL2.2 specifications

This section describes the points to be noted when using added or changed EL2.2 specifications with Application Server.
For details on the EL2.2 specifications, see EL2.2 Specifications.

• Although Application Server supports EL2.2, both EL2.1 and EL2.2 implementations are available. You can switch
the implementation by specifying the following parameter in the Easy Setup definition file. You must specify the
parameter in the configuration tag of the logical J2EE server in the Easy Setup definition file.

webserver.jsp.el2_2.enabled

For details on the webserver.jsp.el2_2.enabled parameter, see 4.11.2 Parameters used for setting up the
user properties for the J2EE server in the manual uCosminexus Application Server Definition Reference Guide.

• If multiple methods with the same number of parameters are specified in a single Bean, the type conversion is done
based on the method that is defined first. Accordingly, if the type of the argument when calling a method matches a
method that is defined first, the method is called without any problem; otherwise, if the argument type does not match,
ELException is thrown.

10. Web Container

Compatibility Guide 440

Part 3: Reference (V9 Compatibility Mode)

11 Files Used in J2EE Servers

This chapter describes the storage location, functionality, and format of the files used in J2EE servers
and the keys that you can specify in the files. The chapter describes only the content that differs from
the recommended mode.

Compatibility Guide 441

11.1 Details on the files used on J2EE servers

11.1.1 usrconf.properties (User property file for J2EE servers)

(1) Keys beginning with cosminexus.jpa
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

VR is the version of Application Server on which the keys are introduced or changed.

Key name Contents Default value VR

cosminexus.jpa.log
ging.level.operati
on.category

Specify the log level for each category of the JPA provider operation log, when
you are using the JPA functionality of the J2EE server. The category name and
log level are case sensitive.
If this key is not specified, the log is not output to the operation log. Since this
affects the security and performance, take care when you specify the output
level settings.

If you specify Off:
The log is not output to the JPA provider operation log.

If you specify Information:
The JPA operation information is output to the JPA provider operation log.

If you specify Detail:
The detailed JPA operation information and the information that was
output to Information is output to the JPA provider operation log.

Off 08-00

cosminexus.jpa.exc
eption.logging.sql#

Specify whether the exception message will include the SQL statement that
caused the exception, when the JPA provider executes the SQL statement and
receives an exception from the database.

If you specify Off:
The SQL statement executed by the JPA provider and the value specified
for the ? parameter (place holder) is not included in the exception message.

If you specify Information:
The SQL statement executed by the JPA provider is included in the
exception message.

If you specify Detail:
The SQL statement executed by the JPA provider and the value specified
for the ? parameter (place holder) is included in the exception message.

Off 08-00

#
The values specified in this property are also applied to the contents output to the exception log.
For Information and Detail, the contents of the SQL statement and the ? parameter (place holder) is also output to the exception log;
and therefore, you consider the security. Specify the values as and when required for development and maintenance.
When handling binary data, the hash value of the binary object is output to the ? parameter (place holder).
Before you complete the preparation for issuing an SQL statement, if a failure occurs in acquiring a connection due to communication errors,
you might not be able to acquire value of the ? parameter (place holder).

(2) Keys beginning with ejbserver.jpa
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

11. Files Used in J2EE Servers

Compatibility Guide 442

VR is the version of Application Server on which the keys are introduced or changed.

Key name Contents Default value VR

ejbserver.jpa.defa
ultJtaDsName

Specify the default JTA data source references. This property is used when
jta-data-source is not specified in persistence.xml or when a
space is specified.

None 08-00

ejbserver.jpa.defa
ultNonJtaDsName

Specify the default non-JTA data source references. This property is used
when non-jta-data-source is not specified in persistence.xml
or when a space is specified.

None 08-00

ejbserver.jpa.defa
ultProviderClassNa
me

This property specifies the default JPA provider class name. This property is
used when provider is not specified in persistence.xml or when a
space is specified.

com.hitach
i.software
.jpa.Persi
stenceProv
ider

08-00

ejbserver.jpa.disa
ble#

Specify this property when using the JPA functionality of Application Server.

If you specify true:
The JPA functionality of Application Server is disabled.

If you specify false:
The JPA functionality of Application Server is enabled.

false 08-20

ejbserver.jpa.over
rideJtaDsName

Specify the JTA data source references that will be used with a higher priority
than the values specified in jta-data-source in persistence.xml
and the values specified in ejbserver.jpa.defaultJtaDsName.

None 08-00

ejbserver.jpa.over
rideNonJtaDsName

Specify the non-JTA data source references that will be used
with a higher priority than the values specified in non-jta-
data-source in persistence.xml and the values specified
in ejbserver.jpa.defaultNonJtaDsName.

None 08-00

ejbserver.jpa.over
rideProvider

Specify the JPA provider class name that will be used with a higher priority
than the values specified in provider in persistence.xml and the
values specified in ejbserver.jpa.defaultProviderClassName.

None 08-00

ejbserver.jpa.emfp
rop.property-key

Specify the JPA provider-specific property keys. When all the
persistence units are deployed, the properties with the prefix
ejbserver.jpa.emfprop. removed will be passed to the JPA provider.

None 08-00

#
Notes for specifying ejbserver.jpa.disable=true
If the application includes persistence.xml, Application Server does not read persistence.xml when the application starts. Also,
if you are using the reload functionality of the application, update detection is not performed for persistence.xml.
If the application is using a managed persistent context or persistent unit of Application Server, you will not be able to start the application.

(3) Keys beginning with ejbserver.logger
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

VR is the version of Application Server on which the keys are introduced or changed.

Related information is the reference location for information related to the specified key. uCosminexus Application
Server is omitted from the manual names.

11. Files Used in J2EE Servers

Compatibility Guide 443

Key name Contents Default value VR Relate
d
inform
ation

ejbserver.logger.c
hannels.define.chan
nel-name#.filenum

Specify an integer from 1 to 16 for the number of log
files of a J2EE server.

• 16, when the channel
name is
WebAccessLogFi
le

• 4, when the channel
name is
MaintenanceLog
File or
WebServletLogF
ile

• 2, when the channel
name is other
than above

--

ejbserver.logger.c
hannels.define.chan
nel-name#.filesize

Specify an integer from 4096 to 2147483647 (units:
bytes) for the size of the log files of a J2EE server.

• 2097152, when the
channel name is
WebAccessLogFi
le

• 16777216, when
the channel name is
MaintenanceLog
File

• 4194304, when the
channel name is
WebServletLogF
ile

• 1048576, when the
channel name is other
than above

--

Legend:
--: Indicates a version earlier than the version 08-00.
Blank cell: Related information does not exist.

#
You can set the following names as channel name:

• Channels for output of Cosminexus system log:
MessageLogFile, MaintenanceLogFile, ExceptionLogFile, ConsoleLogFile, EJBContainerLogFile,
WebContainerLogFile, WebServletLogFile, UserOutLogFile, UserErrLogFile, WebAccessLogFile,
JPAOperationLogFile, JPAMaintenanceLogFile

• Channels for output of resource depletion monitoring log
MemoryWatchLogFile, FileDescriptorWatchLogFile, ThreadWatchLogFile, ThreaddumpWatchLogFile,
RequestQueueWatchLogFile, HttpSessionWatchLogFile, ConnectionPoolWatchLogFile

For details about the acquisition of documents, see 2.3 Acquiring the Data in the manual uCosminexus Application Server Maintenance and
Migration Guide.

(4) Keys beginning with ejbserver.server
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

VR is the version of Application Server on which the keys are introduced or changed.

Related information is the reference location for information related to the specified key. uCosminexus Application
Server is omitted from the manual names.

11. Files Used in J2EE Servers

Compatibility Guide 444

Key name Contents Default
value

VR Related
information

ejbserver.server.eheap.aj
p13.enabled

Specify whether to deploy the objects for
communication with the redirector on the
Explicit heap.

If you specify true:
The objects for communication with the
redirector will be deployed on the Explicit heap.

If you specify false:
The objects for communication with the
redirector will be deployed on the Java heap area.

However, if JavaVM option
HitachiUseExplicitMemory is disabled, this
property is disabled (same as for the case when
false is specified).

true 08-00

Legend:
Blank cell: Related information does not exist.

(5) Keys beginning with webserver.connector
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

VR is the version of Application Server on which the keys are introduced or changed.

Related information is the reference location for information related to the specified key. uCosminexus Application
Server is omitted from the manual names.

Key name Contents Default
value

VR Related
information

webserver.connector.ajp1
3.backlog

Specify the maximum number of rows and columns
awaiting connection requests from the redirector.
Specify the value using an integer from 1
to 2147483647.
The valid maximum value becomes the maximum
value of the Listen queue in the Socket specifiable
on the platform to be used. The actual maximum value
of the Listen queue depends on the OS. For details,
see the manuals for the listen functionality in each OS.
The value specified in this key is set in the backlog
argument of java.net.ServerSocket class
constructor. If, however, this specified value exceeds
the limit value set for the OS, it is interpreted as the
limit value of the OS, and it therefore does not result
in an error. The limit value is different for every OS.
For details on how to extend the limit value, see the
OS manual.

100 --

webserver.connector.ajp1
3.bind_host

Specify the IP address or the host name used for Web
server integration.
The single-byte space before and after the IP address
or the host name is ignored. If you do not specify a
value, the wild card address is used.
When specifying this property, you need to specify the
local host name or the IP address even in the worker
host name.

None -- 5.7 Specifying
the IP address
(Web server
integration)

11. Files Used in J2EE Servers

Compatibility Guide 445

Key name Contents Default
value

VR Related
information

In a configuration wherein a Web server is integrated
with another Web server running on the same host, the
Web Container cannot receive requests from the Web
server if either of the following settings is specified:
• The local host name or IP address is specified in

the
webserver.connector.ajp13.bind_h
ost property, and the loopback address of a host,
such as localhost, is specified in the worker host
name of the redirector.

• The loopback address of a host, such as localhost,
is specified in the
webserver.connector.ajp13.bind_h
ost property, and the local host name or IP
address is specified in the worker host name of the
redirector.

webserver.connector.ajp1
3.max_threads

Specify the concurrently executing number of
requests being processed by the Web container.#1

Specify the value using an integer from 1 to 1024.
Number of threads equal to the concurrently
executing number of specified requests is generated
when the server is started.

10 -- Web Container
Functionality
Guide

webserver.connector.ajp1
3.port

Specify the port number used for communication with
the Web server.
Specify the value using an integer from 1 to 65535.
You cannot specify a port number that is already being
used or secured for another application. Furthermore,
do not specify the same value in port numbers of
the ports to be used to communicate with the Web
server in multiple J2EE servers. The cjstartsv
command cannot start up multiple J2EE servers in
which identical port numbers are specified.

8007 --

webserver.connector.ajp1
3.receive_timeout

Specify an integer from 0 to 3600 (units: seconds)
for the period to await a response (communication
timeout value) from the redirector, while the data
request is being processed in the redirector (that
processes requests).
If you specify 0, the waiting period continues until
a response is received from the redirector and the
timeout will not occur.

600
(seconds)

--

webserver.connector.ajp1
3.send_timeout

Specify an integer from 0 to 3600 (units: seconds) for
the timeout value for sending response.
If you specify a non-numeric value, or a numeric
value outside the range, a message will be output and
the default value will be used.
If 0 or a time period longer than the resend timer
of data transmission present in the TCP is set, the
timeout value will be the timeout value of the TCP.
In such a case, a message indicating that an invalid
timeout value has been specified will not be output.

600 --

webserver.connector.inpr
ocess_http.backlog

Specify an integer from 1 to 2147483647 for the
length of the TCP listen queue that saves the
connection requests from the Web client.

511 --

11. Files Used in J2EE Servers

Compatibility Guide 446

Key name Contents Default
value

VR Related
information

The maximum valid specified value or the length of
the TCP listen queue that is actually set, is different for
every OS.
If you specify a non-numeric value, a numeric
value outside the range, a null character string, or
a whitespace#2, a message is output and the default
value will be set.

webserver.connector.inpr
ocess_http.bind_host

Specify the IP address or the host name used in an
in-process HTTP server.
The single-byte space before and after the IP address
or the host name is ignored. If you do not specify a
value, the wild card address is used.
If the specified host name or the IP address cannot be
resolved and if you specify the name or IP address of a
host that is not local, a message is output and the wild
card address is used.

None --

webserver.connector.inpr
ocess_http.enabled

Specify whether to enable the in-process HTTP
server functionality.

If you specify true:
The in-process HTTP server functionality will
be enabled.

If you specify false:
The in-process HTTP server functionality will
be disabled.

If you specify a string other than true or false or if
you specify a null character string or a whitespace#2,
a message is output and the default value will be set.
Note that, if the in-process HTTP server functionality
is enabled, Web server integration cannot be used.

false --

webserver.connector.inpr
ocess_http.enabled_metho
ds

Specify the HTTP methods that have
access permission.
When specifying multiple methods, demarcate them
with a comma (,). In the method name, specify the
method that has been defined in HTTP/1.1.
If you specify an asterisk (*), all methods
are permitted.
HTTP methods are case-sensitive so the value
specified in this property is also case-sensitive.
In the method name, you need to use the value
provided in RFC2616. You cannot, however, specify
the string "*" as a method name.

The whitespace#2 before and after each method name
is ignored. If you specify an invalid value, a null
character string, or a whitespace#2, a message is
output and the default value will be set.

GET, HEAD,
POST, PUT,
DELETE,
OPTIONS

--

webserver.connector.inpr
ocess_http.error_custom.
list

Specify the definition name for error
page customization used in the error page
customization functionality.
The maximum length of the value that can be
specified is 1024 characters. Specify a string
consisting of alphanumeric characters (A-Z, a-z, 0-9)
or underscores (_). The string length of one definition
name is from 1 to 32 characters.

None --

11. Files Used in J2EE Servers

Compatibility Guide 447

Key name Contents Default
value

VR Related
information

When specifying multiple definition names,
demarcate them with a comma (,). The whitespace#2

before and after the comma is ignored. The same
definition name for error page customization cannot
be specified multiple times.
If you specify an invalid value, a message is output
and all the definitions for error page customization
are disabled.

webserver.connector.inpr
ocess_http.error_custom.e
rror-page-customization-definition-
name.file

Specify an absolute path for the file used as the
response body during error page customization with
the error page customization functionality.
Use a forward slash (/) as the demarcation sign in
the path.
If this property is set by using the definition name for
error page customization that has not been specified
in
webserver.connector.inprocess_http.
error_custom.list, the property is disabled.
In the definition name for error page customization
specified in
webserver.connector.inprocess_http.
error_custom.list, make sure that you specify
either this property, or
webserver.connector.inprocess_http.
error_custom.error-page-customization-
definition-name.redirect_url. If you specify
both the properties or if you do not specify any of the
properties, or if you do not specify as an absolute path,
or if you specify a file that does not exist, or a file for
which there is no read permission, a message is output
and this definition for error page customization is
disabled.
If you specify a null character string, or a
whitespace#2, the property is disabled.

None --

webserver.connector.inpr
ocess_http.error_custom.e
rror-page-customization-definition-
name.file.content_type

Specify the value of Content-Type header of the
response during error page customization using the
error page customization functionality.
If this property is set by using the definition name for
error page customization that is not specified in
webserver.connector.inprocess_http.
error_custom.list, the property is disabled.
If
webserver.connector.inprocess_http.
error_custom.error-page-customization-
definition-name.file is not set, the property is
disabled.

text/html --

webserver.connector.inpr
ocess_http.error_custom.e
rror-page-customization-definition-
name.redirect_url

Specify the redirect URL as an absolute path using the
error page customization functionality.
If this property is set by using the definition name for
error page customization that is not specified in
webserver.connector.inprocess_http.
error_custom.list, the property is disabled.
In the definition name for error page customization
specified in
webserver.connector.inprocess_http.
error_custom.list, make sure that you specify

None --

11. Files Used in J2EE Servers

Compatibility Guide 448

Key name Contents Default
value

VR Related
information

either this property or
webserver.connector.inprocess_http.
error_custom.error-page-customization-
definition-name.file.
Whether the value is correct is not verified, so you
need to check through actual operations.

webserver.connector.inpr
ocess_http.error_custom.e
rror-page-customization-definition-
name.request_url

Specify an absolute path beginning with a forward
slash (/) for the request URL that applies the error
page customization with the error page customization
functionality. You can specify the wild card (*) only
once, immediately after the forward slash. An asterisk
(*) is always interpreted as the wild card, so it cannot
be used as a normal character.
The value specified in this property and the value
specified in
webserver.connector.inprocess_http.
error_custom.error-page-customization-definition-
name.status, must not match with any other
definition for error page customization.
If this property is set by using the definition name for
error page customization that is not specified in
webserver.connector.inprocess_http.
error_custom.list, the property is disabled.
If you specify an invalid value, a message is output
and this definition for error page customization
is disabled.

/* --

webserver.connector.inpr
ocess_http.error_custom.e
rror-page-customization-definition-
name.status

Use the error page customization functionality and
specify an integer from 400 to 599 for the response
status code that performs error page customization.
The value specified in this property and the value
specified in
webserver.connector.inprocess_http.
error_custom.error-page-customization-
definition-name.request_url, must not match
with any other definition for error page
customization.
If this property is set by using the definition name for
error page customization that is not specified in
webserver.connector.inprocess_http.
error_custom.list, the property is disabled.
Make sure that you specify this property for setting
the definition name for error page customization that
has been specified in
webserver.connector.inprocess_http.
error_custom.list. If you do not specify this
property, or if you specify an invalid value, a message
is output and this definition for error page
customization is disabled.

None --

webserver.connector.inpr
ocess_http.gateway.host

Specify the host name or the IP address of the
gateway. When requests without a Host header are
redirected to files, such as the welcome file, the host
name of the URL specified in the Location header
becomes the specified value.

None --

webserver.connector.inpr
ocess_http.gateway.port

Specify the port number of the gateway by using an
integer from 1 to 65535.

None --

11. Files Used in J2EE Servers

Compatibility Guide 449

Key name Contents Default
value

VR Related
information

If a request has no Host header and the request is to
be redirected to a location such as a welcome file, the
port number portion of the URL that is specified in the
Location header becomes the specified value.
This property specification is ignored when
webserver.connector.inprocess_http.
gateway.host is not specified.
If
webserver.connector.inprocess_http.
gateway.host is specified and this property is
omitted, the following value is set:
• If you specify true for
webserver.connector.inprocess_ht
tp.gateway.https_scheme: 443

• If you specify false for
webserver.connector.inprocess_ht
tp.gateway.https_scheme: 80

If a string other than a numeric value or a numeric
value outside the valid range is specified, a message
appears and the value is considered not to have
been specified.

webserver.connector.inpr
ocess_http.gateway.https
_scheme

When a client request uses https as a scheme, and the
scheme for a Web server will become http by using an
SSL accelerator, specify true.

If you specify true:
https is assumed to be used as the scheme for
requests sent to the Web server.

If you specify false:
No action occurs.

If you specify a string other than true or false or if
you specify a null character string or a whitespace#2,
a message is output and the default value will be set.

false --

webserver.connector.inpr
ocess_http.hostname_look
ups

Specify whether the Web container should perform
reverse lookup of the host name and convert the IP
address of the client to the host name, for a request
received by the in-process HTTP server.
The throughput, however, will decline In the case of
reverse lookup of the host name.
If the host name is not resolved, the
result of the getRemoteHost() method of
javax.servlet.ServletRequest interface
and the client IP address output to the log file will be in
the format wherein a dot (.) is used for demarcation.

If you specify true:
The IP address will be converted to the host name.

If you specify false:
The IP address will not be converted to the
host name.

If you specify a string other than true or false or if
you specify a null character string or a whitespace#2,
a message is output and the default value will be set.

false --

11. Files Used in J2EE Servers

Compatibility Guide 450

Key name Contents Default
value

VR Related
information

webserver.connector.inpr
ocess_http.init_threads

Specify an integer from 1 to 1024 for the number of
request processing threads of in-process HTTP server,
generated when the server is started.
The specified value must be lower than the maximum
number of connections with the Web client (value
specified in
webserver.connector.inprocess_http.
max_connections). If you specify a value greater
than the maximum number of connections with the
Web client, a message is output and the maximum
number of connections with the Web client is set as
the value.
Furthermore, the maximum valid value differs based
on the OS.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

10 --

webserver.connector.inpr
ocess_http.keep_start_th
reads

Specify whether to maintain the number of threads
that are created when the server is started.

If you specify true:
The number of threads created when the server is
started will be maintained. Even if the number of
spare threads maintained in the pool exceeds the
maximum number of spare threads (value
specified in
webserver.connector.inprocess_ht
tp.max_spare_threads), the number of
threads created during the startup of the server
will not be reduced.

If you specify false:
The number of threads created when the server
is started will not be maintained. Adjustment will
be made on the basis of the maximum number
and the minimum number of threads maintained
as spare threads.

If the number of threads created when the server is
started is lesser than the minimum number of spare
threads (value specified in
webserver.connector.inprocess_http.
min_spare_threads), the number of threads is
maintained as per the value specified in the minimum
number of spare threads, irrespective of the settings
in this property.
If you specify false in this property, adjustment
is done so that the threads created when the server
is started become lesser than the maximum number
of spare threads. If the request-processing threads
created when a server is started are greater than
the maximum number of spare threads, the threads
exceeding the maximum number of spare threads get
destroyed one by one at an interval of one second after
the server is started.
If you specify a string other than true or false or if
you specify a null character string or a whitespace#2,
a message is output and the default value will be set.

false --

11. Files Used in J2EE Servers

Compatibility Guide 451

Key name Contents Default
value

VR Related
information

webserver.connector.inpr
ocess_http.limit.max_hea
ders

Specify an integer from 0 to 32767 for the upper limit
of the number of HTTP headers included in the HTTP
requests. If you do not want to set the upper-limit
value, specify 0.
Even if the number of HTTP headers specified in this
property is not met, an error occurs if the size
specified in
webserver.connector.inprocess_http.
limit.max_request_header is exceeded.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

100 --

webserver.connector.inpr
ocess_http.limit.max_req
uest_body

Specify an integer from -1 to 2147483647 (units:
bytes) for the maximum size of the request body
of an HTTP request. If you do not want to set the
upper-limit value, specify -1. If the request body is
sent in chunk format, the size of the chunk header also
needs to be included in the specified size.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

-1 --

webserver.connector.inpr
ocess_http.limit.max_req
uest_header

Specify an integer from 7 to 65536 (units: bytes)
for the maximum size of the request header of an
HTTP request.
Even if the maximum size of the request header that
has been set in this property is not met, an error occurs
if the HTTP header specified in
webserver.connector.inprocess_http.
limit.max_headers is exceeded.
The linefeed characters (double bytes of CR(0x0d)
+LF(0x0a)) indicating the end of the HTTP header
also need to be included in the specified size.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

16384 --

webserver.connector.inpr
ocess_http.limit.max_req
uest_line

Specify either -1 or an integer from 7 to 8190 for
the maximum length (units: bytes) of the request line.
If you do not specify the upper-limit, specify -1.
The request line includes URI and HTTP version that
include the HTTP methods and the query strings.
The value to be specified needs to be lower than the
maximum size of the request header (value specified
in
webserver.connector.inprocess_http.
limit.max_request_header). If you specify
a value greater than the maximum size of the request
header, a message is output, and the maximum size of
the request header is set as the maximum length of the
request line.
The linefeed characters (double bytes of CR(0x0d)
+LF(0x0a)) indicating the end of the HTTP header
also need to be included in the size to be specified.

8190 --

11. Files Used in J2EE Servers

Compatibility Guide 452

Key name Contents Default
value

VR Related
information

If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

webserver.connector.inpr
ocess_http.max_connectio
ns

Specify an integer from 1 to 1024 for the maximum
number of connections with the Web client. The valid
maximum value is different for every operating OS.
The value specified in this parameter becomes the
maximum value for the request-processing threads.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

100 --

webserver.connector.inpr
ocess_http.max_execute_t
hreads

Specify an integer from 1 to 1024 for the number
of concurrently executing requests processed by the
Web container.
The specified value must be lower than the maximum
number of connections with the Web client (value
specified in
webserver.connector.inprocess_http.
max_connections). If you specify a value greater
than the maximum number of connections with the
Web client, a message is output and the maximum
number of connections with the Web client is set in
the value.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

10 --

webserver.connector.inpr
ocess_http.max_spare_thr
eads

Specify an integer from 1 to 1024 for the maximum
number of spare threads stored in a pool.
The specified value must be lower than the maximum
number of connections with the Web client (value
specified in
webserver.connector.inprocess_http.
max_connections). If you specify a value greater
than the maximum number of connections with the
Web client, a message is output and the maximum
number of connections with the Web client is set in
the value.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

20 --

webserver.connector.inpr
ocess_http.min_spare_thr
eads

Specify an integer from 1 to 1024 for the minimum
number of spare threads stored in a pool.
The specified value needs to be lower than the
maximum number of spare threads stored in the pool
(value specified in
webserver.connector.inprocess_http.
max_spare_threads). If a value greater than the
maximum number of spare threads stored in the pool
is set, a message is output, and the maximum number
of spare threads stored in the pool is set as the
minimum number of spare threads stored in the pool.

5 --

11. Files Used in J2EE Servers

Compatibility Guide 453

Key name Contents Default
value

VR Related
information

If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

webserver.connector.inpr
ocess_http.permitted.hos
ts

Specify the IP address (decimals) or the name of the
host that has access permission for the in-process
HTTP server. If you specify multiple hosts, demarcate
the IP addresses or the host names with a comma
(,). If there are no access restrictions, specify only an
asterisk (*).

Note that even if the local host (the address#3

associated with localhost) is not explicitly
specified, access is always allowed.
If you specify a null character string or a
whitespace#2, a message is output and the default
value will be set.
If the specified host name cannot be resolved, a
message is output and only access from the local
host (the address#3 associated with localhost)
is allowed.
Note that the single-byte space before and after the IP
address or the host name is ignored.

* --

webserver.connector.inpr
ocess_http.persistent_co
nnection.max_connections

Specify an integer from 0 to 1024 for the maximum
number of TCP connections maintained in a
Persistent Connection.
The value to be set must be lower than the maximum
number of connections with the Web client (value
specified in
webserver.connector.inprocess_http.
max_connections). If you set a value greater than
the maximum number of connections with the Web
client, a message is output and the maximum number
of connections with the Web client is set as the
maximum number of TCP connections stored in the
Persistent Connection.
If you specify a non-numeric value or a numeric value
outside the range, a message is output and the value
specified in
webserver.connector.inprocess_http.
max_connections is set as the default value. If
you specify a null character string or a whitespace#2,
the value specified in
webserver.connector.inprocess_http.
max_connections is set as the default value.

Value
specified in
webserver
.connecto
r.inproce
ss_http.m
ax_connec
tions

--

webserver.connector.inpr
ocess_http.persistent_co
nnection.max_requests

Specify an integer from 0 to 2147483647 for the upper
limit of the number of serial connections when TCP
connections are sustained by a Persistent Connection.
If you do not want to set the upper-limit value,
specify 0.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

100 --

11. Files Used in J2EE Servers

Compatibility Guide 454

Key name Contents Default
value

VR Related
information

webserver.connector.inpr
ocess_http.persistent_co
nnection.timeout

Specify an integer from 0 to 3600 for the request wait
period (units: seconds), when the TCP connections
are sustained in a Persistent Connection. If you
specify 0, the timeout does not occur.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

3 --

webserver.connector.inpr
ocess_http.port

Specify an integer from 1 to 65535 for the port number
used by the in-process HTTP server. You cannot
specify a port number that is already being used by
another application. If you specify a port number that
is in use or has been secured by another application, a
message is output and the J2EE server does not start.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

80 --

webserver.connector.inpr
ocess_http.receive_timeo
ut

Specify an integer from 0 to 3600 for the period until
timeout (units: seconds), when requests are received
from the Web client. If you specify 0, the timeout does
not occur.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

300 --

webserver.connector.inpr
ocess_http.redirect.redirec
t-definition-name.file

Specify an absolute path for the file used as the
response body during redirection with the redirect
functionality. Use a forward slash (/) as the
demarcation sign in the path.
If you specify 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status,
always specify this property. If you specify 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status,
and this property is not specified, a message is output
and this redirect definition is disabled.
If you set this property by using a redirect definition
name that is not specified in
webserver.connector.inprocess_http.
redirect.list and if you specify a null character
string or a whitespace#2, the property is disabled.
If you specify a value that is not an absolute path, a
message is output and this redirect definition name is
disabled. If you specify a file that does not exist or a
file that does not have read permission, a message is
output and this redirect definition is disabled.

None --

webserver.connector.inpr
ocess_http.redirect.redirec
t-definition-
name.file.content_type

Specify the value of the response Content-
Type header during redirection, using the
redirect functionality.
If this property is set by using a redirect definition
name that is not set in
webserver.connector.inprocess_http.
redirect.list, the property is disabled.

text/html --

11. Files Used in J2EE Servers

Compatibility Guide 455

Key name Contents Default
value

VR Related
information

If the
webserver.connector.inprocess_http.
redirect.redirect-definition-name.file is not
set, this property is disabled.

webserver.connector.inpr
ocess_http.redirect.redirec
t-definition-name.redirect_url

Specify the redirect URL as an absolute URL, using
the redirect functionality.
If you specify 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status,
this property cannot be set. If you specify 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status,
and you specify this property, a message is output and
the redirect definition name is disabled.
If you specify a value other than 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status,
make sure that you specify this property. If you
specify a value other than 200 in
webserver.connector.inprocess_http.
redirect.redirect-definition-name.status and
this property is not specified, a message is output and
the redirect definition is disabled.
If this property is set by using a redirect definition
name that is not set in
webserver.connector.inprocess_http.
redirect.list, the property is disabled.
Whether the value is correct is not verified, so you
need to check through actual operations.

None --

webserver.connector.inpr
ocess_http.redirect.redirec
t-definition-name.request_url

Specify an absolute path beginning with a forward
slash (/) for the request URL performing redirection
with the redirect functionality. You can specify the
wild card (*) only once, immediately after the
forward slash. The wild card indicates any string
of 0 or more characters. An asterisk (*) is always
interpreted as the wild card, so it cannot be used as
a normal character. You also cannot specify a value
same as that specified in another redirect definition.
For the redirect definition name that has been
specified in
webserver.connector.inprocess_http.
redirect.list, you always need to specify this
property. If you do not specify this property, a
message is output and the redirect definition is
disabled.
If this property is set by using a redirect definition
name that is not set in
webserver.connector.inprocess_http.
redirect.list, the property is disabled.
If you specify an invalid value, a message is output
and the redirect definition is disabled.

None --

webserver.connector.inpr
ocess_http.redirect.redirec
t-definition-name.status

Specify the response status code (200, 300, 301,
302, 303, 305, 307) during redirection with the
redirect functionality.
If this property is set by using a redirect definition
name that is not set in

302 --

11. Files Used in J2EE Servers

Compatibility Guide 456

Key name Contents Default
value

VR Related
information

webserver.connector.inprocess_http.
redirect.list, the property is disabled.
If you specify an invalid value, a null character string,
or a whitespace#2, a message is output and the default
value will be set.

webserver.connector.inpr
ocess_http.redirect.list

Specify the redirect definition name used in the
redirect functionality.
The maximum length of the value that can be
specified in this property is 1024 characters. Specify
the redirect definition name with a string consisting
of alphanumeric characters (A-Z, a-z, 0-9) or
underscores (_). The string length of one redirect
definition name is from 1 to 32 characters.
When specifying multiple redirect definition names,
demarcate them with a comma (,). The whitespace#2

before and after the comma is ignored. You
cannot specify the same redirect definition name
multiple times.
If you specify an invalid value, a message is output
and all redirect definitions are disabled.

None --

webserver.connector.inpr
ocess_http.rejection_thr
eads

Specify an integer from 0 to 1023 for the
number of request-processing threads that are
denied access. The value to be specified
must be lesser than the maximum number of
request-processing threads (value specified in
webserver.connector.inprocess_http.
max_connections). If a value greater than the
maximum number of connections with the Web client
is set, a message is output and a value that is 1 less
than the maximum number of connections with the
Web client is set as the number of request-processing
threads that are denied access.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

1 --

webserver.connector.inpr
ocess_http.response.head
er.server

Specify the value of the Server header that is
automatically added to the response.
If you specify a null character string or a
whitespace#2, a message is output and the default
value will be set.

Cosminexu
sComponen
tContaine
r

--

webserver.connector.inpr
ocess_http.send_timeout

Specify an integer from 0 to 3600 for the period until
timeout (units: seconds) when a response is sent to
the Web client. When you specify 0, the timeout is
not enabled.
If you specify a non-numeric value, a numeric
value outside the range, a null character string or
a whitespace#2, a message is output and the default
value will be set.

300 --

Legend:
--: Indicates a version earlier than the version 08-00.

#1

• The valid maximum value depends on the operating platform.

11. Files Used in J2EE Servers

Compatibility Guide 457

• Some of the requests arriving in the Web server are passed to the Web container, therefore, the maximum number
of concurrent connections of the Web server to be set up must be greater than the total size of the default pending
queue and the pending queue of each URL group and Web application + maximum number of concurrently
executing threads in each Web container.
In a servlet or JSP performing the database operations, since it is not possible to obtain greater multiplicity than
the number of database connections, you need to increase the number of usable database connections, when
increasing the concurrently executing number of Web containers.
When tuning the performance, always consider the following relation and adjust the value of each parameter:
Maximum-number-of-concurrent-connections-of-Web-server > Total-size-of-the-pending-queues-of-each-
URL-group-and-Web-application-and-the-default-pending-queue + Maximum-number-of-concurrently-
executing-threads-in-each-Web-container
Maximum-number-of-concurrently-executing-threads-in-each-Web-container ≥ Number-of-database-
connections
For details on controlling the number of concurrently executed threads in Web containers, see 2.14 Controlling
the number of concurrently executed threads in Web containers in the manual uCosminexus Application Server
Web Container Functionality Guide.
For details about the number of concurrent connections used for processing in the Web server, reference the
manual of the Web server.

#2
Whitespace imply single-byte spaces, tabs, LF(0x0a), CR(0x0d) or FF(0x0c).

#3
This is the address associated with localhost when the J2EE server started.

(6) Keys beginning with webserver.container
The following table lists the specifiable keys. Note that Default value is the value that is assumed when a key is
not specified.

VR is the version of Application Server on which the keys are introduced or changed.

Related information is the reference location for information related to the specified key. uCosminexus Application
Server is omitted from the manual names.

Key name Contents Default
value

VR Related
information

webserver.container.ac.l
ogEnabled

Specify whether to output the trace log for Web
container maintenance.

If you specify true:
The trace log will be output.

If you specify false:
The trace log will not be output.

false --

Legend:
--: Indicates a version earlier than the version 08-00.

11. Files Used in J2EE Servers

Compatibility Guide 458

12 Files Used by the Smart Composer Functionality

This chapter describes the formats, storage locations, and the functionality of the files used by the
Smart Composer functionality, and the keys specifiable in the files. The chapter describes only the
content that differs from the recommended mode.

Compatibility Guide 459

12.1 Parameters applicable to logical Web servers

This section describes the parameters applicable to logical Web servers.

12.1.1 Parameters that set up the redirector action definition for
Cosminexus HTTP Server

The following table describes the parameters used for setting up the redirector action definition for Cosminexus
HTTP Server:

In the table below, Default value means the value that is assumed when the parameter is not specified. VR is the version
of Application Server on which parameters are introduced or changed. For details about the contents to be specified
in param-value corresponding to 'Value of param-name', see 14.2.2 mod_jk.conf (Redirector action definition file for
Cosminexus HTTP Server).

Note:
To enable the specification of parameters that set up the redirector action definition for Cosminexus HTTP Server
when specifying the AllText parameter, include the following code in the setup file:

Include "Cosminexus-installation-directory/CC/web/redirector/servers/Logic
al-Web-server/mod_jk.conf"

Table 12‒1: Parameters that set up the redirector action definition for Cosminexus HTTP Server

Value of param-name Specifiable value Default value VR

JkConnectTimeout Specify the value using an integer from 0
to 3600.

30 07-00

JkGatewayHost Specify one of the following values:
• IPv4 address
• Host name

Specify a string within 255 characters
using alphanumeric characters,
underscore (_), period (.), and hyphen
(-) as a host name.

None 07-50

JkGatewayHttpsScheme Specify one of the following values:
• On
• Off

For details on this parameter, see 5.10
Notification of gateway information to a
Web container.

Off 06-50

JkGatewayPort Specify the value using an integer from 1
to 65535.

None 07-50

JkLogFileDir Specify any string. Logs 06-50

JkLogFileNum Specify the value using an integer from 1
to 64.

8 06-50
07-50

JkLogFileSize Specify the value using an integer from
4096 to 2147483647.

4194304 06-50
07-50

JkLogLevel Specify one of the following values: error 06-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 460

Value of param-name Specifiable value Default value VR

• emerg
• error
• info
• debug

JkModulePriority Specify one of the following values:
• REALLY_FIRST (corresponds to

integer value -10)
• FIRST (corresponds to integer

value 0)
• MIDDLE (corresponds to integer

value 10)
• LAST (corresponds to integer

value 20)
• REALLY_LAST (corresponds to

integer value 30)
• Integers from -10 to 30

FIRST 07-00

JkMount Specify the definition file in the
following format:
<URL-pattern><worker-name>
Use the name specified in the worker
definition and worker.list in worker-
name. For details on the worker
definition and worker.list, see
12.1.2 Parameters used for setting up
the worker definition.

Note:
Do not define the same J2EE server
in multiple worker names. The
operations cannot be guaranteed
if such a worker is specified
in JkMount.

In the combined-tier and http-tier#

/* J2EE-server-name

Note:
Concurrently, J2EE-server-name is
set up as worker (type: ajp13).

07-50

JkPrfId Specify a string within of 31
alphanumeric characters.
If a string beginning with 'TSC' and
'tsc' or 'CTM' and 'ctm' is specified, an
error will occur.

None
The value is set automatically except
for free-tier.

07-50

JkRequestRetryCount Specify the value using an integer from 1
to 16.

3 07-00

JkSendTimeout Specify the value using an integer from 0
to 3600.

100 07-00

JkTraceLog Specify one of the following values:
• On
• Off

On 06-50

JkTraceLogFileDir Specify any string. Logs 06-50

JkTraceLogFileNum Specify the value using an integer from 1
to 64.

4 06-50
07-50

JkTraceLogFileSize Specify the value using an integer from
4096 to 2147483647.

16777216 06-50
07-50

JkTranslateBackcompat Specify one of the following values: Off 06-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 461

Value of param-name Specifiable value Default value VR

• On
• Off

Note:
If you specify multiple keys, the value specified last will be applied.

#
If this parameter is omitted in combined-tier and http-tier, values are set up in the related parameters as follows:
<param>
<param-name>JkMount</param-name>
<param-value>/* (J2EE server name)<param-value>
</param>
<param>
<param-name>worker.list</param-name>
<param-value>(J2EE server name)<param-value>
</param>
<param>
<param-name>worker.(J2EE server name).host</param-name>
<param-value>(host name)<param-value>
</param>
<param>
<param-name>worker.(J2EE server name).port</param-name>
<param-value>(Port number)<param-value>
</param>
<param>
<param-name>worker.(J2EE server name).type</param-name>
<param-value>ajp13</param-value>
</param>

12.1.2 Parameters used for setting up the worker definition
The following table describes the parameters used for setting a worker definition.

In the table below, Default value means the value that is assumed when the parameter is not specified. VR is the version
of Application Server on which parameters are introduced or changed. For details about the contents to be specified in
param-value corresponding to 'Value of param-name', see 14.2.4 workers.properties (Worker definition file).

Note:
To enable the specification of parameters that set up the worker definition when you specify the AllText parameter,
include the following code in the setup file:

Include "Cosminexus-installation-directory/CC/web/redirector/servers/Logic
al-Web-server/mod_jk.conf"

(1) Keys specifiable in the worker definition file
These keys define workers, and the parameters for each worker. If an invalid value is specified for this key, the operations
might not execute properly.

Value of param-name Specifiable value Default value VR

worker.list Specify any string. None 07-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 462

Value of param-name Specifiable value Default value VR

worker.worker-name.parameter For details about the defined parameters, see (2) Parameters
defined for each worker.

None 07-50

(2) Parameters defined for each worker
Value of param-name Specifiable value Default value VR

worker.worker-
name.balanced_workers

Specify any string. None 07-50

worker.worker-name.cachesize# Specify the value using an integer from 1 to 2147483647. 64 07-50

worker.worker-
name.default_worker

Specify the worker names delimited with commas (,).
The spaces at the beginning and end are ignored.

None 07-50

worker.worker-
name.delegate_error_code

Specify 400 to 417, 422 to 424, 500 to 505, 507, and 510 by
using comma (,) as the delimiter.

None 07-50

worker.worker-name.host You can specify the following values:
• IPv4 address
• Host name
• @myhost

Note:
If you specify an IPv4 address or a host name, specify the
value of the <host-name> tag in the host definition.
If you specify a different value, a warning message
(KEOS24195-W) is output and an unintended setting
might be set.

None 07-50

worker.worker-name.lbfactor# Specify the value using an integer from 0 to 9999999999. 1 07-50

worker.worker-name.port Specify an integer from 1 to 65535. None 07-50

worker.worker-name.post_data Specify a string within 10 numeric characters (0 to 9) and a
string with m, M, k, and K continuing 0 to one time.

None 07-50

worker.worker-
name.post_size_workers

Specify any string. None 07-50

worker.worker-
name.receive_timeout#

Specify the value using an integer from 0 to 3600. 3600 07-50

worker.worker-name.type Specify one of the following values:
• ajp13
• lb
• post_size_lb

None 07-50

Note:
When you define a new worker, make sure that you define the following parameters:
For details on JkMount, see 12.1.1 Parameters that set up the redirector action definition for Cosminexus HTTP Server.
- worker.list
- worker.worker-name.host
- worker.worker-name.port
- worker.worker-name.type
- JkMount

#
When set up on combined-tier or http-tier, the default value is applied to the worker with the worker name defined in the J2EE server name. If
you want to change the default value, define the worker described in Note above.

12. Files Used by the Smart Composer Functionality

Compatibility Guide 463

12.2 Parameters applicable to logical J2EE servers

This section describes the parameters that are applicable to logical J2EE servers.

The following table shows the reference location for parameters that can be specified and for details.

Table 12‒2: Correspondence between the server to be used and references of the parameters to
be specified

Server to be used Parameters to be specified

J2EE server Parameters used for setting up the user properties for the J2EE server (see 12.2.1)

12.2.1 Parameters used for setting up the user properties for the J2EE
server

This section describes the parameters used for setting up the user properties for the J2EE server.

For details about the contents to be specified in param-value corresponding to 'Value of param-name', see 11.1.1
usrconf.properties (User property file for J2EE servers). When you reference the section, read the key as parameter. In
the table below, Default value means the value that is assumed when the parameter is not specified. VR is the version of
Application Server on which parameters are introduced or changed.

Note that the specification method of parameters for which "Value in param-name" is specified is different from
usrconf.properties (user property file for J2EE servers).

The specification format is as follows.

Specification format:

<param-name>parameter</param-name>
<param-value>value</param-value>

From among the parameters that can be specified for usrconf.properties (the user properties file used for J2EE
server), use the following format when specifying a parameter that is not written in the tables in this section.

Specification format:

<param-name>ex.properties</param-name>
<param-value>parameter=value</param-value>

To specify multiple values, specify <param-value> multiple times.

Specification format when specifying multiple values:

<param-name>ex.properties</param-name>
<param-value>parameter=value</param-value>
<param-value>parameter=value</param-value>

12. Files Used by the Smart Composer Functionality

Compatibility Guide 464

(1) Parameters beginning with cosminexus.jpa
The following table describes the parameters beginning with cosminexus.jpa. For details about the contents to be
specified in param-value corresponding to 'Value of param-name', see 11.1.1(1) Keys beginning with cosminexus.jpa.
When you reference the section, read the key as parameter.

Table 12‒3: Parameters beginning with cosminexus.jpa

Value of param-name Specifiable value Default
value

VR

cosminexus.jpa.logging.level
.operation.category

The following strings can be specified:
• Off
• Information
• Detail

Off 08-00

cosminexus.jpa.exception.log
ging.sql

The following strings can be specified:
• Off
• Information
• Detail

Off 08-00

(2) Parameters beginning with ejbserver.jpa
The following table describes the parameters beginning with ejbserver.jpa. For details about the contents to be
specified in param-value corresponding to 'Value of param-name', see 11.1.1(2) Keys beginning with ejbserver.jpa. When
you reference the section, read the key as parameter.

Table 12‒4: Parameters beginning with ejbserver.jpa

Value of param-name Specifiable value Default
value

VR

ejbserver.jpa.defaultJtaDsNa
me

Specify any string. None 08-00

ejbserver.jpa.defaultNonJtaD
sName

Specify any string. None 08-00

ejbserver.jpa.defaultProvide
rClassName

Specify any string. com.hitachi.s
oftware.jpa.P
ersistencePro
vider

08-00

ejbserver.jpa.disable The following strings can be specified:
• true
• false

false 08-50

ejbserver.jpa.overrideJtaDsN
ame

Specify any string. None 08-00

ejbserver.jpa.overrideNonJta
DsName

Specify any string. None 08-00

ejbserver.jpa.overrideProvid
er

Specify any string. None 08-00

ejbserver.jpa.emfprop.property-
key

Specify any string. None 08-00

12. Files Used by the Smart Composer Functionality

Compatibility Guide 465

(3) Parameters beginning with ejbserver.logger
The following table describes the parameters beginning with ejbserver.logger. For details about the contents to
be specified in param-value corresponding to 'Value of param-name', see 11.1.1(3) Keys beginning with ejbserver.logger.
When you reference the section, read the key as parameter.

Table 12‒5: Parameters beginning with ejbserver.logger

Value of param-name Specifiable value Default
value

VR

ejbserver.logger.channels.de
fine.JPAOperationLogFile.fil
enum

Specify the value using an integer from 1 to 16. 2 08-00

ejbserver.logger.channels.de
fine.JPAOperationLogFile.fil
esize

Specify an integer from 4096 to 2147483647 (unit: bytes). 1048576 08-00

ejbserver.logger.channels.de
fine.JPAMaintenanceLogFile.f
ilenum

Specify the value using an integer from 1 to 16. 2 08-00

ejbserver.logger.channels.de
fine.JPAMaintenanceLogFile.f
ilesize

Specify an integer from 4096 to 2147483647 (unit: bytes). 1048576 08-00

ejbserver.logger.channels.de
fine.WebAccessLogFile.filenu
m

Specify the value using an integer from 1 to 16. 16 07-50

ejbserver.logger.channels.de
fine.WebAccessLogFile.filesi
ze

Specify an integer from 4096 to 2147483647 (unit: bytes). 4194304 07-50

(4) Parameters beginning with ejbserver.server
The following table describes the parameters beginning with ejbserver.server. For details about the contents to
be specified in param-value corresponding to 'Value of param-name', see 11.1.1(4) Keys beginning with ejbserver.server.
When you reference the section, read the key as parameter.

Table 12‒6: Parameters beginning with ejbserver.server

Value of param-name Specifiable value Default
value

VR

ejbserver.server.eheap.ajp13
.enabled

The following strings can be specified:
• true
• false

true 08-00

(5) Parameters beginning with webserver.connector
The following table describes the parameters beginning with webserver.connector. For details about the
contents to be specified in param-value corresponding to 'Value of param-name', see 11.1.1(5) Keys beginning with
webserver.connector. When you reference the section, read the key as parameter.

12. Files Used by the Smart Composer Functionality

Compatibility Guide 466

Table 12‒7: Parameters beginning with webserver.connector

Value of param-name Specifiable value Default
value

VR

webserver.connector.ajp13.ba
cklog

Specify the value using an integer from 1 to 2147483647. 100 06-50

webserver.connector.ajp13.bi
nd_host

The following strings can be specified:
• Host name
• IPv4 address
• @myhost

Note:
If you specify an IPv4 address or a host name, specify the
value of the <host-name> tag in the host definition. If you
specify a different value, a warning message (KEOS24186-W)
is output and an unintended setting might be set.

None 07-50

webserver.connector.ajp13.ma
x_threads

Specify the value using an integer from 1 to 1024. 10 06-50

webserver.connector.ajp13.po
rt

Specify the value using an integer from 1 to 65535. 8007 06-50
07-00

webserver.connector.ajp13.re
ceive_timeout

Specify an integer from 0 to 3600 (unit: seconds). 600 06-50
07-00

webserver.connector.ajp13.se
nd_timeout

Specify an integer from 0 to 3600 (unit: seconds). 600 07-00

webserver.connector.inproces
s_http.backlog

Specify the value using an integer from 1 to 2147483647. 511 07-50

webserver.connector.inproces
s_http.bind_host

The following strings can be specified:
• Host name
• IPv4 address
• @myhost

Note
If you specify an IPv4 address or a host name, specify the
value of the <host-name> tag in the host definition. If you
specify a different value, a warning message (KEOS24186-W)
is output and an unintended setting might be set.

None 07-50

webserver.connector.inproces
s_http.enabled

The following strings can be specified:
• true
• false

false 07-50

webserver.connector.inproces
s_http.enabled_methods

The values that can be specified are as follows:
• GET
• HEAD
• POST
• PUT
• DELETE
• OPTIONS
• TRACE
• CONNECT
• PATCH
• LINK
• UNLINK
• Asterisk (*)

GET,HEAD,P
OST,PUT,DE
LETE,OPTI
ONS

07-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 467

Value of param-name Specifiable value Default
value

VR

webserver.connector.inproces
s_http.error_custom.error-page-
customize-definition-name.file

File name None 07-50

webserver.connector.inproces
s_http.error_custom.error-page-
customize-definition-
name.file.content_type

Specify any string. text/html 07-50

webserver.connector.inproces
s_http.error_custom.error-page-
customize-definition-
name.redirect_url

Specify any string. None 07-50

webserver.connector.inproces
s_http.error_custom.error-page-
customize-definition-
name.request_url

Specify any string. /* 07-50

webserver.connector.inproces
s_http.error_custom.error-page-
customize-definition-name.status

Specify the value using an integer from 400 to 599. None 07-50

webserver.connector.inproces
s_http.error_custom.list

Specify a string within 32 characters using alphanumeric
characters and underscore (_). Also, when specifying multiple
values, delimit with commas (,).

None 07-50

webserver.connector.inproces
s_http.gateway.host

Specify one of the following values:
• Host name
• IPv4 address
• @myhost

None 07-50

webserver.connector.inproces
s_http.gateway.https_scheme

The following strings can be specified:
• true
• false

false 07-50

webserver.connector.inproces
s_http.gateway.port

Specify the value using an integer from 1 to 65535. None 07-50

webserver.connector.inproces
s_http.init_threads

Specify the value using an integer from 1 to 1024. 10 07-50

webserver.connector.inproces
s_http.keep_start_threads

The following strings can be specified:
• true
• false

false 07-50

webserver.connector.inproces
s_http.limit.max_headers

Specify the value using an integer from 0 to 32767. 100 07-50

webserver.connector.inproces
s_http.limit.max_request_bod
y

Specify an integer from -1 to 2147483647 (unit: bytes). -1 07-50

webserver.connector.inproces
s_http.limit.max_request_hea
der

Specify an integer from 7 to 65536 (unit: bytes). 16384 07-50

webserver.connector.inproces
s_http.limit.max_request_lin
e

You can specify the following values (unit: bytes):
• -1
• 7-8190

8190 07-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 468

Value of param-name Specifiable value Default
value

VR

webserver.connector.inproces
s_http.max_connections

Specify the value using an integer from 1 to 1024. 100 07-50

webserver.connector.inproces
s_http.max_execute_threads

Specify the value using an integer from 1 to 1024. 10 07-50

webserver.connector.inproces
s_http.max_spare_threads

Specify the value using an integer from 1 to 1024. 20 07-50

webserver.connector.inproces
s_http.min_spare_threads

Specify the value using an integer from 1 to 1024. 5 07-50

webserver.connector.inproces
s_http.permitted.hosts

Specify one of the following values:
• Host name
• IPv4 address
• @myhost
• Asterisk (*)

* 07-50

webserver.connector.inproces
s_http.persistent_connection
.max_connections

Specify the value using an integer from 0 to 1024. 100 07-50

webserver.connector.inproces
s_http.persistent_connection
.max_requests

Specify the value using an integer from 0 to 2147483647. 100 07-50

webserver.connector.inproces
s_http.persistent_connection
.timeout

Specify an integer from 0 to 3600 (unit: seconds). 3 07-50

webserver.connector.inproces
s_http.port

Specify the value using an integer from 1 to 65535. 80 07-50

webserver.connector.inproces
s_http.receive_timeout

Specify an integer from 0 to 3600 (unit: seconds). 300 07-50

webserver.connector.inproces
s_http.redirect.redirect-
definition-name.file

Specify the file name. None 07-50

webserver.connector.inproces
s_http.redirect.redirect-
definition-name.file.content_type

Specify any string. text/html 07-50

webserver.connector.inproces
s_http.redirect.redirect-
definition-name.redirect_url

Specify any string. None 07-50

webserver.connector.inproces
s_http.redirect.redirect-
definition-name.request_url

Specify any string. None 07-50

webserver.connector.inproces
s_http.redirect.redirect-
definition-name.status

The values that can be specified are as follows:
• 200
• 300
• 301
• 302
• 303
• 305
• 307

302 07-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 469

Value of param-name Specifiable value Default
value

VR

webserver.connector.inproces
s_http.redirect.list

Specify a string within 32 characters using alphanumeric
characters and underscore (_). Also, when specifying multiple
values, delimit with commas (,).

None 07-50

webserver.connector.inproces
s_http.rejection_threads

Specify the value using an integer from 0 to 1023. 1 07-50

webserver.connector.inproces
s_http.response.header.serve
r

Specify any string. Cosminexus
ComponentC
ontainer

07-50

webserver.connector.inproces
s_http.send_timeout

Specify an integer from 0 to 3600 (unit: seconds). 300 07-50

(6) Parameters beginning with webserver.container
The following table describes the parameters beginning with webserver.container. For details about the
contents to be specified in param-value corresponding to 'Value of param-name', see 11.1.1(6) Keys beginning with
webserver.container. When you reference the section, read the key as parameter.

Table 12‒8: Parameters beginning with webserver.container

Value of param-name Specifiable value Default
value

VR

webserver.container.ac.logEn
abled

The following strings can be specified:
• true
• false

false 06-50

12. Files Used by the Smart Composer Functionality

Compatibility Guide 470

13 Files Used with JPA

This chapter describes the formats, storage locations, and functionality of files used in Cosminexus
JPA Provider and the keys specifiable in these files.

Compatibility Guide 471

13.1 List of files used in Cosminexus JPA Provider

The following table lists and describes the files used in Cosminexus JPA Provider:

Table 13‒1: List of files used in Cosminexus JPA Provider

File name Overview Reference

persistence.xml This file is used for setting the persistence unit information of
Cosminexus JPA.

13.2

O/R mapping files This file is used for setting the O/R mapping information. 13.3

13. Files Used with JPA

Compatibility Guide 472

13.2 persistence.xml

The following table describes the configuration of persistence.xml:

Tag name Occurrence
pattern

Description

<persistence> Once Indicates the root tag.

<persistence-unit> 0 or more times Defines the persistence unit.

<description> 0 or once Describes the persistence unit.

<provider> 0 or once Specifies the implementation class name of
javax.persistence.spi.PersistenceProvi
der.

<jta-data-source> 0 or once Specifies the references for the data source corresponding
to the JTA transaction.

<non-jta-data-source> 0 or once Specifies the references for the data source not
corresponding to the JTA transaction.

<mapping-file> 0 or more times Specifies the O/R mapping file.

<jar-file> 0 or more times Codes a JAR file name containing the entity class,
embeddable class, and mappedsuper class.

<class> 0 or more times Codes the entity class, embeddable class, and
mappedsuper class.

<exclude-unlisted-classes> 0 or once Specifies the Persistence class.

<properties> 0 or once Defines the Cosminexus JPA Provider-specific properties.

<property> 0 or more times Defines various properties.

For details about the respective tags, see 13.2.1 Details of persistence.xml.

13.2.1 Details of persistence.xml

(1) <persistence>
The <persistence> tag is the root tag indicating the start of definition for the persistence unit.

You must set the xmlns element that specifies the XML namespace in the <persistence> tag.

The following table lists the specifiable attributes:

Table 13‒2: Attributes of <persistence>

Attribute name Type Optional/Required Description

version persistence:versionType Required Specifies the XML schema version "1.0".

(2) <persistence-unit>
The <persistence-unit> tag defines the persistence unit. The following table lists the specifiable attributes:

13. Files Used with JPA

Compatibility Guide 473

Table 13‒3: Attributes of <persistence-unit>

Attribute name Type Optiona
l/
Require
d

Description

name xsd:string Required Specifies the name of the persistence unit.
The name that will be specified in the name attribute must be unique in the
persistence unit packaging range.
If a persistence unit is defined with duplicate names, the operations of
Cosminexus JPA Provider cannot be guaranteed.
If persistence units with the same names are defined in the Java EE
environment, a warning message is output by the container.
In the Java EE environment, the value specified in the name attribute
should not be a null character. If a null character is specified, an exception
occurs in the container.

transaction-type persistence:persistenc
e-unit-transaction-
type

Optional Specifies the transaction that will be used by the EntityManager.
JTA

The JTA transaction will be used.
RESOURCE_LOCAL

The transaction will be managed uniquely without using the
JTA transaction.

If the value of the transaction-type attribute is not specified, the
default value 'JTA' will be applied.
For details on attributes that can be specified in the Java EE environment,
see 8.8.1 Attributes specified in the <persistence-unit> tag.

(3) <description>
Describes the persistence unit.

(4) <provider>
Specifies the implementation class name of javax.persistence.spi.PersistenceProvider.

When using Cosminexus JPA Provider, you specify com.hitachi.software.jpa.PersistenceProvider.
You code this tag for explicit specification such as when other JPA providers exist. Note that when the value is not
specified, the tag behavior depends on the container.

Precautions
If you insert a space in the middle of the <provider> tag, the processing is same as the case when the element is
not specified.

(5) <jta-data-source>
Specifies the references for the data source corresponding to the JTA transaction.

Specify this tag when the value specified for transaction-type in the <persistence-unit> tag is JTA. Note
that when the value is not specified, the tag behavior depends on the container.

13. Files Used with JPA

Compatibility Guide 474

(6) <non-jta-data-source>
Specifies the references for the data source not corresponding to the JTA transaction. Specify this tag when the value
specified for transaction-type in the <persistence-unit> tag is RESOURCE_LOCAL.

If a value specified for transaction-type is JTA, the value is ignored in Cosminexus JPA Provider even if that
value is specified for the <non-jta-data-source> tag. When the value is not specified, the tag behavior depends
on the container.

(7) <mapping-file>
Specifies the O/R mapping file.

You must store the specified file at the location specified in the class path. The <mapping-file> tag need not be coded
when the O/R mapping file is not used or when orm.xml is deployed at a defined location and used.

If the specified file is not found, the application will fail to start.

(8) <jar-file>
The <jar-file> tag codes a JAR file name that includes the entity class, embeddable class, and
mappedsuper class. Specify the JAR file path using the relative path from the root of the persistence unit.

If the specified file is not found, the tag behavior depends on the container.

(9) <class>
Codes the entity class, embeddable class, and mappedsuper class.

If the specified class is not found, the tag behavior depends on the container.

Note that Cosminexus JPA Provider does not implement the check to verify whether the value specified in the <class>
tag is the entity class, embeddable class, and mappedsuper class. Therefore, if you specify a class other
than the entity class, embeddable class, and mappedsuper class, the operation is performed without throwing
an exception.

(10) <exclude-unlisted-classes>
The <exclude-unlisted-classes> tag defines the Persistence class.

The specifiable values and the behavior when the values are specified are as follows:

true
Only the classes explicitly specified by the class element, the jar-file element, and the mapping-file
element are handled as the Persistence classes.

false
If the exclude-unlisted-class element is not specified, the class files under the persistence unit root will be
searched to find out if the class is a JPA target class.

13. Files Used with JPA

Compatibility Guide 475

(11) <properties>
Defines the Cosminexus JPA Provider-specific properties. You specify the property element under this element to
define the property.

(12) <property>
Defines various properties.

For details about the properties, see 13.2.2 Cosminexus JPA Provider-specific properties that can be specified in the
<property> tag.

The following table lists the specifiable attributes:

Table 13‒4: Attributes of <property>

Attribute name Type Optional/Required Description

name xsd:string Required Property name.

value xsd:string Required Property value.

13.2.2 Cosminexus JPA Provider-specific properties that can be specified
in the <property> tag

This section describes the Cosminexus JPA Provider-specific properties specified in the <property> tag
of persistence.xml.

Cosminexus JPA Provider does not have properties that can be specified as arguments for
createEntityManager() of EntityManagerFactory. Note that even if the attribute values of the
persistence.xml file properties are numeric, you make sure that the value is enclosed in quotation marks
(double quotations or single quotations).

Important note

In Cosminexus JPA Provider, you cannot specify a property beginning with javax included in JPA
specifications, within the <property> tag. The operations might not execute normally if a property beginning
with javax included in JPA specifications is specified in the <property> tag of persistence.xml.

Also, you do not specify a property beginning with javax included in JPA specifications as a system property.
The properties beginning with javax included in JPA specifications are as follows:

• javax.persistence.transactionType
• javax.persistence.jtaDataSource
• javax.persistence.nonJtaDataSource
• javax.persistence.provider

The following is the description related to the Cosminexus JPA Provider-specific properties:

You specify these properties in the <property> tag of the persistence.xml file.

13. Files Used with JPA

Compatibility Guide 476

If a value outside the specifiable range is set for a property, an exception occurs during the deployment. Also, the value
is case sensitive.

The following table describes the Cosminexus JPA Provider-specific properties:

Table 13‒5: Cosminexus JPA Provider-specific properties

Property name Contents Specifiable
value

Default

cosminexus.jpa.cache.size.<ENTITY> Specify the initial size to be set for the
entity cache specified in <ENTITY>.
If a cache type is Full, set the initial
size for the entity cache.
If a cache type is HardWeak or
SoftWeak, set the maximum size for
the entity cache.
Specify the cache size using the
maximum ID count (record count) of
the entities invoked in all as a standard.

0 to 2147483647 1000

cosminexus.jpa.cache.size.default Specify the default cache size used
when the entity is cached.
If a cache type is Full, set the initial
size for the entity cache.
If a cache type is HardWeak or
SoftWeak, set the maximum size for
the entity cache.
Specify the cache size using the
maximum ID count (record count) of
the entities invoked in all as a standard.

0 to 2147483647 1000

cosminexus.jpa.cache.type.<ENTITY> Specify the entity cache type specified
in <ENTITY>.

You can specify
the following
strings:
• Full
• Weak
• HardWeak
• SoftWeak
• NONE

SoftWeak

cosminexus.jpa.cache.type.default Specify the default cache type. You can specify
the following
strings:
• Full
• Weak
• HardWeak
• SoftWeak
• NONE

SoftWeak

cosminexus.jpa.target-database Specify the name of a database
you want to connect to. To classify
the database-specific processing, the
class implementing the database-
specific part is read according to the
specified value.
When Auto is specified, the database
is automatically identified from
the resource information specified
for <jta-data-source> or

The following
strings can be
specified:
• Auto
• HiRDB
• Oracle

Auto

13. Files Used with JPA

Compatibility Guide 477

Property name Contents Specifiable
value

Default

<non-jta-data-source> in
persistence.xml when a request
is sent to the CJPA provider for
the first time. For this reason, the
processing time is slightly longer than
when the database name is specified.
Normally, Hitachi recommends you
to specify the name of the database
without using Auto.

13. Files Used with JPA

Compatibility Guide 478

13.3 O/R mapping files

The following table describes the configuration of the O/R mapping files:

Tag name Occurrence
pattern

Description

<entity-mappings> Once Indicates the root tag.

<description> 0 or once Adds the description.

<persistence-unit-metadata> 0 or once Specifies the definition related to the
entire PersistenceUnit.

<xml-mapping-metadata-complete> 0 or once Specifies whether to control the mapping
metadata of the persistence unit.

<persistence-unit-defaults> 0 or once Specifies the default value of the
persistence unit.

<schema> 0 or once Defines the schema.

<catalog> 0 or once Defines the catalog.

<access> 0 or once Specifies the access type.

<cascade-persist> 0 or once Adds the cascade persistence option.

<entity-listeners> 0 or once Defines the default entity listener of the
persistence unit.

<entity-listener> 0 or more times Specifies the entity listener.

<pre-persist> 0 or once Specifies the lifecycle callback method.

<post-persist> 0 or once Specifies the lifecycle callback method.

<pre-remove> 0 or once Specifies the lifecycle callback method.

<post-remove> 0 or once Specifies the lifecycle callback method.

<pre-update> 0 or once Specifies the lifecycle callback method.

<post-update> 0 or once Specifies the lifecycle callback method.

<post-load> 0 or once Specifies the lifecycle callback method.

<package> 0 or once Specifies the class package described in
the elements and attributes within the same
mapping file.

<schema> 0 or once Defines the schema.

<catalog> 0 or once Defines the catalog.

<access> 0 or once Defines the access method.

<sequence-generator> 0 or more times Adds the sequence generator.

<table-generator> 0 or more times Defines the table generator.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<named-query> 0 or more times Defines a named query.

<query> Once Specifies the query string.

13. Files Used with JPA

Compatibility Guide 479

Tag name Occurrence
pattern

Description

<hint> 0 or more times Adds a hint to the query.

<named-native-query> 0 or more times Defines the named native query.

<query> Once Specifies the query string.

<hint> 0 or more times Adds a hint to the query.

<sql-result-set-mapping> 0 or more times Defines the SQL result set mapping.

<entity-result> 0 or more times Specifies the entity class used for
mapping the native SQL query result.

<field-result> 0 or more times Specifies the field used for mapping the
native SQL query result.

<column-result> 0 or more times Specifies the column used for mapping the
native SQL query result.

<mapped-superclass> 0 or more times Defines the mapped superclass of the
persistence unit.

<description> 0 or once Adds the description for the mapped
superclass of the persistence unit.

<id-class> 0 or once Overwrites @IdClass specified in the
mapped superclass.

<exclude-default-listeners> 0 or once Defines whether to control the default entity
listener of the mapped superclass and the
sub class.

<exclude-superclass-listeners> 0 or once Defines whether to control the superclass
listener of the mapped superclass and the
sub class.

<entity-listeners> 0 or once Specifies the callback listener class.

<entity-listener> 0 or more times Specifies the entity listener.

<pre-persist> 0 or once Specifies the lifecycle callback method.

<post-persist> 0 or once

<pre-remove> 0 or once

<post-remove> 0 or once

<pre-update> 0 or once

<post-update> 0 or once

<post-load> 0 or once

<pre-persist> 0 or once Defines the lifecycle callback method
using the corresponding annotations in the
mapped superclass.<post-persist> 0 or once

<pre-remove> 0 or once

<post-remove> 0 or once

<pre-update> 0 or once

<post-update> 0 or once

<post-load> 0 or once

13. Files Used with JPA

Compatibility Guide 480

Tag name Occurrence
pattern

Description

<attributes> 0 or once The element is not defined.

<id> 0 or more times#1 Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<generated-value> 0 or once Specifies the strategy for generating the
primary key value.

<temporal> 0 or once Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<table-generator> 0 or once Adds the table generator.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<sequence-generator> 0 or once Adds the sequence generator.

<embedded-id> 0 or once#1 Overwrites the mapping specified in fields
and properties.

<attribute-override> 0 or more times Overwrites the mapping of properties
and fields.

<column> Once Specifies the column mapping for the
properties of the Persistent field.

<basic> 0 or more times Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<lob> 0 or once#2 Specified when mapping to the Lob type.

<temporal> 0 or once#2 Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<enumerated> 0 or once#2 Specified when mapping to the
enumeration type.

<version> 0 or more times Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<temporal> 0 or once Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<many-to-one> 0 or more times Overwrites the mapping specified in fields
and properties.

<join-column> 0 or more times#3 Specifies the external key column of the join
table corresponding to the owner-side entity.

<join-table> 0 or once#3 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

13. Files Used with JPA

Compatibility Guide 481

Tag name Occurrence
pattern

Description

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<one-to-many> 0 or more times Overwrites the mapping specified in fields
and properties.

<order-by> 0 or once Specifies the order to be applied when
maintaining a relation in the collection.

<map-key> 0 or once Specifies the map key as the Map
type relation.

<join-table> 0 or once#4 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<join-column> 0 or more times#4 Specifies the external key column of the join
table corresponding to the owner-side entity.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<one-to-one> 0 or more times Overwrites the mapping specified in fields
and properties.

<primary-key-join-column> 0 or more times#5 Specifies the primary key column used as
external key to JOIN with other tables.

13. Files Used with JPA

Compatibility Guide 482

Tag name Occurrence
pattern

Description

<join-column> 0 or more times#5 Specifies the external key column of the join
table corresponding to the owner-side entity.

<join-table> 0 or once#5 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<many-to-many> 0 or more times Overwrites the mapping specified in fields
and properties.

<order-by> 0 or once Specifies the order to be applied when
maintaining a relation in the collection.

<map-key> 0 or once Specifies the map key as the Map
type relation.

<join-table> 0 or once Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

13. Files Used with JPA

Compatibility Guide 483

Tag name Occurrence
pattern

Description

<embedded> 0 or more times Overwrites the mapping specified in fields
and properties.

<attribute-override> 0 or more times Overwrites the mapping of properties
and fields.

<column> Once Specifies the column mapping for the
properties of the Persistent field.

<transient> 0 or more times Overwrites the mapping specified in fields
and properties.

<entity> 0 or more times Defines the entities of the persistence unit.

<description> 0 or once Adds the description for the entities of the
persistence unit.

<table> 0 or once Overwrites @Table (including default
values) of the entity class.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<secondary-table> 0 or more times Overwrites all @SecondaryTable and
@SecondaryTables (including default
values) of the entity class.

<primary-key-join-column> 0 or more times Overwrites all
@PrimaryKeyJoinColumn and
@PrimaryKeyJoinColumns (including
default values) of the entity class.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<primary-key-join-column> 0 or more times Overwrites all
@PrimaryKeyJoinColumn and
@PrimaryKeyJoinColumns (including
default values) of the entity class.

<id-class> 0 or once Overwrites @IdClass specified in the
entity class.

<inheritance> 0 or once Overwrites @Inheritance (including
default values) of the entity class.

<discriminator-value> 0 or once Overwrites @DiscriminatorValue
(including default values) of the
entity class.

<discriminator-column> 0 or once Overwrites @DiscriminatorColumn
(including default values) of the
entity class.

<sequence-generator> 0 or once Specifies the settings for the sequence
generator that creates the primary key.

<table-generator> 0 or once Specifies the settings for the generator that
creates the primary key.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

13. Files Used with JPA

Compatibility Guide 484

Tag name Occurrence
pattern

Description

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<named-query> 0 or more times Defines a named query.

<query> Once Specifies the query string.

<hint> 0 or more times Adds a hint to the query.

<named-native-query> 0 or more times Defines the named native query.

<query> Once Specifies the query string.

<hint> 0 or more times Adds a hint to the query.

<sql-result-set-mapping> 0 or more times Defines the mapping of the SQL results.

<entity-result> 0 or more times Specifies the entity class used for
mapping the native SQL query result.

<field-result> 0 or more times Specifies the field used for mapping the
native SQL query result.

<column-result> 0 or more times Specifies the column used for mapping the
native SQL query result.

<exclude-default-listeners> 0 or once Controls the default entity listeners of the
entity class and the sub class.

<exclude-superclass-listeners> 0 or once Controls the superclass listeners of the
entity class and the sub class.

<entity-listeners> 0 or once Overwrites @EntityListeners of the
entity class.

<entity-listener> 0 or more times Specifies the entity listener.

<pre-persist> 0 or once Overwrites the definition of the
lifecycle callback method according to
the corresponding annotations, in the
mapped superclass.

<post-persist> 0 or once

<pre-remove> 0 or once

<post-remove> 0 or once

<pre-update> 0 or once

<post-update> 0 or once

<post-load> 0 or once

<pre-persist> 0 or once Overwrites the definition of the
lifecycle callback method according to
the corresponding annotations, in the
entity class.

<post-persist> 0 or once

<pre-remove> 0 or once

<post-remove> 0 or once

<pre-update> 0 or once

<post-update> 0 or once

<post-load> 0 or once

<attribute-override> 0 or more times Added to the value defined
in @AttributeOverride or

13. Files Used with JPA

Compatibility Guide 485

Tag name Occurrence
pattern

Description

@AttributeOverrides of the
entity class.

<column> Once Specifies the column mapping for the
properties of the Persistent field.

<association-override> 0 or more times Added to the value defined
in @AssociationOverride or
@AssociationOverrides of the
entity class.

<join-column> One or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<attributes> 0 or once The element is not defined.

<id> 0 or more times#1 Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<generated-value> 0 or once Specifies the strategy for generating the
primary key value.

<temporal> 0 or once Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<table-generator> 0 or once Adds the table generator.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<sequence-generator> 0 or once Specifies the settings for the sequence
generator that creates the primary key.

<embedded-id> 0 or once#1 Overwrites the mapping specified in fields
and properties.

<attribute-override> 0 or more times Added to the value defined
in @AttributeOverride or
@AttributeOverrides of the
entity class.

<column> Once Specifies the column mapping for the
properties of the Persistent field.

<basic> 0 or more times Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<lob> 0 or once#2 Specified when mapping to the Lob type.

<temporal> 0 or once Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<enumerated> 0 or once#2 Specified when mapping to the
enumeration type.

<version> 0 or more times Overwrites the mapping specified in fields
and properties.

13. Files Used with JPA

Compatibility Guide 486

Tag name Occurrence
pattern

Description

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<temporal> 0 or once Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<many-to-one> 0 or more times Overwrites the mapping specified in fields
and properties.

<join-column> 0 or more times#4 Specifies the external key column of the join
table corresponding to the owner-side entity.

<join-table> 0 or once#4 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<one-to-many> 0 or more times Overwrites the mapping specified in fields
and properties.

<order-by> 0 or once Specifies the order to be applied when
maintaining a relation in the collection.

