
Maintenance and Migration Guide

3021-3-J11-10(E)

uCosminexus Application Server

Notices

■ Relevant program products
See the Release Notes.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law,
and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI, Cosminexus, DABroker, HA Monitor, HiRDB, JP1, OpenTP1, TPBroker, uCosminexus are either
trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
AIX is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
AMD is a trademark (or registered trademark) of Advanced Micro Devices, Inc.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft, Active Directory are trademarks of the Microsoft group of companies.
Microsoft, Excel are trademarks of the Microsoft group of companies.
Microsoft, Internet Explorer are trademarks of the Microsoft group of companies.
Microsoft, SQL Server are trademarks of the Microsoft group of companies.
Microsoft, Windows are trademarks of the Microsoft group of companies.
Microsoft, Windows Server are trademarks of the Microsoft group of companies.
Microsoft is a trademark of the Microsoft group of companies.
Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source
community for development tool providers.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

■ Microsoft product screen shots
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

■ Issued
Aug. 2022: 3021-3-J11-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2022, Hitachi, Ltd.

Maintenance and Migration Guide 2

Preface

For details on the prerequisites before reading this manual, see the Release Notes.

■ Non-supported functionality
Some functionality described in this manual is not supported. Non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management Server management portal

• Remote installation functionality for the UNIX edition

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

Maintenance and Migration Guide 3

Contents

Notices 2
Preface 3

1 Application Server Functionality 16
1.1 Classifications of functionality 17
1.1.1 Functionality as an application execution platform 19
1.1.2 Functionality for operating and maintaining the application execution platform 20
1.1.3 Functionality and corresponding manuals 21
1.2 Functionality corresponding to the purpose of the system 24
1.2.1 Functionality for system maintenance 24
1.2.2 JavaVM functionality of the product 24
1.2.3 Functionality for migrating from products of earlier versions 25
1.3 Description of the functionality described in this manual 26
1.3.1 Meaning of classifications 26
1.3.2 Example of tables describing classifications 26
1.4 Main functionality changes in Application Server 11-00 28
1.4.1 Simplifying implementation and setup 28
1.4.2 Supporting standard and existing functionality 28
1.4.3 Maintaining and improving reliability 29
1.4.4 Other purposes 29

2 Troubleshooting 30
2.1 Organization of this chapter 31
2.2 Overview of troubleshooting 32
2.2.1 Overview of Troubleshooting 32
2.2.2 Flow of data acquisition when a trouble occurs 34
2.3 Acquiring the Data 37
2.3.1 Data That Can Be Acquired Automatically When a Problem Occurs 37
2.3.2 Collecting the Material Using Commands during Error Detection 38
2.3.3 Collecting the Snapshot Log 41
2.3.4 Location to store the acquired information 47
2.4 Types of Required Data 48
2.4.1 Trouble types and the required data 49
2.4.2 List of Required Data to Be Acquired 50
2.4.3 Correspondence Between Acquisition Methods and Investigation Methods 51
2.5 Troubleshooting and Recovery 53
2.5.1 If the Configuration Software Process (Logical Server) Terminates Abnormally 53

Maintenance and Migration Guide 4

2.5.2 If forced termination of a J2EE application fails 55
2.5.3 If a Problem Occurs When Using the Database Session Failover Function 56
2.5.4 If JavaVM Terminates abnormally 56
2.5.5 If Administration Agent is terminated forcibly when OutOfMemoryError occurs 59
2.5.6 If a Problem Occurs in the System Linked with JP1 59
2.5.7 If a problem occurs in 1-to-1 node switching systems 60
2.5.8 If a problem occurs in N-to-1 recovery systems 61
2.5.9 If a problem occurs in the node switching system for the host unit management model 62
2.5.10 If a Problem Occurs in the EJB Client 63
2.6 Precautions Related to Troubleshooting 64
2.6.1 Precautions Related to the System Log of an EJB Client Application 64
2.6.2 Precautions When Using CTM 65
2.6.3 Precautions when using PRF 65
2.6.4 JavaVM data-related considerations 66

3 Preparing for Troubleshooting 67
3.1 Organization of this chapter 68
3.2 Overview of data acquisition settings 69
3.2.1 Specifiable contents 70
3.2.2 Overview of data acquisition settings (Systems that execute J2EE applications) 73
3.2.3 Overview of data acquisition settings (Systems executing batch applications) 76
3.3 Execution environment settings 79
3.3.1 Data acquisition settings using failure detection time commands (Systems for executing J2EE

applications) 79
3.3.2 Data acquisition settings using failure detection time commands (Systems for executing batch

applications) 83
3.3.3 Settings for collecting snapshot logs (Systems for executing J2EE applications) 84
3.3.4 Settings for collecting snapshot log (Systems for executing batch applications) 87
3.3.5 Settings for acquiring the Management Server log 88
3.3.6 Settings for Acquiring the J2EE Server Log 89
3.3.7 Settings for Acquiring the Batch Server Log 93
3.3.8 Settings for Acquiring the Web Server Log 94
3.3.9 Settings for acquiring the NIO HTTP server log 95
3.3.10 Settings for Acquiring the Cosminexus Manager Log 96
3.3.11 Settings for Acquiring the Resource Adapter Logs 97
3.3.12 Settings for Acquiring the Cosminexus TPBroker Log 98
3.3.13 Settings for collecting Cosminexus JMS Provider logs 101
3.3.14 Settings for Collecting the OS Statistical Information 104
3.3.15 Settings for Collecting a User Dump 105
3.3.16 Settings for Acquiring a Core Dump 106
3.3.17 Settings for Acquiring the JavaVM Material 108
3.3.18 Settings for acquiring the WebSocket container log 113

Maintenance and Migration Guide 5

4 Output Destinations and Output Methods of Data Required for
Troubleshooting 114

4.1 Organization of this chapter 115
4.2 Types of data used for troubleshooting (When snapshot log is not used) 116
4.3 Application Server log (Systems for executing J2EE applications) 117
4.3.1 Acquiring the Cosminexus Component Container Logs 117
4.3.2 Acquiring the Cosminexus Performance Tracer Log 140
4.3.3 Acquiring the Cosminexus Component Transaction Monitor Log 141
4.3.4 Acquiring the log output in audit log 142
4.3.5 Acquiring the Application User Log 143
4.4 Application Server log (Systems for executing batch applications) 145
4.4.1 Acquiring the Cosminexus Component Container Logs (systems executing batch applications) 145
4.4.2 Acquiring the Application User Log (systems executing batch applications) 155
4.5 EJB Client Application System Log 156
4.5.1 Types of EJB Client Application System Logs 156
4.5.2 Output Destination of the EJB Client Application System Log 157
4.6 Trace based performance analysis 160
4.7 JavaVM thread dump 161
4.7.1 When using the management command 161
4.7.2 When using separate commands 162
4.7.3 When using JavaVM commands 165
4.7.4 Precautions to be taken when class-wise statistical information is output in the thread dump 166
4.8 JavaVM GC Log 168
4.9 Memory Dump 169
4.9.1 Acquiring a User Dump (In Windows) 169
4.9.2 Acquiring J2EE Server Memory Dump 169
4.9.3 Acquiring the CORBA Naming Service Memory Dump 171
4.9.4 Acquiring the Management Server Memory Dump 171
4.9.5 Acquiring the Administration Agent Memory Dump 173
4.9.6 Notes on obtaining the memory dump 174
4.10 JavaVM log (JavaVM log file) 175
4.11 JavaVM Output Message Logs (Standard Output or Error Report File) 176
4.11.1 In Windows 176
4.11.2 In UNIX 176
4.12 OS Status Information and OS Logs 177
4.12.1 Acquiring the OS Status Information 177
4.12.2 Acquiring OS Logs 179
4.13 OS Statistical Information 180
4.13.1 In Windows 180
4.13.2 In UNIX 181
4.14 Application Server definition information 182

Maintenance and Migration Guide 6

4.15 Contents of J2EE server or batch server working directory 183
4.16 Application Server Resource Setting Information 184
4.17 Web Server Logs 185
4.18 JavaVM stack trace information 186
4.19 Event log of the Explicit Memory Management functionality 187
4.20 Information on the execution of the Component Container Administrator setup command (In UNIX)188

5 Problem Analysis 189
5.1 Organization of this chapter 190
5.2 Application Server Log 191
5.2.1 Output Format and Output Items of the Hitachi Trace Common Library Format Log 197
5.2.2 Precautions to Be Taken When Referencing the Hitachi Trace Common Library Format Log 198
5.2.3 Output format and output items of access log of NIO HTTP Server 201
5.2.4 Output Format and Output Items of the Event Log (In Windows) 206
5.2.5 Output Format and Output Items of syslog (In UNIX) 206
5.3 EJB Client Application Log 208
5.4 Trace based performance analysis 209
5.5 JavaVM Thread Dump 210
5.5.1 Structure of thread dump information 210
5.5.2 Mapping between thread dump and trace based performance analysis file 211
5.5.3 Output contents of Explicit heap details information 213
5.6 JavaVM GC Log 217
5.7 JavaVM log (JavaVM log file) 218
5.7.1 Options to output the JavaVM log file 218
5.7.2 Acquiring the extended verbosegc information 218
5.7.3 Contents of the code cache area-related log 221
5.8 Message log output by JavaVM (Standard output and error report file) 223
5.8.1 When a Signal Occurs 223
5.8.2 When C Heap Is Insufficient 232
5.8.3 When an Internal Error Occurs 234
5.8.4 When Thread Creation Fails 235
5.9 OS status information and OS log 236
5.10 JavaVM stack trace information 237
5.10.1 When the -XX:+HitachiLocalsInThrowable Option Is Specified 238
5.10.2 When the -XX:+HitachiLocalsInStackTrace Option Is Specified 243
5.11 Event log of Explicit Memory Management functionality 245
5.11.1 Output trigger of event log of the Explicit Memory Management functionality 245
5.11.2 Confirmation method of event log of Explicit Memory Management functionality 247
5.11.3 Contents output when output level is normal 249
5.11.4 Contents output when output level is verbose 264
5.11.5 Contents Output when Output Level is Debug 275

Maintenance and Migration Guide 7

6 Troubleshooting Procedure 281
6.1 Organization of this chapter 282
6.2 List of main problems 283
6.2.1 Main problems occurring during installation 283
6.2.2 Main problems occurring during server setup 283
6.2.3 Main problems occurring during server startup 284
6.2.4 Main problems occurring during application startup 284
6.2.5 Main problems occurring during operations 285
6.2.6 Main problems occurring during server/application maintenance 286
6.3 Processes that output logs 287
6.4 Overview of troubleshooting 289
6.4.1 Troubleshooting during setup 289
6.4.2 Troubleshooting during operations 293
6.4.3 Troubleshooting the server management commands 294
6.5 Examples of troubleshooting during operations 296
6.5.1 Troubleshooting when a process is down 296
6.5.2 Troubleshooting when a response is delayed 299

7 Performance Analysis by Using Trace Based Performance Analysis 306
7.1 Organization of this chapter 307
7.2 Overview of the trace based performance analysis 308
7.2.1 Overview of the trace based performance analysis of Application Server 309
7.2.2 Overview of the trace based performance analysis of applications 313
7.3 Collecting the trace based performance analysis file by using Management Server 318
7.3.1 How to collect a trace based performance analysis file 318
7.3.2 Output destination of trace based performance analysis files 319
7.3.3 Output information of the trace based performance analysis file (for the trace based performance

analysis) 319
7.3.4 Output information of the trace based performance analysis file (for the user-extended trace

based performance analysis) 322
7.4 Implementation for collection of root application information of trace based performance analysis 323
7.5 Settings of execution environment 324
7.5.1 Settings for using the trace based performance analysis 324
7.5.2 Settings for using the user-extended trace based performance analysis 325
7.5.3 Settings for the methods to be traced by the user-extended trace based performance analysis 328
7.6 Logs output when the user-extended trace based performance analysis is executed 337
7.6.1 Logs for the reading of the configuration file for the user-extended trace based performance

analysis 337
7.6.2 Logs for application rewriting 338
7.7 Analysis operation of the processing performance by using the trace based performance

analysis file 340
7.7.1 Overview of the Operation for Analyzing the Processing Performance 340
7.7.2 Analyzing the Response Time of a Web Server 341

Maintenance and Migration Guide 8

7.7.3 Investigating the Processing Status of a Request in an Application Server 342
7.7.4 Investigating the Life Cycle of a Session 343
7.7.5 Identifying the Transaction in Which a Timeout Occurred 344
7.7.6 Identifying the Request for Which Timeout Occurred 345
7.7.7 Investigating the Log Using the Root Application Information 346
7.7.8 Identifying the Connection in Which an Error Occurred 347
7.7.9 Investigation about the location of the problem associated to the trace based performance

analysis file and thread dump 347
7.8 Notes on using the user-extended trace based performance analysis 350

8 Trace Collection Points and PRF Trace Collection Levels of the Trace
Based Performance Analysis 352

8.1 Organization of this chapter 353
8.2 Trace Get Point of trace based performance analysis and the PRF Trace Get Level 355
8.2.1 Trace collection point 355
8.2.2 PRF trace collection level 361
8.3 Trace collection points of a CTM 362
8.3.1 Trace collection points and PRF trace collection levels 362
8.3.2 Trace information that can be collected 365
8.4 Trace collection points of a Web container (trace of request processing) 367
8.4.1 Trace Get Point and the PRF Trace Get Level 367
8.4.2 Trace information that can be collected 368
8.5 Trace collection points of a Web container (session trace) 372
8.5.1 Trace Get Point and the PRF Trace Get Level (Session Trace) 372
8.5.2 Trace information that can be collected 375
8.6 Trace collection points of a Web container (filter trace) 378
8.6.1 Trace collection points of a Web container when the processing terminates normally (filter trace) 378
8.6.2 Trace collection points of a Web container when an exception occurs (filter trace) 383
8.7 Trace collection points of a Web container (trace of the database session failover functionality) 388
8.7.1 Trace collection points and trace information that can be collected during request processing for

creating an HTTP session (Trace of the database session failover functionality) 388
8.7.2 Trace collection points and trace information that can be collected during request processing for

updating an HTTP session (Trace of database session failover functionality) 392
8.7.3 Trace collection points and trace information that can be collected during request processing for

disabling an HTTP session (Trace of database session failover functionality) 397
8.7.4 Trace collection points and trace information that can be collected during request processing for

disabling an HTTP session through valid period monitoring (Trace of database session failover
functionality) 401

8.8 Trace collection points of an EJB container 403
8.8.1 In the case of a Session Bean or Entity Bean 403
8.8.2 In the Case of Message-driven Bean (EJB2.0) 406
8.8.3 In the case of a Message-driven Bean (EJB2.1 and later) 407
8.8.4 For Timer Service 409

Maintenance and Migration Guide 9

8.8.5 When the Session Bean is invoked asynchronously 418
8.8.6 When method cancellation occurs 434
8.9 Trace collection points of a JNDI 436
8.9.1 Trace Get Point and the PRF Trace Get Level 436
8.9.2 Trace information that can be collected 438
8.10 Trace collection points of a JTA 440
8.10.1 When a CMT and TransactionManager are used 440
8.10.2 When UserTransaction is used 441
8.10.3 In the case of a transaction timeout 443
8.10.4 When using the asynchronous concurrent processing for threads 444
8.11 Trace collection points of a DB Connector and JCA container 449
8.11.1 Connection-related trace collection points and trace information that can be collected 449
8.11.2 Trace collection points and trace information that can be collected when a local transaction is used459
8.11.3 Trace collection points and trace information that can be collected when a connection association

is used 461
8.11.4 Trace collection points and trace information that can be collected when the automatic connection

close functionality is used 462
8.11.5 Trace collection points and trace information that can be collected in the case of linkage with the

DB Connector for Cosminexus RM 464
8.11.6 Trace collection points and trace information that can be collected when work management is used468
8.12 Trace collection points of an RMI 474
8.12.1 Trace get point and the PRF trace get level 474
8.12.2 Trace information that can be collected 474
8.13 Trace collection points of an OTS 476
8.13.1 Trace Get Point and the PRF Trace Get Level 476
8.13.2 Trace information that can be collected 479
8.14 Trace collection points of standard output, standard error output, and user log 486
8.14.1 Trace collection points of standard output or standard error output 486
8.14.2 Trace collection points of the user log 487
8.15 Trace collection points of a DI 489
8.15.1 Trace Get Point and the PRF Trace Get Level 489
8.15.2 Trace information that can be collected 489
8.16 Trace collection points of the batch application execution functionality 491
8.16.1 Trace Get Point and the PRF Trace Get Level 491
8.16.2 Trace information that can be collected 492
8.17 Trace collection points of the TP1 inbound integrated function 494
8.17.1 Trace collection points and PRF trace collection levels 494
8.17.2 Trace information that can be collected 504
8.18 Trace collection points of Cosminexus JMS Provider 508
8.18.1 Trace collection points of the JMS ConnectionFactory interface and the trace information that

can be collected 508
8.18.2 Trace collection points of the JMS Connection interface and the trace information that can be

collected 510

Maintenance and Migration Guide 10

8.18.3 Trace collection points of the JMS session interface and the trace information that can be collected512
8.18.4 Trace collection points of the JMS messages, producer, consumer, and queue browser and the

trace information that can be collected 518
8.18.5 Trace collection points of CJMSP Broker when connecting to the CJMSP resource adapter and

the trace information that can be collected 522
8.18.6 Trace collection points of the transaction management in the CJMSP resource adapter and trace

information that can be collected 523
8.18.7 Trace collection points when Message-driven Bean is deployed from the CJMSP resource

adapter and the trace information that can be collected 527
8.19 Trace collection points of JavaMail 529
8.19.1 Trace collection points of JavaMail transmission and the trace information that you can collect 529
8.19.2 Trace collection points on JavaMail receipt and the trace information that you can collect 538
8.20 Trace collection points of JSF 2.2 546
8.20.1 Trace collection points and the trace information that can be collected 546
8.20.2 Trace information that can be collected 549
8.20.3 Data output to the exception log 551
8.21 Trace collection points of CDI 552
8.21.1 Trace collection points of CDI and the trace information that can be collected 552
8.22 Trace collection points when a J2EE server is started or terminated 556
8.22.1 Trace Get Point and the PRF Trace Get Level 556
8.22.2 Trace information that can be collected 556
8.23 Trace collection points of an application 557
8.23.1 Trace collection points and PRF trace collection levels 557
8.23.2 Trace information that can be collected 558
8.24 Trace collection points of JAX-RS 563
8.24.1 Trace collection points and trace information that can be collected 563
8.24.2 Trace information that can be collected 564
8.24.3 Data output to the exception log 565
8.25 Trace collection points of a Java batch 566
8.25.1 Trace collection points and trace information that can be collected 566
8.25.2 Trace information that can be collected 573
8.25.3 Data output to the exception log 578
8.26 Trace collection points of WebSocket 579
8.26.1 When an opening handshake request is received 579
8.26.2 When a message is received 580
8.26.3 When data is sent 584
8.26.4 When a Ping is received 586
8.26.5 When a Pong is received 589
8.26.6 When a closing handshake request is received 592
8.26.7 When a closing handshake request is sent 595
8.27 Trace collection points of Concurrency Utilities 598
8.27.1 Trace collection points and trace information that can be collected 598

Maintenance and Migration Guide 11

8.27.2 Trace information that can be collected 605

9 Product JavaVM Functionality 607
9.1 Organization of this chapter 608
9.2 Overview of the product JavaVM functionality 609
9.3 Class-wise statistical functionality 610
9.3.1 Overview of the class-wise statistical functionality 610
9.3.2 Functionality that requires the class-wise statistical functionality 611
9.3.3 Outputting Statistic Information for Each Class 611
9.3.4 Precautions to output the class-wise statistical information 613
9.4 Instance statistical functionality 615
9.4.1 Overview of the instance statistical functionality 615
9.4.2 Class-wise statistical information output by the instance statistical functionality 617
9.5 STATIC member statistical functionality 620
9.5.1 Overview of the STATIC member statistical functionality 620
9.5.2 Class-wise statistical information output by the STATIC member statistical functionality 621
9.6 Reference-related information output functionality 624
9.6.1 Overview of the reference-related information output functionality 624
9.6.2 Class-wise statistical information output by the reference-related information output functionality 626
9.6.3 Class-wise statistical information output by the static field-based reference relationship output

functionality 629
9.6.4 Notes for the output of the static field-based reference relationships 632
9.7 Pre-statistical GC selection functionality 633
9.7.1 Overview of the pre-statistical GC selection functionality 633
9.7.2 Guidelines for selecting the GC 634
9.8 Unused objects statistical functionality in the Tenured area 635
9.8.1 Overview of the unused objects statistical functionality in the Tenured area 635
9.8.2 Class-wise statistical information output by the unused objects statistical functionality in the

Tenured area 638
9.8.3 Notes for executing the unused objects statistical functionality in the Tenured area 638
9.9 Base object list output functionality for Tenured augmentation factors 643
9.9.1 Overview of the base object list output functionality for Tenured augmentation factors 643
9.9.2 Class-wise statistical information output by the base object list output functionality for Tenured

augmentation factors 645
9.10 Class-wise statistical information analysis functionality 647
9.10.1 Overview of the class-wise statistical information analysis functionality 647
9.10.2 Output example of the class-wise statistical information analysis functionality 648
9.10.3 Notes for the class-wise statistical information analysis functionality 650
9.11 Tenuring distribution information output functionality of the Survivor area 651
9.11.1 Overview of the tenuring distribution information output functionality of the Survivor area 651
9.11.2 Output format and output example of the tenuring distribution information of the Survivor area 652
9.11.3 Settings for execution environment 653

Maintenance and Migration Guide 12

9.11.4 Precautions when using tenuring distribution information output functionality of the Survivor area 654
9.12 hndlwrap functionality 655
9.12.1 Overview of the hndlwrap functionality 655
9.12.2 Notes for using the hndlwrap functionality 655
9.13 Functionality to set the upper limit of allocation size of C heap during JIT compilation 656
9.14 Functionality to set the upper limit of the number of threads 657
9.15 Notes on using the product JavaVM functionality (in UNIX) 658
9.15.1 Common in UNIX 658
9.15.2 In AIX 658
9.15.3 In Linux 660
9.16 Finalize-retention resolution function 661
9.16.1 Overview 661
9.16.2 Output information 661
9.16.3 Settings for execution environment 662
9.16.4 Notes 663
9.17 Asynchronous log file output function 664
9.17.1 Overview 664
9.17.2 Target log files 664
9.17.3 Error cases 664
9.17.4 Notes 665
9.17.5 Memory requirements 665
9.18 Object-pointer compression function 666
9.18.1 Overview 666
9.18.2 Prerequisites 666
9.18.3 Notes 666
9.19 Incompatibility between Oracle JDK and the JDK provided by the Application Server 668
9.19.1 Memory management method selected by default 668
9.19.2 Runtime image 668
9.19.3 Module-related options 668

10 Migrating from Application Server of Earlier Versions (In the J2EE
Server Mode) (INTENTIONALLY DELETED) 670

10.1 (INTENTIONALLY DELETED) 671

11 Migrating to the Recommended Functionality 672
11.1 Notes on migration to a database connection using HiRDB Type4 JDBC Driver 673
11.2 Migration to a database connection using Oracle JDBC Thin Driver from DABroker Library 674

12 Migrating from Version 9 to Version 11 675
12.1 Overview 676
12.2 New functionality of version 11 and changes from version 9 677
12.2.1 NIO HTTP server functionality 677

Maintenance and Migration Guide 13

12.2.2 Support for new Java EE 7 specifications 678
12.2.3 V9 compatibility mode 679
12.2.4 Functions not supported in version 11 679
12.3 Application migration guide 682
12.3.1 Migration to alternative functionality 682
12.3.2 Changes in servlets 683
12.3.3 Changes in CDI 684
12.3.4 Changes in JAX-RS 685
12.3.5 Changes in JPA 686
12.3.6 Changes in JSF 687
12.4 Migration guide for system design 688
12.4.1 Performance tuning 688
12.4.2 Estimating the resources to be used 698
12.5 Migration guide for system maintenance information 699
12.5.1 Changes of the output destination log files 699
12.5.2 Changes in the access log 699
12.5.3 Changes in the trace collection points of the trace based performance analysis 700
12.5.4 Changes in messages 701
12.6 Parameter replacement reference 704
12.6.1 User property definitions for J2EE servers 704
12.6.2 Definitions of the redirector 706
12.7 Abolished parameter reference 707
12.7.1 Files used by the J2EE server 707
12.7.2 Files used by Web server integration 707
12.7.3 Files used by JPA 708
12.7.4 Parameters specified for the Smart Composer functionality 708

Appendixes 709
A List of Snapshot Logs to Be Collected 710
A.1 Overview of the list of the snapshot log to be collected 711
A.2 Cosminexus Component Container 719
A.3 Cosminexus Component Transaction Monitor 760
A.4 Cosminexus DABroker Library 761
A.5 Cosminexus Developer's Kit for Java 763
A.6 Cosminexus Performance Tracer 764
A.7 Cosminexus Web Services - Security 765
A.8 Cosminexus HTTP Server 768
A.9 Microsoft Internet Information Service 770
A.10 HCSC server 771
A.11 HCSC server (FTP receipt) 773
A.12 HCSC server (TP1 adapter) 774

Maintenance and Migration Guide 14

A.13 HCSC server (File adapter) 775
A.14 HCSC server (Object Access adapter) 776
A.15 HCSC server (Message Queue adapter) 777
A.16 HCSC server (FTP adapter) 779
A.17 HCSC server (SFTP adapter) 780
A.18 HCSC server (file operation adapter) 781
A.19 HCSC server (FTP inbound adapter) 783
A.20 HCSC server (mail adapter) 784
A.21 HCSC server (HTTP adapter) 786
A.22 HCSC server (command adapter) 787
A.23 HCSC server (file event reception) 789
A.24 Audit log 791
A.25 Other information 793
B Identifying the Connection in Which an Error Has Occurred When Connecting to a Database 795
B.1 Cosminexus Component Container 798
B.2 Cosminexus DABroker Library 802
B.3 HiRDB Client 804
B.4 HiRDB Server 806
B.5 Oracle Client 807
B.6 Oracle Server 807
C Recovering Tables for a CMR When an Error Occurs 810
D Main Functionality Changes in Each Version 811
D.1 Main functionality changes in 09-87 811
D.2 Main functionality changes in 09-80 811
D.3 Main functionality changes in 09-70 812
D.4 Main functionality changes in 09-60 814
D.5 Main functionality changes in 09-50 815
D.6 Main functionality changes in 09-00 818
D.7 Main functionality changes in 08-70 821
D.8 Main functionality changes in 08-53 823
D.9 Main functionality changes in 08-50 825
D.10 Main functionality changes in 08-00 828
E Glossary 831

Index 832

Maintenance and Migration Guide 15

1 Application Server Functionality

This chapter describes classifications and purpose of the functionality of Application Server and
manuals corresponding to the functionality. This chapter also describes the functionality that is
changed in this version.

Maintenance and Migration Guide 16

1.1 Classifications of functionality

Application Server is a product used for building an environment for executing applications mainly on a J2EE server
that supports Java EE 7 and for developing applications that run in the execution environment. You can use a variety of
functionality, such as functionality compliant with the Java EE standard specifications and functionality independently
extended on Application Server. By selecting and using the functionality according to the purpose and intended use, you
can build and operate a highly reliable system having an excellent processing performance.

The following are the broad classifications of Application Server functionality:

• Functionality that serves as an execution platform for the applications

• Functionality that is used for operating and maintaining the execution platform for the applications

The above-mentioned functionality can be further classified according to the positioning and the intended use of the
functionality. Application Server manuals are provided according to the classification of the functionality.

The following figure shows the classification of the Application Server functionality and the set of manuals
corresponding to the functionality.

1. Application Server Functionality

Maintenance and Migration Guide 17

Figure 1‒1: Classification of the Application Server functionality and the set of manuals
corresponding to each functionality

#1
uCosminexus Application Server has been omitted from the manual names mentioned in the Manuals column.

#2
You can execute SOAP Web Services and RESTful Web Services with Application Server. Depending on the
purpose, see the following manuals other than the uCosminexus Application Server Web Service Development Guide.

To develop and execute SOAP applications

• uCosminexus Application Server SOAP Application Development Guide

To ensure security for SOAP Web Services and SOAP applications

• uCosminexus Application Server XML Security - Core User Guide

• uCosminexus Application Server Web Service Security Users Guide

To learn about XML processing in detail

• uCosminexus Application Server XML Processor User Guide

1. Application Server Functionality

Maintenance and Migration Guide 18

The following subsections describe the classifications of functionality and the manuals corresponding to
the functionality.

1.1.1 Functionality as an application execution platform
This functionality works as a platform for executing online businesses and batch businesses implemented as
the applications. You choose functionality that you want to use according to the intended use of a system and
your requirements.

You must determine whether you want to use functionality that serves as the execution platform for the applications, even
before you perform the system building or application development.

The following are the classification-wise descriptions of functionality that serve as the application execution platform:

(1) Basic functionality to operate applications (basic development
functions)

This functionality includes the basic functionality for operating applications (J2EE applications). This functionality is
mainly the J2EE server functionality.

Application Server provides a J2EE server that supports Java EE 7. The J2EE server provides functionality that is
compliant with the standard specifications and is independent of Application Server.

The basic development functionality can be further classified into three types according to the types of the J2EE
applications for which you use functionality. The manuals for Application Server function guide have been separated
according to this classification.

The following is an overview of each classification:

• Functionality for executing the Web applications (Web containers)
This classification includes the Web container functionality that serves as the execution platform for Web
applications and functionality executed by linking the Web containers and the Web servers.

• Functionality for executing the Enterprise Bean (EJB containers)
This classification includes the EJB container functionality that serves as a platform for executing Enterprise Beans.
This classification also includes the EJB client functionality for invoking the Enterprise Beans.

• Functions used in both Web applications and Enterprise Beans (Container common function)
This classification includes functionality that can be used in the Web applications and the Enterprise Beans running
on the Web containers and the EJB containers respectively.

(2) Functionality for developing Web Services
This includes the functionality for the execution and development environment of Web Services.

The following engines are provided with Application Server:

• JAX-WS engine that binds the SOAP messages in accordance with the JAX-WS specifications

• JAX-RS engine that binds the RESTful HTTP messages in accordance with the JAX-RS specifications

1. Application Server Functionality

Maintenance and Migration Guide 19

(3) Application Server independent functionality extended for improving
reliability and performance (expansion functionality)

This includes the functionality extended independently on Application Server. This also includes the functionality
implemented by using non-J2EE server processes such as batch server, CTM, and database.

On Application Server, various functionality are extended to improve reliability of the system and to implement stable
operations. Furthermore, functionality is also extended to operate applications other than J2EE applications (batch
applications) in the Java environment.

(4) Functionality for ensuring the security of a system (security
management functionality)

This is the functionality used for ensuring the security of an Application Server-based system. This includes functionality
such as the authentication functionality used for preventing unauthorized access and the encryption functionality used
for preventing information leakage from communication channels.

1.1.2 Functionality for operating and maintaining the application
execution platform

This functionality is used for effectively operating and maintaining the application execution platform. You use this
functionality, after starting the system operations, as and when required. However, depending on the functionality, you
must implement the settings and applications in advance.

The following are the classification-wise descriptions of functionality used for operating and maintaining the application
execution platform:

(1) Functionality used for daily operations, such as starting and stopping
the systems (operation functionality)

This classification includes the functionality used in daily operations, such as starting or stopping systems, starting or
stopping applications, and replacing the applications.

(2) Functionality for monitoring system usage (watch functionality)
This classification includes the functionality used for monitoring the system usage and resource depletion. This
classification also includes functionality to output the information used in monitoring the system operation history.

(3) Functionality for operating the systems by linking with other products
(linkage functionality)

This classification includes the functionality to be linked and implemented with other products, such as JP1 and
cluster software.

(4) Functionality for troubleshooting (maintenance functionality)
This classification includes the functionality used for troubleshooting. This functionality also includes the functionality
used to output the information that will be referenced during the troubleshooting.

1. Application Server Functionality

Maintenance and Migration Guide 20

(5) Functionality for migrating from products of earlier versions
(migration functionality)

This classification includes the functionality used for migrating from an older Application Server to a new
Application Server.

(6) Functionality for compatibility with products of earlier versions
(compatibility functionality)

This classification includes the functionality used for compatibility with earlier versions of Application Server. For the
compatibility functionality, we recommend the migration with the corresponding recommended functionality.

1.1.3 Functionality and corresponding manuals
The function guides for Application Server have been separated according to the classifications of functionality.

The following table describes the classifications of functionality and the manuals corresponding to the functionality.

Table 1‒1: Classifications of functionality and corresponding manuals describing the functionality

Category Functionality Reference manual#1

Basic and Development
functionality

Web container Web Container
Functionality Guide

Using JSF and JSTL

Using JAX-RS 2.0

WebSocket

NIO HTTP server

Servlet and JSP implementation

EJB container EJB Container
Functionality Guide

EJB client

Precautions during Enterprise Bean implementation

Naming management Common Container
Functionality Guide

Managing resource connection and transactions

Invoking Application Server from OpenTP1 (TP1 inbound
integrated function)

Using JPA 2.1

Cosminexus JMS Provider

Using Java Mail

Using CDI with Application Server

Using Bean Validation with Application Server

Java Batch

JSON-P

Concurrency Utilities

1. Application Server Functionality

Maintenance and Migration Guide 21

Category Functionality Reference manual#1

Managing application attributes

Using annotations

Formatting and deploying J2EE applications

Container extension library

Extended functionality Executing applications using the batch server Expansion Guide

Scheduling and load balancing requests using CTM

Scheduling the batch applications

Inheriting the session information between the J2EE servers (Session
failover functionality)

Database session failover functionality

Controlling Full GC using the explicit Explicit Memory
Management functionality

Output of the application user log

Security management
functionality

Authentication using integrated user management Security Management Guide

Authentication using application settings

Using TLSv 1.2 for SSL/TLS communication

Controlling with the management functionality of load balancers that use
API-based direct connections

Operation functionality Starting and stopping the system Operation, Monitoring, and
Linkage Guide

Managing J2EE applications

Watch functionality Monitoring statistics information (statistics collection functionality)

Monitoring resource depletion

Database audit trail linkage function

Output of statistical information by operation management command

Notification of management event and auto execution of process by
management action

Statistics collection of CTM

Output of console log

Linkage functionality Operation of systems linked with JP1

Centralized monitoring of system (Integrating with JP1/IM)

Automatic operations of systems by using jobs (integrating with JP1/AJS)

Collecting and consolidating the audit log (Integrating with JP1/Audit
Management - Manager)

Linking with cluster software

1-to-1 node switching system (linking with cluster software)

Mutual node switching system (linking with cluster software)

N-to-1 recovery system (linked with cluster software)

1. Application Server Functionality

Maintenance and Migration Guide 22

Category Functionality Reference manual#1

Node switching system (integrating with cluster software) for host unit
management model.

Maintenance
functionality

Troubleshooting related functions Maintenance and
Migration Guide#2

Performance analysis using the trace based performance analysis

JavaVM functionality of the product (hereafter abbreviated as JavaVM)

Migration functionality Migrating from an older version of Application Server

Migration to recommended functions

Compatibility
functionality

Functionality for compatibility with the basic development functionality Compatibility Guide

Functionality for compatibility with the extended functionality

#1
uCosminexus Application Server has been omitted from the manual names.

#2
This manual.

1. Application Server Functionality

Maintenance and Migration Guide 23

1.2 Functionality corresponding to the purpose of the system

On Application Server, you must choose the applicable functionality according to the purpose of the system to be built
and operated.

This section describes the cases in which the following functionality, described in this manual, can be used. The
functionality is independently extended on Application Server:

• Functionality for system maintenance

• Functionality of JavaVM

• Functionality for migrating from old version products

The functionality-wise support for the following items are described here:

• Performance
This functionality is best used with a system that adds value to performance.
This functionality used for performance tuning of the system is included.

• Operation and maintenance
This functionality is best used when efficient operation and maintenance is to be performed.

• Others
This functionality is used for complying with other individual purposes.

1.2.1 Functionality for system maintenance
The following table lists the functionality for system maintenance. Select the functionality according to the system
purpose. For details on the functionality, see the Reference column in the following table.

Table 1‒2: Functionality for system maintenance

Functionality Purpose of the system Reference

Performa
nce

Operatio
n and
maintena
nce

Others

Troubleshooting -- Y -- Chapter 2, Chapter 3,
Chapter 4, Chapter 5,
Chapter 6

Performance analysis by using trace based performance analysis Y Y -- Chapter 7, Chapter 8

Legend:
Y: Applicable
--: Not applicable

1.2.2 JavaVM functionality of the product
The following table lists the JavaVM functionality of the product. Select the functionality according to the system
purpose. For details on the functionality, see the Reference column in the following table.

1. Application Server Functionality

Maintenance and Migration Guide 24

Table 1‒3: JavaVM functionality of the product

Functionality Purpose of the system Reference

Performa
nce

Operatio
n and
maintena
nce

Others

Class-wise statistical functionality Y Y -- 9.3

Instance statistical functionality Y Y -- 9.4

STATIC member statistical functionality Y Y -- 9.5

Reference-related information output functionality Y Y -- 9.6

Pre-statistical GC selection functionality Y Y -- 9.7

Unused objects statistical functionality for the Tenured area Y Y -- 9.8

Base object list output functionality for increase in the Tenured area Y Y -- 9.9

Class-wise statistical information analysis functionality Y Y -- 9.10

Tenuring distribution information output functionality of the
Survivor area

Y Y -- 9.11

hndlwrap functionality -- Y -- 9.12

Functionality to set the upper limit of the allocation size of C heap
during JIT compilation

-- Y -- 9.13

Functionality to set the upper limit of the number of threads -- Y -- 9.14

Legend:
Y: Applicable
--: Not applicable

1.2.3 Functionality for migrating from products of earlier versions
The following table lists the functionality for migrating from the products of earlier versions. Select the functionality
according to the system purpose. For details on the functionality, see the Reference column in the following table.

Table 1‒4: Functionality for migrating from products of earlier versions

Functionality Purpose of the system Reference

Performa
nce

Operatio
n and
maintena
nce

Others

Migrating from Application Server of earlier versions -- -- Y Chapter 10

Legend:
Y: Applicable
--: Not applicable

1. Application Server Functionality

Maintenance and Migration Guide 25

1.3 Description of the functionality described in this manual

This section describes the meaning of the classifications used when describing the functionality in this manual, and also
provides an example of the tables used for describing each classification.

1.3.1 Meaning of classifications
The description of functionality in this manual is classified into the following five categories. You can select and read
the required location depending on the purpose for referencing this manual.

• Description
This is the description about the functionality. This section describes the purpose, features, and mechanism of the
functionality. Read this section when you want an overview of the functionality.

• Implementation
This section describes the methods such as the coding method and the DD writing method. Read this section when
developing applications.

• Settings
This section describes the required property settings for building systems. Read this section when building a system.

• Operations
This section describes the operation method. This section describes the operating procedures and the execution
examples of commands to be used. Read this section when operating a system.

• Notes
This section describes the general precautions for using the functionality. Make sure that you read the notes.

1.3.2 Example of tables describing classifications
Tables are used to describe the classifications of the description of functionality. The title of each table is either
"Organization of this chapter" or "Organization of this section".

The following is an example table describing the classification for the description of functionality.

Example of table describing the classification of functionality description
Table X-1 Organization of this chapter (XX functionality)

Category Title Reference

Description What is the XX functionality X.1

Execution Execution of applications X.2

Definitions in DD and cosminexus.xml# X.3

Settings Settings in the execution environment X.4

Operations Operations using the XX functionality X.5

Notes Precautions when using the XX functionality X.6

#
For cosminexus.xml, see 13. Managing Application Attributes in the uCosminexus Application Server Common Container
Functionality Guide.

1. Application Server Functionality

Maintenance and Migration Guide 26

Tip

Property settings for applications that do not contain cosminexus.xml
In applications that do not contain cosminexus.xml, you set or change the properties after
importing the properties into the execution environment. You can also change the set properties in the
execution environment.
You specify the application settings in the execution environment using the server management
commands and the property files. For application settings using the server management commands
and the property files, see 3.5.2 Procedure for setting the properties of a J2EE application in the
uCosminexus Application Server Application Setup Guide.
The tags specified in the property file correspond to the DD or cosminexus.xml. For details on
the DD or cosminexus.xml and the property file tags, see 3. Property Files Used for Setting
J2EE Applications in the uCosminexus Application Server Application and Resource Definition
Reference Guide.
Note that the properties specified in each property file can also be specified in the HITACHI Application
Integrated Property File.

1. Application Server Functionality

Maintenance and Migration Guide 27

1.4 Main functionality changes in Application Server 11-00

This section describes the main changes in the functionality of Application Server 11-00 and the purpose of each change.

The contents described in this section are as follows:

• This section gives an overview and describes the main changes in the functionality of Application Server 11-00. For
details on the functionality, see the description in the section column of the reference. The description of a particular
functionality is mentioned in the section column or that reference.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference location column.

1.4.1 Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

Table 1‒5: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Supporting Windows
Server in the
development
environment

Windows Server OSs have been added to the OSs
supported by uCosminexus Developer, so application
development environments can now be built in
cloud environments.

-- --

1.4.2 Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table 1‒6: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Supporting Servlet 3.0 and 3.1 Asynchronous servlets of Servlet 3.0 and asynchronous I/O
APIs of Servlet 3.1 are now supported.

Web Container
Functionality Guide

7.1

Supporting EL 3.0 EL 3.0 is now supported. Web Container
Functionality Guide

2.3.3

Supporting JSF 2.2 JSF 2.2 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting JAX-RS 2.0 JAX-RS 2.0 is now supported. Web Container
Functionality Guide

Chapter 4

Supporting WebSocket 1.0 WebSocket 1.0 is now supported. Web Container
Functionality Guide

Chapter 5

Adding NIO HTTP
server function

Instead of the conventional redirector function and in-process
HTTP server function, the NIO HTTP server function was
added as an in-process HTTP server that supports non-blocking
I/O processing of asynchronous servlets and WebSocket.

Web Container
Functionality Guide

Chapter 6

Supporting JPA 2.1 JPA 2.1 is now supported and JPA providers that support JPA
2.1 can now be used.

Common Container
Functionality Guide

Chapter 5

Supporting CDI 1.2 CDI 1.2 is now supported. Common Container
Functionality Guide

Chapter 8

1. Application Server Functionality

Maintenance and Migration Guide 28

Item Overview of changes Reference manual Reference

Supporting BV 1.1 Bean Validation 1.1 is now supported. Common Container
Functionality Guide

Chapter 9

Supporting Java Batch 1.0 Batch Applications for the Java Platform (Java Batch) 1.0 is
now supported.

Common Container
Functionality Guide

Chapter 10

Supporting JSON-P 1.0 Java API for JSON Processing (JSON-P) 1.0 is now supported. Common Container
Functionality Guide

Chapter 11

Supporting Concurrency
Utilities 1.0

Concurrency Utilities for Java EE 1.0 is now supported. Common Container
Functionality Guide

Chapter 12

Supporting
WebSocket communication

A function to relay WebSocket communication from HTTP
Server to a J2EE server was added.

HTTP Server 4.15

1.4.3 Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table 1‒7: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Changing the encryption
communication module

The module mod_ssl was adopted as the encryption
communication module for HTTP Server.

HTTP Server Chapter 5

1.4.4 Other purposes
The following table describes the items that are changed for other purposes.

Table 1‒8: Changes due to other purposes

Item Overview of changes Reference manual Reference

Adding V9 compatibility mode V9 compatibility mode was added for users migrating from
J2EE server version 9 or earlier to maintain compatibility with
version 9.

This manual 10.3.3

1. Application Server Functionality

Maintenance and Migration Guide 29

2 Troubleshooting

The Application Server provides functionality to output various data that can be used for handling
trouble that occurs during system operations. This chapter describes notes about the acquisition of
troubleshooting data, the procedures for handling the data, and troubleshooting.

Maintenance and Migration Guide 30

2.1 Organization of this chapter

This chapter gives an overview of the acquisition and the handling of data for troubleshooting.

If a failure occurs in the running system, it is necessary to collect the data for analysis purpose based on the type of
the error that has occurred. The application server provides a function that outputs the log that can be used as data for
maintaining the system.

The following table describes the organization of this chapter.

Table 2‒1: Organization of this chapter (Troubleshooting (overview of data acquisition and
handling))

Category Title Reference

Explanation Overview of troubleshooting 2.2

Acquiring the Data 2.3

Types of Required Data 2.4

Operation Troubleshooting and Recovery 2.5

Notes Precautions Related to Troubleshooting 2.6

For details about the data acquisition and output settings for troubleshooting, methods to output the data individually,
the output destination and contents of the data, and the troubleshooting procedure, reference the following
respective chapters:

• Settings related to data acquisition and output
3. Preparing for Troubleshooting

• Default output destination of data and methods to output data individually
4. Output Destinations and Output Methods of Data Required for Troubleshooting

• Data Output Contents
5. Problem Analysis

• Troubleshooting Procedure
6. Troubleshooting Procedure

2. Troubleshooting

Maintenance and Migration Guide 31

2.2 Overview of troubleshooting

In component software, when an error occurs, the status of the software when the error occurs is output to the log as
troubleshooting information. Collect and analyze this log and study the cause of error. You can even identify the location
of error occurrence from the processing status of the request.