<map-key> 0 or once Specifies the map key as the Map
type relation.

<join-table> 0 or once#3 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<join-column> 0 or more times#3 Specifies the external key column of the join
table corresponding to the owner-side entity.

<cascade> 0 or once Specifies the operations that you can cascade.

13. Files Used with JPA

Compatibility Guide 487

Tag name Occurrence
pattern

Description

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<one-to-one> 0 or more times Overwrites the mapping specified in fields
and properties.

<primary-key-join-column> 0 or more times#5 Overwrites all
@PrimaryKeyJoinColumn and
@PrimaryKeyJoinColumns (including
default values) of the entity class.

<join-column> 0 or more times#5 Specifies the external key column of the join
table corresponding to the owner-side entity.

<join-table> 0 or once#5 Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<many-to-many> 0 or more times Overwrites the mapping specified in fields
and properties.

<order-by> 0 or once Specifies the order to be applied when
maintaining a relation in the collection.

<map-key> 0 or once Specifies the map key as the Map
type relation.

<join-table> 0 or once Specifies the join table to be used in
many-to-many and the unilateral one-to-
many relationships.

<join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owner-side entity.

<inverse-join-column> 0 or more times Specifies the external key column of the join
table corresponding to the owned-side entity.

13. Files Used with JPA

Compatibility Guide 488

Tag name Occurrence
pattern

Description

<unique-constraint> 0 or more times Adds a unique constraint to DDL.

<column-name> One or more times Specifies the name of the column in which
the unique constraint will be added.

<cascade> 0 or once Specifies the operations that you can cascade.

<cascade-all> 0 or once Cascades all the operations.

<cascade-persist> 0 or once Cascades the persist operation.

<cascade-merge> 0 or once Cascades the merge operation.

<cascade-remove> 0 or once Cascades the remove operation.

<cascade-refresh> 0 or once Cascades the refresh operation.

<embedded> 0 or more times Overwrites the mapping specified in fields
and properties.

<attribute-override> 0 or more times Added to the value defined
in @AttributeOverride or
@AttributeOverrides of the
entity class.

<column> Once Specifies the column mapping for the
properties of the Persistent field.

<transient> 0 or more times Overwrites the mapping specified in fields
and properties.

<embeddable> 0 or more times Defines the embeddable class of the
persistence unit.

<description> 0 or once Adds the description for the embeddable
class of the persistence unit.

<attributes> 0 or once The element is not defined.

<basic> 0 or more times Overwrites the mapping specified in fields
and properties.

<column> 0 or once Specifies the column mapping for the
properties of the Persistent field.

<lob> 0 or once#2 Specified when mapping to the Lob type.

<temporal> 0 or once#2 Specified when mapping to the DATE,
TIME, and TIMESTAMP type.

<enumerated> 0 or once#2 Specified when mapping to the
enumeration type.

<transient> 0 or more times Overwrites the mapping specified in fields
and properties.

#1
Specify any one among the <id> tag and the <embedded-id> tag.

#2
Specify any one among the <lob> tag, the <temporal> tag, and the <enumerated> tag.

#3
Specify any one among the <join-column> tag and the <join-table> tag.

13. Files Used with JPA

Compatibility Guide 489

#4
Specify any one among the <join-table> tag and the <join-column> tag.

#5
Specify any one among the <primary-key-join-column> tag, the <join-column> tag, and the <join-table> tag.

13.3.1 Elements below entity-mappings

(1) <entity-mappings>
Indicates the root tag.

The following table lists the specifiable attributes:

Table 13‒6: Attributes of <entity-mappings>

Attribute name Type Optional/Required Description

version orm:versionType Required Specifies the JPA version.

(2) <package>
The package element specifies the class package described in the elements and attributes within the same mapping file.
In the package element, the class name with a package name is specified for a class, and if the name differs from the
package name specified in the package element, the package name is overwritten.

(3) <schema>
The schema element only applies to the entities that are specified within the same mapping file.

The schema element is overwritten by the following elements and attributes:

• The schema elements explicitly specified in @Table and @SecondaryTable of the entity class specified in
the mapping file.

• The schemaAttributes of the table element and the secondary-table element defined in the
entity element.

(4) <catalog>
The catalog element only applies to the entities specified within the same mapping file.

The catalog element is overwritten by the following elements and attributes:

• The catalog element explicitly specified in @Table and @SecondaryTable of the entity class specified
in the mapping file.

• The catalog attributes of the table lower element and the secondary-table lower element defined in the
entity element.

13. Files Used with JPA

Compatibility Guide 490

Precautions
Depending upon a database, the catalog element might not exist. The catalog element does not exist in Oracle
and HiRDB databases supported by the Cosminexus JPA Provider. Therefore, you cannot specify the catalog
element. If specified, an exception will be thrown when you execute the application.

(5) <access>
The access element applies to the classes that are specified and managed within the same mapping file.

The access element is overwritten by the following annotations and attributes:

• The access type determined on the basis of the location in which the entity class annotations are specified.

• The access attributes defined in the entity element, the mapped-superclass element, and the
embeddable element.

Specify PROPERTY or FIELD as the specified value. For details on how to specify access methods for entity class
fields, see 9.12.3 Specifying the access methods for the entity class fields.

(6) <sequence-generator>
Adds the sequence generator.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒7: Attributes of <sequence-generator>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.56 @SequenceGenerator.

sequence-name xsd:string Optional See the sequenceName attribute in
8.12.56 @SequenceGenerator.

initial-value xsd:int Optional See the initialValue attribute in
8.12.56 @SequenceGenerator.

allocation-size xsd:int Optional See the allocationSize attribute in
8.12.56 @SequenceGenerator.

13.3.2 Elements below persistence-unit-metadata

(1) <persistence-unit-metadata>
Specifies the definition related to the entire PersistenceUnit.

(2) <xml-mapping-metadata-complete>
If you specify the xml-mapping-metadata-complete element, the mapping metadata of the persistence unit is
controlled and the annotations specified in the class are ignored.

13. Files Used with JPA

Compatibility Guide 491

If the xml-mapping-metadata-complete element is specified and the XML element is omitted, the default value
is enabled.

Precautions
If you specify this element when an annotation is specified, the KDJE55532-W message is output.

(3) <persistence-unit-defaults>
Specifies the default value of the persistence unit.

(4) <schema>
The schema element applies to all entity classes, table generators, and join tables in the persistence unit.

The schema element is overwritten by the following elements and attributes:

• The schema element of the entity-mappings element.

• The schema attributes explicitly specified in @Table and @SecondaryTable of the entity class.

• The schema attributes specified in the table element and secondary-table element of the entity element.

• The schema elements explicitly specified in the @TableGenerator and table-generator element.

• The schema elements explicitly specified in the @JoinTable and join-table element.

(5) <catalog>
The catalog element applies to all entity classes, table generators, and join tables in the persistence unit.

The catalog element is overwritten by the following elements and attributes:

• The catalog element of the entity-mappings element.

• The catalog attributes explicitly specified in @Table and @SecondaryTable of the entity class.

• The catalog attributes specified in the table element and secondary-table element of the
entity element.

• The catalog elements explicitly specified in the @TableGenerator and table-generator element.

• The catalog elements explicitly specified in the @JoinTable and join-table element.

Precautions
The catalog element does not exist in the Oracle and HiRDB databases supported in Cosminexus JPA Provider.
Therefore, you cannot specify the catalog element. If specified, an exception will be thrown when the application
is executed.

(6) <access>
The access element applies to all the managed classes in the persistence unit.

The access element is overwritten by the following annotations, elements, and attributes:

• The access type determined on the basis of the location in which the entity class annotations are specified.

• The access element of the entity-mappings element.

13. Files Used with JPA

Compatibility Guide 492

• The access attributes defined in the entity element, mapped-superclass element, and
embeddable element.

Precautions
Specify PROPERTY or FIELD as the specified value. For details on how to specify access methods for entity class
fields, see 9.12.3 Specifying the access methods for the entity class fields.

(7) <cascade-persist>
The cascade-persist element applies to all the relationships in the persistence unit.

In addition to the values specified in annotations or O/R mapping files, the specification of the cascade-persist
element adds the cascade persistence option to all the relationships.

Precautions
If you specify the cascade-persist element, you cannot overwrite and disable.

(8) <entity-listeners>
The entity-listeners element defines the default entity listeners of the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

13.3.3 Elements below table-generator

(1) <table-generator>
The generators defined by the table-generator element will be applied to the persistence unit.

The defined generator is added to the generators defined using annotations. If a generator with the same name is defined
in the annotation, the generator defined by the table-generator element is overwritten.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒8: Attributes of <table-generator>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.60 @TableGenerator.

table xsd:string Optional See the table attribute in
8.12.60 @TableGenerator.

catalog xsd:string Optional See the catalog attribute in
8.12.60 @TableGenerator.

schema xsd:string Optional See the schema attribute in
8.12.60 @TableGenerator.

pk-column-name xsd:string Optional See the pkColumnName attribute in
8.12.60 @TableGenerator.

13. Files Used with JPA

Compatibility Guide 493

Attribute name Type Optional/Required Description

value-column-name xsd:string Optional See the valueColumnName attribute in
8.12.60 @TableGenerator.

pk-column-value xsd:string Optional See the pkColumnValue attribute in
8.12.60 @TableGenerator.

initial-value xsd:int Optional See the initialValue attribute in
8.12.60 @TableGenerator.

allocation-size xsd:int Optional See the allocationSize attribute in
8.12.60 @TableGenerator.

13.3.4 Elements below named-query

(1) <named-query>
The named query defined by the named-query element applies to the persistence unit.

The defined named query is added to the named query defined using annotations. If a named query with the same name
is defined in the annotation, the named query defined by the named-query element is overwritten.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒9: Attributes of <named-query>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.35 @NamedQuery.

13.3.5 Elements below named-native-query

(1) <named-native-query>
The named native query defined by the named-native-query element applies to the persistence unit.

The defined named native query is added to the named native query defined using annotations. If a named native query
with the same name is defined in the annotation, the named native query defined by the named-native-query
element of the O/R mapping file is overwritten.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒10: Attributes of <named-native-query>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.33 @NamedNativeQuery.

13. Files Used with JPA

Compatibility Guide 494

Attribute name Type Optional/Required Description

result-class xsd:string Optional See the resultClass attribute in
8.12.33 @NamedNativeQuery.

result-set-mapping xsd:string Optional See the resultSetMapping attribute in
8.12.33 @NamedNativeQuery.

13.3.6 Elements below sql-result-set-mapping

(1) <sql-result-set-mapping>
The SQL result set mapping defined by the sql-result-set-mapping element applies to the persistence unit.

The defined SQL result set mapping is added to the SQL result set mapping defined using annotations. If SQL
result set mapping with the same name is defined in the annotation, the SQL result set mapping defined by the
sql-result-set-mapping element of the O/R mapping file is overwritten.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒11: Attributes of <sql-result-set-mapping>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.57 @SqlResultSetMapping.

13.3.7 Elements below mapped-superclass
The following elements and attributes apply only to the mapped superclass that is the target of the elements and attributes:

(1) <mapped-superclass>
The mapped-superclass element defines the mapped superclass of the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒12: Attributes of <mapped-superclass>

Attribute name Type Optional/Required Description

class xsd:string Required Class name of the mapped superclass.

access orm:access-type Optional The access attribute defines the access type
of the mapped superclass. The access attribute
overwrites the access type specified in the
persistence-unit-defaults element
(default element) and entity-mappings
element (element valid for the entire persistence
unit) provided to the mapped superclass.#1

13. Files Used with JPA

Compatibility Guide 495

Attribute name Type Optional/Required Description

metadata-complete#2 xsd:boolean Optional If the metadata-complete attribute is
specified in the mapped-superclass
element, the annotations specified in the mapped
superclass and in the fields and properties of the
mapped superclass are ignored.
If metadata-complete is specified in the
mapped-superclass element and if the XML
element is omitted, the default value is enabled.

#1
Specify PROPERTY or FIELD as the specified value. For details on how to specify access methods for entity class fields, see 9.12.3 Specifying
the access methods for the entity class fields.

#2
If you specify this element when an annotation is specified, the KDJE55532-W message is output.

(2) <id-class>
The id-class element overwrites @IdClass specified in the mapped superclass.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒13: Attributes of <id-class>

Attribute name Type Optional/Required Description

class xsd:string Required See the value attribute in 8.12.22 @IdClass.

(3) <exclude-default-listeners>
The exclude-default-listeners element is applied regardless of whether @ExcludeDefaultListeners
is specified in the mapped superclass.

The exclude-default-listeners element controls the default entity listeners of the mapped superclass and the
sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(4) <exclude-superclass-listeners>
The exclude-superclass-listeners element is applied regardless of whether
@ExcludeSuperclassListeners is specified in the mapped superclass.

The exclude-superclass-listeners element controls the superclass listeners of the mapped superclass and
the sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(5) <entity-listeners>
The entity-listeners element overwrites @EntityListeners of the mapped superclass.

13. Files Used with JPA

Compatibility Guide 496

If these listeners are not controlled using other methods, these listeners will be applied in the mapped superclass and the
sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(6) <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, <post-load>

These elements overwrite the definition of the lifecycle callback method according to the corresponding annotations, in
the mapped superclass.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒14: Attributes of <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, and <post-load>

Attribute name Type Optional/Required Description

method-name xsd:string Required Target method name.

(7) <id>
The id element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒15: Attributes of <id>

Attribute name Type Optional/Required Description

name xsd:string Required Specifies a primary key property or field.

(8) <embedded-id>
The embedded-id element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒16: Attributes of <embedded-id>

Attribute name Type Optional/Required Description

name xsd:string Required Specifies a compound primary key.

(9) <basic>
The basic element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

13. Files Used with JPA

Compatibility Guide 497

The following table lists the specifiable attributes:

Table 13‒17: Attributes of <basic>

Attribute name Type Optional/Required Description

name xsd:string Required Specifies the methods and fields that map the type.

fetch orm:fetch-type Optional Specifies the value of the Fetch strategy.
For details, see the fetch attribute in
8.12.5 @Basic.

optional xsd:boolean Optional Specifies whether to use null in the
field (property).
For details, see the optional attribute in
8.12.5 @Basic.

(10) <version>
The version element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒18: Attributes of <version>

Attribute name Type Optional/Required Description

name xsd:string Required Specifies a version property or field.

(11) <many-to-one>
The many-to-one element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒19: Attributes of <many-to-one>

Attribute name Type Optional/Required Description

name xsd:string Required Specifies methods or fields with a many-to-
one relationship.

target-entity xsd:string Optional Specifies the related entity classes.
For details, see the targetEntity attribute in
8.12.29 @ManyToOne.

fetch orm:fetch-type Optional Specifies the value of the Fetch strategy.
For details, see the fetch attribute in
8.12.29 @ManyToOne.

optional xsd:boolean Optional Defines whether to specify null in all the non-
primitive field and property values.
For details, see the optional attribute in
8.12.29 @ManyToOne.

13. Files Used with JPA

Compatibility Guide 498

(12) <one-to-many>
The one-to-many element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒20: Attributes of <one-to-many>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a one-to-many relationship.

target-entity xsd:string Optional Specifies the related entity classes. For
details, see the targetEntity attribute in
8.12.36 @OneToMany.

fetch orm:fetch-type Optional Specifies the value of the Fetch strategy.
For details, see the fetch attribute in
8.12.36 @OneToMany.

mapped-by xsd:string Optional Specifies the field (property) names allocated to
the elements of the owned-side entity class
and the relations are maintained in the owner-side
entity class.
For details, see the mappedBy attribute in
8.12.36 @OneToMany.

(13) <one-to-one>
The one-to-one element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒21: Attributes of <one-to-one>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a one-to-one relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.37 @OneToOne.

fetch orm:fetch-type Optional See the fetch attribute in 8.12.37 @OneToOne.

optional xsd:boolean Optional See the optional attribute in
8.12.37 @OneToOne.

mapped-by xsd:string Optional See the mappedBy attribute in
8.12.37 @OneToOne.

(14) <many-to-many>
The many-to-many element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

13. Files Used with JPA

Compatibility Guide 499

The following table lists the specifiable attributes:

Table 13‒22: Attributes of <many-to-many>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a many-to-
many relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.28 @ManyToMany.

fetch orm:fetch-type Optional See the fetch attribute in
8.12.28 @ManyToMany.

mapped-by xsd:string Optional See the mappedBy attribute in
8.12.28 @ManyToMany.

(15) <embedded>
The embedded element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒23: Attributes of <embedded>

Attribute name Type Optional/Required Description

name xsd:string Required Property or field that is an embedded object.

(16) <transient>
The transient element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒24: Attributes of <transient>

Attribute name Type Optional/Required Description

name xsd:string Required Property or field that is non-persistent.

13.3.8 Elements below entity
The following elements and attributes apply only to the entity class that is the target of the lower elements
and attributes:

(1) <entity>
The entity element defines the entities of the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

13. Files Used with JPA

Compatibility Guide 500

The following table lists the specifiable attributes:

Table 13‒25: Attributes of <entity>

Attribute name Type Optional/Required Description

name xsd:string Optional The name attribute defines the name of the entity.
The name attribute is overwritten regardless of
whether the entity name defined by the name
element of @Entity is explicitly specified or is
the default value.
The operation when the entity class name is
overwritten might not execute normally.

class xsd:string Required Entity class name.

access orm:access-type Optional The access attribute defines the access type
of the entity class. The access attribute
overwrites the access type specified in the
persistence-unit-defaults element
(default element) and entity-mappings
element (element valid for the entire persistence
unit) provided to the entity class.#1

metadata-complete#2 xsd:boolean Optional If the metadata-complete attribute is
specified in the entity element, the
annotations specified in the entity class and
in the fields and properties of the entity class
are ignored.
If metadata-complete is specified in the
entity element and if the XML element is
omitted, the default value is enabled.

#1
Specify PROPERTY or FIELD as the specified value. For details on how to specify access methods for entity class fields, see 9.12.3 Specifying
the access methods for the entity class fields.

#2
If you specify this element when an annotation is specified, the KDJE55532-W message is output.

(2) <table>
The table element overwrites @Table (including default values) of the entity class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒26: Attributes of <table>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in 8.12.59 @Table.

catalog xsd:string Optional See the catalog attribute in 8.12.59 @Table.

schema xsd:string Optional See the schema attribute in 8.12.59 @Table.

13. Files Used with JPA

Compatibility Guide 501

(3) <secondary-table>
The secondary-table element overwrites all @SecondaryTable and @SecondaryTables (including
default values) of the entity class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒27: Attributes of <secondary-table>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.54 @SecondaryTable.

catalog xsd:string Optional See the catalog attribute in 8.12.54 @SecondaryTable.

schema xsd:string Optional See the schema attribute in 8.12.54 @SecondaryTable.

(4) <primary-key-join-column>
The primary-key-join-column element overwrites all @PrimaryKeyJoinColumn and
@PrimaryKeyJoinColumns (including default values) of the entity class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒28: Attributes of <primary-key-join-column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in
8.12.51 @PrimaryKeyJoinColumn.

referenced-column-name xsd:string Optional See the referencedColumnName
attribute in
8.12.51 @PrimaryKeyJoinColumn.

column-definition xsd:string Optional See the columnDefinition attribute
in 8.12.51 @PrimaryKeyJoinColumn.

(5) <id-class>
The id-class element overwrites @IdClass specified in the entity class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒29: Attributes of <id-class>

Attribute name Type Optional/Required Description

value xsd:string Required See the value attribute in 8.12.22 @IdClass.

13. Files Used with JPA

Compatibility Guide 502

(6) <inheritance>
The inheritance element overwrites @Inheritance (including default values) of the entity class.

The inheritance element will be applied to the entity class and the sub class (if the sub class specified in the
annotation and XML element is not overwritten using another method).

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒30: Attributes of <inheritance>

Attribute name Type Optional/Required Description

strategy orm:inheritance-type Optional See the strategy attribute in 8.12.23 @Inheritance.

(7) <discriminator-value>
The discriminator-value element overwrites @DiscriminatorValue (including default values) of the
entity class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(8) <discriminator-column>
The discriminator-column element overwrites @DiscriminatorColumn (including default values) of the
entity class.

The discriminator-column element will be applied to the entity class and the sub class (if the sub class
specified in the annotation and XML element is not overwritten using another method).

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒31: Attributes of <discriminator-column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in
8.12.8 @DiscriminatorColumn.

discriminator-type orm:discriminator-type Optional See the discriminatorType
attribute in
8.12.8 @DiscriminatorColumn.

column-definition xsd:string Optional See the columnDefinition
attribute in
8.12.8 @DiscriminatorColumn.

length xsd:int Optional See the length attribute in
8.12.8 @DiscriminatorColumn.

13. Files Used with JPA

Compatibility Guide 503

(9) <sequence-generator>
The generator defined by the sequence-generator element is added to the generators defined using annotations
and the other generators defined in the O/R mapping file. If a generator with the same name is defined in the annotation,
the generator defined by the sequence-generator element overwrites this generator.

The generator defined by the sequence-generator element applies to the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒32: Attributes of <sequence-generator>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.56 @SequenceGenerator.

sequence-name xsd:string Optional See the sequenceName attribute in
8.12.56 @SequenceGenerator.

initial-value xsd:int Optional See the initialValue attribute in
8.12.56 @SequenceGenerator.

allocation-size xsd:int Optional See the allocationSize attribute in
8.12.56 @SequenceGenerator.

(10) <table-generator>
The generator defined by the table-generator element is added to the generators defined using annotations and
the other generators defined in the O/R mapping file. If a generator with the same name is defined in the annotation, the
generator defined by the table-generator element overwrites this generator.

The generators defined by the table-generator element will be applied to the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒33: Attributes of <table-generator>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.60 @TableGenerator.

table xsd:string Optional See the table attribute in
8.12.60 @TableGenerator.

catalog xsd:string Optional See the catalog attribute in
8.12.60 @TableGenerator.

schema xsd:string Optional See the schema attribute in
8.12.60 @TableGenerator.

pk-column-name xsd:string Optional See the pkColumnName attribute in
8.12.60 @TableGenerator.

value-column-name xsd:string Optional See the valueColumnName attribute in
8.12.60 @TableGenerator.

13. Files Used with JPA

Compatibility Guide 504

Attribute name Type Optional/Required Description

pk-column-value xsd:string Optional See the pkColumnValue attribute in
8.12.60 @TableGenerator.

initial-value xsd:int Optional See the initialValue attribute in
8.12.60 @TableGenerator.

allocation-size xsd:int Optional See the allocationSize attribute in
8.12.60 @TableGenerator.

(11) <named-query>
The named query defined by the named-query element is added to the named query defined using annotations and the
other named queries defined in the O/R mapping file. If a named query with the same name is defined in the annotation,
the named query defined by the named-query element overwrites this named query.

The named query defined by the named-query element applies to the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒34: Attributes of <named-query>

Attribute
name

Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.35 @NamedQuery.

(12) <named-native-query>
The named native query defined by the named-native-query element is added to the named native query defined
using annotations and the other named native queries defined in the O/R mapping file. If a named native query with
the same name is defined in the annotation, the named native query defined by the named-native-query element
overwrites this named native query.

The named native query defined by the named-native-query element applies to the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒35: Attributes of <named-native-query>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.33 @NamedNativeQuery.

result-class xsd:string Optional See the resultClass attribute in
8.12.33 @NamedNativeQuery.

result-set-mapping xsd:string Optional See the resultSetMapping attribute in
8.12.33 @NamedNativeQuery.

13. Files Used with JPA

Compatibility Guide 505

(13) <sql-result-set-mapping>
The SQL result mapping defined by the sql-result-set-mapping element is added to the SQL result mapping
defined using annotations and the other SQL result mapping defined in the O/R mapping file. If SQL result mapping
with the same name is defined in the annotation, the SQL result mapping defined in the sql-result-set-mapping
element overwrites this SQL result mapping.

The SQL result mapping defined by the sql-result-set-mapping element applies to the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒36: Attributes of <sql-result-set-mapping>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.57 @SqlResultSetMapping.

(14) <exclude-default-listeners>
The exclude-default-listeners element is applied regardless of whether @ExcludeDefaultListeners
is specified in the entity class.

The exclude-default-listeners element controls the default entity listeners of the entity class and the
sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(15) <exclude-superclass-listeners>
The exclude-superclass-listeners element is applied regardless of whether
@ExcludeSuperclassListeners is specified in the entity class.

The exclude-superclass-listeners element controls the superclass listeners of the entity class and the
sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(16) <entity-listeners>
The entity-listeners element overwrites @EntityListeners of the entity class.

If these listeners are not controlled using other methods, these listeners will be applied in the entity class and the
sub class.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(17) <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, <post-load>

These elements overwrite the definition of the lifecycle callback method according to the corresponding annotations, in
the entity class.

13. Files Used with JPA

Compatibility Guide 506

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒37: Attributes of <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, and <post-load>

Attribute name Type Optional/Required Description

method-name xsd:string Required Target method name.

(18) <attribute-override>
The attribute-override element is added to the value defined in @AttributeOverride or
@AttributeOverrides of the entity class. The attribute-override element overwrites the
AttributeOverride element with the same attribute name.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒38: Attributes of <attribute-override>

Attribute
name

Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.3 @AttributeOverride.

(19) <association-override>
The association-override element is added to the value defined in @AssociationOverride or
@AssociationOverrides of the entity class. The association-override element overwrites the
AssociationOverride element with the same attribute name.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒39: Attributes of <association-override>

Attribute
name

Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.1 @AssociationOverride.

(20) <id>
The id element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

13. Files Used with JPA

Compatibility Guide 507

Table 13‒40: Attributes of <id>

Attribute
name

Type Optional/Required Description

name xsd:string Required Primary key property or field.

(21) <embedded-id>
The embedded-id element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒41: Attributes of <embedded-id>

Attribute name Type Optional/Required Description

name xsd:string Required Compound primary key.

(22) <basic>
The basic element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒42: Attributes of <basic>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields that map the type.

fetch orm:fetch-type Optional See the fetch attribute in 8.12.5 @Basic.

optional xsd:boolean Optional See the optional attribute in 8.12.5 @Basic.

(23) <version>
The version element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒43: Attributes of <version>

Attribute
name

Type Optional/Required Description

name xsd:string Required Version property or field.

(24) <many-to-one>
The many-to-one element overwrites the mapping specified in fields and properties.

13. Files Used with JPA

Compatibility Guide 508

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒44: Attributes of <many-to-one>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a many-to-
one relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.29 @ManyToOne.

fetch orm:fetch-type Optional See the fetch attribute in
8.12.29 @ManyToOne.

optional xsd:boolean Optional See the optional attribute in
8.12.29 @ManyToOne.

(25) <one-to-many>
The one-to-many element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒45: Attributes of <one-to-many>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a one-to-
many relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.36 @OneToMany.

fetch orm:fetch-type Optional See the fetch attribute in
8.12.36 @OneToMany.

mapped-by xsd:string Optional See the mappedBy attribute in
8.12.36 @OneToMany.

(26) <one-to-one>
The one-to-one element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒46: Attributes of <one-to-one>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a one-to-one relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.37 @OneToOne.

13. Files Used with JPA

Compatibility Guide 509

Attribute name Type Optional/Required Description

fetch orm:fetch-type Optional See the fetch attribute in 8.12.37 @OneToOne.

optional xsd:boolean Optional See the optional attribute in
8.12.37 @OneToOne.

mapped-by xsd:string Optional See the mappedBy attribute in
8.12.37 @OneToOne.

(27) <many-to-many>
The many-to-many element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒47: Attributes of <many-to-many>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields with a many-to-
many relationship.

target-entity xsd:string Optional See the targetEntity attribute in
8.12.28 @ManyToMany.

fetch orm:fetch-type Optional See the fetch attribute in
8.12.28 @ManyToMany.

mapped-by xsd:string Optional See the mappedBy attribute in
8.12.28 @ManyToMany.

(28) <embedded>
The embedded element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒48: Attributes of <embedded>

Attribute
name

Type Optional/Required Description

name xsd:string Required Property or field that is an embedded object.

(29) <transient>
The transient element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

13. Files Used with JPA

Compatibility Guide 510

Table 13‒49: Attributes of <transient>

Attribute name Type Optional/Required Description

name xsd:string Required Property or field that is non-persistent.

13.3.9 Elements under embeddable
The following elements and attributes apply only to the embeddable class that is the target of the elements
and attributes:

(1) <embeddable>
The embeddable element defines the embeddable class of the persistence unit.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒50: Attributes of <embeddable>

Attribute name Type Optional/Required Description

class xsd:string Required Class name of the
embeddable class.

access orm:access-type Optional The access attribute defines the
access type of the embeddable
class. The access attribute
overwrites the access type
specified in the persistence-unit-
defaults element (default element)
and entity-mappings element
(element valid for the entire
persistence unit) provided to the
embeddable class.#1

metadata-complete#2 xsd:boolean Optional If the metadata-complete
attribute is specified in the
embeddable element, the
annotations specified in the
embeddable class and in the fields
and properties of the embeddable
class are ignored.
If metadata-complete is specified in
the embeddable element and if the
XML element is omitted, the default
value is enabled.

#1
Specify PROPERTY or FIELD as the specified value. For details on how to specify access methods for entity class fields, see 9.12.3 Specifying
the access methods for the entity class fields.

#2
If you specify this element when an annotation is specified, the KDJE55532-W message is output.

13. Files Used with JPA

Compatibility Guide 511

(2) <basic>
The basic element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒51: Attributes of <basic>

Attribute name Type Optional/Required Description

name xsd:string Required Methods or fields that map the type.

fetch orm:fetch-type Optional See the fetch attribute in 8.12.5 @Basic.

optional xsd:boolean Optional See the optional attribute in 8.12.5 @Basic.

(3) <transient>
The transient element overwrites the mapping specified in fields and properties.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒52: Attributes of <transient>

Attribute
name

Type Optional/Required Description

name xsd:string Required Property or field that is non-persistent.

13.3.10 Other elements

(1) <description>
Adds the description.

(2) <entity-listener>
Specifies the entity listener.

The following table lists the specifiable attributes:

Table 13‒53: Attributes of <entity-listener>

Attribute
name

Type Optional/Required Description

class xsd:string Required Class name of the entity listener.

13. Files Used with JPA

Compatibility Guide 512

(3) <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, <post-load>

Specifies the lifecycle callback method.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒54: Attributes of <pre-persist>, <post-persist>, <pre-remove>, <post-remove>, <pre-
update>, <post-update>, and <post-load>

Attribute name Type Optional/Required Description

method-name xsd:string Required Target method name.

(4) <unique-constraint>
Adds a unique constraint to DDL.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(5) <column-name>
Specifies the name of the column in which the unique constraint will be added.

The column-name element corresponds to the columnNames attribute of @UniqueConstraint.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(6) <query>
Specifies the query string.

The query element corresponds to the query attribute of @NamedQuery and the query attribute
of @NamedNativeQuery.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(7) <hint>
Adds a hint to the query.

The hint element corresponds to the hints attribute of @NamedQuery and the hints attribute
of @NamedNativeQuery.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒55: Attributes of <hint>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.53 @QueryHint.

13. Files Used with JPA

Compatibility Guide 513

Attribute name Type Optional/Required Description

value xsd:string Required See the value attribute in 8.12.53 @QueryHint.

(8) <entity-result>
Specifies the entity class used for mapping the native SQL query result.

The entity-result element corresponds to the entities attribute of @SqlResultSetMapping.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒56: Attributes of <entity-result>

Attribute name Type Optional/Required Description

entity-class xsd:string Required See the entityClass attribute in
8.12.15 @EntityResult.

discriminator-column xsd:string Optional See the discriminatorColumn
attribute in 8.12.15 @EntityResult.

(9) <field-result>
Specifies the field used for mapping the native SQL query result.

The field-result element corresponds to the fields attribute of @EntityResult.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒57: Attributes of <field-result>

Type Attribute
name

Optional/Required Description

xsd:string name Required See the name attribute in 8.12.19 @FieldResult.

xsd:string column Required See the column attribute in 8.12.19 @FieldResult.

(10) <column-result>
Specifies the column used for mapping the native SQL query result.

The column-result element corresponds to the columns attribute of @SqlResultSetMapping.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒58: Attributes of <column-result>

Type Attribute name Optional/Required Description

xsd:string name Required See the name attribute in 8.12.7 @ColumnResult.

13. Files Used with JPA

Compatibility Guide 514

(11) <attributes>
The functionality of the attributes element does not exist.

(12) <column>
The column element specifies the column mapping for the Persistent field or property.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒59: Attributes of <column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in 8.12.6 @Column.

unique xsd:boolean Optional See the unique attribute in
8.12.6 @Column.

nullable xsd:boolean Optional See the nullable attribute in
8.12.6 @Column.

insertable xsd:boolean Optional See the insertable attribute in
8.12.6 @Column.

updatable xsd:boolean Optional See the updatable attribute in
8.12.6 @Column.

column-definition xsd:string Optional See the columnDefinition attribute in
8.12.6 @Column.

table xsd:string Optional See the table attribute in 8.12.6 @Column.

length xsd:int Optional See the length attribute in
8.12.6 @Column.

precision xsd:int Optional See the precision attribute in
8.12.6 @Column.

scale xsd:int Optional See the scale attribute in 8.12.6 @Column.

(13) <generated-value>
Specifies the strategy for generating the primary key value.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒60: Attributes of <generated-value>

Attribute name Type Optional/Required Description

strategy orm:generation-type Optional See the strategy attribute in
8.12.20 @GeneratedValue.

generator xsd:string Optional See the generator attribute in
8.12.20 @GeneratedValue.

13. Files Used with JPA

Compatibility Guide 515

(14) <temporal>
Specified when mapping to the DATE, TIME, and TIMESTAMP type.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(15) <table-generator>
Adds the table generator.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒61: Attributes of <table-generator>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in
8.12.60 @TableGenerator.

table xsd:string Optional See the table attribute in
8.12.60 @TableGenerator.

catalog xsd:string Optional See the catalog attribute in
8.12.60 @TableGenerator.

schema xsd:string Optional See the schema attribute in
8.12.60 @TableGenerator.

pk-column-name xsd:string Optional See the pkColumnName attribute in
8.12.60 @TableGenerator.

value-column-name xsd:string Optional See the valueColumnName attribute in
8.12.60 @TableGenerator.

pk-column-value xsd:string Optional See the pkColumnValue attribute in
8.12.60 @TableGenerator.

initial-value xsd:int Optional See the initialValue attribute in
8.12.60 @TableGenerator.

allocation-size xsd:int Optional See the allocationSize attribute in
8.12.60 @TableGenerator.

(16) <attribute-override>
Overwrites the mapping of properties and fields.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒62: Attributes of <attribute-override>

Attribute name Type Optional/Required Description

name xsd:string Required See the name attribute in 8.12.3 @AttributeOverride.

13. Files Used with JPA

Compatibility Guide 516

(17) <lob>
The lob element is specified when mapping to the Lob type.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(18) <enumerated>
Specified when mapping to the enumeration type.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(19) <join-column>
In order to join tables, the join-column element specifies the external key column of the join table corresponding to
the owner-side entity.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒63: Attributes of <join-column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in
8.12.24 @JoinColumn.

referenced-column-name xsd:string Optional See the referencedColumnName
attribute in 8.12.24 @JoinColumn.

unique xsd:boolean Optional See the unique attribute in
8.12.24 @JoinColumn.

nullable xsd:boolean Optional See the nullable attribute in
8.12.24 @JoinColumn.

insertable xsd:boolean Optional See the insertable attribute in
8.12.24 @JoinColumn.

updatable xsd:boolean Optional See the updatable attribute in
8.12.24 @JoinColumn.

column-definition xsd:string Optional See the columnDefinition attribute
in 8.12.24 @JoinColumn.

table xsd:string Optional See the table attribute in
8.12.24 @JoinColumn.

(20) <join-table>
The join-table element specifies the join table to be used in many-to-many and the unilateral one-to-
many relationships.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

13. Files Used with JPA

Compatibility Guide 517

Table 13‒64: Attributes of <join-table>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in 8.12.26 @JoinTable.

catalog xsd:string Optional See the catalog attribute in 8.12.26 @JoinTable.

schema xsd:string Optional See the schema attribute in 8.12.26 @JoinTable.

(21) <inverse-join-column>
In order to join tables, the inverse-join-column element specifies the external key column of the join table
corresponding to the owned-side entity.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒65: Attributes of <inverse-join-column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in
8.12.24 @JoinColumn.

referenced-column-name xsd:string Optional See the referencedColumnName
attribute in 8.12.24 @JoinColumn.

unique xsd:boolean Optional See the unique attribute in
8.12.24 @JoinColumn.

nullable xsd:boolean Optional See the nullable attribute in
8.12.24 @JoinColumn.

insertable xsd:boolean Optional See the insertable attribute in
8.12.24 @JoinColumn.

updatable xsd:boolean Optional See the updatable attribute in
8.12.24 @JoinColumn.

column-definition xsd:string Optional See the columnDefinition attribute
in 8.12.24 @JoinColumn.

table xsd:string Optional See the table attribute in
8.12.24 @JoinColumn.

(22) <cascade>
The cascade element specifies the operations that you can cascade.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(23) <cascade-all>
Cascades all the operations.

(24) <cascade-persist>
Cascades the persist operation.

13. Files Used with JPA

Compatibility Guide 518

(25) <cascade-merge>
Cascades the merge operation.

(26) <cascade-remove>
Cascades the remove operation.

(27) <cascade-refresh>
Cascades the refresh operation.

(28) <order-by>
Specifies the order to be applied when maintaining a relation in the collection.

For details on the functionality and attributes, see 8.12 javax.persistence package.

(29) <map-key>
Specifies the map key as the Map type relation.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒66: Attributes of <map-key>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in 8.12.30 @MapKey.

(30) <primary-key-join-column>
The primary-key-join-column element specifies the primary key column used as the external key that JOINS
with other tables.

For details on the functionality and attributes, see 8.12 javax.persistence package.

The following table lists the specifiable attributes:

Table 13‒67: Attributes of <primary-key-join-column>

Attribute name Type Optional/Required Description

name xsd:string Optional See the name attribute in
8.12.51 @PrimaryKeyJoinColumn.

referenced-column-name xsd:string Optional See the referencedColumnName
attribute in
8.12.51 @PrimaryKeyJoinColumn.

column-definition xsd:string Optional See the columnDefinition attribute
in 8.12.51 @PrimaryKeyJoinColumn.

13. Files Used with JPA

Compatibility Guide 519

13.4 Query hint

In Cosminexus JPA Provider, you can specify a query hint in the hint element that is the lower element of the
named-query element in the O/R mapping file. Note that you can also specify the query hint in the @Hint annotation
of the argument for the @NamedQuery annotation. For details on the query hint to be specified for annotations, see
8.12.53 @QueryHint.

The following table describes the query hints that can be specified in the hint element that is the lower element of the
named-query element in the O/R mapping file:

Table 13‒68: Query hints that can be used in Cosminexus JPA Provider

Key name Description Specifiable value Default

cosminexus.jpa.pessimistic-lock Specifies whether the
pessimistic lock will
be used.

NoLock
The pessimistic lock will not
be used.

Lock
The pessimistic lock will be used.
If the target table is already
locked, the release of the lock will
be awaited.
• In Oracle
SELECT ... FOR
UPDATE will be issued.

• In HiRDB
SELECT ... WITH
EXCLUSIVE LOCK will
be issued.

LockNoWait
The pessimistic lock will be used.
If the target table is already
locked, an exception will occur.
• In Oracle
SELECT ... FOR
UPDATE NO WAIT will
be issued.

• In HiRDB
SELECT ... WITH
EXCLUSIVE LOCK NO
WAIT will be issued.

NoLock

Note:
The data type that can be specified is String.

Important note

If a value outside the specifiable range is set for a query hint specified in the O/R mapping file, an exception will
occur when the application starts. Note that the value is not case sensitive.

13. Files Used with JPA

Compatibility Guide 520

14 Files Used in Web Server Integration

This chapter describes the storage locations, functionality, and format of the files used in Web server
integration and the keys that you can specify in the files.

Compatibility Guide 521

14.1 List of files used in Web server integration

The following table lists the files used in Web server integration:

Table 14‒1: List of files used for Web server integration

File name Classification Overview Reference

isapi_redirect.conf Redirector action
definition file for
Microsoft IIS

Define the action of the redirector for
Microsoft IIS.

14.2.1

mod_jk.conf Redirector action
definition file
for Cosminexus
HTTP Server

Define the action of the redirector for
Cosminexus HTTP Server.

14.2.2

uriworkermap.properties Mapping definition file
for Microsoft IIS

Define the URL pattern to be
transferred to the Web container
server through the request to
Microsoft IIS.

14.2.3

workers.properties Worker definition file Define the action of the redirector. 14.2.4

14. Files Used in Web Server Integration

Compatibility Guide 522

14.2 Details on files used in Web server integration

14.2.1 isapi_redirect.conf (Redirector action definition file for Microsoft
IIS)

(1) Format
Specify the key as follows:

key-name = value

Specification method

• The string up to the linefeed is a value.

• The line beginning with a hash mark (#) is a comment.

• If you define a line without a value, the line is ignored. The parameters not defined as valid key names are also
ignored even if defined in the action definition file.

• Up to 1023 characters are valid as key-name=value. The part exceeding this number is truncated.

(2) File storage location
Cosminexus-installation-directory\CC\web\redirector\isapi_redirect.conf

(3) Functionality
This action definition file defines the action parameters of the redirector for Microsoft IIS.

(4) Specifiable keys
The specifiable keys and default values are described below. If you specify an invalid value in these keys, the operations
may not produce the desired results. If you specify two or more keys, the last specified key becomes valid.

Key name Contents Default value

connection_sharing Specify whether to share a connection between workers.

If you specify true:
The workers connected to the same host and the same port share a connection, even
if the worker definitions are different.

If you specify false:
The workers having different worker definitions do not share a connection.

true

connect_timeout Specify an integer (units: seconds) from 0 to 3600 for the timeout value to connect to the
Web container when a request is sent.
If you specify a non-numeric value, or a numeric value outside the range, a message will
be output and the default value will be used.
If you set the timeout as 0 or a time period longer than the resend timer of data
transmission in TCP, the timeout value becomes the timeout value of TCP. In such a case,
a message indicating that an invalid timeout value has been specified will not be output.

30

filter_priority Specify the priority order used when the redirector is registered as an ISAPI filter.
The following strings can be specified:

high

14. Files Used in Web Server Integration

Compatibility Guide 523

Key name Contents Default value

• high (priority order is set to "high")
• medium (priority order is set to "medium")
• low (priority order is set to "low")

gateway_host Specify the host name or the IP address of the gateway.
When requests without a Host header are redirected to files, such as the welcome file,
the host name of the Location header URL becomes the specified value.

None

gateway_https_schem
e

When a client request uses https as a scheme, and the scheme for a Web server will
become http by using an SSL accelerator, specify true.
If you specify true, https is assumed to be used as the scheme for requests sent to the
Web server. If you specify false, no action occurs.

false

gateway_port Specify the port number of the gateway. If a request has no Host header and the request
is to be redirected to a location such as a welcome file, the port number portion of a URL
that is specified in the Location header becomes the specified value. Always specify
this parameter together with gateway_host.
If you specify gateway_host and omit this parameter, an access via http uses 80, and
an access via hppts uses 443.

None

log_file_dir Specify the output location directory of the log file.

When specified as a relative path:
Specify a directory name present in Cosminexus-installation-
directory\CC\web\redirector.

When specified as an absolute path:
Specify the coded directory name.

Note that you must specify write permission to the Users group, as the access permission
to the directory specified as the output destination. If access permission is not set, the log
file is not output.
If the same value has been specified in log_file_prefix and
trace_log_file_prefix, you need to specify a value different from
trace_log_file_dir for this key. If you specify the same value, the redirector will
not run.

Logs

log_file_num Specify the maximum number of redirector log files. If this number is exceeded, the old
log files are overwritten.
Specify an integer value from 1 to 64.

5

log_file_prefix This is a prefix for the log file name. The actual log file name will be the value specified
by this key with serial-number.log added.
If the same value has been specified in log_file_dir and
trace_log_file_dir, you need to specify a value different from
trace_log_file_prefix for this key. If you specify the same value, the redirector
will not run.

isapi_redir
ect

log_file_size Specify the size for each redirector log file in bytes.
Specify an integer value from 4096 to 16777216.

4194304

log_level Specify the output level of redirector log files. You specify only one log level.
You can specify debug, info, or error.

error

prf_id Specify the character string that was specified in the PRF identifier when invoking the
PRF daemon.

PRF_ID

receive_client_time
out

Specify in seconds the timeout period used when the POST data is received from
the client.
Specify an integer value from 60 to 3600 in multiples of 60 (seconds).
If the specified value is not a multiple of 60, a value rounded off to a multiple of 60
becomes the timeout period.

300

14. Files Used in Web Server Integration

Compatibility Guide 524

Key name Contents Default value

request_retry_count
}

Specify an integer (units: number of times) from 1 to 16 for the retry count to connect to
the Web container when a request is sent and the retry count to send requests.
The retry count also includes the first establishment of connection and the request
sending process.
When a timeout occurs, retry occurs in the following cases:
• When a timeout occurs while connection is being established
• When a timeout occurs while the request header is being sent

After the above processes, if a timeout occurs while the request body is being sent, retry
does not occur.
If you set the retry count to an abnormal value, such as a value outside the range or a value
that is not an integer, the default value is set.

3

send_timeout Specify an integer (units: seconds) from 0 to 3600 for the timeout period for
sending requests.
If you specify a non-numeric value, or a numeric value outside the range, a message will
be output and the default value will be used.
If you set the timeout as 0 or a time period longer than the resend timer of data
transmission in TCP, the timeout value becomes the timeout value of TCP. In such a case,
a message indicating that an invalid timeout value has been specified will not be output.

100

trace_log Specify whether to output the trace log for the maintenance of redirector. Specify true
if trace log is to be output and false if it is not to be output.

true

trace_log_file_dir Specify the output destination directory for the maintenance trace log files.

When coded as a relative path:
Specify a directory name present in Cosminexus-installation-
directory\CC\web\redirector.

When coded as an absolute path:
Specify the coded directory name.

Note that you must specify write permission for the Users group in the access
permission to the directory specified as the output destination#. If access permission is
not set, the log file is not output.
If the same value has been specified in log_file_prefix and
trace_log_file_prefix, you need to specify a value different from log_file_dir
for this key. If you specify the same value, the redirector will not run.

logs

trace_log_file_num Specify the maximum number of maintenance trace log files. If this number is exceeded,
the old log files are overwritten.
Specify an integer value from 1 to 64.

4

trace_log_file_pref
ix

Specify the prefix for the maintenance trace log file name. The actual log file name will
be the value specified by this key with serial-number.log added.
If the same value has been specified in log_file_dir and trace_log_file_dir, you
need to specify a value different from log_file_prefix for this key. If you specify
the same value, the redirector will not run.

iis_rd_trac
e

trace_log_file_size Specify the size for each maintenance trace log file in bytes.
Specify an integer value from 4096 to 16777216.

16777216

worker_file Specify the location and file name of the worker definition file.

When specified as a relative path:
Specify a file name present in Cosminexus-installation-
directory\CC\web\redirector.

When specified as an absolute path:
Specify the coded file name.

workers.pro
perties

14. Files Used in Web Server Integration

Compatibility Guide 525

Key name Contents Default value

worker_mount_file Specify the location and file name of the mapping definition file.

When specified as a relative path:
Specify a file name present in Cosminexus-installation-
directory\CC\web\redirector.

When specified as an absolute path:
Specify the coded file name.

uriworkerma
p.propertie
s

#
For integration with Microsoft IIS:
For a new installation, the default log output destination directory does not exist. You either create a directory and grant access permission or
grant access permission to the directory redirector that exists one level above.
Moreover, if the log output destination directory of the redirector is changed and only half of that path exists, you either grant the access
permission to the lowest level of the existing directory or create the entire specified path, and then grant the access permission.

(5) Examples of coding
gateway_host=hostA
gateway_https_scheme=true
gateway_port=443

log_level=error
log_file_size=4194304
log_file_num=5
log_file_dir=logs
log_file_prefix=isapi_redirect
prf_id=prfid
trace_log=true
trace_log_file_size=16777216
trace_log_file_num=4
trace_log_file_dir=logs
trace_log_file_prefix=iis_rd_trace
receive_client_timeout=300
worker_file=workers.properties
worker_mount_file=uriworkermap.properties

(6) Precautions
If you change the user definition of the redirector by editing this file, you will need to restart the Web server. The changed
definition will be applied after the Web server is restarted.

14.2.2 mod_jk.conf (Redirector action definition file for Cosminexus
HTTP Server)

(1) Format
Specify the key as follows:

key-name value

14. Files Used in Web Server Integration

Compatibility Guide 526

Specification method

• The string up to the linefeed is a value.

• The line beginning with a hash mark (#) is a comment.

• Separate the key name and the value with a single-byte space. If you specify multiple values, separate them with
single-byte spaces.

• If the specified value contains a space in the file path, you need to enclose the entire path within double quotation
marks ("").

• The command coding methods and the formats for describing the types of characters that you can code must be
compliant with Cosminexus HTTP Server specifications.

• The key name is not case sensitive.

(2) File storage location
• In Windows

Cosminexus-installation-directory\CC\web\redirector\mod_jk.conf
• In UNIX
/opt/Cosminexus/CC/web/redirector/mod_jk.conf

(3) Functionality
Define the action of the redirector.

(4) Specifiable keys
• Module definition

You define the library for processing the communication between the Web container server and the Cosminexus
HTTP Server.

Format
LoadModule jk_module library-name
You specify the library name as an absolute path. You cannot specify multiple library names.

Examples of specification
In Windows
LoadModule jk_module "Cosminexus-installation-
directory\CC\web\redirector\mod_jk.dll"
In UNIX
LoadModule jk_module /opt/Cosminexus/CC/web/redirector/mod_jk.so

Precautions
You must code the key specifying the module definition before other keys.

• Mapping definition
You define the URL pattern to be transferred to the Web container server through the request to Cosminexus
HTTP Server.

Format
JkMount URL-pattern worker-name
Code any one worker out of those specified in the worker.list of the workers.properties. You
can code multiple combinations of the URL pattern and worker name. If you set an invalid value in this file,

14. Files Used in Web Server Integration

Compatibility Guide 527

the operations may not produce the desired results. If you specify a URL pattern which does not start with a
forward slash (/), an error message is output in the log when the redirector starts and the specified content
becomes ignored.
If you specify a URL pattern containing an extension with a length of 0 characters (when the URL pattern ends
with /*.), the message KDJE41041-W is output to the log and the specified content is ignored.
For details on the JkMount key, see 5.4 Distributing requests by the round-robin format and 5.5 Distributing
requests by the POST data size.

• Redirector definition
You can specify the following keys. If you specify an invalid value in these keys, the operations may not produce the
desired results.
The Related information column lists the reference locations for information related to the specified key. Note that
Application Server is omitted from the manual names.

Key name Contents Default value Related information

JkConnectTimeout Specify the timeout value used for connecting
to the Web container when a request is sent.
Specify the timeout value as an integer (units:
seconds) from 0 to 3600.
If you specify a non-numeric value, or a
numeric value outside the range, a message
will be output and the default value will
be used.
If you set the timeout as 0 or a time
period longer than the resend timer of
data transmission in TCP, the timeout value
becomes the timeout value of TCP. In such
a case, a message indicating that an invalid
timeout value has been specified will not
be output.

30

JkGatewayHost Specify the host name or the IP address of
the gateway.
When requests without a Host header are
redirected to files, such as the welcome file,
the host name of the Location header URL
becomes the specified value.

None 5.10 Notification of
gateway information to
a Web container

JkGatewayHttpsScheme When a client request uses https as a scheme,
and the scheme for a Web server will become
http by using an SSL accelerator, specify On.
If On is specified, https is assumed to be used as
the scheme for requests sent to the Web server.
If you specify Off, no action occurs.

Off 5.10 Notification of
gateway information to
a Web container

JkGatewayPort Specify the port number of the gateway. If a
request has no Host header and the request is
to be redirected to a location such as a welcome
file, the port number portion of the URL that
is specified in the Location header becomes
the specified value.
Always specify this parameter together
with JkGatewayHost.
If you specify JkGatewayHost and omit
this parameter, an access via http uses 80, and
an access via hppts uses 443.

None 5.10 Notification of
gateway information to
a Web container

JkLogFileDir Specify the output location directory of the log
file. In Windows, specify either as a relative

• In Windows
logs

14. Files Used in Web Server Integration

Compatibility Guide 528

Key name Contents Default value Related information

path or as an absolute path. In UNIX, specify as
an absolute path.

When specified as a relative path:
Specify a directory name
present in Cosminexus-installation-
directory\CC\web\redirector.

When specified as an absolute path:
Specify the coded directory name.

Note that you must specify write permission
to the execution account of Cosminexus HTTP
Server in the access permission to the directory
specified as the output destination#1. If access
permission is not set, the log file is not output.
If the same value has been
specified in JkLogFilePrefix and
JkTraceLogFilePrefix, you need
to specify a value different from
JkTraceLogFileDir in this key. If you
specify the same value, the redirector will
not run.

• In UNIX
/opt/
Cosminex
us/CC/we
b/
redirect
or/logs

JkLogFileNum Specify the maximum number of redirector log
files. If this number is exceeded, the old log
files are overwritten. Specify an integer value
in the following range:
• In Windows

1≤ JkLogFileNum≤ 16
• In UNIX

1≤ JkLogFileNum≤ 64

5

JkLogFilePrefix This is a prefix for the log file name. The actual
log file name will be the value specified by this
key with serial-number.log added.
If the same value has been
specified in JkLogFileDir and
JkTraceLogFileDir, you need to
specify a value different from
JkTraceLogFilePrefix in this key. If
you specify the same value, the redirector will
not run.

hws_redirec
t

JkLogFileSize Specify the size for each redirector log file
in bytes. Specify an integer value in the
following range:
• In Windows

4096≤
JkLogFileSize≤ 2147483647

• In UNIX
4096≤ JkLogFileSize≤ 16777216

4194304

JkLogLevel Specify the log output level of message logs for
redirectors and of trace logs for maintenance.
You specify only one log level. You can specify
debug, info, error (default value),
and emerg. You can specify emerg only
in Windows.

error

14. Files Used in Web Server Integration

Compatibility Guide 529

Key name Contents Default value Related information

If you specify a value other than those specified
above, the operation will be carried out
assuming that error has been specified.

JkModulePriority When registering an external module other
than the redirector in the Cosminexus HTTP
Server, specify the execution order of the
redirector for the other external modules.
The values that can be specified are as follows:
• Integers from -10 to 30
• REALLY_FIRST (corresponds to integer

value -10)
• FIRST (corresponds to integer value 0)
• MIDDLE (corresponds to integer value 10)
• LAST (corresponds to integer value 20)
• REALLY_LAST (corresponds to integer

value 30)

Smaller the value specified, higher the position
in the execution order.

FIRST

JkOptions Specify whether to decode the requested URL.
Note that this key is used for UNIX.

ForwardURICompatUnparsed (default):
Do not decode the requested URL.

ForwardURICompat:
Decode the requested URL.

URL decoding was performed in version
02-00, therefore, when using URLs containing
character strings that are converted due to URL
decoding, specify ForwardURICompat
only when URL decoding needs to be
performed as in the case of version 02-00.

ForwardURIC
ompatUnpars
ed

JkPrfId Specify the character string that was specified
in the PRF identifier when invoking the
PRF daemon.

PRF_ID

JkRequestRetryCount Specify an integer (units: number of times)
from 1 to 16 for the retry count to connect to the
Web container when a request is sent and the
retry count to send requests.
The retry count also includes the first
establishment of connection and the request
sending process.
When a timeout occurs, retry occurs in the
following cases:
• When a timeout occurs while connection is

being established
• When a timeout occurs while the request

header is being sent

After the above processes, if a timeout occurs
while the request body is being sent, retry does
not occur.
If you set the retry count to an abnormal value,
such as a value outside the range or a value that
is not an integer, the default value is set.

3

14. Files Used in Web Server Integration

Compatibility Guide 530

Key name Contents Default value Related information

JkSendTimeout Specify an integer (units: seconds) from
0 to 3600 for the timeout period for
sending requests.
If you specify a non-numeric value, or a
numeric value outside the range, a message
will be output and the default value will
be used.
If you set the timeout as 0 or a time
period longer than the resend timer of
data transmission in TCP, the timeout value
becomes the timeout value of TCP. In such
a case, a message indicating that an invalid
timeout value has been specified will not
be output.

100

JkTraceLog Specify whether to output the trace log for the
maintenance of redirector. Specify On (default
value) if trace log is to be output and Off if it
is not to be output.

On

JkTraceLogFileDir Specify the output destination directory for
the maintenance trace log files. In Windows,
specify either as a relative path or as
an absolute path. In UNIX, specify as an
absolute path.

When coded as a relative path:
Specify a directory name
present in Cosminexus-installation-
directory\CC\web\redirector.

When coded as an absolute path:
Specify the coded directory name.

If the same value has been
specified in JkLogFilePrefix and
JkTraceLogFilePrefix, you need
to specify a value different from
JkLogFileDir in this key. If you specify
the same value, the redirector will not run.

• In Windows
logs

• In UNIX
/opt/
Cosminex
us/CC/we
b/
redirect
or/logs

JkTraceLogFileNum Specify the maximum number of maintenance
trace log files.
• In Windows

1 to 16
• In UNIX

1 to 64

If this number is exceeded, the old log files
are overwritten.

4

JkTraceLogFilePrefix Specify the prefix for the maintenance trace
log file name. The actual log file name will
be the value specified by this key with serial-
number.log added.
If the same value has been
specified in JkLogFileDir and
JkTraceLogFileDir, you need to specify
a value different from JkLogFilePrefix
in this key. If you specify the same value, the
redirector will not run.

hws_rd_trac
e

14. Files Used in Web Server Integration

Compatibility Guide 531

Key name Contents Default value Related information

JkTraceLogFileSize Specify the size for each maintenance trace log
file as an integer value (units: bytes).
• In Windows

4096 to 2147483647
• In UNIX

4096 to 16777216

16777216

JkTranslateBackcompat The key for compatibility with versions older
than 05-05.
Specify whether the translate_handler
function of the module executed after
the redirector is to be invoked from the
Cosminexus HTTP Server, if a request sent
to the Cosminexus HTTP Server is a URL
pattern transferred to the Web container.
If you specify On, the
translate_handler function of the
module executed after the redirector
is invoked.
If you specify Off, the
translate_handler function of the
module executed after the redirector is
not invoked.

Off

JkWorkersFile Specify the file name of the worker definition
file. In Windows, specify either as a relative
path or as an absolute path. In UNIX, specify as
an absolute path.

When specified as a relative path:
Specify a file name
present in Cosminexus-installation-
directory\CC\web\redirector.

When specified as an absolute path:
Specify the coded file name.

• In Windows
workers.
properti
es

• In UNIX
/opt/
Cosminex
us/CC/we
b/
redirect
or/
workers.
properti
es#2

Note:
When you specify multiple keys, the last specified value becomes valid.

#1
For integration with Cosminexus HTTP Server:
For a new installation, the default log output destination directory does not exist. You either create a directory and grant the access
permission or grant the access permission to the directory redirector that exists one level above.
Moreover, if the log output destination directory of the redirector is changed and only half of that path exists, you either grant the access
permission to the lowest level of the existing directory or create the entire specified path, and then grant the access permission.

#2
If /opt/Cosminexus/CC/web/redirector/workers.properties does not exist, Cosminexus HTTP Server does not start.

(5) Examples of coding
• In Windows

LoadModule jk_module "C:\Program Files\Hitachi\Cosminexus\CC\web\redirecto
r\mod_jk.dll"#

JkGatewayHost hostA

14. Files Used in Web Server Integration

Compatibility Guide 532

JkGatewayHttpsScheme On
JkGatewayPort 443

JkLogLevel error
JkLogFileSize 4194304
JkLogFileNum 5
JkLogFileDir logs
JkLogFilePrefix hws_redirect
JkPrfId prfid
JkTraceLog On
JkTraceLogFileSize 16777216
JkTraceLogFileNum 4
JkTraceLogFileDir logs
JkTraceLogFilePrefix hws_rd_trace
JkTranslateBackcompat Off
JkWorkersFile workers.properties

JkMount /examples/* worker1

#
Specify LoadModule in one line in the file.

• In UNIX

LoadModule jk_module /opt/Cosminexus/CC/web/redirector/mod_jk.so
JkWorkersFile /opt/Cosminexus/CC/web/redirector/workers.properties

JkLogLevel error
JkLogFileSize 4194304
JkLogFileNum 5
JkLogFileDir /opt/Cosminexus/CC/web/redirector/logs
JkLogFilePrefix hws_redirect

JkTraceLog On
JkTraceLogFileSize 16777216
JkTraceLogFileNum 4
JkTraceLogFileDir /opt/Cosminexus/CC/web/redirector/logs
JkTraceLogFilePrefix hws_rd_trace

JkMount /examples/* worker1

(6) Precautions
• In Windows, you need to restart the Web server to change the user definition of the redirector. The changed definition

will be applied after the Web server is restarted.

• In UNIX, you need to perform the following operations to apply the changed contents once the user definition of the
redirector is changed:

When you change the file size or the number of files:
1. Stop the Web server.

2. Either move or delete the log files and the management file used by HNTRLib.
<Management file used by HNTRLib>
In the case of message log file: JkLogFilePrefix-settings.mm
In the case of maintenance trace log file: JkTraceLogFilePrefix-settings.mm

14. Files Used in Web Server Integration

Compatibility Guide 533

3. Start the Web server.

Note that the default storage location of management files used in HNTRLib is as follows:
Cosminexus-installation-directory/CC/web/redirector/logs/mmap

When you do not change the file size or the number of files:
Restart the Web server.

14.2.3 uriworkermap.properties (Mapping definition file for Microsoft IIS)

(1) Format
Specify the key as follows:

key-name=value

Specification method

• The string up to the linefeed is a value.

• The line beginning with a hash mark (#) is a comment.

• If you define a line without a value, the line is ignored. The parameters not defined as valid key names are also
ignored even if defined in the action definition file.

• Up to 1023 characters are valid as key-name=value. The part exceeding this number is truncated.

(2) File storage location
Cosminexus-installation-directory\CC\web\redirector\uriworkermap.properties

(3) Functionality
This mapping definition file defines the URL pattern to be transferred to the Web container server through the request
to Microsoft IIS.

(4) Specifiable keys
Code any one worker out of those specified in the worker.list of the workers.properties. You can code
multiple combinations of the URL pattern and worker name. If you set an invalid value in this file, the operations may not
produce the desired results. If you specify a URL pattern which does not start with a forward slash (/), an error message
is output in the log when the redirector starts and the specified content becomes ignored.

If you specify a URL pattern containing an extension with a length of 0 characters (when the URL pattern ends with /*.),
the message KDJE41041-W is output to the log and the specified content is ignored.

URL-pattern=worker-name

(5) Examples of coding
/examples/*=worker1

14. Files Used in Web Server Integration

Compatibility Guide 534

(6) Precautions
If you change the user definition of the redirector, you will need to restart the Web server. The changed definition will
be applied after the Web server is restarted.

14.2.4 workers.properties (Worker definition file)

(1) Format
Specify the key as follows:

key-name=value

Specification method

• The string up to the linefeed is a value.

• The line beginning with a hash mark (#) is a comment.

• If you define a line without a value, the line is ignored. The parameters not defined as valid key names are also
ignored even if defined in the action definition file.

• Up to 1023 characters are valid as key-name=value. The part exceeding this number is truncated.

• Single-byte alphanumeric characters, underscores (_), and hyphens (-) can be used in the worker name. The
operations cannot be guaranteed if you specify other characters.

(2) File storage location
• In Windows

Cosminexus-installation-directory\CC\web\redirector\workers.properties
• In UNIX
/opt/Cosminexus/CC/web/redirector/workers.properties

(3) Functionality
The worker definition file defines the workers, sets the parameters for each worker, and defines the actions of
the redirector.

(4) Specifiable keys
The keys that you can specify in the worker definition file and the parameters defined for each worker are
explained below:

(a) Keys specifiable in the worker definition file
These keys define workers, and the parameters for each worker. If an invalid value is specified for this key, the operations
might not execute properly.

Key name Contents Default value

worker.list Specify the list of worker names. In the case of multiple names, demarcate with
a comma (,). You need to specify at least one worker name.

None

14. Files Used in Web Server Integration

Compatibility Guide 535

Key name Contents Default value

Specify the worker name specified in mod_jk.conf (redirector action
definition file for HTTP Server), or uriworkermap.properties
(mapping definition file for Microsoft IIS).

worker.worker-
name.parameter

Specify the parameters defined for each worker. Set the parameters for each
worker coded in worker.list.
For details on the defined parameters, see (b) Parameters defined for
each worker.

None

(b) Parameters defined for each worker
Parameters that you can define Contents Default value Related

information

worker.worker-
name.balanced_workers

Specify the list of workers for which load balancing
is to be performed. In the case of multiple names,
demarcate with a comma (,).

None

worker.worker-name.cachesize Specify an integer value from 1 to 2147483647 for the
number of connections to the workers re-used in the
redirector. Note that this parameter is used in Windows.
When the number of connections to the workers
is within the scope of the specified value, the
connections remain in the redirector and are re-used for
communication with the applicable workers without
being released until the J2EE server at the connection
destination terminates. If the multiplicity of requests
exceeds the set value, for only those requests that
exceed the set value, establish and release connections
to workers for each request.
This value uses up memory as per the
following formula:
(Expression)
Memory consumption = (worker.worker-
name.cachesize value)× 10KB

64

worker.worker-
name.default_worker

Specify worker name of the default worker. If you
specify a worker same as the worker specified in the
POST request transfer destination worker, the requests
satisfying the distribution conditions as per the POST
data size and requests satisfying the conditions for the
default worker are transferred to the specified worker.
Note that if you specify a worker that is not
specified in the POST request transfer destination
worker in this parameter, and if worker.worker-
name.post_data is specified in that worker, the
definition of worker.worker-name.post_data
is ignored.
The null characters (space, tab, or form feed) before
and after the worker name are ignored.
If you omit this parameter or specify a null string, an
error is returned for the request for which a worker
satisfying the transfer conditions does not exist.

None

worker.worker-
name.delegate_error_code

Specify the error status code that uses the delegation
functionality of the error page. # If you want to specify
multiple worker names, demarcate with a comma (,).

None

worker.worker-name.host#2 Specify the host name or the IP address of the worker. None

14. Files Used in Web Server Integration

Compatibility Guide 536

Parameters that you can define Contents Default value Related
information

worker.worker-name.lbfactor Specifies the load balancing value of a request.
Set a value greater than 0. You can also specify a
decimal value.

1

worker.worker-name.port#2 Specify an integer value from 1 to 65535 for the worker
port number.
You cannot specify a port number that is already being
used or secured for another application.

None

worker.worker-name.post_data Specify a value adding 1 to the maximum value of
the Content-Length header value for the requests to
be transferred to the worker specified in worker-name
as follows:
• An integer value from 1 to 2147483648

(unit: bytes)
• Value adding k or K to an integer value from 1 to

2097152 (units: kilobytes)
• Value adding m or M to an integer value from 1 to

2048 (units: megabytes)

The requests in which the value of the Content-Length
header is lesser than the specified value is transferred
to a worker specified in worker-name.
If multiple workers are specified in the
worker.worker-name.post_size_workers
parameter, the request is transferred to a worker in
which the request Content-Length header value is
lesser than the specified value, and in which the value
is the smallest specified value.
If you specify the value in
the worker.POST-request-distribution-worker's-
worker-name.post_size_workers parameter,
do not specify the same value as the other workers.
The null characters (space, tab, or form feed) before
and after the value are ignored.

None

worker.worker-
name.post_size_workers

Specify the list of worker names of the POST request
transfer destination workers. If you want to specify
multiple worker names, demarcate with a comma (,).
You cannot specify the same worker name.
The null characters (space, tab, or form feed) before
and after the worker name are ignored.

None

worker.worker-
name.receive_timeout

Specify the communication timeout value. Specify an
integer value (units: seconds) from 0 to 3600 for the
time period to await the response data. If you specify
0, the system continues to wait until a response is
received and a communication timeout does not occur.

3600 5.6
Communicatio
n timeout (Web
server
integration)

worker.worker-name.type Specify the worker type from the types shown below.
For details on the parameters that you can set in
each type, see (c) Parameters defined for each
worker.worker-name.type. You need to specify these
parameters for each worker.

ajp13:
This worker transfers requests to the Web container
server running by an external process.

None

14. Files Used in Web Server Integration

Compatibility Guide 537

Parameters that you can define Contents Default value Related
information

ajp12:
This worker maintains compatibility with older
versions. This worker runs assuming that ajp13
is specified.

lb:
This worker has the load balancing functionality
based on the round robin process.

post_size_lb:
This is a POST request distribution worker. You
can use this worker only when you use Cosminexus
HTTP Server.

#1
The specifiable codes are mentioned in comments. Remove the comments if required.

#2
You can also specify the host name and port number of the same Web container for multiple workers.

(c) Parameters defined for each worker.worker-name.type
Parameters that you can define Worker types

ajp13 lb post_size_lb

worker.worker-name.balanced_workers N Y N

worker.worker-name.cachesize#1 O N N

worker.worker-name.default_worker N N O

worker.worker-name.delegate_error_code O N N

worker.worker-name.host Y N N

worker.worker-name.lbfactor O N N

worker.worker-name.port Y N N

worker.worker-name.post_data N/Y#2 N N

worker.worker-name.post_size_workers N N Y

worker.worker-name.receive_timeout O N N

Legend:
Y: Always specify.
O: Specification is optional.
N: Cannot be specified.

Notes
The parameters that you can specify in ajp12 are same as in ajp13.
In UNIX, if you do not specify a value for the mandatory items or if the specified value is invalid, the Cosminexus HTTP Server does not start.

#1
Valid only in Windows. In UNIX, the parameter is ignored.

#2
Mandatory for the POST request transfer destination worker.

14. Files Used in Web Server Integration

Compatibility Guide 538

(5) Examples of coding
worker.list=worker1
worker.worker1.port=8007
worker.worker1.host=localhost
worker.worker1.type=ajp13
#worker.worker1.cachesize=64
#worker.worker1.receive_timeout=3600
#worker.worker1.delegate_error_code=400,401,402,403,404,405,406,407,408,409,
410,411,412,413,414,415,416,417,422,423,424,500,501,502,503,504,505,507,510

#--
Example setting for Loadbalancer.
#--
#worker.list=loadbalancer1
#
#worker.loadbalancer1.type=lb
#worker.loadbalancer1.balanced_workers=worker1,worker2
#
#worker.worker1.port=8007
#worker.worker1.host=host1
#worker.worker1.type=ajp13
#worker.worker1.cachesize=64
#worker.worker1.lbfactor=1
#worker.worker1.receive_timeout=3600
#worker.worker1.delegate_error_code=400,401,402,403,404,405,406,407,408,409,
410,411,412,413,414,415,416,417,422,423,424,500,501,502,503,504,505,507,510

#
#worker.worker2.port=8007
#worker.worker2.host=host2
#worker.worker2.type=ajp13
#worker.worker2.cachesize=64
#worker.worker2.lbfactor=1
#worker.worker2.receive_timeout=3600
#worker.worker2.delegate_error_code=400,401,402,403,404,405,406,407,408,409,
410,411,412,413,414,415,416,417,422,423,424,500,501,502,503,504,505,507,510
#--
Example setting for post data size based worker.
#--
#worker.list=postsizelb1#worker.postsizelb1.type=post_size_lb
#worker.postsizelb1.post_size_workers=worker1,worker2
#worker.postsizelb1.default_worker=worker1
#
#worker.worker1.port=8007
#worker.worker1.host=host1
#worker.worker1.type=ajp13
#worker.worker1.post_data=100m
#worker.worker1.receive_timeout=3600
#worker.worker1.delegate_error_code=400,401,402,403,404,405,406,407,408,409,
410,411,412,413,414,415,416,417,422,423,424,500,501,502,503,504,505,507,510
#
#worker.worker2.port=8007
#worker.worker2.host=host2
#worker.worker2.type=ajp13
#worker.worker2.post_data=2048m
#worker.worker2.receive_timeout=3600

14. Files Used in Web Server Integration

Compatibility Guide 539

#worker.worker2.delegate_error_code=400,401,402,403,404,405,406,407,408,409,
410,411,412,413,414,415,416,417,422,423,424,500,501,502,503,504,505,507,510

(6) Precautions
If you change the user definition of the redirector by editing this file, you will need to restart the Web server. The changed
definition will be applied after the Web server is restarted.

14. Files Used in Web Server Integration

Compatibility Guide 540

15 Performance Analysis Trace

The performance analysis trace functionality collects the performance analysis information (trace
information) output by each functionality of the application server when the server processes a
request from a client, and collects performance analysis information (trace information) output by the
application processing.

Based on this information, you can analyze the processing performance of the system and
applications. This chapter describes how to analyze performance of the system and applications
by using performance analysis traces. The following describes the items that differ between V9
compatibility mode and recommended mode. For information that is not provided in this chapter, see
7. Performance Analysis by Using Trace Based Performance Analysis in the manual uCosminexus
Application Server Maintenance and Migration Guide. For details on the points when performance
analysis information is collected and the scope of information collection (PRF trace collection levels)
by using performance analysis trace, see the sections from 15.5 Overview on trace collection points
and PRF trace collection levels of performance analysis trace through 15.13 Trace collection points
of CDI.

Compatibility Guide 541

15.1 Overview of performance analysis traces

The location for storing the trace based performance analysis is as follows:

• In Windows
Environment-variable-PRFSPOOL-settings-directory\utt\prf\PRF-identifier

• In UNIX
$PRFSPOOL/utt/prf/PRF-identifier

For details on how to collect a performance analysis trace, see 7. Performance Analysis by Using Trace Based
Performance Analysis in the manual uCosminexus Application Server Maintenance and Migration Guide. The session
trace may also be output to the trace based performance analysis.

15. Performance Analysis Trace

Compatibility Guide 542

15.2 Overview of the trace based performance analysis of Application
Server

The redirector and the Web container that output the trace are referred to as the function layer. In the trace based
performance analysis, trace information is output at the entrance and the exit of the following function layer. Moreover,
the trace information is output as and when necessary for each process that affects the performance among the processes
of the function layers. The following table shows the application execution environments and the applicable function
layers that differ in V9 compatibility mode and in recommended mode.