In a system built with the application server, you can collect the log and definition file together in the case of an error
in the component software. This information is called snapshot log. The batch collection of a snapshot log is executed
automatically, just before the logical server is terminated or the J2EE servers are restarted manually in a batch, in the
management domain.

Moreover, when you use CTM, you can specify settings in the J2EE server so that when the J2EE server is terminated
abnormally, the error is not returned to the client immediately. CTM locks and controls the scheduling queue of the J2EE
application until the J2EE server is restarted. CTM maintains the registered requests and continues to accept requests
from clients. As a result, if you restart the J2EE server immediately, you can continue with the operations without
causing any trouble that the client might notice. Note that you can use CTM for the component software only with the
product including Cosminexus Component Transaction Monitor. For details about the products that you can use, see 2.2.2
Component software functional guide in the manual uCosminexus Application Server Overview.

The following subsections describe the flow of data acquisition and handling when a trouble occurs.

2.2.1 Overview of Troubleshooting
This subsection describes the procedure for dealing with problems that may occur during operation of an application
server system.

Note that among the information to be acquired when a problem occurs, preparation before starting operation is required
to acquire the information below.

• JavaVM log (JavaVM log file)
The JavaVM GC log is also output to this file.

• User dump (in Windows)

• core dump (in UNIX)

• OS statistical information (in Windows)

Perform preparations to acquire the information as and when required during system configuration. For details, see 3.2
Overview of data acquisition settings and 3.3 Execution environment settings.

To deal with problems that occur during system operation, follow the procedure in the figure below. The following figure
shows the flow of the process for dealing with the occurred problem.

2. Troubleshooting

Maintenance and Migration Guide 32

Figure 2‒1: Flow for handling of data when a trouble occurs

1. Acquiring data
Acquire all the required data for troubleshooting.
For details about the data to be acquired, see 2.4 Types of Required Data. Note that a memory dump is required only
when restarting a J2EE Server or CORBA Naming Service.
Moreover, for details about methods of data acquisition, see 2.3 Acquiring the Data, or 4. Output Destinations and
Output Methods of Data Required for Troubleshooting.

Reference note

• You can acquire the data either collectively as a snapshot log or acquire individual logs.

• You can acquire snapshot logs using the management command and with the automatic acquisition as
per the settings.

• You can automate the process of acquiring required data when an error occurs in the logical server. For
details, see 2.3.1 Data That Can Be Acquired Automatically When a Problem Occurs.

2. Identify the cause of the problem (Primary distinction)
Identify the cause of the problem. Analyze the acquired data to identify the problem. For details about how to
investigate data, see 5. Problem Analysis.

3. Troubleshooting and recovery
Troubleshoot the cause of the problem and perform recovery.
For details about dealing with each type of problem, see 2.5 Troubleshooting and Recovery.

4. Analyzing the cause of the problem (Secondary analysis)
Analyze the cause of a trouble, as and when required. Request that maintenance personnel further analyze the cause
of the problem.

2. Troubleshooting

Maintenance and Migration Guide 33

Tip

For details on the troubleshooting specific to the time at which a problem occurs, see 6.
Troubleshooting Procedure.

2.2.2 Flow of data acquisition when a trouble occurs
You can acquire the data of troubleshooting automatically in the system built on the Application Server. When you start
the logical server, the Administration Agent starts monitoring the logical server. If a failure occurs in the logical server,
the Administration Agent detects the failure and notifies it to the Management Server. The Management Server gets and
collects the log snapshot data, and stops and restarts the logical server.

The following figure shows the flow when the data is obtained automatically.

Figure 2‒2: Flow for automatic data acquisition

Using commands that are executed when an error is detected, mentioned in step 2, the information required for
troubleshooting is output. Collect the information output by these commands and any other information that is required
for troubleshooting in a compiled form as a snapshot log in step 3. Now, the snapshot log can also be collected without
using the failure detection command, after the logical server is stopped in step 4. of the figure, but the information
collected this time is that of J2EE server only. Hitachi, therefore, recommends that you use the failure detection command
for collecting the snapshot log in step 3 of the figure. For details about the data acquisition using failure detection
commands, see 2.3.2 Collecting the Material Using Commands during Error Detection and about snapshot log, see 2.3.3
Collecting the Snapshot Log.

You can also use the management command (mngsvrutil) of the Management Server to collect the snapshot log at any
time. For details about collecting snapshot logs using the management command, see 2.3.3(4) Collecting snapshot logs
using the management commands.

The processing flow when the process of the logical server is down or when the process of the logical server has hung
up is as follows:

(1) The processing flow when the process of logical server is down
After the logical server is started, the process monitoring of the Administration Agent periodically monitors the process
by using the process ID of the logical server process. The following figure shows the processing flow when the logical
server process is down.

2. Troubleshooting

Maintenance and Migration Guide 34

Figure 2‒3: The processing flow when the process of logical server is down

1. The process is monitored periodically by using the process ID of the logical server process.

2. If the logical server process ends abnormally, the Administration Agent detects that the process is down, and notifies
it to the Management Server.
The existence of the process ID is checked during the monitoring of processes. The contents of this check differ
according to the type of the logical server. For details, see 2.3.1 Starting the Logical Server and Checking the
Operations in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide and 2.3.2 Stopping
the Logical Server in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

3. If the Management Server finds that the process is down, the failure detection command is executed and the snapshot
log is collected.

4. The logical server restarts automatically after the execution of the failure detection command and the collection of
snapshot log.

(2) Processing flow when the logical server process hangs
After the logical server starts, the process monitoring of the Administration Agent periodically checks for the logical
server process that the logical server is running. The following figure shows the processing flow when the logical server
process hangs up while checking the operation.

2. Troubleshooting

Maintenance and Migration Guide 35

Figure 2‒4: Processing flow when the logical server process hangs up

1. Check the operation of the logical server process periodically.
The operation is checked after the existence of the process ID is checked by the process monitoring. The contents of
this check differ according to the type of the logical server.
For details, see 2.3.1 Starting the Logical Server and Checking the Operations in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide and 2.3.2 Stopping the Logical Server in the uCosminexus Application
Server Operation, Monitoring, and Linkage Guide.

2. If the operation check fails twice consecutively (default value), the Administration Agent detects that the process has
hung up and notifies it to the Management Server. You can change the number of failed attempts of the operation
check before a process is determined as hung up.

3. If the Management Server detects that the process has hung up, it executes the failure detection command and collects
the snapshot log.

4. The automatic stop process is executed because the process is still running when it is detected as hung up.

5. In the Administration Agent, execute the stop command of the logical server.
The force stop command is executed if the logical server does not stop even after a certain time period has elapsed.

6. The logical server restarts automatically after the execution of the failure detection command and the collection of
snapshot log.

2. Troubleshooting

Maintenance and Migration Guide 36

2.3 Acquiring the Data

You can acquire the data required for troubleshooting with any of the following methods:

• Acquire automatically when a problem occurs

• Acquire in a batch using the management command

• Collect each information separately

The information required for troubleshooting can be collected by compiling it together as a snapshot log. The status,
when a problem occurs in the component software in a system, is output to the snapshot log. In a system built with the
Application Server, you can collect the snapshot log for each type of component software collectively and output as a log
file in a ZIP format. Furthermore, the snapshot log can be acquired by dividing into primary delivery data and secondary
delivery data. You can also use the snapshotlog command to collect the definition sending data.

This section describes the snapshot logs for data acquisition in a batch and the failure detection commands executed for
data acquisition, as methods for data acquisition when a trouble occurs.

For details about the information that is not acquired as a snapshot log, see 2.4.3 Correspondence Between Acquisition
Methods and Investigation Methods and for details about the methods for acquiring the respective information
individually, see 4. Output Destinations and Output Methods of Data Required for Troubleshooting.

Note that you need to specify the settings in advance depending upon the data to be acquired. For example, the data such
as OS statistics or user dump will not be obtained unless you specify the settings for acquiring this data when building
the system. Hitachi recommends that you obtain this data because it is required for troubleshooting.

You can change the default settings to obtain the data such as the output destination of the log file, number of log files,
and the maximum size of each file. Change the settings for acquiring data as per your requirements.

The data that cannot be collected as snapshot log as per the default settings, can be collected collectively in the form of
a snapshot log by defining the get destination of the data as the target of snapshot log collection.

Important note

Notes on data collection settings in Windows

With Windows, you must specify the settings in the registry to obtain data for investigation when an error occurs.
The registry settings affect the whole system, so take adequate precautions when you specify the settings.

For details about the data acquisition settings required for troubleshooting, see 3. Preparing for Troubleshooting.

2.3.1 Data That Can Be Acquired Automatically When a Problem Occurs
In a system built with the application server, when a problem occurs in the logical server, you can automatically acquire
and compile the information required for troubleshooting.

2. Troubleshooting

Maintenance and Migration Guide 37

Tip

For automatic data acquisition when a trouble occurs, you must specify the settings required while building
systems. For details about data acquisition settings for troubleshooting, see 3.2 Overview of data acquisition
settings, and 3.3 Execution environment settings.

Except for the following information, you can make the specification so that you can automatically collect all the other
information required for troubleshooting using the commands executed during error detection and by collecting the
snapshot log.

• OS statistical information (in Windows)

Use the following settings to collect the information that is not collected with default settings:

1. You use the commands created by the user to be executed when an error is detected to output the required information.

2. Add the output destination of the information output in 1. to the path of the snapshot log to be collected.
For details about the settings for the snapshot log acquisition, see 3.3.3 Settings for collecting snapshot logs
(Systems for executing J2EE applications), or 3.3.4 Settings for collecting snapshot log (Systems for executing
batch applications).

Important note

Note that among the logs of the component software that can be acquired in the snapshot log, the acquisition of
the logs shown in the following table is not explained in this manual. For details about methods to acquire these
logs, see Reference manual of the following table.

Table 2‒2: Component software for which the method of acquiring the logs is not mentioned
in this manual

Log type Reference Section

SOAP application execution
infrastructure log of Cosminexus
Component Container

uCosminexus Application Server SOAP
Application Development Guide

Chapter 14

Cosminexus Web Services -
Security log

uCosminexus Application Server Web Service
Security Users Guide

Chapter 6

Cosminexus TPBroker log TPBroker User's Guide

2.3.2 Collecting the Material Using Commands during Error Detection
The failure detection command is executed by the system when the Management Server detects the logical server failure.
To execute the error detection command, specify the values in the keys of mserver.properties (Management
Server environment configuration file) during system setup.

Important note

If a logical server process terminates abnormally when Administration Agent is not running, the error detection
command is not executed even if you start Administration Agent later. In such cases, when Administration Agent

2. Troubleshooting

Maintenance and Migration Guide 38

starts, the KEOS20071-E message with details "The command is not defined." is output. For details on the
message, see the manual uCosminexus Application Server Messages.

You can use the failure detection command to execute the process for acquiring the thread dump and the user dump
when a failure occurs, and obtain the error data quickly. Moreover, if you use the failure detection command, you can
also automatically collect the snapshot log at any of the following timing. Decide the acquisition time according to
the settings.

• If a failure occurs in the logical server, the failure detection command is executed and the snapshot log is collected
before the logical server is stopped.

• If a failure occurs in the J2EE server or batch server, the failure detection command is executed and the snapshot log
is collected before the J2EE server or batch server is restarted.

There are two types of failure detection commands; the failure detection command provided by the system and the failure
detection command created by the user.

Failure detection command provided by the system
This command is already defined in the application server. When a failure occurs in the logical server, the failure
detection command provided by the system obtains the information such as the thread dump and the trace based
performance analysis of JavaVM of the logical server in which the failure occurred. The data obtained by using the
failure detection command provided by the system can be collected as the snapshot log.
According to the default settings, the failure detection command provided by the system is executed when a failure
occurs in the logical server and the snapshot log is collected before the logical server in which the error occurred
is stopped.

Failure detection command created by the user
A failure detection command can also be created by the user. A batch file or shell script, in which the required process
is described by the user for acquiring the data, can be executed as the failure detection command.
To collect the data obtained by using the failure detection command created by the user, as the snapshot log, you need
to pre-define the get destination of the data as the collection destination of the snapshot log.

For details about changing the operation settings of commands provided by the system during failure detection or for
settings required for commands created by the user during failure detection, see 3.3.1 Data acquisition settings using
failure detection time commands (Systems for executing J2EE applications) or 3.3.2 Data acquisition settings using
failure detection time commands (Systems for executing batch applications).

Tip

If the necessary settings are not performed when configuring a system, commands during error detection are not
executed. Confirm the following settings:

• When true is set in the com.cosminexus.mngsvr.sys_cmd.abnormal_end.enabled key
of mserver.properties (Management Server environment settings file), commands during error
detection provided by the system are executed.

• When true is set in the com.cosminexus.mngsvr.usr_cmd.abnormal_end.enabled key of
mserver.properties (Management Server environment settings file), commands created by the user
are executed when an error is detected.

The information that can be acquired by each type of the above-mentioned command is described below.

2. Troubleshooting

Maintenance and Migration Guide 39

(1) Information that can be acquired by executing the failure detection
time commands provided by the system

The following table describes information that can be acquired by executing the commands during error detection
provided by the system. The information that can be acquired by executing the commands during error detection differs,
depending on the type of error (system down or hang-up) and the OS used.

Note that it is necessary to perform the required settings in adminagent.properties (Administration agent property file)
to acquire this information in the snapshot log.

The following table describes the information that can be acquired by executing the commands during error detection.

Table 2‒3: Information that can be acquired by command during failure detection

Logical server OS Information that you can acquire J2EE
Applicatio
n

Batch
Applicatio
nWhen process down is detected When hang up is detected

Logical
performance
tracer

Windows
UNIX

• PRF trace file where the buffer
contents are output

-- Y Y

Logical J2EE
server#

Windows • Trace based performance
analysis file

• Thread dump
• Trace based performance

analysis file

Y Y

UNIX • Stack trace information
of JavaVM

• Trace based performance
analysis file

• Thread dump
• Trace based performance

analysis file

Y Y

Logical Web
server

Windows
UNIX

• Trace based performance
analysis file

• Internal trace
• Trace based performance

analysis file

Y --

Other logical
servers

Windows
UNIX

• Trace based performance
analysis file

• Trace based performance
analysis file

Y --

Legend:
J2EE application: System for executing a J2EE application.
Batch application: System for executing a batch application.
--: Not applicable.
Y: Can be acquired.

#
Define a batch server as a logical J2EE server.

• Thread dump of a J2EE server or a batch server where the problem occurred
You can acquire a Thread dump when true is set in the
adminagent.j2ee.sys_cmd.abnormal_end.threaddump key of adminagent.properties
(Administration agent property file).

• Trace based performance analysis
You can acquire the trace based performance analysis when true is set in
the adminagent.sys_cmd.abnormal_end.prftrace key of adminagent.properties
(Administration agent property file). The trace based performance analysis file is output to Application-
Server-installation-directory/manager/tmp. Note that you can change the output destination with the
adminagent.prftrace_dir key in adminagent.properties (Administration Agent property file).

2. Troubleshooting

Maintenance and Migration Guide 40

Important note

A Thread dump is not output when it is determined that the J2EE server process where the problem occurred
does not exist. Moreover, the trace based performance analysis is not output when it is determined that the
performance tracer process does not exist.

(2) Information that can be acquired by executing the commands during
error detection created by the user

You can execute batch files or shell scripts in which any process required for acquiring the data is coded, as the user
created commands during error detection. For example, you can acquire a user dump or core dump by executing
a command such as the drwtsn32 command in this command. For details about how to create failure detection
time commands, see 3.3.1 Data acquisition settings using failure detection time commands (Systems for executing
J2EE applications) or 3.3.2 Data acquisition settings using failure detection time commands (Systems for executing
batch applications).

Note that the command during error detection created by the user is executed if the
adminagent.serverkind.usr_cmd.abnormal_end key of adminagent.properties (Administration
agent property file) is specified.

2.3.3 Collecting the Snapshot Log
The log in which the status of the system when failure occurred is output by the component software of the system
is called the snapshot log. The snapshot log contains the thread dump, trace based performance analysis, information
necessary for system maintenance, and the information necessary for application maintenance and so on, in addition to
the logs of the different types of component software. In a system built with the application server, this information can be
collected together in the form of snapshot log and obtained as a log file in the ZIP format. The administrator can counter
the errors by collecting and analyzing the snapshot log.

The settings are specified in such a way that the data necessary for troubleshooting is automatically collected by
executing the failure detection command and collecting the snapshot log. To get the information not collected as per the
default settings, in the form of the snapshot log, define the get destination of the data as the collection target of snapshot
log. For details on the information that is not collected by default, see the description on the collectability of the snapshot
log and the changing of collection-related settings in Appendix A. List of Snapshot Logs to Be Collected.

You can change the settings for the target of snapshot log collection, output destination directory, and the number of files,
when building the system.

This subsection describes about the timing for collecting snapshot logs, the data that you can collect, and the flow of
collection. Also, this subsection describes about collecting snapshot logs by using management commands as a way
of collecting the snapshot logs at any time. Note that for the settings of snapshot log collection, see 3.3.3 Settings for
collecting snapshot logs (Systems for executing J2EE applications) or 3.3.4 Settings for collecting snapshot log (Systems
for executing batch applications).

(1) Timing for collecting snapshot logs
You can collect snapshot logs automatically or at a specific timing. The following table describes the timing for the
collection of the snapshot log. Note that you can collect the snapshot logs in the host on which a logical server is running.

2. Troubleshooting

Maintenance and Migration Guide 41

Table 2‒4: Timing for collecting the snapshot log

Category Collection timing

Collect automatically#1 Immediately before the logical server stops automatically due to an error#2

Just before automatically restarting the J2EE server or the batch server managed in the
management domain#2

Immediately before the J2EE server or batch server is restarted manually in a batch

Collect at the specified timing When the management command (mngsvrutil) of the Management Server is executed to
collect the snapshot log(For the execution method, see (4) Collecting snapshot logs using the
management commands)

#1
When building a system you can change the settings for collecting snapshot logs at any of the following timings According to the default settings,
the snapshot log is collected when the logical server stops.
- Before terminating the logical server
- Before restarting the J2EE server

#2
The Management Server executes the failure detection command for collecting the snapshot log at this time.

Reference note

You can collect the snapshot log at following timings:

• When Collect button in Snapshot Log window in Start/Stop Logical Server of Management Portal
is clicked#1

• Executing the Snapshotlog command #2

#1
You can collect snapshot logs on a J2EE server or a batch server on which the collection procedure
is executed.

#2
You can execute the command irrespective of whether Management Server is used.

For the snapshot log window, see 11.9.5 Collecting snapshot log of a J2EE server in the uCosminexus
Application Server Management Portal User Guide. For the snapshotlog command, see snapshotlog
(collect snapshot logs) in the uCosminexus Application Server Command Reference Guide.

(2) Data that can be collected as snapshot log
This section describes the data that you can collect as a snapshot log. The snapshot log includes the information required
for system maintenance and application maintenance.

The data required for troubleshooting is classified as primary delivery data and secondary delivery data depending on
the timing at which the data is delivered to the maintenance service. You can collect the primary delivery data and
the secondary delivery data in snapshot logs. You can also use the snapshotlog command to collect the definition
sending data.

• Primary delivery data
Material that is of a file size that can be sent as an attachment to mail. You can send the data immediately to the
maintenance service by using mail.

2. Troubleshooting

Maintenance and Migration Guide 42

• Secondary delivery data
In addition to the primary delivery data, comparatively large size files are applicable. You must send large files
separately to the maintenance service, since sending of large files takes more time than usual.

• Definition sending data
The data that collects only the definition files to investigate the errors in the definition file settings. The file is small
and can be sent quickly to the maintenance personnel through a mail. Note that you can also collect this data by using
the snapshotlog command even if Management Server and the J2EE server are not running.

Important note

The definition information collected in the definition sending data might include the user ID and password.

The data to be collected as snapshot log can be changed with the settings of the snapshot log collection target definition
files. For example, if you want to collect the information output by a command during error detection created by the
user and if the settings are changed, such information will be added to the information to be collected. The snapshot log
collection target definition file is set during system configuration.

You can confirm which information will be actually collected in the real environment from the following files:

• snapshotlog.conf
The contents to be acquired as the primary delivery data are defined in this file.
The location for storing snapshotlog.conf is as follows:

• In Windows
Application-Server-installation-directory\manager\config\snapshotlog.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.conf

• snapshotlog.2.conf
The contents that are to be acquired as the secondary delivery data are defined in this file.
The location for storing snapshotlog.2.conf is as follows:

• In Windows
Application-Server-installation-directory\manager\config\snapshotlog.2.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.2.conf

• snapshotlog.param.conf
This file defines the content to be obtained as the definition sending data.
The location for storing snapshotlog.param.conf is as follows:

• In Windows
Application-Server-installation-directory\manager\config\snapshotlog.param.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.param.conf

However, depending on how the file is specified in adminagent.properties (administration agent property file),
there are cases when the information that can be collected differs.

For default settings, when a problem occurs the snapshot log acquired automatically includes the following information:

2. Troubleshooting

Maintenance and Migration Guide 43

Primary delivery data

• Information under the directory defined to collect the primary delivery data for the snapshot log#1

• Thread dump of a J2EE server#2

• Installation information

• OS status log

Secondary delivery data

• Trace based performance analysis#2

• Information under the directory defined to collect the secondary delivery data for the snapshot log#1

• Installation information

• OS status log

#1
For details about the snapshot logs to be collected, see Appendix A. List of Snapshot Logs to Be Collected.

#2
You can collect this information when the settings are set to output a thread dump and trace based performance
analysis by using the system provided commands that are to be executed when an error is detected.

Reference note

Files that can be collected in the default state differ between the snapshot log that can be collected by using
the snapshotlog command and the snapshot log that can be collected by using the management command
(mngsvrutil) of the Management Server or other methods. The snapshot log that can be collected by using
the management command (mngsvrutil) of the Management Server or other methods can collect installation
information as well as OS status and logs in the default state. However, to collect such information by using the
snapshotlog command, you need to edit the snapshot log collection target definition file specified when the
command is executed and add the snapshot log collection destination.