Table 15‒1: Execution environment of the application and the applicable function layer

Function layer Execution environment of the application

Execution environment of the
J2EE application

Execution environment of
batch applications

Redirector Y --

Cosminexus JPA Provider Y --

Legend:
Y: Applicable
--: Not applicable

Reference note

• Key information (route application information) is added to the PRF trace. For a J2EE application,
information acquired by the redirector or EJB client is added.

• When a timeout occurs during the transaction of the J2EE application or in the redirector in receiving the
response, you can use the root application information that is output in the trace based performance analysis
to identify the transaction and the request that timed out.

15. Performance Analysis Trace

Compatibility Guide 543

15.3 Output information of the trace based performance analysis file (for
the trace based performance analysis)

The trace based performance analysis collects the trace information for the functionality layer.

The following table shows the information, output by each function layer, that differs in V9 compatibility mode and in
recommended mode.

Table 15‒2: Information output to the trace based performance analysis file (for the trace based
performance analysis)

Trace information header Description Range of values

Thread Thread ID and hash value of the thread in the
process that acquired the trace information#1.

Thread ID: A decimal number up to twenty digits
is output.
Hash value: A decimal number up to ten digits is output.

ProcessName Process name A string#2 displaying the process up to 32 characters
is output.

OPT#3 Additional information for each
collection point.

A hexadecimal number string up to 514 characters
is output.

#1
There are cases when the hash value of a thread is not output in the trace information acquired by the redirector
and CTM.

#2
For a redirector, the process name is determined as follows:

• In the case of redirector
If Hitachi Web Server is used as the Web server, "RD-Web-server-waits-to-receive-request-on-this-port-number"
will be the process name. If Microsoft IIS is used, the process name will be Redirector.

#3
Some function layers have trace collection points that output the entry time to OPT. The entry time is the time at
which the entry trace corresponding to the trace of the trace collection point is output. For example, in the case of trace
collection point of a redirector, the entry time output at the trace collection point when the process of sending HTTP
response body information to a Web server finishes (0x8104), will be the time to start sending the HTTP response
body information from a Web container (0x8004).
Note that the entry time is output in 16 bytes that is the time elapsed from 01/01/1970 00:00:00. The first 8 bytes of the
value are seconds and the last 8 bytes of the value are microseconds. However, in the case of trace based performance
analysis of redirector, the last 8 bytes are milli seconds.

15. Performance Analysis Trace

Compatibility Guide 544

15.4 Analyzing the Response Time of a Web Server

You can analyze the processing performance of Application Server based on the trace information output from the
function layer such as the redirector and Web container, in the series of processes from the client to EIS such as databases,
until the processing result is returned to the client.

This section describes how to analyze the time from when a Web server received a request from a client to when the
response was returned to the client, with an example.

You use the event ID 0x8001 and 0x8101 assigned to the redirector as a key to perform filtering of trace based
performance analysis files collected in the Web server. The following table describes the trace collection points which
are indicated by the event IDs used in filtering.

Table 15‒3: Trace collection points indicated by the event IDs used in filtering

Event ID Trace acquisition points

0x8001 Sending the request header information to a Web container

0x8101 Receiving the response completion notification from the Web container

The following is an example of filtering the trace based performance analysis, by using the event IDs 0x8001 and
0x8101 as a key.

Figure 15‒1: Example of filtered trace based performance analysis file

You can analyze the response time of each request from the trace collection date and time of 0x8001 and 0x8101. In
the example shown in Figure 15-1, if you compare the response time of requests in which communication number of the
client application information are 0x00000000000000c7 and 0x00000000000000cc, you will observe that the
time taken for processing the request 0x00000000000000c7 is more.

15.4.1 Identifying the Request for Which Timeout Occurred
This section describes how to identify a request in which timeout occurred by using the trace based performance analysis,
if a timeout has occurred while receiving the response in the redirector.

If a timeout occurs while receiving a response in the redirector, the KDJE41019-E message is output. The following
information is output in this message:

• URI of the request

• IP address of the host in which the Web container used for communication with the Web server is running

• Port number of the Web container used for the communication with the Web server

• File descriptor of the Web container used for communication with the Web server

15. Performance Analysis Trace

Compatibility Guide 545

• Root application information of the trace based performance analysis

You can check where the timeout has occurred in a request in the trace based performance analysis, by comparing the
root application information of the trace based performance analysis output in the message with the root application
information output in the trace based performance analysis file.

You can check the request that is timed out with the trace information of the event IDs, described in the table below, of the
request processing in which the corresponding root application information is output. Identify the corresponding request
with the URI output to the operation name.

Table 15‒4: Trace based performance analysis that you can use to check the request that is timed
out

Event ID Description

0x8000 This information is output after getting a request for processing the request.
The URI of the request is output as an operation name.

0x8100 This information is output after the processing of the redirector finishes.
The URI of the request is output as an operation name.

15.4.2 Investigating the Log Using the Root Application Information
If the application API is used in a J2EE application or batch application, the character string expression of root application
information of the performance analysis information can be output to the log file at any time.

The character string expression of the root application information is output to the following format (maximum
48 characters):

IP address / process ID / communication number
(Example: 10.209.15.130/1234/0x0000000000000001)

If the root application information is output to a log file using an API, you compare the log file with the trace based
performance analysis file to investigate.

When a new request is received in the Web container, a new root application information is assigned to the single request.
The following table describes the trace points to which the new root application information is assigned.

Table 15‒5: Trace point to which the new root application information is assigned

Conditions Event ID (process contents) Process contents

When using the in-process HTTP server 0x8211 When acquiring a request, when completing the request
header analysis

When connecting to a Web server# 0x8200 When acquiring a request, when completing the request
header analysis

#
When connecting to a Web server, the root application information acquired by the redirector is assigned. If route
application information is not issued because the redirector failed or a failure occurred in loading the PRF trace output
library used by the redirector, new route application information is assigned in the Web container.

Moreover, in the following trace collection point, IPaddress/process ID/communication number might be output as
0.0.0. 0/0/0x0000000000000000.

15. Performance Analysis Trace

Compatibility Guide 546

• 0x8212
When data is read from Web client where the in-process HTTP server is used.

• 0x8312
When data is written to the Web client where the in-process HTTP server is used.

In the following cases the IP-address/process-ID/communication-number is output as
0.0.0. 0/0/0x0000000000000000:

• If an HTTP request header is received

• If an incorrect data that is not an HTTP request is received

• If an exception occurs during processing of the request

Note that the APIs used to output the character string expression of the root application
information is the getRootApInfo method of the CprfTrace class, provided in the
com.hitachi.software.ejb.application.prf package.

For details on implementing acquisition of route application information when developing a J2EE application or batch
application, see 7.7.9 Investigation about the location of the problem associated to the trace based performance analysis
file and thread dump in the manual uCosminexus Application Server Maintenance and Migration Guide. For details on
the APIs, see the uCosminexus Application Server API Reference Guide.

15. Performance Analysis Trace

Compatibility Guide 547

15.5 Overview on trace collection points and PRF trace collection levels
of performance analysis trace

This section describes the trace collection points and PRF trace collection levels.

15.5.1 Trace collection point
The trace collection points are broadly classified into trace collection during the startup and termination of a J2EE
server, trace collection during processing in each function layer, and trace collection during the startup and termination
of application methods.

(1) Trace collection during the startup and termination of the J2EE server
The trace information can be collected when the startup processing of the J2EE server ends, and when the termination
processing of the J2EE server starts. The event IDs that can be acquired, and the references are as follows:

• Event ID
0x8FFE to 0x8FFF

• Reference
For details on trace collection when a J2EE server starts or terminates, see 8.22 Trace collection points when a J2EE
server is started or terminated in the manual uCosminexus Application Server Maintenance and Migration Guide.

(2) Trace collection in each function layer
The following table describes the correspondence between the event IDs that can be acquired and the function layers.

Table 15‒6:  Event IDs that can be acquired and function layers

Event ID Function layer No. in the figures# Reference
location

0x1101 to 0x1102
0x1301 to 0x1302
0x1401 to 0x1406
0x2002 to 0x2003
0x2101 to 0x2104
0x3000 to 0x3008

CTM 5 8.3 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x8000 to 0x8004
0x8100 to 0x8104

Redirector 1 15.6

0x8200 to 0x8203
0x8206 to 0x8225
0x8300 to 0x8303
0x8306 to 0x8307
0x8311 to 0x8325
0x8E01 to 0x8E06

Web container 2 15.7, 15.8, 15.9,
15.10

0x8401 to 0x840A
0x8425 to 0x8428
0x842D to 0x8434
0x8453 to 0x8454

EJB container 6 8.8 in the
uCosminexus
Application
Server

15. Performance Analysis Trace

Compatibility Guide 548

Event ID Function layer No. in the figures# Reference
location

0x8460 to 0x846D
0x8470 to 0x8477
0x8490 to 0x8491
0x84A0 to 0x84D9
0x8C41

Maintenance and
Migration Guide

0x8603 to 0x861C JNDI 4 8.9 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x8435 to 0x843F
0x8811 to 0x8820
0x8C41

JTA 7 8.10 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x8B00 to 0x8B01
0x8B80 to 0x8B89
0x8B8A to 0x8C03
0x8C10 to 0x8C13
0x8C20 to 0x8C41
0x8C60 to 0x8C65
0x8C80 to 0x8C93
0x8CC0 to 0x8CD9
0x8D00 to 0x8D19
0x8D60 to 0x8D63
0x8D80 to 0x8D89
0x8D8A to 0x8D8F
0x8D90 to 0x8D99

DB Connector and JCA container 8 8.11 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x8E01 to 0x8E06 RMI 3 8.12 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x9400 to 0x9413 OTS 9 8.13 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x9C00 to 0x9C03 Standard output, standard error output, and
user log

-- 8.14 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0x9D00, 0x9D01 DI 10 8.15 in the
uCosminexus
Application
Server

15. Performance Analysis Trace

Compatibility Guide 549

Event ID Function layer No. in the figures# Reference
location

Maintenance and
Migration Guide

0xA100, 0xA101 Batch application execution functionality 11 8.16 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0xA500 to 0xA5AF JPA 12 15.11

0xA300 to 0xA305
0xA310 to 0xA315
0xA320 to 0xA323
0xA330 to 0xA331
0xA340 to 0xA363
0xA370 to 0xA381
0xA390 to 0xA3C3

Cosminexus JPA provider 13 15.12

0x842F
0x8430 to 0x8432
0x8825
0x8826
0x8B86, 0x8B87
0x8B8A to 0x8B93
0xAA00 to 0xAA06
0xAA08 to 0xAA0D
0xAA10 to 0xAA19

TP1 inbound integrated function 14 8.17 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0xA600 to 0xA60F
0xA610 to 0xA619
0xA61E, 0xA61F
0xA620 to 0xA62F
0xA630 to 0xA63F
0xA640 to 0xA64F
0xA650 to 0xA65F
0xA660 to 0xA667
0xA61A, 0xA61B
0xA668 to 0xA66F
0xA670 to 0xA67F
0xA686 to 0xA68D
0xA692 to 0xA69B
0xA69E, 0xA69F
0xA6A0, 0xA6A1
0xA6A6 to 0xA6AB

Cosminexus JMS Provider 15 8.18 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0xAD00 to 0xAD15
0xAD80 to 0xAD93

JavaMail 16 8.19 in the
uCosminexus
Application
Server
Maintenance and
Migration Guide

0xAF00 to 0xAF13 JSF 17 8.20 in the
uCosminexus
Application

15. Performance Analysis Trace

Compatibility Guide 550

Event ID Function layer No. in the figures# Reference
location

Server
Maintenance and
Migration Guide

0xb002 to 0xb009 CDI 18 15.13

Legend:
--: Not applicable

#
Corresponds to the numbers in Figure 15-2 through Figure 15-5.

The following figures show the function layers for which the PRF trace is output, and the trace collection points for each
system configuration.

Figure 15‒2: Function layers and trace collection points (in the case of Web client configuration)

15. Performance Analysis Trace

Compatibility Guide 551

Figure 15‒3: Function layers and trace collection points (in the case of a system for executing batch
applications)

Figure 15‒4: Function layers and trace collection points (in the case of EJB client, TPBroker client,
or TPBroker OTM client configuration (CTM usage))

15. Performance Analysis Trace

Compatibility Guide 552

Figure 15‒5: Functionality layers and trace collection points (In the TP1 inbound integrated function)

The trace collection points are divided in detail in each function layer, and the PRF trace collection level differs depending
on the trace collection point. For details about trace collection points of each function layer, and the PRF trace collection
level, see the references described in Table 15-6.

Reference note

Apart from the function layers described in Table 15-6, the PRF trace can be collected for some Application
Server processes, component software, and related programs as well.

The following table describes the correspondence between the function layers other than those described in
Table 15-6 for which the PRF trace can be collected, and their event IDs.

Table 15‒7: Correspondence between event IDs that can collect PRF trace and function
layers other than those shown in the preceding table (Event IDs that can be
acquired and function layers)

Event ID Function layer

0x9000 to 0x90FF
0xA400 to 0xA4FF

Cosminexus Web Services - Base

0x9100 to 0x91FF • uCosminexus TP1 Connector
• TP1/Client/J

0x9200 to 0x92FF TP1/MQ Access

0x9300 to 0x93FF Cosminexus RM

0x9800 to 0x9B6E HCSC server

0x9E00 to 0x9EFF Service Coordinator Interactive Workflow

0x9F00 to 0x9FFF HCSC server (Object Access adapter)

0xA000 to 0xA0FF HCSC server (File adapter)

0xA200 to 0xA2FF HCSC server (Message Queue adapter)

15. Performance Analysis Trace

Compatibility Guide 553

Event ID Function layer

0xAB00 to 0xABFF
0xAC00 to 0xACFF

HCSC server (FTP adapter)

0xA400 to 0xA4FF JAX-WS Engine

0xE000 to 0xE0FF Elastic Application Data store

(3) Trace collection during the startup and termination of application
methods

You can collect the trace information when an application method starts and terminates. The trace information that you
can collect is as follows:

• Method start and termination time

• Identity ID

• Package name, class name, method name

• Line number of the last line executed by the method

• Class name of the exception or error that occurs

For details on trace information, see 8.23 Trace collection points of an application in the uCosminexus Application Server
Maintenance and Migration Guide.

(4) Return codes for each trace
For an entrance trace, the return code of each trace is always output as 0.

For an exit trace and the trace after invocation, the return codes are output as follows:

Normal termination: 0

Abnormal termination: Other than 0

15.5.2 PRF trace collection level
In the trace based performance analysis, you can specify the following four types of PRF trace collection levels to output
the trace. The number of trace collection points differs depending upon the PRF trace level used. For details about the
trace collection points, and PRF trace collection levels, see the references described in Table 15-6.

• Standard level
Output the trace information that can identify the boundaries (entrance and exit) of each function layer.

• Advanced level
Output the trace information of processes in every function layer, in addition to the output contents of the
standard level.

• Maintenance level
This is the level for acquiring the maintenance information required when a failure occurs.

• Prevention level

15. Performance Analysis Trace

Compatibility Guide 554

This is the level for preventing the output of trace information. This level can be set up only in the RMI function layer.

When the operation is performed by using the Management Server, the trace information is output by setting up a
common level for all function layers, in the Easy Setup definition file.

In the next sections, the trace collection points for the trace collection levels Standard and Advanced are described.
Because the Maintenance level is the level for collecting maintenance information, such as when a failure occurs, the
information for this level need not usually be collected.

15. Performance Analysis Trace

Compatibility Guide 555

15.6 Trace collection points of a redirector

This section describes the trace collection points of a redirector, and the trace information that can be collected.

Note that when the PRF trace collection level is set to Advanced, the trace of request processing and the session trace
is output.

15.6.1 Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels. The session trace
is not output at the point 0x8003.

Table 15‒8:  Details of trace collection points in a redirector

Event ID No. in the figure# Trace acquisition points Level

0x8000 1 Immediately after acquiring the request processing request A/B

0x8001 2 Immediately after sending the request header information to a Web container A/B

0x8002 4 Immediately after receiving a request for the HTTP request body information
from the Web container

B

0x8003 6 Immediately after receiving the HTTP response header information from the
Web container

B

0x8004 8 Immediately after starting the transmission of the HTTP response body
information from the Web container

B

0x8100 11 Immediately after the completion of redirector processing A/B

0x8101 10 Immediately after receiving the response completion notification from the
Web container

A/B

0x8102 3, 5 Immediately before sending the HTTP request body information to the
Web container

B

0x8103 7 Immediately after the setup completion of the HTTP response header
information in the Web server

B

0x8104 9 Immediately after the completion of transmission of the HTTP response body
information to the Web server

B

Legend:
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels

#
Corresponds to the numbers in Figure 15-6.

The following figure shows the trace collection points in a redirector.

15. Performance Analysis Trace

Compatibility Guide 556

Figure 15‒6: Trace collection points of a redirector

Because a connection is usually used repeatedly to establish a permanent connection, it is not disconnected during a
request. A connection is disconnected only when either an exception occurs during communication, or the upper limit
value of the permanent connection is reached.

The output of the trace information is limited at the following points:

Point 3
The trace information is output when the body data is not in the chunk format. When the body data is in the chunk
format, the request body request is not sent to the Web server between points 2 and 4, and the request body information
is not sent to the Web container.

15. Performance Analysis Trace

Compatibility Guide 557

Points 4 and 5
The trace information is output only in the case of a request for the request body information from the Web container.
Furthermore, because the request body information and response body information is sent to the client more than once
at the points 4, 5, 8, and 9, the trace information is also output more than once.

Either an invalid session ID might be acquired, or the session ID might not be acquired at the following points:

Points 1 to 5
The session ID can be acquired. However, an invalid session ID (the ID of an HttpSession discarded in a J2EE
application, or the ID of an HttpSession discarded due to the expiry of the valid period) might be acquired because
the session ID is acquired from the Cookie or URL of the request header.
Even when a valid session ID is acquired, the session might be discarded in the J2EE application.

Points 7 to 11
The session ID can be acquired only when a session is generated.

15.6.2 Trace information that can be collected
The following table describes the trace information that can be collected in a redirector.

Table 15‒9: Trace information that can be collected in a redirector

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional#2

1 0x8000 A/B Client address: HTTP method URI #3

2 0x8001 A/B Container address: Port number -- #3

3, 5 0x8102 B Transmission size -- Entrance-time
number-of-session-ID-
characters: collection-
method

4 0x8002 B Request size -- Number-of-session-ID-
characters: session
ID: collection-method

6 0x8003 B -- -- --

7 0x8103 B -- -- #4

8 0x8004 B Transmission size -- Number-of-session-ID-
characters: session
ID: collection-method

9 0x8104 B Transmitted size -- Entrance-time
number-of-session-ID-
characters: session-ID

10 0x8101 A/B Container address: Port number -- #5

11 0x8100 A/B Client address: HTTP method URI #6

Legend:
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels
--: Not applicable

15. Performance Analysis Trace

Compatibility Guide 558

#1
Corresponds to the numbers in Figure 15-6.

#2
If the session Cookie name is changed to a string other than JSESSIONID, the number of session ID characters, session ID, and collection
method are not output.

#3
When the level is Standard, nothing is output.
When the level is Advanced, the number of session ID characters: session ID: collection method is output.

#4
When the processing is performed normally, the entrance time and session ID are displayed.
When an exception occurs, in addition to the entrance time, four-byte maintenance information, and the number of session ID characters: session
ID is displayed.

#5
When the level is Standard, the entrance time is displayed.
When the level is Advanced, in addition to the entrance time, the number of session ID characters: session ID is displayed.

#6
When the level is Standard, the entrance time and status code are displayed at all times.
However, if an exception occurs during the use of Microsoft IIS, in addition to the entrance time and status code, four-byte maintenance
information will be displayed.
When the level is Detailed, in addition to the information that is output when the level is Standard, the number of session ID characters: session
ID is displayed.

15. Performance Analysis Trace

Compatibility Guide 559

15.7 Trace collection points of a Web container (trace of request
processing)

This section describes the trace collection points of a Web container, and the trace information that can be collected.
In a Web container, the trace of request processing and the session trace are output. The trace of request processing is
described below. The trace points when an in-process HTTP server is used, and the trace information that can be collected
is also described.

15.7.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒10: Details of trace collection points in a Web container (trace of request processing)

Event ID No. in the
figure#1

Trace acquisition points Level

0x8200#2 1 Immediately after a request is
acquired, or when the request
header analysis is complete

Via the Web server A

0x8201 Via the simple Web server A

0x8202#3 3 Immediately before a servlet or JSP is invoked A

0x8203 2 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (when the <dispatcher>
tag of the <filter-mapping> tag of web.xml is omitted, or when a filter
for which REQUEST is specified in the <dispatcher> tag is invoked)

B

0x8206 4 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 3 When the static contents are invoked B

0x8300 8 When request processing
is complete

Via the Web server A

0x8301 Via the simple Web server A

0x8302 6 Immediately after the processing of the servlet or JSP is complete A

0x8303 7 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request
(when the processing of the filter for which REQUEST is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8306 5 Immediately after the processing of the servlet or JSP via RequestDispatcher
is complete

B

0x8307 6 Immediately after the completion of processing of static
contents (DefaultServlet)

B

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers in Figure 15-7.

#2
For a POST request, if the POST data does not arrive from the client, the request processing might be delayed in this interval.

15. Performance Analysis Trace

Compatibility Guide 560

#3
If a JSP compilation is required, the trace is collected after the JSP compilation is executed.

The following figure shows the trace collection points in a Web container.

Figure 15‒7: Trace collection points of a Web container (trace of request processing)

15.7.2 Trace information that can be collected
The following table describes the trace information that can be collected in a Web container.

Table 15‒11: Trace information that can be collected in a Web container (trace of request
processing)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

B Number-of-session-ID-
characters: session
ID: collection-method

0x8201 A HTTP method URI --

2 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

3 0x8202 A Class name or JSP file name -- --

15. Performance Analysis Trace

Compatibility Guide 561

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Context root name Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

4 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

5 0x8306 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

6 0x8302 A Class name or JSP file name -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

7 0x8303 B Class name -- • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

15. Performance Analysis Trace

Compatibility Guide 562

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B • When normal:
Entrance-time status-
code number-of-
session-ID-characters:
session-ID: number-
of-global-session-ID-
characters: global-
session-ID

• For an exception:
Entrance-time status-code
exception-name: number-
of-session-ID-characters:
session-ID: number-
of-global-session-ID-
characters: global-
session-ID

0x8301 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code number-of-
session-ID-characters:
session-ID: number-
of-global-session-ID-
characters: global-
session-ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-7.

Reference note

When a request is received from other than the SOAP client, 0 is displayed always in the client application
information that is the key information of the trace information. The client application information is output only
when a request is received from the SOAP client.

15.7.3 Trace collection points and PRF trace collection levels (when an in-
process HTTP server is used)

The following table describes the events IDs, trace collection points, and PRF trace collection levels when an in-process
HTTP server is used.

15. Performance Analysis Trace

Compatibility Guide 563

Table 15‒12: Details of trace collection points in an in-process HTTP server

Event ID No. in the
figure#1

Trace acquisition points Level

0x8202#2 5 Immediately before a servlet or JSP is invoked A/B

0x8203 4 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (when the <dispatcher>
tag of the <filter-mapping> tag of web.xml is omitted or when a filter
for which REQUEST is specified in the <dispatcher> tag is invoked)

B

0x8206 6 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 5 Immediately before the static contents are invoked B

0x8211 3 Immediately after acquiring a request/completing the request header analysis A/B

0x8212 1 Immediately before data reading from the Web client starts B

0x8213 8 Immediately before data writing into the Web client starts B

0x8302 10 Immediately after the completion of processing of the servlet or JSP A

0x8303 11 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request
(when the processing of the filter for which REQUEST is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8306 7 Immediately after the completion of processing of the servlet or JSP
via RequestDispatcher

B

0x8307 10 Immediately after completion of processing of static
contents (DefaultServlet)

B

0x8311 12 Immediately after the completion of request processing A/B

0x8312 2 Immediately after the completion of data reading from the Web client B

0x8313 9 Immediately after the completion of data writing into the Web client B

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#1
Corresponds to the numbers in Figure 15-8.

#2
If JSP compilation is required, the trace is collected after the JSP compilation is executed.

The following figure shows the trace collection points when an in-process HTTP server is used.

15. Performance Analysis Trace

Compatibility Guide 564

Figure 15‒8: Trace collection points of an in-process HTTP server

Because the request information is received from the client more than once at the points 1 and 2, the trace information
is also output more than once.

Because the response information is sent to the client more than once at the points 8 and 9, the trace information is also
output more than once.

Even when a request for the request body information, and a response are sent from the filter, the trace for points 2 or 8,
and points 8 and 9 is output.

15. Performance Analysis Trace

Compatibility Guide 565

15.7.4 Trace information that can be collected
The following table describes the trace information that can be collected in an in-process HTTP server.

Table 15‒13: Trace information that can be collected in an in-process HTTP server (trace of request
processing)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8212 B Request size -- --

2 0x8312 B Read size -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

3 0x8211 A HTTP method URI --

B Number-of-session-ID-
characters: session
ID: collection-method

4 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

5 0x8202 A Class name or JSP
file name

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B - Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

6 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8213 B Write size -- --

9 0x8313 B Written size -- • When normal:
Entrance-time

• For an exception:

15. Performance Analysis Trace

Compatibility Guide 566

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time exception-
name

10 0x8302 A Class name or JSP
file name

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

11 0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

12 0x8311 A HTTP method URI Entrance-time status-code

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-8.

15. Performance Analysis Trace

Compatibility Guide 567

15.8 Trace collection points of a Web container (session trace)

This section describes the trace collection points of the trace of a Web container, and the trace information that can be
collected. In a Web container, the trace of request processing and the session trace are output. The trace collection points
of the session trace and global session, and the trace information that can be collected is described below.

15.8.1 Trace Get Point and the PRF Trace Get Level (Session Trace)
The following table describes the event IDs, trace collection points, and PRF trace collection levels of the trace
concerning the session trace. Note that the information about the global session is also output at points 0x8203,
0x8202, 0x8207, 0x8206, and 0x8300.

Table 15‒14: Details of trace collection points in a Web container (session trace)

Event ID No. in the
figure#1

Trace acquisition points Level#2

0x8200 1 Immediately after a request is acquired, or when the request header analysis
is complete (via the Web server)

A/B

0x8202 4, 9 Immediately before a servlet or JSP is invoked A/B

0x8203 2, 3 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (when the <dispatcher>
tag of the <filter-mapping> tag of web.xml is omitted, or when a filter
for which REQUEST is specified in the <dispatcher> tag is invoked)

B

0x8206 7 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 4, 9 Immediately before the static contents are invoked (DefaultServlet) B

0x8208 5 After a session is generated B

0x8209 6 After a session is discarded B

0x8210 17 After the session times out B

0x8211 1 Immediately after a request is acquired, or when the request header analysis
is complete (via the in-process HTTP server)

A/B

0x8214 8 Immediately before the filter executed during Forward is invoked (when the
filter for which FORWARD is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8215 8 Immediately before the filter executed during Include is invoked (when the
filter for which INCLUDE is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8216 2 Immediately before the filter that is executed during transfer to the error page
is invoked
(when the filter for which ERROR is specified in the <dispatcher> tag of
the <filter-mapping> tag of web.xml is invoked)

B

0x8300 16 Immediately after the completion of request processing (via the Web server) A/B

0x8302 10, 13 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 14, 15 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request

B

15. Performance Analysis Trace

Compatibility Guide 568

Event ID No. in the
figure#1

Trace acquisition points Level#2

(when the processing of the filter for which REQUEST is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

0x8306 12 Immediately after the completion of the processing of the servlet or JSP
via RequestDispatcher

B

0x8307 10, 13 Immediately after the completion of the processing of the static
contents (DefaultServlet)

B

0x8311 16 Immediately after the completion of the request processing (via the in-process
HTTP server)

A/B

0x8314 11 Immediately after the completion of the processing of the filter executed
during Forward
(when the processing of the filter for which FORWARD is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8315 11 Immediately after the completion of the processing of the filter executed
during Include
(when the processing of the filter for which INCLUDE is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8316 15 Immediately after the completion of the processing of the filter executed
during transfer to the error page
(when the processing of the filter for which ERROR is specified in the
<dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#1
Corresponds to the numbers in Figure 15-9.

#2
The information about the session trace is output only when the level is Advanced.

The following figure shows the trace collection points of the session trace in a Web container.

15. Performance Analysis Trace

Compatibility Guide 569

Figure 15‒9: Trace collection points of a Web container (session trace)

The session ID that can be acquired at each point is as follows:

Point 1
The session ID can be acquired. However, an invalid session ID (the ID of an HttpSession discarded in a J2EE
application, or the ID of an HttpSession discarded due to the expiry of the valid period) might be acquired because
the session ID is acquired from the Cookie or URL of the request header.
Even when a valid session ID is acquired, the session might be discarded in the J2EE application.

Points 2, 3, 4, 7, 8, and 9
A valid session ID can be acquired at the trace collection points. However, the session might be discarded in the
J2EE application.
Furthermore, the global session ID can also be acquired at these points. The contents of the global session ID that
can be acquired are different for each trace collection point.

• Point 2 is the trace collection point at which the event ID 0x8203 is output initially for one request. At this trace
collection point, the global session ID sent as a request from the Web client can be acquired. However, at this
point, a global session ID that has already become invalid might also be output.

15. Performance Analysis Trace

Compatibility Guide 570

• Valid global session IDs can be acquired from the trace with event IDs 0x8216, 0x8202, 0x8203, 0x8206,
0x8207, 0x8214, and 0x8215 output at points 3, 4, 7, 8, and 9.

Point 5
A valid session ID can be acquired at the trace collection point only when a session is generated in the J2EE
application. However, the session might be discarded in the J2EE application.

Point 6
An invalid session ID can be acquired at the trace collection point only when a session is discarded in the J2EE
application. However, the session might be discarded in the J2EE application.

Points 10, 11, 12, and 13
A valid session ID can be acquired at the trace collection points. However, the session might be discarded in the
J2EE application.

Points 14 and 15
A valid session ID can be acquired at the trace collection points. When the request processing finishes at these trace
collection points, the session is not discarded in the J2EE application thereafter.

Point 16
A valid session ID can be acquired at the trace collection point. When the request processing finishes at this trace
collection point, the session is not discarded in the J2EE application thereafter.
Furthermore, when a global session is generated, a valid global session ID can be acquired when the request
processing ends.

Point 17
An invalid session ID can be acquired only when a session that has exceeded the valid period is discarded.

15.8.2 Trace information that can be collected
The following table describes the trace information about the session trace that can be collected in a Web container.
The information about the global session is also output at the trace collection points with event IDs 0x8202, 0x8203,
0x8206, 0x8207, 0x8214, 0x8215, 0x8300, and 0x8311.

Table 15‒15: Trace information that can be collected in a Web container (session trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

B Number-of-session-ID-characters:
session-ID: collection-method

4, 9 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name#2 Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

2, 3 0x8203 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

7 0x8206 B Class name Dispatch type Number-of-session-ID-characters:
session-ID: number-of-global-

15. Performance Analysis Trace

Compatibility Guide 571

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Context root name session-ID-characters: global-
session-ID

4, 9 0x8207 B -- Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

5 0x8208 B Context root name Session valid period Number-of-session-ID-
characters: Session-ID

6 0x8209 B Context root name Session generation time Number-of-session-ID-
characters: Session-ID

17 0x8210 B Context root name Session valid period: session
generation time

Number-of-session-ID-
characters: Session-ID

1 0x8211 A HTTP method URI --

B Number-of-session-ID-characters:
session-ID: collection-method

8 0x8214 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

8 0x8215 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

2 0x8216 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

16 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-ID

• For an exception:
Entrance-time status-code
exception-name: number-of-
session-ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-ID

10, 13 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-name

B Context root name • When normal:

15. Performance Analysis Trace

Compatibility Guide 572

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

14, 15 0x8303 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

12 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

10, 13 0x8307 B -- Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

16 0x8311 A HTTP method URI Entrance-time status-code

B Entrance-time status-code number-
of-session-ID-characters: session-
ID: number-of-global-session-ID-
characters: global-session-ID

11 0x8314 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

11 0x8315 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

15. Performance Analysis Trace

Compatibility Guide 573

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

15 0x8316 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-9.

15. Performance Analysis Trace

Compatibility Guide 574

15.9 Trace collection points of a Web container (filter trace)

This section describes the trace collection points of the trace of a Web container when a filter that is invoked during
Forward or Include is specified, and also describes the trace information that can be collected.

In the case of a Web container in which a filter that is invoked during Forward or Include is specified, the trace information
that can be collected is different when the processing terminates normally, and when an error occurs. Trace acquisition
points for both cases are explained below.

When an error page is set up by using the errorPage attribute in the page directive of a JSP, and an exception occurs
in the JSP, the error page will be displayed when forwarding the request. Therefore, the trace output during Forward will
be output even when an error page is displayed in the JSP.

15.9.1 Trace collection points of a Web container when the processing
terminates normally (filter trace)

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒16: Details of trace collection points in a Web container during normal termination (filter
trace)

Event ID No. in the figure# Trace acquisition points Level

0x8200 1 Immediately after a request is acquired, or when the request header analysis
is complete (via the Web server)

A/B

0x8201 1 Immediately after a request is acquired, or when the request header analysis
is complete (via the simple Web server)

A

0x8202 3 Immediately before a servlet or JSP is invoked A/B

0x8202 6 Immediately before a servlet or JSP is invoked A/B

0x8203 2 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8206 4 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 6 Immediately before the static contents are invoked (DefaultServlet) B

0x8211 1 Immediately after a request is acquired, or when the request header analysis
is complete (via the in-process HTTP server)

A/B

0x8214 5 Immediately before the filter executed during Forward is invoked (when the
filter for which FORWARD is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8215 5 Immediately before the filter executed during Include is invoked
(filter for which INCLUDE is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8300 12 Immediately after completion of the request processing (via the Web server) A/B

15. Performance Analysis Trace

Compatibility Guide 575

Event ID No. in the figure# Trace acquisition points Level

0x8301 12 Immediately after completion of the request processing (via the simple
Web server)

A

0x8302 7 Immediately after completion of the processing of the servlet or JSP
is complete

A/B

0x8302 10 Immediately after completion of the processing of the servlet or JSP
is complete

A/B

0x8303 11 Immediately before the processing of the filter that is executed before
the execution of the servlet or JSP that receives the request is complete
(filter for which REQUEST is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8306 9 Immediately after the processing of the servlet or JSP via RequestDispatcher
is complete

B

0x8307 7 Immediately after completion of the processing of the static
contents (DefaultServlet)

B

0x8311 12 Immediately after completion of the request processing is complete (via the
in-process HTTP server)

A/B

0x8314 8 Immediately after completion of the processing of the filter executed during
Forward (filter for which FORWARD is specified in the <dispatcher> tag
of the <filter-mapping> tag of web.xml)

B

0x8315 8 Immediately after completion of the processing of the filter executed during
Include (filter for which INCLUDE is specified in the <dispatcher> tag
of the <filter-mapping> tag of web.xml)

B

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 15-10.

The following figure shows the trace collection points in a Web container, when the filter that is invoked during Forward
or Include is specified.

15. Performance Analysis Trace

Compatibility Guide 576

Figure 15‒10: Trace collection points in a Web container during normal termination (filter trace)

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Web container, when the filter that is invoked
during Forward or Include is specified.

Table 15‒17: Trace information that can be collected in a Web container during normal termination
(filter trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

15. Performance Analysis Trace

Compatibility Guide 577

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Number-of-session-ID-
characters: session
ID: collection-method

0x8201 A HTTP method URI --

0x8211 A HTTP method URI --

B Number-of-session-ID-
characters: session
ID: collection-method

2 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

3 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

4 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

5 0x8214 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8215 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

6 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

15. Performance Analysis Trace

Compatibility Guide 578

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8314 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8315 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

9 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:

15. Performance Analysis Trace

Compatibility Guide 579

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

11 0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

12 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

• For an exception:
Entrance-time status-
code exception-
name: number-of-session-
ID-characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8301 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

0x8311 A HTTP method URI Entrance-time status-code

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-10.

15. Performance Analysis Trace

Compatibility Guide 580

15.9.2 Trace collection points of a Web container when an exception
occurs (filter trace)

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒18: Details of trace collection points in a Web container when an exception occurs (filter
trace)

Event ID No. in the figure# Trace collection points Level

0x8200 1 Immediately after a request is acquired or after the completion of request
header analysis (via the Web server)

A/B

0x8201 1 When a request is acquired or immediately after the completion of request
header analysis (via the simple Web server)

A

0x8202 3 Immediately before a servlet or JSP is invoked A/B

0x8202 8 Immediately before a servlet or JSP is invoked A/B

0x8203 2 Immediately before the invocation of the filter that is executed before the
execution of the servlet or JSP which received a request (filter for which
the <dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8206 6 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 8 Immediately before the static contents are invoked (DefaultServlet) B

0x8211 1 When a request is acquired or immediately after the completion of request
header analysis (via the in-process HTTP server)

A/B

0x8216 7 Immediately before the invocation of the filter that is executed when being
transferred to the error page (the filter for which ERROR is specified in the
<dispatcher> tag of the <filter-mapping> tag of web.xml)

B

0x8300 12 Immediately after the completion of request processing (via the Web server) A/B

0x8301 12 Immediately after the completion of request processing (via the simple
Web server)

A

0x8302 4, 9 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 5 Immediately after the completion of the processing of the filter that is
executed before the execution of the servlet or JSP which received a request
(the filter for which REQUEST is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8306 11 Immediately after the completion of the processing of the servlet or JSP
via RequestDispatcher

B

0x8307 9 Immediately after the completion of the processing of static
contents (DefaultServlet)

B

0x8311 12 Immediately after the completion of request processing (via the in-process
HTTP server)

A/B

0x8316 10 Immediately after the completion of the processing of the filter executed when
being transferred to the error page (the filter for which ERROR is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml)

B

Legend:
A: Standard

15. Performance Analysis Trace

Compatibility Guide 581

B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 15-11.

The following figure shows the trace collection points in a Web container when an exception occurs.

Figure 15‒11: Trace collection points in a Web container when an exception occurs

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Web container, when the filter that is invoked
during Forward or Include is specified.

Table 15‒19: Trace information that can be collected in a Web container when an exception occurs
(filter trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

15. Performance Analysis Trace

Compatibility Guide 582

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Number-of-session-ID-
characters: session
ID: collection-method

0x8201 A HTTP method URI --

0x8211 A HTTP method URI --

B Number-of-session-ID-
characters: session
ID: collection-method

2 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

3 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

4 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

5 0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

6 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8216 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

15. Performance Analysis Trace

Compatibility Guide 583

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

8 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

9 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

11 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

12 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:

15. Performance Analysis Trace

Compatibility Guide 584

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

• For an exception:
Entrance-time status-
code exception-
name: number-of-session-
ID-characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8301 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8311 A HTTP method URI Entrance-time status-code

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-11.

15. Performance Analysis Trace

Compatibility Guide 585

15.10 Trace collection points of a Web container (trace of the database
session failover functionality)

This section describes the trace collection points and the trace information that can be collected when the database session
failover functionality is used.

15.10.1 Trace collection points and trace information that can be collected
during request processing for creating an HTTP session (Trace of
the database session failover functionality)

This section describes the trace collection points and the trace information that can be collected during request processing
for creating an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒20: Details of trace collection points of the request processing for creating an HTTP
session (database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8200 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the Web server)

A/B

0x8202 2 Immediately before invoking a servlet or JSP A/B

0x8203 2 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 2 Immediately before invoking the static contents (DefaultServlet) B

0x8211 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the in-process HTTP server)

A/B

0x8219 6 Immediately before starting the serialization of the HTTP session property
information with the database session failover functionality

A

0x8222 8 Immediately before starting database access after the Web application
processing with the database session failover functionality

A

0x8223 3 Immediately before starting database access during the creation of the HTTP
session with the database session failover functionality

A

0x8300 10 Immediately after the completion of request processing (via the Web server) A/B

0x8302 5 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 5 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 5 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

15. Performance Analysis Trace

Compatibility Guide 586

Event ID No. in the figure# Trace acquisition points Level

0x8311 10 Immediately after the completion of request processing (via the in-process
HTTP server)

A/B

0x8316 5 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete (filter for which ERROR is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml)

B

0x8319 7 Immediately after the termination of serialization of the HTTP session
property information with the database session failover functionality

A

0x8322 9 Immediately after the termination of database access after the Web application
processing with the database session failover functionality

A

0x8323 4 Immediately after the termination of database access during the creation of the
HTTP session with the database session failover functionality

A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 15-12.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 587

Figure 15‒12: Trace collection points of the request processing for creating an HTTP session
(database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for creating an
HTTP session.

Table 15‒21: Trace information that can be collected during request processing for creating an
HTTP session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

B Number-of-session-ID-
characters: session-
ID: collection-method

0x8211 A HTTP method URI --

B Number-of-session-ID-
characters: session-
ID: collection-method

15. Performance Analysis Trace

Compatibility Guide 588

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

2 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

3 0x8223 A -- -- --

4 0x8323 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is

-1

-- • When normal:
Entrance-time number-
of-session-ID-characters:
session-ID: session-ID-of-
HTTP-session-created

• For an exception:
Entrance-time exception-
name

5 0x8302 A Class name
(JSP file name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

15. Performance Analysis Trace

Compatibility Guide 589

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

6 0x8219 A Request URL -- Number-of-session-ID-
characters: session-ID

7 0x8319 A Request URL Size (bytes) of the HTTP
session property information
after serialization

• When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

8 0x8222 A -- -- Number-of-session-ID-
characters: session-ID-of-
HTTP-session

9 0x8322 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

10 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

• For an exception:
Entrance-time status-
code exception-
name: number-of-session-
ID-characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8311 A HTTP method URI Entrance-time status-code

15. Performance Analysis Trace

Compatibility Guide 590

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-12.

15.10.2 Trace collection points and trace information that can be collected
during request processing for updating an HTTP session (Trace
of database session failover functionality)

This section describes the trace collection points and the trace information that can be collected during request processing
for updating an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒22: Details of trace collection points of the request processing for updating an HTTP
session (database session failover functionality)

Event ID No. in the
figure#1

Trace acquisition points Level

0x8200 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the Web server)

A/B

0x8202 6 Immediately before invoking a servlet or JSP A/B

0x8203 6 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 6 Immediately before invoking the static contents (DefaultServlet) B

0x8211 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the in-process HTTP server)

A/B

0x8219#2 8 Immediately before starting the serialization of the HTTP session property
information with the database session failover functionality

A

0x8220 4 Immediately before starting the de-serialization of the HTTP session property
information with the database session failover functionality

A

0x8221 2 Immediately before starting database access before the Web application
processing with the database session failover functionality

A

15. Performance Analysis Trace

Compatibility Guide 591

Event ID No. in the
figure#1

Trace acquisition points Level

0x8222#2 10 Immediately before starting database access after the Web application
processing with the database session failover functionality

A

0x8300 12 Immediately after the completion of request processing (via the Web server) A/B

0x8302 7 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 7 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 7 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

0x8311 12 Immediately after the completion of request processing (via the in-process
HTTP server)

A/B

0x8316 7 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8319#2 9 Immediately after the termination of serialization of the HTTP session
property information with the database session failover functionality

A

0x8320 5 Immediately after the termination of de-serialization of the HTTP session
property information with the database session failover functionality

A

0x8321 3 Immediately after the termination of database access before the Web
application processing with the database session failover functionality

A

0x8322#2 11 Immediately after the termination of database access after the Web application
processing with the database session failover functionality

A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#1
Corresponds to the numbers in Figure 15-13.

#2
Not output for requests meant for referencing the HTTP session.

15. Performance Analysis Trace

Compatibility Guide 592

Figure 15‒13: Trace collection points of the request processing for updating an HTTP session
(database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for updating an
HTTP session.

Table 15‒23: Trace information that can be collected during request processing for creating an
HTTP session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

15. Performance Analysis Trace

Compatibility Guide 593

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Number-of-session-ID-
characters: session
ID: collection-method

0x8211 A HTTP method URI --

B Number-of-session-ID-
characters: session
ID: collection-method

2 0x8221 A -- -- Number-of-session-ID-
characters: session-ID-received-
with-the-request

3 0x8321 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

4 0x8220 A Request URL Size (bytes) of the HTTP session
property information before de-
serialization

Number-of-session-ID-
characters: session-ID

5 0x8320 A Request URL -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

6 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8302 A Class name
(JSP file name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:

15. Performance Analysis Trace

Compatibility Guide 594

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8219 A Request URL -- Number-of-session-ID-
characters: session-ID

9 0x8319 A Request URL Size (bytes) of the HTTP
session property information
after serialization

• When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

10 0x8222 A -- -- Number-of-session-ID-
characters: session-ID-of-
HTTP-session

11 0x8322 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

12 0x8300 A HTTP method URI • When normal:

15. Performance Analysis Trace

Compatibility Guide 595

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time status-code
• For an exception:

Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

• For an exception:
Entrance-time status-
code exception-
name: number-of-session-
ID-characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8311 A HTTP method URI Entrance-time-status-code

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-13.

15.10.3 Trace collection points and trace information that can be collected
during request processing for disabling an HTTP session (Trace
of database session failover functionality)

This section describes the trace collection points and the trace information that can be collected during request processing
for disabling an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

15. Performance Analysis Trace

Compatibility Guide 596

Table 15‒24: Details of trace collection points of the request processing for disabling an HTTP
session (database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8200 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the Web server)

A/B

0x8202 6 Immediately before invoking a servlet or JSP A/B

0x8203 6 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 6 Immediately before invoking the static contents (DefaultServlet) B

0x8211 1 Immediately after the acquisition of a request, or after the completion of the
request header analysis (via the in-process HTTP server)

A/B

0x8220 4 Immediately before starting the de-serialization of the HTTP session property
information with the database session failover functionality

A

0x8221 2 Immediately before starting database access before the Web application
processing with the database session failover functionality

A

0x8224 7 Immediately before starting database access when disabling the HTTP
session with the database session failover functionality

A

0x8300 10 Immediately after the completion of request processing (via the Web server) A/B

0x8302 9 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 9 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 9 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

0x8311 10 Immediately after the completion of request processing (via the in-process
HTTP server)

A/B

0x8316 9 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8320 5 Immediately after the termination of de-serialization of the HTTP session
property information with the database session failover functionality

A

0x8321 3 Immediately after the termination of database access before the Web
application processing with the database session failover functionality

A

0x8324 8 Immediately after the termination of database access when the HTTP session
is disabled with the database session failover functionality

A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 15-14.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 597

Figure 15‒14: Trace collection points of the request processing for disabling an HTTP session
(database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for disabling an
HTTP session.

Table 15‒25: Trace information that can be collected during request processing for disabling an
HTTP session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8200 A HTTP method URI --

B Number-of-session-ID-
characters: session-
ID: collection-method

0x8211 A HTTP method URI --

15. Performance Analysis Trace

Compatibility Guide 598

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

B Number-of-session-ID-
characters: session-
ID: collection-method

2 0x8221 A -- -- Number-of-session-ID-
characters: session-ID-received-
with-the-request

3 0x8321 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

4 0x8220 A Request URL Size (bytes) of the HTTP session
property information before de-
serialization

Number-of-session-ID-
characters: session-ID

5 0x8320 A Request URL -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

6 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8224 A -- -- Number-of-session-ID-
characters: session-ID-of-the-
disabled-HTTP-session

8 0x8324 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

9 0x8302 A Class name -- • When normal:

15. Performance Analysis Trace

Compatibility Guide 599

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

(JSP file name when a JSP
is invoked)

Entrance-time
• For an exception:

Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8300 A HTTP method URI • When normal:
Entrance-time status-code

• For an exception:
Entrance-time status-
code exception-name

B • When normal:
Entrance-time status-
code number-of-session-ID-
characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

• For an exception:
Entrance-time status-
code exception-
name: number-of-session-

15. Performance Analysis Trace

Compatibility Guide 600

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

ID-characters: session-ID:
number-of-global-session-
ID-characters: global-
session-ID

0x8311 A HTTP method URI Entrance-time-status-code

B Entrance-time status-
code number-of-session-
ID-characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-14.

15.10.4 Trace collection points and trace information that can be collected
during request processing for disabling an HTTP session through
valid period monitoring (Trace of database session failover
functionality)

This section describes the trace collection points and the trace information that can be collected during request processing
for disabling an HTTP session by monitoring the valid period.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒26: Details of trace collection points of the request processing for disabling an HTTP
session through valid period monitoring (database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8210 3 After session timeout B

0x8225 1 Immediately before starting the valid period monitoring process of the global
session information on the database

A

0x8325 2 Immediately after the termination of the valid period monitoring process of
the global session information on the database

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-15.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 601

Figure 15‒15: Trace collection points of the request processing for disabling an HTTP session
through valid period monitoring (database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for disabling an HTTP
session through valid period monitoring.

Table 15‒27: Trace information that can be collected during request processing for disabling an
HTTP session through valid period monitoring (database session failover
functionality)

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8225#2 A -- -- --

2 0x8325#2 A When the valid period
checking of the global
session information
is executed

Number of disabled
global sessions

When the valid period
checking of the global
session information is
not executed

Name (IP address) of
the J2EE server that
currently manages the
valid period checking

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

3 0x8210 B Context root name Session valid period: session
generation time

Number-of-session-ID-
characters: session-ID

15. Performance Analysis Trace

Compatibility Guide 602

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-15.

#2
Not output when the integrity protection mode is disabled.

15. Performance Analysis Trace

Compatibility Guide 603

15.11 Trace collection points in a JPA

This section describes the trace collection points of a JPA, and the trace information that can be collected.

15.11.1 Trace collection points and trace information that can be collected
when the persistent context of application management is used

This section describes the trace collection points and the trace information that can be collected when the persistent
context of application management is used.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒28: Details of trace collection points when the persistent context of application
management is used

Event ID No. in the figure# Trace acquisition points Level

0xA500 1 When the processing of
EntityManagerFactory#createEntityManagerFactory() starts

A

0xA501 2 When the processing of
EntityManagerFactory#createEntityManagerFactory() ends

A

0xA502 1 When the processing of
EntityManagerFactory#createEntityManagerFactory(Map map) starts

A

0xA503 2 When the processing of
EntityManagerFactory#createEntityManagerFactory(Map map) ends

A

0xA504 1 When the processing of EntityManagerFactory#isOpen() starts A

0xA505 2 When the processing of EntityManagerFactory#isOpen() ends A

0xA506 1 When the processing of EntityManagerFactory#close() starts A

0xA507 2 When the processing of EntityManagerFactory#close() ends A

0xA508 1 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) starts

A

0xA509 2 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) ends

A

0xA50A 1 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) starts

A

0xA50B 2 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) ends

A

0xA50C 1 When the processing of EntityManager#contains(Object entity) starts A

0xA50D 2 When the processing of EntityManager#contains(Object entity) ends A

0xA50E 1 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) starts

A

0xA50F 2 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) ends

A

15. Performance Analysis Trace

Compatibility Guide 604

Event ID No. in the figure# Trace acquisition points Level

0xA510 1 When the processing of EntityManager#merge(T entity) starts A

0xA511 2 When the processing of EntityManager#merge(T entity) ends A

0xA512 1 When the processing of EntityManager#persist(Object entity) starts A

0xA513 2 When the processing of EntityManager#persist(Object entity) ends A

0xA514 1 When the processing of EntityManager#refresh(Object entity) starts A

0xA515 2 When the processing of EntityManager#refresh(Object entity) ends A

0xA516 1 When the processing of EntityManager#remove(Object entity) starts A

0xA517 2 When the processing of EntityManager#remove(Object entity) ends A

0xA518 1 When the processing of EntityManager#clear() starts A

0xA519 2 When the processing of EntityManager#clear() ends A

0xA51A 1 When the processing of EntityManager#flush() starts A

0xA51B 2 When the processing of EntityManager#flush() ends A

0xA51C 1 When the processing of EntityManager#createQuery(String qlString) starts A

0xA51D 2 When the processing of EntityManager#createQuery(String qlString) ends A

0xA51E 1 When the processing of EntityManager#createNamedQuery(String
name) starts

A

0xA51F 2 When the processing of EntityManager#createNamedQuery(String
name) ends

A

0xA520 1 When the processing of EntityManager#createNativeQuery(String
sqlString) starts

A

0xA521 2 When the processing of EntityManager#createNativeQuery(String
sqlString) ends

A

0xA522 1 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) starts

A

0xA523 2 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) ends

A

0xA524 1 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) starts

A

0xA525 2 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) ends

A

0xA526 1 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) starts

A

0xA527 2 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) ends

A

0xA528 1 When the processing of EntityManager#getFlushMode() starts A

0xA529 2 When the processing of EntityManager#getFlushMode() ends A

0xA52A 1 When the processing of EntityManager#joinTransaction() starts A

0xA52B 2 When the processing of EntityManager#joinTransaction() ends A

0xA52C 1 When the processing of EntityManager#getTransaction() starts A

15. Performance Analysis Trace

Compatibility Guide 605

Event ID No. in the figure# Trace acquisition points Level

0xA52D 2 When the processing of EntityManager#getTransaction() ends A

0xA52E 1 When the processing of EntityManager#getDelegate() starts A

0xA52F 2 When the processing of EntityManager#getDelegate() ends A

0xA530 1 When the processing of EntityManager#isOpen() starts A

0xA531 2 When the processing of EntityManager#isOpen() ends A

0xA532 1 When the processing of EntityManager#close() starts A

0xA533 2 When the processing of EntityManager#close() ends A

0xA534 1 When the processing of EntityTransaction#begin() starts A

0xA535 2 When the processing of EntityTransaction#begin() ends A

0xA536 1 When the processing of EntityTransaction#commit() starts A

0xA537 2 When the processing of EntityTransaction#commit() ends A

0xA538 1 When the processing of EntityTransaction#rollback() starts A

0xA539 2 When the processing of EntityTransaction#rollback() ends A

0xA53A 1 When the processing of EntityTransaction#getRollbackOnly() starts A

0xA53B 2 When the processing of EntityTransaction#getRollbackOnly() ends A

0xA53C 1 When the processing of EntityTransaction#setRollbackOnly() starts A

0xA53D 2 When the processing of EntityTransaction#setRollbackOnly() ends A

0xA53E 1 When the processing of EntityTransaction#isActive() starts A

0xA53F 2 When the processing of EntityTransaction#isActive() ends A

0xA540 1 When the processing of Query#executeUpdate() starts A

0xA541 2 When the processing of Query#executeUpdate() ends A

0xA542 1 When the processing of Query#getResultList() starts A

0xA543 2 When the processing of Query#getResultList() ends A

0xA544 1 When the processing of Query#getSingleResult() starts A

0xA545 2 When the processing of Query#getSingleResult() ends A

0xA546 1 When the processing of Query#setFlushMode(FlushModeType
flushMode) starts

A

0xA547 2 When the processing of Query#setFlushMode(FlushModeType
flushMode) ends

A

0xA548 1 When the processing of Query#setFirstResult(int startPosition) starts B

0xA549 2 When the processing of Query#setFirstResult(int startPosition) ends B

0xA54A 1 When the processing of Query#setMaxResults(int maxResult) starts B

0xA54B 2 When the processing of Query#setMaxResults(int maxResult) ends B

0xA54C 1 When the processing of Query#setHint(String hintName, Object value) starts B

0xA54D 2 When the processing of Query#setHint(String hintName, Object value) ends B

15. Performance Analysis Trace

Compatibility Guide 606

Event ID No. in the figure# Trace acquisition points Level

0xA54E 1 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) starts

B

0xA54F 2 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) ends

B

0xA550 1 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) starts

B

0xA551 2 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) ends

B

0xA552 1 When the processing of Query#setParameter(int position, Object value) starts B

0xA553 2 When the processing of Query#setParameter(int position, Object value) ends B

0xA554 1 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) starts

B

0xA555 2 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) ends

B

0xA556 1 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) starts

B

0xA557 2 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) ends

B

0xA558 1 When the processing of Query#setParameter(String name, Object
value) starts

B

0xA559 2 When the processing of Query#setParameter(String name, Object value) ends B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-16.

The following figure shows the trace collection points.

Figure 15‒16: Trace collection points when the persistent context of application management is
used

15. Performance Analysis Trace

Compatibility Guide 607

(2) Trace information that can be collected
The following table describes the trace information that can be collected when the persistent context of application
management is used.

Table 15‒29: Trace information that can be collected when the persistent context of application
management is used

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA500 A -- -- --

0xA502 A -- -- --

0xA504 A -- -- --

0xA506 A -- -- --

0xA508 A entity class name -- --

0xA50A A entity class name -- --

0xA50C A entity class name -- --

0xA50E A entity class name lockMode value --

0xA510 A entity class name -- --

0xA512 A entity class name -- --

0xA514 A entity class name -- --

0xA516 A entity class name -- --

0xA518 A -- -- --

0xA51A A -- -- --

0xA51C A -- -- --

0xA51E A name -- --

0xA520 A -- -- --

0xA522 A resultClass class name -- --

0xA524 A resultSetMapping -- --

0xA526 A flushMode value -- --

0xA528 A -- -- --

0xA52A A -- -- --

0xA52C A -- -- --

0xA52E A -- -- --

0xA530 A -- -- --

0xA532 A -- -- --

0xA534 A -- -- --

0xA536 A -- -- --

0xA538 A -- -- --

15. Performance Analysis Trace

Compatibility Guide 608

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA53A A -- -- --

0xA53C A -- -- --

0xA53E A -- -- --

0xA540 A -- -- --

0xA542 A -- -- --

0xA544 A -- -- --

0xA546 A flushMode value -- --

0xA548 B startPosition value -- --

0xA54A B maxResult value -- --

0xA54C B hintName value class name --

0xA54E B position value -- --

0xA550 B position value -- --

0xA552 B position value -- --

0xA554 B name value -- --

0xA556 B name value -- --

0xA558 B name value -- --

2 0xA501 A -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

0xA503 A -- --

0xA505 A -- --

0xA507 A -- --

0xA509 A -- --

0xA50B A -- --

0xA50D A -- --

0xA50F A -- --

0xA511 A -- --

0xA513 A -- --

0xA515 A -- --

0xA517 A -- --

0xA519 A -- --

0xA51B A -- --

0xA51D A -- --

0xA51F A -- --

0xA521 A -- --

0xA523 A -- --

15. Performance Analysis Trace

Compatibility Guide 609

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA525 A -- --

0xA527 A -- --

0xA529 A -- --

0xA52B A -- --

0xA52D A -- --

0xA52F A -- --

0xA531 A -- --

0xA533 A -- --

0xA535 A -- --

0xA537 A -- --

0xA539 A -- --

0xA53B A -- --

0xA53D A -- --

0xA53F A -- --

0xA541 A -- --

0xA543 A -- --

0xA545 A -- --

0xA547 A -- --

0xA549 B -- --

0xA54B B -- --

0xA54D B -- --

0xA54F B -- --

0xA551 B -- --

0xA553 B -- --

0xA555 B -- --

0xA557 B -- --

0xA559 B -- --

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 15-16.

15. Performance Analysis Trace

Compatibility Guide 610

15.11.2 Trace collection points and trace information that can be collected
when the persistent context of container management is used

This section describes the trace collection points and the trace information that can be collected when the persistent
context of container management is used. The explanation is divided into the following four categories:

• When the persistent context of the transaction scope is used in the transaction

• When the entity manager related to the persistent context of the transaction scope is used outside a transaction

• When a Query generated outside a transaction is used outside the transaction

• When an extended persistent context is used

(1) Trace collection points and PRF trace collection levels

(a) When the persistent context of the transaction scope is used in the transaction
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒30: Details of trace collection points when the persistent context of the transaction scope
is used in the transaction

Event ID No. in the figure# Trace acquisition points Level

0xA508 1 When the processing of EntityManager#find(Class<T>entityClass, Object
primaryKey) starts

A

0xA509 6 When the processing o EntityManager#find(Class<T> entityClass, Object
primaryKey) ends

A

0xA50A 1 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) starts

A

0xA50B 6 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) ends

A

0xA50C 1 When the processing of EntityManager#contains(Object entity) starts A

0xA50D 6 When the processing of EntityManager#contains(Object entity) ends A

0xA50E 1 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) starts

A

0xA50F 6 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) ends

A

0xA510 1 When the processing of EntityManager#merge(T entity) starts A

0xA511 6 When the processing of EntityManager#merge(T entity) ends A

0xA512 1 When the processing of EntityManager#persist(Object entity) starts A

0xA513 6 When the processing of EntityManager#persist(Object entity) ends A

0xA514 1 When the processing of EntityManager#refresh(Object entity) starts A

0xA515 6 When the processing of EntityManager#refresh(Object entity) ends A

0xA516 1 When the processing of EntityManager#remove(Object entity) starts A

0xA517 6 When the processing of EntityManager#remove(Object entity) ends A

0xA518 1 When the processing of EntityManager#clear() starts A

15. Performance Analysis Trace

Compatibility Guide 611

Event ID No. in the figure# Trace acquisition points Level

0xA519 6 When the processing of EntityManager#clear() ends A

0xA51A 1 When the processing of EntityManager#flush() starts A

0xA51B 6 When the processing of EntityManager#flush() ends A

0xA51C 1 When the processing of EntityManager#createQuery(String qlString) starts A

0xA51D 6 When the processing of EntityManager#createQuery(String qlString) ends A

0xA51E 1 When the processing of EntityManager#createNamedQuery(String
name) starts

A

0xA51F 6 When the processing of EntityManager#createNamedQuery(String
name) ends

A

0xA520 1 When the processing of EntityManager#createNativeQuery(String
sqlString) starts

A

0xA521 6 When the processing of EntityManager#createNativeQuery(String
sqlString) ends

A

0xA522 1 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) starts

A

0xA523 6 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) ends

A

0xA524 1 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) starts

A

0xA525 6 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) ends

A

0xA526 1 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) starts

A

0xA527 6 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) ends

A

0xA528 1 When the processing of EntityManager#getFlushMode() starts A

0xA529 6 When the processing of EntityManager#getFlushMode() ends A

0xA52A 1 When the processing of EntityManager#joinTransaction() starts A

0xA52B 6 When the processing of EntityManager#joinTransaction() ends A

0xA52C 1 When the processing of EntityManager#getTransaction() starts A

0xA52D 6 When the processing of EntityManager#getTransaction() ends A

0xA52E 1 When the processing of EntityManager#getDelegate() starts A

0xA52F 6 When the processing of EntityManager#getDelegate() ends A

0xA530 1 When the processing of EntityManager#isOpen() starts A

0xA531 6 When the processing of EntityManager#isOpen() ends A

0xA532 1 When the processing of EntityManager#close() starts A

0xA533 6 When the processing of EntityManager#close() ends A

0xA540 1 When the processing of Query#executeUpdate() starts A

0xA541 6 When the processing of Query#executeUpdate() ends A

15. Performance Analysis Trace

Compatibility Guide 612

Event ID No. in the figure# Trace acquisition points Level

0xA542 1 When the processing of Query#getResultList() starts A

0xA543 6 When the processing of Query#getResultList() ends A

0xA544 1 When the processing of Query#getSingleResult() starts A

0xA545 6 When the processing of Query#getSingleResult() ends A

0xA546 1 When the processing of Query#setFlushMode(FlushModeType
flushMode) starts

A

0xA547 6 When the processing of Query#setFlushMode(FlushModeType
flushMode) ends

A

0xA548 1 When the processing of Query#setFirstResult(int startPosition) starts B

0xA549 6 When the processing of Query#setFirstResult(int startPosition) ends B

0xA54A 1 When the processing of Query#setMaxResults(int maxResult) starts B

0xA54B 6 When the processing of Query#setMaxResults(int maxResult) ends B

0xA54C 1 When the processing of Query#setHint(String hintName, Object value) starts B

0xA54D 6 When the processing of Query#setHint(String hintName, Object value) ends B

0xA54E 1 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) starts

B

0xA54F 6 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) ends

B

0xA550 1 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) starts

B

0xA551 6 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) ends

B

0xA552 1 When the processing of Query#setParameter(int position, Object value) starts B

0xA553 6 When the processing of Query#setParameter(int position, Object value) ends B

0xA554 1 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) starts

B

0xA555 6 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) ends

B

0xA556 1 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) starts

B

0xA557 6 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) ends

B

0xA558 1 When the processing of Query#setParameter(String name, Object
value) starts

B

0xA559 6 When the processing of Query#setParameter(String name, Object value) ends B

0xA560 4 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider starts

B

0xA561 5 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider ends

B

0xA562 4 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider starts

B

15. Performance Analysis Trace

Compatibility Guide 613

Event ID No. in the figure# Trace acquisition points Level

0xA563 5 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider ends

B

0xA564 4 When the processing of contains(Object entity) of EntityManager of the JPA
provider starts

B

0xA565 5 When the processing of contains(Object entity) of EntityManager of the JPA
provider ends

B

0xA566 4 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider starts

B

0xA567 5 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider ends

B

0xA568 4 When the processing of merge(T entity) of EntityManager of the JPA
provider starts

B

0xA569 5 When the processing of merge(T entity) of EntityManager of the JPA
provider ends

B

0xA56A 4 When the processing of persist(Object entity) of EntityManager of the JPA
provider starts

B

0xA56B 5 When the processing of persist(Object entity) of EntityManager of the JPA
provider ends

B

0xA56C 4 When the processing of refresh(Object entity) of EntityManager of the JPA
provider starts

B

0xA56D 5 When the processing of refresh(Object entity) of EntityManager of the JPA
provider ends

B

0xA56E 4 When the processing of remove(Object entity) of EntityManager of the JPA
provider starts

B

0xA56F 5 When the processing of remove(Object entity) of EntityManager of the JPA
provider ends

B

0xA570 4 When the processing of clear() of EntityManager of the JPA provider starts B

0xA571 5 When the processing of clear() of EntityManager of the JPA provider ends B

0xA572 4 When the processing of flush() of EntityManager of the JPA provider starts B

0xA573 5 When the processing of flush() of EntityManager of the JPA provider ends B

0xA574 4 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider starts

B

0xA575 5 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider ends

B

0xA576 4 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider starts

B

0xA577 5 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider ends

B

0xA578 4 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider starts

B

0xA579 5 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider ends

B

0xA57A 4 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider starts

B

15. Performance Analysis Trace

Compatibility Guide 614

Event ID No. in the figure# Trace acquisition points Level

0xA57B 5 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider ends

B

0xA57C 4 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider starts

B

0xA57D 5 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider ends

B

0xA57E 4 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider starts

B

0xA57F 5 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider ends

B

0xA580 4 When the processing of getFlushMode() of EntityManager of the JPA
provider starts

B

0xA581 5 When the processing of getFlushMode() of EntityManager of the JPA
provider ends

B

0xA582 4 When the processing of joinTransaction() of EntityManager of the JPA
provider starts

B

0xA583 5 When the processing of joinTransaction() of EntityManager of the JPA
provider ends

B

0xA584 4 When the processing of isOpen() of EntityManager of the JPA provider starts B

0xA585 5 When the processing of isOpen() of EntityManager of the JPA provider ends B

0xA586 4 When the processing of executeUpdate() of Query of the JPA provider starts B

0xA587 5 When the processing of executeUpdate() of Query of the JPA provider ends B

0xA588 4 When the processing of getResultList() of Query of the JPA provider starts B

0xA589 5 When the processing of getResultList() of Query of the JPA provider ends B

0xA58A 4 When the processing of getSingleResult() of Query of the JPA provider starts B

0xA58B 5 When the processing of getSingleResult() of Query of the JPA provider ends B

0xA58C 4 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider starts

B

0xA58D 5 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider ends

B

0xA58E 4 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider starts

B

0xA58F 5 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider ends

B

0xA590 4 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider starts

B

0xA591 5 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider ends

B

0xA592 4 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider starts

B

0xA593 5 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider ends

B

15. Performance Analysis Trace

Compatibility Guide 615

Event ID No. in the figure# Trace acquisition points Level

0xA594 4 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA595 5 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA596 4 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA597 5 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA598 4 When the processing of setParameter(int position, Object value) of Query of
the JPA provider starts

B

0xA599 5 When the processing of setParameter(int position, Object value) of Query of
the JPA provider ends

B

0xA59A 4 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA59B 5 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA59C 4 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA59D 5 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA59E 4 When the processing of setParameter(String name, Object value) of Query of
the JPA provider starts

B

0xA59F 5 When the processing of setParameter(String name, Object value) of Query of
the JPA provider ends

B

0xA5A0 2 At the time of start of the processing for generating the persistent context,
when the persistent context of the transaction scope is used

A

0xA5A1 3 At the time of termination of the processing for generating the persistent
context, when the persistent context of the transaction scope is used

A

0xA5A2 7 At the time of start of the processing for discarding the persistent context,
when the persistent context of the transaction scope is used

A

0xA5A3 8 At the time of termination of the processing for discarding the persistent
context, when the persistent context of the transaction scope is used

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-17.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 616

Figure 15‒17: Trace collection points when the persistent context of the transaction scope is used
in the transaction

(b) When the entity manager related to the persistent context of the transaction scope
is used outside a transaction

The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒31: Details of trace collection points when the entity manager related to the persistent
context of the transaction scope is used outside a transaction

Event ID No. in the figure# Trace acquisition points Level

0xA508 1 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) starts

A

0xA509 8 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) ends

A

0xA50A 1 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) starts

A

15. Performance Analysis Trace

Compatibility Guide 617

Event ID No. in the figure# Trace acquisition points Level

0xA50B 8 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) ends

A

0xA50C 1 When the processing of EntityManager#contains(Object entity) starts A

0xA50D 8 When the processing of EntityManager#contains(Object entity) ends A

0xA50E 1 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) starts

A

0xA50F 8 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) ends

A

0xA510 1 When the processing of EntityManager#merge(T entity) starts A

0xA511 8 When the processing of EntityManager#merge(T entity) ends A

0xA512 1 When the processing of EntityManager#persist(Object entity) starts A

0xA513 8 When the processing of EntityManager#persist(Object entity) ends A

0xA514 1 When the processing of EntityManager#refresh(Object entity) starts A

0xA515 8 When the processing of EntityManager#refresh(Object entity) ends A

0xA516 1 When the processing of EntityManager#remove(Object entity) starts A

0xA517 8 When the processing of EntityManager#remove(Object entity) ends A

0xA518 1 When the processing of EntityManager#clear() starts A

0xA519 8 When the processing of EntityManager#clear() ends A

0xA51A 1 When the processing of EntityManager#flush() starts A

0xA51B 8 When the processing of EntityManager#flush() ends A

0xA526 1 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) starts

A

0xA527 8 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) ends

A

0xA528 1 When the processing of EntityManager#getFlushMode() starts A

0xA529 8 When the processing of EntityManager#getFlushMode() ends A

0xA52A 1 When the processing of EntityManager#joinTransaction() starts A

0xA52B 8 When the processing of EntityManager#joinTransaction() ends A

0xA52C 1 When the processing of EntityManager#getTransaction() starts A

0xA52D 8 When the processing of EntityManager#getTransaction() ends A

0xA52E 1 When the processing of EntityManager#getDelegate() starts A

0xA52F 8 When the processing of EntityManager#getDelegate() ends A

0xA530 1 When the processing of EntityManager#isOpen() starts A

0xA531 8 When the processing of EntityManager#isOpen() ends A

0xA532 1 When the processing of EntityManager#close() starts A

0xA533 8 When the processing of EntityManager#close() ends A

0xA560 4 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider starts

B

15. Performance Analysis Trace

Compatibility Guide 618

Event ID No. in the figure# Trace acquisition points Level

0xA561 5 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider ends

B

0xA562 4 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider starts

B

0xA563 5 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider ends

B

0xA564 4 When the processing of contains(Object entity) of EntityManager of the JPA
provider starts

B

0xA565 5 When the processing of contains(Object entity) of EntityManager of the JPA
provider ends

B

0xA566 4 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider starts

B

0xA567 5 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider ends

B

0xA568 4 When the processing of merge(T entity) of EntityManager of the JPA
provider starts

B

0xA569 5 When the processing of merge(T entity) of EntityManager of the JPA
provider ends

B

0xA56A 4 When the processing of persist(Object entity) of EntityManager of the JPA
provider starts

B

0xA56B 5 When the processing of persist(Object entity) of EntityManager of the JPA
provider ends

B

0xA56C 4 When the processing of refresh(Object entity) of EntityManager of the JPA
provider starts

B

0xA56D 5 When the processing of refresh(Object entity) of EntityManager of the JPA
provider ends

B

0xA56E 4 When the processing of remove(Object entity) of EntityManager of the JPA
provider starts

B

0xA56F 5 When the processing of remove(Object entity) of EntityManager of the JPA
provider ends

B

0xA570 4 When the processing of clear() of EntityManager of the JPA provider starts B

0xA571 5 When the processing of clear() of EntityManager of the JPA provider ends B

0xA572 4 When the processing of flush() of EntityManager of the JPA provider starts B

0xA573 5 When the processing of flush() of EntityManager of the JPA provider ends B

0xA57E 4 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider starts

B

0xA57F 5 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider ends

B

0xA580 4 When the processing of getFlushMode() of EntityManager of the JPA
provider starts

B

0xA581 5 When the processing of getFlushMode() of EntityManager of the JPA
provider ends

B

0xA582 4 When the processing of joinTransaction() of EntityManager of the JPA
provider starts

B

15. Performance Analysis Trace

Compatibility Guide 619

Event ID No. in the figure# Trace acquisition points Level

0xA583 5 When the processing of joinTransaction() of EntityManager of the JPA
provider ends

B

0xA584 4 When the processing of isOpen() of EntityManager of the JPA provider starts B

0xA585 5 When the processing of isOpen() of EntityManager of the JPA provider ends B

0xA5A4 2 At the time of start of the processing for generating the persistent context,
when an API that is not generated in the Query of EntityManager of the
transaction scope is used while the transaction does not exist

A

0xA5A5 3 At the time of termination of the processing for generating the persistent
context, when an API that is not generated in the Query of EntityManager of
the transaction scope is used while the transaction does not exist

A

0xA5A6 6 At the time of start of the processing for discarding the persistent context
generated when an API that is not generated in the Query of EntityManager
of the transaction scope is used while the transaction does not exist

A

0xA5A7 7 At the time of termination of the processing for discarding the persistent
context generated when an API that is not generated in the Query of
EntityManager of the transaction scope is used while the transaction does
not exist

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-18.