An example of the information that can be collected by default and information that cannot be collected by default is
as follows:

(a) Information that can be collected by default
An example of the information that can be collected by default is as follows:

Information required for application maintenance
The message log and user log of Cosminexus Component Container are collected as the information required for
application maintenance.

• Cosminexus Component Container#

• Cosminexus Component Transaction Monitor

• Cosminexus Developer's Kit for Java

• Cosminexus Performance Tracer

• Cosminexus TPBroker

• Cosminexus Web Services - Security

• Cosminexus HTTP Server

2. Troubleshooting

Maintenance and Migration Guide 44

Other than the above, Hitachi Trace Common Library log and program product information (in UNIX) are
also collected.
Also includes the SOAP application execution infrastructure information.

Information required for application maintenance
The message log and user log of Cosminexus Component Container are collected as the information required for
application maintenance.

The following information is also collected by default:

Component Container-related information
In Windows

All the items beneath Application-Server-installation-directory\CC\server\public
In UNIX

All the items beneath /opt/Cosminexus/CC/server/public

Note that the default directories created when installing the component software are defined as the collection target for
the snapshot log by default. Always change the collection destination when changing the log output destination.

(b) Information that cannot be collected by default
The information described below cannot be collected when operating with default settings. Perform the settings in such
a way so that you can collect the information as and when required.

In Windows
Cosminexus Component Container

• EAR/JAR file (if it cannot be deployed or imported)

Microsoft IIS
The following data is acquired when integrated with Microsoft IIS.

• C:\inetpub\logs (Specify the system drive in place of C:)

OS
• Set of the data related to the system monitor (see subsection 4.13)

• Event log (application, system)

• OS operation data
From the winmsd start-up window, extract the data from the Operation-Save As Text File menu (It may take
5 to 10 minutes).

In UNIX
Cosminexus Component Container

• EAR/JAR file (if it cannot be deployed or imported)

OS
• OS operation data

(3) Flow of snapshot log collection
If trouble occurs on the logical server, a snapshot log collection service request is executed from Management Server for
Administration Agent. The procedure of the process that is executed during snapshot log collection is as follows. Note
that the executed process differs according to the settings.

2. Troubleshooting

Maintenance and Migration Guide 45

1. Executing the failure detection command provided by the system

2. Executing the failure detection command created by a user

3. Collecting snapshot logs (primary delivery data)

4. Collecting snapshot logs (secondary delivery data)

Collection of snapshot logs might take more time than usual depending on the operating environment of the machine and
status of failure occurrence (such as the status in which an unexpected error occurred). Therefore, you can set respective
timeouts for these processes.

Note that you set a timeout for collection of snapshot logs in cases such as when excessive time is consumed for collecting
snapshot logs due to the occurrence of an unexpected failure and the logical server is expected to be restarted on priority. If
a timeout is set when collecting snapshot logs, the collection process is suspended forcefully and the information required
for trouble shooting cannot be acquired.

(4) Collecting snapshot logs using the management commands
You can use the management command (mngsvrutil) to collect the snapshot log at any time, in addition to
automatic collection.

Note that the type of information that can be acquired is the same as the snapshot log that is collected automatically in
the case of problems. See (2) Data that can be collected as snapshot log.

For details about the log output destinations, see the value of adminagent.snapshotlog.log_dir key
of adminagent.properties file (Administration Agent property file). The default output destination is the
following directory.

• In Windows
Log-output-directory-of-Manager\snapshot

• In UNIX
Log-output-directory-of-Manager/snapshot

For collecting the snapshot log, specify the subcommand collect in the management command mngsvrutil and
then execute. You can collect the snapshot log from the host specified with -t option.

The execution format and an example of executing the command are described below. In this example, collect both
the primary delivery file and the secondary delivery file. In n, specify whether to collect the primary delivery data or
secondary delivery data.

Execution format

mngsvrutil -m Management-Server-host-name[:Port number]-u Management-user
-ID -p Management-password -t host-name -k host collect snapshot n

Execution example

mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host collect snapsho
t 1
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host collect snapsho
t 2

2. Troubleshooting

Maintenance and Migration Guide 46

2.3.4 Location to store the acquired information
The information acquired automatically by collecting the snapshot log is saved with the following names under
the directory specified in the adminagent.snapshotlog.log_dir key of adminagent.properties (Administration agent
property file).

• File collected as the primary delivery data
snapshot-host name#1-log-yyyyMMddHHmmss#2.zip

• File collected as the secondary delivery data
snapshot-host name#1-log-yyyyMMddHHmmss#2.2.zip

Note:
The definition sending data is not collected.

#1
When a logical server is specified and the snapshot log is collected, the name of that logical server will be the
host name.

#2
yyyy: year MM: month dd: day HH: hour mm: minutes ss: seconds

Note that the default output directory is as follows:

• In Windows
Log-output-directory-of-Manager\snapshot

• In UNIX
Log-output-directory-of-Manager/snapshot

Reference note

The list of files to be collected as the snapshot log and the list of files actually collected can be confirmed
from the following files. These files are in the archived zip file.

• List of files to be collected
snapshot-host-name-log-yyyyMMddHHmmss#/filelist_pre.txt
snapshot-host-name-log-yyyyMMddHHmmss#.2/filelist_pre.txt

• List of files actually collected
snapshot-host-name-log-yyyyMMddHHmmss#/filelist_post.txt
snapshot-host-name-log-yyyyMMddHHmmss#.2/filelist_post.txt

yyyy: year MM: month dd: day HH: hour mm: minutes ss: seconds

2. Troubleshooting

Maintenance and Migration Guide 47

2.4 Types of Required Data

This section describes the type of a trouble that might occur in a system of the Application Server and the data required
according to the trouble.

The troubleshooting data differs depending upon the type of failure that occurs. For example, the troubleshooting data
differs depending upon whether an error message is output, or whether the server process of the application server
ended abnormally.

Moreover, you need to contact the maintenance personnel depending upon the type of failure. Maintenance personnel
refers to the person you need to contact as per the purchase contract.

Problems for which you need to contact maintenance personnel

• "Contact maintenance personnel" is mentioned in the action for the output error message

• The cause of the error is not known

• The action corresponding to the error message cannot be performed

When you contact maintenance personnel, report the following information as accurately as possible:

• Error occurrence time

• Operations performed just before the error occurred

• Window operations when the error occurred

• Data acquired when the error occurred

The troubleshooting data is classified into the primary data, secondary data, and definition sending data according to the
time at which the data is sent to the maintenance personnel.

• Data to be sent immediately through e-mail (Primary delivery data and Definition sending data)
Includes the data of the file size that you can attach and send by e-mail. It can be sent to the maintenance personnel
quickly by e-mail.
For example, the following data can be obtained in the form of primary delivery data:

• Message log
The status and the error information of the J2EE server, and so on, is output in the message log.

• User log
The information of the standard output and the standard error output in the application is output in the user log.

• Exception log
The exception information when the error occurred in the system is output in the exception log.

• Maintenance log
The failure maintenance information when the error occurred in the system is output in the maintenance log. The
maintenance personnel use this information for analyzing the failure.

Also, only the collected definition file information is output as the definition sending data. This information is used
to investigate the definition errors.

• Data to be sent separately (Secondary delivery data)
This is applicable to the data that you need to send separately without using mail because the file sizes are relatively
large and it will take time to send the files to maintenance personnel. Note that secondary delivery data contains
primary delivery data.
For example, the following data can be obtained in the form of secondary delivery data.

2. Troubleshooting

Maintenance and Migration Guide 48

• Trace based performance analysis
The trace information that is output in one cycle of processing of the request is output in the trace based
performance analysis.

• Memory dump
The memory image of the process is output in the memory dump.

2.4.1 Trouble types and the required data
Types of problems that can occur in an application server system are as follows:

• Error message output
Error messages are output.

• System down
The server process of the application server terminates abnormally.

• Hang-up (No response)
There is no response to an application call.

• Slow down
There is a response to an application call but the response time is excessive.

The following table describes the data to be acquired for each type of problem.

Table 2‒5: List of data to be acquired for each type of problem

Item
No.

Type of material Problem type

Error message
output

System down Hang-up (No
response)

Slow down

1 Message log#1 Y Y Y Y

2 User log#1 Y Y Y Y

3 Exception log#1 Y Y Y Y

4 Maintenance log#1 Y Y Y Y

5 Trace based performance analysis Y Y Y Y

6 Thread dumps of JavaVM Y Y Y Y

7 GC logs of JavaVM P Y Y Y

8 Memory dump -- Y Y Y

9 JavaVM log file#2 -- Y Y Y

10 Error report files -- Y -- --

11 OS state or log Y Y Y Y

12 Statistical information of OS P Y Y Y

13 Definition information Y Y Y Y

14 Operation directory#4 P P P P

15 Resource setting Y Y Y Y

2. Troubleshooting

Maintenance and Migration Guide 49

Item
No.

Type of material Problem type

Error message
output

System down Hang-up (No
response)

Slow down

16 Web server log Y Y Y Y

17 JavaVM stack trace#3 -- Y -- --

18 Event log of the Explicit
Memory Management functionality
of JavaVM#2

-- Y Y Y

Legend:
Y: Required
P: Whether to be acquired depends on the actual error contents
--: Do not acquire

#1
Log output by the Application Server component software.

#2
Output when JavaVM start option is specified. For details about acquisition options, see 4.10 JavaVM log (JavaVM log file). For details about
options, see 14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

#3
Output only when using UNIX.

#4
The default working directories are Application-Server-installation-directory\CC\server\public (in Windows), or /opt/
Cosminexus/CC/server/public (in UNIX).

2.4.2 List of Required Data to Be Acquired
The following table describes a list of data required for troubleshooting in the application server. Moreover, the same
table also describes the timing to send the data to maintenance personnel when required.

Table 2‒6: List for data acquisition

Item No. Type of material Description Delivery timing

1 Message log#1 The status and the error information of the J2EE server, and so on, is
output in the message log.

Primary/ Secondary

2 User log#1 The information of the standard output and the standard error output
in the application is output in the user log.

Primary

3 Exception log#1 The exception information when the error occurred in the system is
output in the exception log.

Primary

4 Maintenance log#1 The failure maintenance information when the error occurred in the
system is output in the maintenance log. The maintenance personnel
use this information for analyzing the failure.

Primary/ Secondary

5 Trace based
performance analysis

The trace information that is output in one cycle of processing of the
request is output in the trace based performance analysis.

Secondary

6 Thread dumps of JavaVM Outputs the JavaVM operation information and thread stack status. Primary

7 GC logs of JavaVM Outputs the activity status of JavaVM GC. Primary

8 Memory dump The memory image of the process is output in the memory dump. Secondary

2. Troubleshooting

Maintenance and Migration Guide 50

Item No. Type of material Description Delivery timing

9 JavaVM log file#2 Outputs the JavaVM log provided with Cosminexus Developer Kit
for Java.

Primary

10 Error report files A log file output when you stop the JavaVM. Primary

11 OS state or log A record of the OS operation information. Primary/ Secondary

12 Statistical information of OS A record of the OS statistical information. Primary

13 Definition information Definition information of various types of the application
server settings.

Primary/ Definition

14 Operation directory A directory that stores the work file during the application
server operation.

Primary/
Secondary/
Definition

15 Resource setting The information of settings of resources used in the application server
(data source, resource adapter).

Secondary/
Definition

16 Web server log Log of Cosminexus HTTP Server, Microsoft IIS. Primary/ Secondary

17 JavaVM stack trace#3 The information used for cause investigation if JavaVM
terminates abnormally.

Primary/ Secondary

18 Event log of the Explicit Memory
Management functionality
of JavaVM#2

Information of an event (initialization of Explicit memory block,
object creation to Explicit memory block, release process of Explicit
memory block) occurred due to the Explicit Memory Management
functionality will be output.

Primary

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data

#1
Log output by the Application Server component software.

#2
Output when JavaVM start option is specified. For details about acquisition options, see 4.10 JavaVM log (JavaVM log file). For details about
options, see 14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

#3
Output only when using UNIX.

A log file is created automatically in the directory specified in the environment settings file of each component software.
A serial number from 1 to the number of specified log files is attached to the file name. When the size of the log file
reaches its maximum size for one file, the output destination switches to the next log file. After the number of specified
log files are output, the log is output once again to the log file with the number of the file name as 1. Note that there are
times when the file size of the log file may slightly increase as compared to the size specified in the environment settings
file to ensure that one record of a log file is output without a break. The maximum length of one record is about 4 KB.

2.4.3 Correspondence Between Acquisition Methods and Investigation
Methods

This section describes the reference destination of methods for acquiring and investigating the required data to be
acquired. Moreover, this section also describes the types of information that can be acquired as a snapshot log.

2. Troubleshooting

Maintenance and Migration Guide 51

Table 2‒7: Reference destination of methods for acquiring and investigating the required data to
be acquired

Item No. Type of material Possibility of acquiring
in snapshot log with
default settings#1

Reference

Individual
collection method

Investigation method

1 Message log Y 4.3, 4.4, 4.5 5.2, 5.3

2 User log Y

3 Exception log Y

4 Maintenance log Y

5 Trace based performance analysis Y 4.6 5.4, 7.7

6 JavaVM thread dump Y#2 4.7 5.5

7 GC logs of JavaVM -- 4.8 5.6

8 Memory dump --#2 4.9 --#3

9 JavaVM log file#4 -- 4.10 5.7

10 Error report files -- 4.11 5.8

11 OS status and log Y 4.12 5.9

12 OS statistical information -- 4.13 --#3

13 Definition information Y 4.14 --#3

14 Working directory -- 4.15 --#3

15 Resource setting -- 4.16 --#3

16 Web server log -- 4.17 --#3

17 JavaVM stack trace#3, #5 -- 4.18 5.10

18 Event log of the Explicit
Memory Management functionality
of JavaVM#4

-- 4.19 5.11

Legend:
Y: Can be acquired
--: Cannot be acquired

#1
This log can be acquired if the directory, in which snapshot log is collected, is added.

#2
This log can be collected only if it is output using commands when an error is detected in advance. (When collecting the snapshot log, the
commands that output a dump cannot be executed).

#3
Maintenance personnel use this data.

#4
Output when JavaVM start option is specified. For details about acquisition options, see 4.10 JavaVM log (JavaVM log file). For details about
options, see 14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

#5
Output only when using UNIX.

2. Troubleshooting

Maintenance and Migration Guide 52

2.5 Troubleshooting and Recovery

This section describes how to troubleshoot and recover when following errors occur:

• If the configuration software process (logical server) terminates abnormally

• If forced termination of a J2EE application fails

• If a problem occurs when using the database session failover function

• If JavaVM terminates abnormally

• If the Administration Agent is terminated forcibly, when OutOfMemoryError occurs

• If a problem occurs in the system linked with JP1

• If a problem occurs in 1-to-1 node switching systems

• If a problem occurs in N-to-1 recovery systems

• If a problem occurs in the node switching system for the host unit management model

• If a problem occurs in the EJB client

2.5.1 If the Configuration Software Process (Logical Server) Terminates
Abnormally

The method for restarting the system, when Application Server configuration software process terminates abnormally,
is described here.

In a system build on Application Server, if the start order is set up when the component software process (logical server)
of Application Server terminates abnormally, the Management Server will automatically restart the component software.
In the Management Server, the processing of component software is managed as Logical Server.

When restarting manually, if the abnormally terminated configuration software has startup dependencies, confirm that
the configuration software, on which the abnormally terminated configuration software depends for starting, is running.
The configuration software, on which the abnormally terminated configuration software depends, varies depending on
the configuration of the system. The startup dependencies of the configuration software and the method of restarting the
configuration software are explained below:

Tip

In a system using CTM, if component software is restarted immediately by CTM, you can specify settings in
such a way so that the system is recovered before the error is returned to the client. However, when the number
of maximum registration of the request queue exceeds, an error will return to the client.

For details on a system using CTM, see 3. Scheduling and Load Balancing of Requests Using CTM in the
uCosminexus Application Server Expansion Guide.

(1) Configuration software startup dependencies
The startup dependencies of the configuration software process configuring a system built with Application Server are
explained here.

Hereafter, the configuration software process startup dependencies are explained:

2. Troubleshooting

Maintenance and Migration Guide 53

(a) Dependencies of the process
The dependencies of the process are as follows:

Table 2‒8: Dependency of processes

Process type Dependant process

Performance tracer --

Smart Agent#1, #2 --

CTM domain manager#1 Smart Agent#1, #2

CORBA naming service --

CTM daemon#1 • Performance tracer
• Smart Agent
• CTM domain manager
• CORBA naming service

J2EE server • Performance tracer
• Smart Agent
• CTM domain manager#3

• CORBA naming service#4

• CTM daemon#3

Web server Performance tracer

Legend:
--: There is no prerequisite process.

#1
It is a process to be started when using CTM.

#2
It is a process to be started when using the transaction service.

#3
This process is a prerequisite when using CTM.

#4
It is a process to be started when using the CORBA naming service in out-process. It is not required when using the CORBA naming service
in in-process.

(2) Restart method of the process
The restart method of a process when the process terminates abnormally in a system is as follows.

Tip

When a CTM-related process abnormally terminates and cannot be started, use the following procedure:

1. When you cannot restart the process, check the cause of the trouble from the output error message.

2. Execute the ctmrasget command, and acquire backup of the execution environment.

(a) Restart procedure
The procedure of process restart (recovery) is as follows:

2. Troubleshooting

Maintenance and Migration Guide 54

Table 2‒9: Procedure to restart (recovery) processes

Abnormal process Start command Restart (recovery) procedure

Database server -- Restart the DB server.

OpenTP1 -- Restart the OpenTP1.

Performance tracer cprfstart Restart the performance tracer.

Smart Agent#1, #2 Osagent Restart the Smart Agent.

CTM domain manager#1 ctmdmstart Restart the CTM domain manager.

CORBA naming service Nameserv Perform actions based on the procedure shown below. Furthermore,
when CTM is not used, procedure 1 and 4 are not required.

1. Forcefully terminate the CTM daemon
2. Forcefully terminate the J2EE server
3. Restart the CORBA naming service
4. Restart the CTM daemon
5. J2EE server restart

CTM daemon#1 ctmstart Perform actions based on the procedure shown below.
1. CORBA naming service forced termination
2. Forcefully terminate the J2EE server
3. Restart the CORBA naming service
4. Restart the CTM daemon
5. Before restarting the J2EE server

CTM regulator -- Since restarted automatically by CTM daemon, restart is
not required.

J2EE server cjstartsv Restart the J2EE server.

Web server -- Restart the Web server.

Legend:
--: The start command differs depending on the products used or there is no corresponding start command.

#1
It is a process to be started when using CTM.

#2
It is the process to be started when using the transaction service.

2.5.2 If forced termination of a J2EE application fails
When forced termination of a J2EE application fails, the following information is output by the J2EE server:

• Message
Message log is output. For details on output destinations of message logs, see 4.3 Application Server log (Systems
for executing J2EE applications).

• Stack trace
Output in the exception log and thread dump. For details on output destinations of exception logs, see 4.3 Application
Server log (Systems for executing J2EE applications). For details on a thread dump, see 5.5 JavaVM Thread Dump.

Note that in forced termination of a J2EE application, method cancellation is performed internally. For the error
information output during method cancellation, see 5.3.13 Log information that is output while monitoring the execution
time J2EE applications in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

2. Troubleshooting

Maintenance and Migration Guide 55

2.5.3 If a Problem Occurs When Using the Database Session Failover
Function

The actions for two types of errors in the case of errors in the database session failover function are described here:

• When an error occurs in an J2EE server

• When a trouble occurs in a database

(1) When an error occurs in an J2EE server
During a process that includes changes of the data in a database, if the process is down due to an error in the J2EE server,
the consistency of the system will be maintained, because the database will return to the state prior to the occurrence of
error the rollback operation. You can eliminate the error of J2EE server and restarting the Web application for recovering
from the trouble.

When the host of the J2EE server hangs up or when an error occurs in the network, the operation of the database might
be interrupted and the mutual exclusion (lock of the global session information) might become in an unresolved state.
In this case, you must resolve the mutual exclusion of the unresolved state before the J2EE server is recovered and the
Web application is re-opened.

Reference note

To release the unreleased mutual exclusion, an invalid connection to the database from the client is detected
and the connected session can be terminated forcefully. For details on releasing an unreleased mutual exclusion,
see the description related to the UAP processing time monitoring functionality of the manual HiRDB UAP
Development Guide when using HiRDB. When using Oracle, see the Oracle manual.

(2) When a trouble occurs in a database
When an error occurs in a database and you recover the database, the Web application using the database session failover
functionality can re-open the business, because the database will return to the state prior to occurrence of the error by
the rollback operation. You are not required to restart the Web application.

For details on the countermeasures to be taken when an error occurrence in other databases, see the manual of
each database.

2.5.4 If JavaVM Terminates abnormally
The actions when JavaVM terminates abnormally and the information output in the case of abnormal termination are
described below:

(1) Actions in the case of abnormal termination
In UNIX, in the case of abnormal termination, perform actions in the following order. Further, these actions are not
required in Windows.

1. Execute the javatrace command on the machine where abnormal termination occurs.
Output the javatrace.log file. For the execution method of the javatrace command, see 4.18 JavaVM stack
trace information.

2. Troubleshooting

Maintenance and Migration Guide 56

2. Send the acquired javatrace.log file to maintenance personnel along with the error report
file (hs_err_pidprocess-ID.log).
For the method of acquiring the error report file, see 4.11 JavaVM Output Message Logs (Standard Output or Error
Report File).

3. Execute the following commands to create the archive file for the JavaVM executable file, the library loaded when
the error occurred, and the core dump.

• In AIX
Execute the snapcore command. An archive file compressed with the pax command is created.

• In Linux
If the compress command is installed, execute the car_tar_Z command. An archive file compressed with
the compress command is created.
If the gzip command is installed, execute the car_tar_gz command. An archive file compressed with the
gzip command is created.

4. Send the created archive file to maintenance personnel.

(2) Information output at the time of abnormal termination
The information output when the following kind of abnormal termination occurs in JavaVM is described below:

• When C heap is insufficient during JavaVM processing

• When an OutOfMemoryError occurs due to a reason other than insufficient C heap during JavaVM processing

• When an internal logical error occurred

(a) When C heap is insufficient during JavaVM processing
If C heap is insufficient, in continuation to the following messages, the memory status, Java heap information and stack
trace information are output to the standard output and error report file (hs_err_pidprocess-ID.log). After that,
JavaVM is forcefully terminated.

Check the output information and take an appropriate action.

Exception in thread thread-name java.lang.OutOfMemoryError:requested size-re
quired-for-securing-memory bytes [for message-for-internal-investigation].