The following figure shows the trace collection points.

Figure 15‒18: Trace collection points when the entity manager related to the persistent context of
the transaction scope is used outside a transaction

15. Performance Analysis Trace

Compatibility Guide 620

(c) When a Query generated outside a transaction is used outside the transaction
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒32: Details of trace collection points when a Query generated outside a transaction is
used outside the transaction

Event ID No. in the figure# Trace acquisition points Level

0xA51C 1 When the processing of EntityManager#createQuery(String qlString) starts A

0xA51D 6 When the processing of EntityManager#createQuery(String qlString) ends A

0xA51E 1 When the processing of EntityManager#createNamedQuery(String
name) starts

A

0xA51F 6 When the processing of EntityManager#createNamedQuery(String
name) ends

A

0xA520 1 When the processing of EntityManager#createNativeQuery(String
sqlString) starts

A

0xA521 6 When the processing of EntityManager#createNativeQuery(String
sqlString) ends

A

0xA522 1 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) starts

A

0xA523 6 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) ends

A

0xA524 1 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) starts

A

0xA525 6 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) ends

A

0xA540 1, 11 When the processing of Query#executeUpdate() starts A

0xA541 6, 16 When the processing of Query#executeUpdate() ends A

0xA542 1, 11 When the processing of Query#getResultList() starts A

0xA543 6, 16 When the processing of Query#getResultList() ends A

0xA544 1, 11 When the processing of Query#getSingleResult() starts A

0xA545 6, 16 When the processing of Query#getSingleResult() ends A

0xA546 1, 7 When the processing of Query#setFlushMode(FlushModeType
flushMode) starts

A

0xA547 6, 10 When the processing of Query#setFlushMode(FlushModeType
flushMode) ends

A

0xA548 1, 7 When the processing of Query#setFirstResult(int startPosition) starts B

0xA549 6, 10 When the processing of Query#setFirstResult(int startPosition) ends B

0xA54A 1, 7 When the processing of Query#setMaxResults(int maxResult) starts B

0xA54B 6, 10 When the processing of Query#setMaxResults(int maxResult) ends B

0xA54C 1, 7 When the processing of Query#setHint(String hintName, Object value) starts B

0xA54D 6, 10 When the processing of Query#setHint(String hintName, Object value) ends B

0xA54E 1, 7 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) starts

B

15. Performance Analysis Trace

Compatibility Guide 621

Event ID No. in the figure# Trace acquisition points Level

0xA54F 6, 10 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) ends

B

0xA550 1, 7 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) starts

B

0xA551 6, 10 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) ends

B

0xA552 1, 7 When the processing of Query#setParameter(int position, Object value) starts B

0xA553 6, 10 When the processing of Query#setParameter(int position, Object value) ends B

0xA554 1, 7 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) starts

B

0xA555 6, 10 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) ends

B

0xA556 1, 7 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) starts

B

0xA557 6, 10 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) ends

B

0xA558 1, 7 When the processing of Query#setParameter(String name, Object
value) starts

B

0xA559 6, 10 When the processing of Query#setParameter(String name, Object value) ends B

0xA574 4 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider starts

B

0xA575 5 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider ends

B

0xA576 4 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider starts

B

0xA577 5 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider ends

B

0xA578 4 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider starts

B

0xA579 5 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider ends

B

0xA57A 4 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider starts

B

0xA57B 5 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider ends

B

0xA57C 4 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider starts

B

0xA57D 5 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider ends

B

0xA586 4, 12 When the processing of executeUpdate() of Query of the JPA provider starts B

0xA587 5, 13 When the processing of executeUpdate() of Query of the JPA provider ends B

0xA588 4, 12 When the processing of getResultList() of Query of the JPA provider starts B

0xA589 5, 13 When the processing of getResultList() of Query of the JPA provider ends B

15. Performance Analysis Trace

Compatibility Guide 622

Event ID No. in the figure# Trace acquisition points Level

0xA58A 4, 12 When the processing of getSingleResult() of Query of the JPA provider starts B

0xA58B 5, 13 When the processing of getSingleResult() of Query of the JPA provider ends B

0xA58C 4, 8 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider starts

B

0xA58D 5, 9 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider ends

B

0xA58E 4, 8 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider starts

B

0xA58F 5, 9 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider ends

B

0xA590 4, 8 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider starts

B

0xA591 5, 9 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider ends

B

0xA592 4, 8 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider starts

B

0xA593 5, 9 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider ends

B

0xA594 4, 8 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA595 5, 9 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA596 4, 8 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA597 5, 9 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA598 4, 8 When the processing of setParameter(int position, Object value) of Query of
the JPA provider starts

B

0xA599 5, 9 When the processing of setParameter(int position, Object value) of Query of
the JPA provider ends

B

0xA59A 4, 8 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA59B 5, 9 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA59C 4, 8 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA59D 5, 9 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA59E 4, 8 When the processing of setParameter(String name, Object value) of Query of
the JPA provider starts

B

0xA59F 5, 9 When the processing of setParameter(String name, Object value) of Query of
the JPA provider ends

B

0xA5A8 2 At the time of start of the processing for generating the persistent context,
when an API generated in the Query of EntityManager of the transaction

A

15. Performance Analysis Trace

Compatibility Guide 623

Event ID No. in the figure# Trace acquisition points Level

scope, or an API of the same Query object after searching or updating with the
Query is used while the transaction does not exist

0xA5A9 3 At the time of termination of the processing for generating the persistent
context, when an API generated in the Query of EntityManager of the
transaction scope, or an API of the same Query object after searching or
updating with the Query is used while the transaction does not exist

A

0xA5AA 14 At the time of start of the processing for discarding the persistent context
generated when an API generated in the Query of EntityManager of the
transaction scope, or an API of the same Query object after searching or
updating with the Query is used while the transaction does not exist

A

0xA5AB 15 At the time of termination of the processing for discarding the persistent
context generated when an API generated in the Query of EntityManager of
the transaction scope, or an API of the same Query object after searching or
updating with the Query is used while the transaction does not exist

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-19.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 624

Figure 15‒19: Trace collection points when a Query generated outside a transaction is used outside
the transaction

(d) When an extended persistent context is used
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒33: Details of trace collection points when an extended persistent context is used

Event ID No. in the figure# Trace acquisition points Level

0xA508 3 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) starts

A

0xA509 6 When the processing of EntityManager#find(Class<T> entityClass, Object
primaryKey) ends

A

15. Performance Analysis Trace

Compatibility Guide 625

Event ID No. in the figure# Trace acquisition points Level

0xA50A 3 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) starts

A

0xA50B 6 When the processing of EntityManager#getReference(Class<T> entityClass,
Object primaryKey) ends

A

0xA50C 3 When the processing of EntityManager#contains(Object entity) starts A

0xA50D 6 When the processing of EntityManager#contains(Object entity) ends A

0xA50E 3 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) starts

A

0xA50F 6 When the processing of EntityManager#lock(Object entity, LockModeType
lockMode) ends

A

0xA510 3 When the processing of EntityManager#merge(T entity) starts A

0xA511 6 When the processing of EntityManager#merge(T entity) ends A

0xA512 3 When the processing of EntityManager#persist(Object entity) starts A

0xA513 6 When the processing of EntityManager#persist(Object entity) ends A

0xA514 3 When the processing of EntityManager#refresh(Object entity) starts A

0xA515 6 When the processing of EntityManager#refresh(Object entity) ends A

0xA516 3 When the processing of EntityManager#remove(Object entity) starts A

0xA517 6 When the processing of EntityManager#remove(Object entity) ends A

0xA518 3 When the processing of EntityManager#clear() starts A

0xA519 6 When the processing of EntityManager#clear() ends A

0xA51A 3 When the processing of EntityManager#flush() starts A

0xA51B 6 When the processing of EntityManager#flush() ends A

0xA51C 3 When the processing of EntityManager#createQuery(String qlString) starts A

0xA51D 6 When the processing of EntityManager#createQuery(String qlString) ends A

0xA51E 3 When the processing of EntityManager#createNamedQuery(String
name) starts

A

0xA51F 6 When the processing of EntityManager#createNamedQuery(String
name) ends

A

0xA520 3 When the processing of EntityManager#createNativeQuery(String
sqlString) starts

A

0xA521 6 When the processing of EntityManager#createNativeQuery(String
sqlString) ends

A

0xA522 3 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) starts

A

0xA523 6 When the processing of EntityManager#createNativeQuery(String sqlString,
Class resultClass) ends

A

0xA524 3 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) starts

A

0xA525 6 When the processing of EntityManager#createNativeQuery(String sqlString,
String resultSetMapping) ends

A

15. Performance Analysis Trace

Compatibility Guide 626

Event ID No. in the figure# Trace acquisition points Level

0xA526 3 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) starts

A

0xA527 6 When the processing of EntityManager#setFlushMode(FlushModeType
flushMode) ends

A

0xA528 3 When the processing of EntityManager#getFlushMode() starts A

0xA529 6 When the processing of EntityManager#getFlushMode() ends A

0xA52A 3 When the processing of EntityManager#joinTransaction() starts A

0xA52B 6 When the processing of EntityManager#joinTransaction() ends A

0xA52C 3 When the processing of EntityManager#getTransaction() starts A

0xA52D 6 When the processing of EntityManager#getTransaction() ends A

0xA52E 3 When the processing of EntityManager#getDelegate() starts A

0xA52F 6 When the processing of EntityManager#getDelegate() ends A

0xA530 3 When the processing of EntityManager#isOpen() starts A

0xA531 6 When the processing of EntityManager#isOpen() ends A

0xA532 3 When the processing of EntityManager#close() starts A

0xA533 6 When the processing of EntityManager#close() ends A

0xA540 3 When the processing of Query#executeUpdate() starts A

0xA541 6 When the processing of Query#executeUpdate() ends A

0xA542 3 When the processing of Query#getResultList() starts A

0xA543 6 When the processing of Query#getResultList() ends A

0xA544 3 When the processing of Query#getSingleResult() starts A

0xA545 6 When the processing of Query#getSingleResult() ends A

0xA546 3 When the processing of Query#setFlushMode(FlushModeType
flushMode) starts

A

0xA547 6 When the processing of Query#setFlushMode(FlushModeType
flushMode) ends

A

0xA548 3 When the processing of Query#setFirstResult(int startPosition) starts B

0xA549 6 When the processing of Query#setFirstResult(int startPosition) ends B

0xA54A 3 When the processing of Query#setMaxResults(int maxResult) starts B

0xA54B 6 When the processing of Query#setMaxResults(int maxResult) ends B

0xA54C 3 When the processing of Query#setHint(String hintName, Object value) starts B

0xA54D 6 When the processing of Query#setHint(String hintName, Object value) ends B

0xA54E 3 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) starts

B

0xA54F 6 When the processing of Query#setParameter(int position, Calendar value,
TemporalType temporalType) ends

B

0xA550 3 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) starts

B

15. Performance Analysis Trace

Compatibility Guide 627

Event ID No. in the figure# Trace acquisition points Level

0xA551 6 When the processing of Query#setParameter(int position, Date value,
TemporalType temporalType) ends

B

0xA552 3 When the processing of Query#setParameter(int position, Object value) starts B

0xA553 6 When the processing of Query#setParameter(int position, Object value) ends B

0xA554 3 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) starts

B

0xA555 6 When the processing of Query#setParameter(String name, Calendar value,
TemporalType temporalType) ends

B

0xA556 3 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) starts

B

0xA557 6 When the processing of Query#setParameter(String name, Date value,
TemporalType temporalType) ends

B

0xA558 3 When the processing of Query#setParameter(String name, Object
value) starts

B

0xA559 6 When the processing of Query#setParameter(String name, Object value) ends B

0xA560 4 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider starts

B

0xA561 5 When the processing of find(Class<T> entityClass, Object primaryKey) of
EntityManager of the JPA provider ends

B

0xA562 4 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider starts

B

0xA563 5 When the processing of getReference(Class<T> entityClass, Object
primaryKey) of EntityManager of the JPA provider ends

B

0xA564 4 When the processing of contains(Object entity) of EntityManager of the JPA
provider starts

B

0xA565 5 When the processing of contains(Object entity) of EntityManager of the JPA
provider ends

B

0xA566 4 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider starts

B

0xA567 5 When the processing of lock(Object entity, LockModeType lockMode) of
EntityManager of the JPA provider ends

B

0xA568 4 When the processing of merge(T entity) of EntityManager of the JPA
provider starts

B

0xA569 5 When the processing of merge(T entity) of EntityManager of the JPA
provider ends

B

0xA56A 4 When the processing of persist(Object entity) of EntityManager of the JPA
provider starts

B

0xA56B 5 When the processing of persist(Object entity) of EntityManager of the JPA
provider ends

B

0xA56C 4 When the processing of refresh(Object entity) of EntityManager of the JPA
provider starts

B

0xA56D 5 When the processing of refresh(Object entity) of EntityManager of the JPA
provider ends

B

15. Performance Analysis Trace

Compatibility Guide 628

Event ID No. in the figure# Trace acquisition points Level

0xA56E 4 When the processing of remove(Object entity) of EntityManager of the JPA
provider starts

B

0xA56F 5 When the processing of remove(Object entity) of EntityManager of the JPA
provider ends

B

0xA570 4 When the processing of clear() of EntityManager of the JPA provider starts B

0xA571 5 When the processing of clear() of EntityManager of the JPA provider ends B

0xA572 4 When the processing of flush() of EntityManager of the JPA provider starts B

0xA573 5 When the processing of flush() of EntityManager of the JPA provider ends B

0xA574 4 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider starts

B

0xA575 5 When the processing of createQuery(String qlString) of EntityManager of the
JPA provider ends

B

0xA576 4 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider starts

B

0xA577 5 When the processing of createNamedQuery(String name) of EntityManager
of the JPA provider ends

B

0xA578 4 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider starts

B

0xA579 5 When the processing of createNativeQuery(String sqlString) of
EntityManager of the JPA provider ends

B

0xA57A 4 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider starts

B

0xA57B 5 When the processing of createNativeQuery(String sqlString, Class
resultClass) of EntityManager of the JPA provider ends

B

0xA57C 4 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider starts

B

0xA57D 5 When the processing of createNativeQuery(String sqlString, String
resultSetMapping) of EntityManager of the JPA provider ends

B

0xA57E 4 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider starts

B

0xA57F 5 When the processing of setFlushMode(FlushModeType flushMode) of
EntityManager of the JPA provider ends

B

0xA580 4 When the processing of getFlushMode() of EntityManager of the JPA
provider starts

B

0xA581 5 When the processing of getFlushMode() of EntityManager of the JPA
provider ends

B

0xA582 4 When the processing of joinTransaction() of EntityManager of the JPA
provider starts

B

0xA583 5 When the processing of joinTransaction() of EntityManager of the JPA
provider ends

B

0xA584 4 When the processing of isOpen() of EntityManager of the JPA provider starts B

0xA585 5 When the processing of isOpen() of EntityManager of the JPA provider ends B

0xA586 4 When the processing of executeUpdate() of Query of the JPA provider starts B

15. Performance Analysis Trace

Compatibility Guide 629

Event ID No. in the figure# Trace acquisition points Level

0xA587 5 When the processing of executeUpdate() of Query of the JPA provider ends B

0xA588 4 When the processing of getResultList() of Query of the JPA provider starts B

0xA589 5 When the processing of getResultList() of Query of the JPA provider ends B

0xA58A 4 When the processing of getSingleResult() of Query of the JPA provider starts B

0xA58B 5 When the processing of getSingleResult() of Query of the JPA provider ends B

0xA58C 4 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider starts

B

0xA58D 5 When the processing of setFlushMode(FlushModeType flushMode) of Query
of the JPA provider ends

B

0xA58E 4 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider starts

B

0xA58F 5 When the processing of setFirstResult(int startPosition) of Query of the JPA
provider ends

B

0xA590 4 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider starts

B

0xA591 5 When the processing of setMaxResults(int maxResult) of Query of the JPA
provider ends

B

0xA592 4 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider starts

B

0xA593 5 When the processing of setHint(String hintName, Object value) of Query of
the JPA provider ends

B

0xA594 4 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA595 5 When the processing of setParameter(int position, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA596 4 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA597 5 When the processing of setParameter(int position, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA598 4 When the processing of setParameter(int position, Object value) of Query of
the JPA provider starts

B

0xA599 5 When the processing of setParameter(int position, Object value) of Query of
the JPA provider ends

B

0xA59A 4 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider starts

B

0xA59B 5 When the processing of setParameter(String name, Calendar value,
TemporalType temporalType) of Query of the JPA provider ends

B

0xA59C 4 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider starts

B

0xA59D 5 When the processing of setParameter(String name, Date value, TemporalType
temporalType) of Query of the JPA provider ends

B

0xA59E 4 When the processing of setParameter(String name, Object value) of Query of
the JPA provider starts

B

15. Performance Analysis Trace

Compatibility Guide 630

Event ID No. in the figure# Trace acquisition points Level

0xA59F 5 When the processing of setParameter(String name, Object value) of Query of
the JPA provider ends

B

0xA5AC 1 At the time of start of the processing for generating the persistent context,
when the persistent context of the extended scope is used

A

0xA5AD 2 At the time of termination of the processing for generating the persistent
context, when the persistent context of the extended scope is used

A

0xA5AE 7 When the processing of EntityManager.close() starts while the persistent
context of the extended scope is being used

A

0xA5AF 8 When the processing of EntityManager.close() ends while the persistent
context of the extended scope is being used

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-20.

The following figure shows the trace collection points.

Figure 15‒20: Trace collection points when an extended persistent context is used

15. Performance Analysis Trace

Compatibility Guide 631

(2) Trace information that can be collected

(a) When the persistent context of the transaction scope is used in the transaction
The following table describes the trace information that can be collected when the persistent context of the transaction
scope is used in the transaction.

Table 15‒34: Trace information that can be collected when the persistent context of the transaction
scope is used in the transaction

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA508 A entity class name -- --

0xA50A A entity class name -- --

0xA50C A entity class name -- --

0xA50E A entity class name lockMode value --

0xA510 A entity class name -- --

0xA512 A entity class name -- --

0xA514 A entity class name -- --

0xA516 A entity class name -- --

0xA518 A -- -- --

0xA51A A -- -- --

0xA51C A -- -- --

0xA51E A name -- --

0xA520 A -- -- --

0xA522 A resultClass class name -- --

0xA524 A resultSetMapping -- --

0xA526 A flushMode value -- --

0xA528 A -- -- --

0xA52A A -- -- --

0xA52C A -- -- --

0xA52E A -- -- --

0xA530 A -- -- --

0xA532 A -- -- --

0xA540 A -- -- --

0xA542 A -- -- --

0xA544 A -- -- --

0xA546 A flushMode value -- --

0xA548 B startPosition value -- --

0xA54A B maxResult value -- --

15. Performance Analysis Trace

Compatibility Guide 632

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA54C B hintName value class name --

0xA54E B position value -- --

0xA550 B position value -- --

0xA552 B position value -- --

0xA554 B name value -- --

0xA556 B name value -- --

0xA558 B name value -- --

2 0xA5A0 A -- -- --

3 0xA5A1 A -- -- #2

4 0xA560 B entity class name -- --

0xA562 B entity class name -- --

0xA564 B entity class name -- --

0xA566 B entity class name lockMode value --

0xA568 B entity class name -- --

0xA56A B entity class name -- --

0xA56C B entity class name -- --

0xA56E B entity class name -- --

0xA570 B -- -- --

0xA572 B -- -- --

0xA574 B -- -- --

0xA576 B name -- --

0xA578 B -- -- --

0xA57A B resultClass class name -- --

0xA57C B resultSetMapping -- --

0xA57E B flushMode value -- --

0xA580 B -- -- --

0xA582 B -- -- --

0xA584 B -- -- --

0xA586 B -- -- --

0xA588 B -- -- --

0xA58A B -- -- --

0xA58C B flushMode value -- --

0xA58E B startPosition value -- --

0xA590 B maxResult value -- --

15. Performance Analysis Trace

Compatibility Guide 633

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA592 B hintName value class name --

0xA594 B position value -- --

0xA596 B position value -- --

0xA598 B position value -- --

0xA59A B name value -- --

0xA59C B name value -- --

0xA59E B name value -- --

5 0xA561 B -- -- #2

0xA563 B -- -- #2

0xA565 B -- -- #2

0xA567 B -- -- #2

0xA569 B -- -- #2

0xA56B B -- -- #2

0xA56D B -- -- #2

0xA56F B -- -- #2

0xA571 B -- -- #2

0xA573 B -- -- #2

0xA575 B -- -- #2

0xA577 B -- -- #2

0xA579 B -- -- #2

0xA57B B -- -- #2

0xA57D B -- -- #2

0xA57F B -- -- #2

0xA581 B -- -- #2

0xA583 B -- -- #2

0xA585 B -- -- #2

0xA587 B -- -- #2

0xA589 B -- -- #2

0xA58B B -- -- #2

0xA58D B -- -- #2

0xA58F B -- -- #2

0xA591 B -- -- #2

0xA593 B -- -- #2

0xA595 B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 634

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA597 B -- -- #2

0xA599 B -- -- #2

0xA59B B -- -- #2

0xA59D B -- -- #2

0xA59F B -- -- #2

6 0xA509 A -- -- #2

0xA50B A -- -- #2

0xA50D A -- -- #2

0xA50F A -- -- #2

0xA511 A -- -- #2

0xA513 A -- -- #2

0xA515 A -- -- #2

0xA517 A -- -- #2

0xA519 A -- -- #2

0xA51B A -- -- #2

0xA51D A -- -- #2

0xA51F A -- -- #2

0xA521 A -- -- #2

0xA523 A -- -- #2

0xA525 A -- -- #2

0xA527 A -- -- #2

0xA529 A -- -- #2

0xA52B A -- -- #2

0xA52D A -- -- #2

0xA52F A -- -- #2

0xA531 A -- -- #2

0xA533 A -- -- #2

0xA541 A -- -- #2

0xA543 A -- -- #2

0xA545 A -- -- #2

0xA547 A -- -- #2

0xA549 B -- -- #2

0xA54B B -- -- #2

0xA54D B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 635

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA54F B -- -- #2

0xA551 B -- -- #2

0xA553 B -- -- #2

0xA555 B -- -- #2

0xA557 B -- -- #2

0xA559 B -- -- #2

7 0xA5A2 A -- -- --

8 0xA5A3 A -- -- #2

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-17.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

(b) When the entity manager related to the persistent context of the transaction scope
is used outside a transaction

The following table describes the trace information that can be collected when the entity manager related to the persistent
context of the transaction scope is used outside a transaction.

Table 15‒35: Trace information that can be collected when the entity manager related to the
persistent context of the transaction scope is used outside a transaction

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA508 A entity class name -- --

0xA50A A entity class name -- --

0xA50C A entity class name -- --

0xA50E A entity class name lockMode value --

0xA510 A entity class name -- --

0xA512 A entity class name -- --

0xA514 A entity class name -- --

0xA516 A entity class name -- --

0xA518 A -- -- --

0xA51A A -- -- --

0xA526 A flushMode value -- --

15. Performance Analysis Trace

Compatibility Guide 636

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA528 A -- -- --

0xA52A A -- -- --

0xA52C A -- -- --

0xA52E A -- -- --

0xA530 A -- -- --

0xA532 A -- -- --

2 0xA5A4 A -- -- --

3 0xA5A5 A -- -- #2

4 0xA560 B entity class name -- --

0xA562 B entity class name -- --

0xA564 B entity class name -- --

0xA566 B entity class name lockMode value --

0xA568 B entity class name -- --

0xA56A B entity class name -- --

0xA56C B entity class name -- --

0xA56E B entity class name -- --

0xA570 B -- -- --

0xA572 B -- -- --

0xA57E B flushMode value -- --

0xA580 B -- -- --

0xA582 B -- -- --

0xA584 B -- -- --

5 0xA561 B -- -- #2

0xA563 B -- -- #2

0xA565 B -- -- #2

0xA567 B -- -- #2

0xA569 B -- -- #2

0xA56B B -- -- #2

0xA56D B -- -- #2

0xA56F B -- -- #2

0xA571 B -- -- #2

0xA573 B -- -- #2

0xA57F B -- -- #2

0xA581 B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 637

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA583 B -- -- #2

0xA585 B -- -- #2

6 0xA5A6 A -- -- --

7 0xA5A7 A -- -- #2

8 0xA509 A -- -- #2

0xA50B A -- -- #2

0xA50D A -- -- #2

0xA50F A -- -- #2

0xA511 A -- -- #2

0xA513 A -- -- #2

0xA515 A -- -- #2

0xA517 A -- -- #2

0xA519 A -- -- #2

0xA51B A -- -- #2

0xA527 A -- -- #2

0xA529 A -- -- #2

0xA52B A -- -- #2

0xA52D A -- -- #2

0xA52F A -- -- #2

0xA531 A -- -- #2

0xA533 A -- -- #2

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-18.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

(c) When a Query generated outside a transaction is used outside the transaction
The following table describes the trace information that can be collected when a Query generated outside a transaction
is used outside the transaction.

15. Performance Analysis Trace

Compatibility Guide 638

Table 15‒36: Trace information that can be collected when a Query generated outside a transaction
is used outside the transaction

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA51C A -- -- --

0xA51E A name -- --

0xA520 A -- -- --

0xA522 A resultClass class name -- --

0xA524 A resultSetMapping -- --

1, 11 0xA540 A -- -- --

0xA542 A -- -- --

0xA544 A -- -- --

1, 7 0xA546 A flushMode value -- --

0xA548 B startPosition value -- --

0xA54A B maxResult value -- --

0xA54C B hintName value class name --

0xA54E B position value -- --

0xA550 B position value -- --

0xA552 B position value -- --

0xA554 B name value -- --

0xA556 B name value -- --

0xA558 B name value -- --

2 0xA5A8 A -- -- --

3 0xA5A9 A -- -- #2

4 0xA574 B -- -- --

0xA576 B name -- --

0xA578 B -- -- --

0xA57A B resultClass class name -- --

0xA57C B resultSetMapping -- --

4, 12 0xA586 B -- -- --

0xA588 B -- -- --

0xA58A B -- -- --

4, 8 0xA58C B flushMode value -- --

0xA58E B startPosition value -- --

0xA590 B maxResult value -- --

0xA592 B hintName value class name --

15. Performance Analysis Trace

Compatibility Guide 639

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA594 B position value -- --

0xA596 B position value -- --

0xA598 B position value -- --

0xA59A B name value -- --

0xA59C B name value -- --

0xA59E B name value -- --

5 0xA575 B -- -- #2

0xA577 B -- -- #2

0xA579 B -- -- #2

0xA57B B -- -- #2

0xA57D B -- -- #2

5, 13 0xA587 B -- -- #2

0xA589 B -- -- #2

0xA58B B -- -- #2

5, 9 0xA58D B -- -- #2

0xA58F B -- -- #2

0xA591 B -- -- #2

0xA593 B -- -- #2

0xA595 B -- -- #2

0xA597 B -- -- #2

0xA599 B -- -- #2

0xA59B B -- -- #2

0xA59D B -- -- #2

0xA59F B -- -- #2

6 0xA51D A -- -- #2

0xA51F A -- -- #2

0xA521 A -- -- #2

0xA523 A -- -- #2

0xA525 A -- -- #2

6, 16 0xA541 A -- -- #2

0xA543 A -- -- #2

0xA545 A -- -- #2

6, 10 0xA547 A -- -- #2

0xA549 B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 640

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA54B B -- -- #2

0xA54D B -- -- #2

0xA54F B -- -- #2

0xA551 B -- -- #2

0xA553 B -- -- #2

0xA555 B -- -- #2

0xA557 B -- -- #2

0xA559 B -- -- #2

14 0xA5AA A -- -- --

15 0xA5AB A -- -- #2

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-19.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

(d) When an extended persistent context is used
The following table describes the trace information that can be collected when an extended persistent context is used.

Table 15‒37: Trace information that can be collected when an extended persistent context is used

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA5AC A -- -- --

2 0xA5AD A -- -- #2

3 0xA508 A entity class name -- --

0xA50A A entity class name -- --

0xA50C A entity class name -- --

0xA50E A entity class name lockMode value --

0xA510 A entity class name -- --

0xA512 A entity class name -- --

0xA514 A entity class name -- --

0xA516 A entity class name -- --

0xA518 A -- -- --

0xA51A A -- -- --

15. Performance Analysis Trace

Compatibility Guide 641

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA51C A -- -- --

0xA51E A name -- --

0xA520 A -- -- --

0xA522 A resultClass class name -- --

0xA524 A resultSetMapping -- --

0xA526 A flushMode value -- --

0xA528 A -- -- --

0xA52A A -- -- --

0xA52C A -- -- --

0xA52E A -- -- --

0xA530 A -- -- --

0xA532 A -- -- --

0xA540 A -- -- --

0xA542 A -- -- --

0xA544 A -- -- --

0xA546 A flushMode value -- --

0xA548 B startPosition value -- --

0xA54A B maxResult value -- --

0xA54C B hintName value class name --

0xA54E B position value -- --

0xA550 B position value -- --

0xA552 B position value -- --

0xA554 B name value -- --

0xA556 B name value -- --

0xA558 B name value -- --

4 0xA560 B entity class name -- --

0xA562 B entity class name -- --

0xA564 B entity class name -- --

0xA566 B entity class name lockMode value --

0xA568 B entity class name -- --

0xA56A B entity class name -- --

0xA56C B entity class name -- --

0xA56E B entity class name -- --

0xA570 B -- -- --

15. Performance Analysis Trace

Compatibility Guide 642

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA572 B -- -- --

0xA574 B -- -- --

0xA576 B name -- --

0xA578 B -- -- --

0xA57A B resultClass class name -- --

0xA57C B resultSetMapping -- --

0xA57E B flushMode value -- --

0xA580 B -- -- --

0xA582 B -- -- --

0xA584 B -- -- --

0xA586 B -- -- --

0xA588 B -- -- --

0xA58A B -- -- --

0xA58C B flushMode value -- --

0xA58E B startPosition value -- --

0xA590 B maxResult value -- --

0xA592 B hintName value class name --

0xA594 B position value -- --

0xA596 B position value -- --

0xA598 B position value -- --

0xA59A B name value -- --

0xA59C B name value -- --

0xA59E B name value -- --

5 0xA561 B -- -- #2

0xA563 B -- -- #2

0xA565 B -- -- #2

0xA567 B -- -- #2

0xA569 B -- -- #2

0xA56B B -- -- #2

0xA56D B -- -- #2

0xA56F B -- -- #2

0xA571 B -- -- #2

0xA573 B -- -- #2

0xA575 B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 643

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA577 B -- -- #2

0xA579 B -- -- #2

0xA57B B -- -- #2

0xA57D B -- -- #2

0xA57F B -- -- #2

0xA581 B -- -- #2

0xA583 B -- -- #2

0xA585 B -- -- #2

0xA587 B -- -- #2

0xA589 B -- -- #2

0xA58B B -- -- #2

0xA58D B -- -- #2

0xA58F B -- -- #2

0xA591 B -- -- #2

0xA593 B -- -- #2

0xA595 B -- -- #2

0xA597 B -- -- #2

0xA599 B -- -- #2

0xA59B B -- -- #2

0xA59D B -- -- #2

0xA59F B -- -- #2

6 0xA509 A -- -- #2

0xA50B A -- -- #2

0xA50D A -- -- #2

0xA50F A -- -- #2

0xA511 A -- -- #2

0xA513 A -- -- #2

0xA515 A -- -- #2

0xA517 A -- -- #2

0xA519 A -- -- #2

0xA51B A -- -- #2

0xA51D A -- -- #2

0xA51F A -- -- #2

0xA521 A -- -- #2

15. Performance Analysis Trace

Compatibility Guide 644

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA523 A -- -- #2

0xA525 A -- -- #2

0xA527 A -- -- #2

0xA529 A -- -- #2

0xA52B A -- -- #2

0xA52D A -- -- #2

0xA52F A -- -- #2

0xA531 A -- -- #2

0xA533 A -- -- #2

0xA541 A -- -- #2

0xA543 A -- -- #2

0xA545 A -- -- #2

0xA547 A -- -- #2

0xA549 B -- -- #2

0xA54B B -- -- #2

0xA54D B -- -- #2

0xA54F B -- -- #2

0xA551 B -- -- #2

0xA553 B -- -- #2

0xA555 B -- -- #2

0xA557 B -- -- #2

0xA559 B -- -- #2

7 0xA5AE A -- -- --

8 0xA5AF A -- -- #2

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-20.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

15. Performance Analysis Trace

Compatibility Guide 645

15.12 Trace collection points of the Cosminexus JPA provider

This section describes the trace collection points of the Cosminexus JPA provider, and also describes the trace
information that can be collected.

15.12.1 Trace collection points and trace information that can be collected
during the acquisition or release processing of
EntityManagerFactory

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒38: Details of trace collection points during the acquisition or release processing of
EntityManagerFactory

Event ID No. in the
figure#1

Trace acquisition points Level

0xA304#2 3 When the processing of EntityManagerFactory#close() starts B

0xA305#2 4 When the processing of EntityManagerFactory#close() ends B

0xA320#3 1 When the processing of
PersistenceProvider#createEntityManagerFactory(String, Map) starts

A

0xA321#3 2 When the processing of
PersistenceProvider#createEntityManagerFactory(String, Map) ends

A

0xA322#3 1 When the processing of
PersistenceProvider#createContainerEntityManagerFactory(PersistenceUni
tInfo, Map) starts

A

0xA323#3 2 When the processing of
PersistenceProvider#createContainerEntityManagerFactory(PersistenceUni
tInfo, Map) ends

A

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers in Figure 15-21.

#2
Trace collection point for javax.persistence.EntityManagerFactory.

#3
Trace collection point for javax.persistence.spi.PersistenceProvider.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 646

Figure 15‒21: Trace collection points of the acquisition or release processing of
EntityManagerFactory

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the acquisition or release processing
of EntityManagerFactory.

Table 15‒39: Trace information that can be collected during the acquisition or release processing
of EntityManagerEntityFactory

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1#2 0xA320#3 A -- -- --

0xA322 A -- -- --

2#2 0xA321#3 A -- -- #4

0xA323 A -- -- #4

3#5 0xA304 B -- -- --

4#5 0xA305 B -- -- #4

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-21.

#2
Trace collection point for javax.persistence.spi.PersistenceProvider.

#3
Not output when the Cosminexus JPA provider is used.

#4
When an exception occurs, the exception is displayed.

15. Performance Analysis Trace

Compatibility Guide 647

#5
Trace collection point for javax.persistence.EntityManagerFactory.

15.12.2 Trace collection points and trace information that can be collected
during the acquisition processing of EntityManager

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒40: Details of trace collection points for javax.persistence.EntityManagerFactory

Event ID No. in the figure# Trace acquisition points Level

0xA300 1 When the processing of EntityManagerFactory#createEntityManager() starts B

0xA301 2 When the processing of EntityManagerFactory#createEntityManager() ends B

0xA302 1 When the processing of
EntityManagerFactory#createEntityManager(Map) starts

B

0xA303 2 When the processing of
EntityManagerFactory#createEntityManager(Map) ends

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 15-22.

The following figure shows the trace collection points.

Figure 15‒22: Trace collection points for javax.persistence.EntityManagerFactory

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the acquisition processing
of EntityManager.

15. Performance Analysis Trace

Compatibility Guide 648

Table 15‒41: Trace information that can be collected for javax.persistence.EntityManagerFactory

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA300 B -- -- --

0xA302 B -- -- --

2 0xA301 B -- -- #2

0xA303 B -- -- #2

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-22.

#2
When an exception occurs, the exception is displayed.

15.12.3 Trace collection points and trace information that can be collected
during the operation of EntityManager

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒42: Details of trace collection points for javax.persistence.EntityManager

Event ID No. in the
figure#1

Trace acquisition points Level

0xA340 1 When the processing of EntityManager#persist(Object) starts B

0xA341 2 When the processing of EntityManager#persist(Object) ends B

0xA342 1 When the processing of EntityManager#merge(T) starts B

0xA343 2 When the processing of EntityManager#merge(T) ends B

0xA344 1 When the processing of EntityManager#remove(Object) starts B

0xA345 2 When the processing of EntityManager#remove(Object) ends B

0xA346 1 When the processing of EntityManager#find(Class<T>, Object) starts B

0xA347 2 When the processing of EntityManager#find(Class<T>, Object) ends B

0xA348 1 When the processing of EntityManager#getReference(Class<T>,
Object) starts

B

0xA349 2 When the processing of EntityManager#getReference(Class<T>,
Object) ends

B

0xA34A 1 When the processing of EntityManager#flush() starts B

0xA34B 2 When the processing of EntityManager#flush() ends B

0xA34C 1 When the processing of EntityManager#lock(Object, LockModeType) starts B

15. Performance Analysis Trace

Compatibility Guide 649

Event ID No. in the
figure#1

Trace acquisition points Level

0xA34D 2 When the processing of EntityManager#lock(Object, LockModeType) ends B

0xA34E 1 When the processing of EntityManager#refresh(Object) starts B

0xA34F 2 When the processing of EntityManager#refresh(Object) ends B

0xA350 1 When the processing of EntityManager#clear() starts B

0xA351 2 When the processing of EntityManager#clear() ends B

0xA352 1 When the processing of EntityManager#contains(Object) starts B

0xA353 2 When the processing of EntityManager#contains(Object) ends B

0xA35E 1 When the processing of EntityManager#joinTransaction() starts B

0xA35F 2 When the processing of EntityManager#joinTransaction() ends B

Legend:
B: Advanced

#1
Corresponds to the numbers in Figure 15-23.

The following figure shows the trace collection points.

Figure 15‒23: Trace collection points for javax.persistence.EntityManager

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the operation of EntityManager.

Table 15‒43: Trace information that can be collected for javax.persistence.EntityManager

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA340 B -- -- --

0xA342 B -- -- --

0xA344 B -- -- --

0xA346 B -- -- --

0xA348 B -- -- --

0xA34A B -- -- --

0xA34C B -- -- --

15. Performance Analysis Trace

Compatibility Guide 650

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA34E B -- -- --

0xA350 B -- -- --

0xA352 B -- -- --

0xA35E B -- -- --

2 0xA341 B -- -- #2

0xA343 B -- -- #2

0xA345 B -- -- #2

0xA347 B -- -- #2

0xA349 B -- -- #2

0xA34B B -- -- #2

0xA34D B -- -- #2

0xA34F B -- -- #2

0xA351 B -- -- #2

0xA353 B -- -- #2

0xA35F B -- -- #2

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-23.

#2
When an exception occurs, the exception is displayed.

15.12.4 Trace collection points and trace information that can be collected
during the release processing of EntityManager

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒44:  Details of trace collection points for javax.persistence.EntityManager

Event ID No. in the figure# Trace acquisition points Level

0xA360 1 When the processing of EntityManager#close() starts B

0xA361 2 When the processing of EntityManager#close() ends B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 15-24.

15. Performance Analysis Trace

Compatibility Guide 651

The following figure shows the trace collection points.

Figure 15‒24: Trace collection points for javax.persistence.EntityManager

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the release processing of EntityManager.

Table 15‒45: Trace information that can be collected for javax.persistence.EntityManager

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA360 B -- -- --

2 0xA361 B -- -- #2

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-24.

#2
When an exception occurs, the exception is displayed.

15.12.5 Trace collection points and trace information that can be collected
during the operation of Query

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

15. Performance Analysis Trace

Compatibility Guide 652

Table 15‒46: Details of trace collection points of the Query operation

Event ID No. in the
figure#1

Trace acquisition points Level

0xA354#2 1 When the processing of EntityManager#createQuery(String) starts B

0xA355#2 2 When the processing of EntityManager#createQuery(String) ends B

0xA356#2 1 When the processing of EntityManager#createNamedQuery(String) starts B

0xA357#2 2 When the processing of EntityManager#createNamedQuery(String) ends B

0xA358#2 1 When the processing of EntityManager#createNativeQuery(String) starts B

0xA359#2 2 When the processing of EntityManager#createNativeQuery(String) ends B

0xA35A#2 1 When the processing of EntityManager#createNativeQuery(String,
Class) starts

B

0xA35B#2 2 When the processing of EntityManager#createNativeQuery(String,
Class) ends

B

0xA35C#2 1 When the processing of EntityManager#createNativeQuery(String,
String) starts

B

0xA35D#2 2 When the processing of EntityManager#createNativeQuery(String,
String) ends

B

0xA370#3 5 When the processing of Query#getResultList() starts B

0xA371#3 6 When the processing of Query#getResultList() ends B

0xA372#3 5 When the processing of Query#getSingleResult() starts B

0xA373#3 6 When the processing of Query#getSingleResult() ends B

0xA374#3 5 When the processing of Query#executeUpdate() starts B

0xA375#3 6 When the processing of Query#executeUpdate() ends B

0xA376#3 3 When the processing of Query#setParameter(String, Object) starts B

0xA377#3 4 When the processing of Query#setParameter(String, Object) ends B

0xA378#3 3 When the processing of Query#setParameter(String, Date,
TemporalType) starts

B

0xA379#3 4 When the processing of Query#setParameter(String, Date,
TemporalType) ends

B

0xA37A#3 3 When the processing of Query#setParameter(String, Calendar,
TemporalType) starts

B

0xA37B#3 4 When the processing of Query#setParameter(String, Calendar,
TemporalType) ends

B

0xA37C#3 3 When the processing of Query#setParameter(int, Object) starts B

0xA37D#3 4 When the processing of Query#setParameter(int, Object) ends B

0xA37E#3 3 When the processing of Query#setParameter(int, Date, TemporalType) starts B

0xA37F#3 4 When the processing of Query#setParameter(int, Date, TemporalType) ends B

0xA380#3 3 When the processing of Query#setParameter(int, Calendar,
TemporalType) starts

B

15. Performance Analysis Trace

Compatibility Guide 653

Event ID No. in the
figure#1

Trace acquisition points Level

0xA381#3 4 When the processing of Query#setParameter(int, Calendar,
TemporalType) ends

B

Legend:
B: Advanced

#1
Corresponds to the numbers in Figure 15-25.

#2
Trace collection point for javax.persistence.EntityManager.

#3
Trace collection point for javax.persistence.Query.

The following figure shows the trace collection points.

Figure 15‒25: Trace collection points of the Query operation

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the Query operation.

Table 15‒47: Trace information that can be collected during the Query operation

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1#2 0xA354 B -- -- --

0xA356 B -- -- --

15. Performance Analysis Trace

Compatibility Guide 654

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA358 B -- -- --

0xA35A B -- -- --

0xA35C B -- -- --

2#2 0xA355 B -- -- #3

0xA357 B -- -- #3

0xA359 B -- -- #3

0xA35B B -- -- #3

0xA35D B -- -- #3

3#4 0xA376 B -- -- --

0xA378 B -- -- --

0xA37A B -- -- --

0xA37C B -- -- --

0xA37E B -- -- --

0xA380 B -- -- --

4#4 0xA377 B -- -- #3

0xA379 B -- -- #3

0xA37B B -- -- #3

0xA37D B -- -- #3

0xA37F B -- -- #3

0xA381 B -- -- #3

5#4 0xA370 B -- -- --

0xA372 B -- -- --

0xA374 B -- -- --

6#4 0xA371 B -- -- #3

0xA373 B -- -- #3

0xA375 B -- -- #3

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-25.

#2
Trace collection point for javax.persistence.EntityManager.

#3
When an exception occurs, the exception is displayed.

#4
Trace collection point for javax.persistence.Query.

15. Performance Analysis Trace

Compatibility Guide 655

15.12.6 Trace collection points and trace information that can be collected
during the operation of EntityTransaction

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒48: Details of trace collection points during the operation of EntityTransaction

Event ID No. in the
figure#1

Trace acquisition points Level

0xA310#2 3 When the processing of EntityTransaction#begin() starts B

0xA311#2 4 When the processing of EntityTransaction#begin() ends B

0xA312#2 5 When the processing of EntityTransaction#commit() starts B

0xA313#2 6 When the processing of EntityTransaction#commit() ends B

0xA314#2 5 When the processing of EntityTransaction#rollback() starts B

0xA315#2 6 When the processing of EntityTransaction#rollback() ends B

0xA362#3 1 When the processing of EntityManager#getTransaction() starts B

0xA363#3 2 When the processing of EntityManager#getTransaction() ends B

Legend:
B: Advanced

#1
Corresponds to the numbers in Figure 15-26.

#2
Trace collection point for javax.persistence.EntityTransaction.

#3
Trace collection point for javax.persistence.EntityManager.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 656

Figure 15‒26: Trace collection points for the operation of EntityTransaction

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the operation of EntityTransaction.

Table 15‒49: Trace information that can be collected during the operation of EntityTransaction

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1#2 0xA362 B -- -- --

2#2 0xA363 B -- -- #3

3#4 0xA310 B -- -- --

4#4 0xA311 B -- -- #3

5#4 0xA312 B -- -- --

0xA314 B -- -- --

6#4 0xA313 B -- -- #3

0xA315 B -- -- #3

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-26.

#2
Trace collection point for javax.persistence.EntityManager.

15. Performance Analysis Trace

Compatibility Guide 657

#3
When an exception occurs, the exception is displayed.

#4
Trace collection point for javax.persistence.EntityTransaction.

15.12.7 Trace collection points and trace information that can be collected
in the case of callback method to the user

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒50: Details of trace collection points in the case of callback method to the user

Event ID No. in the
figure#1

Trace acquisition points Level

0xA390 1 Immediately before invoking the PrePersist() callback method A

0xA391 2 Immediately after returning from the PrePersist() callback method A

0xA392 1 Immediately before invoking the PostPersist() callback method A

0xA393 2 Immediately after returning from the PostPersist() callback method A

0xA394 1 Immediately before invoking the PreRemove() callback method A

0xA395 2 Immediately after returning from the PreRemove() callback method A

0xA396 1 Immediately before invoking the PostRemove() callback method A

0xA397 2 Immediately after returning from the PostRemove() callback method A

0xA398 1 Immediately before invoking the PreUpdate() callback method A

0xA399 2 Immediately after returning from the PreUpdate() callback method A

0xA39A 1 Immediately before invoking the PostUpdate() callback method A

0xA39B 2 Immediately after returning from the PostUpdate() callback method A

0xA39C 1 Immediately before invoking the PostLoad() callback method A

0xA39D 2 Immediately after returning from the PostLoad() callback method A

Legend:
A: Standard

#1
Corresponds to the numbers in Figure 15-27.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 658

Figure 15‒27: Trace collection points of the callback method to the user

(2) Trace information that can be collected
The following table describes the trace information that can be collected in the case of the callback method to the user.

Table 15‒51: Trace information that can be collected in the case of the callback method to the user

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA390 A Callback method name specified
by the user

-- --

0xA392 A -- --

0xA394 A -- --

0xA396 A -- --

0xA398 A -- --

0xA39A A -- --

0xA39C A -- --

2 0xA391 A Callback method name specified
by the user

-- #2

0xA393 A -- #2

0xA395 A -- #2

0xA397 A -- #2

0xA399 A -- #2

0xA39B A -- #2

0xA39D A -- #2

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 15-27.

#2
When an exception occurs, the exception is displayed.

15. Performance Analysis Trace

Compatibility Guide 659

15.12.8 Trace collection points and trace information that can be collected
during binary conversion of the entity class

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒52: Details of trace collection points during the binary conversion of the entity class

Event ID No. in the
figure#1

Trace acquisition points Level

0xA330 1 Immediately before the binary conversion processing for the entity class starts B

0xA331 2 Immediately after the binary conversion processing for the entity class
is complete

B

Legend:
B: Advanced

#1
Corresponds to the numbers in Figure 15-28.

The following figure shows the trace collection points.

Figure 15‒28: Trace collection points during binary conversion of the entity class

Tip

In an application using JPA, this trace information is collected even for classes other than the entity class, when
the class is loaded from the class loader.

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the binary conversion of the entity class.

Table 15‒53: Trace information that can be collected during the binary conversion of the entity class

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA330 B -- -- --

2 0xA331 B -- -- #2

Legend:
B: Advanced

15. Performance Analysis Trace

Compatibility Guide 660

--: Not applicable

#1
Corresponds to the numbers in Figure 15-28.

#2
When an exception occurs, the exception is displayed.

15.12.9 Trace collection points and trace information that can be collected
during transaction linkage with the transaction manager

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒54: Details of trace collection points during transaction linkage with the transaction
manager

Event ID No. in the
figure#1

Trace acquisition points Level

0xA39E 1 Immediately before the process for correlating the persistent context and
transaction starts

B

0xA39F 2 Immediately after the process for correlating the persistent context and
transaction is complete

B

0xA3A0 3 Immediately before the pre-processing of the JTA transaction
conclusion starts

B

0xA3A1 4 Immediately after the pre-processing of the JTA transaction conclusion ends B

0xA3A2 5 Immediately before the post-processing of the JTA transaction
conclusion starts

B

0xA3A3 6 Immediately after the post-processing of the JTA transaction conclusion ends B

Legend:
B: Advanced

#1
Corresponds to the numbers in Figure 15-29.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 661

Figure 15‒29: Trace collection points during transaction linkage with the transaction manager

(2) Trace information that can be collected
The following table describes the trace information that can be collected during transaction linkage with the
transaction manager.

Table 15‒55: Trace information that can be collected during transaction linkage with the transaction
manager

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA39E B -- -- --

2 0xA39F B -- -- #2

3 0xA3A0 B -- -- --

4 0xA3A1 B -- -- #2

5 0xA3A2 B -- Status (int value of
javax.transaction.Status) of
the transaction passed by an argument
of afterCompletion()

--

6 0xA3A3 B -- -- #2

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-29.

15. Performance Analysis Trace

Compatibility Guide 662

#2
When an exception occurs, the exception is displayed.

15.12.10 Trace collection points and trace information that can be
collected during the connection operation of the DB Connector

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒56: Details of trace collection points during the connection operation of the DB Connector

Event ID No. in the figure# Trace acquisition points Level

0xA3A4 1 Immediately before invoking DataSource#getConnection() B

0xA3A5 2 Immediately after returning from DataSource#getConnection() B

0xA3A6 1 Immediately before invoking DataSource#getConnection(String, String) B

0xA3A7 2 Immediately after returning from DataSource#getConnection(String, String) B

0xA3A8 1 Immediately before invoking
DriverManager#getConnection(String, Properties)

B

0xA3A9 2 Immediately after returning from
DriverManager#getConnection(String, Properties)

B

0xA3AA 1 Immediately before invoking DriverManager#getConnection(String,
String, String)

B

0xA3AB 2 Immediately after returning from DriverManager#getConnection(String,
String, String)

B

0xA3AC 9 Immediately before invoking Connection#close() B

0xA3AD 10 Immediately after returning from Connection#close() B

0xA3AE 7 Immediately before invoking Connection#commit() B

0xA3AF 8 Immediately after returning from Connection#commit() B

0xA3B0 3 Immediately before invoking Connection#createStatement() B

0xA3B1 4 Immediately after returning from Connection#createStatement() B

0xA3B2 3 Immediately before invoking Connection#prepareCall(String) B

0xA3B3 4 Immediately after returning from Connection#prepareCall(String) B

0xA3B4 3 Immediately before invoking Connection#prepareCall(String, int, int) B

0xA3B5 4 Immediately after returning from Connection#prepareCall(String, int, int) B

0xA3B6 3 Immediately before invoking Connection#prepareStatement(String) B

0xA3B7 4 Immediately after returning from Connection#prepareStatement(String) B

0xA3B8 3 Immediately before invoking Connection#prepareStatement(String, int, int) B

0xA3B9 4 Immediately after returning from Connection#prepareStatement(String ,
int, int)

B

0xA3BA 7 Immediately before invoking Connection#rollback() B

15. Performance Analysis Trace

Compatibility Guide 663

Event ID No. in the figure# Trace acquisition points Level

0xA3BB 8 Immediately after returning from Connection#rollback() B

0xA3BC 5 Immediately before invoking Statement#executeQuery(String) B

0xA3BD 6 Immediately after returning from Statement#executeQuery(String) B

0xA3BE 5 Immediately before invoking Statement#executeUpdate(String) B

0xA3BF 6 Immediately after returning from Statement#executeUpdate(String) B

0xA3C0 5 Immediately before invoking PreparedStatement#executeUpdate() B

0xA3C1 6 Immediately after returning from PreparedStatement#executeUpdate() B

0xA3C2 5 Immediately before invoking PreparedStatement#executeQuery() B

0xA3C3 6 Immediately after returning from PreparedStatement#executeQuery() B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 15-30.

The following figure shows the trace collection points.

Figure 15‒30: Trace collection points during the connection operation of the DB Connector

15. Performance Analysis Trace

Compatibility Guide 664

(2) Trace information that can be collected
The following table describes the trace information that can be collected during the connection operation of the
DB Connector.

Table 15‒57: Trace information that can be collected during the connection operation of the DB
Connector

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xA3A4 B -- -- --

0xA3A6 B -- -- --

0xA3A8 B -- -- --

0xA3AA B -- -- --

2 0xA3A5 B -- -- #2

0xA3A7 B -- -- #2

0xA3A9 B -- -- #2

0xA3AB B -- -- #2

3 0xA3B0 B -- -- --

0xA3B2 B -- -- --

0xA3B4 B -- -- --

0xA3B6 B -- -- --

0xA3B8 B -- -- --

4 0xA3B1 B -- -- #2

0xA3B3 B -- -- #2

0xA3B5 B -- -- #2

0xA3B7 B -- -- #2

0xA3B9 B -- -- #2

5 0xA3BC B -- -- --

0xA3BE B -- -- --

0xA3C0 B -- -- --

0xA3C2 B -- -- --

6 0xA3BD B -- -- #2

0xA3BF B -- -- #2

0xA3C1 B -- -- #2

0xA3C3 B -- -- #2

7 0xA3AE B -- -- --

0xA3BA B -- -- --

8 0xA3AF B -- -- #2

15. Performance Analysis Trace

Compatibility Guide 665

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

0xA3BB B -- -- #2

9 0xA3AC B -- -- --

10 0xA3AD B -- -- #2

Legend:
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-30.

#2
When an exception occurs, the exception is displayed.

15. Performance Analysis Trace

Compatibility Guide 666

15.13 Trace collection points of CDI

This section describes the trace collection points of CDI and the trace information that can be collected.

15.13.1 Trace collection points of CDI and the trace information that can
be collected

This section describes the trace collection points of CDI and the trace information that can be collected. The following
two cases will be described separately:

• When a combination of JSF and CDI is used

• When a combination of servlets and CDI is used

(1) Trace collection points and PRF trace collection levels

(a) When a combination of JSF and CDI is used
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒58: Details of the trace collection points when a combination of JSF and CDI is used

Event ID No. in the figure# Trace collection points Level

0xb002 1 When the reading of the JSF settings required for using CDI starts A

0xb003 2 When the reading of the JSF settings required for using CDI ends
(normal termination)

A

0xb004 3 When the JSF preparations required for using CDI start A

0xb005 4 When the JSF preparations required for using CDI end (normal termination) A

0xb006 5 When the EL assessment starts B

0xb007 6 When the EL assessment ends (normal termination) B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 15-31 and Figure 15-32.

The following figure shows the trace collection points.

15. Performance Analysis Trace

Compatibility Guide 667

Figure 15‒31: Trace collection points when a combination of JSF and CDI is used (when the JSF
settings are read and prepared)

Figure 15‒32: Trace collection points when a combination of JSF and CDI is used (for EL
evaluation)

(b) When a combination of servlets, filters, listeners, and CDI is used
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 15‒59: Details of the trace collection points when a combination of servlets, filters, listeners,
and CDI is used

Event ID No. in the figure# Trace collection points Level

0xb008 1 When the generation of servlet/filter/listener instances starts A

0xb009 2 When the generation of servlet/filter/listener instances ends
(normal termination)

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 15-33.

15. Performance Analysis Trace

Compatibility Guide 668

The following figure shows the trace collection points.

Figure 15‒33: Trace collection points when a combination of servlets, filters, listeners, and CDI is
used

(2) Trace information that can be collected

(a) When a combination of JSF and CDI is used
The following table describes the trace information that can be collected when a combination of JSF and CDI is used.

Table 15‒60: Trace information that can be collected when a combination of JSF and CDI is used

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xb002#2 A WeldFacesConfigProvid
er

-- Context
information of the
Web container

2 0xb003#2 A WeldFacesConfigProvid
er

-- Entrance time

3 0xb004#2 A WeldApplicationFactor
y

-- --

4 0xb005#2 A WeldApplicationFactor
y

-- Entrance time

5 0xb006#3 B WeldApplication -- --

6 0xb007#3 B WeldApplication -- Entrance time

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 15-31 and Figure 15-32.

#2
The trace information for the reading of the JSF settings required for using CDI and for the JSF preparations required for using CDI is collected
when the application starts.

#3
The trace information for EL assessment is collected when FacesServlet is initialized and when Expression Language specified in JSF
is evaluated.

15. Performance Analysis Trace

Compatibility Guide 669

(b) When servlets are invoked from CDI
The following table describes the trace information that can be collected when servlets are invoked from CDI.

Table 15‒61: Trace information that can be collected when servlets are invoked from CDI

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xb008 A CDIServiceImpl -- The following
information is
output:
• Managed

class
• Class name
• Context root

2 0xb009 A CDIServiceImpl -- Entrance time

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 15-33.

Note that the trace information is collected when the servlet/filter/listener interfaces are generated.

15. Performance Analysis Trace

Compatibility Guide 670

16 Output Log Information and Log
Acquisition Settings

This chapter describes the log information that is output and the settings for acquiring logs.

Compatibility Guide 671

16.1 Log Information Output for Each Functionality

This section describes the log information output when you use a specific functionality.

The log information output when you use the following functionality is described below:

• Cosminexus JPA provider operation log

16.1.1 Cosminexus JPA Provider operation log
This appendix describes the operation log messages that are output by Cosminexus JPA Provider for each category of
the log output.

(1) When category is SQL

SQL [aa....aa] SQL = bb....bb

aa....aa: Persistence unit name

bb....bb: Issued SQL statement

Description
JPA issues SQL.

SQL [aa....aa] PARAM = bb....bb

aa....aa: Persistence unit name

bb....bb: Set value of ? parameter (place holder)

Description
Sets the value in ? parameter (place holder) of the SQL statement.
Result where the value set to ? parameter (place holder) is converted into a character expression is output in bb....bb.
For the character or numeral value the result is output as it is. However, for example, when the binary data is stored
in the byte type array of java, the toString method is executed for the byte type array the output is B@f7ba93.

SQL [aa....aa] RETURN = bb....bb

aa....aa: Persistence unit name

bb....bb: Return value

Description
Return value of PreparedStatement#executeUpdate(). The return value is the number of lines when the
SQL statement is executed. For details, see java.sql.PreparedStatement of Javadoc.

16. Output Log Information and Log Acquisition Settings

Compatibility Guide 672

(2) When category is TRANSACTION

TRN [aa....aa] JPA processing was bound to a JTA transaction. (status = bb....bb)

aa....aa: Persistence unit name

bb....bb: Transaction state when bound to JTA transaction

Description
JTA transaction is bounded. Outputs the character string that indicates the transaction state (status). For details about
the character string that indicates the status, see javax.transaction.Status of Javadoc.

TRN [aa....aa] A JTA transaction was committed. (status = bb....bb)

aa....aa: Persistence unit name

bb....bb: Transaction state when JTA transaction is concluded

Description
The conclusion of JTA transaction is notified. Outputs the character string that indicates the state (status) where
the transaction passed from JTA is concluded. For details about the character string indicating the status, see
javax.transaction.Status of Javadoc.

TRN [aa....aa] An EntityTransaction started.

aa....aa: Persistence unit name

Description
EntityTransaction is started.

TRN [aa....aa] An EntityTransaction was committed.

aa....aa: Persistence unit name

Description
EntityTransaction is committed.

TRN [aa....aa] An EntityTransaction was rolled back.

aa....aa: Persistence unit name

Description
EntityTransaction is rolled back.

16. Output Log Information and Log Acquisition Settings

Compatibility Guide 673

16.2 Settings for acquiring the in-process HTTP server log

This section describes the items that can be set up for acquiring the in-process HTTP server log.

In the in-process HTTP server, the access log, trace based performance analysis, thread trace, and the communication
trace are output for supporting the application development, for performance analysis at operation time, and for
troubleshooting at failure detection time. For these files, you can change the number of files and the file size in the Easy
Setup definition file.

The following table describes the settings that you can change for acquiring the in-process HTTP server log and
parameters of the Easy Setup definition file corresponding to the items.

Table 16‒1: Settings for acquiring the in-process HTTP server log

Log or trace Items Corresponding parameters of the Easy Setup definition file

Access log Availability access log output webserver.logger.access_log.inprocess_http.ena
bled in the <configuration> tag on a logical J2EE server (j2ee-
server)
(By default access log is output)

Access log file name webserver.logger.access_log.inprocess_http.fil
ename in the <configuration> tag on a logical J2EE server
(j2ee-server)

File size of the access log webserver.logger.access_log.inprocess_http.fil
esize in the <configuration> tag on a logical J2EE server
(j2ee-server)

Number of files of access log webserver.logger.access_log.inprocess_http.fil
enum in the <configuration> tag on a logical J2EE server (j2ee-
server)

Format name of the access log webserver.logger.access_log.format_list in the
<configuration> tag on a logical J2EE server (j2ee-server)#

Output format of access log webserver.logger.access_log.format-name in the
<configuration> tag on a logical J2EE server (j2ee-server)#

Format when the access log is output webserver.logger.access_log.inprocess_http.usa
ge_format in the <configuration> tag on a logical J2EE
server (j2ee-server)#

Trace based
performance analysis

-- Specify acquisition condition, when you want to execute the cprfed
command for performing a daily system operation same as for
other trace based performance analysis. For details on acquiring the
performance analysis trace file, see 15. Performance Analysis Trace.

Thread trace Number of files of thread trace webserver.logger.thread_trace.inprocess_http.f
ilenum in the <configuration> tag on a logical J2EE server
(j2ee-server)

File size of thread trace File size of the thread trace =(((A+B) × 32,786)+ 32,914) byte
A= Value of
webserver.connector.inprocess_http.max_connect
ions parameter in the <configuration> tag on a logical J2EE
server (j2ee-server)
B=For 0, the value of the
webserver.connector.inprocess_http.send_timeout
parameter is 0, and when other than 0, the value is 1
in the <configuration> tag on a logical J2EE server (j2ee-server)

16. Output Log Information and Log Acquisition Settings

Compatibility Guide 674

Log or trace Items Corresponding parameters of the Easy Setup definition file

Communication trace Number of files of the
communication trace

webserver.logger.communication_trace.inprocess
_http.filenum in the <configuration> tag on a logical J2EE
server (j2ee-server).

File size of the communication trace File size of the communication trace=(((A+B) × 172,050)+128) byte
A=Value of
webserver.connector.inprocess_http.max_connect
ions parameter in the <configuration> tag on a logical J2EE
server (j2ee-server)
B=For 0, the value of the
webserver.connector.inprocess_http.send_timeout
parameter is 0, and when other than 0, the value is 1
in the <configuration> tag on a logical J2EE server (j2ee-server).

Legend:
--: Not applicable

#
In the access log, you can customize the log output format by defining the format with the above-mentioned keys. For details on customizing
the access log of the in-process HTTP server, see 6.17.2 Customizing the access log of the in-process HTTP server.

16. Output Log Information and Log Acquisition Settings

Compatibility Guide 675

17 System Design Guide (V9 Compatibility Mode)

This chapter describes how to tune the performance of a system for executing J2EE applications.

You can maximize the performance of the system by optimizing the operating environment through
performance tuning.

For details on performance tuning for the batch application execution platform, see 9. Performance
Tuning (Batch Application Execution Platform) in the manual uCosminexus Application Server
System Design Guide.

Compatibility Guide 676

17.1 Points to be considered for performance tuning

This section explains the points to be considered for performance tuning of the J2EE application execution platform.

17.1.1 Viewpoints for performance tuning
Tune the performance of the J2EE application execution platform with the following viewpoints:

• Optimizing the number of concurrent executions
• Optimizing the method of invoking the Enterprise Bean
• Optimizing the method of accessing the database
• Setting the timeout
• Optimizing the operation of the Web application
• Optimizing the operation of CTM
• Tuning of other items

These points are explained below:

(1) Optimizing the number of concurrent executions
The objective of optimizing the number of concurrent executions is to enhance the throughput of the system by
multi-processing in order to maximize the CPU performance. In the following cases, however, only multi-processing
may not enhance throughput; sometimes the throughput may even deteriorate:

• Bottlenecks in I/O processing and lock processing

• Maximum throughput has already been reached

• Load exceeds the multiplicity when the CPU usage is already full

• Pending queue size is inappropriate

• Settings for maximum number of hierarchical executions is inappropriate

Performance tuning aims at optimizing the number of concurrent executions through proper tuning for the above points.

(2) Optimizing the method of invoking the Enterprise Bean
The objective of optimizing the method of invoking the Enterprise Bean is to restrict unnecessary network access by
using the local invocation functionality of the local interface and the remote interface when invoking the components in
the same J2EE application and the same J2EE server.

You can restrict the unnecessary network access caused by RMI-IIOP communication, by using the
following functionality:

• Use of local interface

• Use of local invocation functionality of the remote interface

In addition, you can further enhance the processing performance by using pass by reference method of passing the
argument and return value. Performance tuning aims at enhancing the processing performance by effectively using these
functions depending on the features of the application and the system.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 677

(3) Optimizing the database access method
The purpose of optimizing the database access method is to reduce the overheads during database access by generating
in advance the connections and statements that are likely to need more time for processing.

Performance tuning enhances throughput by optimizing the database access by using the following
functionality effectively:

• Connection pooling

• Statement pooling (pooling of PreparedStatement and CallableStatement)

(4) Setting the timeout
The purpose of setting the timeout is to detect a failure that may occur in the system and release the resources whenever
required to avoid a delay in responding to the requests.

There are following types of timeout settings:

• Timeout of Web front-end system

• Timeout of back-end system

• Timeout of transaction

• Timeout of database

(5) Optimizing the Web application operations
The purpose of optimizing the Web application operations is to increase the processing speed by restricting unnecessary
network access that results from the use of cache and determination of delivery method of contents, and enhance the
system throughput with the help of load balancing.

Note that the items that can be tuned differ depending on whether you are integrating with a Web server in which a
redirector module is embedded, or whether you are using an in-process HTTP server.

You can execute the following processes for connecting to the Web server:

• Dividing processes in the Web application and static contents

• Caching static contents

• Dividing requests according to session information

You can execute the following processes when you use an in-process HTTP server:

• Separating the deployment of static contents from Web applications

• Caching static contents

(6) Optimizing the operation of CTM
The purpose of optimizing the operation of CTM is to improve the performance of the system by reducing the
communication overhead through optimization of the communication interval between the processes used in CTM, and
by promptly detecting and taking action when a trouble occurs. Moreover, by prioritizing the processing of requests by
CTM, you can tune to execute quick processing of the important requests.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 678

(7) Tuning other items
In addition to those explained above in points (1) to (6), application server has other items that can be tuned. These can
be tuned whenever required.

17.1.2 Items that can be tuned for each type of application
The tuning items differ as per the type of application. The table below describes the tuning items for each component of
the application.

Table 17‒1: Tuning items of an application consisting of Servlet and JSP (Web application)

Tuning Items Available functionality Reference

Optimizing the number of request-
processing threads (when using an in-
process HTTP server)

Control the number of request-processing threads (when using an
in-process HTTP server)#

17.3.1

Optimizing the number of
concurrent executions

Concurrently executed thread control in the Web application (each
Web container, Web application, or URL group)

17.3.2

Optimizing the method for accessing
the database

Connection pooling 8.5.1 in the uCosminexus
Application Server
System Design Guide

Statement pooling 8.5.2 in the uCosminexus
Application Server
System Design Guide

Setting the timeout Setup of timeout in the Web front-end system 17.4.2

Setup of timeout for the method execution times of J2EE applications 8.6.7 in the uCosminexus
Application Server
System Design Guide

Optimizing the operation of
Web application

Separation of the deployment of static contents and Web application 8.7.1 in the uCosminexus
Application Server
System Design Guide

Caching static contents 8.7.2 in the uCosminexus
Application Server
System Design Guide

Distributing the requests using the redirector (for Web
server integration)

5.2

Tuning other items Control the Persistent Connection (when using an in-process
HTTP server)

17.6

#
When integrating with a Web server, tune using the Web server functionality.

Table 17‒2: Tuning items of application configured by Enterprise Bean

Tuning items Available functionality Reference

Optimizing the number of
concurrent executions

Pooling of Stateless Session Bean instances 8.3.5 in the uCosminexus
Application Server
System Design GuideSession control of Stateful Session Bean

Pooling of Message-driven Bean instances

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 679

Tuning items Available functionality Reference

Control the number of concurrent executions with CTM# (when
using CTM)

8.3.6 in the uCosminexus
Application Server
System Design Guide

Optimizing the method of invoking
Enterprise Bean

Use of local interface 8.4.1 in the uCosminexus
Application Server
System Design Guide

Optimization of local invocation of remote interface 8.4.2 in the uCosminexus
Application Server
System Design Guide

Pass by reference for the remote interface 8.4.3 in the uCosminexus
Application Server
System Design Guide

Optimizing the method of
accessing database

Connection pooling 8.5.1 in the uCosminexus
Application Server
System Design Guide

Statement pooling 8.5.2 in the uCosminexus
Application Server
System Design Guide

Setting the timeout Setup of timeout in the back-end system 8.6.3 in the uCosminexus
Application Server
System Design Guide

Setup of transaction timeout 8.6.4 in the uCosminexus
Application Server
System Design Guide

Setup of timeout for database 8.6.6 in the uCosminexus
Application Server
System Design Guide

Setup of timeout for the method execution times of J2EE applications 8.6.7 in the uCosminexus
Application Server
System Design Guide

#
Applicable only for the Stateless Session Bean.

The following table describes the tuning items of CTM operation that can be set up in systems that use CTM. You can
use CTM when Stateless Session Beans configure an application.

Table 17‒3: Tuning items of CTM operation

Tuning items Available functionality Reference

Optimizing the operation of CTM Tuning of the monitoring interval of the operation state of CTM
domain managers and CTM daemons

8.8.1 in the uCosminexus
Application Server
System Design Guide

Tuning of the monitoring interval of the load status 8.8.2 in the uCosminexus
Application Server
System Design Guide

Setup of a timeout lock for CTM daemon 8.8.3 in the uCosminexus
Application Server
System Design Guide

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 680

Tuning items Available functionality Reference

Setup of a priority order for the requests distributed with CTM 8.8.4 in the uCosminexus
Application Server
System Design Guide

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 681

17.2 Tuning Method

This section describes the tuning method and the way it differs according to the type of the object that will be set.

17.2.1 Tuning of J2EE server and Web server (including redirector)
You use the Easy Setup definition file of the Smart Composer functionality for tuning the J2EE server and Web server
(including redirector). In the Easy Setup definition file, specify type of the logical server (J2EE server or Web server)
you want to set in <logical-server-type> under the <configuration> tag, and specify the parameter name and its
value under the <param> tag. For details about the Easy Setup definition file, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Reference note

When you cannot use the Smart Composer functionality, define the tuning of Web server (Including redirector)
by editing the file.

The following table describes the files to be used for tuning the Web server (including redirector) when you
cannot use the Smart Composer functionality:

Table 17‒4: Files to be used for tuning the Web server (including redirector) when the Smart
Composer functionality cannot be used

Target Tuning method

Web server Edit httpsd.conf

Web server (redirector) Edit mod_jk.conf (for Cosminexus HTTP Server)

Edit isapi_redirect.conf (for Microsoft IIS)

Edit workers.properties (for worker settings)

For details on mod_jk.conf, see 14.2.2 mod_jk.conf (Redirector action definition file for Cosminexus
HTTP Server). For details on isapi_redirect.conf, see 14.2.1 isapi_redirect.conf (Redirector action
definition file for Microsoft IIS). For details on workers.properties, see 14.2.4 workers.properties
(Worker definition file). For details about httpsd.conf, see the manual Cosminexus HTTP Server.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 682

17.3 Optimizing the number of concurrent executions

This section describes the various tuning methods and the concept of optimizing the number of concurrent executions
of application requests.

17.3.1 Controlling the number of request-processing threads in a Web
server

In the case of Web front-end systems, the request-processing thread created by the Web server processes the requests
from clients like the Web browser. The processing efficiency can be improved by appropriately controlling the number
of request-processing threads.

This section describes the purpose of controlling the number of request-processing threads in Web servers, and the
guidelines for tuning.

This section also describes tuning methods if you use an in-process HTTP server.

Reference note

When Cosminexus HTTP Server is used for Web server integration, similar tuning can be done for the settings
of Cosminexus HTTP Server. For details, see the manual Cosminexus HTTP Server.

In order to build a system using the Smart Composer functionality, you can use abstract parameters for setting the
number of request-processing threads in the Web server. An abstract parameter means several mutually related
parameters merged into a single parameter. Use an abstract parameter to define the settings for the number of
request-processing threads of Web server along with the related parameters such as the number of concurrent
executions. For details on abstract parameters, see Appendix I. Abstract parameters available with the Smart
Composer Functionality (in V9 compatibility mode) in the manual uCosminexus Application Server Command
Reference Guide.

(1) Purpose of controlling the number of request-processing threads
The performance can be improved by tuning the number of request-processing threads according to the quality of the
host on which the J2EE server is running, and according to the status of access from the client.

The process of generating request-processing threads puts a heavy load on the system. By generating and pooling the
request-processing threads beforehand, you can reduce the load for a processing request from the client, such as a Web
browser and can increase the processing performance.

When you use an in-process HTTP server, you can generate and pool the request-processing threads in batch when the
J2EE server is started, and can use this pool in the event of a processing request from the client, such as a Web browser.
This leads to an improvement in the processing performance when a processing request is received. By monitoring the
number of pooled threads, you can generate additional threads when the number of pooled threads becomes less, and can
secure these threads in the pool.

However, if you pool a large number of unused threads, it will lead to unnecessary consumption of resources. Therefore,
depending on the processing contents of the system, you must appropriately control the number of request-processing
threads to be pooled, and delete the unnecessary threads, if required.

When controlling the request-processing threads, set up appropriate values in the parameters by considering the above.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 683

(2) Guidelines for setup
When controlling the number of request-processing threads, you can tune using the following parameters:

• Number of request-processing threads generated when the J2EE server is started

• Maximum number of connections to the Web client (number of request-processing threads)

• Maximum value of the Listen queue (back log) of TCP/IP, when the maximum number of connections is exceeded

• Maximum and minimum number of spare threads

• Choosing whether or not to maintain the number of request-processing threads generated when the J2EE server
is started

Make a note of the following points when setting up these parameters:

• Depending on the contents of the service to be provided, a large number of requests must be processed immediately
after the J2EE server is started. In such a case, set up a large value in the number of the request-processing threads
to be generated when the J2EE server is started.

• If you increase the maximum number of spare threads, you can promptly handle a sudden increase in the number of
accesses from the client, without a decline in the processing performance. However, if you pool a large number of
spare threads, many resources will be consumed. Therefore, be careful when setting the appropriate number of pooled
spare threads, after estimating the presumed sudden increase in the number of accesses.

• If a fixed number of request-processing threads are secured, and you want to control the increase and decrease in
the number of request-processing threads over and above the fixed number by specifying a maximum number and
minimum number, specify the settings for maintaining the number of request-processing threads generated when the
J2EE server is started. By doing this, you can handle an increase or decrease in the number of the request-processing
threads during peak access from the client, when the minimum number of request-processing threads desired for
the system is secured. The number of request-processing threads generated when the J2EE server is started will
be maintained even when the number of unused request-processing threads exceeds the maximum number of
spare threads.

• If you want to keep on pooling the threads that are created, without deleting them, set up the maximum number of
spare threads to a value same as the maximum number of connections to the Web client.

Apart from the above, consider the relationship with the number of concurrently executed threads of the Web application.
For details about the number of concurrently executed threads of a Web application, see 17.3.2 Controlling the number
of concurrent executions of a Web application.

17.3.2 Controlling the number of concurrent executions of a Web
application

In the case of a Web front-end system, the control of concurrently executed threads of a Web Application controls
the number of threads in which the Web server will concurrently process the requests received from clients like the
Web browser.

The number of concurrent executions is controlled in each URL group, Web application or Web container. The number
of concurrently executed threads can be controlled when you integrate with a Web server, or when you use an in-process
HTTP server.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 684

(1) Difference in the control of number of concurrently executed threads
The difference in the control of the number of concurrently executed threads in the case of each Web container, Web
application and URL group is explained below:

Web container
You can set the number of threads for simultaneous processing of requests in the entire Web container.

Web application
You can set the number of threads for simultaneous processing of requests for each Web application running in the
Web container.

URL group
You can set the number of threads for simultaneous processing of requests for each process of distribution destination
URL, when a request is distributed to a URL corresponding to the specific business process (business logic) in the
Web application.

The figure below illustrates the relationship between concurrently executed threads of each Web container, Web
application, and URL group.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 685

Figure 17‒1: Relationship between concurrently executed threads of each Web container, Web
application, and URL group

Important note

Control of the maximum number of threads to be concurrently executed for each Web container is enabled only
when the control of the number of threads to be concurrently executed for each Web application is disabled.

When control of the number of threads to be concurrently executed for each Web application is enabled, the
maximum number of threads to be concurrently executed for each Web container is checked by the control
of the number of threads to be concurrently executed for each Web application. For details, see the manual
uCosminexus Application Server Web Container Functionality Guide.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 686

The execution of requests for a Web application is controlled by the number of concurrently executed threads set in each
Web container, Web application, and URL group. A request that exceeds the number of concurrently executed threads
that are set in each Web container, Web application, and URL group enters the respective pending queue.

(2) Guidelines for selection
The guidelines for selecting the unit of control for concurrently executed threads are explained below:

For details about the functionality for controlling the number of concurrently executed threads, see 2.13 Overview
of control over the number of concurrently executed threads in the uCosminexus Application Server Web Container
Functionality Guide.

• Guidelines for selecting a Web application
The J2EE server can manage not only the TCP connection requests but also the pending queue of the Web applications
by controlling the number of concurrently executed threads of the Web application. Therefore, Hitachi recommends
setting a number of concurrently executed threads of a Web application even when a single Web application is running
on the J2EE server.
Setting the number of concurrently executed threads in the Web application has the following advantages as
compared to the setting of the number concurrently executed threads in each Web container:

• Setting the maximum number of concurrently executed threads for each Web application will prevent the Web
application with a large number of requests, corresponding to a particular business, from using the processing
efficiency of the entire Web container. As a result, the other businesses can also be executed without any delay.

• If there are several Web applications with different loads required for CPU and I/O processing, you can set the
number of concurrently executed threads according to the conditions of respective Web applications.

• As the size of the pending queue for requests can be set for each Web application separately, it is possible to
control the pending queue according to the features of the Web application. In addition, if the requests exceeding
the pending queue size of each Web application are sent, it can be communicated to the client using the HTTP
response code.

The number of concurrently executed threads of each Web application can be dynamically changed in the running
J2EE server. For details about the procedure for dynamically changing the number of concurrently executed threads
of Web applications executed on running J2EE servers, see 2.17.2 Flow of dynamically changing the number of
concurrently executed threads in the uCosminexus Application Server Web Container Functionality Guide.

• Guidelines for selecting a URL group
If concurrently executed threads are controlled in a Web application, control the concurrently executed threads in a
URL group if you want to further control the concurrently executed threads in business logic.
Determine the settings of a URL group to include the following business logic in the Web application:

• Business logic that you want to prioritize and execute without being influenced by other processes

• Business logic where the CPU and I/O load is high or the required processing time is more as compared to
other processes

Setting the concurrently executed threads in a URL group has the following advantages as compared to setting only
in a Web application.

• The threads that need to be executed are allocated to the business logic (URL group) with a high priority. Even
when the requests for another business logic increase, you can execute the business logic with a high priority
instead of assigning the concurrently executed threads of the entire Web application to the business logic with
more requests.

• Setting the upper limit for concurrently executed threads of business logic (URL group) that require more
processing time makes it possible to prevent a particular business logic from using up the concurrently executed
threads of the entire Web application.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 687

• If a Web application has several business logics (URL groups) with CPU and I/O having different loads, you can
set the number of concurrently executed threads according to the business logic.

• Setting the queue size (pending queue size) for the request of each business logic (URL group) in the Web
application allows the controlling of the pending queue according to the features of the business logic. If the
pending queue of each URL group exceeds the upper limit, the same is notified to the client by using the HTTP
response code 503 (Service Temporarily Unavailable).

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 688

17.4 Setting a timeout

In the Application Server, you can set a timeout at several points in order to prevent the state where there is no response
to a request in case of an error.

This section describes the points where you can set a timeout in the entire system and the guidelines for setting
the timeout.

Reference note

When invoking Application Server from OpenTP1 using the TP1 inbound integrated function, you must perform
timeout settings in view of the settings in OpenTP1 besides the contents described in this section. For details,
see 4. Invoking Application Server from OpenTP1 (TP1 inbound integrated function) in the uCosminexus
Application Server Common Container Functionality Guide.

17.4.1 Points where a timeout can be set
In the systems used for executing J2EE applications, you can set up timeouts at the points shown in the following figure.
In the following figure, a Web browser is used as the client. The points will differ when you integrate with a Web server,
and when you use an in-process HTTP server.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 689

Figure 17‒2: Points where a timeout can be set (for Web server integration)

If the client is an EJB client, replace the Web container with the EJB client. You can set the timeout ranging from the EJB
client up to the database.

A redirector will not be applicable when you use an in-process HTTP server, and therefore, a timeout will not be set
up at points 2 to 5, and 13. The following figure shows the points where you can set up timeouts to use in-process
HTTP servers:

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 690

Figure 17‒3: Points where timeouts can be set up (for in-process HTTP servers)

The timeout specified at each point has a specific use that is described in the table below:

Table 17‒5: Purpose of timeout set at each point and default timeout settings

Points Type of timeout Primary usage

1 Timeout set in the server for receiving the request
from the client and sending the data to the client

For Web server integration
Detecting failures in the communication path or the
Web server

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 691

Points Type of timeout Primary usage

For in-process HTTP servers
Detecting failures in the communication path, or access from
an invalid client

2 Connection timeout specified in the redirector
in the processes for sending the requests to the
Web container

Detecting failures in the communication path or the Web container

3 Timeout for sending the request header and request
body set in the redirector in the processes for sending
the requests to the Web container

Detecting failures in the communication path or the Web container

4 Timeout set in the redirector for receiving data from
the Web container

Detecting failures in business processing (such as infinite loop and
deadlock) of the J2EE server or the communication path

5 Timeout set in the Web container for receiving data
from the redirector

Detecting failures in the communication path or the Web server

6 Timeout set in the Web application for the method
execution time

Detecting failures in business processing (such as infinite loop and
deadlock) of the J2EE server

7 Timeout set in the EJB client for remotely invoking
the Enterprise Bean (RMI-IIOP communication) and
for invoking the JNDI Naming Service

Detecting failures in business processing (such as infinite loop and
deadlocks) of the J2EE server or the communication path

8# Timeout set up in the EJB client for invoking the
Enterprise Bean from CTM

Detecting failures in business processing (such as infinite loop and
deadlocks) of the J2EE server or the communication path

9 Timeout set in the EJB for the method execution time Detecting failures in business processing (such as infinite loop and
deadlock) of the J2EE server

10 Timeout set in the EJB container for the
database transaction

Detecting failures in database server (such as server is down or a
deadlock has occurred) or preventing the extended exclusive use
of the resources

11 Timeout set in DB Connector for acquiring
a connection

Detecting errors when a connection is acquired (communication
path errors or resource depletion)

12 Database timeout Detecting failures in database server (such as server is down or a
deadlock has occurred) or preventing the extended exclusive use
of the resources

13 Timeout set in the Web container for sending a
response to the redirector

Detecting failures in the communication path or the redirector

#
This point exists only when you are using CTM. For a configuration in which CTM is not used, the range of point 7 extends from the time of
execution of remote invocation of the EJB from the Web container to the EJB container, until the dispatch of execution result from the EJB
container to the Web container.

The basic guidelines for setting the above timeouts are as follows:

• The general rule for setting a timeout value is that the closer a point is from the invocation origin (Web client or
EJB client), the higher the timeout value. It is, therefore, recommended to use the following relationship for setting
the timeout.

• Point 1 < Point 5

• Point 4 > Point 6 > Point 7

• Point 7 = Point 8 > Point 9 > Point 10

• Point 10 > Point 11

• Point 9 > Point 12

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 692

• Point 1 < Point 13

• When setting the timeout values for points 4, 7, 10 and 12, first check the amount of time normally taken by the
invocation process, and then calculate and set the timeout value for each invocation process (business).

The points 1 to 13 can be divided into the following three categories depending on their location in the system:

• For more information on points (1 to 6, and 13) that need to be considered in a Web front-end system.
For details, see 17.4.2 Setting the timeout in a Web front-end system.

• Points (7 to 9) that need to be considered in the back system
For details, see 8.6.3 Setting a timeout in the back-end system in the manual uCosminexus Application Server System
Design Guide.

• Points (10 to 12) that need to be considered during database connection
This point needs to be further classified into a transaction timeout, DB Connector timeout, and database timeout.
For details, see 8.6.4 Setting the transaction timeout and 8.6.6 Setting the database timeout in the uCosminexus
Application Server System Design Guide.

For details on settings at the each point, see 17.4.3 Tuning parameters for setting the timeout, or 8.6.8 Tuning parameters
for setting the timeout in the uCosminexus Application Server System Design Guide.

Reference note

The default values for each point are as follows:

Point Default value

1 300 seconds

2 30 seconds

3 100 seconds

4 3,600 seconds

5 600 seconds

6 Not set. No timeout.

7 Not set. Continues to wait for response.

8 A value same as point 7 is automatically inherited and set up when the Enterprise Bean is invoked.

9 Not set. No timeout.

10 180 seconds

11 Differs according to the location of the timeout setup.
• A timeout in establishing a physical connection: 8 seconds
• A timeout in the request for connection during connection depletion: 30 seconds
• A timeout in detecting a connection error: 5 seconds

12 Differs according to the type of database and the location of timeout setting.

For HiRDB
Unlock waiting timeout: 180 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until there is a response from the
HiRDB server)
Request interval timeout: 600 seconds

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 693

Point Default value

For Oracle (when global transaction is used)
Unlock waiting timeout: 60 seconds

For SQL Server
Timeout in acquiring memory: -1 (For details about the operations when -1 is specified, see the SQL
Server documentation)
Unlock waiting timeout: -1 (Continues to wait until the lock is released)

For XDM/RD E2
Unlock waiting timeout: None (timeout is not monitored)
CPU timeout during SQL execution: 10 seconds
SQL execution timeout: 0 seconds (timeout is not monitored)
Transaction timeout: 600 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until there is a response from the
XDM/RD E2 server)

13 600 seconds

17.4.2 Setting the timeout in a Web front-end system
This section explains the settings of timeout in a Web front-end system.

When setting the timeout in a Web front-end system, amongst all the timeout values for the entire system, you need to
consider points 1 to 6 and 13 shown in the following figure. These numbers correspond to Figure 17-2 or Figure 17-3.

Tip

When you use an in-process HTTP server, you can set up points 1 and 6. The points 2 to 5, and 13 are
not applicable.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 694

Figure 17‒4: The timeout points (points 1 to 6 and 13) to be considered in the case of a Web front-
end system

• Waiting time in the Web server for receiving requests from the client and sending the data to the client (point 1)
When there is a backlog of requests from the Web browser, the redirector resources will be released according to
the timeout. When there is a backlog of responses to the Web browser, (when the Web browser does not receive the
responses), the resources of the Web container in the redirector and the J2EE server will be released according to
the timeout.
In the case of a Web server integration, the same values are set in the above waiting time settings.
When you use an in-process HTTP server, you can specify different values for the waiting time for receiving requests
from the client, and the waiting time for sending data to the client.

• Waiting time for sending requests to the Web container of the redirector that is registered in the Web server
(points 2 and 3)
When the redirector sends a request to the Web container and the control does not return due to an error in the Web
container or an error in the communication path between the redirector and the Web container, the redirector resources
will be released according to the timeout. At the same time, the error is notified to the Web browser. You can set the
timeout at this point only in the case of Web server integration.
Point 2 is the waiting time for establishing connection with the Web container and Point 3 is the waiting time for the
process of sending requests to the Web container.

• Waiting time for receiving data from the Web container of the redirector registered in the Web server (point 4)

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 695

If there is an error in the J2EE application and the control does not return, the redirector resources will be released
according to the timeout. At the same time, the error is notified to the Web browser. You can set the timeout at this
point only in the case of Web server integration.

Tip

The unit for the settings is worker. Hitachi, therefore, recommends that when the processing time differs
according to the business, define the worker for each Web application corresponding to the business and set
the timeout value.

• Waiting time for receiving data from the redirector, in the Web container (point 5)
When there is a backlog of requests from the browser, the J2EE server (Web container) resources will be released.
You can set the timeout at this point only in the case of Web server integration.

• Waiting time for processing request in the Web container (point 6)
The functionality of monitoring the execution time of J2EE application is used to set this timeout. For details, see
8.6.7 Setting the method timeout in the J2EE application in the manual uCosminexus Application Server System
Design Guide.

• Waiting time for sending a response from the Web container to the redirector (point 13)
When the Web container sends a response to the redirector and the control does not return due to an error in the
redirector or an error in the communication path between the redirector and the Web container, the Web container
resources will be released according to the timeout. At the same time, the error is notified to the Web browser. You
can set the timeout at this point only in the case of Web server integration.

17.4.3 Tuning parameters for setting the timeout
This section explains how to set up tuning parameters used for timeout settings.

(1) Timeout set in the Web server for receiving requests from the client
and sending the data to the client

This is a tuning parameter for setting the timeout at point 1 of Figure 17-2 or Figure 17-3. The location of setup differs
according to the Web server used.

In the case of Web server integration, set the tuning parameter for each Web server. You edit the files for specifying
the settings.

Table 17‒6: Tuning parameters for the timeout to be set in the Web server for receiving requests
from the client and sending the data to the client (for Web server integration)

Setup item Location of setup

Timeout for receiving requests from the client and
sending data to the client

Timeout directive of httpsd.conf

Note:
When you are using Microsoft IIS as the Web server, edit the receive_client_timeout key in isapi_redirect.conf.

For an in-process HTTP server, specify the settings in each J2EE server.

You set up the items listed in the following table using the Smart Composer functionality. Define the parameters in the
Easy Setup definition file.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 696

Table 17‒7: Tuning parameters for the timeout to be set in the Web server for receiving requests
from the client and sending the data to the client (for an in-process HTTP server)

Setup item Setup target Location of setup (parameter name)

Timeout for receiving requests from
the client

Logical J2EE server (j2ee-
server)

webserver.connector.inprocess_http.receive_t
imeout

Timeout for sending data to the client Logical J2EE server (j2ee-
server)

webserver.connector.inprocess_http.send_time
out

(2) Timeout set in the redirector for sending the data to the Web container
This is a tuning parameter for setting the timeout at point 2 and point 3 of Figure 17-2.The following table describes the
tuning parameters for the timeout to be set in the redirector. You can specify the tuning parameter only in the case of Web
server integration.

Specify the items listed in the following table with the Smart Composer functionality. You define the parameters in the
Easy Setup definition file.

Table 17‒8: Tuning parameters for the timeout to be set in the redirector

Point Setup item Setup target Location of setup
(parameter name)#

2 Connection timeout for Web container
when sending requests

Logical Web server (web-server) JkConnectTimeout

3 Timeout for sending requests Logical Web server (web-server) JkSendTimeout

#
When you are using Microsoft IIS as the Web server, edit the connect_timeout key in isapi_redirect.conf.

(3) Timeout set in the redirector for receiving the data from the Web
container

This is a tuning parameter for setting the timeout at point 4 of Figure 17-2.

You set up the tuning parameters for each worker definition of the redirector. The following table describes the tuning
parameters for the timeout to be set up in the redirector.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters in
the Easy Setup definition file.

Table 17‒9: Tuning parameters for the timeout to be set in the redirector

Setup item Setup target Location of setup (parameter name)

Communication timeout of waiting for
response data

Logical Web server (web-server) worker.worker-name.receive_timeout

You can specify this tuning parameter only in the case of Web server integration.

(4) Timeout set in the Web container for receiving the data from the
redirector

This is a tuning parameter for setting the timeout at point 5 of Figure 17-2.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 697

You set up the tuning parameter for each J2EE server. The following table describes tuning parameters for the timeout
to be set in the Web container.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters in
the Easy Setup definition file.

Table 17‒10: Tuning parameters for the timeout to be set in the Web container

Setup item Setup target Location of setup (parameter name)

Timeout in waiting for reply
from redirector

Logical J2EE server (j2ee-server) webserver.connector.ajp13.receive_time
out

You can specify this tuning parameter only in the case of Web server integration.

(5) Timeout set in the Web container for receiving the data from the
redirector

This is a tuning parameter for setting the timeout at the point 13 of Figure 17-2.

You set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the timeout
to be set up in the Web container.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters in
the Easy Setup definition file.

Table 17‒11: Tuning parameters for the timeout to be set in the Web container

Setup item Setup target Parameter name

Timeout of response sending process Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.send_timeout

You can specify this tuning parameter only in the case of Web server integration.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 698

17.5 Optimizing the operations of the Web application

This chapter explains how to tune the performance of the Web application. Determine the tuning in the case of a Web
front-end system.

The following three types of tuning methods are explained below:

• Separate the deployment of the static contents and the Web application

• Caching static contents

• Distribute the requests by using the redirector (in the case of Web server integration)

17.5.1 Tuning parameters for optimizing the operations of the Web
application

This section explains how to set up the tuning parameters used for optimizing the operations of a Web application.

(1) Tuning parameter for separating the deployment of the static contents
and the Web application

Specify the separation of the deployment of the static contents and the Web application as the parameter of the file that
defines the operations of the Web server. The setup locations, files and parameters differ depending on the type of Web
server used.

When you use Cosminexus HTTP Server for a Web server integration, you use the redirector module for separation.
When you use an in-process HTTP server, use the reverse proxy module deployed in the reverse proxy server
(Cosminexus HTTP Server) for separation.

The following table explains the method and location of setup:

Table 17‒12: Tuning parameters for separating the deployment of the static contents and the Web
application

Web server to be used Method of setup Location of setup

Cosminexus HTTP Server (separation
using the redirector module#1)

Smart Composer functionality Definition file
Easy Setup definition file

Setup target
Logical Web server (web-server)

Parameter name
JkMount

In-process HTTP server
(separation using the reverse
proxy module)

Edit file Definition file
httpsd.conf

Setup target
Reverse proxy server

Parameter name
ProxyPass directive#2

#1
Specify in uriworkermap.properties, if you are using Microsoft IIS as a Web server.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 699

#2
For details about httpsd.conf, see the uCosminexus Application Server HTTP Server User Guide.

(2) Tuning parameters for caching static contents
The tuning parameters for cache of static contents are explained below. These tuning parameters are set for each Web
container or Web application.

The following table describes how to set up the tuning parameters for each Web container. You specify these items using
the Smart Composer functionality.

Table 17‒13: Tuning parameter for caching static contents (items to be set for each Web container)

Setup items Locations of setup

Select whether static contents cache is to be used Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.enabled

Setup of maximum memory size for each Web application Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.size

Setup of maximum file size of the static contents for cache Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.filesize.threshold

The tuning parameters to be set for each Web application are described below. Set the items in the Web application either
directly by editing web.xml or using the server management commands. Edit web.xml for setting the items in the Web
application before deployment. You use the server management command (cjsetappprop) for setting the items in
the Web application after deployment.

The following table describes the settings:

Table 17‒14: Tuning parameters for caching of static contents (items to be set for each Web
application)

Setup items Settings#

Select whether to use the cache of static contents <param-name> tag
com.hitachi.software.web.static_content.cache.enabled

<param-value> tag
(Setup value)

Setup of maximum size of memory for each
Web application

<param-name> tag
com.hitachi.software.web.static_content.cache.size

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 700

Setup items Settings#

<param-value> tag
(Setup value)

Setup of maximum file size of the static contents
for caching

<param-name> tag
com.hitachi.software.web.static_content.cache.filesize.
threshold

<param-value> tag
(Setup value)

Note
For details about the values that can be specified in (setup value), see 2.19.2 Definitions in DD (Settings for each Web application) in the
uCosminexus Application Server Web Container Functionality Guide.

#
For directly editing web.xml, add <context-param> tag within the <web-app> tag and add the <param-name> and <param-
value> tags within the <context-param> tag.
To use the server management commands, add <context-param> tag within the <hitachi-war-property> tag of the WAR
property file and add <context-param> and <param-value> tags within the <context-param> tag.

(3) Tuning parameters for distributing the requests using a redirector
Specify the tuning parameters for distributing the requests using a redirector as the parameters of the file that defines the
operations of the Web server.

You can specify this definition only when integrating with a Web server. You cannot specify this definition when you are
using an in-process HTTP server.

The following table describes the method and location of setup:

Table 17‒15: Tuning parameters for distributing the requests by using a redirector

Setup items Method of setup Location of setup

Mapping definition of URL pattern# Smart Composer functionality Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
JkMount

#
When you are using Microsoft IIS as the Web server, specify in uriworkermap.properties.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 701

17.6 Tuning other items

This section explains the tuning items other than those described till the previous section.

The following item is explained here:

• Tuning of the Persistent Connection

Determine the tuning of this item to use in-process HTTP servers in Web front-end systems.

In HTTP/1.1, a Persistent Connection is defined for the persistent use of the same TCP connection established between
a Web client and Web server among multiple HTTP requests. Using a Persistent Connection, the time taken to establish
a connection between a Web client and Web server can be shortened, and the communication traffic can be reduced.

However, the use of a Persistent Connection causes a specific Web client to occupy the request-processing threads,
thereby leading to a decline in the processing performance of the entire server. Therefore, you are required to tune so as
to be able to use the Persistent Connection effectively, and maintain the server processing performance.

When you use an in-process HTTP server, you can tune the following items of a Persistent Connection:

• Upper-limit value of the number of Persistent Connections
When a TCP connection exceeds this upper-limit value, it gets disconnected after the completion of request
processing. Therefore, a thread can be secured for processing a new connection that can prevent the request-
processing threads from being occupied by a specific client.

• Upper-limit value of the request-processing frequency of a Persistent Connection
Even when requests are received continuously from the same Web client, the TCP connection is disconnected once
after the completion of request processing, if this upper-limit value is exceeded.
This can prevent the request-processing threads from being occupied by a specific client.

• Timeout of a Persistent Connection
You can set up timeouts for the request-waiting time of the Persistent Connection. If no processing request is received
even after the lapse of the specified timeout period, the TCP connection will be disconnected. This can prevent the
TCP connection from being occupied when it is not in use.

These items are specified as parameters of the Easy Setup definition file used with the Smart Composer functionality.
The following table describes the tuning parameters to be set up for a Persistent Connection:

Table 17‒16: Tuning parameters to be set up for a Persistent Connection

Setup item Location of setup

Upper-limit value of the number of
Persistent Connections

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.connector.inprocess_http.persistent_connection.max_con
nections

Upper-limit value of the request-
processing frequency

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 702

Setup item Location of setup

Parameter name
webserver.connector.inprocess_http.persistent_connection.max_req
uests

Timeout Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.connector.inprocess_http.persistent_connection.timeout

For details on each parameter, see 12.2 Parameters applicable to logical J2EE servers.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 703

17.7 TCP/UDP port numbers used by Application Server

When the port number is not explicitly defined, a port number is automatically assigned by Application Server to a port
with the default value (Floating).

The following table describes the TCP/UDP port numbers used by Application Server. Depending on the OS being used,
the firewall setting may be at the host level instead of the network level. In the case of such firewalls, filtering takes place
for all communication other than that with the localhost (127.0.0.1), including communication within the same host. In
such cases, even for the ports that communicate only within the host, you need to set the filter settings so as to permit
that communication.

Table 17‒17: TCP/UDP port numbers used by Application Server

No. Processes Explanation Default values

(1) J2EE server Request reception port of an EJB container. (Floating)

(2) Management communication port. 28008

(3) A port for request reception from the Web server (redirector). 8007

(4) Transaction recovery processing communication port when using
transaction services.
Required when using transaction services.

20302

(5) Request reception port of the Naming Service that is invoked by the in-process. 900

(6) Request reception port of in-process HTTP server.
Mandatory when using in-process HTTP server.

80

(7) Request reception port of the RMI registry. 23152

(8) A port for the event reception during application integration between multiple
systems using shared queue.

20351

(9) Request reception port when acquiring operation information. 23550

(10) A port awaiting RPC request from OpenTP1. 23700

(11) A port awaiting the synchronization request from OpenTP1. 23900

(12) Management Agent A port used for the communication of Management agent. (Floating)

(13) Smart agent Port environment variable for communication of smart agent. 14000

(14) Naming Service Request reception port argument of Naming Service (use Cosminexus TPBroker). 900

(15) Administration Agent A port used by the Administration Agent in the communication with the
Management Server.

20295

(16) Server
Communication Agent

A port used by Server Communication Agent for communicating with Virtual
server manager.

20580

(17) Management Server An http port of the Management Server. 28080

(18) A port for termination request of Management Server.
Required for communication within the host.

28005

(19) A port for internal communication of Management Server.
Required for communication within the host.

28009

(20) A port for connection to the Manager remote management function. 28099

(21) A port for client connection to the Manager remote management function. (Floating)

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 704

No. Processes Explanation Default values

(22) Cosminexus HTTP Server An http port of Cosminexus HTTP Server. 80

(23) An https port of Cosminexus HTTP Server. 443

(24) Server
management command

A port with which the server management command communicates with the
J2EE server.

(Floating)

(25) CTM regulator Basic value of the port where CTM regulator receives requests from the EJB client.
Use basic value + process count only.
Mandatory when using CTM.

(Floating)

(26) CTM daemon Port where the CTM daemon receives the requests from the EJB client.
Mandatory when using CTM.

(Floating)

(27) Port for communication by CTM daemon with other daemon or J2EE server.
Mandatory when using CTM.

20138

(28) CTM domain manager Port for communication by CTM domain manager with other CTM
domain manager.
Mandatory when using CTM, to communicate TCP and UDP (broadcast).

20137

(29) CJMSP Broker Port of broker of Cosminexus JMS provider for receiving requests from resource
adapter or commands.

7676

(30) Port of broker of Cosminexus JMS provider for establishing connection with
resource adapter.

(Floating)

(31) Port of broker of Cosminexus JMS provider for establishing connection
with commands.

(Floating)

(32) Management Server Virtual server manager (Management Server) of 08-50 mode is a process port
(Agent for vCenter Server), which runs internally to connect to vCenter Server.

28089

(33) Internal communication port of Management Server used from HCSC-Manager. 28900

The following figure shows the TCP/UDP port numbers used by the Application Server process. (x) corresponds to the
item numbers in the table:

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 705

Figure 17‒5: TCP/UDP port numbers used by Application Server

For other legend details, see 3.2 Description of the system configuration in the manual uCosminexus Application Server
System Design Guide.

The following table lists the locations for specifying port numbers. The item number in the table corresponds to the item
number in the figure.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 706

Table 17‒18: Locations for specifying the TCP/UDP port numbers used in Application Server

No. Definition files Setup target Parameter name#1

(1) Easy Setup definition file Logical J2EE server (j2ee-
server)

vbroker.se.iiop_tp.scm.iiop_tp
.listener.port

(2) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.http.port

(3) Easy Setup definition file Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.port

(4) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.distributedtx.recove
ry.port

(5) Easy Setup definition file Logical J2EE server (j2ee-
server)

inprocess.ns.port

(6) Easy Setup definition file Logical J2EE server (j2ee-
server)

webserver.connector.inprocess_
http.port

(7) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.rmi.naming.port

(8) Connector attribute file Reliable Messaging RMSHPort#2 specified in the <config-
property> tag

(9) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.rmi.remote.listener.
port

(10) Connector property file TP1 inbound adapter scd_port#3 specified in <config-
property> tag

(11) Connector property file TP1 inbound adapter scd_port#4 specified in <config-
property> tag#3

(12) Easy Setup definition file Logical J2EE server (j2ee-
server)

mngagent.connector.port

(13) Easy Setup definition file Logical smart agent (smart-
agent)

smartagent.port

(14) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.naming.port

(15) Adminagent.properties Administration Agent adminagent.adapter.port key

(16) sinaviagent.properties #4 Server Communication Agent sinaviagent.port key

(17) mserver.properties Management Server webserver.connector.http.port
key

(18) mserver.properties Management Server webserver.shutdown.port key

(19) mserver.properties Management Server webserver.connector.ajp13.port
key

(20) mserver.properties Management Server com.cosminexus.mngsvr.manageme
nt.port key

(21) mserver.properties Management Server com.cosminexus.mngsvr.manageme
nt.listen.port key

(22) Easy Setup definition file Logical Web server (web-
server)

Listen

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 707

No. Definition files Setup target Parameter name#1

(23) Easy Setup definition file Logical Web server (web-
server)

Listen

(24) usrconf.properties (system
property file for server
management command)

Server management command vbroker.se.iiop_tp.scm.iiop_tp
.listener.port key

(25) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.RegOption

(26) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.EjbPort

(27) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.port

(28) Easy Setup definition file Logical CTM domain
manager (ctm-domain-
manager)

cdm.port

(29) config.properties CJMSP Broker imq.portmapper.port key

(30) config.properties CJMSP Broker imq.jms.tcp.port key

(31) config.properties CJMSP Broker imq.admin.tcp.port key

(32) vmx.properties Virtual server manager of 08-50
mode (Management Server)

vmx.vcenterserver.agent.port
key

(33) mserver.properties Management Server ejbserver.naming.port key

#1
If the setup file is an Easy Setup definition file, specify the value specified in <param-name> in the <configuration> tag.

#2
RMSHPort is a configuration property specified in the property definition of the resource adapter Cosminexus RM. For details about
RMSHPort, see 6. Configuration Properties in the manual Cosminexus Reliable Messaging.

#3
scd_port and trn_port are the configuration properties specified in the property definition of the resource adapter TP1 inbound adapter.
For details about scd_port and trn_port, see 4.12.2 Setting up a resource adapter in the uCosminexus Application Server Common
Container Functionality Guide.

#4
For details about Server Communication Agent, see the documents related to Server Communication Agent.

Reference note

The following table describes the locations for specifying TCP/UDP port numbers when setting up
Application Server:

Table 17‒19: Locations for specifying TCP/UDP port numbers when setting up Application
Server

No. Setup location when setting up by editing the file

(1) vbroker.se.iiop_tp.scm.iiop_tp.listener.port key in usrconf.properties

(2) ejbserver.http.port key in usrconf.properties

(3) webserver.connector.ajp13.port key in usrconf.properties

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 708

No. Setup location when setting up by editing the file

(4) ejbserver.distributedtx.recovery.port key in usrconf.properties

(5) ejbserver.naming.port key in usrconf.properties

(6) webserver.connector.inprocess_http.port key of usrconf.properties

(7) ejbserver.rmi.naming.port key in usrconf.properties

(8) RMSHPort#1 specified in the <config-property> tag of the Connector property file

(9) ejbserver.rmi.remote.listener.port key of usrconf.properties

(10) scd_port specified in the <config-property> tag of the resource adapter of Connector property file of TP1
inbound adapter

(11) trn_port specified in the <config-property> tag of the resource adapter of Connector property file of TP1
inbound adapter

(12) mngagent.connector.port key in the mngagent.real-server-name.properties file

(13) Environment variable OSAGENT_PORT

(14) • When auto-starting CORBA Naming Service in in-process or out-process
ejbserver.naming.port key of usrconf.properties

• When manually starting CORBA Naming Service
Specify -Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=port-number in the command
argument of the nameserv command.

(15) adminagent.adapter.port key in adminagent.properties

(16) sinaviagent.port key in sinaviagent.properties#2

(17) webserver.connector.http.port key in mserver.properties

(18) webserver.shutdown.port key in mserver.properties

(19) webserver.connector.ajp13.port key in mserver.properties

(20) com.cosminexus.mngsvr.management.port key in mserver.properties

(21) com.cosminexus.mngsvr.management.listen.port key in mserver.properties

(22) Listen directive or Port directive of httpsd.conf

(23) Listen directive or Port directive of httpsd.conf

(24) vbroker.se.iiop_tp.scm.iiop_tp.listener.port key in usrconf.properties (system properties
file for server management commands)

(25) Argument of the ctmregltd command or ctmstart command - CTMEjbPort

(26) Argument of the ctmstart command - CTMEjbPort

(27) Argument of the ctmstart command - CTMPort

(28) Argument of the ctmdmstart command - CTMPort.

(29) imq.portmapper.port key in config.properties

(30) imq.jms.tcp.port key in config.properties

(31) imq.admin.tcp.port key in config.properties

(32) vmx.vcenterserver.agent.port key in vmx.properties

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 709

No. Setup location when setting up by editing the file

(33) ejbserver.naming.port key in mserver.properties

#1
RMSHPort is a configuration property specified in the property definition of the resource adapter Cosminexus RM. For details about
RMSHPort, see 6. Configuration Properties in the manual Cosminexus Reliable Messaging.

#2
For the details about Server Communication Agent, see the documents related to Server Communication Agent.

Important note

Notes on the standby port for a server (In UNIX)

In UNIX, when all the following conditions are satisfied, a connection might be successfully established with
a TCP port that is not in a standby status:

• An attempt is made to establish a connection with a port that is not in a standby status

• The host itself is the connection target, and the port is in the range of the temporary port numbers (the range
of port numbers that are dynamically allocated by the OS)

When this event occurs, the assumed process communication cannot be executed and a timeout occurs. To avoid
this event, specify a value outside the range of the temporary port numbers as the standby port of the server. You
can check the range of the temporary port numbers in the following files:

In AIX
Minimum value (32768): no -o tcp_ephemeral_low
Maximum value (65535): no -o tcp_ephemeral_high

In Linux
/proc/sys/net/ipv4/ip_local_port_range

For details on how to set up the standby port of a server, see the documentation for the OSs.

17. System Design Guide (V9 Compatibility Mode)

Compatibility Guide 710

Part 4: Other Compatibility Functionality

18 Functionality Compatible with the Basic
and Development Functionality (Connecting
a Database by Using DABroker Library)
(INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

Compatibility Guide 711

18.1 (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

18. Functionality Compatible with the Basic and Development Functionality (Connecting a Database by Using DABroker Library) (INTENTIONALLY DELETED)

Compatibility Guide 712

19 Functionality Compatible with the Basic
and Development Functionality (Using
Annotations in EJB 2.1 and Servlet 2.4)
(INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

Compatibility Guide 713

19.1 (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

19. Functionality Compatible with the Basic and Development Functionality (Using Annotations in EJB 2.1 and Servlet 2.4) (INTENTIONALLY DELETED)

Compatibility Guide 714

20 Settings for Using the Connection Pool
Clustering Functionality

This chapter describes the connection pool clustering functionality.

Compatibility Guide 715

20.1 Functionality for connection pool clustering

This section describes the connection pool clustering functionality.

The following table describes the organization of this section.

Table 20‒1: Organization of this section (Connection pool clustering functionality)

Category Title Reference location

Description Connecting to Oracle using Oracle RAC 20.1.1

Overview of connection pool clustering 20.1.2

Resource adapters used 20.1.3

Connection pool clustering operations 20.1.4

Procedure for stopping or starting a connection pool manually 20.1.5

Settings Settings required for clustering a connection pool 20.1.6

Note:
There is no specific description of Implementation and Operations for this functionality.

The connection pool clustering functionality optimizes the operations in a system where the database is used in a cluster
configuration. You can use this functionality when you connect to Oracle using Oracle RAC. By using the connection
pool clustering functionality, you can prevent the drop in system availability during errors and during maintenance. The
following points describe the operations when an error occurs in the database node and when maintenance is performed
for the database node while you are using the connection pool clustering functionality.

• When an error occurs in the database node
When a connection cannot be obtained, such as during an OS, hardware, or software error, you can automatically
suspend the connection pool connected to the database node where the error occurred (auto-suspension
functionality). Even when a connection request is sent from the J2EE application to the resource adapter, no
connection request is sent to the suspended connection pool, so the processing is not cancelled until a TCP/IP timeout
occurs. This enables the J2EE application to continue business by obtaining a connection from a connection pool
connected to another normal database node.
Also, when the database node error is recovered, you can automatically restart the connection pool (auto-restart
functionality). If the connection pool is restarted, the automatically recovered database node is accessed again, so you
need not execute the cjclearpool command to delete the connection pool for recovering the database node.

• When maintenance is performed for the database node
When you perform maintenance for a database node, you can use commands to suspend the member connection
pool at any time (manual suspension functionality). Due to this, you can separate that database node and
perform maintenance.
Also, when you restart the database node after maintenance finishes, you can use commands to restart the connection
pool at any time (manual restart functionality).

Note that in the connection pool clustering functionality, when a failure is detected while a connection is being
obtained, the connection will be obtained from another normal member resource adapter. At this time, no error occurs
in the application.

This section describes how to connect to Oracle clustered by using the Oracle RAC functionality, and the features and
functionality of a connection pool when the connection pool is clustered (connection pool clustering).

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 716

20.1.1 Connecting to Oracle using Oracle RAC
The method of connecting to Oracle using Oracle RAC differs depending on the Oracle version or the functionality used
for load balancing. Note that the connectable transaction type is a local transaction.

For details on compatibility with the Oracle version, functionality used for load balancing, and RAR files to use, see the
manual uCosminexus Application Server Common Container Functionality Guide.

This section describes the Oracle connection method for each functionality used for load balancing.

(1) Connections using the Application Server functionality
You use the connection pool clustering functionality of Application Server to connect to Oracle RAC. Application Server
distributes the load of database access.

For details on the connection pool clustering functionality, see the description in section 20.1.2 and later.

(a) Load balancing procedure and settings
The following figure shows the load balancing procedure and settings when you use the connection pool
clustering functionality.

Figure 20‒1: Connection using the connection pool clustering functionality

This figure shows an Oracle RAC system with a 3-node configuration where the database node 1 contains instance 1,
database node 2 contains instance 2, and database node 3 contains instance 3. The settings for connecting to the database
are as follows:

1. Generate DB Connector M1, M2, and M3 for the member resource adapters mapped to instances 1, 2, and 3. Also,
generate DB Connector R for the root resource adapter that contains the functionality for distribution to the member
resource adapters.

2. Associate the J2EE applications with DB Connector R for the root resource adapter.

With these settings, the database access from the J2EE applications 1 and 2 is distributed to the database nodes 1, 2, and 3.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 717

(b) Operations during database errors and recovery
When a database error occurs, Application Server detects the error. The member resource adapter mapped to the database
where the error occurred is blocked and the processing is continued with the remaining instances.

When the database error is recovered, Application Server automatically releases the blockade. You can also release the
blockade manually.

(2) Connections using the Oracle functionality
You connect to Oracle RAC from DB Connector and distribute the database access load with the Oracle
RAC functionality.

(a) Load balancing procedure and settings
The following figure shows the load balancing procedure and settings when you use the Oracle RAC functionality.

Figure 20‒2: Connection using the Oracle RAC functionality

This figure shows an Oracle RAC system with a 3-node configuration where the database node 1 contains instance 1,
database node 2 contains instance 2, and database node 3 contains instance 3. The settings for connecting to the database
are as follows:

1. Generate DB Connector A that distributes and connects to each instance.

2. Set up DB Connector A to use a global database name or service name.

3. Associate J2EE application 1 and 2 with DB Connector A.

With these settings, the database access from the J2EE applications 1 and 2 is distributed to the database nodes 1, 2, and 3.

(b) Operations during database errors and recovery
When a database error occurs, the Oracle RAC functionality separates the instance where the error occurred and the
processing is continued with the remaining instances.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 718

If you are using an Application Server connection pool, execute one of the following operations during database recovery.
The connection pool is cleared and the subsequent access is distributed normally.

• Execute the cjclearpool command.

• Restart the J2EE server.

20.1.2 Overview of connection pool clustering
A connection pool that is clustered is called connection pool clustering. This section describes the connection pool
clustering configuration and the functionality available with connection pool clustering.

(1) Connection pool clustering configuration
The member resource adapters connected to each database node and the root resource adapter that bundles these multiple
member resource adapters together configure a clustered connection pool. A description of the root resource adapter and
member resource adapter is as follows:

• Root resource adapter
This resource adapter is accessed from the J2EE applications when a clustered connection pool (connection pool
clustering) is used. The root resource adapter bundles the member resource adapters together. With the root resource
adapter, the processing requests to the root resource adapter are distributed to the member resource adapters. Note
that the root resource adapter does not have a connection pool.

• Member resource adapter
This resource adapter is connected to clustered individual database nodes. A member resource adapter is necessarily
accessed via the root resource adapter. The connection pool of a member resource adapter is called a member
connection pool.

The following figure shows the flow of processing for obtaining a connection when the connection pool is clustered.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 719

Figure 20‒3: Flow of processing for obtaining a connection

1. The J2EE application makes a connection request to the root resource adapter.

2. The root resource adapter selects one member connection pool and sends the connection request.

3. A connection is selected from the member connection pool and returned to the J2EE application.

(2) Preconditions
A database can use the connection pool clustering functionality only while the Oracle RAC functionality is used. The
JDBC driver that can use the connection pool clustering functionality is Oracle JDBC Thin Driver.

(3) J2EE components and functionality available for database
connections

The following table describes the J2EE components and functionality available for database connections when the
connection pool clustering functionality is used.

Table 20‒2: J2EE components and functionality available for database connections (Connection
pool clustering functionality)

Items Oracle (when the connection pool
clustering functionality is used)

J2EE components Servlet/JSP Y

Stateless Session Bean Y

Stateful Session Bean Y

Singleton Session Bean Y

Entity Bean (BMP) Y

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 720

Items Oracle (when the connection pool
clustering functionality is used)

Entity Bean (CMP 1.1) N

Entity Bean (CMP 2.0) N

Message-driven Bean N

Available functionality Connection pooling Y

Connection pool warming up Y

Displaying the connection pool information
(cjlistpool command)

Y

Clearing the connection pool Y

Connection test for resources Y

Detecting the connection errors Y

Statement pooling Y

Statement cancellation Y#

Statement setQueryTimeout method Y#

PRF trace output for the connection ID Y

Output of the SQL statement for troubleshooting Y

Legend:
Y: Available
N: Not available

#
Precautions need to be taken when you connect to Oracle. For details on the precautions, see the manual uCosminexus Application Server
Common Container Functionality Guide.

Important note

To use a resource adapter, you must resolve the references from the J2EE application to the resource adapter.
When you customize a J2EE application that uses the resource adapters, resolve the references from the J2EE
application to the resource adapter.

(4) Available resource connection and transaction management
functionality

For details on the functionality that can be used by root resource adapters and member resource adapters, see the manual
uCosminexus Application Server Common Container Functionality Guide.

20.1.3 Resource adapters used
This section describes the commands that can be executed with the root resource adapter and member resource adapter,
gives an overview of the settings, and describes the notes.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 721

(1) Executable commands
The following table describes the executability of commands for the root resource adapter and member resource adapter.
Note that the commands other than those listed in the table can be executed with any resource adapter.

Table 20‒3: Executability of commands in root resource adapter and member resource adapter

Command Types of resource adapters

Root resource adapter Member resource adapter

cjstartrar Y Y

cjstoprar Y Y

cjtestres Y Y

cjlistrar Y Y

cjclearpool N Y

cjlistpool N Y

cjsuspendpool N Y

cjresumepool N Y

Legend:
Y: Can be executed
N: Cannot be executed

(2) DB Connector settings
The following table describes the items specified in DB Connector for the root resource adapter and member
resource adapter.

Table 20‒4: Items specified in DB Connector for the root resource adapter and member resource
adapter

Settings Types of resource adapters

Root resource adapter Member resource adapter

Transaction support level N Y#1

Can the log be collected Y Y

Database connection information -- Y

DB Connector-specific settings (such as the
statement pool)

-- Y

Security information (user name and password) N Y#2

Connection pool size N Y

Connection pool clustering-specific settings Y --

Legend:
Y: Settings must be specified
N: Settings need not be specified
--: There are no settings

#1
The transaction support levels of all the member resource adapters configuring one clustered connection pool must be the same.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 722

#2
The user names of all the member resource adapters configuring one clustered connection pool must be the same.

For details on the DB Connector settings, see 4.2 Settings for connecting to the database in the uCosminexus Application
Server Application Setup Guide, or 20.6 HITACHI Connector Property file.

(3) Notes on the root resource adapters
• You cannot execute the cjclearpool command. If the command is executed, a message is output and the

command terminates abnormally. To clear the connections in a clustered connection pool with the cjclearpool
command, execute the command for the member resource adapter.

• You cannot execute the cjlistpool command. If the command is executed, a message is output and the command
terminates abnormally. If you want to display the information of a connection pool within the clustered connection
pool, execute the cjlistpool command by specifying the member resource adapter display name in -resname,
or by specifying -resall.

• You cannot mix and use a container-managed sign-on and component-managed sign-on in one clustered connection
pool. When you use a component-managed sign-on, leave the user names of all the member resource adapters
belonging to the root resource adapter blank.

• You can start a root resource adapter when all the member resource adapters belonging to the root resource adapter
are running. If you start the root resource adapter in the other cases, an error message is displayed on the console or
on the screen, and the resource adapter fails to start.

(4) Notes on the member resource adapters
• With the member resource adapters, the prerequisite functionalities are as follows. These functionalities are enabled

by default and cannot be disabled.

• Connection pooling
Specify a value greater than 0 as the maximum connection pool value. If 0 or less is specified, the operations are
performed assuming that the default values are specified for the maximum and minimum connection pool values.

• Detecting the connection errors when connections are obtained
Detecting the connection errors when connections are obtained and timeout for detecting the connection errors
are enabled regardless of the set values.

• Waiting for a connection when connections deplete
Waiting for a connection when connections deplete is enabled regardless of the set value.

• loginTimeout
Specify a value greater than 0 in the loginTimeout property. If 0 or less is specified, the operations are
performed assuming that the default value is specified.

• The following functionalities cannot be used with the member resource adapters. These functionalities are disabled
by default and cannot be enabled.

• Retrying to obtain a connection

• User-specified Namespace for the J2EE resources

• All the connections in the member connection pool must be connected to the same database node; therefore, do not
use the functionality to change the connection destination for a database. The examples of these functionalities are
as follows. For the settings on disabling the functionality, see the Oracle documentation.

• Client load balancing functionality

• Connection failover functionality

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 723

• Database service

• Listener-based load balancing functionality

• The member resource adapters are necessarily accessed via the root resource adapter. Therefore, you cannot specify
the member resource adapters in the following locations:

• Resource references of the J2EE applications

• Mapping definitions of the CMP Entity Bean

• You can stop a member resource adapter when the root resource adapter to which the member resource adapter
belongs is stopped. If you stop a member resource adapter when the root resource adapter is running, an error message
is displayed on the console or on the screen, and the resource adapter fails to stop.

• When a member connection pool is blocked and suspended, to destroy the connections the unused connections
are removed from the connection pool. At this time, if you restart the connection pool when the destruction
of connections is not yet complete, the total number of connections in the connection pool and the unused
connections removed from the connection pool might temporarily exceed the maximum number of connections in
the connection pool.

20.1.4 Connection pool clustering operations
This section describes the available functionality and operations when a connection pool is clustered. You can execute
the following functionality with a clustered connection pool:

• Suspending a connection pool

• Restarting a connection pool

This section also describes the connection pool states and how to select a connection pool when a connection request
is received.

(1) Suspending a connection pool
You can block and suspend a member connection pool. If you execute suspend, a member connection pool is blocked
and suspended.

When a J2EE application sends a connection request to the root resource adapter, no connection request is sent to a
blocked or suspended member connection pool.

You suspend the member connection pool in the following cases:

• When an error occurs in a database node

• When maintenance is performed for a database node

Note that the suspension methods include the following two methods:

• Auto-suspension

• Manual suspension

Reference note

With the suspension processing, the connections that the J2EE application has finished using are destroyed,
all the connections in the connection pool are destroyed, and then the connection pool is suspended. When

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 724

a network error or a database node error occurs, a connection is destroyed after waiting for the network to
timeout, so the processing from blocking to suspending the connection pool might take time.

(a) Auto-suspension
You can automatically suspend the member connection pool when a database node error occurs. When an error is
detected, the member connection pool is automatically blocked and then suspended.

If the following events occur when a connection is obtained, a database node error is determined, and the member
connection pool is automatically suspended:

• When a timeout occurs during the detection of the connection errors while a connection is being obtained

• When a physical connection cannot be obtained

• When the obtaining of a physical connection times out

• When the connection management threads deplete

This functionality is enabled by default. Specify the settings for enabling or disabling this functionality as a root resource
adapter property. For details on the resource adapter settings, see 5.4 Defining resource adapter properties in the
uCosminexus Application Server Application Setup Guide.

(b) Manual suspension
When you perform operations such as database node maintenance, you execute the cjsuspendpool command to
manually suspend a connection pool. You can execute manual suspension when the status of a member connection pool
is Start, Reserved Start, Auto-suspend, and Reserved Auto-suspend. If you execute the cjsuspendpool command
when the member connection pool is in an auto-suspension state, the status changes to manual suspension. Due to this,
you can execute operations so that the member connection pool is not restarted automatically after auto-suspension. For
details on the manual suspension procedure, see 20.1.5(2) Suspending the connection pool. For command details, see
cjsuspendpool (suspend member connection pool).

Important note

A connection pool that is suspended manually with the cjsuspendpool command is not restarted
automatically. Restart the connection pool manually.

(2) Restarting a connection pool
You can restart a suspended member connection pool. When the J2EE application makes a connection request to the root
resource adapter, the connection requests are now sent to the restarted member connection pool again.

Note that to restart a connection pool, the number of unused connection management threads must be equal to or more
than the maximum number of connections in the connection pool.

You restart the connection pool in the following cases:

• When the database node error is recovered

• When the maintenance of the database node finishes

The restart methods include the following two methods:

• Auto-restart

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 725

• Manual restart

Reference note

• If the number of unused connection management threads becomes equal to the maximum number of
connections in the connection pool when the connection pool is stopped, a message is output. When the
execution of the cjresumepool command fails, check the displayed message and then re-execute
the command.

• When the connection pool warming up functionality is enabled, the member connection pool starts after
the minimum number of connections defined in the connection pool settings is pooled. If an attempt to
generate a connection fails while the connections are being pooled, the member connection pool returns
to the suspended state. Also, if the connection pool warming up functionality is disabled, the member
connection pool starts immediately.

(a) Auto-restart
You can automatically restart an auto-suspended member connection pool.

The auto-suspended member connection pool sends a physical connection request at regular intervals to check the state
of the database node. At this time, if a connection is obtained successfully, the database node is determined to have
recovered, and the restart processing is performed automatically. Also, if you do not want to automatically restart an
auto-suspended member connection pool, manually suspend the member connection pool after the pool is suspended
automatically. To restart the pool, use manual restart.

Note that if the root resource adapter is stopped, the auto-restart processing is not performed. However, if you stop the root
resource adapter while the member connection pool is auto-restarting, the running auto-restart processing is continued.

This functionality is enabled by default. Specify the settings for switching between enabling and disabling and for the
interval to check the database node state as the root resource adapter properties. For details on the resource adapter
settings, see 5.4 Defining resource adapter properties in the uCosminexus Application Server Application Setup Guide.

(b) Manual restart
You can manually restart an auto-suspended or manually suspended connection pool. To restart manually, use the
cjresumepool command. You can execute manual restart when the status of the connection pool is as follows:

• Auto-suspension

• Manual suspension

• Reserved auto-suspension

• Reserved manual suspension

For details on the manual restart procedure, see 20.1.5(3) Restarting the connection pool. For the command details, see
cjresumepool (restart member connection pool).

(3) States of the connection pool
A connection pool state only exists for the member connection pools. Note that the connection pool state is maintained
even after you restart the J2EE server and resource adapter.

You can check the state of the member connection pool with the following methods. When you execute manual
suspension or manual restart, check the connection pool state before you execute the commands.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 726

• cjlistrar command
The cjlistrar command outputs the names and states of all the deployed resource adapters to the standard output.
If you specify -clusterpool, you can also display the states of the member connection pools.
For the command details, see cjlistrar (list resource adapters) in the uCosminexus Application Server Command
Reference Guide.

• cjlistpool command
The cjlistpool command displays the connection pool information. The command can also display the states of
the member connection pools for the member resource adapters. For details on examples of displaying the connection
information of a member resource adapter, see the manual uCosminexus Application Server Common Container
Functionality Guide.
For the command details, see cjlistpool (list connection pools) in the uCosminexus Application Server Command
Reference Guide.

This section describes the states of the member connection pools.

The state of the member connection pool is maintained even if you restart the J2EE server and member resource adapter.
For the procedure for checking the connection pool states, see 20.1.5(1) Checking the connection pool state.

Note that the connection pools other than those for the member resource adapters do not have a state.

(a) Transition of the connection pool state
The following figure shows the transition of the member connection pool state.

Figure 20‒4: Transition of the member connection pool state (when the pool is suspended
manually)

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 727

Figure 20‒5: Transition of the member connection pool state (when the pool is suspended
automatically)

Note that when the J2EE server starts, if the status of the connection pool is Resuming or Blocked, the connection pool
status transits to Suspended.

The following table describes each status.

Table 20‒5: Status of the member connection pools

No. Status Status displayed in the message Explanation

1 Start status running A state in which the connection
pool receives processing. When
a connection request is made to
the root resource adapter, the
processing is only performed for a
started connection pool.

2 Reserved Start status runningReserved A state in which the resource
adapter is stopped when the
connection pool has the Start
status. The status of a connection
pool with the Reserved Start status
changes to the Start status when
you start the resource adapter. This
status is reached immediately after
the resource adapter is deployed.

3 Auto-restarting status resumingAutomatically A state in which the connection
pool performs the restart
processing using the auto-restart
functionality. If the restart
processing is successful, the
status changes to the Start status.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 728

No. Status Status displayed in the message Explanation

If the restart processing fails,
the status returns to the Auto-
suspension status. No request is
sent to a connection pool with
the Auto-restarting status when a
connection request is sent to the
root resource adapter.

4 Manual Restarting status • resumingManuallyFromSuspendedA
utomatically

• resumingManuallyFromSuspendedM
anually

• resumingManually

A state in which the connection
pool performs the restart
processing by executing the
cjresumepool command in the
Auto-suspension status or Manual
Suspension status. If the restart
processing is successful, the status
changes to the Start status. If
the restart processing fails, the
status returns to the one before
the command was executed. No
request is sent to a connection pool
with the Manual Restarting status
when a connection request is sent
to the root resource adapter.

5 Automatically Blocked status blockedAutomatically A state in which the auto-
suspension functionality is used
to block a connection pool
and perform the suspension
processing. When the suspension
processing finishes, the status
changes to the Auto-suspension
status. No request is sent to
a connection pool with the
Automatically Blocked status
when a connection request is sent
to the root resource adapter.

6 Manually Blocked status blockedManually A state in which the
cjsuspendpool command is
used to block a connection
pool and perform the suspension
processing. When the suspension
processing finishes, the status
changes to the Manual Suspension
status. No request is sent to a
connection pool with the Manually
Blocked status when a connection
request is sent to the root
resource adapter.

7 Auto-suspension status suspendedAutomatically A state in which the auto-
suspension functionality is used
to suspend the connection pool.
There are no connections in the
connection pool. No request is
sent to a connection pool with
the Auto-suspension status when
a connection request is sent to the
root resource adapter.

8 Manual Suspension status suspendedManually A state in which the
cjsuspendpool command is
used to suspend the connection

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 729

No. Status Status displayed in the message Explanation

pool. There are no connections in
the connection pool. No request is
sent to a connection pool with the
Manual Suspension status when a
connection request is sent to the
root resource adapter.

9 Reserved Auto-suspension status suspendedAutomaticallyReserved A state in which the resource
adapter is stopped when the
connection pool is in the Auto-
suspension status. A connection
pool with the Reserved Auto-
suspension status changes to the
Auto-suspension status when the
resource adapter is started. Note
that at this time the connection
pool warming up functionality
is disabled.

10 Reserved Manual Suspension status suspendedManuallyReserved A state in which the resource
adapter is stopped when the
connection pool is in the Manual
Suspension status. A connection
pool with the Reserved Manual
Suspension status changes to
the Manual Suspension status
when the resource adapter is
started. Note that at this time
the connection pool warming up
functionality is disabled.

Note
The numbers indicate the numbers in Figure 20-4 and Figure 20-5.

(b) Executability of commands based on the connection pool status
Depending on the state of the connection pool, some commands can be executed and some cannot be executed. The
following table describes whether the commands can be executed for each connection pool state.

Table 20‒6: Executability of commands based on the connection pool status

Command Connection pool status

Start Reserved
Start

Auto-
restarting
/ Manual
Restartin
g

Automati
cally
Blocked/
Manually
Blocked

Auto-
suspensi
on

Manual
Suspensi
on

Reserved
Auto-
suspensi
on

Reserved
Manual
Suspensi
on

cjstartrar N Y N N N N Y Y

cjstoprar Y N R#1 R#2 Y Y N N

cjclearpool Y N N N N N N N

cjlistrar Y Y Y Y Y Y Y Y

cjsuspendpool Y Y N N Y N Y N

cjresumepool N N N N Y Y Y Y

cjstopsv (for a
normal termination)

Y Y R#1 R#2 Y Y Y Y

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 730

Command Connection pool status

Start Reserved
Start

Auto-
restarting
/ Manual
Restartin
g

Automati
cally
Blocked/
Manually
Blocked

Auto-
suspensi
on

Manual
Suspensi
on

Reserved
Auto-
suspensi
on

Reserved
Manual
Suspensi
on

cjstopsv (for a
forced termination)

Y Y Y Y Y Y Y Y

Legend:
Y: Can be executed
R: Restricted
N: Cannot be executed

#1
The command is received, but the processing is executed when the status changes to Start or Suspend.

#2
The command is received, but the processing is executed when the status changes to Suspend.

(4) How to select a connection pool
When the J2EE application sends a connection request to the root resource adapter, one member connection pool is
selected. The method by which the member connection pool is selected at this time is the round-robin method.

The connection pool that is selected is a member connection pool with the Start status. A member connection pool that
has free connections is selected on priority.

However, if only a member connection pool with depleted connections is available, the connection request changes
to pending. Furthermore, if a timeout occurs in a pending connection, the connection cannot be obtained. Also, if a
connection pool is blocked when a connection request is pending, the connection request is restarted and an attempt is
made to obtain a connection from the member connection pool that is next in the priority order. If a connection cannot
be obtained from any of the member connection pools, the attempt to obtain the connection fails.

Note that if there is a connection request when a member connection pool with the Start status does not exist, the attempt
to obtain the connection fails.

To specify the maximum size of each member connection pool, use the following guideline:

Maximum-size-of -the-member-connection-pool-(number) = Maximum-number-of-concurrent-connections-
permitted-for-the-system / number-of-database-nodes

20.1.5 Procedure for stopping or starting a connection pool manually
This section describes the procedure for connection pool clustering. By manually stopping and restarting some of the
connection pools when you handle the errors occurring in a database and when you perform database maintenance, you
can perform database maintenance without stopping the entire system. To perform database maintenance by manually
stopping and restarting some of the connection pools:

1. Check the connection pool status (see (1))
Use the server management commands to execute the operation.

2. Suspend the connection pool (see (2))
Use the server management commands to execute the operation.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 731

3. Restart the connection pool (see (3))
Use the server management commands to execute the operation.

4. Check the connection pool status (see (1))
Use the server management commands to execute the operation.

(1) Checking the connection pool state
You check the connection pool state before and after you perform maintenance for a database in a cluster configuration.

For details on the connection pool states, see 20.1.4(3) States of the connection pool.

You check the connection pool state with the cjlistrar command.

The format and example of execution of the cjlistrar command are as follows:

Format of execution

cjlistrar server-name -clusterpool

Example of execution

cjlistrar MyServer -clusterpool

(2) Suspending the connection pool
This section describes the procedure for suspending the connection pool.

You can suspend a connection pool with the cjsuspendpool command. When you execute the cjsuspendpool
command, the connection pool is blocked and suspended and the connection requests are no longer received.

You can execute the cjsuspendpool command when the status of the connection pool is as follows:

• Start

• Reserved Start

• Auto-suspension

• Reserved Auto-suspension

For details on how to check the state of the connection pool, see (1) Checking the connection pool state.

The format and example of execution of the cjsuspendpool command are as follows:

Format of execution

cjsuspendpool server-name -resname display-name-of-member-resource-adapter
-to-be-suspended

Example of execution

cjsuspendpool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

(3) Restarting the connection pool
This section describes the procedure for restarting the connection pool.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 732

You can restart the connection pool with the cjresumepool command. When you execute the cjresumepool
command, the connection pool status changes to Manual Restarting and the restart processing is executed. When the
restart processing finishes, the connection pool status changes to Start and the connection requests are received.

You can execute the cjresumepool command when the state of the connection pool is as follows:

• The number of unused connection management threads is equal to the maximum number of connections in the
connection pool or more

• The status of the connection pool is Manual Suspension, Reserved Manual Suspension, Auto-suspension, or
Reserved Auto-suspension

For details on how to check the state of the connection pool, see (1) Checking the connection pool state.

The format and example of execution of the cjresumepool command are as follows:

Format of execution

cjresumepool server-name -resname display-name-of-member-resource-adapter
-to-be-restarted

Example of execution

cjresumepool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

Note that after you execute the cjresumepool command, you must check the status of the connection pool to check
whether the restart processing was executed correctly. For details on how to check the state of the connection pool, see
(1) Checking the connection pool state.

20.1.6 Settings required for clustering a connection pool
To cluster a connection pool, you must set up the DB Connector properties. For details on setting up the DB Connector
properties, see 20.3 Settings for connecting to the database (in the case of a cluster connection pool).

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 733

20.2 Resource connections

This section describes the flow for setting the resource adapter for the connection pool clustering functionality when a
cluster connection pool is used.

20.2.1 Procedure for resource adapter settings (To use connection pool
clustering)

The following figure shows the procedure for resource adapter settings for connecting to a database when the connection
pool is clustered.

Figure 20‒6: Procedure for resource adapter settings in connection pool clustering

A description of points 1 to 10 in the figure is as follows:

1. Use the server management commands to import the member resource adapters.
Use the cjimportres command to import the member resource adapters.
For details on the resource adapter to import, see the manual uCosminexus Application Server Common Container
Functionality Guide.

2. Use the server management commands to deploy the member resource adapters.
Use the cjdeployrar command to deploy the member resource adapters.

3. Use the server management commands to define the member resource adapter properties.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 734

Use the cjgetrarprop command to obtain the HITACHI Connector Property file, edit the file, and then use the
cjsetrarprop command to apply the edited content.
The items that you can set up by defining the member resource adapter and root resource adapter properties differ.
For details on the items defined in the properties that can be set for the member resource adapters and root resource
adapter, see 20.1 Functionality for connection pool clustering.
For details on the resource adapter properties specified for the functionality to be used, see the following locations:

• Settings for using the resource connection and the transaction management functionality
uCosminexus Application Server Common Container Functionality Guide

• Functionality for performance tuning
uCosminexus Application Server Common Container Functionality Guide

• Functionality for fault tolerance
uCosminexus Application Server Common Container Functionality Guide

• Setting the optional names for J2EE resources
uCosminexus Application Server Common Container Functionality Guide

4. Use the server management commands to implement the connection test for the member resource adapters.
Use the cjtestres command to implement the connection test for the member resource adapters.
For details on the contents to verify in connection tests for the member resource adapters, see the manual
uCosminexus Application Server Common Container Functionality Guide.
The steps from 1 to 4 are repeated for the number of member resource adapters only.

5. Use the server management commands to start the member resource adapters.
To implement the connection test of the root resource adapter, start the member resource adapters first. Use the
cjstartrar command to start the member resource adapters.

6. Use the server management commands to import the root resource adapter.
Use the cjimportres command to import the root resource adapter.
For details on the resource adapter to import, see the manual uCosminexus Application Server Common Container
Functionality Guide.

7. Use the server management commands to deploy the root resource adapter.
Use the cjdeployrar command to deploy the root resource adapter.

8. Use the server management commands to define the root resource adapter properties.
Use the cjgetrarprop command to obtain the HITACHI Connector Property file, edit the file, and then use the
cjsetrarprop command to apply the edited content.

9. Use the server management commands to implement the connection test for the root resource adapter.
Use the cjtestres command to implement the connection test for the root resource adapter.
For details on the contents to verify in the connection test for the root resource adapter, see the manual uCosminexus
Application Server Common Container Functionality Guide.

10. Use the server management commands to stop the member resource adapters.
After you implement the connection test for the root resource adapter, stop the member resource adapter. Use the
cjstoprar command to stop the member resource adapters.

For details on the operations with the server management commands, see 3. Basic Operations of Server Management
Commands in the uCosminexus Application Server Application Setup Guide. Also, for details on the commands, see
2.4 Resource operation commands used with J2EE servers in the uCosminexus Application Server Command Reference

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 735

Guide. For details on the property files, see 4. Property Files Used for Setting Resources in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

Important note

To cluster a connection pool, you must resolve the references from the J2EE application to the root resource
adapter. When you use the root resource adapter to define the J2EE application properties, resolve the references
from the J2EE application to the root resource adapter.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 736

20.3 Settings for connecting to the database (in the case of a cluster
connection pool)

When you connect to a clustered database of Oracle RAC using DB Connector, you can cluster and use the connection
pool. For details on the cluster connection pools, see 20.1 Functionality for connection pool clustering.

This section describes the settings for clustering the DB Connector connection pool.

20.3.1 Overview of a cluster connection pool
A connection pool that is clustered is called a cluster connection pool. A cluster connection pool consists of a root
resource adapter and a member resource adapter. The connection pool of a member resource adapter is called the member
connection pool.

The following sections describe how to control the operations and state for using the cluster connection pool of
DB Connector:

(1) Setting a cluster connection pool
To use a cluster connection pool, you need to setup a resource adapter that can use the cluster connection pool.

Set up the DB Connector for the cluster connection pool with the following procedure:

Note that you repeat steps 1 and 2 for the required number of member resource adapters.

1. Setup a DB Connector for the member resource adapter.
Use the following procedures to setup a DB Connector for member resource adapters:

• Import the RAR file of the DB Connector for the member resource adapter.

• Define properties.

• Deploy the DB Connector.

• Check the connectivity.
Use the connectivity test to verify if the connection is correct.

2. Start the DB Connector for the member resource adapter.

3. Set up the DB Connector for the root resource adapter.
Use the following procedures to set up the DB Connector for the root resource adapter:

• Import the RAR file of DB Connector for the root resource adapter.

• Define properties.

• Deploy DB Connector.

• Check the connectivity.
Use the connectivity test to verify if the connection is correct.

4. Start the DB Connector for the root resource adapter.

The root resource adapter is directly accessed from a J2EE application, so for the deployed root resource adapter, you
need to resolve the references by using the J2EE application property settings. For details, see 9.3.3 Defining resource
adapter references in the manual uCosminexus Application Server Application Setup Guide.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 737

Reference note

To set up new DB Connector properties, you can use the template files provided in Cosminexus
Component Container.

The template files of the HITACHI Connector Property file are saved in the following directory:

• In Windows:
Cosminexus-installation-directory\CC\admin\templates\

• In UNIX:
/opt/Cosminexus/CC/admin/templates/

You can use this template file to edit the HITACHI Connector property file before importing the DB Connector.
Copy and use the template file.

For details on the template file names of the HITACHI Connector Property file, see 4.1.13 Template files of the
HITACHI Connector Property File in the uCosminexus Application Server Application and Resource Definition
Reference Guide.

You do not use the template file to change the properties of DB Connector for which properties are already
specified. You obtain the Connector properties of an imported DB Connector, and then edit the HITACHI
Connector Property file.

(2) State of cluster connection pool and operations that can be executed
You can suspend a member connection pool manually when there is a database failure or for maintenance. If the member
connection pool is suspended, the processing is not performed in the case of a connection acquisition request to the root
resource adapter.

You can manually restart the suspended member connection pool. In the case of a connection acquisition request to the
root resource adapter, only the process for a running connection pool is performed.

For details on controlling the connection pool state, see 20.1.4 Connection pool clustering operations.

(3) Functional differences based on the types of resource adapters
The following table lists the resource adapter types and the functions that can be used:

Table 20‒7: List of functions based on the resource adapter types

Functions Types of resource adapters

Root resource adapter Member resource adapter

Connection pooling N D

Warming up of connection pool N Y

Connection sharing and association N Y

Statement pooling N Y

Cache of DataSource object Y N

Optimization of sign-on in the container management of DB Connector N Y

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 738

Functions Types of resource adapters

Root resource adapter Member resource adapter

Connection failure detection N D

Timeout in connection failure detection N D

Connection acquisition request when connections are used up N D

Retry in acquiring connection N N

Display of connection pool information N Y

Clear connection pool N Y

Connection auto close N Y

Connection sweeper N Y

Test the connectivity Y Y

Connection pool count adjustment function N Y

Display of connection pool information N Y

Suspend connection pool# N Y

Restart connection pool# N Y

User-specified name space function of J2EE resources Y N

Legend:
D: Definitely enabled
Y: Can be used
N: Cannot be used

#
If you do not use a clustered connection pool, you cannot suspend and restart the connection pool.

The following table lists the resource adapter types that set the DB Connector attributes:

Table 20‒8: Types of resource adapters and attribute settings

Settings Types of resource adapters

Root resource adapter Member resource adapter

Transaction support level N Y

Feasibility of acquiring log Y Y

Database connection information -- Y

DB Connector specific settings (such as statement pool) -- Y

Security information (user name and password) N Y

Connection pool size N Y

Cluster connection pool specific settings Y --

Legend:
Y: Settings are required
N: Settings are not required
--: No settings

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 739

20.3.2 Setting the DB Connector for a member resource adapter
Use the following procedure to setup a DB Connector for a member resource adapter:

1. Import the DB Connector for the member resource adapter.

2. Define the properties.

3. Deploy the DB Connector for the member resource adapter.

4. Check the connectivity.

(1) Importing the DB Connector for member resource adapter
Execute the following command to import the DB Connector for the member resource adapter:

(a) Execution format

cjimportres [server-name] [-nameserver provider-URL] -type rar -f file-path

Specify the RAR file in file-path.

The RAR file is stored in the following directory:

• In Windows
Cosminexus-installation-directory\CC\DBConnector\ClusterPool\

• In UNIX
/opt/Cosminexus/CC/DBConnector/ClusterPool/

The RAR files to be imported as member resource adapters are explained below:

DBConnector_Oracle_CP_ClusterPool_Member.rar
The DBConnector_Oracle_CP_ClusterPool_Member.rar is a member resource adapter of the cluster connection
pool. Use this RAR file when you use a local transaction or when you do not use a transaction (when
LocalTransaction or NoTransaction is specified in the transaction support level). Connect to Oracle by using
ConnectionPoolDataSource of Oracle JDBC Thin Driver.
You cannot set this RAR file in the resource references of the J2EE applications.

(b) Example of execution

cjimportres MyServer -type rar -f "c:\Program Files\Hitachi\Cosminexus\CC\DB
Connector\ClusterPool\DBConnector_Oracle_CP_ClusterPool_Member.rar"

For details on the cjimportres command, see cjimportres (import resource) in the uCosminexus Application Server
Command Reference Guide.