(b) When an OutOfMemoryError occurs due to a reason other than insufficient C heap
during JavaVM processing

When setting -XX:+HitachiOutOfMemoryAbort as the option when starting the J2EE server, and when an
OutOfMemoryError occurs due to the following causes, output the message and perform forced termination of JavaVM.
Check the output information and take an appropriate action.

When the OutOfMemory handling functionality is enabled (when -XX:+HitachiOutOfMemoryHandling is set),
if an OutOfMemoryError occurs due to Java heap insufficiency or insufficient metaspace area, JavaVM might not be
forcibly terminated.

Causes for forced termination
• Java heap insufficiency

• Insufficient metaspace area

2. Troubleshooting

Maintenance and Migration Guide 57

• Insufficient C heap in J2SE class library

Further, when C heap is insufficient in the JavaVM process, perform forced termination regardless of the
specification of this option.
When terminating, output the following message.

java.lang.OutOfMemoryError occurred.
JavaVM aborted because of specified -XX:+HitachiOutOfMemoryAbort options.

Forced termination timing
The timing when JavaVM is terminated forcefully differs depending on the option settings.

• When -XX:+HitachiOutOfMemoryStackTrace is specified as the option, terminate after
performing output of the stack trace. However, even when registering the process that is to be
executed at JavaVM termination time by the java.io.File.deleteOnExit method and the
java.lang.Runtime.addShutdownHook method beforehand, perform forced termination without
executing these.

• When setting -XX:+HitachiOutOfMemoryAbortThreadDump as the option, terminate after performing
output of the thread dump. Especially, when the cause is Java heap insufficiency or insufficient metaspace area,
if -XX:+HitachiOutOfMemoryAbortThreadDumpWithJHeapProf is also set as an option, JavaVM
is terminated after the thread dump with statistical information according to the class is output.

Operation when the OutOfMemory Handling functionality is enabled
If -XX:+HitachiOutOfMemoryHandling is set in addition to -
XX:+HitachiOutOfMemoryAbort as an option when starting a J2EE server, the OutOfMemory handling
functionality gets enabled. In this case, if there is a Java heap insufficiency or insufficient metaspace area, a process
to determine whether to perform forced termination is executed by OutOfMemory handling. As a result of this
judgment process, if all of the following OutOfMemoryError throw conditions are satisfied, forceful termination is
not executed.

OutOfMemoryError Throw Conditions
• OutOfMemory occurs due to Java heap insufficiency or insufficient metaspace area.

• OutOfMemory occurs in either the request processing in which the Web application (Servlet/JSP) on the Web
container is running, the processing in which the Enterprise Bean invoked from an EJB client application is
running, the processing in which a Message-driven Bean is running, or the processing in which the Enterprise
Bean invoked from the TimerService is running.

• Does not correspond to the OutOfMemoryError throw exclusion condition.

OutOfMemoryError Throw exclusion condition
The total number of OutOfMemory occurrences due to Java heap insufficiency and OutOfMemory occurrences
due to insufficient metaspace area (including the current OutOfMemory occurrence) within the past
hour from the time when the current OutOfMemory occurred is greater than the value specified in the
-XX:HitachiOutOfMemoryHandlingMaxThrowCount option.

For details, see -XX:[+|-]HitachiOutOfMemoryHandling (OutOfMemory handling option) in the uCosminexus
Application Server Definition Reference Guide.
If the OutOfMemory handling functionality is enabled, whenever OutOfMemory occurs due to Java heap
insufficiency or insufficient metaspace area, information on the frequency of OutOfMemory occurrences is output
to the JavaVM log file.

2. Troubleshooting

Maintenance and Migration Guide 58

(c) When an internal logical error occurred
When an internal logical error occurs, the message showing the JavaVM information where the error occurred, the
examination error ID and the thread where the error occurred are output to the standard output and the error report file
(hs_err_pidprocess-ID.log). Send the output information to maintenance personnel.

2.5.5 If Administration Agent is terminated forcibly when
OutOfMemoryError occurs

When Administration Agent is running, if java.lang.OutOfMemoryError occurs, a log is output and the
Administration Agent is terminated forcibly. The log is output at the following locations:

• In Windows
Manager-log-output-directory\adminagent.javalog[nn].log

• In UNIX
Manager-log-output-directory/adminagent.javalog[nn].log
Note [nn] is a number from 0 to 99.

Note that if you have specified the settings to stop all the logical servers in the termination processing of the
Administration Agent, the logical servers do not stop even if Administration Agent is terminated forcibly. To specify the
settings for stopping the logical servers in the termination processing of the Administration Agent, specify true in the
adminagent.finalization.stop_servers key of adminagent.properties (Administration Agent
property file).

Also, if you use a product other than JDK that is provided by Cosminexus Application Server, the Administration Agent
is not terminated forcibly because of OutOfMemoryError.

Execute the following operations, when Administration Agent is terminated forcibly because
of OutOfMemoryError:

1. Revise the value specified in the following option of adminagentuser.cfg:
Revise the value specified in the following option:
add.jvm.arg = -Xmx

2. Restart the Administration Agent.

2.5.6 If a Problem Occurs in the System Linked with JP1
When an error occurs in the system linked with JP1, it is necessary to take the following actions:

(1) Actions for problems in the system linked with JP1/IM
Shown below are the actions for the problems expected in the system linked with JP1/IM:

2. Troubleshooting

Maintenance and Migration Guide 59

Table 2‒10: Errors expected in a system linked with JP1/IM and their actions

Problem type Actions

Occurrence of an error at the
time of auto generation of the
monitoring tree

When an error occurs, investigate the cause of the error based on the Cosminexus adapter command
message that is output in the JP1/Base plug-in service log file. For details on the JP1/Base plug-in service
log file, see the manual JP1/Base Operation Guide.

No notification of the JP1 event
to JP1/IM

Confirm the log of the Administration agent, Management agent, and Management Server to check whether
the JP1 event is published to JP1/IM from the system built with Application Server. For details on the
storage location of the log of Administration Agent, Management Agent, and Management Server, see 4.3.1
Acquiring the Cosminexus Component Container Logs or 4.4.1 Acquiring the Cosminexus Component
Container Logs (systems executing batch applications).
Take the following actions for the contents of the log of Administration agent, Management agent, and
Management Server.
• When the JP1 event publishing log is not output, confirm the JP1 event publishing settings of the

Management Server#.
• When the JP1 event publishing log is output, confirm the contents of the JP1/Base configuration

definition created in the JP1 integrated operation management server. Moreover, confirm the action
environment settings of the JP1/Base event service in the Management Server# and J2EE server.

Web browser does not start
after starting the JP1/IM-
View monitor

Investigate the cause of the error that occurred based on the message output in the
mngsvrmonitor.log, which is saved in the directory where the monitor start command is copied.

#
This is the Management Server of Application Server.

(2) Actions for problems in the system linked with JP1/AJS
(INTENTIONALLY DELETED)

2.5.7 If a problem occurs in 1-to-1 node switching systems
This subsection describes the actions that you must take with for each OS, when the node switching process for a standby
host is timed out due to a failure in the database server (such as server is down or deadlock).

(1) In Windows
Manually keep the standby host online, after acquiring the log.

(a) Acquiring the log of 1-to-1 node switching system
If a trouble occurs in the 1-to-1 node switching system, you must acquire the cluster log. The following is the output
destination of the cluster log when Windows is installed in the standard path:

C:\WINDOWS\cluster\cluster.log

The following information is output to a cluster log:

• Operation log of cluster service
• Error message when there is an error in the syntax of VBScript
• Resource.LogInformation method of multi-purpose script
• Other messages

2. Troubleshooting

Maintenance and Migration Guide 60

For details on the cluster log, see the documentation on Windows.

If the J2EE server does not run, see Cosminexus Component Container log too.

(b) Manual recovery of 1-to-1 node switching system
You can manually recover the 1-to-1 node switching system according to the following procedure:

1. Cancel the cause of a timeout by restarting the database.

2. Create online target resources of the standby host.

(2) In UNIX
Resolve the cause of the timeout by restarting the database.

2.5.8 If a problem occurs in N-to-1 recovery systems
This subsection describes the recovery procedure for each OS, when problems occur in N-to-1 recovery systems.

(1) In Windows
With N-to-1 recovery systems, if the recovery processing of the standby node host (recovery server) is timed out because
of a database server failure (such as server down or deadlock), collect the log and manually execute the recovery
procedure. The recovery procedure is as follows:

1. Collect the log of the N-to-1 node switching system.
If a problem occurs in the N-to-1 recovery system, you must collect cluster logs. Collect the logs same as you
would collect when problems occur in 1-to-1 node switching systems. For details on the logs to be collected, see the
subsection 2.5.7 If a problem occurs in 1-to-1 node switching systems.

2. Recover the N-to-1 node switching system manually.
Use one of the following methods to manually recover the N-to-1 recovery system:

• Set up the target resources of the standby node host as online

• Execute the transaction recovery command (cjstartrecover) of the J2EE server

(a) Setting the target resources of the standby node host as online and executing
recovery

To set up the target resources of the standby node host as online and execute recovery:

1. Execute operations, such as restarting the database to resolve causes of the timeout.

2. Set up the target resources of the standby node host as online.

(b) Executing the transaction recovery command (cjstartrecover) of the J2EE server
for recovery

To execute the transaction recovery command (cjstartrecover) of the J2EE server for recovery:

1. Execute operations, such as restarting the database to resolve causes of the timeout.

2. Troubleshooting

Maintenance and Migration Guide 61

2. Create a folder in the path specified in Dir_Name using the universal script for the standby node host.
If a folder already exists, delete the folder, and then create a new folder.

3. When the universal script for the standby node host is online, reference cluster logs, and then
execute cjstartrecover.

4. When recovery is successful, delete the folder created in the path specified in Dir_Name.

For details on cjstartrecover command, see cjstartrecover (recover J2EE server transaction) in the uCosminexus
Application Server Command Reference Guide.

(2) In UNIX
With N-to-1 recovery systems, if the recovery processing of the standby node host (recovery server) is timed out because
of a database server failure (such as server down or deadlock), manually execute the recovery procedure as follows:

1. Execute operations, such as restarting the database to resolve causes of the timeout.

2. In the standby node host, execute monbegin for the failed executing node host.

monbegin server-identification-name

In the underlined part, specify an identification name of the server for the executing node specified in the operand
alias of the servers file.

3. In the standby node host, execute monact for the failed executing node host.

monact server-identification-name

In the underlined part, specify an identification name of the server for the executing node specified in the operand
alias of the servers file.
You can use a standby node host (recovery server) to execute the recovery processing for the unconcluded
transactions in the failed executing node host.

Reference note

For details on the environment settings to support servers in the HA monitor, such as defining the servers
file, see 19.5.4 Setting the environment of the HA monitor in the uCosminexus Application Server Operation,
Monitoring, and Linkage Guide.

2.5.9 If a problem occurs in the node switching system for the host unit
management model

An action for a problem that occurs in a node switching system of the host unit management model is same as would be
the action of a problem that occurs in the 1-to-1 node switching system. For details, see the subsection 2.5.7 If a problem
occurs in 1-to-1 node switching systems.

2. Troubleshooting

Maintenance and Migration Guide 62

2.5.10 If a Problem Occurs in the EJB Client
When an EJB client using a global transaction is down, recovery of the global transaction is necessary. The recovery of
the global transaction can be executed by restarting the EJB client.

The method for confirming whether the global transaction recovery process is complete is described below:

• Execute the cjlisttrn command in Application Server and confirm whether the transaction is in an active state.
For details on the cjlisttrn command, see cjlisttrn (display information about transactions operating in J2EE
server) in the uCosminexus Application Server Command Reference Guide.

• Confirm whether the resource adapter can be stopped. If it can be stopped, the recovery process of the global
transaction is complete.

• Confirm whether Application Server can be stopped successfully. When it can be stopped successfully, the recovery
process of the global transaction is complete.

• Confirm using tools and commands provided by each resource.

Moreover, when multiple EJB clients exist, to examine which EJB client is required for the recovery of global transaction:

1. Confirm the unconcluded transactions by executing the cjlisttrn command by specifying the -
pending option.

Execution format

cjlisttrn server-name -pending -bqual

Execution example
cjlisttrn MyServer -pending -bqual

2. From the unconcluded transactions confirmed in procedure 1., confirm whether all the following conditions apply
to those transactions:

• Elapsed time increases every time the cjlisttrn command is published

• Branch type is Sub or Sub(recovered)

• TmHash value of the KFCB40051-I message output at the time of starting the stopped EJB client is included in
the global transaction ID

The transactions to which all these conditions apply are required for the recovery of global transactions.

2. Troubleshooting

Maintenance and Migration Guide 63

2.6 Precautions Related to Troubleshooting

This section describes the precautions related to troubleshooting.

2.6.1 Precautions Related to the System Log of an EJB Client Application
The precautions when referencing a system log output by an EJB client application in a shared sub-directory mode and
operating the shared sub-directory mode EJB client applications are described below:

• The valid data in the log file is from the start of the file up to the EOF.
In the system log of an EJB client application, the log data is overwritten from the beginning sequentially when the
log file is wrapped around, without deleting the log data prior to wrap around. For this reason, when referencing a
log file, ignore the data after the EOF. The data after the EOF is the invalid log file data prior to wrap around.
The end of the valid log file data is the data shown below:

EOF CRLF CRLF CRLF CRLF----------< End of Data >----------CRLF CRLF

EOF are characters (0x1A) denoting the end of trace data. CRLF denotes line feed (0x0D, 0x0A).
The example of output is described below. Further, the character showing the end of trace is described as [EOF].

• In Windows

**** "OS name (including details such as OS version)" TZ=
"time zone name" xxxx/xx/xx xx:xx:xx.xxx
 yyyy/mm/dd hh:mm:ss.sss pid tid message-i
d message(LANG=ja)
0000 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJEXXXXX
-W xxxxxxxxx
0001 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJEYYYYY
-I yyyyyyyyy
0002 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJEZZZZZ
-I zzzzzzzzz
[EOF]

----------< End of Data >----------

<<Invalid data before wraparound>>...
...
...

• In UNIX

**** "OS name (Including details such as OS version)" TZ=
Asia/Tokyo xxxx/xx/xx xx:xx:xx.xxx
 yyyy/mm/dd hh:mm:ss.sss pid tid mes
sage-id message(LANG=ja)
0000 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJ
EXXXXX-W xxxxxxxxx
0001 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJ
EYYYYY-I yyyyyyyyy
0002 xxxx/xx/xx xx:xx:xx.xxx HEJB BE3F6FE9 015EE671 KDJ
EZZZZZ-I zzzzzzzzz
[EOF]

2. Troubleshooting

Maintenance and Migration Guide 64

----------< End of Data >----------

<< Invalid data before wraparound>>...
...
...

• At the time of starting an EJB client application process, a number of trace files specified in the
ejbserver.logger.channels.define.channel-name.filenum key of system properties are created.
At this time, trace files are initialized as space (0x20).

• The capacity of the user log file is fixed as specified in the ejbserver.logger.channels.define.channel-
name.filesize key of system properties. The trace files of the specified size are created at the time of process
startup. For this reason, capacity does not increase or decrease as per the log output.

• When you want to change the log file capacity or the number of files, you need to stop all the processes that output
log in the relevant log files, and delete the log management files under the mmap directory and the log files or move
them to a different directory.

• In cases other than when you want to change the log file capacity or the number of files, do not change or delete the
log files and the log management files. If you change or delete them, thereafter, the log may not be output correctly.

• Do not delete the sub directories using the cjcldellog command where the EJB client application running
in the shared sub-directory mode output log. If you delete such sub-directories, thereafter, the log may not be
output correctly.

• When starting an EJB client application in the shared sub-directory mode in the environment where the EJB client
application is already running in the exclusive sub directory mode, specify a value different than that of the EJB client
application running in an exclusive sub-directory mode in the ejbserver.client.ejb.log key of system
properties. If the same value is specified, you cannot correctly manage the number of sub directories of the EJB client
application operating in the exclusive sub-directory mode. Note that the exclusive sub-directory mode is used for
compatibility with earlier versions.

2.6.2 Precautions When Using CTM
The precautions to be taken when using CTM are described below. In CTM, take care of the following things:

• Failure information of CTM is acquired under the CTMSPOOL environment variable in the CTM domain unit. As
the error information is acquired even at the time of restart after the CTM daemon and CTM domain manager are
down, save the error information after the occurrence of error.

• The directories under the CTMSPOOL environment variable are the operation directories of the product. Therefore,
do not delete the files and directories.

2.6.3 Precautions when using PRF
The precautions to be taken when using PRF are described below. In PRF, take care of the following things:

• PRF error information is acquired under the PRFSPOOL environment variable for every PRF identifier. As the error
information is acquired even at the time of restart after the PRF daemon is down, save the error information after the
occurrence of error.

2. Troubleshooting

Maintenance and Migration Guide 65

• The directories under the PRFSPOOL environment variable are the operation directories of the product. Therefore,
do not delete the files and directories.

2.6.4 JavaVM data-related considerations
This subsection describes the JavaVM data-related considerations.

• The following JavaVM data does not support multi-byte characters. The applicable characters, such as the Japanese
class names, are corrupted.

• JavaVM thread dump log file

• JavaVM log file

• Error report file (JavaVM output message log)

• Event log file of the Explicit Memory Management functionality

• If you specify names containing the third and fourth level characters of JIS X0213:2004 in the following options,
the JavaVM log file of the product and the event log file of the Explicit Memory Management functionality are
not output:

• -XX:HitachiJavaLog option

• -XX:HitachiExplicitMemoryJavaLog option

Also, if the third and fourth level characters of JIS X0213:2004 are included in the output destination directory of
the extended thread dump file, the extended thread dump is not output to a file.

2. Troubleshooting

Maintenance and Migration Guide 66

3 Preparing for Troubleshooting

You can automatically receive the information required for troubleshooting, when a trouble occurs
in a system built on the Application Server. Some of the data that is required for troubleshooting
need preparation before starting operations. This chapter describes the settings for respective
data acquisition.

Maintenance and Migration Guide 67

3.1 Organization of this chapter

This section describes the settings to acquire the data required for troubleshooting.

You can automatically acquire the data required for troubleshooting by default settings, but you must set up a part of the
data before starting operations. You can also change the output destination and the log size that is set up by default.

For the information to be acquired when trouble occurs, you must specify the settings before starting the operations to
acquire the following information:

• JavaVM log (JavaVM log file)
The JavaVM GC log is also output to this file.

• User dump (in Windows)

• core dump (in UNIX)

• OS statistical information (in Windows)

Specify the settings to acquire this information at system configuration time as required.

The following table describes the organization of this chapter.

Table 3‒1: Organization of this chapter (Troubleshooting (Data acquisition settings))

Category Title Reference

Explanation Overview of data acquisition settings 3.2

Settings Execution environment settings 3.3

For overview of troubleshooting, data output methods and output contents, see the respective sections:

• Overview of troubleshooting and methods to output the data automatically
2. Troubleshooting

• Output destination of collected data and methods to output data separately
4. Output Destinations and Output Methods of Data Required for Troubleshooting

• Contents output in data
5. Problem Analysis

3. Preparing for Troubleshooting

Maintenance and Migration Guide 68

3.2 Overview of data acquisition settings

For certain materials required for troubleshooting, you need to specify collection of the material before starting the
operations. For example, if you do not make settings in advance for collecting material, you cannot acquire the statistical
information of the OS, user dumps (in Windows) or core dumps (in UNIX), or GC log of JavaVM. Hitachi recommends
that you obtain this data because it is required for troubleshooting.

If the material can be collected with default settings, specific settings are not required, however, if you want to change
the log output destination and size, edit the Easy Setup definition file and user definition file to change the settings.

The following table describes handling of the data required for troubleshooting, data that require in advance settings, and
the data for which you must change the settings.

Table 3‒2: Handling of the data required for troubleshooting, data that require in advance settings,
and the data for which the settings must be changed

Data necessary for troubleshooting Data that require in advance settings or data for which the
settings must be changed

Log of Application Server Message log • Snapshot log
• Management Server log
• J2EE server log
• Batch server log
• Web server log
• Application user log
• Cosminexus Manager log
• Console log
• Resource adapter log
• Cosminexus TPBroker trace file
• Cosminexus JMS Provider log
• Server management command log
• NIO HTTP server log

User log

Exception log

Maintenance log

EJB client application system log Message log • System log#

• Application user logUser log

Exception log

Maintenance log

Trace based performance analysis Trace based performance analysis file

Thread dumps of JavaVM JavaVM material

GC logs of JavaVM JavaVM material

Memory dump • User dump (in Windows)
• core dump (in UNIX)

Hitachi JavaVM log file JavaVM material

Error report files --

Compilation replay file --

OS state or log --

Statistical information of OS Statistical information of OS

Definition information --

3. Preparing for Troubleshooting

Maintenance and Migration Guide 69

Data necessary for troubleshooting Data that require in advance settings or data for which the
settings must be changed

Operation directory --

Resource setting --

Web server log --

JavaVM stack trace --

Event log of Explicit Memory Management functionality JavaVM material

Legend:
--: No data for in advance settings and no data to change the settings

Note:
Besides this table, there is an operation information file for the data that requires in advance settings and the data requires changes in settings.
An operation information file is a file used for acquiring the operation information, such as server performance for each functionality and the
resource information. You can use this file for operation monitoring of systems. You can acquire the operation information file by default.

#
For details about the system logs of EJB client applications, see 3.8 System log output for EJB client application in the uCosminexus Application
Server EJB Container Functionality Guide.

This section gives an overview on the types and settings of the data that require in advance settings and the data that
requires changes in the settings, for each system executed that executes an application.

3.2.1 Specifiable contents
This section describes the contents that can be specified as data acquisition methods.

You can specify the following contents as acquisition methods in some of the data to be used for troubleshooting. The
contents that you can specify depend on the data.

• Do you want to acquire the data?
• Data output destination
• Number of output destination files
• How to switch the output destination files

Note that for some data output by the following processes, you can select the time at which the output destination files
will be switched and the name assignment rules for the switched files:

• J2EE server

• Administration Agent

• Management Server#

• Internal setup tool for the virtual server manager

• Server Communication Agent

Applicable when the shift mode is set up for the integrated log.

This subsection describes the time at which the output destination files can be switched and the file name assignment
rules that you can select in these processes.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 70

(1) Time at which the output destination files are switched
For some of the data, you can select the switching methods for the data output destination files from the following two
types of methods:

File size-based switching method
In this method, when the output destination file reaches a certain size, the log output destination is switched to the
next file. You can specify the file size for each data item. However, the file size is fixed for some of the data.

Time and file size-based switching method
In this method, when the specified time is reached, or when the output destination file reaches a certain size, the log
output destination is switched to the next file.

You can specify the switching method for each process.

If you select the time and file size-based switching method, and if you want to switch the files by time alone, specify a
value larger than the assumed log output volume as the file size. Also, the header information of the new file, created
after the output destination file is switched by time, becomes the date and time at which the process that has output the
log initialized the log.

For details on the files that are switched by the time and file size-based switching method, see 5.2 Application Server Log.

Important note

When you select the time and file size-based switching method, the time at which the output destination file is
switched might be delayed from the specified time by several milliseconds to a few seconds, depending on the
load status of the OS resources.

Also, if the process that performs log output (such as the J2EE server) is not running at the specified time, the
log is added into the existing file instead of switching the files when the process next starts after the specified
time is past. For example, if the switching time is specified at 12:00:00, and the process is stopped at 11:00:00,
the process that starts at 13:00:00 adds the log to the existing file.

(2) File name assignment rules when the output destination files are
switched

A file name configured with a data-specific string and serial number is set for the output destination files. You can select
the serial number assignment rules from the following two modes:

Wraparound mode
If the data-specific string is xxx, the files are created with the serial number added as xxx1.log, xxx2.log and so
on. The range of the serial numbers is from 1 up to (number-of-output-destination-files). If the output destination is
changed after the specified number of output destination files are created, the data output destination switches to the
file with the serial number 1.
The following figure shows file name assignment rules in the wraparound mode.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 71

Figure 3‒1: File name assignment rules in the wraparound mode

Shift mode
The file to which the data is being output currently has a file name containing only the data-specific string. No
serial number is given. After the output destination is switched at the specified time, a serial number is given to the
previous files.
If the data-specific string is xxx, the file to which the data is output at that time becomes xxx.log (file name without
serial number). The names of the previous output destination files are changed (renamed) to file names with the serial
number added as xxx1.log, xxx2.log and so on. At this time, the file with the smallest serial number sequentially
becomes the latest file.
The range of the serial numbers is from 1 up to (number-of-output-destination-files). Therefore, the total number of
files is the specified-number-of-output-destination-files + 1 (current output destination file).
The following figure shows the procedure of switching output destination in the shift mode.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 72

Figure 3‒2: Procedure of switching the output destination in the shift mode

For details on the files that are switched in the shift mode, see 5.2 Application Server Log.

Note that when deleting a file in Windows, a file that is being used in another process might be stored temporarily. In
this case, a file with #removed#[n] (n is an integer of 0 or more value) added at the end of the original file name is
created temporarily. This file is automatically deleted when all the processes finish processing the file.

3.2.2 Overview of data acquisition settings (Systems that execute J2EE
applications)

For changing the default settings (Output destination or log size) of data or acquiring the data that is not acquired by
default, editing the Easy Setup definition file or User definition file and specify the settings. This subsection describes
whether you must specify the settings of the systems executing J2EE applications to acquire the data (log) in advance.
This subsection also provides an overview of the setting methods.

For each data type, the following tables separately describe the data items for which the data collection settings must be
specified and the data items for which settings must only be specified when changing the default data collection settings.

• Data items that require data collection settings

3. Preparing for Troubleshooting

Maintenance and Migration Guide 73

Table 3‒3: Data acquisition settings (Systems executing J2EE applications)

Type of material Settings for collecting the material Reference
manual

Reference
point

Application user log Set up the logger or handler settings, output level of log, size, and the number
of files in the <configuration> tag of logical J2EE server (j2ee-server),
in the Easy Setup definition file.
Use server.policy to specify the security policy.

uCosminexus
Application
Server
Expansion
Guide

Chapter 8

Statistical information
of OS

In Windows, specify the performance data collection settings of system
resources on the Windows system monitor.

This manual 3.3.14

User dump In Windows, specify the settings for collecting user dumps by
using Task Manager, the Windows debug tool, or the environment
variable (CJMEMDUMP_PATH).

This manual 3.3.15

core dump In Unix, specify the settings for collecting core file using the simple setup
definition file and shell commands.

This manual 3.3.16

JavaVM material Set up the thread dump of JavaVM, output methods, or output contents of the
JavaVM logs (JavaVM log files) in the Easy Setup definition file. You can
also set up name of a file that executes the event log output or the output level
of log in the Explicit Memory Management functionality.

This manual 3.3.17

• Data items that must be set up only when changing the default data collection settings

Table 3‒4: Data acquisition settings (Systems executing J2EE applications)

Type of material Settings for collecting the material Reference manual Reference point

snapshot log To change the collection destination, collection method, and
collection timing of the snapshot log, edit the user definition file

This manual 3.3.1, 3.3.3

Management
Server log

Use mserver.properties (environment setting files of
the Management Server), to set up an output level of a log or to
set up the number of log files.

This manual 3.3.5

Trace based
performance
analysis file

Use mserver.properties (environment settings file of
Management Server) to specify the number of Trace based
performance analysis files.
Specify the trace acquisition level of performance tracer or
number of PFR trace files in the <configuration> tag of
Logical Performance Tracer (performance-tracer) in the Easy
Setup definition file.

This manual 7.5

J2EE server log Set up the output level of a log, size, and number of files in
<configuration> tag of logical J2EE server (j2ee-server)
in the Easy Setup definition file.
When settings of system log output are enabled by
ejbserver.logger.systemlog.enabled in the
<configuration> tag of logical J2EE server (j2ee-server),
the start and stop of J2EE server and abnormal termination
messages are output in an event log (in UNIX, syslog).

This manual 3.3.6

Web server log Set up the output level of a log and output destination of Web
server in the <configuration> tag of logical Web server
(web-server) in the Easy Setup definition file.

This manual 3.3.8

NIO HTTP server log Set up the availability of log output in the NIO HTTP server
and the number of files in the <configuration> tag of
logical J2EE server (j2ee-server), in the Easy Setup definition
file. You can define the format to customize the output format
of an access log.

This manual 3.3.9

3. Preparing for Troubleshooting

Maintenance and Migration Guide 74

Type of material Settings for collecting the material Reference manual Reference point

For details about customizing access logs of the NIO HTTP
server, see 6.11.2 Customizing the access logs of the NIO HTTP
server in the uCosminexus Application Server Web Container
Functionality Guide.

Operation
information file

Set up output destination of operation information file or
number of files in the <configuration> tag of logical J2EE
server (j2ee-server) in the Easy Setup definition file.

uCosminexus Application
Server Operation,
Monitoring, and
Linkage Guide

3.3.3

Cosminexus
Manager log

Use manager.cfg to specify the number and size of the files of
the integrated log.

This manual 3.3.10

Console log Use adminagent.properties to specify the application of output,
the number, and the size of the console log files.

uCosminexus Application
Server Operation,
Monitoring, and
Linkage Guide

11.3

Resource adapter log Specify the application of log output for each resource adapter
using Server management commands.
Set up the output level of a log, size, and the number of
files in the <configuration> tag of logical J2EE server
(j2ee-server), in the Easy Setup definition file.

This manual 3.3.11

Cosminexus
TPBroker trace file

Set up the output destination of trace file or number of files
in the Easy Setup definition file (in the <configuration>
tag of logical J2EE server (j2ee-server)) and usrconf.bat
(in UNIX, usrconf) and usrconf.properties for the
server management commands.

This manual 3.3.12

Cosminexus JMS
Provider log

Set up the output level, number of files, and
log file size in commonconfig.properties or
config.properties and admin.properties for
the CJMSP Broker and the management command
(cjmsicmd) log.
Also, set up the output level, number of files, and log file size of
the CJMSP resource adapter log in the Connector property file.

This manual 3.3.13

Server management
command log

You can use usrconf.bat (in UNIX, usrconf) and
usrconf.properties for server management commands to
specify the log output level.

uCosminexus Application
Server Application
Setup Guide

3.4

The snapshot logs described here can be collected in batches. In the trace file of Cosminexus TPBroker, the material that
can be collected and the material that cannot be collected are mixed. In addition to this, you need to make the settings
for collection and add the collection destination of the snapshot log for those logs that cannot be acquired with default
settings. Collect user dumps (in Windows) or core dumps (in UNIX) for specific file names. To collect the material when
an error occurs, you need to use the user created command at error detection time.

Note that you cannot change the log output destination for the following logs:

• The install.log created during setup or log files of migration commands

• The Java thread dump files output to the following directories:

• In Windows
working-directory\ejb\server-name

• In UNIX
working-directory/ejb/server-name

3. Preparing for Troubleshooting

Maintenance and Migration Guide 75

For details about log types or default values, channel names, details of logs that can be acquired or acquisition methods,
see 2.4 Types of Required Data.

3.2.3 Overview of data acquisition settings (Systems executing batch
applications)

For changing the default settings (output destination or log size) of data or acquiring the data that is not acquired by
default, edit the Easy Setup definition file or the user-defined file. This subsection describes whether you must specify the
settings for the systems executing batch applications to acquire the data (log) in advance. This subsection also provides
an overview of the setting methods.

For each data type, the following tables separately describe the data items for which the data collection settings must be
specified and the data items for which settings must only be specified when changing the default data collection settings.

• Data items that require data collection settings

Table 3‒5: Data acquisition settings (Systems executing batch applications)

Type of material Settings for collecting the material Reference
manual

Reference
point

Application user log Set up the logger or handler settings, output level of a log, size and
number of files in the <configuration> tag of logical J2EE server
(j2ee-server), in the Easy Setup definition file.
Use server.policy to specify the security policy.

uCosminexus
Application Server
Expansion Guide

Chapter 8

Statistical information
of OS

In Windows, specify the performance data collection settings of system
resources on the Windows system monitor.

This manual 3.3.14#

User dump In Windows, specify the settings for collecting user dumps by using the
Windows debug tool.

This manual 3.3.15#

core dump In Unix, specify the settings for collecting core file using the simple setup
definition file and shell commands.

This manual 3.3.16#

JavaVM material Set up the thread dump of JavaVM, output methods or output contents of
the JavaVM logs (JavaVM log files) in the Easy Setup definition file. You
can also set up file names to the output event log or output level of logs of
the Explicit Memory Management functionality.

This manual 3.3.17#

#
The setting method is same as that of the J2EE server. Substitute J2EE server in the description of reference sections to batch server,
and read.

• Data items that must be set up only when changing the default data collection settings

Table 3‒6: Data acquisition settings (Systems executing batch applications)

Type of material Settings for collecting the material Reference
manual

Reference
point

snapshot log To change the collection destination, collection method, and collection
timing of the snapshot log, edit the user definition file

This manual 3.3.2, 3.3.4

Management Server log Use mserver.properties (environment settings file of the
Management Server) to set up the output level of a log and number
of log files.

This manual 3.3.5#

Trace based performance
analysis file

Use mserver.properties (environment settings file of
Management Server) to specify the number of trace based performance
analysis files.

This manual 7.5#

3. Preparing for Troubleshooting

Maintenance and Migration Guide 76

Type of material Settings for collecting the material Reference
manual

Reference
point

Specify the trace acquisition level of performance tracer or number of PFR
trace files in the <configuration> tag of logical performance tracer
(performance-tracer) in the Easy Setup definition file.

Batch server log Set up the output level of a log, size, and number of files in the
<configuration> tag of logical J2EE server (j2ee-server), in the
Easy Setup definition file.
When the settings of system log output are enabled
by ejbserver.logger.systemlog.enabled in the
<configuration> tag of logical J2EE server (j2ee-server), the start
and stop of batch server and abnormal termination messages are output in
an event log (in UNIX, syslog).

This manual 3.3.7

Operation
information file

Set up the output destination of an operation information file or number of
files in the <configuration> tag of logical J2EE server (j2ee-server),
in the Easy Setup definition file.

uCosminexus
Application Server
Operation,
Monitoring, and
Linkage Guide

3.3.3

Cosminexus Manager log Use manager.cfg to specify the number and size of the files of the
integrated log.

This manual 3.3.10#

Console log Use adminagent.properties to specify the application of output,
the number, and the size of the console log files.

uCosminexus
Application Server
Operation,
Monitoring, and
Linkage Guide

11.3#

Resource adapter log Specify the application of log output for each resource adapter using
Server management commands.
Set up the output level of a log, size, and number of files in the
<configuration> tag of logical J2EE server (j2ee-server), in the
Easy Setup definition file.

This manual 3.3.11#

Cosminexus TPBroker
trace file

Set up the output destination of trace files or number of files in the Easy
Setup definition file (in the <configuration> tag of logical J2EE
server (j2ee-server)) and the usrconf.bat (in UNIX, usrconf) and
usrconf.properties for the server management commands.

This manual 3.3.12#

Server management
command log

You can use usrconf.bat (in UNIX, usrconf) and
usrconf.properties for server management commands to specify
the log output level.

uCosminexus
Application Server
Application Setup
Guide

3.4

#
The setting method is same as that of the J2EE server. Substitute J2EE server in the description of reference sections to batch server,
and read.

The snapshot log can collects the logs described in table, in batches. In the trace file of Cosminexus TPBroker, the
material that can be collected and the material that cannot be collected are mixed. In addition to this, you need to make
the settings for collection and add the collection destination of the snapshot log for those logs that cannot be acquired
with default settings. Collect user dumps (in Windows) or core dumps (in UNIX) for specific file names. To collect the
material when an error occurs, you need to use the user created command at error detection time.

Note that you cannot change the log output destination for the following logs:

• The install.log created during setup or log files of migration commands

• The Java thread dump files output to the following directories:

• In Windows

3. Preparing for Troubleshooting

Maintenance and Migration Guide 77

working-directory\ejb\server-name

• In UNIX
working-directory/ejb/server-name

For details about the log types or default values, channel names, details of logs that can be acquired or acquisition
methods, see 2.4 Types of Required Data.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 78

3.3 Execution environment settings

Among the data required for troubleshooting, some data require the settings before starting operations and for some data
you can change the default settings. This section describes how to set up each material. For details about the data that
require in advance settings or changes in the settings, see 3.2 Overview of data acquisition settings.

3.3.1 Data acquisition settings using failure detection time commands
(Systems for executing J2EE applications)

This subsection describes how to specify the settings to acquire the data for troubleshooting using the failure detection
time commands. Note that you can collect the material acquired by the failure detection time commands as the
snapshot log.

There are two types of failure detection time commands; commands that the system provides and commands that the user
creates. According to the default settings, when an error occurs in a logical server, the failure detection time commands
provided by the system are executed and thread dumps and trace based performance analysis are acquired. The snapshot
log is collected before terminating the logical server where the error occurs. For the information that can be acquired by
executing the failure detection time commands provided by the system, see 2.3.2(1) Information that can be acquired
by executing the failure detection time commands provided by the system.

To change the operation settings of the failure detection time commands provided by the system, (1) Environment settings
in the Management Server and (2) Environment settings in the Administration Agent are necessary. Also, when using
the user created failure detection time commands, (1) Environment settings in the Management Server, (2) Environment
settings in the Administration Agent, and (3) Creating a command file of the user created failure detection time commands
are necessary. Respective settings are described in points from (1) to (3).

Important note

To collect the material acquired by the user created failure detection time commands as the snapshot log,
you need to add the collection destination of that material to the snapshot log collection destination. For
details about addition of the snapshot log collection destination, see 3.3.3(3) Customizing the snapshot log
collection destination.

(1) Environment settings in the Management Server
Use mserver.properties (environment settings file of Management Server) to specify the operation of the failure
detection time commands.

Specify the operation of the failure detection time commands in the following keys.

Key Description Setting requirement

System User

com.cosminexus.mngsvr
.sys_cmd.abnormal_end
.enabled

Specify whether to use system provided failure detection time
commands. The default setting is true (use).

O --

com.cosminexus.mngsvr
.usr_cmd.abnormal_end
.enabled

Specify whether to use the user created failure detection time
commands. The default setting is false (do not use).

-- R

3. Preparing for Troubleshooting

Maintenance and Migration Guide 79

Key Description Setting requirement

System User

com.cosminexus.mngsvr
.sys_cmd.abnormal_end
.timeout

Specify the waiting period for termination of system provided
failure detection time commands. If the command does not
terminate even after the specified time lapses, the user recovery
process continues.

O --

com.cosminexus.mngsvr
.usr_cmd.abnormal_end
.timeout

Specify the waiting period for termination of the user created
failure detection time commands.

-- O

com.cosminexus.mngsvr
.snapshot.auto_collec
t.enabled

Specify whether to acquire the snapshot log when an error
occurs or for batch restart. The default setting is true (acquire
the snapshot log).

O O

com.cosminexus.mngsvr
.snapshot.collect.poi
nt

Specify one of the following as the snapshot log
collection timing:
• Before terminating the logical server
• Before restarting the J2EE server

The default timing is before terminating the logical server.

O O

Legend:
System: You need to set the system provided failure detection time commands.
User: You need to set the user created failure detection time commands.
R: Required
O: Required only when changing the default settings.
--: Not required

(2) Environment settings in the Administration Agent
Use adminagent.properties (Administration Agent property file) to specify the material to be acquired by the
failure detection time commands.

In the following keys of adminagent.properties, specify the count of the material to be acquired, application of
collection using the failure detection time commands, and the path of the failure detection time commands. For details
on the files defining the snapshot log collection target, see 3.3.3(3) Customizing the snapshot log collection destination

Key Description Setting requirement

System User

adminagent.snapshotlo
g.num_snapshots

Specify the number of snapshot log files to be collected as the
primary delivery data for each logical server.

O O

adminagent.snapshotlo
g.listfile.2.num_snap
shots

Specify the number of snapshot log files to be collected as the
secondary delivery data for each logical server.

O O

adminagent.j2ee.sys_c
md.abnormal_end.threa
ddump

Specify whether to acquire thread dumps using the system
provided failure detection time commands.

O --

adminagent.sys_cmd.ab
normal_end.prftrace

Specify whether to acquire the trace based performance
analysis file using the system provided failure detection
time commands.

O --

adminagent.logical-server-
type.usr_cmd.abnormal_e
nd

Specify the path of failure detection time commands to be
executed for each type of logical server.

-- R

3. Preparing for Troubleshooting

Maintenance and Migration Guide 80

Legend:
System: You need to set the system provided failure detection time commands.
User: You need to set the user created failure detection time commands.
R: Required
O: Required only when changing the default settings.
--: Not required

(3) Creating a command file of the user created failure detection time
commands

You can code the user created failure detection time commands in a command file (batch file or shell script file). At
this time, you can code the environment variables described in the following table, in the command file to execute the
commands using the information of the logical server where the error occurred and the information related to the error.

Table 3‒7: Environment variables that you can code in the command file of the user created failure
detection time commands

Environment variable Description

COSMI_MNG_LSNAME Logical server name of the logical server where the error occurred. When an error
occurs in the naming service of the logical CTM, the logical server name of logical
CTM will be set up.

COSMI_MNG_RSNAME Actual server name of the logical server where the error occurred. For a logical server
other than a J2EE server, the logical server name is set.

COSMI_MNG_LSPID Process IDs to be monitored when the logical server starts. When monitoring multiple
process IDs on an indirectly started logical user server, the process IDs are specified,
demarcated by commas (,) in the order in which the process IDs are acquired by
the command executed for acquiring the process IDs when the logical user server
is started.

COSMI_MNG_LSARGS Command line when the logical server is started.

COSMI_MNG_TIME_SUSPENDED Time at which hang up is detected. Time lapsed (unit: ms) from 0 hour before January
1, 1970 of the universal coordinated time (UTC). Note that the value is set only if the
response is detected.

COSMI_MNG_TIME_TERMINATED Time at which abnormal termination (process down) is detected. Time lapsed (unit:
ms) from 0 hour before January 1, 1970 of the universal coordinated time (UTC).
Note that the value is not set if hang up occurs.

COSMI_MNG_WEB_SYSTEM Web system affiliated to the logical server where an error occurs. The value is not
required if you do not use the Smart Composer function.

COSMI_MNG_TIER Physical tier affiliated to the logical server where an error occurs. The value is not
required if you do not use the Smart Composer function.

COSMI_MNG_UNIT Service unit affiliated to the logical server where an error occurs. The value is not
required if you do not use the Smart Composer function.

COSMI_MNG_HWS Cosminexus HTTP Server installation directory.

The Management Server cannot acquire the standard output and standard error output from the commands executed as
commands to detect error. To acquire the standard output and standard error output of a command, information must be
output to a file during command execution.

(a) Examples of obtaining the core dump
The following examples describe the execution of the kill command when an error is detected in the J2EE server and
the collection of core dumps:

3. Preparing for Troubleshooting

Maintenance and Migration Guide 81

• In UNIX

#!/bin/sh

Determine whether the rem error has occurred because the process is dow
n or hung up, from the date and time at which it is detected that the proc
ess is down.
if ["$COSMI_MNG_TIME_TERMINATED" = ""] ; then

Acquire a core dump because the error occurred due to hang-up of the pro
cess.
/bin/kill -6 $COSMI_MNG_LSPID
fi

(b) Example of obtaining the thread dump
The following is an example of the case in which the cjdumpsv command is executed to obtain the J2EE server (real
server name: J2EEServer) thread dump when a Web server error occurs.

In this example, the cjdumpsv command is executed multiple times to check the status transition of each thread
in accordance with the lapsed time. As a standard, the cjdumpsv command is executed about ten times every
three seconds.

• In Windows

Determine whether the rem error has occurred because the process is down o
r hung up, from the environment variables.
if defined COSMI_MNG_TIME_TERMINATED goto END

Acquire the thread dump because the rem error has occurred due to the hung
-up process.
set COUNT=10
set INTERVAL=3000
for /l %%n in (1,1,%COUNT%) do (
"C:\Program Files\Hitachi\Cosminexus\CC\server\bin\cjdumpsv.exe" J2EEServ
er
 if not "%%n" == "%COUNT%" (
 rem Stand by until the next thread dump is collected.(milliseconds)
 echo WScript.sleep %INTERVAL% > sleep.vbs
 "C:\WINDOWS\\system32\cscript.exe" sleep.vbs > NUL
 del sleep.vbs
)
)
:END

• In UNIX

#!/bin/sh

Determine whether the error has occurred because the process is down or
hung up, from the environment variables.
if ["$COSMI_MNG_TIME_TERMINATED" = ""] ; then

Acquire the thread dump because the error has occurred due to the hung-u
p process.
COUNT=10
INTERVAL=3
for num in 'seq $COUNT'

3. Preparing for Troubleshooting

Maintenance and Migration Guide 82

do
 /opt/Cosminexus/CC/server/bin/cjdumpsv J2EEServer
 if ["$num" -ne "$COUNT"]; then
 # Stand by until the next thread dump is collected.(Seconds)
 sleep $INTERVAL
 fi
done
fi

(c) Operating user-created failure detection time commands
The logical CTM starts, stops, and monitors two processes; the global CORBA Naming Service and the CTM daemon.
There are different execution commands for the case when an error is detected in the global CORBA Naming Service
and in the CTM daemon respectively, within the logical server.