(2) Defining DB Connector properties for member resource adapter
You define the DB Connector properties for the member resource adapter. For details on the procedure for defining the
properties, see 4.2.2 Defining the DB Connector properties in the manual uCosminexus Application Server Application
Setup Guide. The DB Connector property settings for the member resource adapters will be explained here.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 740

(a) General information regarding the DB Connector for member resource adapters
The following table describes the settings for general information attributes (<outbound-resourceadapter> tag)
of the DB Connector that can be set:

Items Mandatory Corresponding tags

Transaction support level# Y <transaction-support>

Scope of re-authentication support Y <reauthentication-support>

Legend:
Y: Mandatory

#
Specify the same transaction support level for the member resource adapters that form one cluster connection pool.

For details on the property settings, see 4.1.1 Specifications of the HITACHI Connector Property file in the uCosminexus
Application Server Application and Resource Definition Reference Guide.

(b) Configuration properties for member resource adapters
The configuration properties (<config-property> tag) and settings of DB Connector for member resource adapters
are the same as that of the corresponding resource adapter (DBConnector_Oracle_CP.rar). For details on the
configuration properties of the corresponding resource adapter, see 4.2.2 Defining the DB Connector properties in the
manual uCosminexus Application Server Application Setup Guide.

(c) Runtime properties
The following table describes the settings for runtime properties (<outbound-resourceadapter> -
<connection-definition> - <connector-runtime> tag) of the DB Connector for the member
resource adapter:

Items Corresponding tags

Property name <property-name>

Property data type <property-type>

Property value <property-value>

Repeat the above settings for all the properties that you want to define.

Setup the following items in the property name (<property-name>):

Property items Settings of property name (<property-name>)

User name# User

Password# Password

Minimum number of connections to be pooled in the
connection pool

MinPoolSize

Maximum number of connections to be pooled in the
connection pool

MaxPoolSize

Choose whether to output the log LogEnabled

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 741

Property items Settings of property name (<property-name>)

Period from the last usage of connection until you
determine whether to cancel the connection automatically
(connection sweeper)

ConnectionTimeout

Interval for canceling the connection automatically
(connection sweeper)

SweeperInterval

Maximum waiting time when the connection acquisition requests
(when the connections are used up) are managed in a queue

RequestQueueTimeout

Choose whether to enable alert output for monitoring the
connection pool

WatchEnabled

Interval for monitoring the connection pool WatchInterval

Threshold value for monitoring the usage state of the
connection pool

WatchThreshold

Choose whether to output the file with the connection pool
monitoring results

WatchWriteFileEnabled

Interval for operating the connection count adjustment function ConnectionPoolAdjustmentInterval

Choose whether to enable the warming up function of the
connection pool

Warmup

#
Specify the same user name for the member resource adapters that form one cluster connection pool.

Note:
The following items are always Enabled regardless of the scope of settings for the member resource adapters:

Property items Valid values Settings of property name (<property-
name>)

Minimum number of connections to be pooled in
connection pool

Connection pooling function
is enabled. Default value 10
is assumed even if 0 is
specified in MinPoolSize
and MaxPoolSize.

MinPoolSize

Maximum number of connections to be pooled in
connection pool

MaxPoolSize

Choose a method to check whether a failure has
occurred in the connections inside the pool

Always 1 (Failure detected when
the connection is acquired)

ValidationType

Choose whether to manage the connection
acquisition requests in a queue when the
connections are used up

Always true RequestQueueEnable

Choose whether to enable the timeout of the network
failure detection function

Always true NetworkFailureTimeout

The retry function for acquiring connections is always disabled regardless of the settings for connection retry count
(RetryCount) and connection retry waiting time (RetryInterval) of runtime properties.

(3) Deploying the DB Connector for member resource adapters
If you deploy the DB Connector for the member resource adapter, you can use it as a J2EE resource adapter. Note that you
can define the properties after deploying the DB Connector. In such a case, however, define the properties when the root
resource adapter to which the applicable DB Connector for the member resource adapter belongs and the DB Connector
for the member resource adapter are not running. For the method of defining properties, see (2) Defining DB Connector
properties for member resource adapter.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 742

Execute the following command to deploy the DB Connector for the member resource adapter:

Execution format

cjdeployrar [server-name] [-nameserver provider-URL] -resname display-name
-of-DB-Connector-for-the-member-resource-adapter

Example of execution

cjdeployrar MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjdeployrar command, see cjdeployrar (deploy resource adapter) in the uCosminexus Application
Server Command Reference Guide.

(4) Testing the connectivity of the DB Connector for a member resource
adapter

Use the connectivity test to verify whether the information set in the DB Connector for the member resource adapter
is correct.

Execute the following command to perform connectivity testing of the DB Connector for the member resource adapter:

Execution format

cjtestres [server-name] [-nameserver provider-URL] -type rar -resname Disp
lay-name-of-DB-Connector-for-the-member-resource-adapter

Example of execution

cjtestres -type rar -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjtestres command, see cjtestres (execute resource connection test) in the uCosminexus
Application Server Command Reference Guide.

Note:
You cannot delete the DB Connector for the member resource adapter whose connection is once tested until you
restart the J2EE server. To delete the DB Connector for the member resource adapter, stop the root resource adapter to
which the applicable DB Connector for the member resource adapter belongs and the DB Connector for the member
resource adapter, and then restart the J2EE server.

20.3.3 Setting the DB Connector for a root resource adapter
Set up the DB Connector for the root resource adapter with the following procedure:

1. Import the DB Connector for the root resource adapter.

2. Define the properties.

3. Deploy the DB Connector for the root resource adapter.

4. Check the connectivity.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 743

(1) Importing the DB Connector for a root resource adapter
Execute the following command to import the DB Connector for the root resource adapter:

(a) Execution format

cjimportres [server-name] [-nameserver provider-URL] -type rar -f file-path

Specify the RAR file in file-path.

The RAR file is stored in the following directory:

• In Windows
Cosminexus-installation-directory\CC\DBConnector\ClusterPool\

• In UNIX
/opt/Cosminexus/CC/DBConnector/ClusterPool/

The RAR files to be imported as root resource adapters are explained below:

DBConnector_CP_ClusterPool_Root.rar
DBConnector_CP_ClusterPool_Root.rar is a root resource adapter of a cluster connection pool. Use this RAR file
when a member resource adapter that belongs to the root resource adapter uses a local transaction or no transaction
(when LocalTransaction or NoTransaction is specified in the transaction support level) for connecting to the database.
Specify the RAR file in the resource reference of the J2EE applications.

(b) Example of execution

cjimportres MyServer -type rar -f "c:\Program Files\Hitachi\Cosminexus\CC\DB
Connector\ClusterPool\DBConnector_CP_ClusterPool_Root.rar"

For details on the cjimportres command, see cjimportres (import resource) in the uCosminexus Application Server
Command Reference Guide.

(2) Defining DB Connector properties for a root resource adapter
You define the properties of the DB Connector for the root resource adapter. For details on the procedure for defining the
properties, see 4.2.2 Defining the DB Connector properties in the manual uCosminexus Application Server Application
Setup Guide. This section explains the settings for the properties of a DB Connector for the root resource adapter.

The valid properties for the DB Connector for the root resource adapter are described below. The items other than those
described below are ignored even if specified.

• Description of the DB Connector for the root resource adapter (<description>)

• Name of the DB Connector for the root resource adapter (<display-name>)

• Configuration properties (<outbound-resourceadapter> - <connection-definition> - <config-
property>)

• Choosing whether to output the log of runtime properties (<outbound-resourceadapter> -
<connection-definition> - <connector-runtime>) (<LogEnabled>)

• Optional name information (<outbound-resourceadapter> - <connection-definition> -
<connector-runtime> - <resource-external-property>)

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 744

The following table describes the settings for configuration properties:

Items Corresponding tags

Configuration property name <config-property-name>

Configuration property data type <config-property-type>

Configuration property value <config-property-value>

Repeat the above settings for all the configuration properties that you want to define.

The following table describes the settings and an example of configuration property settings when
using DBConnector_CP_ClusterPool_Root.rar:

Table 20‒9: Example of configuration property settings when using
DBConnector_CP_ClusterPool_Root.rar

Item names Example of settings

Algorithm RoundRobin

enableAutoPoolSuspend True

enableAutoPoolResume True

dbCheckInterval 30

memberResourceAdapterName1 DB_Connector_for_Oracle_ClusterPool_Member1

memberResourceAdapterName2 DB_Connector_for_Oracle_ClusterPool_Member2

logLevel ERROR

Set up the display name of the member resource adapter for the memberResourceAdapterName[n] property of
configuration property name (<config-property-name>). By default, memberResourceAdapterName[n]
is defined up to priority 2. When you specify a member resource adapter, add the properties. Specify priority n in the
range of 1 to 100. n need not be consecutive.

(3) Deploying the DB Connector for a root resource adapter
If you deploy the DB Connector for the root resource adapter, you can use it as a J2EE resource adapter. Note that you
can define the properties after deploying the DB Connector. In such a case, however, define the properties when the
applicable DB Connector for the root resource adapter is not running. For details on how to define the properties, see (2)
Defining DB Connector properties for a root resource adapter.

Execute the following command to deploy the DB Connector for the root resource adapter:

Execution format

cjdeployrar [server-name] [-nameserver provider-URL] -resname Display-name
-of-DB-Connector-for-the-root-resource-adapter

Example of execution

cjdeployrar MyServer -resname DB_Connector_for_ClusterPool_Root

For details on the cjdeployrar command, see cjdeployrar (deploy resource adapter) in the uCosminexus Application
Server Command Reference Guide.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 745

(4) Testing the connectivity of DB Connector for root resource adapter
Use the connectivity test to verify whether the information set in the DB Connector for the root resource adapter is correct.

Execute the following command to perform the connectivity testing of the DB Connector for the root resource adapter:

Execution format

cjtestres [server-name] [-nameserver provider-URL] -type rar -resname Disp
lay-name-of-DB-Connector-for-the-root-resource-adapter

Example of execution

cjtestres -type rar -resname DB_Connector_for_ClusterPool_Root

For details on the cjtestres command, see cjtestres (execute resource connection test) in the uCosminexus
Application Server Command Reference Guide.

Note:
You cannot delete the DB Connector for the root resource adapter whose connection is once tested until you restart the
J2EE server. To delete the DB Connector for the root resource adapter, stop the DB Connector for the root resource
adapter and then restart the J2EE server.

20.3.4 Starting and stopping the DB Connector for a member resource
adapter

(1) Starting the DB Connector for a member resource adapter
Execute the following command to start the DB Connector for the member resource adapter:

Execution format

cjstartrar [server-name] [-nameserver provider-URL] -resname Display-name
-of-DB-Connector-for-the-member-resource-adapter

Example of execution

cjstartrar MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjstartrar command, see cjstartrar (start resource adapter) in the uCosminexus Application
Server Command Reference Guide.

(2) Stopping the DB Connector for a member resource adapter
Execute the following command to stop the DB Connector for the member resource adapter:

Execution format

cjstoprar [server-name] [-nameserver provider-URL] -resname Display-name-o
f-DB-Connector-for-the-member-resource-adapter

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 746

Example of execution

cjstoprar MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjstoprar command, see cjstoprar (stop resource adapter) in the uCosminexus Application Server
Command Reference Guide.

Note:
Stop the root resource adapter to which the member resource adapter belongs and then stop the member
resource adapter.

20.3.5 Starting and stopping the DB Connector for a root resource adapter

(1) Starting the DB Connector for a root resource adapter
Execute the following command to start the DB Connector for the root resource adapter:

Execution format

cjstartrar [server-name] [-nameserver provider-URL] -resname Display-name
-of-DB-Connector-for-the-root-resource-adapter

Example of execution

cjstartrar MyServer -resname DB_Connector_for_ClusterPool_Root

For details on the cjstartrar command, see cjstartrar (start resource adapter) in the uCosminexus Application
Server Command Reference Guide.

Note:
Start the member resource adapter belonging to the root resource adapter and then start the root resource adapter.

(2) Stopping the DB Connector for a root resource adapter
Execute the following command to stop the DB Connector for the root resource adapter:

Execution format

cjstoprar [server-name] [-nameserver provider-URL] -resname Display-name-o
f-DB-Connector-for-the-root-resource-adapter

Example of execution

cjstoprar MyServer -resname DB_Connector_for_ClusterPool_Root

For details on the cjstoprar command, see cjstoprar (stop resource adapter) in the uCosminexus Application Server
Command Reference Guide.

Note:
If a J2EE resource in the J2EE application references the DB Connector for the root resource adapter, stop the J2EE
application and then stop the DB Connector for the root resource adapter.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 747

20.3.6 Checking the state of the connection pool
You can reference the states of the connection pools that are used in a cluster connection pool with the following
two methods:

• Reference the resource adapter names and the state of the member connection pools for all the deployed resource
adapters using the cjlistrar command.

• Reference the member connection pool information using the cjlistpool command.
Reference the member connection pool information and lock/ suspend/ restart the member connection pool
as and when required. For details on defining the state of the connection pool, see 20.1.4 Connection pool
clustering operations.

(1) Checking the state of the connection pool
The resource adapter names and the state of the resource adapters are displayed for all the deployed resource adapters.
The state of the connection pool is also displayed if the resource adapter is a member resource adapter of a cluster
connection pool.

Execute the following command to reference the state of a connection pool:

Execution format

cjlistrar [server-name] [-nameserver provider-URL] -clusterpool

Example of execution

cjlistrar MyServer -clusterpool

For details on the cjlistrar command, see cjlistrar (list resource adapters) in the uCosminexus Application Server
Command Reference Guide.

(2) Referencing the member connection pool information
The connection pool information is displayed. The information about the member connection pool is also displayed if
the resource adapter is a member resource adapter of the cluster connection pool.

Execute the following command to reference the connection pool information for all the resource adapters:

Execution format

cjlistpool [server-name] [-nameserver provider-URL] -resall

Example of execution

cjlistpool MyServer -resall

Execute the following command for displaying the connection pool information for a specific resource adapter:

Execution format

cjlistpool [server-name] -resname resource-adapter-display-name

Example of execution

cjlistpool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 748

The connection pool information for the resource adapter is displayed.

For details on the cjlistpool command, see cjlistpool (list connection pools) in the uCosminexus Application Server
Command Reference Guide.

Note:
You cannot execute the cjlistpool command for a root resource adapter.

20.3.7 Suspending the connection pool
You can suspend a member connection pool manually in the case of a database failure or during maintenance. A
suspended connection pool does not receive the connection acquisition request.

Execute the following command to suspend the member connection pool of the cluster connection pool:

Execution format

cjsuspendpool [server-name] [-nameserver provider-URL] -resname display-na
me-of-the-member-resource-adapter-to-be-suspended

Example of execution

cjsuspendpool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjsuspendpool command, see cjsuspendpool (suspend member connection pool).

Note:
You cannot automatically resume a connection pool that was suspended manually by using the cjsuspendpool
command. Use the cjresumepool command to restart the connection pool manually.

20.3.8 Resuming the connection pool
You cannot resume a suspended member connection pool manually. When the J2EE application makes a connection
acquisition request to the root resource adapter, the resumed connection pool is able to receive the connection acquisition
request again.

Execute the following command to restart the member connection pool of a cluster connection pool:

Execution format

cjrestartpool [server-name] [-nameserver provider-URL] -resname display-na
me-of-the-member-resource-adapter-to-be-resumed

Example of execution

cjresumepool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

For details on the cjresumepool command, see cjresumepool (restart member connection pool).

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 749

20.4 Overview of settings and operations

This section gives an overview for the following resource adapter settings:

• Settings for connecting to the database (in the case of cluster connection pool)

20.4.1 Settings for connecting to the database (in the case of cluster
connection pool)

This operation is required for using the clustered connection pool of the DB Connector.

Table 20‒10: Overview of settings required for connecting to the database (in the case of cluster
connection pool)

Settings Contents Reference

Setting the DB Connector for a member
resource adapter

Execute all the operations up to importing, setting and testing the
connectivity of the DB Connector for the member resource adapter.

20.3.2

Setting the DB Connector for a root
resource adapter

Execute all the operations up to importing, setting and testing the
connectivity of the DB Connector for the root resource adapter.

20.3.3

Starting and stopping the DB Connector for a
member resource adapter

Start the DB Connector for the member resource adapter. Also, stop the
DB Connector for a running member resource adapter.

20.3.4

Starting and stopping the DB Connector for a
root resource adapter

Start the DB Connector for the root resource adapter. Also, stop the DB
Connector for a running root resource adapter.

20.3.5

Checking the state of the connection pool Reference the member connection pool state. 20.3.6

Suspending the connection pool Suspend the member connection pool. 20.3.7

Resuming the connection pool Resume the member connection pool that was suspended. 20.3.8

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 750

20.5 Resource operation commands to be used on a J2EE server

This section describes cjresumepool (restarts a member connection pool) and cjsuspendpool (suspends a
member connection pool) in the resource operation commands to be used on a J2EE server.

cjresumepool (restart member connection pool)

Format

cjresumepool [server-name] [-nameserver provider-URL]
 -resname resource-adapter-display-name
 [-resname resource-adapter-display-name ...]

Function
This command restarts a specified member connection pool of the cluster connection pool. This command can restart
multiple member connection pools concurrently. The command attempts to restart all specified member connection
pools even if there are member connection pools for which restart fails. If even one member connection pool cannot be
restarted, the command terminates abnormally.

You must execute this command in the 1.4 mode; if it is executed in the basic mode, it terminates abnormally.

When this command is executed for a resource adapter that is running, the command sets the member connection pool to
the "restarting manually" status. If the warming up functionality for member connection pools is enabled, the command
next pools the connections in the member connection pool and then places the member connection pool in running status.

When this command is executed for a resource adapter that is stopped, the command sets the member connection pool
in "running reserved" status.

Arguments

server-name
Specifies the name of a connected J2EE server. If the server name is omitted, the host name is assumed.

-nameserver provider-URL
Specifies the access protocol for the CORBA Naming Service, the name of the host running the CORBA Naming
Service, and the port number being used by the host. These items are specified in the following format:

protocol-name::host-name:port-number

For details on specifications, see 2.1.2 Provider URL in the manual uCosminexus Application Server Command
Reference Guide.

-resname resource-adapter-display-name
Specifies the display name of a member resource adapter that is to be restarted.
If the specified resource adapter is not a member resource adapter of the cluster connection pool, the command
terminates abnormally.
This argument enables you to execute the command regardless of whether the specified resource adapter is running
or stopped. However, whether or not the command can be executed depends on the status of the member connection
pool, as shown in the following table:

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 751

Member connection pool status Command executability

Suspended automatically status
Suspended manually status
Suspended automatically reserved status
Suspended manually reserved status

Can be executed

Running status
Running reserved status
Restarting automatically status
Restarting manually status
Blocked automatically status
Blocked manually status

Cannot be executed

Input examples

cjresumepool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

Return values

0:
The command terminated normally.

1:
The command terminated abnormally.

2:
The command could not be executed because of an exclusion error.

3:
A timeout error occurred.

9:
The command could not be executed because there are no administrator privileges (in Windows Server 2012,
Windows Server 2008, Windows 8, Windows 7, or Windows Vista).

Notes
• When you specify a server name in the command arguments, you must specify it immediately after the command

name. You can specify the other arguments in any order as long as they are subsequent to the server name (or
subsequent to the command name if the server name is omitted). However, you cannot switch the sequence of an
option name and its corresponding value (for example, you cannot specify application-name -name); also, you
cannot specify an option name in conjunction with a non-corresponding value (for example, you cannot specify
-nameserver application-name -name provider-URL).

• When you specify a server name for the command argument, you must specify a character string that is consistent
with the letter case of the server name specified for the cjsetup command. For details on the cjsetup
command, see cjsetup (set up or unsetup J2EE server) in the manual uCosminexus Application Server Command
Reference Guide.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 752

cjsuspendpool (suspend member connection pool)

Format

cjsuspendpool [server-name] [-nameserver provider-URL]
 -resname resource-adapter-display-name
 [-resname resource-adapter-display-name ...]

Function
This command suspends a member connection pool of the cluster connection pool. The command can suspend multiple
member connection pools concurrently. The command attempts to suspend all specified member connection pools even if
there are member connection pools for which suspension fails. If even one member connection pool cannot be suspended,
the command terminates abnormally.

This command is effective only when it is executed in the 1.4 mode. If the command is executed in the basic mode, it
terminates abnormally.

When this command is executed for a resource adapter that is running, the command sets the member connection pool to
"blocked manually" status and terminates. Next, suspension processing is executed in the J2EE server. After suspension
processing is completed, the member connection pool is set to "suspended manually" status.

When this command is executed for a resource adapter that is stopped, the command sets the member connection pool
to "suspended manually reserved" status.

Arguments

server-name
Specifies the name of a connected J2EE server. If the server name is omitted, the host name is assumed.

-nameserver provider-URL
Specifies the access protocol for the CORBA Naming Service, the name of the host running the CORBA Naming
Service, and the port number being used by the host. These items are specified in the following format:

protocol-name::host-name:port-number

For details on specifications, see 2.1.2 Provider URL in the manual uCosminexus Application Server Command
Reference Guide.

-resname resource-adapter-display-name
Specifies the display name of a member resource adapter that is to be suspended.
If the specified resource adapter is not a member resource adapter of the cluster connection pool, the command
terminates abnormally.
This argument enables you to execute the command regardless of whether the specified resource adapter is running
or stopped. However, whether or not the command can be executed depends on the status of the member connection
pool, as shown in the following table:

Member connection pool status Command executability

Running status
Running reserved status
Suspended automatically status
Suspended automatically reserved status

Can be executed

Suspended manually status Cannot be executed

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 753

Member connection pool status Command executability

Suspended manually reserved status
Restarting automatically status
Restarting manually status
Blocked automatically status
Blocked manually status

Input examples

cjsuspendpool MyServer -resname DB_Connector_for_Oracle_ClusterPool_Member

Return values

0:
The command terminated normally.

1:
The command terminated abnormally.

2:
The command could not be executed because of an exclusion error.

3:
A timeout error occurred.

9:
The command could not be executed because there are no administrator privileges (in Windows Server 2012,
Windows Server 2008, Windows 8, Windows 7, or Windows Vista).

Notes
• When you specify a server name in the command arguments, you must specify it immediately after the command

name. You can specify the other arguments in any order as long as they are subsequent to the server name (or
subsequent to the command name if the server name is omitted). However, you cannot switch the sequence of an
option name and its corresponding value (for example, you cannot specify data-source-display-name -resname);
also, you cannot specify an option name in conjunction with a non-corresponding value (for example, you cannot
specify -nameserver data-source-display-name -resname provider-URL).

• When you specify a server name for the command argument, you must specify a character string that is consistent
with the letter case of the server name specified for the cjsetup command. For details on the cjsetup
command, see cjsetup (set up or unsetup J2EE server) in the manual uCosminexus Application Server Command
Reference Guide.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 754

20.6 HITACHI Connector Property file

The HITACHI Connector Property file is used to acquire and edit the resource adapter properties.

20.6.1 Properties that you can specify in the <config-property> tag set up
for DB Connector

This section describes the values that you can specify in the <config-property> tag which is to be set for the
following DB Connectors:

• When connecting to Oracle by using a cluster connection pool (root resource adapter)

• When connecting to Oracle by using a cluster connection pool (member resource adapter)

(1) When connecting to Oracle by using cluster connection pool (root
resource adapter)

• DBConnector_CP_ClusterPool_Root.rar
Use the above when the transaction is not managed or when a local transaction is used.
For details on the properties that you can specify, see the following table.

Table 20‒11: Properties that you can specify when using
DBConnector_CP_ClusterPool_Root.rar

config-property-name config-property-type config-property-value

algorithm java.lang.String Specifies how to select the connection pool of the connection pool
clustering functionality.
• RoundRobin

An attempt is made to acquire the connections as per the priority
order from the connection pool that is next in the priority list below
the last chosen connection pool. When the connection pool with
the lowest priority is reached, the connection pool with the highest
priority is chosen. An exception is thrown when you cannot acquire
a connection from the entire connection pool.
Specified when the cluster database is active/active configuration
and aims at load distribution in each instance.

The default value is RoundRobin.

dbCheckInterval java.lang.Integer Specifies an integer value from 2 to 2147483647 (unit: seconds) for
the interval to check the DB node status in the suspended connection
pool. If you specify a value outside the valid range, the default value is
assumed. The default value is 30.
When the Oracle JDBC Thin Driver is used in the member resource
adapter, specify a time period longer than the loginTimeout
property value of each member resource adapter.

enableAutoPoolResume java.lang.Boolean Specifies whether to enable or disable the auto-resume functionality of
the connection pool.
• If you specify true

The auto-resume functionality of the connection pool is enabled.
• If you specify false

The auto-resume functionality of the connection pool is disabled.

The default value is true.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 755

config-property-name config-property-type config-property-value

enableAutoPoolSuspend java.lang.Boolean Specifies whether to enable or disable the auto-suspend functionality
of the connection pool.
• If you specify true

The auto-suspend functionality of the connection pool is enabled.
• If you specify false

The auto-suspend functionality of the connection pool is disabled.

The default value is true.

logLevel java.lang.String Specifies the log trace level output by the DB Connector.
You can specify the following values:
• 0 or ERROR
• 10 or WARNING
• 20 or INFORMATION

The default value is 0 or ERROR.

memberResourceAdapter
Name[n]

java.lang.String Specifies the display name of the member resource adapter of priority
n. This property is not defined by default, so add this property as and
when required. For n, specify the value from 1 to 100.

memberResourceAdapter
Name1

java.lang.String Specifies the display name of the member resource adapter of priority
1. Smaller the specified value, higher the priority order.

memberResourceAdapter
Name2

java.lang.String Specifies the display name of the member resource adapter of
priority 2.

(2) When connecting to Oracle by using the cluster connection pool
(member resource adapter)

• DBConnector_Oracle_CP_ClusterPool_Member.rar
Use the above when the transaction is not managed or when a local transaction is used.
For details on the properties that you can specify, see the following table.

Table 20‒12: Properties that you can specify when using
DBConnector_Oracle_CP_ClusterPool_Member.rar

config-property-name config-property-type config-property-value

CallableStatementPool
Size
uCosminexus Application
Server Common Container
Functionality Guide

java.lang.Integer Specifies the pool size of CallableStatement for each
connection allocated to the connection pool. The default value is 10.
When 0 is specified, statements are not pooled.

CancelStatement java.lang.Boolean Specifies whether to cancel the SQL statement being executed
in the Statement class, CallableStatement class, and
PreparedStatement class, in the case of a transaction timeout or
a forced termination of an application.
• If you specify true

The SQL statement being executed is cancelled.
• If you specify false

The SQL statement being executed is not cancelled.

The default value is true.
Specify false when connecting to an exclusive server.

ConnectionIDUpdate java.lang.Boolean Specifies whether to update the connection ID for each
DataSource#getConnection method.

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 756

config-property-name config-property-type config-property-value

• If you specify true
The connection ID is generated for each
DataSource#getConnection method.

• If you specify false
The connection ID is generated for the first
DataSource#getConnection method and is not
updated thereafter.

The default value is false.

databaseName java.lang.String Specifies a specific database name (SID) on the Oracle server. The set
value is passed to the setDatabaseName method of the DataSource
node interface of Oracle JDBC Thin Driver.

loginTimeout java.lang.Integer Specifies an integer value (unit: milliseconds) from 1 to 2147483647
when trying to connect to the database. If you specify a value outside
the valid range, the default value is assumed. The default value is
8000. The specified value is rounded up in increments of 1 second,
and is passed to the setLoginTimeout method of the DataSource
system interface of Oracle JDBC Thin Driver.

logLevel java.lang.String Specifies the log trace level output by the DB Connector.
You can specify the following values:
• 0 or ERROR
• 10 or WARNING
• 20 or INFORMATION

The default value is 0 or ERROR.

portNumber java.lang.Integer Specifies the port number by which the Oracle server listens to the
request. The default port number is 1521. The set value is passed to
the setPortNumber method of the DataSource node interface of
Oracle JDBC Thin Driver.

PreparedStatementPool
Size
uCosminexus Application
Server Common Container
Functionality Guide

java.lang.Integer Specifies the pool size of PreparedStatement for each
connection allocated to the connection pool. The default value is 10.
When 0 is specified, statements are not pooled.

serverName java.lang.String Specifies the host name or IP address of the Oracle server. The set value
is passed to the setServerName method of the DataSource node
interface of Oracle JDBC Thin Driver.

url java.lang.String Specifies the JDBC URL required by the Oracle JDBC Thin Driver to
connect to the database.
The value you specify is passed to the setURL method of Oracle
JDBC Thin Driver.
When a value is set in this property, the value specified in
databaseName, portNumber, and serverName is ignored.
Specifies a thin driver in JDBC URL, when the user specifies a url.
(Example)
jdbc:oracle:thin:@ServerA:1521:service1

20. Settings for Using the Connection Pool Clustering Functionality

Compatibility Guide 757

21 Asynchronous Parallel Processing of Threads

This chapter describes the asynchronous parallel processing of threads from TimerManager and
WorkManager based on Timer and Work Manager for Application Servers.

Compatibility Guide 758

21.1 Organization of this chapter

The following table describes the functionality and reference locations of the asynchronous parallel processing
of threads.

Table 21‒1:  Functionality of the asynchronous parallel processing of threads

Functionality Reference location

Overview of asynchronous parallel processing of threads 21.2

Asynchronous timer processing by using TimerManager 21.3

Asynchronous thread processing by using WorkManager 21.4

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 759

21.2 Overview of the asynchronous parallel processing of threads

With Application Server, you can execute the asynchronous parallel processing of threads such as the asynchronous timer
processing or the asynchronous thread processing in a Java EE environment.

With the standard specifications of Java EE, a new thread cannot be generated from a servlet, or EJB cannot manage
threads. We basically do not recommend the asynchronous parallel processing of threads. Therefore, with Application
Server, APIs are provided based on Timer and Work Manager for Application Servers specifications defined by
CommonJ, to implement the asynchronous parallel processing of threads in the Java EE environment.

The following subsections give an overview of APIs used for implementing the asynchronous parallel processing
of threads:

• TimerManager
TimerManager is an API based on the Timer for Application Servers specifications. With this API, you can
schedule the asynchronous processing of threads by specifying an execution interval. This functionality is called
asynchronous timer processing.

• WorkManager
WorkManager is an API based on the Work Manager for Application Servers specifications. With this API, you
can perform the asynchronous processing of threads. This functionality is called asynchronous thread processing.

You can use TimerManager and WorkManager from EJBs or servlets.

For details on the compatibility with Timer and Work Manager for Application Servers on Application Server, see 21.2.3
Compatibility with Timer and Work Manager for Application Servers.

21.2.1 Procedure for the asynchronous parallel processing of threads
To execute the asynchronous parallel processing of threads, perform the lookup of TimerManager or WorkManager
from EJBs and servlets. This section describes the flow of the asynchronous timer processing by using TimerManager
and the flow of the asynchronous thread processing by using WorkManager.

Flow of the asynchronous timer processing by using TimerManager
The following figure shows the flow of the asynchronous timer processing by using TimerManager.

Figure 21‒1: Flow of the asynchronous timer processing by using TimerManager

EJBs and servlets are the sources of the schedule for invoking the asynchronous parallel processing to be executed.
TimerManager is created when JNDI performs a lookup. You implement an entity of the processing to be
executed, in TimerListener, which is a listener provided by TimerManager. TimerListener executes the
processing by accessing JNDI or JCA, as and when required.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 760

Flow of the asynchronous thread processing by using WorkManager
The following figure shows the flow of the asynchronous thread processing by using WorkManager.

Figure 21‒2: Flow of the asynchronous thread processing by using WorkManager

EJBs and servlets are the sources of the schedule for invoking the asynchronous parallel processing to be executed.
WorkManager is created when an application starts. If a lookup is performed by JNDI, the WorkManager created
when the application starts is returned. You implement the entity of the processing to be executed, in Work or
WorkListener provided by WorkManager. Work or WorkListener executes the processing by accessing
JNDI or JCA, as and when required.

21.2.2 Java EE functionality that you can use in the asynchronous parallel
processing of threads

You can use the Java EE functionality in processes that are executed as the asynchronous parallel processing. APIs of
TimerManager and WorkManager, which can use the Java EE functionality, are as follows:

TimerManager
• TimerListener.timerExpired

This method is executed when reaching the set up time.

• StopTimerListener.timerStop
This method is executed when the TimerManager.stop method is executed or when the application stops.

• CancelTimerListener.timerCancel
The method is executed when the TimerManager.cancel method is executed.

WorkManager
• Work.run

This is a processing method, which is asynchronously executed on WorkManager.

• WorkListener.workAccepted
This method is executed when WorkManager receives the scheduled Work.

• WorkListener.workCompleted
This method is executed immediately after completing the run method of the scheduled Work.

• WorkListener.workRejected
This method is executed when you cannot continue the schedule processing, after WorkManager receives the
scheduled Work.

• WorkListener.workStarted
This method is executed immediately before executing the run method of the scheduled Work.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 761

For details on APIs, see API specifications for Timer and Work Manager for Application Servers.

The following table describes the Java EE functionality that you can use in TimerManager and WorkManager.

Table 21‒2:  Java EE functionality that you can use in TimerManager and WorkManager

Functionality Usage status Reference location

Invoking Enterprise Bean N --

Naming Service Y# (1)

Transaction service and resource connections Y# (2)

Log and trace output Y (3)

Using container extension library Y (4)

Method cancellation N --

Legend:
Y: Can be used
N: Cannot be used
--: Not applicable

#
However, you cannot use a part of the functionality. For details on the functionality that you can use, see the information given in the Reference
location column.

The following sections classify and describe the functionality that you can use with TimerManager and
WorkManager. The sections also describe the points to be considered when using the functionality.

(1) Naming Service
The following table describes whether the functionality provided as Naming Service can be used with TimerManager
and WorkManager.

Table 21‒3:  Usage status of Naming Service functionality

Functionality Usage status

Lookup of DB Connector by using JNDI Y

Lookup of Java Mail by using JNDI N

Lookup of JavaBeans resource by using JNDI N

Lookup of EntityManager by using JNDI N

Lookup of EntityManagerFactory by using JNDI N

Lookup of TimerManager by using JNDI N#1

Lookup of WorkManager by using JNDI N#1

Lookup of user transaction by using JNDI Y#2

Legend:
Y: Can be used
N: Cannot be used

#1
You cannot invoke TimerManager or WorkManager by extending the schedule of TimerManager or WorkManager.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 762

#2
If the schedule source is an EJB that manages transactions in CMT, you cannot perform a lookup with java:comp/UserTransaction.
Make sure to perform a lookup by using HITACHI_EJB/SERVERS/J2EE-server-name/SERVICES/UserTransaction.

Important note

In WorkManager or TimerManager, do not use a DB Connector or user transaction acquired at a schedule
source. Make sure to acquire the executed processes in the implemented Timer Listener or Work.

(2) Transaction service and resource connections
You can only use DB Connectors for resource adapters. The following table describes the DB Connectors that you can
use with TimerManager and WorkManager.

Table 21‒4:  Usage status of DB Connectors

DB Connector name Usage status

DBConnector_HiRDB_Type4_CP.rar Y

DBConnector_HiRDB_Type4_XA.rar Y

DBConnector_Oracle_CP.rar Y

DBConnector_Oracle_XA.rar Y

DBConnector_HiRDB_Type4_CP_Cosminexus_RM.rar N

DBConnector_HiRDB_Type4_XA_Cosminexus_RM.rar N

DBConnector_Oracle_CP_Cosminexus_RM.rar N

DBConnector_Oracle_XA_Cosminexus_RM.rar N

DBConnector_CP_ClusterPool_Root.rar N

DBConnector_Oracle_CP_ClusterPool_Member.rar N

Legend:
Y: Can be used
N: Cannot be used

When using a DB Connector, specify NoTransaction, LocalTransaction, or XATransaction for the
transaction support level. You must specify an optional name of a DB Connector to acquire the connection of the DB
Connector. With a lookup by JNDI, use the specified optional name and acquire the connection of the DB Connector. For
details on how to acquire the connection by using the optional name of the DB Connector, see 2.6 Assigning an optional
name to Enterprise Bean or the J2EE Server (user-specified name space functionality) in the uCosminexus Application
Server Common Container Functionality Guide.

The following table describes whether the functionality provided as a resource connection and transaction service can
be used in TimerManager and WorkManager.

Table 21‒5:  Usage status of the transaction service functionality

Functionality Usage status

Transaction
(user transaction)

Local transaction Y

Global transaction Y

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 763

Functionality Usage status

Automatic conclusion of transaction#1 Δ

Transaction timeout Y

Connection pooling Connection pooling by using DB Connector Y

Warm-up of connection pool Y

Adjusting number of connections Y

Connection sharing#2 Δ

Connection association N

Statement pooling of DB Connector Y

Detecting connection faults Y

Waiting for acquiring connections when connections are exhausted Y

Retrying acquisition of connections Y

Automatically closing connections N

Connection sweeper Y

Output of SQL for examining faults Y

Legend:
Y: Can be used
Δ: Some part of the functionality cannot be used
N: Cannot be used

#1
You must conclude the user transaction before returning from the Listener processing method. Otherwise, the transaction is rolled back even
when an exception does not occur, and the message (KDJE43179-W) is output.

#2
The range of connections that you can share is only the same transaction, which is set by default.

Important note

Connections of the acquired DB Connector are not automatically closed, so make sure to set the closure of
connections inside a method.

(3) Log and trace output
The following table describes whether the functionality that outputs logs and traces can be used in TimerManager
and WorkManager.

Table 21‒6:  Usage status of the log and trace functionality

Functionality Usage status

User log Y

Performance analysis trace Y

Legend:
Y: Can be used

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 764

Reference note

About the operation name of a performance analysis trace

With the performance analysis trace of TimerManager and WorkManager, you can acquire unique numbers
for schedules. This information is output to the operation name of the trace information. For details on the trace
information that you can acquire, see 8. Trace Collection Points and PRF Trace Collection Levels of the Trace
Based Performance Analysis in the uCosminexus Application Server Maintenance and Migration Guide.

(4) Using container extension library
You can use the same container extension library as in the case when TimerManager and WorkManager are not used.

21.2.3 Compatibility with Timer and Work Manager for Application Servers
The specifications stated as vendor dependent in Timer and Work Manager for Application Servers Specifications are
not supported by Application Server. Also, the specifications of APIs provided by CommonJ and APIs provided by
Application Server are different. This section describes both the Timer for Application Server specifications and Work
Manager for Application Server specifications not supported by Application Server, and the APIs that operate differently
with CommonJ and Application Server.

(1) Timer for Application Servers Specifications not supported by
Application Server

The following table describes the Timer for Application Servers specifications not supported by Application Server.

Table 21‒7: Timer for Application Server specification not supported by Application Server (Vendor
dependent functionality)

Specifications not supported by Application Server Remarks

Customization of the number of maximum scheduling The number of maximum scheduling is 50. You cannot
change this number.

• The class that implements the listener of TimerManager
• Objects (EJB or servlets) other than the general Java objects, which do not

inherit Java EE components

An error occurs if you schedule a class that inherits
javax.ejb.EnterpriseBean. The error check is
not performed for other cases.

Inherited items of the transaction context to execution threads No transaction is performed regardless of the transaction
status of the schedule source. This corresponds to
NOT_SUPPORTED of CMT.

Customization of the inherited items of the J2EE context to execution threads The items that are inherited are fixed.

The Java EE functionality that can be used in an execution thread For details on the functionality that you can use, see
21.2.2 Java EE functionality that you can use in the
asynchronous parallel processing of threads.

The components that you can use with J2EE applications are not defined in the Timer for Application Servers. For
details on the components that you can use with the TimerManager for Application Server, see 21.3.5 Developing
applications by using TimerManager.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 765

(2) Work Manager for Application Servers specifications not supported by
Application Server

The following table describes the Work Manager for Application Servers specifications not supported by
Application Server.

Table 21‒8: Work Manager for Application Servers specifications not supported by Application
Server (Vendor dependent functionality)

Specifications not supported by Application Server Remarks

A remote execution of asynchronous thread processing by using WorkManager If you remotely execute WorkItem, returns the dummy
RemoteWorkItem that is executed locally.

Customizing the number of maximum scheduling There is no limit for the number of maximum scheduling.

• The class that implements the listener of TimerManager
• Objects (EJB or servlets) other than general Java objects that do not inherit

Java EE components

An error occurs, if you schedule a class that inherits
javax.ejb.EnterpriseBean. The error check is not
performed in other cases.

Creating WorkManager at a timing other than the start of an application WorkManager is created only when an application starts.

Inherited items of the transaction context to execution threads No transaction is performed regardless of the transaction
status of the source of schedule. This corresponds to
NOT_SUPPORTED of CMT.

Customizing the inherited items of the J2EE context to execution threads The inherited items are fixed.

The Java EE functionality that can be used in execution threads For details on the functionality that you can use, see 21.2.2
Java EE functionality that you can use in the asynchronous
parallel processing of threads.

The components that you can use with a J2EE application are not defined with Work Manager for Application Servers.
For details on the components that you can use with Work Manager for Application Server, see 21.4.4 Developing
applications by using WorkManager.

(3) APIs that operate differently with CommonJ and Application Server
The following table describes the APIs that operate differently with CommonJ and Application Server.

Table 21‒9:  APIs that operate differently with CommonJ and Application Server

Class Method Operation on Application Server

commonj.timers.Ti
merManager

schedule(TimerListener
listener,Date time)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException
is returned.

schedule(TimerListener
listener,long delay)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException
is returned.

schedule(TimerListener listener,Date
firstTime,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is returned.

schedule(TimerListener listener,long
delay,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is returned.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 766

Class Method Operation on Application Server

scheduleAtFixedRate(TimerListener
listener,Date firstTime,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException
is returned.

scheduleAtFixedRate (TimerListener
listener,long delay,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException
is returned.

commonj.work.Work
Manager

schedule(Work work) If work is null, WorkException is returned.

schedule(Work work,WorkListener wl) If work is null, WorkException is returned.
If WorkListener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException
is returned.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 767

21.3 Asynchronous timer processing by using TimerManager

This section describes the asynchronous timer processing by using TimerManager.

The following table describes the organization of this section.

Table 21‒10:  Organization of this section (Asynchronous timer processing by using TimerManager)

Category Title Reference
location

Description Threads scheduling method by using TimerManager 21.3.1

The life cycle of TimerManager 21.3.2

The state transition of TimerManager 21.3.3

Multiple schedules of TimerManager 21.3.4

Implementation Developing applications by using TimerManager 21.3.5

Note:
There is no specific description of Settings, Operations, and Notes for this functionality.

With the asynchronous timer processing performed by using TimerManager, you can schedule the asynchronous
processing of threads in a Java EE environment by specifying an execution interval. Threads managed by a container are
used in the background, and hence you can safely execute tasks.

In TimerListener, you implement the process that performs scheduling. The processing implemented in
TimerListener is scheduled by executing the method of TimerManager in EJBs or servlets, which are the
schedule sources. You can respond to the schedule or cancel the schedule by using Timer, which is returned from the
schedule method of TimerManager.

To use TimerManager, you define the information related to TimerManager in the <resource-ref> tag of an
EJB attribute or a servlet attribute. An EJB or a servlet uses TimerManager by performing a lookup with the name
defined in the <res-ref-name> tag at the time of deployment.

21.3.1 Methods of scheduling threads by using TimerManager
You use the following two methods for scheduling threads, by using TimerManager:

• Executing the process only once

• Executing and repeating the process at regular intervals

This section describes an overview of each scheduling method.

(1) Executing the process only once
This is a method that executes the processing only once at a specified time. After the processing is executed,
TimerManager is destroyed.

(2) Executing and repeating the process at regular intervals
You use the following two methods to repeatedly execute the process at regular intervals:

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 768

• fixed-rate (Specify the interval for starting the process, and then repeatedly execute the process)

• fixed-delay (Specify the interval from the end of process to start of the next process, and then repeatedly execute
the process)

The scheduled process continues to execute until you stop TimerManager or until the cancel method of the
corresponding Timer is executed.

The following subsection gives an overview of each method:

fixed-rate (Specify interval for starting the process, and then repeatedly execute the process)
This is a method which repeatedly starts the process at regular intervals. Specify the following contents in fixed-
rate:

Timing to start the first process
You use one of the following methods to specify the settings:

• When specifying the start time,
Use the Date type format to specify the firstTime argument of the scheduleAtFixedRate method.

• When specifying the elapsed time from the start of an application until execution of the process
Use the long type format to specify the delay argument of the scheduleAtFixedRate method. The
unit is milliseconds.

Interval from the start of the previous process to the start of the next processing
Use the long type format to specify the specify period argument of the scheduleAtFixedRate method.
The unit is milliseconds.

The following figure shows an image of fixed-rate process. In this figure, the time from the start of an
application to the start of the first process is two seconds, and the time from the start of the previous process to the
start of the next process is three seconds.

Figure 21‒3:  Image of fixed-rate processing

With the fixed-rate process, if the process time executed previously is longer than the time specified in the
period, the next process is started immediately after the previously executed process ends. In this figure, the time
for the third process is longer than three seconds as specified in period, and hence, the fourth process is started
immediately after the third process ends.

fixed-delay (Specify an interval from the end of a process to the start of the next process, and then repeatedly
execute the process)

This method repeatedly starts the process at regular intervals after the previous process ends. You specify the
following contents in fixed-delay.

Timing to start the first process
Use one of the following methods to specify the timing:

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 769

• When specifying the start time
Use the Date type format to specify firstTime, an argument of the schedule method.

• When specifying elapsed time from the start of application until execution of the processing
Use the long type to specify delay, an argument of the schedule method. The unit is milliseconds.

Interval from completion of previous processing to start of next processing
Use the long type to specify period, an argument of the schedule method. The unit is milliseconds.

The following figure shows the image of the fixed-delay process. In this figure, the time from the start of an
application to the start of the first process and the time from the end of the previous process to the start of the next
process is considered as two seconds.

Figure 21‒4:  Image of the fixed-delay process

21.3.2 Life cycle of TimerManager
This section describes a life cycle of TimerManager.

TimerManager is created when lookup is performed by JNDI in an application. TimerManager is created for
each lookup. We recommend that you execute the stop method in the application and explicitly stop the created
TimerManager. TimerManager can be automatically stopped without executing the stop method. However, in
that case, the application does not stop until TimerManager stops. Therefore, stopping the application might take a
longer time, depending on the stop process of TimerManager.

TimerManager is not persisted. As a result, when JavaVM ends, the created TimerManager and scheduled timer
are destroyed.

The following figure shows the life cycle of TimerManager.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 770

Figure 21‒5:  Life cycle of TimerManager

21.3.3 State transition of TimerManager
The status of TimerManager changes depending on the lock or stop process, by suspend and resume. You can check
the status of TimerManager at the respective time, by using the isStopped, isStopping, and isSuspended
method. The following figure shows the status transition of TimerManager.

Figure 21‒6:  Status transition of TimerManager

The following table describes the details of each status.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 771

Table 21‒11:  Status of TimerManager

Number
in figure#

Status Explanation

1 running It is a status indicating that TimerManager is running. You can receive and execute a new schedule.

2 suspending It is a status indicating that suspension is in process. This status shows that a task is being executed when
suspension is executed. If no task is being executed, the status transits to suspended status.

3 suspended It is a status indicating that all the tasks are suspended. When the status is suspended, all the scheduled
tasks are not executed. The tasks with suspended status are executed when those tasks are resumed.

4 stopping It is a status indicating that the stopping TimerManager is being executed. This status shows that a task
is being executed when stopping is TimerManager is being executed. If no task is being executed, the
status transits to stopped status.

5 stopped It is a status indicating that TimerManager is stopped. This status shows that all the tasks are stopped
and no process is executed after that. You cannot resume TimerManager, once it is stopped.

#
Number indicating the number in Figure 21-6.

21.3.4 Multiple schedules of TimerManager
With the timer process scheduled by TimerManager, use the threads managed in the thread pool. When the timer
processing is scheduled, one thread, from among the threads managed in the thread pool, is assigned. If there is a blank
thread in the thread pool, the blank thread is used. If there is no blank thread in the thread pool, a thread is generated and
used. A thread generated in the thread pool is pooled until TimerManager stops.

The maximum number of threads that you can concurrently use in an instance is 50. A thread is assigned even if the
scheduled timer processing is in standby status. Therefore, the maximum number of processes that can be concurrently
scheduled is 50, irrespective of the status of timer processing.

If the number of already generated threads reaches the maximum number, the scheduled timer process is stored in a queue
and process waits until a blank thread is available. The timer process, stored in the queue, is executed as soon as a blank
thread is available.

Use multiple TimerManager if you want to concurrently schedule 51 or more threads.

21.3.5 Developing applications by using TimerManager
This section describes development of applications by using TimerManager.

The following table describes the usage status of components, which configure the application, when
using TimerManager.

Table 21‒12:  Usage status of components, which configure the application, when using
TimerManager

Component Usage status

EJB client N

Resource adapter N

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 772

Component Usage status

JavaBeans resources N

Servlet/JSP# Y

EJB Stateless Session Bean EJB2.1 or
earlier versions

CMT Y

BMT Y

EJB3.0 N

Stateful Session Bean N

Entity Bean N

Message-driven Bean N

Legend:
Y: Can be used
N: Cannot be used

#
You can use the components also with the servlet listener or the filter.

The flow of developing an application by using TimerManager is as follows:

1. Defining the properties of EJBs or servlets, which are the schedule sources

2. Implementing the processing to be executed in the listener of TimerManager
3. Creating EJBs or servlets, which are the schedule sources

4. Compiling J2EE applications which use TimerManager

Details of each task are as follows:

(1) Defining the properties of EJBs or servlets, which are the schedule
sources

Define properties of EJBs or servlets, which use TimerManager, in the DD. You cannot implement the definition for
using TimerManager, in annotation.

The following table describes the properties, which you must define to use TimerManager.

Table 21‒13: Properties, which you must define to use TimerManager

Tag name Explanation

<Root-tag> --

<description> Set optionally.

<res-ref-name> Specify the JNDI ENC name (name to be used for the JNDI lookup).

<res-type> Set the following value.
commonj.timers.TimerManager

<res-auth> The set value is ignored.

<res-sharing-scope> Set Unshareable. However, even if you set Shareable, the same operation
as for Unshareable is executed (new TimerManager is created whenever
you perform lookup).

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 773

Tag name Explanation

<mapped-name> The set value is ignored.

<injection-target> The set value is ignored.

<linked-to> The set value is ignored.

The definition example of web.xml when you use TimerManager in servlet is as follows.

<web-app>
 <display-name>TimerManagerSample</display-name>
 <servlet>
 <servlet-name>SampleServlet</servlet-name>
 <display-name>SampleServlet</display-name>
 <servlet-class>SampleServlet</servlet-class>
 </servlet>
 ...
 <resource-ref>
 <res-ref-name>timer/MyTimer</res-ref-name>
 <res-type>commonj.timers.TimerManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
</web-app>

TimerManager is created whenever a lookup by JNDI is performed in an application. Created TimerManager is
destroyed when you execute the stop method or end the application. You can define multiple TimerManager, as and
when required.

(2) Implementing the processing to be executed in the listener of
TimerManager

To use TimerManager, you must create a listener, with which the process to be executed is implemented. Listener
interfaces consist of- an interface that must be implemented and interfaces to be implemented as and when required. The
interface that must be implemented and the interfaces to be implemented if required are as follows:

Interface that must be implemented
• TimerListener

Interfaces to be implemented as and when required
• StopTimerListener
• CancelTimerListener

For details on APIs, see API specifications in Timer and Work Manager for Application Servers.

The example of a class where TimerListener, StopTimerListener, and CancelTimerListener are
implemented is as follows.

public class MyTimerListener
 implements TimerListener,StopTimerListener, CancelTimerListener {
 private int count = 0;

 public MyTimerListener() {

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 774

 }
 public void timerStop(Timer timer) {
 System.out.println("Timer stopped: " + timer);
 }

 public void timerCancel(Timer timer) {
 System.out.println("Timer cancelled: " + timer);
 }

 public void timerExpired(Timer timer) {
 System.out.println("Timer expired !");
 if(count++ > 10) {
 //Canceled because the set count is reached
 timer.cancel();
 } else {
 System.out.println("The next timer will fire at : " +
 timer.getScheduledExecutionTime());
 }
 }
}

(3) Creating EJBs or servlets, which is the schedule source
To use TimerManager, implement lookup of the JNDI name of TimerManager, which is defined in properties, and
the process scheduling of TimerManager, in EJBs or servlets, which are the schedule sources.

Lookup by using JNDI of TimerManager, which is defined in properties
Perform lookup for the JNDI name of TimerManager, which is defined in properties, to acquire TimerManager.
Use java:comp/env for lookup. The example of acquiring TimerManager is as follows:

InitialContext ic = new InitialContext();
TimerManager tm = (TimerManager)ic.lookup
 ("java:comp/env/timer/MyTimer");

Scheduling the TimerManager processes
Schedule the TimerManager processes by invoking the schedule method of TimerManager. The example
of scheduling the TimerManager processes is as follows:

InitialContext ctx = new InitialContext();
TimerManager mgr = (TimerManager)
 ctx.lookup("java:comp/env/timer/MyTimer");
TimerListener listener = new MyTimerListener();
mgr.schedule(listener, 1000*60,1000*10);
mgr.stop();

(4) Compiling J2EE applications, which use TimerManager
Include the following JAR file for compiling J2EE applications, which use TimerManager.

Cosminexus-installation-directory\CC\lib\ejbserver.jar

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 775

21.4 Asynchronous thread processing by using WorkManager

This section describes the asynchronous thread processing performed by using WorkManager.

The following table describes the organization of this section.

Table 21‒14:  Organization of this section (asynchronous thread processing by using
WorkManager)

Category Title Reference
location

Description The daemon Work and non-daemon Work 21.4.1

The thread pool and queues used in the non-daemon Work 21.4.2

The life cycle of WorkManager, daemon Work and the non-daemon Work 21.4.3

Implementation Developing applications by using WorkManager 21.4.4

Settings Settings in the execution environment 21.4.5

Note:
There is no specific description of Operations and Notes for this functionality.

With the asynchronous thread processing performed by using WorkManager, you can execute the asynchronous
processing of threads in the Java EE environment. Because the threads managed by a container are used in the
background, you can execute tasks safely.

Implement the process to be executed asynchronously, with Work. The process implemented with Work is scheduled
when you execute the schedule method of WorkManager in EJBs or servlets, which are the schedule sources. You
can check the schedule status by using WorkItem, which is returned by the schedule method of WorkManager.

To use WorkManager, define the information related to WorkManager, in <resource-ref> tag of EJB properties
or servlet properties. The EJB or servlet uses WorkManager by performing lookup with the name defined in
<res-ref-name> tag at the time of deployment.

21.4.1 Daemon Work and non-daemon Work
In WorkManager, you can create two types of Work such as the daemon Work (long-life Work) and the non-daemon
Work (short-life Work). An overview of each Work is as follow:

• Daemon Work (long-life Work)
The daemon Work is created when you execute the schedule method and Work continues even if the request
processing of a servlet or EJB ends. The daemon Work is destroyed when WorkManager ends. The daemon Work
is always executed with a newly created thread and not with threads in the thread pool.

• Non-daemon Work (short-life Work)
The non-daemon Work is created when you execute the schedule method and Work is destroyed when processing
of the run method ends. For the non-daemon Work, use threads and queues that are managed in the thread pool.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 776

21.4.2 Thread pool and queues used in non-daemon Work
The non-daemon Work is processed using the thread pool and queues. The thread pool and queues used for the process
are created in the unit of WorkManager, which is defined in the DD. Set the maximum size of threads that can be
pooled in a thread pool. The following section describes the maximum size of threads that can be pooled and relation and
operation of the number of threads in a pool, when the non-daemon Work is scheduled.

• If threads in a pool are less than the maximum number of threads in a thread pool
Create a thread and execute the non-daemon Work. The thread is generated irrespective of whether any blank thread
exists in thread pool.

• If a pool contains threads of the same number as the number of the maximum threads in a thread pool
Use blank threads in the thread pool and execute the non-daemon Work. If no blank thread exists, the scheduled
non-daemon Work is stored in queue. The non-daemon Work, which is stored in the queue, is executed when a blank
thread is available.

The maximum number of threads in a thread pool is 10 by default. To change the maximum number of threads, see 21.4.5
Settings in the execution environment. There is no limit for a queue size.

Tip

When you attempt to stop WorkManager, the stop process starts after WorkManager being executed and all
the WorkManager processes stored in the queue end. WorkManager, which is stored in the queue is executed
even if WorkManager is stopped when storing in a queue.

21.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work
This section describes the life cycle of WorkManager, the daemon Work and the non-daemon Work.

(1) Life cycle of WorkManager
WorkManager is created when an application starts. When lookup is performed in an application, WorkManager,
created when the application starts, is returned. The same WorkManager, created when the application starts, is invoked
even if lookup is performed for multiple times. WorkManager is destroyed when the application stops.

WorkManager is not persisted. As a result, when JavaVM ends, created WorkManager and the scheduled
asynchronous process are destroyed.

The following figure shows the life cycle of WorkManager.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 777

Figure 21‒7:  Life cycle of WorkManager

(2) Life cycle of daemon Work
A daemon Work is created when you execute the schedule method. The daemon Work is destroyed when you stop
WorkManager (when you stop the applications corresponding to WorkManager). When you stop WorkManager,
WorkManager waits until all daemon Work end after executing the release method of the daemon Work.

The following figure shows the life cycle of the daemon Work.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 778

Figure 21‒8:  Life cycle of the daemon Work

(3) Life cycle of the non-daemon Work
A non-daemon Work is created when you execute the schedule method. The non-daemon Work ends when
processing of the run method ends. If you want to stop WorkManager (stop the corresponding applications) when
non-daemon Work is being executed or is pending in a queue, wait until the non-daemon Work stops and then
end WorkManager.

The following figure shows the life cycle of the non-daemon Work.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 779

Figure 21‒9:  Life cycle of non-daemon Work

21.4.4 Developing applications by using WorkManager
This section describes development of applications by using WorkManager.

The following table describes the usage status of components, which configure an application, when
using WorkManager.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 780

Table 21‒15:  Usage status of components, which configure an application, when using
WorkManager

Component Usage status

EJB client N

Resource adapter N

JavaBeans resources N

Servlet/JSP# Y

EJB Stateless Session Bean EJB2.1 or
earlier versions

CMT Y

BMT Y

EJB3.0 N

Stateful Session Bean N

Entity Bean N

Message-driven Bean N

Legend:
Y: Can be used
N: Cannot be used

#
You can use the components also for the servlet listener or the filter.

The procedure for developing an application by using WorkManager is as follows:

1. Defining the properties of EJBs or servlets, which are the schedule sources

2. Implementing the processes to be executed in Work and Listener
3. Creating EJBs or servlets, which are the schedule sources

4. Compiling J2EE applications which uses WorkManager

Details of each task are as follows.

(1) Defining the properties of EJBs or servlets, which are the schedule
sources

Define EJB or servlet properties, which use WorkManager, in the DD. Define the properties in property definition file
of EJBs or servlets. You cannot define the properties in an annotation.

The following table describes the properties, which you must define to use WorkManager.

Table 21‒16:  Properties, which you must define to use WorkManager

Tag name Explanation

<Root-tag> --

<description> Set optionally.

<res-ref-name> Specify the JNDI ENC name (name to be used for JNDI lookup).

<res-type> Set the following value.
commonj.work.WorkManager

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 781

Tag name Explanation

<res-auth> The set value is ignored.

<res-sharing-scope> Set Shareable. However, even if you set Unshareable, the same operation
as for Shareable is executed (WorkManager is created when application starts
and the same WorkManager is returned when lookup is performed).

<mapped-name> The set value is ignored.

<injection-target> The set value is ignored.

<linked-to> The set value is ignored.

The definition example of web.xml when you use WorkManager in the servlet is as follows:

<web-app>
 <display-name>WorkManagerSample</display-name>
 <servlet>
 <servlet-name>SampleServlet</servlet-name>
 <display-name>SampleServlet</display-name>
 <servlet-class>SampleServlet</servlet-class>
 </servlet>
 <resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

WorkManager is automatically created depending on property definitions when you start the application. The number
of WorkManager, defined in the property, is created.

(2) Implementing the processes to be executed in Work and Listener
To use WorkManager, you must create Work and the listener, with which the processing to be executed is
implemented. There are two types of interfaces - Work interface having the run method, which is a process entity, and
WorkListener interface used to execute the process at the times such as process reception, start and end. Among these
interfaces, make sure to implement Work. For details on APIs, see the API specifications in Timer and Work Manager
for Application Servers.

The following figure shows the procedure which is invoked by API of the WorkListener interface and the
status transition.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 782

Figure 21‒10:  Procedure invoked by API of the WorkListener interface and the state transition

The WorkListener method and the Work.run method are invoked in the same thread. As a result, you can use the
common Java EE context for each method.

The following section describes the flow and implementation example of the processes executed in the daemon Work
and the non-daemon Work, and also the implementation example of WorkListener.

The flow and implementation example of the processes executed in the daemon Work
To use the daemon Work, implement Work in such a way that the isDaemon method returns true.
When WorkManager ends, the container executes the release method to stop the daemon Work. Therefore,
implement in such a way that process of the run method ends when the release method is executed. Note that
if the method is not implemented properly, the daemon Work might not stop when you stop WorkManager and
continues to wait endlessly.
The implementation example of the daemon Work is as follows:

public class MyWork implements Work {
 private String name;
 private boolean isLoopContinue = true;
 public MyWork() {}

 public void release() {
 isLoopContinue = false;
 }

 public boolean isDaemon() {
 return true;
 }

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 783

 public void run() {
 while (isLoopContinue) {
 System.out.println("DaemonWork is executed");
 try {
 Thread.sleep(10000);
 } catch(InterruptedException e) {}
 }
 }
 public String toString() {
 return name;
 }
}

The flow and the implementation example of processes executed in the non-daemon Work
To use the non-daemon Work, implement Work in such a way that the isDaemon method returns false.
The processes of non-daemon Work must end during scheduled processes of EJBs or servlets. Therefore, implement
the process in such a way that the EJB or servlet process ends after waiting for the scheduled work to end. To wait for
the end of the scheduled Work, use the waitForAll or waitForAny method. If the process of EJBs or servlets
ends before the end of the scheduled Work, the Work process is executed beyond the life cycle of the scheduled EJB
or servlet. Make sure to end the process in a user program by using methods such as the waitForAll method, so
that the non-daemon Work is not executed beyond the life cycle of the scheduled request.
The implementation example of the non-daemon Work is as follows:

public class MyWork implements Work {
 private String name;
 private String data;
 public MyWork(String name) {
 this.name = name;
}

 public void release() {}

 public boolean isDaemon() {
 return false;
 }

 public void run() {
 data = "Hello, World. name=" + name;
 }

 public String getData() {
 return data;
 }

 public String toString() {
 return name;
 }
}

The implementation example of WorkListener
The implementation example of WorkListener is as follows:

public class ExampleListener implements WorkListener {
 public void workAccepted(WorkEvent we) {
 System.out.println("Work Accepted");
 }

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 784

 public void workRejected(WorkEvent we) {
 System.out.println("Work Rejected");
 }

 public void workStarted(WorkEvent we) {
 System.out.println("Work Started");
 }

 public void workCompleted(WorkEvent we) {
 System.out.println("Work Completed");
 }
}

(3) Creating EJBs or servlets, which are the schedule sources
To use WorkManager, implement lookup of the JNDI name of WorkManager, which is defined in properties, and
the process scheduling of WorkManager, in EJBs or servlets, which are the schedule sources.

The JNDI name of WorkManager defined in properties
Perform lookup for the JNDI name of WorkManager, which is defined in properties, to acquire WorkManager.
Use java:comp/env for lookup. The example of acquiring WorkManager is as follows.

 InitialContext ic = new InitialContext();
 WorkManager tm = (WorkManager)ic.lookup
 ("java:comp/env/wm/MyWorkManager");

Scheduling the WorkManager process
Execute the scheduling of the WorkManager process by invoking the schedule method of WorkManager.
An example of a program which waits for of all Work to end, after scheduling multiple non-daemon Work is
as follows.

MyWork work1 = new MyWork();
MyWork work2 = new MyWork();
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager) ctx.lookup("java:comp/env/wm/MyWorkManager
");
WorkItem wi1 = mgr.schedule(work1, new ExampleListener());
WorkItem wi2 = mgr.schedule(work2);
Collection coll = new ArrayList();
coll.add(wi1);
coll.add(wi2);
mgr.waitForAll(coll, WorkManager.INDEFINITE);

System.out.println("work1 data: " + work1.getData());
System.out.println("work2 data: " + work2.getData());

(4) Compiling the J2EE application, which uses WorkManager
Include the following JAR file when you compile the J2EE application, which uses WorkManager.

Cosminexus-installation-directory\CC\lib\ejbserver.jar

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 785

21.4.5 Settings in the execution environment
If you want to change the maximum number of threads in the thread pool, which is used in non-daemon Work, from the
default value 10, you must perform J2EE server settings.

Perform J2EE server settings in the Easy Setup definition file. Specify the definition of the maximum number of threads
in a thread pool, in the <configuration> tag of the logical J2EE Server (j2ee-server) in the Easy Setup definition
file. The following table describes the settings in the Easy Setup definition file.

Table 21‒17:  Definition for changing the maximum number of threads in a thread pool, defined in
the Easy Setup definition file

Parameter to be specified Setting details

ejbserver.commonj.WorkManager.non_daemon_
work_threads

Set the maximum number of threads in a thread pool, which are used in the
non-daemon Work. Set the value in the range of 1 through 65535#.
The default value is 10.

#
If you specify a number, which is out of range, the KDJE34510-W message is displayed and the default value is used.

For details on the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

21. Asynchronous Parallel Processing of Threads

Compatibility Guide 786

Appendixes

Compatibility Guide 787

A. Installing the redirector functionality

The redirector functionality installation methods are as follows:

• New installation
With this method, you install the redirector functionality in an environment where the redirector functionality is
not installed. With a new installation, the installer creates the default user definition for the user definition of
the redirector.

• Update installation
With this method, you install the redirector functionality (same product) in an environment where the redirector
functionality is already installed. With an update installation, the user definition of the redirector is inherited.

A.1 Installing the redirector functionality (In Windows)
Connect to Application Server to install the redirector functionality. Use the product media, installer, for installation. For
details on how to use an installer, see the documentation for the product media.

This appendix describes the installation procedure. The installation operation requires Administrator permissions. For
details on precautions when installing the functionality, see Appendix I.1 Notes on the installation and un-installation
of Application Server in the manual uCosminexus Application Server System Setup and Operation Guide.

Procedure

1. Set the product media in the CD-ROM drive.
In the Hitachi Integrated Installer dialog box, The selected software will be installed. appears.
If the Hitachi Integrated Installer dialog box does not appear, use the explorer, and then double click
HCD_INST.EXE in the CD-ROM directory.

Important note

If you copy the product media to the hard disk and then install the product, make sure the copy destination
path name does not include semicolon (;), period (.), and double-byte characters.

2. Select Application Server, and then click the Install button.
In the Confirming Start of Installation - Hitachi Integrated Installer dialog box, Installation will start now. Do you
want to continue? appears.

3. Click the OK button.
The Welcome to uCosminexus Application Server Setup Program dialog box appears.

4. Click the Next button.
The Select Install Destination dialog box appears.

5. As and when required, select the Install destination folder, and then click the Next button.
The Select Functionality dialog box appears.

6. Click the button on the left side of one of the following:

• For a new installation: Redirector - This setup is for installing Redirector. All specifiable options can
be customized.

A. Installing the redirector functionality

Compatibility Guide 788

• For an update installation: Redirector - Installs Redirector, and you can select the program components to
be reinstalled.

The Select Program dialog box appears.

7. Select the component software (program) you want to install, and then click the Next button.
Select from the following component software:

• Component Container - Redirector (redirector functionality)

• HTTP Server (Web server)

• Performance Tracer

The User Information dialog box appears.

8. Enter the User name and Company name, and then click the Next button.
The Select Program Folder dialog box appears.

9. As and when required, change the Program folder, and then click the Next button.
The Start Installation dialog box appears.

10. Check the specified contents, and if the contents are correct, click the Next button.
The installation starts. When the installation finishes, the Setup Complete dialog box appears.

11. Click the Finish button.
A window asking whether you want to restart the OS appears.

12. Click the Yes button.
The OS restarts and the installation of the redirector functionality finishes.

A.2 Installing the redirector functionality (In UNIX)
Connect to Application Server to install the redirector functionality.

Use the product media, PP installer, for installation.

This appendix describes the installation procedure. The installation operation requires the root permission. For details
on precautions when installing the functionality, see Appendix I.1 Notes on the installation and un-installation of
Application Server in the manual uCosminexus Application Server System Setup and Operation Guide.

Procedure

1. Log in to Application Server with the root permission (superuser).

2. Check whether the language type for executing the PP installer matches with the language on the terminal where you
want to execute the installer, and make sure that the languages match.

3. Set the product media in the CD-ROM drive.

4. If the product media is a CD-ROM, mount the CD-ROM file system.
An example of command execution is as follows. The underlined part specifies the device special file name, and
the mount directory name of the CD-ROM file system. Note that these names vary depending on the OS, hardware,
and environment.

A. Installing the redirector functionality

Compatibility Guide 789

(Example of execution in AIX)

mount -r -v cdrfs /dev/cd0 /cdrom

(Example of execution in HP-UX)

mount -r -F cdfs /dev/dsk/c0t2d0 /cdrom

(Example of execution in Linux)

mount -r -o mode=0544 /dev/cdrom /mnt/cdrom

5. Start the setup program.
An example of command execution is as follows. The underlined part specifies the mount directory name of the
CD-ROM file system.

(Example of execution in AIX)

/cdrom/aix/setup /cdrom

(Example of execution in HP-UX)

/cdrom/IPFHPUX/SETUP /cdrom

(Example of execution in Linux)

/mnt/cdrom/x64lin/setup /mnt/cdrom

The CD-ROM setup program installs the PP installer and the resident process auto-start program on the hard disk,
and the PP installer starts automatically.

Important note

The coded contents and how to display the contents for the CD-ROM directory and file names might differ
depending on the computer environment. Check with the ls command, and enter the displayed file name
as is.

6. In the main menu of the PP installer, press the I key.
The Install PP window appears.

7. Move the cursor to the program, and then press the Space key.
Select the required items from the common modules of the products, and the following component software:

• Component Container - Redirector (redirector functionality)

• HTTP Server (Web server)

• Performance Tracer

<@> appears on the left side of the selected program. Note that you can also select and install a program.

Important note

The program names displayed by the products vary for the common modules of the products.

8. Make sure that <@> is displayed on the left side of all the programs, and then press the I key.
The message Install PP? (y: install, n: cancel)==> appears at the bottom of the window.

A. Installing the redirector functionality

Compatibility Guide 790

9. Press the y or Y key.
The installation process starts.
If you press the n or N key, the installation process is cancelled and you return to the Install PP window.

10. When the message indicating the end of installation is output, press the Q key.
You return to the main menu of the PP installer.

11. As and when required, press the L key in the main menu of the PP installer to check the installed programs.
The Display PP List window appears. If you press the P key, the list of installed programs is output to /tmp/
hitachi_PPLIST. Press the Q key to return to the main menu of the PP installer.

12. In the main menu of the PP installer, press the Q key.
The installation of the redirector functionality finishes.

A. Installing the redirector functionality

Compatibility Guide 791

B. Tuning Parameters for Performing the Performance Tuning with
Methods other than the Recommended Procedures

This section describes the tuning parameters when tuning performance by using a method other than the
recommended procedure.

B.1 Tuning parameters for specifying the timeout (methods other than the
recommended procedures)

This appendix describes the locations to set up the tuning parameters used for specifying the timeout.

(1) Timeout specified in the Web server for receiving requests from the
client and sending data to the client

For the Web server integration, set up the tuning parameter for each Web server. As for the in-process HTTP server, set
up the parameters in every J2EE server.

Table B‒1: Tuning parameters for the timeout to be specified in the Web server for receiving
requests from the client and sending data to the client (method other than the
recommended procedures)

Web server to
be used

Method of setup Location of setup

Web server integration Management portal
(For Cosminexus
HTTP Server)

Timeout directive of "Additional directives" of "Perform the setup for each
item" in "Web Server Setup" window.

Timeout directive of "Setup file details" of "Directly set the details of setup file"
in "Web Server Setup" window.

Edit file# • For Cosminexus HTTP Server
The Timeout directive in httpsd.conf

• For Microsoft IIS
receive_client_timeout key in isapi_redirect.conf

In-process HTTP server Edit file webserver.connector.inprocess_http.receive_timeout key
in usrconf.properties

webserver.connector.inprocess_http.send_timeout key
in usrconf.properties

#
Set up the tuning parameters by editing httpd.conf, a definition file of Cosminexus HTTP Server.

(2) Timeout specified in the redirector for sending data to the Web
container

The following table describes the tuning parameters for the timeout to be specified in the redirector. You can specify these
tuning parameters only for the Web server integration.

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 792

Table B‒2: Tuning parameters for the timeout to be specified in the redirector (methods other than
the recommended procedures)

Web server type Method of setup Location of setup

Cosminexus
HTTP Server

Edit file JkConnectTimeout parameter of mod_jk.conf

Microsoft IIS Edit file connect_timeout key in isapi_redirect.conf

Cosminexus
HTTP Server

Edit file JkSendTimeout parameter of mod_jk.conf

Microsoft IIS Edit file send_timeout key in isapi_redirect.conf

(3) Timeout specified in the redirector for receiving data from the Web
container

Set up the tuning parameters for each worker definition of the redirector. The following table describes the methods and
locations to set up the tuning parameters for the timeout to be specified in the redirector:

Table B‒3: Tuning parameters for the timeout to be specified in the redirector (methods other than
the recommended procedures)

Method of setup Location of setup

Edit file worker.worker-name.receive_timeout key in workers.properties

You can specify this tuning parameter only for the Web server integration.

(4) Timeout specified in the Web container for receiving data from the
redirector

Set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the timeout
to be specified in the Web container:

Table B‒4: Tuning parameters for the timeout to be specified in the Web container (method other
than the recommended procedures)

Method of setup Location of setup

Edit file webserver.connector.ajp13.receive_timeout key in usrconf.properties

You can specify this tuning parameter only for the Web server integration.