• When detecting an error in global CORBA Naming Service
The command specified in the adminagent.naming.usr_cmd.abnormal_end key is executed.

• When detecting an error in CTM daemon
The command specified in the adminagent.ctm.usr_cmd.abnormal_end key is executed.

Moreover, an error is detected in either of the two processes (CTM daemon or global CORBA Naming Service) in the
logical CTM, therefore, the log that reports the startup of the failure detection time commands in the logical server (CTM)
will be output in a Management Server log.

3.3.2 Data acquisition settings using failure detection time commands
(Systems for executing batch applications)

This subsection describes the settings to acquire the data for troubleshooting using the failure detection time commands.
You can collect the material acquired by using the failure detection time commands as the snapshot log.

There are 2 types of failure detection time commands namely, system provided commands and user created commands.
According to the default settings, when an error occurs in a logical server, the failure detection time commands provided
by the system are executed and thread dumps and trace based performance analysis are acquired. The snapshot log is
collected before terminating the logical server where the error occurs. For the information that can be collected by using
the failure detection time command provided by system, see 2.3.2(1) Information that can be acquired by executing the
failure detection time commands provided by the system.

To change the operation settings for the failure detection time commands provided by the system, you must make
environment settings in Management Server and Administration Agent. When using the failure detection time
commands created by the user, you must make environment settings in Management Server and Administration Agent
as well as create a command file for the failure detection time commands created by the user. For respective settings, see
3.3.1 Data acquisition settings using failure detection time commands (Systems for executing J2EE applications). Here,
read "J2EE server" as "Batch server".

Important note

To collect the material acquired by the user created failure detection time commands as the snapshot log,
you need to add the collection destination of that material to the snapshot log collection destination. For
details about addition of the snapshot log collection destination, see 3.3.3(3) Customizing the snapshot log
collection destination.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 83

3.3.3 Settings for collecting snapshot logs (Systems for executing J2EE
applications)

This subsection describes the settings for collecting snapshot logs. You can change the settings of the files that are
collected as snapshot log and storage destination of the collected snapshot logs.

(1) Data that you can collect for each snapshot log collection timing
The following table describes the settings to change the method to collect the snapshot logs according to the
collection timing.

Table 3‒8: Settings for changing the snapshot log collection (for a system on which J2EE
applications runs)

Category Collection timing Settings required to change the
default settings

Automatic collection# Immediately before the automatic termination when the logical
server fails

• Settings of failure detection
time commands

• Customization of the collection
destination of snapshot logs

• Timeout settings for snapshot
log collection

Immediately before the automatic restart when the J2EE server fails

Immediately before the J2EE server is restarted manually in a batch • Customization of the collection
destination of snapshot logs

Collect at the
specified timing

When the management command (mngsvrutil) of the
Management Server is executed to collect the snapshot log

#
You can change the timing of collection of snapshot logs to before terminating the logical server or before restarting the J2EE server in the
com.cosminexus.mngsvr.snapshot.collect.point key of mserver.properties. According to the default settings, the
snapshot log is collected when the logical server stops.

The following points describe the data that you can collect according to the collection timing.

(a) Automatic collection
When the snapshot log is automatically collected at either of the following times, the Management Server executes
the failure detection time commands, and the material such as thread dumps and trace based performance analysis
are acquired:

• Immediately before automatic termination when the logical server fails (default settings)

• Immediately before the automatic restart when the J2EE server fails

You can collect the material collected using the failure detection time commands as the snapshot log. For details about
changing operations and settings of the failure detection time commands, see 3.3.1 Data acquisition settings using failure
detection time commands (Systems for executing J2EE applications).

(b) Any time collection
You can collect the snapshot log at any time only when thread dump files and user dumps (in Windows) or core dumps
(in UNIX) are output. When collecting the snapshot log at any time, thread dump files and user dumps or core dumps
are not output when the command is executed.

To collect the snapshot log at any time by executing the operation management commands (mngsvrutil) of the
Management Server, you can specify the type of collection destination (type 1 or type 2) when executing the command

3. Preparing for Troubleshooting

Maintenance and Migration Guide 84

to collect the snapshot log. When collecting at other times, all files defined as collection targets of type 1 and type 2
are collected.

(2) Files that can be collected in a snapshot log
The troubleshooting data is classified into primary delivery data and secondary delivery data according to the time at
which the data is sent to the maintenance personnel. You can collect the primary and secondary delivery data in snapshot
log. For each type of data, see 2.3.3(2) Data that can be collected as snapshot log.

Specify the file to be collected as primary delivery data in the snapshot log collection definition file
(snapshotlog.conf) of primary delivery data. When collecting the snapshot log, if you specify the argument
snapshot 1 in the mngsvrutil command, files specified in snapshotlog.conf are collected. Specify the files to
be collected as secondary material in the snapshot log collection target definition file (snapshotlog.2.conf) of secondary
delivery data. When collecting the snapshot log, if you specify the argument snapshot 2 in the mngsvrutil command,
files specified in snapshotlog.conf and snapshotlog.2.conf are collected.

When you want to collect the files that are not defined as the snapshot log collection destination by default as the snapshot
log, add the output destination of those files to the snapshot log collection target definition file. The following settings
may also be required depending on the material:

• Settings to acquire the material before starting an operation
You need to make the settings for collecting the material before starting the operation.

• Acquiring the material using commands
Before collecting as the snapshot log, you need to execute commands to acquire the material targeted for
collection. For details about data acquisition, see 4. Output Destinations and Output Methods of Data Required
for Troubleshooting.

(Examples)

• In Windows
Before starting the operation, you need to set the environment variable (CJMEMDUMP_PATH) for user dumps.
If you set the environment variable (CJMEMDUMP_PATH), you need to change the collection destination of the
snapshot log.

• In UNIX
Before starting the operation, you need to set the core file size for core dumps. We recommend that you specify the
settings for collection before starting the operation, and then obtain core dumps when an error is detected by using
the user-created failure detection time commands, and collect the core dumps as the snapshot log. The default
output destination of core dumps is specified in the default snapshot log collection target definition file.

For details about settings of the collection to be implemented before starting the operation, see 3.3.15 Settings for
Collecting a User Dump or 3.3.16 Settings for Acquiring a Core Dump. For details about the failure detection time
commands created by user, see 3.3.1 Data acquisition settings using failure detection time commands (Systems for
executing J2EE applications).

For specifying snapshotlog.conf and snapshotlog.2.conf, see 3.3.3(3) Customizing the snapshot log
collection destination. For details about the data to be collected as the primary delivery data and the secondary delivery
data as per the default settings, see Appendix A. List of Snapshot Logs to Be Collected.

(3) Customizing the snapshot log collection destination
You can customize the snapshot log collection target definition file as the snapshot log collection destination. You
can also use adminagent.properties to specify the number of files of the snapshot log for each logical server.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 85

For details about the file, see 10.2.1 Definition file for snapshot log collection in the uCosminexus Application Server
Definition Reference Guide.

(a) Specifying the snapshot log collection destination
Edit the snapshot log collection target definition file and specify the collection destination for the snapshot log. The
storage location of the file listing the files targeted as the snapshot log collection target definition file is as follows:

• In Windows
Cosminexus-installation-directory\manager\config\snapshotlog.conf
Cosminexus-installation-directory\manager\config\snapshotlog.2.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.conf
/opt/Cosminexus/manager/config/snapshotlog.2.conf

Specify the destination directory to be collected files as the Primary delivery data in snapshotlog.conf. Also, specify the
destination directory to be collected files as the secondary delivery data in snapshotlog.2.conf.

In snapshot log collection target definition file, you can use a variable for the collection path. For example, if
"${cosminexus.home}/manager/log/.+" (period (.) represents optional character, and plus (+) represents
more than 1 time) is specified for the snapshot log collection target definition file by using "${cosminexus.home}"
variable that represents Cosminexus installation directory, all files under Cosminexus-installation-directory/
manager\log (in Windows) or /opt/Cosminexus/manager/log directory (in UNIX) are collected. Do not
include the dollar sign ($) in the variable value of the snapshot log collection target definition file.

(b) Specifying the number of snapshot log files
You can use the following keys of adminagent.properties to change the number of snapshot log files
for each logical server. Default setting is 10. For adminagent.properties, see 8.2.1 adminagent.properties
(Administration Agent property file) in the uCosminexus Application Server Definition Reference Guide.

• adminagent.snapshotlog.num_snapshots
Specify the number of snapshot log files to be collected as the primary delivery data for each logical server.

• adminagent.snapshotlog.listfile.2.num_snapshots
Specify the number of snapshot log files to be collected as the secondary delivery data for each logical server.

(c) Specifying storage destination for the snapshot log
You can change the storage destination of the information that is automatically collected by snapshot log collection
by using the adminagent.snapshotlog.log_dir key of adminagent.properties. By default, the
information is stored at the following locations:

• In Windows
Log-output-folder-of-Manager\snapshot

• In UNIX
Log-output-directory-of-Manager/snapshot

For adminagent.properties, see 8.2.1 adminagent.properties (Administration Agent property file) in the
uCosminexus Application Server Definition Reference Guide.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 86

(4) Setting snapshot log collection timeout
You can set the timeout for the processes that are executed when collecting the snapshot log. Set the timeout in
mserver.properties. The following table shows the processes that are executed when collecting snapshot logs and
their timeouts.

Table 3‒9: Processes that are executed when collecting snapshot logs and timeout settings

Process Timeout settings
(mserver.properties key)

Explanation

Execution of the failure detection time
command provided by the system

com.cosminexus.mngsvr.sys_cmd
.abnormal_end.timeout

Shows the time that the program waits till each of
the following processes ends:
• Failure detection time command provided by

the system
• Collection of trace based performance analysis
• If the command or collection of trace based

performance analysis does not end even after
the specified time has elapsed, ignore the
executed command or collection of trace based
performance analysis and continue the process.

Execution of the failure detection time
command created by the user

com.cosminexus.mngsvr.usr_cmd
.abnormal_end.timeout

Shows the time the program waits till the user
created failure detection time command ends. If
the command does not end even after the specified
time has elapsed, ignore the executed command
and continue the process.

snapshot log (primary delivery
data) collection

com.cosminexus.mngsvr.snapsho
t.auto_collect.timeout

Shows the time the program waits till the collection
of primary and secondary delivery data ends.
If the collection does not end even after the
specified time has elapsed, a service request for
canceling the snap log collection is sent from
Management Server to Administration Agent,
and a KEOS20052-E message is output in the
Management Server log.

snapshot log (secondary delivery
data) collection

For mserver.properties, see 8.2.6 mserver.properties (Management Server environment settings file) in the
uCosminexus Application Server Definition Reference Guide.

3.3.4 Settings for collecting snapshot log (Systems for executing batch
applications)

This subsection describes the settings for collecting the snapshot log when using a batch server. You can change the
settings of the files that are collected as snapshot log and storage destination of the collected snapshot logs. The following
table describes the settings required for changing the method for collecting snapshot logs according to the collection
timing. Other details are same as that of a J2EE server. For details, see 3.3.3 Settings for collecting snapshot logs (Systems
for executing J2EE applications).

Table 3‒10: Settings for changing the snapshot log collection (for the system on which batch
applications run)

Category Collection timing Settings required to change the
default settings

Automatic collection# Immediately before the automatic termination when the logical
server fails

• Settings of failure detection
time commands

3. Preparing for Troubleshooting

Maintenance and Migration Guide 87

Category Collection timing Settings required to change the
default settings

Immediately before the automatic restart when the batch server fails. • Customization of the collection
destination of snapshot logs

• Setting snapshot log
collection timeout

Immediately before the batch server is restarted manually in a batch. • Customization of the collection
destination of snapshot logs

Collect at the
specified timing

When the management command (mngsvrutil) of the
Management Server is executed to collect the snapshot log

#
You can change the timing of collection of snapshot logs to before terminating the logical server or before restarting the batch server in the
com.cosminexus.mngsvr.snapshot.collect.point key of mserver.properties. According to the default settings, the
snapshot log is collected when the logical server stops.

3.3.5 Settings for acquiring the Management Server log
This subsection describes the settings for acquiring logs output by the Management Server.

The following is the output destination directory of the Management Server. You can change the output destination of
the Management Server by using manager.cfg (Manager log settings file).

• In Windows
Cosminexus-installation-directory\manager\log

• In UNIX
/opt/Cosminexus/manager/log

Specify the following key in mserver.properties (Management Server environment setup file) to change the
output level or the number of log files of the Management Server log.

• com.cosminexus.mngsvr.log.level
Specify the output level of the Management Server log.

• com.cosminexus.mngsvr.log.rotate
Specify the number of files of the Management Server log.

• com.cosminexus.mngsvr.log.size
Specify the file size of the Management Server log.

For details about mserver.properties and the keys, see 8.2.6 mserver.properties (Management Server
environment settings file) in the uCosminexus Application Server Definition Reference Guide.

Important note

In UNIX, the Manager log output directory is created automatically by specifying 777 (rwxrwxrwx) in the
access permission. To specify a previously manually-created directory in the log output destination, set up 777
(rwxrwxrwx) in the directory access permission. If 777 (rwxrwxrwx) is not set up in the access permission
of the directory specified in the log output destination, the log might not be output during the execution of
the command.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 88

3.3.6 Settings for Acquiring the J2EE Server Log
This subsection describes the items that you can set up for acquiring J2EE server logs.

You can change the log output destination, log size, the log level, the switching method of the log output destination files,
and the switching time of the log output destination files for the J2EE server logs. The following table describes the items
that you can change and the corresponding parameters of the Easy Setup definition file.

Table 3‒11: Settings for acquiring J2EE server log

Items Corresponding parameter of the Easy Setup definition file

Log output destination ejb.server.log.directory in the <configuration> tag on a logical J2EE server (j2ee-
server)

Log size Number of log files
ejbserver.logger.channels.define.channel-name.filenum in the
<configuration> tag on a logical J2EE server (j2ee-server)

Maximum size for each log file
ejbserver.logger.channels.define.channel-name.filesize in the
<configuration> tag on a logical J2EE server (j2ee-server)

Log level ejbserver.logger.enabled.* in the <configuration> tag on a logical J2EE server (j2ee-
server)

Switching method of the log
output destination files

ejbserver.logger.rotationStyle in the <configuration> tag of the logical J2EE
server (j2ee-server)

Switching time of the log output
destination files

ejbserver.logger.rotationTime in the <configuration> tag of the logical J2EE
server (j2ee-server)

If you specify true (default value) in the ejbserver.logger.systemlog.enabled parameter in the
<configuration> tag of logical J2EE server (j2ee-server) or if the specification of this parameter is omitted, the
message indicating startup, termination, and abnormal termination of the J2EE server will output to an event log (in
UNIX, syslog).

Notes (in UNIX)
To output messages related to J2EE server start, stop, and abnormal termination, to syslog, it is necessary to set the
priority for the facility daemon to info or debug in the syslog settings. Moreover, the log output destination and log
file name of syslog depend on the settings of syslog.
For details about the syslog and its settings, see the description on syslogd or syslog.conf in the manual
provided with OS.

For details about the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(1) Changing log output destination
Specify the log output destination directory in the Easy Setup definition file to change the output destination of the J2EE
server log.

Changing log output destination
The default log output destination is as follows:

• In Windows
working-directory\ejb\server-name\logs

3. Preparing for Troubleshooting

Maintenance and Migration Guide 89

• In UNIX
working-directory/ejb/server-name/logs

Note that the default directory path of the working directory is Cosminexus-installation-
directory\CC\server\public (in Windows) or /opt/Cosminexus/CC/server/public (in UNIX).
You can change the output destination of the working directory and J2EE server log if you specify following
parameters in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

• ejb.public.directory
Specify the path of the working directory of the J2EE server.

• ejb.server.log.directory
Specify the output destination directory of the J2EE server log.

Setup example (For definition of the physical tier)
• In Windows

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejb.server.log.directory</param-name>
 <param-value>C:\CClogs\server\MyServer</param-value>
 </param>
 :
</configuration>

• In UNIX

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejb.server.log.directory</param-name>
 <param-value>/CClogs/server/MyServer</param-value>
 </param>
 :
</configuration>

Current directory
The following is the current directory where the log output destination is specified by a relative path:

• In Windows
working-directory\ejb\server-name

• In UNIX
working-directory/ejb/server-name

Notes
• After changing the log output destination, create a log output destination directory before starting the J2EE server.

If there is no log output destination directory after the change, the message KDJE40024-E will output and
an abnormal termination will occur when starting the J2EE server. Moreover, the messages KDJE37209-E,
KDJE37210-E, and KDJE37211-E will output and an abnormal termination will occur when executing the
Management Server.

• For starting multiple J2EE servers on the same host, keep the directory name unique for each server including the
server name in the directory, so that the log output destination does not have the same directory. When specifying
the same directory for a parameter value, the operation is not guaranteed.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 90

• After changing the log output destination, if you want to output the log to a directory other than the working
directory, you cannot delete the log file if the server is not set up. If you want to delete the log file, delete
it manually.

• Note that if you set up the JavaVM maintenance information and the output destination of the GC log in the
JavaVM startup parameter, the settings of JavaVM startup parameter are given priority, even when the log output
destination is set up in the Easy Setup definition file.
A JavaVM startup parameter is defined in the <configuration> tag of the logical J2EE server (j2ee-server)
in the Easy Setup definition file. The specified contents of the JavaVM startup parameter are as follows:

<param-name> tag
add.jvm.arg

<param-value> tag
XX:HitachiJavaLog:<JavaVM-Maintenance-information and GC-log-output-destination>
When you specify the JavaVM startup parameter, the JavaVM maintenance information and the log file of GC
is output to the directory set up for the JavaVM maintenance information and for the output destination of GC
log respectively.

• You cannot specify the path including UNC name in the log output destination.

(2) Change log size
Set up the number of log files and the maximum size for each log file in the Easy Setup definition file to change the log
size of the J2EE server.

Changing the number of log files
Specify the number of J2EE server log files in the ejbserver.logger.channels.define.channel-
name.filenum parameter in the <configuration> tag of the logical J2EE server (j2ee-server).

Setup example (For definition of the physical tier)

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.channels.define.MessageLogFile.filenum</
param-name>
 <param-value>3</param-value>
 </param>
 ...
</configuration>

Changing the maximum file size for each log file
Specify the maximum file size (unit: bytes) for each file of the J2EE server log
files in the ejbserver.logger.channels.define.channel-name.filesize parameter in the
<configuration> tag of the logical J2EE server (j2ee-server).

Setup example (For definition of physical tier)

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.channels.define.MessageLogFile.filesize<
/param-name>
 <param-value>2097152</param-value>
 </param>

3. Preparing for Troubleshooting

Maintenance and Migration Guide 91

 ...
</configuration>

(3) Changing the log level
A J2EE server log level indicates the importance of a log. In log levels, there are four levels; Error, Warning, Information,
and Debug. If you set up a log level, the log of the level that is set up will be output. By default, you can acquire only
an Error level log and use this log as it is.

Specify the log level in the ejbserver.logger.enabled.* parameter in the <configuration> tag of the
logical J2EE server in the Easy Setup definition file. Set up the level names Error, Warning, Information, and Debug as
one or in multiple character strings in the <param-value> tag of ejbserver.logger.enabled.*. When you
set up multiple log levels, the character string of the level name will be demarcated using comma (,).

Setup example (For definition of the physical tier)
1.

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.enabled.*</param-name>
 <param-value>Error</param-value>
 </param>
 ...
</configuration>

2.

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.enabled.*</param-name>
 <param-value>Error,Warning</param-value>
 </param>
 ...
</configuration>

3.

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.enabled.*</param-name>
 <param-value>Error,Warning,Information</param-value>
 </param>
 ...
</configuration>

4.

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>ejbserver.logger.enabled.*</param-name>
 <param-value>Error,Warning,Information,Debug</param-value>
 </param>

3. Preparing for Troubleshooting

Maintenance and Migration Guide 92

 ...
</configuration>

Notes
• The number of logs that you can acquire increases in the order of 1, 2, 3, 4 as described in examples. If you

acquire the log after setting up multiple log levels, the performance will decrease and the switching of log file
will occur frequently.

• If you set up a blank value or a character string other than Error, Warning, Information, and Debug for the
level name, the message KDJE90009-W will output and the Error level log will be acquired.

Hitachi recommended settings for log level
Hitachi recommends following settings for a log level:

• For normal operation
Specify Error in the level name.

• For normal operation (verbose)
Specify Error, Warning in the level name to acquire more detailed information than that of the normal operation.

• For test
Specify Error, Warning, Information in the level name.

• At failure detection time
Specify Failure, Warning, Information, Debug in the level name.

3.3.7 Settings for Acquiring the Batch Server Log
You can change the log output destination, log size, and log level for batch server log. The following table describes the
items that can be changed and the parameters of the Easy Setup definition file corresponding to these items. Furthermore,
set up these parameters in the user property for the batch server in the Easy Setup definition file.

Table 3‒12: Settings for acquiring batch server log

Items Corresponding parameters of the Easy Setup definition file

Log output destination ejb.server.log.directory in the <configuration> tag on a logical J2EE server (j2ee-
server)

Log size Number of log files
ejbserver.logger.channels.define.channel-name.filenum in the
<configuration> tag on a logical J2EE server (j2ee-server)

Maximum size for each log file
ejbserver.logger.channels.define.channel-name.filesize in the
<configuration> tag on a logical J2EE server (j2ee-server)

Log level ejbserver.logger.enabled.* in the <configuration> tag on a logical J2EE server (j2ee-
server)

If you specify true (default value) in the ejbserver.logger.systemlog.enabled parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) or if you skip specification of this parameter, the
message indicating startup, termination, and abnormal termination of a batch server is output to the event log (in
UNIX, syslog).

For details about the above-mentioned respective settings, see 3.3.6 Settings for Acquiring the J2EE Server Log. At this
time, substitute J2EE server to batch server.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 93

For details on the parameters to be specified in the Easy Setup definition file, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Notes (in UNIX)
To output messages related to batch server start, stop, and abnormal termination, to syslog, it is necessary to set the
priority for the facility daemon to info or debug in the syslog settings. Moreover, the log output destination and log
file name of syslog depend on the setting of syslog.
For details about the syslog and its settings, see the description of syslogd or syslog.conf in the manual
provided with OS.