(5) Timeout specified in the Web container for receiving data from the
redirector

Set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the timeout
to be specified in the Web container:

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 793

Table B‒5: Tuning parameters for the timeout specified in the Web container (methods other than
the recommended procedures)

Method of setup Location of setup

Edit file webserver.connector.ajp13.send_timeout key in usrconf.properties

You can specify this tuning parameter only for Web server integration.

(6) Timeout specified in the EJB client for remotely invoking the
Enterprise Bean (RMI-IIOP communication) and for invoking the
Naming Service by JNDI

Set up the tuning parameter for each J2EE server, EJB client application, or invocation by API.

The following table describes the tuning parameters (remote invocation by RMI-IIOP communication) for the timeout
to be specified in the EJB client:

Table B‒6: Tuning parameters for the timeout to be specified in the EJB client (remote invocation
by RMI-IIOP communication) (methods other than the recommended procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.rmi.request.timeout key
in usrconf.properties

The setup of the tuning parameter for each EJB client application and for each API is the same as specified for the
recommended procedures.

The following table describes the tuning parameters (Naming Service invocation) for the timeout to be specified in the
EJB client:

Table B‒7: Tuning parameters for the timeout to be specified in the EJB client (invoking the Naming
Service) (method other than the recommended procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.jndi.request.timeout key
in usrconf.properties

The setup of the tuning parameters for each EJB client application is the same as specified in the
recommended procedures.

(7) Timeout set up in the EJB client for invoking the Enterprise Bean
from CTM

Set up the tuning parameter in J2EE server unit, EJB client application unit, or invocation API unit.

The same value as that specified in (6) Timeout specified in the EJB client for remotely invoking the Enterprise Bean
(RMI-IIOP communication) and for invoking the Naming Service by JNDI is inherited as the setup value of this timeout.

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 794

(8) Timeout specified in the EJB container for the database transaction
(when DB Connector is used)

Set up the tuning parameter for each J2EE server, Enterprise Bean, interface, method (for CMT), or each invocation by
API (for BMT).

The following table describes the tuning parameters for the transaction timeout:

Table B‒8: Tuning parameters for the transaction timeout (method other than the recommended
procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.jta.TransactionManager.defaultTi
meOut key in usrconf.properties

The setup of the tuning parameters for the Enterprise Bean, interface, each method (for case of CMT), and API (for BMT) are the same as specified
in the recommended procedures.

(9) Database timeout
The setup of the tuning parameter specified for the database timeout are the same as that specified in the
recommended procedures.

B.2 Tuning parameters for optimizing the operations of the Web
application (methods other than the recommended procedures)

This appendix describes the locations to set up the tuning parameters used for optimizing the operations of the
Web application.

(1) Tuning parameters for separating the deployment of static contents
and Web application

Specify the separation of the deployment of static contents and Web application as parameter of the file that defines the
operations of the Web server. The setup locations, files and parameters differ according to the type of the Web server used.

The following table describes the methods and locations of setup for each type of Web server:

Table B‒9: Tuning parameters for separating the deployment of static contents and Web application
(methods other than the recommended procedures)

Web server used Type of Web server Method of setup Location of setup

Web server integration
(separation using the
redirector module)

Cosminexus HTTP Server Edit file Mapping definition of mod_jk.conf
(JkMount parameter)

Microsoft IIS Edit file uriworkermap.properties

In-process HTTP server
(separation using the reverse
proxy module)

Cosminexus HTTP Server Management portal ProxyPass directive of "Additional
directives" of "Perform setup for each
item" in "Web Server Setup" window.

ProxyPass directive of "Setup file
details" of "Directly set the details

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 795

Web server used Type of Web server Method of setup Location of setup

of setup file" in "Web Server
Setup" window.

Edit file ProxyPass directive#

of httpsd.conf

#
For details about httpsd.conf, see the uCosminexus Application Server HTTP Server User Guide.

(2) Tuning parameters for caching static contents
The tuning parameters for caching static contents are explained in this appendix. You set up these tuning parameters for
each Web container or Web application.

The following table describes the methods and locations to set up the tuning parameters specified in each Web container:

Table B‒10: Tuning parameters for caching static contents (items to be set up for each Web
container) (methods other than the recommended procedures)

Setup items Method of setup Location of setup

Select whether static contents cache is to be used Edit file webserver.static_content.cache.enabl
ed key in usrconf.properties

Setup of maximum memory size for each
Web application

Edit file webserver.static_content.cache.size
key in usrconf.properties

Setup of maximum file size of the static contents
for cache

Edit file webserver.static_content.cache.files
ize.threshold key in usrconf.properties

The setup of the tuning parameters for each Web application is the same as that specified in the recommended procedures.

(3) Tuning parameters for distributing the requests using a redirector
Specify the tuning parameters for distributing the requests using a redirector as parameters of the file that defines
the operations of the Web server. The location of setup, files, and parameters differ according to the type of the Web
server used.

You can define these tuning parameters only for Web server integration. You cannot define these tuning parameters if
you are using an in-process HTTP server.

The following table describes the methods and locations of setup for each Web server:

Table B‒11: Tuning parameters for distributing the requests using a redirector (methods other than
the recommended procedures)

Type of Web server Method of setup Location of setup

Cosminexus HTTP Server Edit file Mapping definition of mod_jk.conf
(JkMount parameter)

Microsoft IIS Edit file uriworkermap.properties

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 796

B.3 Tuning parameters for a persistent connection (methods other than
the recommended procedures)

This appendix describes the tuning parameters for a persistent connection.

Determine the tuning of this item when you use in-process HTTP servers in Web front-end systems.

Table B‒12: Tuning parameters to be set up for a Persistent Connection (methods other than the
recommended procedures)

Setup item Method of setup Location of setup

Upper-limit
value of the
number of
Persistent
Connections

usrconf.properti
es

webserver.connector.inprocess_http.persistent_connection.max_c
onnections key

Upper-limit
value of the
request-
processing
frequency

usrconf.properti
es

webserver.connector.inprocess_http.persistent_connection.max_r
equests key

Timeout usrconf.properti
es

webserver.connector.inprocess_http.persistent_connection.timeo
ut key

B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

Compatibility Guide 797

C. Error Status Code

This appendix describes the error status codes returned by the Web container, redirector, and in-process HTTP server.

The location where the error occurs depends on the used Web server. Reference the error status code according to
the location where the error has occurred. The following table describes the used Web servers and the corresponding
locations where the error has occurred.

Table C‒1: Used Web server and the corresponding location where the error occurred

Cosminexus HTTP Server to be used Location where the error occurred

Web container Redirector HTTP In-process
HTTP server

Hitachi Web Server or Microsoft IIS Y Y N

In-process HTTP server Y N Y

Legend:
Y: Error occurs
N: Error does not occur

C.1 Error status codes returned by the Web container
When the client accesses a non-existent resource or a servlet in which an exception occurred, the Web container returns an
error status code. The following table describes the error status codes returned by the Web container, and the conditions
for returning the error status codes.

Table C‒2: Error status codes returned by the Web container and conditions for returning the error
status codes

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned when any of the following conditions are met:
• When a client directly sends a request to a resource that is specified as the login page used

for Form authentication, and the user is successfully authenticated from the login page that is
displayed as a result of the request

• When the access satisfies all the following three conditions:

1. The version of HTTP is "HTTP/1.0".
2. The servlet to be accessed inherits javax.servlet.http.HttpServlet.
3. The HTTP method at the access is not overwritten by the servlet.

• When an access is made by a request header with a Content-Length header value of greater than
2147483647 or smaller than 0

• When an access is made by a request header with a non-numeric Content-Length header value
• When an access is made by a request header containing multiple Content-Length headers
• When request URIs cannot be normalized

401 Unauthorized The error status code 401 is returned when a resource that requires Basic authentication is accessed
as follows:
• The access uses an invalid user ID or password.
• The access does not include authentication information (the Authorization header).

403 Forbidden Error status code 403 is returned when any of the following conditions are met:
• When a resource that requires the Basic or Form authentication is accessed using an

unauthenticated user name

C. Error Status Code

Compatibility Guide 798

Error status codes Conditions for returning the error status code

• When a resource that does not permit any access is accessed without any role-name element
for the auth-constraint element being specified in web.xml#1

• When static contents are accessed by using the PUT or DELETE method
• When a resource whose <transport-guarantee> element in web.xml is set to
INTEGRAL or CONFIDENTIAL is accessed via http#2

404 Not Found Error status code 404 is returned when any of the following is accessed:
• When a non-existent resource is accessed
• When a servlet or a JSP file in which javax.servlet.UnavailableException occurs,

is accessed#3

405 Method Not Allowed Error status code 405 is returned in the case of an access that satisfies all of the following
three conditions:
• When the HTTP version is "HTTP/1.1"
• When the servlet to be accessed inherits javax.servlet.http.HttpServlet
• When the HTTP method during access does not get overridden by the corresponding servlet

412 Precondition Failed Error status code 412 is returned, when the static contents that do not match the conditions specified
in If-Match header or If-Unmodified-Since header, are accessed.

413 Request Entity Too Large Error status code 413 is returned when the size of the request body exceeds the upper-limit value.

416 Requested Range Not Satisfiable Error status code 416 is returned, when the static contents that use the value of an invalid Range
header applicable to any of the following cases, are accessed:
• The value of Range header does not begin with "byte"
• A numeric character and "-" is not used in range definition
• The specified range is not appropriate

500 Internal Server Error Error status code 500 is returned when any of the following conditions are met:

• When a servlet or a JSP file in which an exception occurs, is accessed#4

• When a JSP file whose compilation failed is accessed
• When deleted static contents are accessed#5

• When I/O error occurs when accessing the static contents
• When a resource protected by <auth-constraint> element is accessed, when the definition

of web.xml is invalid#6

501 Not Implemented Error status code 501 is returned, when the static contents or the servlet that inherits
javax.servlet.http.HttpServlet is accessed by an HTTP method other than the GET,
HEAD, POST, PUT, DELETE, OPTIONS, and TRACE method.

503 Service Unavailable Error status code 503 is returned when any of the following conditions are met:

• When there is no space in the pending queue of requests#7

• When a servlet or JSP file in which javax.servlet.UnavailableException occurs,
is accessed#8

• When a Web container being shut down is accessed
• When a Web application that is in abnormal state due to an unexpected error or exception,

is accessed

#1
Applicable when the Web application is version 2.4 or later.

#2
This applies to the case when the port number of the https, used by the URL an access is forwarded to, is not set for the
webserver.connector.redirect_https.port key in usrconf.properties.

#3
Applicable when the version of the Web application is 2.4 or later, and javax.servlet.UnavailableException indicating the
permanent unavailability occurs, and the exception is not caught in the servlet and JSP file.

C. Error Status Code

Compatibility Guide 799

#4
Applicable in the following cases:

• When the version of the Web application is 2.4 or later
When exception is not caught in servlets or JSPs

• When the version of the Web application is 2.3
When the error page is not specified in the <error-page> tag of web.xml, or in the page directive of a JSP file, and the exception is not
caught in the servlet or JSP file

#5
Applicable when the reload functionality of the Web application, re-compilation functionality of the JSP file, or the reload functionality of J2EE
application is not used.

#6
Applicable when the <role-name> element is defined in the <auth-constraint> element of web.xml, and the <login-config>
element is not defined. If the application is started in this state, warning message KDJE39150-W is output to the console window, and in the
message log.

#7
Applicable when the settings to control the number of concurrently executing threads in the Web application, or in the URL group are specified.

#8
Applicable in the following cases:

• When the version of Web application is 2.4 or later
When javax.servlet.UnavailableException indicating the temporary unavailability occurs, and the exception is not caught in the
servlets or JSPs

• When the version of Web application is 2.3
When the error page is not specified in <error-page> tag of web.xml, or in the page directive of JSP file, and the exception is not caught
in the servlet or JSP file

C.2 Error status codes returned by the Redirector
When a timeout occurs during a data transaction with the Web container, and when the coding of the definition file
contains an error, the redirector returns an error status code. The following tables describe the error status codes returned
by the redirector and the conditions for returning the error status code, for each type of Web server.

Table C‒3: Error status codes returned by the redirector and the occurrence conditions (for
Cosminexus HTTP Server)

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned when any of the following conditions are met:
• When the port number of Host header of the request is invalid
• When the request method is not POST#1

• When the request does not have a Content-Length header (for a POST request, the body is a
chunk format)#1

• When the Content-Length header value of the request exceeds the upper limit of the POST data
size set in the POST request sending destination worker #1

500 Internal Server Error Error status code 500 is returned when any of the following conditions are met:

• When there is a coding error in the contents of mod_jk.conf#2

• When there is a failure in reading, or a coding error in the contents
of workers.properties#1

• When the request header exceeds 16 KB#3

• When failed to establish connection with the Web container
• When timeout occurs during establishment of a connection to the Web container
• When an error occurs during sending data to the Web container

C. Error Status Code

Compatibility Guide 800

Error status codes Conditions for returning the error status code

• When timeout occurs during sending data to the Web container
• When an error occurs during receiving data from the Web container
• When timeout occurs during receiving data from the Web container
• When timeout occurs in reading the POST data from the client
• When an unsupported HTTP method#4 is specified in the request

#1
Applicable when the default worker is not specified in the distribution by the POST data size.

#2
Applicable only in Windows. The web server fails to start in UNIX.

#3
Might be applicable when a request header of a total size of 16 KB or more can be received according to the settings for limitations of request
headers in Cosminexus HTTP Server.

#4
For details on whether the HTTP method is supported or not, see Table C-5.

Table C‒4: Error status codes returned by the redirector and the occurrence conditions (for
Microsoft IIS)

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned when any of the following conditions are met:
• When the request URL contains a (percent sign (%) and the two characters after the percent sign

(%) do not express hexadecimals (characters other than A-F, a-f, or 0-9)
• When the port number of Host header of the request is invalid

403 Forbidden Error status code 403 is returned when any of the following conditions are met:

• When the request URL begins with "hitachi_ccfj"#1

• When the request URL contains "%2F"#1

500 Internal Server Error Error status code 500 is returned when any of the following conditions are met:
• When there is a coding error in the contents of isapi_redirect.conf
• When there is failure in reading, or a coding error in the contents of workers.properties
• When the request header exceeds 16 KB#2

• When failed to establish connection with the Web container
• When timeout occurs during establishment of a connection to the Web container
• When an error occurs during sending data to the Web container
• When timeout occurs during sending data to the Web container
• When an error occurs during receiving data from the Web container
• When timeout occurs during receiving data from the Web container
• When timeout occurs in reading the POST data from the client
• When an unsupported HTTP method#3 is specified in the request

#1
Not case-sensitive.

#2
Might be applicable when a request header of a total size of 16 KB or more can be received according to the settings for limitations of request
headers in Microsoft IIS.

#3
For details on whether the HTTP method is supported or not, see Table C-5.

Support for the request HTTP methods in the redirector
The following table lists the request HTTP methods that are supported in the redirector.

C. Error Status Code

Compatibility Guide 801

Table C‒5: Support for the request HTTP methods in the redirector

HTTP method Supported or not

OPTIONS Y

GET Y

HEAD Y

POST Y

PUT Y

DELETE Y

TRACE Y

CONNECT --#

PROPFIND Y

PROPPATCH Y

MKCOL Y

COPY Y

MOVE Y

LOCK Y

UNLOCK Y

ACL Y

REPORT Y

VERSION-CONTROL Y

CHECKIN Y

CHECKOUT Y

UNCHECKOUT Y

SEARCH Y

Methods available in HTTP1.1 other than above-mentioned methods --#

Legend:
Y: Supported
--: Not supported

#
The redirector returns a status 500 error to a request that specifies an unsupported HTTP method. Furthermore, the message KDJE41001-E
is output.

C.3 Error status codes returned by the in-process HTTP server
When the size of the request from the client exceeds the upper limit and if the value is invalid, the in-process HTTP server
returns the error status code. The following table describes the error status codes returned by the in-process HTTP server,
and the conditions for returning the error status codes.

C. Error Status Code

Compatibility Guide 802

Table C‒6: Error status codes returned by the in-process HTTP server and the occurrence
conditions

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned when the request status meets any of the following conditions:
• When the request HTTP version is 1.1 and the Host header does not exist
• When the port number of Host header of the request is invalid
• When the size of the request header exceeds the upper limit
• When the number of request headers exceeds the upper limit
• When the request URI is invalid
• When an attempt to decode the request URI has failed
• When the request URI cannot be normalized
• When the Content-Length header value of the request is greater than 2147483647 or smaller than

or 0
• When the Content-Length header value of the request is a non-numeric value
• When multiple Content-Length headers are specified for the request
• When the HTTP version of the request line is not supported

403 Forbidden The error status code 403 is returned when a resource whose <transport-guarantee>
element in web.xml is set to INTEGRAL or CONFIDENTIAL is accessed via http.

405 Method Not Allowed Error status code 405 is returned when access is made from an HTTP method that is not permitted

413 Request entity too large Error status code 413 is returned when the request body size exceeds the upper limit.

414 Request-URI too large Error status code 414 is returned when the length of the request line exceeds the upper limit.

500 Internal Server Error Error status code 500 is returned when an attempt to read the file fails and the file is returned with
the status code 200 by the redirect functionality.

501 Not Implemented Error status code 501 is returned when the transfer-encoding header value of the request is
not supported.

503 Service Unavailable Error status code 503 is returned when an attempt is made to process the requests exceeding the upper
limit of flow control.

C. Error Status Code

Compatibility Guide 803

D. Precautions related to Cosminexus HTTP Server Settings

This appendix describes the precautions related to the Cosminexus HTTP Server settings.

D.1 Precautions for restarting Cosminexus HTTP Server
If the cause of a failure that occurred while restarting Cosminexus HTTP Server exists in the Easy Setup definition
file (if the Smart Composer functionality is not used, the redirector definition file (mod_jk.conf) or the workers file
(workers.properties)), the message is output to one of the following:

• Start command execution window or event log of Cosminexus HTTP Server

• When Cosminexus HTTP Server is started, stopped, or restarted from the Command Prompt, the message is
output to the Start command execution window.

• When Cosminexus HTTP Server is started, stopped, or restarted from the service, the message is output in the
event log. This is applicable only in Windows.

• Error log files for Cosminexus HTTP Server
By default, error log files are output to the following locations:

• In Windows
Cosminexus-HTTP-Server-installation-directory\logs\error.log

• In UNIX
/opt/hitachi/httpsd/logs/error.log

The following table describes each of the output messages:

Table D‒1: Messages output in the Start command execution window or event log of Cosminexus
HTTP Server

Message Cause and Action

JkWorkersFile file_name invalid# The file name specified in the JkWorkersFile key is invalid. Correct the value specified in the
JkWorkersFile key, and then restart the Web server.

Can't find the workers file specified# The specified workers file cannot be found. Check whether the file specified in the
JkWorkersFile key exists, and then restart the Web server.

Content should start with /# The first character in the URL pattern is not forward slash (/). Correct the first character of the URL
pattern specified in the JkMount key to forward slash (/), and then restart the Web server.

JkOptions: Illegal option 'a...a' The value (a...a) specified in the JkOption key is invalid.
Correct the value specified in the JkOption key, and then restart the Web server.

a...a takes b...b arguments, The number of values that can be specified in the key shown in a...a is b...b.
Correct the number of values that are specified in the key shown in a...a, and then restart the
Web server.

a...a must be On or Off The value that can be specified in the key shown in a...a is either On or Off.
Change the value specified in the key shown in a...a to On or Off, and then restart the Web server.

JkModulePriority: Invalid
value specified.a...a

The value a...a specified in the JkModulePriority key is invalid. Specify the correct value in
the JkModulePriority key, and then restart the Web server.

#
This message is output only in UNIX.

D. Precautions related to Cosminexus HTTP Server Settings

Compatibility Guide 804

Table D‒2: Error log files of Cosminexus HTTP Server

Message Description and action

[Time] [emerg] Memory error The memory is insufficient.
Secure the memory that the system can use, and then restart the Web server.

[Time] [emerg] Error while opening
the workers#

One of the following problems occurred:
• Opening of the workers file failed.

Check whether read permission is included in the access permission of the file specified in the
JkWorkersFile key, and then restart the Web server.

• The contents of the workers file are invalid.
Correct the contents of the workers file, and then restart the Web server.

[Time] [emerg] Error while checking
the mod_jk.conf#

The description in the redirector definition file is inappropriate. Check the message output in the
redirector, and then restart the Web server.

#
This message is output only in UNIX.

D.2 Precautions related to the redirector log
• If there is no permission to write the Cosminexus HTTP Server execution account in the log output destination

directory, the request is processed normally, but the log is not output.

• In Windows, by default the log output destination directory (Cosminexus-installation-
directory\CC\web\redirector\logs) of the redirector does not exist. Therefore, when Cosminexus HTTP
Server starts, the access permission of the directory that is one level higher (redirector directory) is inherited, the
logs directory is generated, and an attempt is made to output the log. At this time, if there is no write permission for
the Cosminexus HTTP Server execution account, the log is not output. In this case, generate the logs directory and set
the access permission or set the access permission for the directory that is one level higher (redirector directory).
Furthermore, when the log output destination directory of the redirector is changed and the specified path exists
only halfway, set the access permission for the existing lowest directory or create the directory corresponding to the
specified path completely and set the access permission for the lowest directory.

D.3 Precautions for upgrading Cosminexus HTTP Server
When Cosminexus HTTP Server is upgraded, you must restart Cosminexus HTTP Server to reflect the changes in the
redirector for Cosminexus HTTP Server. For details on how to restart Cosminexus HTTP Server, see the uCosminexus
Application Server HTTP Server User Guide.

D. Precautions related to Cosminexus HTTP Server Settings

Compatibility Guide 805

E. Microsoft IIS Settings

This appendix describes how to specify the settings when integrating with a Web server using Microsoft IIS.

E.1 Microsoft IIS 10.0 settings
This appendix describes how to specify the settings for Microsoft IIS 10.0 when integrating with a Web server using
Microsoft IIS.

To integrate a J2EE server with Microsoft IIS:

1. Install Microsoft IIS and role services

2. Add the ISAPI and CGI limitations

3. Add an ISAPI filter

4. Set the handler mapping

5. Add a virtual directory

6. Disable the authentication functionality of the Web server

7. Set an application pool in the Server node

8. Set an application pool in the Site node

9. Set the access permissions for the log output destination directory of the redirector

10. Start the Web site

Reference note

(INTENTIONALLY DELETED)

(1) Installing Microsoft IIS and role services
To use Microsoft IIS, you need to install Microsoft IIS and role services in accordance with your goals. The following
shows the procedure for installing IIS and role services:

If Microsoft IIS is already installed and additional role services are necessary, install the role services. (The required role
services are described later.)

1. Start Server Manager.
(If Server Manager does not start automatically, start it from the startup window.)

2. From Server Manager, click Add Roles and Features.

3. After the wizard starts, click Next.

4. Select Role-based or feature -based installation, and then click Next.

5. Select the desired server, and then click Next.

6. From Server Roles, select Web Server (IIS), and then click Next.
If the message Do you want to add required features to Web Server (IIS)? pops up,
select the Include management tools (if applicable) check box, and then click Add Features.

E. Microsoft IIS Settings

Compatibility Guide 806

7. From Select Features, click Next.

8. From Web Server Role (IIS), click Next, and from Select Role Services, select the minimum role services that you
need, as follows, and then click Next.
• HTTP error

• Reference directory

• Existing documents

• Static contents

• ISAPI extension

• ISAPI filter

• IIS management console

Add other role services as necessary. In particular, HTTP log and Trace are useful when troubleshooting failures.

9. Click Install.

10. Click Close.
Installation is complete.

(2) Adding the ISAPI and CGI limitations
To add the limitations of ISAPI and CGI:

1. Start Internet Information Service (IIS) Manager.
You can start it by selecting Tools and then Server Manager.

2. In the Features View server, from the Home page, double-click ISAPI and CGI Limitations.

3. In the ISAPI and CGI Limitations page, under the Actions window, click Add.

4. In the Add ISAPI or CGI Limitations dialog box, perform the following operations:

• In ISAPI or CGI Path, specify the DLL (Cosminexus-installation-
directory\CC\web\redirector\isapi_redirect.dll) of the redirector.

• In Description, enter ISAPI.

• Check the Allow Execution of Extension Path checkbox.

5. Click the OK button.
Close the Add ISAPI or CGI limitations dialog box to apply the settings.

(3) Adding an ISAPI filter
To add an ISAPI filter:

1. In the Features View site, from the Home page, double-click ISAPI Filter.

2. In the ISAPI Filter page, under the Actions window, click Add.

3. In the Add ISAPI Filter dialog box, perform the following operations:

• In Filter Name, enter hitachi_ccfj.

E. Microsoft IIS Settings

Compatibility Guide 807

• In Executable File, specify the DLL (Cosminexus-installation-
directory\CC\web\redirector\isapi_redirect.dll) of the redirector.

4. Click the OK button.
The Add ISAPI Filter dialog box closes, and the settings are applied.

(4) Setting the handler mapping
To set the handler mapping:

1. In the Features View site, from the Home page, double-click Handler Mapping.

2. In the Handler Mapping page, select ISAPI-dll, and then in the Actions window, click Edit.

3. In the Edit Module Map dialog box, perform the following operations:

• In the Requested Path, enter *.dll.

• In Executable File, specify the DLL (Cosminexus-installation-
directory\CC\web\redirector\isapi_redirect.dll) of the redirector.

If the handler mapping is already set, the Edit Script Map dialog box will run; however, the operation contents are
the same.

4. Click the OK button.

5. In the message dialog box for confirming whether or not to enable the editing of the module map, click the Yes button
to enable the ISAPI extension functionality.

6. In the Handler Mapping page, select ISAPI-dll, and then in the Actions window, click Edit Access Permission
of Functionality.

7. In the Edit Access Permission of Functionality dialog box, check all access permissions including Read, Script,
and Execute.

8. Click the OK button.
The Edit Access Permission of Functionality dialog box closes, and the settings are applied.

(5) Adding a virtual directory
Add a virtual directory named hitachi_ccfj. To add the virtual directory:

1. In the Connections window, expand the Site node, and click the site for adding the virtual directory.

2. In the Actions window, click Display Virtual Directory.
The Virtual Directory page appears.

3. In the Virtual Directory page, under the Actions window, click Add Virtual Directory.

4. In the Add Virtual Directory dialog box, perform the following operations:

• In Alias, enter hitachi_ccfj.

• In Physical path, specify the directory in which the DLL (Cosminexus-installation-
directory\CC\web\redirector\isapi_redirect.dll) of the redirector is saved.

5. Click the OK button.

E. Microsoft IIS Settings

Compatibility Guide 808

The Add Virtual Directory dialog box closes, and the settings are applied.

(6) Disabling the Web server authentication functionality
To use the authentication functionality of the Web container, you need to disable the authentication functionality of the
Web server, as follows:

• Active Directory client certificate authentication
To access the resources managed by the Web container, disable this functionality.

• Digest authentication
Be sure to disable this functionality regardless of whether the authentication functionality of the Web container
is used.

• Windows authentication
To use the authentication functionality (Basic authentication) of the Web container, disable this functionality.

• APS.NET impersonation
To access the resources managed by the Web container, disable this functionality.

The following shows how to disable Active Directory client certificate authentication, digest authentication, Windows
authentication, forms authentication, and APS.NET impersonation:

1. In the Connections window, select Home page, and then double-click Authentication.

2. In the Authentication window, select Active Directory Client Certificate Authentication. In the Action window,
click Disable. (Optional)

3. In the Connections window, unroll the Site node, and then click hitachi_ccfj.

4. On the Home page, double-click Authentication.

5. In the Authentication window, select Forms Authentication. In the Action window, click Disable. (Optional)
To access the resources managed by the Web container, disable this functionality.

6. In the Authentication window, select Digest Authentication. In the Action window, click Disable. (Required)
Be sure to disable digest authentication, regardless of whether the authentication functionality of the Web container
is used.

7. In the Authentication window, select Windows Authentication. In the Action window, click Disable. (Optional)
Be sure to disable Windows authentication when Basic authentication of the Web container is set.

8. In the Authentication window, select APS.NET Impersonation. In the Action window, click Disable. (Optional)
To access the resources managed by the Web container, disable this functionality.

9. Click OK to close each window.

(7) Setting an application pool in the Server node
To set an application pool in the Server node:

1. In the Connections window, expand the Server node, and then click Application Pool.

2. In the Application Pool page, select the application pool to be used, and then in the Actions window, click
Detailed Settings.

E. Microsoft IIS Settings

Compatibility Guide 809

3. In the Detailed Settings dialog box, perform the following operation:
In Maximum Number of Worker Processes#, specify the maximum number of processes for processing requests
in Microsoft IIS.

#
In this manual, the execution processes of the Web container are also referred to as Worker processes; however,
the Worker processes set here are the processes used to process requests in Microsoft IIS.

4. Click the OK button.
The Detailed Settings dialog box closes, and the settings are applied.

(8) Setting an application pool in the Site node
To set an application pool in the Site node:

1. In the Connections window, expand the Site node, and then click the site in which to specify the application pool.

2. In the Actions window, click Detailed Settings.

3. In the Detailed Settings dialog box, enter Application Pool.
In Application Pool, specify the name of the application pool set in (7) Setting an application pool in the Server node.

4. Click the OK button.
The Detailed Settings dialog box closes, and the settings are applied.

(9) Setting access permissions for the log output destination directory of
the redirector

In the log output destination directory of the redirector, you must add the permission for writing to the execution account
of the application pool of Microsoft IIS. Set the access permissions for the log output destination directory of the
redirector from Explorer.

Specify the execution account of the application pool in the Detailed Settings dialog box of the application pool, under
ID. If the default ID is specified, add the write permission for the IIS_IUSRS group.

The default IDs are as follows:

• Microsoft IIS 10.0: ApplicationPoolIdentity

Note that during new installation, by default, the log output destination directory of the redirector (Cosminexus-
installation-directory\CC\web\redirector\logs) does not exist. Therefore, either create the logs directory and
set the access permission, or set the access permission for the directory that is one level higher (redirector directory).

Also, when the log output destination directory of the redirector is changed and the specified path exists up to only
halfway, either set the access permission for the existing lowermost directory, or create all directories corresponding to
the specified path and set the access permission for the lowermost directory.

(10) Starting the Web site
To start the Web site of Microsoft IIS:

1. In the Connections window, expand the Site node, and then click the site to be started.

2. In the Actions window, click Start. If the site is already started, click Restart.

E. Microsoft IIS Settings

Compatibility Guide 810

The Web site either starts or is restarted.

(11) Notes
This appendix describes the notes on setting Microsoft IIS.

(a) Notes on replication of configuration settings in multiple environments
In Microsoft IIS, you can save the configuration settings in the web.config file. Also, based on the saved
web.config file, you can replicate the configuration settings in multiple environments using xcopy.

However, for a configuration environment in which the redirector is used, you cannot set the redirector when replicating
the settings in multiple environments using xcopy. Even when you specify the same configuration settings for multiple
environments using xcopy, set the redirector manually in each environment.

(b) Notes on customizing the error page
If you have specified the settings for returning a custom error page in the error page of Microsoft IIS, the customization
of the error page by the <error-page> tag of web.xml might be disabled. If you want to enable the customization
of the error page by the <error-page> tag of web.xml, disable the settings of custom error page in the error page
of Microsoft IIS.

(c) Points to be noted when using along with other filters
If Microsoft IIS receives requests that are to be forwarded to the Web container, the Redirector for Microsoft IIS changes
the request URL information to be used in the ISAPI filter. Therefore, the request URL received by Microsoft IIS
cannot be retrieved in the ISAPI filter if the ISAPI filter is executed after the Redirector for Microsoft IIS. Accordingly,
you must make the settings in such a way that the filter is executed before the Redirector for Microsoft IIS, and
the filter can retrieve the URL requests received by Microsoft IIS. To change the execution order, you can set the
execution priority of the Redirector for Microsoft IIS by setting the value of the filter_priority key in the
isapi_redirect.conf file (Operation Definition file of the Redirector for Microsoft IIS) to "Medium" or "Low".
For details on the filter_priority key of the isapi_redirect.conf file (Operation Definition file of the
Redirector for Microsoft IIS) see 14.2.1 isapi_redirect.conf (Redirector action definition file for Microsoft IIS).

E. Microsoft IIS Settings

Compatibility Guide 811

F. Contract Between the JPA Provider and EJB Container

This appendix describes the contract between the JPA provider and EJB container.

F.1 Runtime-related contract
The runtime-related contract includes the responsibilities of the container and the responsibilities of the JPA provider.

(1) Responsibilities of the container
• Contract related to the transaction scope persistence context

If the transaction scope persistence context is used, the container executes the following processing if the entity
manager is not associated with a JTA transaction:

• The container invokes EntityManagerFactory.createEntityManager in the following cases and
creates a new entity manager:
If the entity manager method that uses the transaction scope persistence context is invoked for the first time in
a business method within the scope of the JTA transaction

• After the JTA transaction is concluded (committed or rolled back), the container invokes
EntityManager.close to close the entity manager.

Also, if the container satisfies all the following conditions, TransactionRequiredException is thrown:

• When the transaction scope persistence context is used

• When the transaction is not active

• When the application invokes the persist, remove, merge, and refresh methods of EntityManager
• Contract related to the extended persistence context

If the extended persistence context is used, the container executes the following processing:

• The container invokes EntityManagerFactory.createEntityManager in the following cases and
creates a new entity manager:
If the references to the entity manager using the extended persistence context are defined when the Stateful
Session Bean instance is created

• The container invokes EntityManager.close at the following timing and closes the entity manager:
When the Stateful Session Bean that created the entity manager and the Stateful Session Bean that inherited the
same persistence context are deleted

• When a business method of the Stateful Session Bean that uses a container-managed transaction is invoked, if
the entity manager is not associated with a JTA transaction, the container associates the entity manager with the
JTA transaction and invokes EntityManager.joinTransaction. If another entity manager is already
associated with the JTA transaction, the container throws EJBException.

• When UserTransaction.begin is invoked in a business method of the Stateful Session Bean that uses
a bean-managed transaction, the container associates the entity manager with the JTA transaction and invokes
EntityManager.joinTransaction. For details on the bean-managed transactions, see 2.7.2 BMT in the
uCosminexus Application Server EJB Container Functionality Guide.

• Contract related to the container-managed entity manager
If the application invokes EntityManager.close when the container-managed entity manager is being used,
the container throws IllegalStateException.

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 812

If the property is specified in @PersistenceContext or in the <persistence-context-ref> tag of
the DD, the container uses the EntityManagerFactory.createEntityManager(Map map) method,
creates the entity manager, includes the specified property in the map argument, and passes the property to the
JPA provider.

• Automatic connection closing functionality
In Application Server, the connection obtained by the JPA provider with the extension of the Session Bean and Web
components sometimes closes automatically by the automatic closing functionality of the container. The automatic
connection closing functionality is used to prevent a connection leak.
The connection is subject to being closed automatically if the following conditions are satisfied:

• A connection obtained by a Stateless Session Bean is closed automatically when returned from a
business method.

• A connection obtained by a Stateful Session Bean is closed automatically when the Stateful Session Bean
is destroyed.

• A connection obtained by a Web component is closed automatically when returned from a service method.

However, even if the above conditions are applicable, if the connection is participating in a JTA transaction,
automatic close is reserved until the JTA transaction is committed.

(2) Responsibilities of the JPA provider
Whether the entity manager to be used with an application is defined to use the transaction scope persistence context or
the extended persistence context, is not transmitted to the JPA provider. The responsibilities of the JPA provider include
creating the entity manager when requested by the container and registering Synchronization in the transaction in order
to receive the notification about transaction conclusion from the transaction.

• When the container invokes EntityManagerFactory.createEntityManager, the JPA provider must
create a new entity manager and return the created entity manager to the container. If a JTA transaction is active, the
JPA provider must register Synchronization in the JTA transaction.

• When the container invokes EntityManager.joinTransaction, the JPA provider must register
Synchronization in the JTA transaction. However, if joinTransaction was invoked previously and
Synchronization is already registered in the JTA transaction, nothing need be done.

• When a JTA transaction is committed, the JPA provider must flush all the changed entity statuses in the database.

• When a JTA transaction is rolled back, the JPA provider must detach all the managed entities.

• When the JPA provider throws an exception that causes transaction rollback, the JPA provider must mark the
transaction for rollback.

• When the container invokes EntityManager.close, the JPA provider must release all the allocated resources
after all the unresolved transactions related to that entity manager are concluded. If the entity manager is already
closed, the JPA provider must throw IllegalStateException.

• When the container invokes EntityManager.clear, the JPA provider must detach all the managed entities.

(3) javax.transaction.TransactionSynchronizationRegistry interface
The JPA provider can use the TransactionSynchronizationRegistry interface to register Synchronization
in a transaction and to mark a transaction for rollback. The TransactionSynchronizationRegistry instance
can be looked up with the name java:comp/TransactionSynchronizationRegistry using the JNDI.

The interface definition is as follows:

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 813

package javax.transaction;

/**
 * This interface is used from system level components
 * of Application Server such as the
 * JPA provider and resource adapters.
 * Using this interface, you can
 * register synchronization invoked in a particular order,
 * register the resource object in the current transaction,
 * obtain the current transaction context,
 * obtain the current transaction status,
 * and mark the current transaction for rollback.
 *
 * This interface is implemented by Application Server
 * as a stateless service object.
 * The same object can be used from multiple components
 * in a multi-thread safe manner.
 *
 * With default Application Server, the instance implementing this
 * interface can be looked up with the default name using the JNDI.
 * The default name is
 * java:comp/TransactionSynchronizationRegistry.
 */
public interface TransactionSynchronizationRegistry {

 /**
 * When this method is invoked, a unique object expressing the
 * transaction associated with the current thread is returned.
 * The hashCode and equals method of this object is overridden
 * and can be used as the hashmap key.
 * If the transaction does not exist, null is returned.
 *
 * All the objects returned by invoking this method in the same
 * transaction context of same Application Server have the same
 * hashCode and the comparison results in the equal method are
 * true.
 *
 * The toString method returns the transaction context information
 * as a string in an easy-to-read format.
 * However, the string format returned by toString is not defined.
 * Also, the compatibility of the toString results between versions
 * is not guaranteed.
 *
 * There is no guarantee that the obtained object can be serialized
 * and the operations when the object is sent outside JavaVM are
 * not defined.
 *
 * @return Object that uniquely expresses the transaction
 * associated with the thread when this method is invoked.
 */
 Object getTransactionKey();

 /**
 * The object is added or replaced in the resource map
 * of the transaction associated with the thread used when this
 * method is invoked.
 * The map key must be a class defined on the method invocation

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 814

 * side so that conflict does not occur.
 * The class used as the key must have the appropriate hashCode
 * and equals method as the map key.
 * The map key and value is not evaluated and used by this class.
 * The general contract of this method is the same as the put
 * method of Map and the key must be other than null, but the
 * value can be set as null.
 * If a value associated with the key already exists, the value
 * is replaced.
 *
 * @param key Entry key of map
 * @param value Entry value of map
 * @exception IllegalStateException When an active transaction
 * does not exist
 * @exception NullPointerException When the argument key is null
 */
 void putResource(Object key, Object value);

 /**
 * The object is extracted from the resource map of the transaction
 * associated with the thread used when this method is invoked.
 * The key must be the same as the object specified in the
 * putResource method beforehand, in the same transaction.
 * If the specified key does not exist in the current resource
 * map, null is returned.
 * The general contract of this method is the same as the put
 * method of Map and the key must be other than null, but the
 * value can be set as null.
 * If the key is not stored in the map or if a null value is stored
 * for the key, the return value is null.
 * @param key Entry key of map
 * @return Value associated with the key
 * @exception IllegalStateException When an active transaction
 * does not exist
 * @exception NullPointerException When the argument key is null
 */
 Object getResource(Object key);

 /**
 * Registers the synchronization instances invoked in a particular
 * order.
 * beforeCompletion of Synchronization registered with this
 * method is invoked after
 * SessionSynchronization.beforeCompletion, and
 * Synchronization.beforeCompletion, which is directly
 * registered in a transaction, are invoked, and before the 2-phase
 * commit processing starts.
 * Similarly, afterCompletion of Synchronization registered with
 * this method is invoked after the completion of 2-phase commit
 * processing and before SessionSynchronization.afterCompletion
 * and Synchronization.afterCompletion, which is directly
 * registered in the transaction, are invoked.
 *
 * beforeCompletion is invoked by the transaction context
 * associated with the thread when this method is invoked.
 * With beforeCompletion, access to resources such as connector
 * is permitted, but access is not permitted to user components
 * such as timer service and bean methods.

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 815

 * This is because the data managed on the invocation side and
 * the data that is already flushed by other Synchronization
 * registered with registerInterposedSynchronization might be
 * changed.
 * The general context becomes the context of the component
 * that invokes registerInterposedSynchronization.
 *
 * The context when afterCompletion is invoked is not defined.
 * Note that access to user components is not allowed.
 * Also, the resource can be closed, but
 * transactional operations cannot be performed for the resource.
 *
 * If this method is invoked when the transaction is not active,
 * IllegalStateException is thrown.
 *
 * If this method is invoked after the 2-phase commit processing
 * starts, IllegalStateException is thrown.
 *
 * @param sync Instance of Synchronization to be registered
 * @exception IllegalStateException When an active transaction
 * does not exist
 */
 void registerInterposedSynchronization(Synchronization sync);

 /**
 * When this method is invoked, the status of the transaction
 * associated with the thread is returned.
 * The return value of this method is the same as the result of * Transacti
onManager.getStatus().
 *
 * @return Status of the transaction associated with
 * the thread when this method is invoked.
 */
 int getTransactionStatus();

 /**
 * When this method is invoked, the transaction associated with
 * the thread is marked for rollback.
 *
 * @exception IllegalStateException When an active transaction
 * does not exist
 */
 void setRollbackOnly();

 /**
 * When this method is invoked, returns information about whether
 * the transaction associated with the thread is marked for
 * rollback.
 *
 * @return true if the transaction is marked for rollback
 * @exception IllegalStateException When an active transaction
 * does not exist
 */
 boolean getRollbackOnly();
}

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 816

F.2 Deployment-related contract
The deployment-related contract includes the responsibilities of the container and the responsibilities of the JPA provider.

(1) Responsibilities of the container
During deployment, the container searches persistence.xml packaged at a decided location within the application.
If persistence.xml exists in the application, the container processes the definition of the persistence unit defined
in persistence.xml. For details on the locations searched by the container, see 8.8 Definitions in persistence.xml.

The container verifies persistence.xml file using persistence_1_0.xsd. If the verification results
in an error, the container reports to the user. If the provider and data source information is not specified in
persistence.xml, the default value is used. For details on the default values used, see 8.8 Definitions in
persistence.xml. When creating the entity manager factory of the persistence unit, the container passes the properties to
the JPA provider.

The container creates the implementation class instance of
javax.persistence.spi.PersistenceProvider defined for each persistence unit in
persistence.xml, invokes the createContainerEntityManagerFactory method, and obtains
EntityManagerFactory for creating the container-managed entity manager. The Meta data of the
persistence unit is passed as the PersistenceUnitInfo object to the JPA provider using the
argument of the createContainerEntityManagerFactory method. The container creates only one
EntityManagerFactory for one persistence unit definition and creates multiple EntityManagers from
that EntityManagerFactory.

When the persistence unit is re-deployed, the container invokes the close method of EntityManagerFactory
that is already obtained and then invokes createContainerEntityManagerFactory along with the
new PersistenceUnitInfo.

(2) Responsibilities of the JPA provider
The JPA provider must implement PersistenceProvider SPI, and when the
createContainerEntityManagerFactory method of PersistenceProvider is invoked, the JPA
provider must use the Meta data (PersistenceUnitInfo) of the persistence unit passed in the argument to
create EntityManagerFactory, and return the created EntityManagerFactory to the container.

The JPA provider processes the Meta data annotation of the managed class (such as an entity class) included in the
persistence unit. Also, when the O/R mapping file is used in the persistence unit, the JPA provider must interpret the
file. At this time, the JPA provider verifies the O/R mapping file by using orm_1_0.xsd and must notify the user if
an error occurs.

(3) javax.persistence.spi.PersistenceProvider interface
The JPA provider must implement the javax.persistence.spi.PersistenceProvider interface. This
interface is invoked by the container and is not invoked from the application. The PersistenceProvider
implementation class must be public and must have a constructor without argument.

The javax.persistence.spi.PersistenceProvider interface is as follows:

package javax.persistence.spi;

/**

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 817

* Interface implemented by the JPA provider.
* This interface is used for creating EntityManagerFactory.
* In the Java EE environment, the interface is invoked by the container
* and in the JavaSE environment, the interface is invoked by the
* persistence class.
*/
public interface PersistenceProvider {

 /**
 * Invoked when the persistence class creates EntityManagerFactory.
 *
 * @param emName Name of the persistence unit
 * @param map property Map used by the JPA provider.
 * The property specified here is used to overwrite the property
 * corresponding to the persistence.xml file or to specify
 * the property that is not specified in the persistence.xml file.
 * (If the property need not be specified, null is passed)
 * @return EntityManagerFactory of persistence unit
 * If the JPA provider is incorrect, null is returned.
 */
 public EntityManagerFactory createEntityManagerFactory(String
 emName, Map map);

 /**
 * Invoked when the container creates EntityManagerFactory.
 *
 * @param info Meta data to be used by the JPA provider
 * @param map Integration level property to be used by the JPA provider
 * (if not specified, null is passed)
 * @return EntityManagerFactory of the persistence unit specified
 * in Meta data
 */
 public EntityManagerFactory createContainerEntityManagerFactory(
 PersistenceUnitInfo info, Map map);
}

(4) javax.persistence.spi.PersistenceUnitInfo interface
The javax.persistence.spi.PersistenceUnitInfo interface definition is as follows:

import javax.sql.DataSource;
/**
* This interface is implemented by the container and is passed to
* the JPA provider when EntityManagerFactory is created.
*/
public interface PersistenceUnitInfo {

 /**
 * @return Persistence unit name defined in persistence.xml
 */
 public String getPersistenceUnitName();

 /**
 * @return Fully qualified class name of the JPA provider
 * implementation class defined in the <provider> element of
 * persistence.xml
 */

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 818

 public String getPersistenceProviderClassName();

 /**
 * @return Returns the transaction type of EntityManager
 * created by EntityManagerFactory
 * Type specified in the transaction-type attribute of
 * persistence.xml.
 */
 public PersistenceUnitTransactionType getTransactionType();

 /**
 * @return Returns a data source with JTA enabled
 * for use by the JPA provider.
 * Data source specified in the <jta-data-source> element of
 * persistence.xml or the data source determined by the container
 * during deployment.
 */
 public DataSource getJtaDataSource();

 /**
 * @return Returns a data source with JTA disabled for the JPA provider
 * to access the data outside the JTA transaction.
 * Data source specified in <non-jta-data-source> element of
 * persistence.xml or the data source determined by the container
 * during deployment.
 */
 public DataSource getNonJtaDataSource();

 /**
 * @return List of mapping file names that must be loaded for the
 * JPA provider to determine the entity class mapping.
 * The mapping file must have the standard XML mapping format.
 * The mapping file must have a unique name and must be
 * loadable as a resource from the application class path.
 * The mapping file names are specified in the
 * <mapping-file> tag of persistence.xml.
 */
 public List<String> getMappingFileNames();

 /**
 * Returns the URL list of JAR files or directory deploying the
 * JAR files, required for searching the managed class of the
 * persistence unit by the JPA provider.
 * Each URL is specified in the <jar-file> tag of the persistence.xml
 * file.
 * The URL is in a file URL format indicating JAR files or directory
 * deploying the JAR files or in another URL format that can obtain
 * InputStream in the JAR format.
 *
 * @return List of URL objects indicating the JAR files or directories
 */
 public List<URL> getJarFileUrls();

 /**
 * Returns the URL of the JAR file or directory forming the persistence
 * unit root
 * (If the persistence unit root is WEB-INF/classes directory,
 * returns the URL of WEB-INF/classes directory)

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 819

 * The URL is in a file URL format indicating JAR files or directory
 * deploying the JAR files or in another URL format that can obtain
 * InputStream in the JAR format.
 *
 * @return URL object indicating JAR files or directories
 */
 public URL getPersistenceUnitRootUrl();

 /**
 * @return List of class names that the JPA provider must handle
 * as managed classes.
 * Each class name is specified in the <class> tag of the
 * persistence.xml file
 */
 public List<String> getManagedClassNames();

 /**
 * @return Returns whether to handle the class that is deployed
 * in the persistence unit root and is not explicitly specified
 * as managed class, as a managed class.
 * This value is specified in the <exclude-unlisted-classes> tag
 * of the persistence.xml file.
 */
 public boolean excludeUnlistedClasses();

 /**
 * @return Properties object.
 * Each property is specified in the <property> tag of the
 * persistence.xml file.
 */
 public Properties getProperties();

 /**
 * @return ClassLoader that can be used by the JPA provider
 * to load classes and resources and to open URLs.
 */
 public ClassLoader getClassLoader();

 /**
 * Class loader returned by the PersistenceUnitInfo.getClassLoader
 * method and registers the JPA provider transformer that is invoked
 * every time a new class is defined or a class is re-defined.
 * This transformer is returned by the * PersistenceUnitInfo.getNewTempClas
sLoader method
 * and does not affect the classes loaded by the class loader.
 * Even if some persistence units are defined in the class loading
 * scope, the class is only converted once in the same class loading
 * scope.
 *
 * @param transformer JPA provider transformer invoked by the
 * container to define (re-define) a class.
 */
 public void addTransformer(ClassTransformer transformer);

 /**
 * Returns a new instance of the class loader
 * that can be used temporarily by the JPA provider to load classes
 * and resources and to open the URLs.

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 820

 * The scope and class path of this class loader
 * is exactly similar to the class loader returned
 * by PersistenceUnitInfo.getClassLoader.
 * The classes loaded with this class loader cannot
 * be referenced from the application components.
 * The JPA provider can use this class loader only in
 * the extended invocation of createContainerEntityManagerFactory.
 *
 * @return Temporary class loader having the same scope
 * or class path as the current class loader.
 */
 public ClassLoader getNewTempClassLoader();

}

Reference note

With Application Server, if the JTA data source and non-JTA data source are not defined in the persistence unit,
getJtaDataSource() or getNonJtaDataSource() return null. The preceding text "if the JTA data
source and non-JTA data source are not defined in the persistence unit" indicates the following state:

• When <jta-data-source> and <non-jta-data-source> are omitted in persistence.xml
and the default value is not defined in the system properties ejbserver.jpa.defaultJtaDsName
and ejbserver.jpa.defaultNonJtaDsName

• When the system properties ejbserver.jpa.overrideJtaDsName and
ejbserver.jpa.overrideNonJtaDsName are also not defined

F. Contract Between the JPA Provider and EJB Container

Compatibility Guide 821

G. BNF for JPQL

This appendix describes BNF for JPQL provided in the JPA 1.0 specifications.

Table G‒1: Rules for the BNF expressions

Expression Contents

{ } Indicates a group.

[] Indicates the option syntax.

* Indicates 0 or more.

A|B Indicates A or B.

Note that highlighted bold character strings represent keywords.

BNF is as follows:

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_claus
e]
[having_clause] [orderby_clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=
FROM identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join |
fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_vari
able
join ::= join_spec join_association_path_expression [AS] identification_vari
able
fetch_join ::= join_spec FETCH join_association_path_expression
association_path_expression ::=
collection_valued_path_expression | single_valued_association_path_expressi
on
join_spec::= [LEFT [OUTER] | INNER] JOIN
join_association_path_expression ::= join_collection_valued_path_expressio
n |
join_single_valued_association_path_expression
join_collection_valued_path_expression::=
identification_variable.collection_valued_association_field
join_single_valued_association_path_expression::=
identification_variable.single_valued_association_field
collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable
single_valued_path_expression ::=
state_field_path_expression | single_valued_association_path_expression
state_field_path_expression ::=
{identification_variable | single_valued_association_path_expression}.state_
field
single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}* single_valued_as
sociation_field
collection_valued_path_expression ::=

G. BNF for JPQL

Compatibility Guide 822

identification_variable.{single_valued_association_field.}*collection_valued
_association_field
state_field ::= {embedded_class_state_field.}*simple_state_field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_assoc
iation_field} =
new_value
new_value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
enum_primary
simple_entity_expression |
NULL
delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_vari
able]
select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=
single_valued_path_expression |
aggregate_expression |
identification_variable |
OBJECT(identification_variable) |
constructor_expression
constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::= single_valued_path_expression | aggregate_expression
aggregate_expression ::=
{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable | state_field_path_expression |
single_valued_association_path_expression)
where_clause ::= WHERE conditional_expression
groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable
having_clause ::= HAVING conditional_expression
orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]
subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]
subquery_from_clause ::=
FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration}*
subselect_identification_variable_declaration ::=
identification_variable_declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=
single_valued_path_expression |
aggregate_expression |
identification_variable
conditional_expression ::= conditional_term | conditional_expression OR cond
itional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_f
actor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)

G. BNF for JPQL

Compatibility Guide 823

simple_cond_expression ::=
comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression
between_expression ::=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
state_field_path_expression [NOT] IN (in_item {, in_item}* | subquery)
in_item ::= literal | input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression
[NOT] MEMBER [OF] collection_valued_path_expression
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=
string_expression comparison_operator {string_expression | all_or_any_expres
sion} |
boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
enum_expression { =|<>} {enum_expression | all_or_any_expression} |
datetime_expression comparison_operator
{datetime_expression | all_or_any_expression} |
entity_expression { = | <> } {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::=
arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic
_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::=
state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression
string_expression ::= string_primary | (subquery)
string_primary ::=
state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |

G. BNF for JPQL

Compatibility Guide 824

aggregate_expression
datetime_expression ::= datetime_primary | (subquery)
datetime_primary ::=
state_field_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=
state_field_path_expression |
boolean_literal |
input_parameter |
enum_expression ::= enum_primary | (subquery)
enum_primary ::=
state_field_path_expression |
enum_literal |
input_parameter |
entity_expression ::=
single_valued_association_path_expression | simple_entity_expression
simple_entity_expression ::=
identification_variable |
input_parameter
functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)
functions_returning_datetime ::=
CURRENT_DATE|
CURRENT_TIME |
CURRENT_TIMESTAMP
functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,
simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

G. BNF for JPQL

Compatibility Guide 825

H. Main Functionality Changes in Each Version

The following describes the main functionality changes in versions of Application Server earlier than version 11-00 and
the purpose of each change. For details on the main functionality changes in version 11-00, see 1.3 Major functionality
changes in Application Server 11-00.

The following provides detailed descriptions:

• The following describes the main functionality that was changed in each version of Application Server and provides
an overview on each change. For details on the functionality, see the descriptions in the Reference manual and
Reference columns in the following table. In the Reference manual and Reference columns, you can find the locations
where the main functionality is described in the manual for version 11-00.

Note that uCosminexus Application Server is omitted from the manual names in the Reference manual column.

H.1 Main functionality changes in 09-87

(1) Supporting the standard and existing functionality
The following table shows the item that was changed to support the standard and existing functionality.

Table H‒1: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Support for Java SE 11 Functionality of Java SE 11 can
now be used.

Maintenance and
Migration Guide

Chapter 9

H.2 Main functionality changes in 09-80

(1) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒2: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Use of lambda expressions in the
JAX-RS functionality

Lambda expressions can now
be used in the classes
included in the packages and
subpackages specified for the
servlet initialization parameters
in web.xml.

Web Service Development Guide 11.2

Support for Java SE 9 The functionality of Java SE 9 can
now be used.

Maintenance and
Migration Guide

Chapter 9

(2) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

H. Main Functionality Changes in Each Version

Compatibility Guide 826

Table H‒3: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Support for Apache2.4
Web servers

Apache2.4 is now supported as
the base version of Web servers.

HTTP Server User Guide Chapter 6, Appendix G

Use of elliptic-curve
cryptography in
SSL communication

SSL communication using
elliptic-curve cryptography can
now be used.

HTTP Server User Guide Chapter 5, Appendix G

Change of the SSL library The SSL library providing the
SSL functionality is now changed
to OpenSSL.

HTTP Server User Guide Chapter 5, Appendix G

H.3 Main functionality changes in 09-70

(1) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒4: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Addition of the JSP
compiled version to the
management portal

Compilation methods compliant with JDK 1.7
specifications and those compliant with JDK 7
specifications are now supported as compilation
methods for servlets generated from JSP files on
the J2EE server.

Management Portal User Guide 10.8.4

Definition Reference Guide 4.11.2

Support for metaspace
in JDK8

The option to be used to start JavaVM was
changed from the option for the Permanent
area to the option for the Metaspace area.

System Setup and Operation Guide Appendix A.2

Management Portal User Guide 10.8.7

Definition Reference Guide 5.2.1, 5.2.2, 8.2.3

Support of SHA-2
by user authentication
for integrated
user management

SHA-224, SHA-256, SHA-384, and SHA-512
were added as hash algorithms for user
authentication for integrated user management.

Security Management Guide 5.3.1, 5.3.9, 5.10.7,
11.4.3, 12.4.3, 12.5.3,
13.2, 14.2.2

Addition of automatic
startup, automatic restart,
and automatic termination
to Red Hat Enterprise
Linux Server 7

Methods of automatic startup, automatic restart,
and automatic termination of Management
Server and Administration Agent were added to
Red Hat Enterprise Linux Server 7.

Operation, Monitoring, and
Linkage Guide

2.6.3, 2.6.4, 2.6.5

Command Reference Guide 7.2

(2) Maintaining and improving operability
The following table shows the item that was changed to maintain and improve operability.

Table H‒5: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Reference

Support for version
upgrade to V9.7

The procedure for changing the option to use to start
JavaVM at version upgrade from the option for the
Permanent area to the option for the Metaspace area
was added.

Maintenance and
Migration Guide

10.3.1, 10.3.2, 10.3.4

H. Main Functionality Changes in Each Version

Compatibility Guide 827

(3) Changes for other purposes
The following table shows the item that was changed for other purposes.

Table H‒6: Changes made for other purposes

Item Overview of changes Reference manual Reference

Targets to collect in
snapshot logs

JavaVM event logs and Management Server thread
dumps were added as the targets for collection in
snapshot logs.

Maintenance and
Migration Guide

Appendix A.2

H.4 Main functionality changes in 09-60

(1) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒7: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Support for G1GC G1GC can now be selected. System Design Guide 7.15

Definition Reference Guide 14.5

Support for the object-pointer
compression function

The object-pointer compression
function can now be used.

Maintenance and
Migration Guide

9.16

(2) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

Table H‒8: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Addition of the finalize-
retention resolution function

Retention of finalization
processing can now be resolved,
and delays in the release of OS
resources can now be suppressed.

Maintenance and
Migration Guide

9.17

(3) Other purposes
The following table shows the item that was changed for other purposes.

Table H‒9: Changes made for other purposes

Item Overview of changes Reference manual Reference

Addition of the
log file asynchronous
output functionality

Log files can now be
output asynchronously.

Definition Reference Guide 14.2

H. Main Functionality Changes in Each Version

Compatibility Guide 828

H.5 Main functionality changes in 09-50

(1) Improving development productivity
The following table shows the items that were changed to improve development productivity.

Table H‒10: Changes made for improving development productivity

Item Overview of changes Reference manual Reference

Simplification of Eclipse setup You can now set an Eclipse environment by
using GUI.

Application
Development Guide

1.1.5, 2.4

Support for debugging by
using user-extended performance
analysis trace

Setup files for user-extended performance
analysis trace can now be created in a
development environment.

Application
Development Guide

1.1.3, 6.4

(2) Simplifying implementation and setup
The following table shows the item that was changed to simplify implementation and setup.

Table H‒11: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Addition of system
configurations in a
virtual environment

The types of tiers (http-tier, j2ee-tier, and ctm-
tier) usable in a virtual environment increased. Therefore,
the following system configurations are now available:
• Configuration in which the Web server and J2EE server are

placed on different hosts
• Configuration in which the front end (servlets, JSP) and

back end (EJB) are placed separately
• Configuration in which CTM is used

Virtual System Setup and
Operation Guide

1.1.2

(3) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒12: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Support for the JDBC
4.0 specifications

DB Connector now supports HiRDB Type4 JDBC Driver
of the JDBC 4.0 specifications and JDBC driver of the
SQL Server.

Common Container
Functionality Guide

3.6.3

Modification of naming
conventions in the Portable
Global JNDI names

The characters that can be used in the Portable Global JNDI
names were added.

Common Container
Functionality Guide

2.4.3

Support for the Servlet
3.0 specifications

Changes to the HTTP Cookie name and URL path parameter
name in Servlet 3.0 can now be used in Servlet 2.5 and
earlier versions.

Web Container
Functionality Guide

2.7

Expanded use of applications
that can be linked with
Bean Validation

Validation on CDI and UAP can now be performed by using
Bean Validation.

Common Container
Functionality Guide

Chapter 9

H. Main Functionality Changes in Each Version

Compatibility Guide 829

Item Overview of changes Reference manual Referenc
e

Support for JavaMail The email sending and receiving functionality using the API
that complies with JavaMail 1.4 can now be used.

Common Container
Functionality Guide

Chapter 7

Expanded use of the OS in which
the javacore command can
be used

You can now use the javacore command to acquire
Windows thread dumps.

Command
Reference Guide

javacore
(Acquiring
the thread
dump/in
Windows)

(4) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

Table H‒13: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Avoiding depletion of the code
cache area

You can now avoid the depletion of the area by checking the
size of the code cache area used by the system and changing the
threshold value before the area is depleted.

System Design Guide 7.2.6

Maintenance and
Migration Guide

5.7.2, 5.7.3

Definition
Reference Guide

14.1, 14.2,
14.4

Support for efficient use
of the Explicit Memory
Management functionality

The functionality was added to control the objects to be moved
to an Explicit heap, as the functionality to reduce the automatic
release processing time and to efficiently apply the Explicit
Memory Management functionality.
• The functionality that controls object movement to an

Explicit memory block
• The functionality for specifying classes in which use of the

Explicit Memory Management functionality is excluded
• The functionality that outputs object release rate

information to Explicit heap information

System Design Guide 7.14.6

Expansion Guide 7.2.2,
7.6.5, 7.10,
7.13.1,
7.13.3

Maintenance and
Migration Guide

5.5

Expanded output range of
statistical information for
each class

A reference relation based on a static field can now be output to
the extended thread dump that contains statistical information
for each class.

Maintenance and
Migration Guide

9.6

(5) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒14: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Support for the EADs session
failover functionality

The EADs session failover functionality that achieves the
session failover functionality by linking with EADs is
now supported.

Expansion Guide Chapter 5

Operation based on WAR A WAR application that consists of WAR files only can now be
deployed on the J2EE server.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

15.9

H. Main Functionality Changes in Each Version

Compatibility Guide 830

Item Overview of changes Reference manual Referenc
e

Command
Reference Guide

cjimportw
ar (Import
a WAR
applicatio
n)

Starting and stopping
by synchronous execution
of the operation
management functionality

Starting and stopping of the operation management
functionality (Management Server and Administration Agent)
was added to the options to be synchronously executed.

Operation, Monitoring,
and Linkage Guide

2.6.1,
2.6.2,
2.6.3, 2.6.4

Command
Reference Guide

adminagen
tctl (start
or stop
Administra
tion
Agent),
mngautoru
n (Set up/
canceling
the set up
of
autostart
and
autorestart
),
mngsvrctl
(start,
stop, or
setup
Manageme
nt Server)

Forced release of Explicit
memory blocks by using
the Explicit Memory
Management functionality

The release processing of Explicit memory blocks can now be
performed any time by using the javagc command.

Expansion Guide 7.6.1, 7.9

Command
Reference Guide

javagc
(forcibly
perform
GC)

(6) Other purposes
The following table shows the items that were changed for other purposes.

Table H‒15: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Acquisition of
definition information

The snapshotlog command (collect snapshot log) can now
be used to collect definition files only.

Maintenance and
Migration Guide

2.3

Command
Reference Guide

snapshotlo
g (collect
snapshot
logs)

Log output of the
cjenvsetup command

Execution information for setup (the cjenvsetup
command) of the Component Container Administrator can
now be output to the message log

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

H. Main Functionality Changes in Each Version

Compatibility Guide 831

Item Overview of changes Reference manual Referenc
e

Command
Reference Guide

cjenvsetup
(set up
Componen
t
Container
Administra
tor)

Support for BIG-IP v11 BIG-IP v11 was added to the types of the available
load balancers.

System Setup and
Operation Guide

4.7.2

Virtual System Setup and
Operation Guide

2.1

Output of CPU time to the
event log of the Explicit Memory
Management functionality

The CPU time spent on the processing to release the Explicit
memory block can now be output to the event log of the
Explicit Memory Management functionality.

Maintenance and
Migration Guide

5.11.3

Extension of the user-
extended performance analysis
trace functionality

The following changes were made to the user-extended
performance analysis trace functionality:
• In addition to the usual unit of method, trace targets can

now also be specified in the unit of package or class.
• The range of available event IDs was extended.
• The limitation on the number of rows that can be specified

in the settings file of user-extended performance analysis
trace was released.

• You can now specify the trace acquisition level in the
settings file of user-extended performance analysis trace.

Maintenance and
Migration Guide

7.5.2,
7.5.3,
8.23.1

Improved information analysis
when using asynchronous
invocation of Session Bean

The requests at the invocation source can now be compared
against the requests at the invocation destination by using root
application information of PRF trace.

EJB Container
Functionality Guide

2.17.3

H.6 Main functionality changes in 09-00

(1) Simplifying implementation and setup
The following table shows the items that were changed to simplify implementation and setup.

Table H‒16: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Changed the unit of the setup
and operation target in the
virtual environment

The units to be operated when you set up and operate the virtual
environment have been changed from the virtual server to the
virtual server group. You can now define the information of
a virtual server group in a file and register multiple virtual
servers to a management unit in a batch.

Virtual System Setup and
Operation Guide

1.1.2

Removed the restrictions on
environments that can be built
by using the Setup Wizard

Removed the restrictions on the environment that can be built
by using the Setup Wizard. You can now unset up and set
up any of the existing environments set up with a different
functionality, by using the Setup Wizard.

System Setup and
Operation Guide

2.2.7

Simplification of the
procedure for removing an
installed environment

Added functionality (mngunsetup command) for removing
the system environment that is set up by using Management
Server, thereby simplifying the removal procedure.

System Setup and
Operation Guide

4.1.37

H. Main Functionality Changes in Each Version

Compatibility Guide 832

Item Overview of changes Reference manual Referenc
e

Management Portal
User Guide

3.6, 5.4

Command
Reference Guide

mngunsetu
p (Deleting
the
Manageme
nt Server
configurati
on
environme
nt
)

(2) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒17: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Supporting Servlet 3.0 Servlet 3.0 is now supported. Web Container
Functionality Guide

Chapter 7

Supporting EJB 3.1 EJB 3.1 is now supported. EJB Container
Functionality Guide

Chapter 2

Supporting JSF 2.1 JSF 2.1 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting JSTL 1.2 JSTL 1.2 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting CDI 1.0 CDI 1.0 is now supported. Common Container
Functionality Guide

Chapter 8

Using Portable Global
JNDI names

You can now look up objects for which Portable Global JNDI
names are used.

Common Container
Functionality Guide

2.4

Supporting JAX-WS 2.2 JAX-WS 2.2 is now supported. Web Service
Development Guide

1.1, 16.1.5,
16.1.7,
16.2.1,
16.2.6,
16.2.10,
16.2.12,
16.2.13,
16.2.14,
16.2.16,
16.2.17,
16.2.18,
16.2.20,
16.2.22,
19.1,
19.2.3,
37.2,
37.6.1,
37.6.2,
37.6.3

H. Main Functionality Changes in Each Version

Compatibility Guide 833

Item Overview of changes Reference manual Referenc
e

Supporting JAX-RS 1.1 JAX-RS 1.1 is now supported. Web Service
Development Guide

1.1, 1.2.2,
1.3.2,
1.4.2,
1.5.1, 1.6,
2.3,
Chapter
11,
Chapter
12,
Chapter
13,
Chapter
17,
Chapter
24,
Chapter 39

(3) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

Table H‒18: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Using TLSv1.2 for
SSL/TLS communication

You can now use RSA BSAFE SSL-J to execute the SSL/TLS
communication with a security protocol containing TLSv1.2.

-- --

Legend:
--: This functionality has been deleted in version 09-70.

(4) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒19: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Monitoring the total pending
queues of the entire
Web container

You can now monitor the total pending queues of the
entire Web container when the total is output to the
operation information.

Operation, Monitoring,
and Linkage Guide

Chapter 3

Output of the trace
based performance analysis
for applications (user
extended trace)

The trace based performance analysis used for analyzing the
processing performance of user-developed applications can
now be output without changing the applications.

Maintenance and
Migration Guide

Chapter 7

Operations performed by
using the user script in a
virtual environment

The user-created script (user script) can now be executed on a
virtual server at any time

Virtual System Setup and
Operation Guide

7.8

Improving the
management portal

Changes have been made so that the messages describing the
procedure are now displayed on the following management
portal windows:
• Deploy the preference information window

Management Portal
User Guide

10.10.1,
11.9.2,
11.10.2,
11.10.4,
11.10.6,
11.11.2,

H. Main Functionality Changes in Each Version

Compatibility Guide 834

Item Overview of changes Reference manual Referenc
e

• Start window for the Web server, J2EE server, and
SFO server

• Batch start, batch restart, and startup windows for Web
server cluster and J2EE server cluster

11.12.2,
11.12.4,
11.12.6

Adding restart
functionality for operation
management functionality

You can now set the automatic restart in the operation
management functionality (Management Server and
Administration Agent). Due to the automatic restart
functionality, it is now possible to continue operations even if
an error occurs in the operation management functionality. The
procedure for automatic start setting has also been changed.

Operation, Monitoring,
and Linkage Guide

2.4.1,
2.4.2,
2.6.3, 2.6.4

Command
Reference Guide

mngautoru
n (Set up/
canceling
the set up
of
autostart
and
autorestart
)

(5) Other purposes
The following table shows the items that were changed for other purposes.

Table H‒20: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Changing the unit for switching
log output files

You can now change log output files by date. Maintenance and
Migration Guide

3.2.1

Changing the Web server name The name of the Web server included in Application Server has
been changed to uCosminexus HTTP Server.

HTTP Server User Guide --

Supporting a direct connection
with the API (SOAP
architecture) in BIG-IP

Direct connection is now supported by using APIs (SOAP
architecture) in BIG-IP (load balancer).
Note that the procedure for setting up the connection
environment of the load balancer has been changed for using a
direct connection through APIs.

System Setup and
Operation Guide

4.7.3,
Appendix J

Virtual System Setup and
Operation Guide

2.1,
Appendix
C

Security
Management Guide

8.2, 8.4,
8.5, 8.6,
18.2.1,
18.2.2,
18.2.3

Legend:
--: Reference the entire manual.

H.7 Main functionality changes in 08-70

(1) Simplifying implementation and setup
The following table shows the items that were changed to simplify implementation and setup.

H. Main Functionality Changes in Each Version

Compatibility Guide 835

Table H‒21: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Improving the
Management portal

The changes have been made to enable the user to set the
property (settings of the Connector property file) for defining
the resource adapter attributes and perform the connection test
in the management portal window. Also, you can now use the
Management portal window to upload J2EE applications (ear
file and zip file) on Management Server.

First Step Guide 3.5

Management Portal
User Guide

--

Adding functionality for
implicitly importing the
import property for the
page/tag directive

You can now use the functionality for implicitly importing the
import property of the page/tag directive.

Web Container
Functionality Guide

2.3.7

Support for automating
the environment settings
corresponding to the JP1
products in a virtual environment

The changes have been made so that when Application Server
is set up on a virtual server, the environment settings of JP1
products can be automatically set for the virtual server by using
the hook script.

Virtual System Setup and
Operation Guide

7.7.2

Improving the Integrated user
management functionality

When using a database in a user information repository,
you can now connect to the database with the JDBC
driver of database products. The database connection through
the JDBC driver of Cosminexus DABroker Library is not
supported anymore.
You can now set the integrated user management functionality
using the Easy Setup definition file and the management
portal windows.
The Active Directory now supports double byte characters
such as Japanese language in DN.

Security
Management Guide

Chapter 5,
14.2.2

Management Portal
User Guide

3.5, 10.8.1

Enhancing HTTP Server settings You can now directly set the directive (settings of
httpsd.conf) that defines the operation environment of
HTTP Server using the Easy Setup definition file and the
management portal windows.

System Setup and
Operation Guide

4.1.21

Management Portal
User Guide

10.9.1

Definition
Reference Guide

4.10

Legend:
--: Reference the entire manual.

(2) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒22: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Adding the items to be specified
in ejb-jar.xml

You can now specify a class level interceptor and a method
level interceptor in ejb-jar.xml.

EJB Container
Functionality Guide

2.15

Supporting the parallel copy
garbage collection

You can now select the parallel copy garbage collection. Definition
Reference Guide

14.5

Supporting the global transaction
of the Inbound resource adapter
conforming to the Connector
1.5 specifications

You can now use Transacted Delivery in resource
adapters conforming to the Connector 1.5 specifications. This
enables the participation of EIS invoking the Message-driven
Bean in the global transaction.

Common Container
Functionality Guide

3.16.3

H. Main Functionality Changes in Each Version

Compatibility Guide 836

Item Overview of changes Reference manual Referenc
e

Supporting MHP of a TP1
inbound adapter

You can now use MHP as the OpenTP1client that invokes
Application Server by using the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

Supporting the FTP
inbound adapter of the
cjrarupdate command

An FTP inbound adapter has been added to the
resource adapters that can be upgraded by using the
cjrarupdate command.

Command
Reference Guide

2.2

(3) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

Table H‒23: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Improving the database session
failover functionality

The user can now select a mode that does not obtain the lock of
the database in which the global session information is stored
in a performance-centric system. Also, exclusive requests for
references can now be defined without updating the database.

Expansion Guide Chapter 6

Expansion of a process for the
OutOfMemory
handling functionality

A process for the OutOfMemory handling functionality has
been added.

Maintenance and
Migration Guide

2.5.4

Definition
Reference Guide

14.2

Adding the memory saving
functionality for the Explicit
heap used in an HTTP session

A functionality to minimize the amount of the Explicit heap
memory used in the HTTP session has been added.

Expansion Guide 7.11

(4) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒24: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Supporting an user
authentication using JP1
products in the virtual
environment (handling
cloud operations)

The administration and authentication of users using a
virtual server manager can now be performed by using the
authentication server of JP1 products when integrating JP1.

Virtual System Setup and
Operation Guide

1.2.2,
Chapter 3,
Chapter 4,
Chapter 5,
Chapter 6,
7.9

(5) Other purposes
The following table shows the items that were changed for other purposes.

H. Main Functionality Changes in Each Version

Compatibility Guide 837

Table H‒25: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Supporting a direct
connection using APIs (REST
Architecture) to the load
balancing functionality

A direct connection using APIs (REST architecture) is
now supported as a method to connect to the Load
balancing functionality.
ACOS (AX2500) has been added in the types of available load
balancing functions.

System Setup and
Operation Guide

4.7.2, 4.7.3

Virtual System Setup and
Operation Guide

2.1

Definition
Reference Guide

4.2.4

Improving response timeout
when collecting snapshot logs
and collection targets

You can now stop the snapshot log collection (timeout) at a
specified time. The contents collected as primary delivery data
have been changed.

Maintenance and
Migration Guide

Appendix
A

H.8 Main functionality changes in 08-53

(1) Simplifying implementation and setup
The following table shows the item that was changed to simplify implementation and setup.

Table H‒26: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Setting up a virtual environment
supporting various hypervisors

You can now set up Application Server on a virtual server
implemented by using various hypervisors.
An environment in which multiple hypervisors co-exist is also
supported now.

Virtual System Setup and
Operation Guide

Chapter 2,
Chapter 3,
Chapter 5

(2) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒27: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Invocation from
OpenTP1 supporting the
transaction integration

You can now integrate transactions when the Message-driven
Bean running on Application Server is invoked from OpenTP1

Common Container
Functionality Guide

Chapter 4

JavaMail The mail receiving functionality, which uses the APIs
conforming to JavaMail 1.3 by integrating with the mail server
conforming to POP3, is now available.

Common Container
Functionality Guide

Chapter 7

(3) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

H. Main Functionality Changes in Each Version

Compatibility Guide 838

Table H‒28: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Enhancing the JavaVM
troubleshooting functionality

You can now use the following functionality as the JavaVM
troubleshooting functionality:
• You can now change the operations when
OutOfMemoryError occurs.

• You can now set up an upper limit for the amount of the C
heap allocated during the JIT compilation.

• You can now set up the maximum thread count.
• Output items of the extended verbosegc information have

been extended.

Maintenance and
Migration Guide

Chapter 4,
Chapter 5,
Chapter 9

(4) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒29: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Supporting JP1/ITRM JP1/ITRM, a product that uniformly manages the IT resources,
is now supported.

Virtual System Setup and
Operation Guide

1.3, 2.1

(5) Other purposes
The following table shows the items that were changed for other purposes.

Table H‒30: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Supporting Microsoft IIS 7.0 and
Microsoft IIS 7.5

Microsoft IIS 7.0 and Microsoft IIS 7.5 are now supported as
Web servers.

-- --

Supporting HiRDB Version 9
and SQL Server 2008

The following products are now supported as the database:
• HiRDB Server Version 9
• HiRDB/Developer's Kit Version 9
• HiRDB/Run Time Version 9
• SQL Server 2008

Also, SQL Server JDBC Driver is now supported as the JDBC
driver corresponding to SQL Server 2008.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Not applicable.

H.9 Main functionality changes in 08-50

(1) Simplifying implementation and setup
The following table shows the item that was changed to simplify implementation and setup.

H. Main Functionality Changes in Each Version

Compatibility Guide 839

Table H‒31: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Changing the tags with
mandatory specification in
web.xml at the Web service
provider side

Changed the specification of the listener tag, servlet
tag, and servlet-mapping tag in web.xml at the Web
Service provider side from mandatory to optional.

Definition
Reference Guide

2.2.3

Using the network resources of
the logical server

Added a functionality for accessing the network resources and
network drives on other hosts from the J2EE application.

Operation, Monitoring,
and Linkage Guide

1.2.3, 5.2,
5.7

Simplifying the execution
procedure of sample programs

Simplified the execution procedure of sample programs by
providing some sample programs in the EAR format.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix
L

Improving the operation of the
window of management portal

The default window refresh intervals were changed from Do
not refresh to 3 seconds.

Management Portal
User Guide

7.4.1

Improving the Setup Wizard
completion window

Changes have been made to display the Easy Setup definition
file and the HITACHI Connector Property file used for setup in
the window displayed during completion of the Setup Wizard.

System Setup and
Operation Guide

2.2.6

Setting up the
virtual environment

Added the procedure for setting up Application Server on a
virtual server implemented by using hypervisors.#

Virtual System Setup and
Operation Guide

Chapter 3,
Chapter 5

#
When setting up in the 08-50 mode, see Appendix D Settings for Using the Virtual Server Manager in the 08-50 Mode in the uCosminexus
Application Server Virtual System Setup and Operation Guide.

(2) Supporting the standard and existing functionality
The following table shows the items that were changed to support the standard and existing functionality.

Table H‒32: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Supporting invocation
from OpenTP1

Enabled the invocation of the Message-driven Bean operating
on the Application Server from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Supporting JMS Enabled the use of the Cosminexus JMS provider functionality
compliant with JMS 1.1 specifications.

Common Container
Functionality Guide

Chapter 6

Supporting Java SE 6 Enabled the use of the Java SE 6 functionality. Maintenance and
Migration Guide

5.5, 5.8.1

Supporting the use of generics Enabled the use of generics in EJB. EJB Container
Functionality Guide

4.2.18

(3) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

H. Main Functionality Changes in Each Version

Compatibility Guide 840

Table H‒33: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Improving the usability
of the Explicit Memory
Management functionality

Enabled easy usage of the Explicit Memory Management
functionality by using the Automatic Deployment setup file.

System Design Guide 7.2, 7.7.3,
7.11.4,
7.12.1

Expansion Guide Chapter 7

Blocking the database session
failover functionality in the
URI unit

Enabled specification of requests that are to be set outside the
scope of the database session failover functionality during the
use of the functionality in the URI unit.

Expansion Guide 5.6.1

Monitoring failures in the
virtual environment

Enabled the monitoring of virtual servers and detecting the
occurrence of failures in a virtual system.

Virtual System Setup and
Operation Guide

Appendix
D

(4) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒34: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Reference

Omitting the management
user account

Enabled the omission of the input of
the user login ID and password in
the management portal, commands of the
Management Server, and commands of the
Smart Composer functionality.

System Setup and
Operation Guide

4.1.15

Management Portal
User Guide

2.2, 7.1.1, 7.1.2, 7.1.3,
8.1, 8.2.1, Appendix F.2

Command
Reference Guide

1.4, mngsvrctl (Starting,
stopping, and setting up
the Management Server),
mngsvrutil (Management
commands of the
Management Server),
8.3, cmx_admin_passwd
(Setting the management
user account of the
Management Server)

Operating the
virtual environment

Added the procedure for executing batch startup,
batch stop, scale-in, and scale-out of multiple
virtual servers in a virtual system.#

Virtual System Setup and
Operation Guide

Chapter 4, Chapter 6

#
When operating in the 08-50 mode, see Appendix D Settings for Using the Virtual Server Manager in the 08-50 Mode in the uCosminexus
Application Server Virtual System Setup and Operation Guide.

(5) Other purposes
The following table shows the items that were changed for other purposes.

Table H‒35: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Statistical functionality for
unused objects within the
Tenured area

Enabled the identification of only unused objects within the
Tenured area.

Maintenance and
Migration Guide

9.8

H. Main Functionality Changes in Each Version

Compatibility Guide 841

Item Overview of changes Reference manual Referenc
e

Base point object list output
functionality for Tenured
increment factors

Enabled the output of information of the object that acts as
the base point of unused objects identified using the statistical
functionality for unused objects within the Tenured area.

9.9

Class-wise statistical
information
analysis functionality

Enabled the output of class-wise statistical information in the
CSV format.

9.10

Cluster node switching due to
detection of excess auto restart
frequency of the logical server

Enabled node switching when the logical server stops
abnormally (when the auto restart frequency is exceeded, or
when a failure is detected when the auto restart frequency is set
to 0) in the case of cluster configuration in which Management
Server is a target for monitoring node switching.

Operation, Monitoring,
and Linkage Guide

18.4.3,
18.5.3,
16.2.2,
16.3.3,
16.3.4

Node switching system for the
host unit management model

Enabled node switching for the host unit management model
during system operation linked with cluster software.

Chapter 16

Supporting ACOS
(AX2000, BS320)

Added ACOS (AX2000, BS320) in the types of available
load balancers.

System Setup and
Operation Guide

4.7.2,
4.7.3,
4.7.5,
4.7.6,
Appendix
J,
Appendix
J.2

Definition
Reference Guide

4.2.4,
4.3.2,
4.3.4,
4.3.5,
4.3.6, 4.7.1

Adding transaction attributes
that can be specified
in a Stateful Session
Bean (SessionSynchronization)
when performing transaction
management in CMT

Changes have been made to specify Supports,
NotSupported, and Never as transaction attributes in
a Stateful Session Bean (SessionSynchronization) when
performing transaction management in CMT.

EJB Container
Functionality Guide

2.7.3

Forced termination of
the Administration Agent
during the occurrence
of OutOfMemoryError

Enabled forced termination of the Administration Agent
during the occurrence of OutOfMemoryError in JavaVM.

Maintenance and
Migration Guide

2.5.5

Asynchronous parallel
processing of threads

Enabled the implementation of the asynchronous timer
processing and asynchronous thread processing using
TimerManager and WorkManager.

Expansion Guide --

H.10 Main functionality changes in 08-00

(1) Improving development productivity
The following table shows the items that were changed to improve development productivity.

H. Main Functionality Changes in Each Version

Compatibility Guide 842

Table H‒36: Changes made for improving development productivity

Item Overview of changes Reference manual Reference

Simplification of migration from
other Application Server products

Enabled the use of the following functionality for smooth
migration from other Application Server products:
• Enabled the judgment of upper limit of the HTTP

sessions through an exception.
• Enabled the inhibition of occurrence of a translation

error when the ID of JavaBeans is duplicate, and when
the upper-case characters and lower-case characters are
different in the attribute name of the custom tag and in
the TLD definition.

Web Container
Functionality Guide

2.3, 2.7.5

Provision of cosminexus.xml Enabled the start of J2EE applications without setting
the properties after importing them into the J2EE server
by describing the properties unique to the Cosminexus
Application Server in cosminexus.xml.

Common Container
Functionality Guide

13.3

(2) Supporting the standard functionality
The following table shows the items that were changed to support the standard functionality.

Table H‒37: Changes made for supporting the standard functionality

Item Overview of changes Reference manual Referenc
e

Servlet 2.5 support Supported Servlet 2.5. Web Container
Functionality Guide

2.2, 2.5.4,
2.6,
Chapter 7

JSP 2.1 support Supported JSP 2.1. Web Container
Functionality Guide

2.3.1,
2.3.3, 2.5,
2.6,
Chapter 7

JSP debug Enabled the execution of JSP debugging in the development
environment using MyEclipse. #

Web Container
Functionality Guide

2.4

Storage of the tag library in the
library JAR, and TLD mapping

Enabled the search of TLD files within the library JAR by
the Web container during the start of the Web application, and
their subsequent automatic mapping, when the tag libraries are
stored in the library JAR.

Web Container
Functionality Guide

2.3.4

Omission
of application.xml

Enabled the omission of application.xml in a
J2EE application.

Common Container
Functionality Guide

13.4

Combined use of annotations
and DDs

Enabled the combined use of annotations and DDs, and also
enabled the update of annotation contents in the DD.

Common Container
Functionality Guide

14.5

Conformance of annotations
to Java EE 5 standard
(default interceptor)

Enabled the storage of the default interceptor in the
library JAR. Also enabled the execution of DI from the
default interceptor.

Common Container
Functionality Guide

13.4

Reference resolution
of @Resource

Enabled the reference resolution of resources
with @Resource.

Common Container
Functionality Guide

14.4

JPA support Supported JPA specifications. Common Container
Functionality Guide

Chapter 5

#
In version 09-00 and later, you can use the JSP debug functionality in the development environment using WTP.

H. Main Functionality Changes in Each Version

Compatibility Guide 843

(3) Maintaining and improving reliability
The following table shows the items that were changed to maintain and improve reliability.

Table H‒38: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Persistence of
session information

Enabled the inheritance of session information of an HTTP
session by saving the information in the database.

Expansion Guide Chapter 5,
Chapter 6

Inhibition of a Full GC Enabled the inhibition of occurrence of a Full GC by deploying
the objects responsible for the Full GC outside the Java heap.

Expansion Guide Chapter 7

Client performance monitor The time required for client processing can now be checked
and analyzed.

-- --

Legend:
--: This functionality has been deleted in version 09-00.

(4) Maintaining and improving operability
The following table shows the items that were changed to maintain and improve operability.

Table H‒39: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Improving the operability
of applications on the
management portal

The server management commands and management
portal can now be interoperated for application and
resource operations.

Management Portal
User Guide

1.1.3

(5) Other purposes
The following table shows the items that were changed for other purposes.

Table H‒40: Changes made for other purposes

Item Overview of changes Reference manual Referenc
e

Deletion if disabled
HTTP Cookies

Enabled the deletion of disabled HTTP Cookies. Web Container
Functionality Guide

2.7.4

Failure detection in the
Naming Service

Enabled prompt detection of the error by the EJB client, when
a failure occurs in the Naming Service.

Common Container
Functionality Guide

2.9

Connection failure
detection timeout

Enabled the specification of the timeout period for a connection
failure detection timeout.

Common Container
Functionality Guide

3.15.1

Oracle11g support Enabled the use of Oracle11g as a database. Common Container
Functionality Guide

Chapter 3

Scheduling of batch processing Enabled the scheduling of execution of batch applications
by CTM.

Expansion Guide Chapter 4

Batch processing log The retry frequency and retry interval can now be specified
for the size and number of log files of the batch execution
command and the failure of exclusive processing of the log.

Definition
Reference Guide

3.2.5

H. Main Functionality Changes in Each Version

Compatibility Guide 844

Item Overview of changes Reference manual Referenc
e

snapshot log Changed the collection contents of the snapshot log. Web Container
Functionality Guide

Appendix
A.1,
Appendix
A.2

Publication of protected area of
method cancellation

Published the contents of protected area list that is outside the
scope of method cancellation.

Operation, Monitoring,
and Linkage Guide

Appendix
C

Pre-statistical garbage collection
selection functionality

Enabled the selection of whether or not to execute
a garbage collection before the output of class-wise
statistical information.

Web Container
Functionality Guide

9.7

Tenuring distribution
information output functionality
of the Survivor area.

Enabled the output of tenuring distribution information of Java
objects of the Survivor area to the Hitachi JavaVM log file.

Web Container
Functionality Guide

9.11

Finalize retention
cancellation functionality

Enabled the cancellation of retention of the finalize processing
of JavaVM after monitoring its status.

-- --

Change of the maximum
heap size of server
management commands

Changed the maximum heap size used by server
management commands.

Definition
Reference Guide

5.2.1, 5.2.2

Action for cases when un-
recommended display names
are specified

Provided the output of messages when un-recommended
display names are specified in J2EE applications.

Messages KDJE4237
4-W

Legend:
--: This functionality is deleted in 09-00.

H. Main Functionality Changes in Each Version

Compatibility Guide 845

I. Glossary

Terminology used in this manual
For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform
Terminology Guide.

I. Glossary

Compatibility Guide 846

Index

Symbols
@AssociationOverride 245
@AssociationOverrides 246
@AttributeOverride 246
@AttributeOverrides 247
@Basic 248
@Column 249
@ColumnResult 251
@DiscriminatorColumn 252
@DiscriminatorValue 253
@Embeddable 254
@Embedded 254
@EmbeddedId 254
@Entity 255
@EntityListeners 256
@EntityResult 256
@Enumerated 257
@ExcludeDefaultListeners 258
@ExcludeSuperclassListeners 259
@FieldResult 259
@GeneratedValue 260
@Id 261
@IdClass 262
@Inheritance 263
@JoinColumn 263
@JoinColumns 266
@JoinTable 267
@Lob 269
@ManyToMany 269
@ManyToOne 271
@MapKey 273
@MappedSuperclass 273
@NamedNativeQueries 274
@NamedNativeQuery 274
@NamedQueries 276
@NamedQuery 277
@OneToMany 278
@OneToOne 280
@OrderBy 282
@PersistenceContext 283
@PersistenceContexts 284
@PersistenceProperty 285
@PersistenceUnit 286
@PersistenceUnits 287

@PostLoad 287
@PostPersist 288
@PostRemove 288
@PostUpdate 288
@PrePersist 288
@PreRemove 289
@PreUpdate 289
@PrimaryKeyJoinColumn 289
@PrimaryKeyJoinColumns 291
@QueryHint 291
@SecondaryTable 292
@SecondaryTables 294
@SequenceGenerator 294
@SqlResultSetMapping 296
@SqlResultSetMappings 297
@Table 298
@TableGenerator 299
@Temporal 302
@Transient 302
@Version 303

A
abstract entity class 360
abstract schema name 379
abstract schema type 379
accessing detached entity 321
adding business logic to accessor method 353
advanced level 554
advantages of applications using JPA 195
analyzing

response time of Web server 545
annotations for relationships 326
Application Server functionality 19
asynchronous thread processing 760
asynchronous thread processing by using
WorkManager 776
asynchronous timer processing 760
asynchronous timer processing by using
TimerManager 768
attributes specified in the <persistence-unit> tag 221
auto-numbering of primary key values 344
available components 199
available JPA providers 198
available resource adapters 201

Compatibility Guide 847

B
bi-directional ManyToMany relationship 329
bi-directional ManyToOne/OneToMany relationship
328
bi-directional OneToOne relationship 327
bind address specification functionality 100, 160
BNF for JPQL 822
built-in filter 406
Bulk DELETE statement 390
Bulk UPDATE statement 390

C
cache functionality of entity objects 335
cache reference forms and cache types 337
cache registration and update timing 335
checking

state of connection pool 748
checking connection pool state 732
checking versions during flush operation or
transaction conclusion 347
checking versions of persistence fields and
relationships 346
CJPA provider 398
cjresumepool 751
cjsuspendpool 753
cjtracesync 189
classifications of functionality 20
common precautions for implementing servlets and
JSPs 424
communication timeout

overview 157
setting 92
when receiving request 157
when request is received by Web container 88
when request is received by Web server 85
when request is sent by redirector 85
when sending and receiving request 84
when sending response 158

communication timeout (in-process HTTP server) 157
compatibility with Timer and Work Manager for
Application Servers 765
complex type primary key 355
Conditional expressions that can be used in WHERE
clause 385
conditions for using the HTTP response compression
filter 410
configuration properties for member resource adapters

741

connect_timeout 523
connectable databases 311
connecting to Oracle using Oracle RAC 717
connection_sharing 523
connection pool clustering functionality 716
connection pool clustering operations 724
constructor expression 381
container-managed EntityManager 203
context 110
context root 110
contract Between JPA Provider and EJB Container 812
controlling access by limiting hosts that are allowed
access 162
controlling access by limiting HTTP-enabled methods

167
controlling access by limiting the request data size 164
controlling communication by Persistent Connection

154
controlling communication with Web client by
Persistent Connection 154
controlling flow of requests by controlling number of
concurrent connections from Web client 142
controlling flow of requests by controlling number of
concurrently executing threads 147
controlling number of concurrent connections from
Web client 142
controlling number of connections from Web client 135
correspondence between functionality and manuals 24
correspondence between server to be used and
references of parameters to be specified 464
cosminexus.jpa.cache.size.default 477
cosminexus.jpa.cache.size.ENTITY 477
cosminexus.jpa.cache.type.default 477
cosminexus.jpa.cache.type.ENTITY 477
cosminexus.jpa.exception.logging.sql (key for
customizing J2EE servers) 442
cosminexus.jpa.logging.level.operation.category (key
for customizing J2EE servers) 442
cosminexus.jpa.pessimistic-lock 520
cosminexus.jpa.target-database 477
Cosminexus JPA Provider 306, 308
Cosminexus JPA Provider operation log 672
Cosminexus JPA Provider-specific properties 477
creating accessor method 353
creating entity class 351
CTM

file 471
customizing access log of in-process HTTP server 179

Compatibility Guide 848

customizing responses to Web client using HTTP
responses 169
customizing the HTTP response header 169

D
daemon Work 776
daemon Work and non-daemon Work 776
data access model when JPA is not used 195
data access model when JPA is used 196
database operations based on query language 345
declaring collection members 384
default mapping (bi-directional relationship) 327
default mapping (unidirectional relationship) 330
default mapping rules for persistence fields and
persistence properties 359
default worker 73
defining

DB Connector properties for member resource
adapter 740
DB Connector properties for root resource adapter

744
defining mapping between entity class and database

351
defining persistence.xml 394
deploying

DB Connector for member resource adapters 742
DB Connector for root resource adapter 745

deployment-related contract 817
detached 314
developing application by using WorkManager 780
direction of relationships 327
distributing request by URL pattern

overview 51

E
ejbserver.jpa.defaultJtaDsName (key for customizing
J2EE servers) 443
ejbserver.jpa.defaultNonJtaDsName (key for
customizing J2EE servers) 443
ejbserver.jpa.defaultProviderClassName (key for
customizing J2EE servers) 443
ejbserver.jpa.disable (key for customizing J2EE
servers) 443
ejbserver.jpa.emfprop.property-key (key for
customizing J2EE servers) 443
ejbserver.jpa.overrideJtaDsName (key for customizing
J2EE servers) 443
ejbserver.jpa.overrideNonJtaDsName (key for
customizing J2EE servers) 443

ejbserver.jpa.overrideProvider (key for customizing
J2EE servers) 443
ejbserver.logger.channels.define.channel-
name.filenum (key for customizing J2EE servers) 444
ejbserver.logger.channels.define.channel-
name.filesize (key for customizing J2EE servers) 444
ejbserver.server.eheap.ajp13.enabled (key for
customizing J2EE servers) 445
embedded class 358
enabling HTTP response compression functionality

condition 410
entity classes 196
entity lifecycle management with EntityManager 363
EntityManager 203
EntityManager and persistence context 206
entity operations by EntityManager 314
entity relationships 325
error page customization 102

mechanism 103
overview 102
precaution 109

Error page customization (in-process HTTP server)171
error page settings when an exception occurs 429
error page that can be customized 171
error status code 800
error status codes returned by in-process HTTP server

802
estimating number of DB Connector connections 312
example of filtered trace based performance analysis
file 545
exception processing when optimistic lock fails 347
exceptions thrown in API functions of Query interface

393
exceptions thrown in API functions of query-related
interfaces in EntityManager 393
exceptions thrown when queries are used 392
excluding callback methods 368
executability of commands based on connection pool
status 730
executing the applications that use the HTTP response
compression filter 413
execution results of SELECT clause 382
explanations of functionality in this manual 27
Explicit heap tuning 123

F
features of JPA 195
FetchType.EAGER 320
FetchType.LAZY 320

Compatibility Guide 849

file
CTM 471
Web server integration 521

files used in J2EE Servers 441
filter

examples of recommended filter chain 408
restriction on an HTTP response compression filter

407
filter_priority 523
filtering

request and response 406
FROM clause 382
Full 338
functionality

gateway specification 114, 175
functionality available in the in-process HTTP server

133
functionality for operating and maintaining application
execution platform 23
functionality provided by Cosminexus JPA Provider310
functionality that serves as application execution
platform 22
function expression 386
function layer 543

G
gateway_host 524
gateway_https_scheme 524
gateway_port 524
general information

DB Connector for member resource adapters 741
GROUP BY clause 389

H
Hard reference 337
HardWeak 338
HAVING clause 389
HITACHI Connector Property file 755
how to obtain application-managed EntityManager 216
how to obtain container-managed EntityManager 210
how to obtain Query object 369, 372
how to set up EntityManager and
EntityManagerFactory 363
HTTP response compression filter 409

overview 409
precondition 410

HTTP response compression functionality 409

httpsd.conf 48

I
identifying

request in which timeout occurred 545
implementing callback methods 366
importing

DB Connector for member resource adapter 740
DB Connector for root resource adapter 744

improving the performance when using the PrintWriter
and JSPWriter class 428
inheritance class types 360
inheritance mapping strategy 361
in-process HTTP server 131, 132, 190
investigating

log using root application information 546
invocation order in inheritance hierarchy 368
isapi_redirect.conf 49, 523

connect_timeout 523
connection_sharing 523
filter_priority 523
gateway_host 524
gateway_https_scheme 524
gateway_port 524
log_file_dir 524
log_file_num 524
log_file_prefix 524
log_file_size 524
log_level 524
prf_id 524
receive_client_timeout 524
request_retry_count 525
send_timeout 525
trace_log 525
trace_log_file_dir 525
trace_log_file_num 525
trace_log_file_prefix 525
trace_log_file_size 525
worker_file 525
worker_mount_file 526

items checked when application is deployed 237
items that can be tuned for each type of application 679

J
J2EE servers

parameters for logical 464

Compatibility Guide 850

user property file 442
Java EE functionality that you can use in asynchronous
parallel processing of thread 761
javax.persistence.EntityManager interface 228
javax.persistence package 241
JkConnectTimeout (key of redirector action definition
file for Cosminexus HTTP Server) 460, 528
JkGatewayHost (key of redirector action definition file
for Cosminexus HTTP Server) 460, 528
JkGatewayHttpsScheme (key of redirector action
definition file for Cosminexus HTTP Server) 460, 528
JkGatewayPort (key of redirector action definition file
for Cosminexus HTTP Server) 460, 528
JkLogFileDir (key of redirector action definition file for
Cosminexus HTTP Server) 460, 528
JkLogFileNum (key of redirector action definition file for
Cosminexus HTTP Server) 460, 529
JkLogFilePrefix (key of redirector action definition file
for Cosminexus HTTP Server) 529
JkLogFileSize (key of redirector action definition file for
Cosminexus HTTP Server) 460, 529
JkLogLevel (key of redirector action definition file for
Cosminexus HTTP Server) 460, 529
JkModulePriority (key of redirector action definition file
for Cosminexus HTTP Server) 461, 530
JkMount (key of redirector action definition file for
Cosminexus HTTP Server) 461
JkOptions (key of redirector action definition file for
Cosminexus HTTP Server) 530
JkPrfId (key of redirector action definition file for
Cosminexus HTTP Server) 461, 530
JkRequestRetryCount (key of redirector action
definition file for Cosminexus HTTP Server) 461, 530
JkSendTimeout (key of redirector action definition file
for Cosminexus HTTP Server) 461, 531
JkTraceLog (key of redirector action definition file for
Cosminexus HTTP Server) 461, 531
JkTraceLogFileDir (key of redirector action definition
file for Cosminexus HTTP Server) 461, 531
JkTraceLogFileNum (key of redirector action definition
file for Cosminexus HTTP Server) 461, 531
JkTraceLogFilePrefix (key of redirector action
definition file for Cosminexus HTTP Server) 531
JkTraceLogFileSize (key of redirector action definition
file for Cosminexus HTTP Server) 461, 532
JkTranslateBackcompat (key of redirector action
definition file for Cosminexus HTTP Server) 461, 532
JkWorkersFile (key of redirector action definition file for
Cosminexus HTTP Server) 532
JOINED strategy 362
Joins expression 383

JPA functionality that can be used with Application
Server 198
JPA provider 197
JPQL coding method 379
JPQL syntax 379

K
keys specifiable in worker definition file 462, 535

L
LAZY fetch in @OneToOne and @ManyToOne 320
life cycle of daemon Work 778
life cycle of non-daemon Work 779
life cycle of TimerManager 770
life cycle of WorkManager 777
limiting hosts that are allowed access 162
limiting request data size 164
list of files

Web server integration 522
load balancer 61
location for specifying callback method 365
log_file_dir 524
log_file_num 524
log_file_prefix 524
log_file_size 524
log_level 524
log and trace output by in-process HTTP server 179
logical J2EE server, parameters for 464
long-life Work 776

M
maintenance level 554
major functionality changes in Application Server 11-00

29
managed 314
managed entity 322
managing EntityManager life cycle 209
mapped superclass 360
mapping definition 527
mapping definition file

Microsoft IIS 534
member connection pool 737
merge processing of entity 321
method of injecting EntityManagerFactory in
application 216
method of injecting EntityManager in application 210

Compatibility Guide 851

method of looking up EntityManagerFactory from
application 218
method of looking up EntityManager from application

212
method of scheduling thread by using TimerManager

768
method of using @IdClass 356
method of using embedded class 355
method signature rules of accessor method 353
methods provided with EntityManager 203
Microsoft IIS

mapping definition file 534
redirector action definition file 523

Microsoft IIS Settings 806
mod_jk.conf 48, 526
module definition 527
multiple schedule of TimerManager 772

N
new 314
non-daemon Work 776
NONE 340
non-entity class of entity inheritance hierarchy 361
normalizing request URIs 436
notes for using cookies 428
notes on accessing files 429
notes on API functions of EntityManager 364
notes on data source specification 394
notes on executing query 378
notes on multiple persistence contexts using cache341
notes on path expressions 388
notes on referencing error information by
javax.servlet.error.XXXXX 428
notes on updating or deleting data in query 340
notes on using cache functionality 340
notes on using callback methods 367
notes on using JPA with Application Server 239
notes on using JPQL 391
notes on using JPQL in HiRDB 392
notes on using literals 388
notes on using optimistic lock 348
notes on using transaction and JDBC connection 427
notes on using URLConnection class 429
notes related to acquisition of class loader 429
notes related to display of input values with special
meanings 428
notes related to error page display after commit 428
notes related to loading of native library 429

notes related to package name specification 427

O
objects for communication with redirector 122
obtaining and executing native query results 376
obtaining and executing query results 371
obtaining entities from database 318
operations and state transition for entities 315
operations for the entities 314
optimistic lock 346
optimistic lock processing 346
optimizing

database access method 678
method of invoking Enterprise Bean 677
number of concurrent executions 677

ORDER BY clause 389
order of invoking callback methods 367
output information of trace based performance
analysis file 544
output log information and log acquisition settings 671
output of log and trace 179
overriding @PersistenceUnit definition using DD 219
overview of asynchronous parallel processing of
threads 760
overview of connection pool clustering 719
overview of controlling number of connections from
Web client 135
overview of controlling number of request processing
threads 137
overview of in-process HTTP server 132
overview of trace based performance analysis of
Application Server 543

P
parameters applicable to logical Web servers 460
parameters defined for each worker 463
parameters that set up redirector action definition for
Cosminexus HTTP Server 460
parameters used for setting the user properties for the
J2EE server 464
parameters used for setting worker definition 462
path expression 383
performance tuning 676
persistence context when application-managed
EntityManager is used 209
persistence context when container-managed
EntityManager is used 207
persistence field 352

Compatibility Guide 852

persistence property 352
persistence unit 205
persistent connection 154
persist operation for entities 316
pessimistic lock in JPQL 350
points

during Web server integration 49
points of collecting trace 548
POST request-distributing worker 71
POST request-forwarding worker 71
precautions for implementing servlets and JSPs 424
precautions for restarting Cosminexus HTTP Server

804
precautions for upgrading Cosminexus HTTP Server

805
precautions related to Cosminexus HTTP Server
settings 804
precautions related to redirector log 805
precautions when operating SOAP applications 190
preconditions for using Cosminexus JPA Provider 310
prevention level 554
prf_id 524
PRF trace collection level 554
PRF trace collection levels 548
PRF trace collection levels (filter trace (when an
exception occurs)) 581
PRF trace collection levels (filter trace (when the
processing terminates normally)) 575
PRF trace collection levels (in-process HTTP server)

563
PRF trace get level (Web container) 560, 568
primary key type 355
priority of operators 387
procedure for asynchronous parallel processing of
thread 760
procedure for checking whether data is updated 346
procedure for inheriting entity class 360
procedure for processing cache functionality 335
procedure for referencing and updating database with
JPQL 369
procedure for referencing and updating database with
native query 372
procedure for referencing and updating database with
query language 369
procedure for resource adapter settings (to use
connection pool clustering) 734
procedure for specifying callback method 365
procedure for stopping or starting connection pool
manually 731

procedure for updating cache 336
processing in Cosminexus JPA Provider 308
processing of cache functionality 335
propagation of operations to entities 316
property that you can specify when using
dbconnector_cp_clusterpool_root.rar 755
property that you can specify when using
dbconnector_oracle_cp_clusterpool_member.rar 756

Q
query domain 380

R
range variable declaration and identification variables

382
reading entity information from database 320
receive_client_timeout 524
recommended mode 32
redirector 42
redirector action definition file

Microsoft IIS 523
redirector action definition file for Cosminexus HTTP
Server 526
redirector definition 528
reference scope of persistence unit name 236
referencing

member connection pool information 748
relation between JPQL and cache 337
relationship types 325
removed 314
remove operation for entities 317
request_retry_count 525
request distribution 44, 74

mechanism 44
method 46
pattern transferring request 45
POST data size 71
round-robin format 61
type of URL pattern 52
URL pattern 51, 149
with redirector 149

request distribution by POST data size
examples 72
overview 71

request distribution in round-robin format
examples 62

request processing thread 137

Compatibility Guide 853

requirements for creating entity classes 351
resource adapters used 721
response customization 149
restarting

connection pool 749
member connection pool 751

restarting connection pool 732
result set mapping 374
retrying sending of request 85
return value of getRequestURI and getRequestURL
methods of javax.servlet.http.HttpServletRequest
interface 437
rules applied to callback methods 367
runtime-related contract 812

S
scope of cache functionality 340
scope of support for the annotations included in the
javax.persistence package 401
SELECT clause 380
SELECT statement 380
send_timeout 525
separate and merge operations of entity from
persistence context 321
servlet filter 406
setFirstResult method 377
set function 381
setMaxResults method 376
setting

cluster connection pool 737
DB Connector for member resource adapter 740
DB Connector for root resource adapter 743

setting communication timeout
when response is received by redirector 90
when response is sent by Web container 89
when response is sent by Web server 91
when sending and receiving response 89

settings for acquiring the in-process HTTP server log
187

settings for acquiring the in-process HTTP server log
674

settings for connecting to database (in case of cluster
connection pool) 737, 750
settings required for clustering connection pool 733
short-life Work 776
SINGLE TABLE strategy 362
Soft reference 337
SoftWeak 339

specifying access methods for entity class fields 352
specifying callback listener in O/R mapping file 366
specifying callback method in annotation 365
specifying flush mode 377
specifying IP address (In-process HTTP server) 160
specifying primary key in entities 355
specifying query hint 377
specifying range of query result items 376
specifying the IP address (Web server integration) 100
standard level 554
starting

DB Connector for member resource adapter 746
DB Connector for root resource adapter 747

state transition of TimerManager 771
status of member connection pools 728
stopping

DB Connector for member resource adapter 746
DB Connector for root resource adapter 747

supported application formats 200
supported class loader configuration 201
support for the request HTTP methods in the redirector

801
suspending

connection pool 749
member connection pool 753

suspending connection pool 732
synchronization with database 318
synchronizing

trace file information for in-process HTTP server 189

T
TCP/UDP port numbers used by Application Server704
testing the connectivity

DB Connector for member resource adapter 743
DB Connector for root resource adapter 746

thread pool and queue used in non-daemon Work 777
TimerManager 760
timing when entity information is read from database

320
trace_log 525
trace_log_file_dir 525
trace_log_file_num 525
trace_log_file_prefix 525
trace_log_file_size 525
trace based performance analysis

that you can use to check request that is timed out
546

Compatibility Guide 854

trace collection point 548
trace collection points (filter trace (when an exception
occurs)) 581
trace collection points (filter trace (when the processing
terminates normally)) 575
trace collection points (in-process HTTP server) 563
trace collection points and PRF trace collection
levels(database session failover functionality) 596
trace collection points and PRF trace collection levels
(database session failover functionality) 586, 591, 601
trace collection points and trace information that can
be collected during binary conversion of the entity class

660
trace collection points and trace information that can
be collected during request processing for creating
HTTP session (trace of database session failover
functionality) 586
trace collection points and trace information that can
be collected during the acquisition or release
processing of EntityManagerFactory 646
trace collection points and trace information that can
be collected during the acquisition processing of
EntityManager 648
trace collection points and trace information that can
be collected during the connection operation of the
DB Connector 663
trace collection points and trace information that can
be collected during the operation of EntityManager 649
trace collection points and trace information that can
be collected during the operation of EntityTransaction

656
trace collection points and trace information that can
be collected during the operation of Query 652
trace collection points and trace information that can
be collected during the release processing of
EntityManager 651
trace collection points and trace information that can
be collected during transaction linkage with the
transaction manager 661
trace collection points and trace information that can
be collected in the case of callback method to the user

658
trace collection points and trace information that can
be collected when the persistent context of application
management is used 604
trace collection points and trace information that can
be collected when the persistent context of container
management is used 611
trace collection points in a JPA 604
trace collection points indicated by event IDs used in
filtering 545
trace collection points of a redirector 556

trace collection points of a Web container (filter trace)
575

trace collection points of a Web container (session
trace) 568
trace collection points of a Web container (trace of
request processing) 560
trace collection points of a Web container (trace of the
database session failover functionality) 586
Trace collection points of CDI 667
trace collection points of the Cosminexus JPA provider

646
trace get point (Web container) 560, 568
trace information that can be collected (database
session failover functionality) 588, 593, 598, 602
trace information that can be collected (filter trace
(when an exception occurs)) 582
trace information that can be collected (filter trace
(when the processing terminates normally)) 577
trace information that can be collected (in-process
HTTP server) 566
trace information that can be collected (Web container)

561, 571
transaction control and EntityManager 204
transition of member connection pool state (when pool
is suspended automatically) 728
transition of member connection pool state (when pool
is suspended manually) 727
troubleshooting and recovery

if problem occurs in JPA application 398
tuning method 682
types of EntityManager 203
types of entity states 314
types of persistence context 207
types of persistence fields and persistence properties
of entities 354

U
unidirectional ManyToMany relationship 333
unidirectional ManyToOne relationship 331
unidirectional Multi-Valued relationship 332
unidirectional OneToMany relationship 332
unidirectional OneToOne relationship 330
unidirectional Single-Valued relationship 330
updating database using entities 313
URI decode functionality 184
uriworkermap.properties 48, 534
user-defined file for setting the request distribution
method (when the Smart Composer functionality is not
used) 47

Compatibility Guide 855

user-defined file for setting the request distribution
method (when the Smart Composer functionality is
used) 47
user property file

J2EE servers 442
using the in-process HTTP server 132
using user thread 430
usrconf.properties 48, 442

V
V9 compatibility mode 32
viewing top page 110

W
Weak 340
Weak reference 337
Web container 405

controlling number of concurrently executing thread
120

error status code 798
notification of gateway information 114, 175

webserver.connector.ajp13.backlog (key for
customizing J2EE servers) 445
webserver.connector.ajp13.bind_host (key for
customizing J2EE servers) 445
webserver.connector.ajp13.max_threads 121
webserver.connector.ajp13.max_threads (key for
customizing J2EE servers) 446
webserver.connector.ajp13.port (key for customizing
J2EE servers) 446
webserver.connector.ajp13.receive_timeout (key for
customizing J2EE servers) 446
webserver.connector.ajp13.send_timeout (key for
customizing J2EE servers) 446
webserver.connector.inprocess_http.backlog (key for
customizing J2EE servers) 446
webserver.connector.inprocess_http.bind_host (key
for customizing J2EE servers) 447
webserver.connector.inprocess_http.enabled_method
s (key for customizing J2EE servers) 447
webserver.connector.inprocess_http.enabled (key for
customizing J2EE servers) 447
webserver.connector.inprocess_http.error_custom.err
or-page-customization-definition-
name.file.content_type (key for customizing J2EE
servers) 448
webserver.connector.inprocess_http.error_custom.err
or-page-customization-definition-name.file (key for
customizing J2EE servers) 448

webserver.connector.inprocess_http.error_custom.err
or-page-customization-definition-name.redirect_url
(key for customizing J2EE servers) 448
webserver.connector.inprocess_http.error_custom.err
or-page-customization-definition-name.request_url
(key for customizing J2EE servers) 449
webserver.connector.inprocess_http.error_custom.err
or-page-customization-definition-name.status (key for
customizing J2EE servers) 449
webserver.connector.inprocess_http.error_custom.list
(key for customizing J2EE servers) 447
webserver.connector.inprocess_http.gateway.host
(key for customizing J2EE servers) 449
webserver.connector.inprocess_http.gateway.https_s
cheme (key for customizing J2EE servers) 450
webserver.connector.inprocess_http.gateway.port
(key for customizing J2EE servers) 449
webserver.connector.inprocess_http.hostname_looku
ps (key for customizing J2EE servers) 450
webserver.connector.inprocess_http.init_threads (key
for customizing J2EE servers) 451
webserver.connector.inprocess_http.keep_start_threa
ds (key for customizing J2EE servers) 451
webserver.connector.inprocess_http.limit.max_heade
rs (key for customizing J2EE servers) 452
webserver.connector.inprocess_http.limit.max_reques
t_body (key for customizing J2EE servers) 452
webserver.connector.inprocess_http.limit.max_reques
t_header (key for customizing J2EE servers) 452
webserver.connector.inprocess_http.limit.max_reques
t_line (key for customizing J2EE servers) 452
webserver.connector.inprocess_http.max_connection
s (key for customizing J2EE servers) 453
webserver.connector.inprocess_http.max_execute_th
reads 121
webserver.connector.inprocess_http.max_execute_th
reads (key for customizing J2EE servers) 453
webserver.connector.inprocess_http.max_spare_thre
ads (key for customizing J2EE servers) 453
webserver.connector.inprocess_http.min_spare_threa
ds (key for customizing J2EE servers) 453
webserver.connector.inprocess_http.permitted.hosts
(key for customizing J2EE servers) 454
webserver.connector.inprocess_http.persistent_conn
ection.max_connections (key for customizing J2EE
servers) 454
webserver.connector.inprocess_http.persistent_conn
ection.max_requests (key for customizing J2EE
servers) 454
webserver.connector.inprocess_http.persistent_conn
ection.timeout (key for customizing J2EE servers) 455
webserver.connector.inprocess_http.port (key for
customizing J2EE servers) 455

Compatibility Guide 856

webserver.connector.inprocess_http.receive_timeout
(key for customizing J2EE servers) 455
webserver.connector.inprocess_http.redirect.list (key
for customizing J2EE servers) 457
webserver.connector.inprocess_http.redirect.redirect-
definition-name.file.content_type (key for customizing
J2EE servers) 455
webserver.connector.inprocess_http.redirect.redirect-
definition-name.file (key for customizing J2EE servers)

455
webserver.connector.inprocess_http.redirect.redirect-
definition-name.redirect_url (key for customizing J2EE
servers) 456
webserver.connector.inprocess_http.redirect.redirect-
definition-name.request_url (key for customizing J2EE
servers) 456
webserver.connector.inprocess_http.redirect.redirect-
definition-name.status (key for customizing J2EE
servers) 456
webserver.connector.inprocess_http.rejection_thread
s (key for customizing J2EE servers) 457
webserver.connector.inprocess_http.response.header
.server (key for customizing J2EE servers) 457
webserver.connector.inprocess_http.send_timeout
(key for customizing J2EE servers) 457
webserver.container.ac.logEnabled (key for
customizing J2EE servers) 458
webserver.logger.access_log.format_list 187, 674
webserver.logger.access_log.<format-name 187
webserver.logger.access_log.format-name 674
webserver.logger.access_log.inprocess_http.enabled

187, 674
webserver.logger.access_log.inprocess_http.filename

187, 674
webserver.logger.access_log.inprocess_http.filenum

187, 674
webserver.logger.access_log.inprocess_http.filesize

187, 674
webserver.logger.access_log.inprocess_http.usage_f
ormat 187, 674
webserver.logger.communication_trace.inprocess_htt
p.filenum 188, 675
webserver.logger.thread_trace.inprocess_http.filenum

187, 674
Web server integration

file 521
list of files 522

WHERE clause 385
worker_file 525
worker_mount_file 526
worker.list 535

worker.list (key for worker definition file) 462
worker.worker-name.balanced_workers 536
worker.worker-name.balanced_workers (parameters
defined for each worker) 463
worker.worker-name.cachesize 536
worker.worker-name.cachesize (parameters defined
for each worker) 463
worker.worker-name.default_worker 536
worker.worker-name.default_worker (parameters
defined for each worker) 463
worker.worker-name.delegate_error_code 536
worker.worker-name.delegate_error_code
(parameters defined for each worker) 463
worker.worker-name.host 536
worker.worker-name.host (parameters defined for
each worker) 463
worker.worker-name.lbfactor 537
worker.worker-name.lbfactor (parameters defined for
each worker) 463
worker.worker-name.parameter 536
worker.worker-name.parameter (key for worker
definition file) 463
worker.worker-name.port 537
worker.worker-name.port (parameters defined for each
worker) 463
worker.worker-name.post_data 537
worker.worker-name.post_data (parameters defined
for each worker) 463
worker.worker-name.post_size_workers 537
worker.worker-name.post_size_workers (parameters
defined for each worker) 463
worker.worker-name.receive_timeout 537
worker.worker-name.receive_timeout (Parameters
defined for each worker) 463
worker.worker-name.type (parameters defined for
each worker) 463, 537
worker definition file 46, 535

parameter 536
parameter for worker.worker-name.type 538

worker process 45
workers.properties 48, 535

worker.list 535
worker.worker-name.balanced_workers 536
worker.worker-name.cachesize 536
worker.worker-name.default_worker 536
worker.worker-name.delegate_error_code 536
worker.worker-name.host 536
worker.worker-name.lbfactor 537
worker.worker-name.parameter 536

Compatibility Guide 857

worker.worker-name.port 537
worker.worker-name.post_data 537
worker.worker-name.post_size_workers 537
worker.worker-name.receive_timeout 537

WorkManager 760
writing entity information to database 318

Compatibility Guide 858

	Compatibility Guide
	Notices
	Preface
	Contents
	Part 1: Application Server Functionality
	1. Application Server Functionality
	1.1 Classifications of functionality
	1.1.1 Functionality that serves as an application execution platform
	1.1.2 Functionality for operating and maintaining the application execution platform
	1.1.3 Correspondence between functionality and manuals

	1.2 Explanations of the functionality in this manual
	1.2.1 Meaning of explanation categories
	1.2.2 Examples of tables indicating explanation categories

	1.3 Major functionality changes in Application Server 11-00
	1.3.1 Simplifying implementation and setup
	1.3.2 Supporting the standard and existing functionality
	1.3.3 Maintaining and improving reliability
	1.3.4 Other purposes

	Part 2: V9 Compatibility Mode
	2. Overview of V9 Compatibility Mode
	2.1 V9 compatibility mode and recommended mode

	3. How to Use V9 Compatibility Mode
	3.1 The method of specifying V9 compatibility mode when creating a new J2EE server
	3.1.1 When using the Smart Composer functionality
	3.1.2 When using the management portal (INTENTIONALLY DELETED)
	3.1.3 When using a J2EE server command
	3.1.4 When using the development environment instant setup functionality (INTENTIONALLY DELETED)

	3.2 The method of performing an update installation to migrate an existing J2EE server
	3.3 Checking the J2EE server compatibility mode
	3.4 Precautions on use

	4. Functionality of V9 Compatibility Mode and Recommended Mode
	4.1 Functional differences between V9 compatibility mode and recommended mode

	5. Web Server Integration
	5.1 Organization of this chapter
	5.2 Distributing requests with the Web server (Redirector)
	5.2.1 Mechanism of request distribution with the Redirector
	5.2.2 User-defined file for setting the request distribution method (When the Smart Composer functionality is used)
	5.2.3 User-defined file for setting the request distribution method (When the Smart Composer functionality is not used)
	5.2.4 Points to be considered during Web server integration

	5.3 Distributing requests by URL pattern
	5.3.1 Overview of distributing requests by URL pattern
	5.3.2 Types of URL patterns and priority of applicable patterns
	5.3.3 Execution environment settings (When the Smart Composer functionality is used)
	5.3.4 Execution environment settings (When the Smart Composer functionality is not used)

	5.4 Distributing requests by the round-robin format
	5.4.1 Overview of distributing requests by the round-robin format
	5.4.2 Examples of request distribution in the round-robin format
	5.4.3 Defining request distribution in the round robin format
	5.4.4 Execution environment settings (When the Smart Composer functionality is used)
	5.4.5 Execution environment settings (When the Smart Composer functionality is not used)
	5.4.6 Precautions related to request distribution in the round-robin format

	5.5 Distributing requests by the POST data size
	5.5.1 Overview of distributing requests by the POST data size
	5.5.2 Examples of distributing requests by the POST data size
	5.5.3 Request distribution conditions
	5.5.4 Definition for distributing requests by the POST data size
	5.5.5 Execution environment settings (When the Smart Composer functionality is used)
	5.5.6 Execution environment settings (When the Smart Composer functionality is not used)

	5.6 Communication timeout (Web server integration)
	5.6.1 Communication timeout when sending and receiving a request
	5.6.2 Setting the communication timeout when sending and receiving a response
	5.6.3 Setting the communication timeout
	5.6.4 Setting the communication timeout when sending and receiving a request (When the Smart Composer functionality is used)
	5.6.5 Setting the communication timeout when sending and receiving a request (When the Smart Composer functionality is not used)
	5.6.6 Setting the communication timeout when sending and receiving a response (When the Smart Composer functionality is used)
	5.6.7 Setting the communication timeout when sending and receiving a response (When the Smart Composer functionality is not used)

	5.7 Specifying the IP address (Web server integration)
	5.7.1 Bind address specification functionality
	5.7.2 Execution environment settings (J2EE server settings)
	5.7.3 Precautions for specifying the IP address in Web server integration

	5.8 Error page customization with the Web server integration functionality
	5.8.1 Overview of error page customization
	5.8.2 Mechanism of error page customization
	5.8.3 Execution environment settings (When the Smart Composer functionality is used)
	5.8.4 Execution environment settings (When the Smart Composer functionality is not used)
	5.8.5 Precautions related to error page customization

	5.9 Viewing the top page by specifying the domain name
	5.9.1 Viewing the top page by specifying the domain name
	5.9.2 Execution environment settings (When the Smart Composer functionality is used)
	5.9.3 Execution environment settings (When the Smart Composer functionality is not used)

	5.10 Notification of gateway information to a Web container
	5.10.1 Gateway specification functionality
	5.10.2 Execution environment settings (When the Smart Composer functionality is used)
	5.10.3 Execution environment settings (When the Smart Composer functionality is not used)
	5.10.4 Precautions related to reporting the gateway information to a Web Container

	5.11 Controlling the number of concurrently executing threads in the Web container
	5.11.1 Mechanism for controlling the number of concurrently executing threads (Web container)
	5.11.2 Execution environment settings (J2EE server settings)

	5.12 Objects for communication with redirector
	5.13 Explicit heap tuning
	5.13.1 How to estimate the memory size of Explicit heap (Estimating memory size used in J2EE server)
	5.13.2 Memory size used by the object for communicating with redirector
	5.13.3 How to estimate using statistical information

	6. In-Process HTTP Server
	6.1 Organization of this chapter
	6.2 Overview of in-process HTTP server
	6.2.1 Using the in-process HTTP server
	6.2.2 Functionality available in the in-process HTTP server
	6.2.3 Execution environment settings (J2EE server settings)

	6.3 Controlling the number of connections from the Web client
	6.3.1 Overview of controlling the number of connections from the Web client
	6.3.2 Execution environment settings (J2EE server settings)

	6.4 Controlling the number of request processing threads
	6.4.1 Overview of controlling the number of request processing threads
	6.4.2 Execution environment settings (J2EE server settings)

	6.5 Controlling the flow of requests by controlling the number of concurrent connections from the Web client
	6.5.1 Controlling the number of concurrent connections from the Web client
	6.5.2 Execution environment settings (J2EE server settings)

	6.6 Controlling the flow of requests by controlling the number of concurrently executing threads
	6.6.1 Overview of controlling the flow of requests by controlling the number of concurrently executing threads
	6.6.2 Execution environment settings (J2EE server settings)

	6.7 Request distribution with the redirector
	6.7.1 Distributing requests by URL pattern
	6.7.2 Response customization
	6.7.3 Execution environment settings (J2EE server settings)
	6.7.4 Precautions related to request distribution with the redirector

	6.8 Controlling the communication with the Web client by persistent connection
	6.8.1 Controlling communication by Persistent Connection
	6.8.2 Execution environment settings (J2EE server settings)

	6.9 Communication timeout (In-process HTTP server)
	6.9.1 Overview of the communication timeout
	6.9.2 Execution environment settings (J2EE server settings)

	6.10 Specifying the IP address (In-process HTTP server)
	6.10.1 Bind address specification functionality
	6.10.2 Execution environment settings (J2EE server settings)
	6.10.3 Precautions related to IP address specification in the in-process HTTP server

	6.11 Controlling access by limiting the hosts that are allowed access
	6.11.1 Limiting the hosts that are allowed access
	6.11.2 Execution environment settings (J2EE server settings)

	6.12 Controlling access by limiting the request data size
	6.12.1 Limiting the request data size
	6.12.2 Execution environment settings (J2EE server settings)

	6.13 Controlling access by limiting the HTTP-enabled methods
	6.13.1 Limiting the HTTP-enabled methods
	6.13.2 Execution environment settings (J2EE server settings)

	6.14 Customizing responses to the Web client using HTTP responses
	6.14.1 Customizing the HTTP response header
	6.14.2 Execution environment settings (J2EE server settings)

	6.15 Error page customization (In-process HTTP server)
	6.15.1 Error page that can be customized
	6.15.2 Implementation required for customizing the error page
	6.15.3 Execution environment settings (J2EE server settings)
	6.15.4 Precautions related to error page customization

	6.16 Notification of gateway information to a Web container
	6.16.1 Gateway specification functionality
	6.16.2 Execution environment settings (J2EE server settings)
	6.16.3 Precautions related to reporting the gateway information to the Web container

	6.17 Output of log and trace
	6.17.1 Log and trace output by the in-process HTTP server
	6.17.2 Customizing the access log of the in-process HTTP server

	6.18 URI decode functionality
	6.18.1 Overview of URI decode functionality
	6.18.2 Execution environment settings (J2EE server settings)
	6.18.3 Precautions for using the URI decode functionality

	6.19 Settings for acquiring the in-process HTTP server log
	6.20 cjtracesync (synchronize trace file information for in-process HTTP server)
	6.21 Precautions when operating SOAP applications
	6.21.1 Precautions when stopping the J2EE server using the in-process HTTP server

	7. Cosminexus JAX-RS Engine (JAX-RS 1.1)
	7.1 Cosminexus JAX-RS engine in V9 compatibility mode (JAX-RS 1.1)

	8. How to Use JPA with Application Server
	8.1 Organization of this chapter
	8.2 Features of JPA
	8.2.1 Advantages of applications using JPA
	8.2.2 Entity class
	8.2.3 JPA provider

	8.3 JPA functionality that can be used with Application Server
	8.3.1 Available JPA providers
	8.3.2 Available components
	8.3.3 Supported application formats
	8.3.4 Supported class loader configuration
	8.3.5 available resource adapters

	8.4 EntityManager
	8.4.1 Methods provided with EntityManager
	8.4.2 Types of EntityManager
	8.4.3 Transaction control and EntityManager
	8.4.4 Persistence unit

	8.5 Persistence context
	8.5.1 EntityManager and persistence context
	8.5.2 Persistence context when the container-managed EntityManager is used
	8.5.3 Persistence context when the application-managed EntityManager is used

	8.6 How to obtain the container-managed EntityManager
	8.6.1 Method of injecting EntityManager in the application
	8.6.2 Method of looking up EntityManager from the application
	8.6.3 Overriding the @PersistenceContext definition using the DD

	8.7 How to obtain the application-managed EntityManager
	8.7.1 Method of injecting EntityManagerFactory in the application
	8.7.2 Method of looking up EntityManagerFactory from the application
	8.7.3 Overriding the @PersistenceUnit definition using the DD

	8.8 Definitions in persistence.xml
	8.8.1 Attributes specified in the <persistence-unit> tag
	8.8.2 Tags specified under the <persistence-unit> tag

	8.9 Allocating persistence.xml
	8.10 JPA interfaces
	8.10.1 javax.persistence.EntityManager interface
	8.10.2 javax.persistence.EntityManagerFactory interface

	8.11 Notes on setting up applications
	8.11.1 Notes on allocating the entity classes
	8.11.2 Reference scope of the persistence unit name
	8.11.3 Items checked when the application is deployed
	8.11.4 Notes on using the JPA with Application Server
	8.11.5 Notes when the Cosminexus JPA functionality is not used

	8.12 javax.persistence package
	8.12.1 @AssociationOverride
	8.12.2 @AssociationOverrides
	8.12.3 @AttributeOverride
	8.12.4 @AttributeOverrides
	8.12.5 @Basic
	8.12.6 @Column
	8.12.7 @ColumnResult
	8.12.8 @DiscriminatorColumn
	8.12.9 @DiscriminatorValue
	8.12.10 @Embeddable
	8.12.11 @Embedded
	8.12.12 @EmbeddedId
	8.12.13 @Entity
	8.12.14 @EntityListeners
	8.12.15 @EntityResult
	8.12.16 @Enumerated
	8.12.17 @ExcludeDefaultListeners
	8.12.18 @ExcludeSuperclassListeners
	8.12.19 @FieldResult
	8.12.20 @GeneratedValue
	8.12.21 @Id
	8.12.22 @IdClass
	8.12.23 @Inheritance
	8.12.24 @JoinColumn
	8.12.25 @JoinColumns
	8.12.26 @JoinTable
	8.12.27 @Lob
	8.12.28 @ManyToMany
	8.12.29 @ManyToOne
	8.12.30 @MapKey
	8.12.31 @MappedSuperclass
	8.12.32 @NamedNativeQueries
	8.12.33 @NamedNativeQuery
	8.12.34 @NamedQueries
	8.12.35 @NamedQuery
	8.12.36 @OneToMany
	8.12.37 @OneToOne
	8.12.38 @OrderBy
	8.12.39 @PersistenceContext
	8.12.40 @PersistenceContexts
	8.12.41 @PersistenceProperty
	8.12.42 @PersistenceUnit
	8.12.43 @PersistenceUnits
	8.12.44 @PostLoad
	8.12.45 @PostPersist
	8.12.46 @PostRemove
	8.12.47 @PostUpdate
	8.12.48 @PrePersist
	8.12.49 @PreRemove
	8.12.50 @PreUpdate
	8.12.51 @PrimaryKeyJoinColumn
	8.12.52 @PrimaryKeyJoinColumns
	8.12.53 @QueryHint
	8.12.54 @SecondaryTable
	8.12.55 @SecondaryTables
	8.12.56 @SequenceGenerator
	8.12.57 @SqlResultSetMapping
	8.12.58 @SqlResultSetMappings
	8.12.59 @Table
	8.12.60 @TableGenerator
	8.12.61 @Temporal
	8.12.62 @Transient
	8.12.63 @Version
	8.12.64 Correspondence between the annotations and O/R mapping

	9. Cosminexus JPA Provider
	9.1 Organization of this chapter
	9.2 Cosminexus JPA Provider
	9.2.1 Processing in Cosminexus JPA Provider
	9.2.2 Functionality provided by Cosminexus JPA Provider
	9.2.3 Preconditions for using Cosminexus JPA Provider
	9.2.4 Estimating the number of DB Connector connections

	9.3 Updating a database using entities
	9.4 Entity operations by EntityManager
	9.4.1 Transition of entity states
	9.4.2 persist operation for the entities
	9.4.3 remove operation for the entities
	9.4.4 Obtaining the entities from the database
	9.4.5 Synchronization with the database
	9.4.6 Separate and merge operations of an entity from the persistence context
	9.4.7 managed entity

	9.5 Defining the mapping information between the database and Java objects
	9.6 Entity relationships
	9.6.1 Relationship types
	9.6.2 Annotations for relationships
	9.6.3 Direction of relationships
	9.6.4 Default mapping (bi-directional relationship)
	9.6.5 Default mapping (unidirectional relationship)

	9.7 Cache functionality of the entity objects
	9.7.1 Processing of the cache functionality
	9.7.2 Cache reference forms and cache types
	9.7.3 Scope of the cache functionality
	9.7.4 Notes on using the cache functionality

	9.8 Auto-numbering of the primary key values
	9.9 Database operations based on the query language
	9.10 Optimistic lock
	9.10.1 Optimistic lock processing
	9.10.2 Exception processing when optimistic lock fails
	9.10.3 Notes on using the optimistic lock

	9.11 Pessimistic lock in JPQL
	9.12 Creating an entity class
	9.12.1 Defining the mapping between an entity class and database
	9.12.2 Requirements for creating entity classes
	9.12.3 Specifying the access methods for the entity class fields
	9.12.4 Creating the accessor method
	9.12.5 Types of persistence fields and persistence properties of the entities
	9.12.6 Specifying the primary key in the entities
	9.12.7 Default mapping rules for the persistence fields and persistence properties

	9.13 Procedure for inheriting an entity class
	9.13.1 Inheritance class types
	9.13.2 Inheritance mapping strategy

	9.14 Procedure for using EntityManager and EntityManagerFactory
	9.14.1 Entity lifecycle management with EntityManager
	9.14.2 How to set up EntityManager and EntityManagerFactory
	9.14.3 Notes on the API functions of EntityManager

	9.15 Procedure for specifying the callback method
	9.15.1 Location for specifying the callback method
	9.15.2 Implementing the callback methods
	9.15.3 Order of invoking the callback methods

	9.16 Procedure for referencing and updating the database with the query language
	9.16.1 Procedure for referencing and updating the database with JPQL
	9.16.2 Procedure for referencing and updating the database with the native query
	9.16.3 Specifying the range of query result items
	9.16.4 Specifying the flush mode
	9.16.5 Specifying a query hint
	9.16.6 Notes on executing a query

	9.17 JPQL coding method
	9.17.1 JPQL syntax
	9.17.2 SELECT statement
	9.17.3 SELECT clause
	9.17.4 FROM clause
	9.17.5 WHERE clause
	9.17.6 GROUP BY clause and HAVING clause
	9.17.7 ORDER BY clause
	9.17.8 Bulk UPDATE statement and Bulk DELETE statement
	9.17.9 Notes on using JPQL
	9.17.10 Exceptions thrown when queries are used

	9.18 Defining persistence.xml
	9.18.1 Defining the cache functionality of the entity objects
	9.18.2 Notes on data source specification

	9.19 Settings in the execution environment
	9.19.1 J2EE server settings
	9.19.2 DB Connector settings

	9.20 Precautions on application development
	9.20.1 Precautions when using LAZY fetch in @OneToOne and @ManyToOne in Cosminexus 09-60 or a later environment

	9.21 If a problem occurs in the JPA Application
	9.21.1 Exception occurrence by user application
	9.21.2 Errors occurred in a performance screen
	9.21.3 Data used in troubleshooting

	9.22 Scope of support for the annotations included in the javax.persistence package
	9.22.1 Annotations that depend on the JPA Provider
	9.22.2 Annotations that do not depend on the JPA Provider

	10. Web Container
	10.1 Functionality of filtering requests and responses
	10.1.1 Servlet filter provided by Application Server (built-in filter)
	10.1.2 Examples of recommended filter chain
	10.1.3 Definition in the DD
	10.1.4 Execution environment settings (Web application settings)

	10.2 HTTP response compression functionality
	10.2.1 Overview of HTTP response compression filter
	10.2.2 Conditions for using the HTTP response compression filter
	10.2.3 Executing the applications that use the HTTP response compression filter
	10.2.4 Definition in the DD
	10.2.5 Examples of the DD definitions
	10.2.6 Execution environment settings (Web application settings)

	10.3 Precautions related to the Web container
	10.4 Precautions for implementing servlets and JSPs
	10.4.1 Common precautions for implementing servlets and JSPs
	10.4.2 Precautions related to the specifications that are added or changed in the EL2.2 specifications

	Part 3: Reference (V9 Compatibility Mode)
	11. Files Used in J2EE Servers
	11.1 Details on the files used on J2EE servers
	11.1.1 usrconf.properties (User property file for J2EE servers)

	12. Files Used by the Smart Composer Functionality
	12.1 Parameters applicable to logical Web servers
	12.1.1 Parameters that set up the redirector action definition for Cosminexus HTTP Server
	12.1.2 Parameters used for setting up the worker definition

	12.2 Parameters applicable to logical J2EE servers
	12.2.1 Parameters used for setting up the user properties for the J2EE server

	13. Files Used with JPA
	13.1 List of files used in Cosminexus JPA Provider
	13.2 persistence.xml
	13.2.1 Details of persistence.xml
	13.2.2 Cosminexus JPA Provider-specific properties that can be specified in the <property> tag

	13.3 O/R mapping files
	13.3.1 Elements below entity-mappings
	13.3.2 Elements below persistence-unit-metadata
	13.3.3 Elements below table-generator
	13.3.4 Elements below named-query
	13.3.5 Elements below named-native-query
	13.3.6 Elements below sql-result-set-mapping
	13.3.7 Elements below mapped-superclass
	13.3.8 Elements below entity
	13.3.9 Elements under embeddable
	13.3.10 Other elements

	13.4 Query hint

	14. Files Used in Web Server Integration
	14.1 List of files used in Web server integration
	14.2 Details on files used in Web server integration
	14.2.1 isapi_redirect.conf (Redirector action definition file for Microsoft IIS)
	14.2.2 mod_jk.conf (Redirector action definition file for Cosminexus HTTP Server)
	14.2.3 uriworkermap.properties (Mapping definition file for Microsoft IIS)
	14.2.4 workers.properties (Worker definition file)

	15. Performance Analysis Trace
	15.1 Overview of performance analysis traces
	15.2 Overview of the trace based performance analysis of Application Server
	15.3 Output information of the trace based performance analysis file (for the trace based performance analysis)
	15.4 Analyzing the Response Time of a Web Server
	15.4.1 Identifying the Request for Which Timeout Occurred
	15.4.2 Investigating the Log Using the Root Application Information

	15.5 Overview on trace collection points and PRF trace collection levels of performance analysis trace
	15.5.1 Trace collection point
	15.5.2 PRF trace collection level

	15.6 Trace collection points of a redirector
	15.6.1 Trace collection points and PRF trace collection levels
	15.6.2 Trace information that can be collected

	15.7 Trace collection points of a Web container (trace of request processing)
	15.7.1 Trace Get Point and the PRF Trace Get Level
	15.7.2 Trace information that can be collected
	15.7.3 Trace collection points and PRF trace collection levels (when an in-process HTTP server is used)
	15.7.4 Trace information that can be collected

	15.8 Trace collection points of a Web container (session trace)
	15.8.1 Trace Get Point and the PRF Trace Get Level (Session Trace)
	15.8.2 Trace information that can be collected

	15.9 Trace collection points of a Web container (filter trace)
	15.9.1 Trace collection points of a Web container when the processing terminates normally (filter trace)
	15.9.2 Trace collection points of a Web container when an exception occurs (filter trace)

	15.10 Trace collection points of a Web container (trace of the database session failover functionality)
	15.10.1 Trace collection points and trace information that can be collected during request processing for creating an HTTP session (Trace of the database session failover functionality)
	15.10.2 Trace collection points and trace information that can be collected during request processing for updating an HTTP session (Trace of database session failover functionality)
	15.10.3 Trace collection points and trace information that can be collected during request processing for disabling an HTTP session (Trace of database session failover functionality)
	15.10.4 Trace collection points and trace information that can be collected during request processing for disabling an HTTP session through valid period monitoring (Trace of database session failover functionality)

	15.11 Trace collection points in a JPA
	15.11.1 Trace collection points and trace information that can be collected when the persistent context of application management is used
	15.11.2 Trace collection points and trace information that can be collected when the persistent context of container management is used

	15.12 Trace collection points of the Cosminexus JPA provider
	15.12.1 Trace collection points and trace information that can be collected during the acquisition or release processing of EntityManagerFactory
	15.12.2 Trace collection points and trace information that can be collected during the acquisition processing of EntityManager
	15.12.3 Trace collection points and trace information that can be collected during the operation of EntityManager
	15.12.4 Trace collection points and trace information that can be collected during the release processing of EntityManager
	15.12.5 Trace collection points and trace information that can be collected during the operation of Query
	15.12.6 Trace collection points and trace information that can be collected during the operation of EntityTransaction
	15.12.7 Trace collection points and trace information that can be collected in the case of callback method to the user
	15.12.8 Trace collection points and trace information that can be collected during binary conversion of the entity class
	15.12.9 Trace collection points and trace information that can be collected during transaction linkage with the transaction manager
	15.12.10 Trace collection points and trace information that can be collected during the connection operation of the DB Connector

	15.13 Trace collection points of CDI
	15.13.1 Trace collection points of CDI and the trace information that can be collected

	16. Output Log Information and Log Acquisition Settings
	16.1 Log Information Output for Each Functionality
	16.1.1 Cosminexus JPA Provider operation log

	16.2 Settings for acquiring the in-process HTTP server log

	17. System Design Guide (V9 Compatibility Mode)
	17.1 Points to be considered for performance tuning
	17.1.1 Viewpoints for performance tuning
	17.1.2 Items that can be tuned for each type of application

	17.2 Tuning Method
	17.2.1 Tuning of J2EE server and Web server (including redirector)

	17.3 Optimizing the number of concurrent executions
	17.3.1 Controlling the number of request-processing threads in a Web server
	17.3.2 Controlling the number of concurrent executions of a Web application

	17.4 Setting a timeout
	17.4.1 Points where a timeout can be set
	17.4.2 Setting the timeout in a Web front-end system
	17.4.3 Tuning parameters for setting the timeout

	17.5 Optimizing the operations of the Web application
	17.5.1 Tuning parameters for optimizing the operations of the Web application

	17.6 Tuning other items
	17.7 TCP/UDP port numbers used by Application Server

	Part 4: Other Compatibility Functionality
	18. Functionality Compatible with the Basic and Development Functionality (Connecting a Database by Using DABroker Library) (INTENTIONALLY DELETED)
	18.1 (INTENTIONALLY DELETED)

	19. Functionality Compatible with the Basic and Development Functionality (Using Annotations in EJB 2.1 and Servlet 2.4) (INTENTIONALLY DELETED)
	19.1 (INTENTIONALLY DELETED)

	20. Settings for Using the Connection Pool Clustering Functionality
	20.1 Functionality for connection pool clustering
	20.1.1 Connecting to Oracle using Oracle RAC
	20.1.2 Overview of connection pool clustering
	20.1.3 Resource adapters used
	20.1.4 Connection pool clustering operations
	20.1.5 Procedure for stopping or starting a connection pool manually
	20.1.6 Settings required for clustering a connection pool

	20.2 Resource connections
	20.2.1 Procedure for resource adapter settings (To use connection pool clustering)

	20.3 Settings for connecting to the database (in the case of a cluster connection pool)
	20.3.1 Overview of a cluster connection pool
	20.3.2 Setting the DB Connector for a member resource adapter
	20.3.3 Setting the DB Connector for a root resource adapter
	20.3.4 Starting and stopping the DB Connector for a member resource adapter
	20.3.5 Starting and stopping the DB Connector for a root resource adapter
	20.3.6 Checking the state of the connection pool
	20.3.7 Suspending the connection pool
	20.3.8 Resuming the connection pool

	20.4 Overview of settings and operations
	20.4.1 Settings for connecting to the database (in the case of cluster connection pool)

	20.5 Resource operation commands to be used on a J2EE server
	cjresumepool (restart member connection pool)
	cjsuspendpool (suspend member connection pool)

	20.6 HITACHI Connector Property file
	20.6.1 Properties that you can specify in the <config-property> tag set up for DB Connector

	21. Asynchronous Parallel Processing of Threads
	21.1 Organization of this chapter
	21.2 Overview of the asynchronous parallel processing of threads
	21.2.1 Procedure for the asynchronous parallel processing of threads
	21.2.2 Java EE functionality that you can use in the asynchronous parallel processing of threads
	21.2.3 Compatibility with Timer and Work Manager for Application Servers

	21.3 Asynchronous timer processing by using TimerManager
	21.3.1 Methods of scheduling threads by using TimerManager
	21.3.2 Life cycle of TimerManager
	21.3.3 State transition of TimerManager
	21.3.4 Multiple schedules of TimerManager
	21.3.5 Developing applications by using TimerManager

	21.4 Asynchronous thread processing by using WorkManager
	21.4.1 Daemon Work and non-daemon Work
	21.4.2 Thread pool and queues used in non-daemon Work
	21.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work
	21.4.4 Developing applications by using WorkManager
	21.4.5 Settings in the execution environment

	Appendixes
	A. Installing the redirector functionality
	A.1 Installing the redirector functionality (In Windows)
	A.2 Installing the redirector functionality (In UNIX)

	B. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures
	B.1 Tuning parameters for specifying the timeout (methods other than the recommended procedures)
	B.2 Tuning parameters for optimizing the operations of the Web application (methods other than the recommended procedures)
	B.3 Tuning parameters for a persistent connection (methods other than the recommended procedures)

	C. Error Status Code
	C.1 Error status codes returned by the Web container
	C.2 Error status codes returned by the Redirector
	C.3 Error status codes returned by the in-process HTTP server

	D. Precautions related to Cosminexus HTTP Server Settings
	D.1 Precautions for restarting Cosminexus HTTP Server
	D.2 Precautions related to the redirector log
	D.3 Precautions for upgrading Cosminexus HTTP Server

	E. Microsoft IIS Settings
	E.1 Microsoft IIS 10.0 settings

	F. Contract Between the JPA Provider and EJB Container
	F.1 Runtime-related contract
	F.2 Deployment-related contract

	G. BNF for JPQL
	H. Main Functionality Changes in Each Version
	H.1 Main functionality changes in 09-87
	H.2 Main functionality changes in 09-80
	H.3 Main functionality changes in 09-70
	H.4 Main functionality changes in 09-60
	H.5 Main functionality changes in 09-50
	H.6 Main functionality changes in 09-00
	H.7 Main functionality changes in 08-70
	H.8 Main functionality changes in 08-53
	H.9 Main functionality changes in 08-50
	H.10 Main functionality changes in 08-00

	I. Glossary

	Index