3.3.8 Settings for Acquiring the Web Server Log
This subsection describes the items that you can set up for acquiring Web server logs. The Web server set up for acquiring
the logs is Cosminexus HTTP Server.

The logs output in the Web server are the Error logs, Access logs and the Request logs. For details about the output logs,
see the uCosminexus Application Server HTTP Server User Guide. Among the output logs of the Web server, you can
change the output destination or the output method of logs in the Easy Setup definition file for the Error log, Access log,
and Request log.

The following table describes the settings of the items that you can change for acquiring the Web server log, and the
corresponding parameters of the Easy Setup definition file.

Table 3‒13: Settings for acquiring Web server log

Log Items Corresponding parameters of the Easy Setup definition file

Error log Level of error log to be output LogLevel in the <configuration> tag on a logical Web
server (web-server)

Output method of the error log HttpsdErrorMethod in the <configuration> tag on a logical
Web server (web-server)

Output destination directory for
error log

HttpsdErrorLogFileDir in the <configuration> tag on a
logical Web server (web-server)

Access log Output method of the access log HttpsdCustomMethod in the <configuration> tag on a logical
Web server (web-server)

Output destination directory for
access log

HttpsdCustomLogFileDir in the <configuration> tag on a
logical Web server (web-server)

Format of the access log to be output HttpsdCustomlogFormat in the <configuration> tag on a
logical Web server (web-server)

Request log Trace extraction availability HWSRequestLogLevel in the <configuration> tag on a logical
Web server (web-server)

Output method of the request log HttpsdRequestMethod in the <configuration> tag on a logical
Web server (web-server)

Output destination directory of
request log

HttpsdRequestLogFileDir in the <configuration> tag on a
logical Web server (web-server)

Moreover, you can specify the unit of time and the output time for Error log, Access log, and Request log in the
HWSLogTimeVerbose parameter in the <configuration> tag of logical Web server (web-server).

3. Preparing for Troubleshooting

Maintenance and Migration Guide 94

Notes
When checking the Web server operation by using Management Server, to output the operation check log
apart from the usual log (access log), you must make settings in the Easy Setup definition file. Set the
AppendDirectives and HttpsdCustomlogFormat parameters by specifying item in the SetBy
parameter in the <configuration> tag of the logical Web server (web-server).
The AppendDirectives and HttpsdCustomlogFormat parameters are set as explained in the examples
below. The example explains how to collect the operation check log by using the wraparound method. Change
the description of the CustomLog directive in the AppendDirectives parameter according to the log
output method.

Example of AppendDirectives parameter settings
In Windows

<param>
 <param-name>AppendDirectives</param-name>
 <param-value>
<![CDATA[
SetEnvIf Remote_Addr ^127\.0\.0\.1$ Env_ManagerHealthCheck
CustomLog "|\"\"Cosminexus installation directory/httpsd/sbin/rotatelog
s2.exe\" \"Cosminexus-installation-directory/httpsd/servers/HWS_ actual
-server-name-of-the-logical-Web-server/logs/access_manager\" 8192 5\""
hws_std env=Env_ManagerHealthCheck
]]>
 </param-value>
</param>

In UNIX

<param>
 <param-name>AppendDirectives</param-name>
 <param-value>
<![CDATA[
SetEnvIf Remote_Addr ^127\.0\.0\.1$ Env_ManagerHealthCheck
CustomLog "|/opt/hitachi/httpsd/sbin/rotatelogs2 \"/opt/hitachi/httpsd/
servers/HWS_actual-server-name-of-the-
logical-Web-server/logs/access_manager\" 8192 5" hws_std env=Env_Manage
rHealthCheck
]]>
 </param-value>
</param>

Example of HttpsdCustomlogFormat parameter settings

<param>
 <param-name>HttpsdCustomlogFormat</param-name>
 <param-value>hws_std env=!Env_ManagerHealthCheck</param-value>
</param>

3.3.9 Settings for acquiring the NIO HTTP server log
This subsection describes the items that can be set up for acquiring the NIO HTTP server log.

The following table describes the settings that you can change for acquiring the NIO HTTP server log and parameters
of the Easy Setup definition file corresponding to the items.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 95

Table 3‒14: Settings for acquiring the NIO HTTP server log

Log or trace Items Corresponding parameters of the Easy Setup definition file

Access log Form of the access log ejbserver.logger.access_log.nio_http.format in
the <configuration> tag on a logical J2EE server (j2ee-server)#

File size of the access log ejbserver.logger.channels.define.NIOHTTPAccess
LogFile.filesize in the <configuration> tag on a logical
J2EE server (j2ee-server)

Number of files of access log ejbserver.logger.channels.define.NIOHTTPAccess
LogFile.filenum in the <configuration> tag on a logical
J2EE server (j2ee-server)

Trace based
performance analysis

-- Specify acquisition condition, when you want to execute the cprfed
command for performing a daily system operation same as for other
trace based performance analysis. For details about acquiring the trace
based performance analysis files, see 7. Performance Analysis by
Using Trace Based Performance Analysis.

Legend:
--: Not applicable

#
In the access log, you can customize the log output format by defining the format with the above-mentioned keys. For customization of the
access log of the NIO HTTP server, see 6.11.2 Customizing the access log of the NIO HTTP server in the uCosminexus Application Server Web
Container Functionality Guide.

3.3.10 Settings for Acquiring the Cosminexus Manager Log
In addition to separately acquiring the logs of the Administration Agent, Management Agent, and Management Server
you can collectively acquire them as an integrated log. You can acquire integrated message log files, integrated trace
log files, or command maintenance log files as an integrated log. For details about the logs that you can acquire as an
integrated log, see 4.3 Application Server log (Systems for executing J2EE applications).

This subsection describes the changes in settings of integrated logs. Set up the integrated log in manager.cfg. The
location of the manager.cfg file is as follows:

• In Windows
Cosminexus-installation-directory\manager\config\manager.cfg

• In UNIX
/opt/Cosminexus/manager/config/manager.cfg

Set the following keys in manager.cfg to change the settings of the integrated log.

• com.cosminexus.manager.log.dir
Specify the output destination of the integrated log. For default settings, output to the following location:

• In Windows
Cosminexus-installation-directory\manager\log

• In UNIX
/opt/Cosminexus/manager/log

• com.cosminexus.manager.messagelog.size
Specify the maximum size for each integrated message log file.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 96

• com.cosminexus.manager.messagelog.fnum
Specify the number of integrated message log files.

• com.cosminexus.manager.messagelog.style
Specify how to switch the output destination of the integrated message log file. If SHIFT (shift mode) is specified,
com.cosminexus.manager.messagelog.time is enabled.

• com.cosminexus.manager.messagelog.time
Specify the time at which the output destination of the integrated message log file will be switched.

• com.cosminexus.manager.tracelog.size
Specify the maximum size for each integrated trace log file.

• com.cosminexus.manager.tracelog.fnum
Specify the number of integrated trace log files.

• com.cosminexus.manager.tracelog.style
Specify how to switch the output destination of the integrated trace log file. If SHIFT (shift mode) is specified,
com.cosminexus.manager.tracelog.time is enabled.

• com.cosminexus.manager.tracelog.time
Specify the time at which the output destination of the integrated trace log file will be switched.

• com.cosminexus.manager.cmdtracelog.size
Specify the maximum size for each file of command maintenance log files.

• com.cosminexus.manager.cmdtracelog.fnum
Specify the number of command maintenance log files.

• com.cosminexus.manager.log.compatible
Specify whether to output the Administration Agent and Management Server logs separately. According to the
default settings, individual logs are output concurrently with the integrated log. Specify false if you do not want to
output individual logs.

3.3.11 Settings for Acquiring the Resource Adapter Logs
This subsection describes the settings to acquire the resource adapter logs. The following two settings are required to
acquire resource adapter logs.

• Settings for application of the log output
Set up the availability of output of the log for each resource adaptor by the server management commands.
Acquire Hitachi Connector Property file by the cjgetrarprop command and specify true for LogEnabled
in the <property> tag. After editing the file, use the cjsetresprop command to apply the edited
contents. Note that for defining the property before deploying the resource adapter, use the cjgetrarprop
and cjsetrarprop command.
For details about Hitachi Connector Property file, see 4.1 HITACHI Connector Property file in the uCosminexus
Application Server Application and Resource Definition Reference Guide. For details about the above commands,
see the uCosminexus Application Server Command Reference Guide. For details about the operations of the server
management commands, see 3. Basic Operations of Server Management Commands in the uCosminexus Application
Server Application Setup Guide.

• Setting the size, number, and the level of logs
Set up the size and number of resource adapter logs in the following parameter in the <configuration> tag of
logical J2EE server (j2ee-server) in the Easy Setup definition file.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 97

• ejbserver.connector.logwriter.filesize
Set up the maximum size for each resource adapter log file. (unit: byte).

• ejbserver.connector.logwriter.filenum
Specify the number of resource adapter log files.

Moreover, the log output level of the J2EE server (log level) is considered as the log level of the resource adapter.
For details about settings of the log level of the J2EE server, see 3.3.6(3) Changing the log level.

Important note

• For the CJMSP resource adapters, methods to set up log size, number of files, and log levels differ from
the other resource adapters. For details, see the subsection 3.3.13 Settings for collecting Cosminexus JMS
Provider logs.

• If the sum of the length of the log output destination directory of the resource adapter and the length of
the resource adapter display name exceeds the path length restrictions for the OS, the initialization of the
resource adapter log fails, the KDJE90002-E message is output, and then the server stops. This occurs
in the cases such as when the log file is locked by another process.
Use one of the following steps to ensure that the resource adapter log does not exceed the maximum path
length. For details, see the uCosminexus Application Server System Setup and Operation Guide.
- Change the length of the resource adapter display name
- Change the log output destination directory or work directory
Also, do not lock the log file with another process.

• If the initialization of the resource adapter log fails, the KDJE90002-E message is output and then the
J2EE server stops. This occurs when the sum of the path length of the log output destination directory
of the resource adapter and the length of the resource adapter display name exceeds the path length
restrictions for the OS, or in the cases such as when the log file is locked by another process.
Change the length of the resource adapter display name, or change the log output destination directory or
work directory to ensure that the resource adapter log does not exceed the maximum path length. Also,
do not lock the log file with another process.

3.3.12 Settings for Acquiring the Cosminexus TPBroker Log
This subsection describes the changes in the output destination of trace files, the number of files, and entries of
Cosminexus TPBroker.

The default output destination of the trace files of Cosminexus TPBroker is as follows:

For trace information of a J2EE server
• In Windows

working-directory\ejb\server-name\logs\TPB\logj
• In UNIX

working-directory/ejb/server-name/logs/TPB/logj
For trace information of server management commands

• In Windows
Cosminexus-installation-directory\CC\admin\logs\TPB\logj

• In UNIX

3. Preparing for Troubleshooting

Maintenance and Migration Guide 98

/opt/Cosminexus/CC/admin/logs/TPB/logj
For the trace information of the EJB client applications

• In Windows
EJB-client-log-output-directory#\system\TPB\logj

• In UNIX
EJB-client-log-output-directory#/system/TPB/logj

#: For details on the output destination of the EJB client log output directory, see 4.5.2 Output Destination of the EJB
Client Application System Log.

For the CTM trace information
• In Windows

Product-installation-directory\TPB\log
Product-installation-directory\TPB\logj

• In UNIX
/opt/Cosminexus/TPB/log
/opt/Cosminexus/TPB/logj

Command used in batch applications
• In Windows

Product-installation-directory\TPB\log
• In UNIX

/opt/Cosminexus/TPB/log

The following table describes the items that can be changed, the corresponding parameters of the Easy Setup definition
file or the corresponding user definition files and keys.

Table 3‒15: Settings for acquiring Cosminexus TPBroker log

Items Category Corresponding parameters of the Easy Setup definition file or
user definition files and keys

Output destination of trace file J2EE server ejb.server.log.directory in the <configuration> tag
on a logical J2EE server (j2ee-server)
or
vbroker.orb.htc.tracePath in the <configuration>
tag on a logical J2EE server (j2ee-server)

Server
management commands

-Dejbserver.log.directory option of the
USRCONF_JVM_ARGS key of usrconf.bat (in Windows), or
usrconf (in UNIX)
or
vbroker.orb.htc.tracePath key# of
usrconf.properties for server management commands

EJB client applications • For the cjclstartap command, the
vbroker.orb.htc.tracePath key in
usrconf.properties for the Java applications

• For the vbj command, the vbroker.orb.htc.tracePath
key in the JavaVM system properties specified with the
vbj command

3. Preparing for Troubleshooting

Maintenance and Migration Guide 99

Items Category Corresponding parameters of the Easy Setup definition file or
user definition files and keys

CTM • For the global CORBA Naming Service, set up the environment
variable HVI_TRACEPATH at the location where the logical
server type of adminagent.xml (Administration Agent
configuration file) is Naming Service.

• For the CTM domain manager, set up the environment
variable HVI_TRACEPATH in user.env.variable in
the <configuration> tag of the logical CTM domain
manager (ctm-domain-manager).

• For CTM, set up the environment variable HVI_TRACEPATH in
user.env.variable in the <configuration> tag of the
logical CTM (component-transaction-monitor).

Command used in
batch applications

Environment variable HVI_TRACEPATH

Number of trace files J2EE server vbroker.orb.htc.comt.fileCount in the
<configuration> tag on a logical J2EE server (j2ee-server)

EJB client applications • For the cjclstartap command, the
vbroker.orb.htc.comt.fileCount key in
usrconf.properties for the Java applications

• For the vbj command, the
vbroker.orb.htc.comt.fileCount key in the JavaVM
system properties specified with the vbj command

CTM • For the global CORBA Naming Service, set up the environment
variable HVI_COMTFILECOUNT at the location where the
logical server type of adminagent.xml (Administration Agent
configuration file) is Naming Service.

• For the CTM domain manager, set up the environment
variable HVI_COMTFILECOUNT in user.env.variable
in the <configuration> tag of the logical CTM domain
manager (ctm-domain-manager).

• For CTM, set up the environment variable
HVI_COMTFILECOUNT in user.env.variable in the
<configuration> tag of the logical CTM (component-
transaction-monitor).

Number of trace file entries J2EE server vbroker.orb.htc.comt.entryCount in the
<configuration> tag on a logical J2EE server (j2ee-server)

EJB client applications • For the cjclstartap command, the
vbroker.orb.htc.comt.entryCount key in
usrconf.properties for the Java applications

• For the vbj command, the
vbroker.orb.htc.comt.entryCount key in the JavaVM
system properties specified with the vbj command

CTM • For the global CORBA Naming Service, set up the environment
variable HVI_COMTENTRYCOUNT at the location where the
logical server type of adminagent.xml (Administration Agent
setup file) is Naming Service.

• For the CTM domain manager, set up the environment variable
HVI_COMTENTRYCOUNT in user.env.variable in
the <configuration> tag of the logical CTM domain
manager (ctm-domain-manager).

• For CTM, set up the environment variable
HVI_COMTENTRYCOUNT in user.env.variable in the

3. Preparing for Troubleshooting

Maintenance and Migration Guide 100

Items Category Corresponding parameters of the Easy Setup definition file or
user definition files and keys

<configuration> tag of the logical CTM (component-
transaction-monitor).

Command used in
batch applications

Environment variable HVI_COMTENTRYCOUNT

#
For details about the usrconf.bat file (in Windows) or usrconf file (in UNIX), and usrconf.properties, see 3.3 Customizing
operation settings of server management commands in the uCosminexus Application Server Application Setup Guide. For details about each file
and key for the server management commands see the following sections in the uCosminexus Application Server Definition Reference Guide:

• 5.1 List of files used in server management commands

• 5.2.1 usrconf (Option definition file for server management commands for UNIX)

• 5.2.2 usrconf.bat (Option definition file for server management commands for Windows)

• 5.2.3 usrconf.properties (System property file for server management commands)

For the details on the Easy Setup definition file, see 4.3 Easy Setup definition file in the uCosminexus Application Server Definition Reference Guide.
For details on the usrconf.properties file and keys for the Java applications, see 12.2.2 usrconf.properties (User property file for Java
applications) in the uCosminexus Application Server Definition Reference Guide.
For details on the JavaVM system properties specified with the vbj command, see 12.2.3 System properties specified in the Java application in
the uCosminexus Application Server Definition Reference Guide.
For details on adminagent.xml (Administration Agent setup file), see 8.2.4 adminagent.xml (Administration Agent settings file) in the
uCosminexus Application Server Definition Reference Guide.
For details on the communication trace, see the TPBroker Operation Guide.

Notes
• To change the output destination of a trace file, you need to create comtrc and mdltrc in advance as the

subdirectory of the changed output destination directory of the trace file. If you change the output destination,
the trace file is output to comtrc and mdltrc under the changed log output destination directory.

• If you specify both the ejb.server.log.directory and vbroker.orb.htc.tracePath for
<param-name> in the <configuration> tag on a logical J2EE server (j2ee-server) in the Easy Setup
definition file, the settings of the vbroker.orb.htc.tracePath are given priority.

• If you specify both the -Dejbserver.log.directory option of the USRCONF_JVM_ARGS key
of usrconf.bat (in Windows) or usrconf (in UNIX) and the vbroker.orb.htc.tracePath
key of usrconf.properties for the server management commands, the settings of the
vbroker.orb.htc.tracePath key of usrconf.properties is given priority.

• You cannot change the output destination of the server management commands when operating from the
Management Server Remote Management.

• If you specify the number of trace files and entries with the CTM domain manager and CTM, these values are
valid not only in the CTM domain manager and the CTM daemon, but also in the processes of the CTM regulator
and the ctmstart command. When you increase the number of trace files and entries, note the increase in the
disk usage.

• When you increase the number of trace file entries of the communication trace file, note the increase in the
memory usage.

3.3.13 Settings for collecting Cosminexus JMS Provider logs
This subsection describes the settings for changing output levels, number of files, and file size of the logs of CJMSP
Broker, management command (cjmsicmd), and CJMSP resource adapters that are used by Cosminexus JMS Provider.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 101

With Cosminexus JMS Provider, the following three types of logs are output:

• CJMSP Broker log

• Management command (cjmsicmd) log

• CJMSP resource adapter log

The following table describes the default output destination for each of the above logs.

Table 3‒16: Default output destination for logs of Cosminexus JMS Provider

Log type Default output destination

CJMSP Broker log In Windows
<CJMSP_HOME>#1\var\instances\instanceName\log

In UNIX
<CJMSP_HOME>#1/var/instances/instanceName/log

Management command
(cjmsicmd) log

In Windows
<CJMSP_HOME>#1\var\admin\log

In UNIX
<CJMSP_HOME>#1/var/admin/log

CJMSP resource adapter log In Windows
J2EE-server-log-output-directory
(ejb.server.log.directory)#2\cjms\Cosminexus_JMS_Provider_RA

In UNIX
J2EE-server-log-output-directory (ejb.server.log.directory) #2/
cjms/Cosminexus_JMS_Provider_RA

#1
<CJMSP_HOME> indicates the following directory:
In Windows
Cosminexus-installation-directory\CC\cjmsp
In UNIX
/opt/Cosminexus/CC/cjmsp

#2
J2EE-server-log-output-directory (ejb.server.log.directory) is the directory specified in the J2EE server option definition. By
default, the following directory is used:
In Windows
Directory-specified-in-ejb.public.directory\ejb\J2EE-server-name\logs
In UNIX
Directory-specified-in-ejb.public.directory/ejb/J2EE-server-name/logs

Note that if the default output destination does not exist, a directory is created when the log is output.

(1) Settings for collecting the CJMSP Broker logs
Among the log acquisition settings for CJMSP Broker, you can change the log output level, number of files, and file size.

The following table describes how to change the settings.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 102

Table 3‒17: How to change the log collection settings for CJMSP Broker

Item Changing method

Log output level Specify the changes in the following properties of commonconfig.properties
or config.properties:
• broker.logger.MessageLogFile.trace.level

Number of files Specify the changes in the following properties of commonconfig.properties
or config.properties:
• broker.logger.MessageLogFile.filenum
• broker.logger.ExceptionLogFile.filenum

File size Specify the changes in the following properties of commonconfig.properties
or config.properties:
• broker.logger.MessageLogFile.filesize
• broker.logger.ExceptionLogFile.filesize

Note:
With CJMSP Broker, you can change the log output destination with the -varhome option of the cjmsbroker command. However, you can
only change the log output destination for the <CJMSP_HOME>\var directory (in Windows) or <CJMSP_HOME>/var directory (in UNIX).

Note that if the specified directory does not exist, the default settings are applied.

For details about the properties, see 6.2.2 commonconfig.properties (CJMSP broker common properties file) and
6.2.3 config.properties (CJMSP broker individual properties file) in the uCosminexus Application Server Definition
Reference Guide.

(2) Settings for collecting the management command (cjmsicmd) log
Among the log collection settings for the management command (cjmsicmd), you can change the log output level,
output destination, number of files, and file size.

The following table describes how to change the settings.

Table 3‒18: How to change the log collection settings for management command (cjmsicmd)

Item Changing method

Log output level Specify the changes in the following property of admin.properties:
• admin.logger.MessageLogFile.trace.level

Output destination Specify the changes in the following properties of admin.properties:
• admin.logger.MessageLogFile.filepath
• admin.logger.ExceptionLogFile.filepath

Number of files Specify the changes in the following properties of admin.properties:
• admin.logger.MessageLogFile.filenum
• admin.logger.ExceptionLogFile.filenum

File size Specify the changes in the following properties of admin.properties:
• admin.logger.MessageLogFile.filesize
• admin.logger.ExceptionLogFile.filesize

Note that if the specified directory does not exist, the default settings are applied.

For details about the properties, see 6.2.1 admin.properties (Management command properties file) in the uCosminexus
Application Server Definition Reference Guide.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 103

(3) Settings for collecting the CJMSP resource adapter log
Among the log collection settings for the CJMSP resource adapter, you can change the log output level, number of files,
and file size.

The following table describes how to change the settings.

Table 3‒19: How to change the log collection settings for CJMSP resource adapter

Item Changing method

Log output level Specify the following property in <config-property> below <resourceadapter> in the
Connector property file:
• MsgLogLevel

Number of files Specify the following properties in <config-property> below <resourceadapter> in the
Connector property file:
• MsgLogFileNum
• ExpLogFileNum

File size Specify the following properties in <config-property> below <resourceadapter> in the
Connector property file:
• MsgLogFileSize
• ExpLogFileSize

For details about the Connector property file, see 4.1 HITACHI Connector Property file in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

3.3.14 Settings for Collecting the OS Statistical Information
This section describes the settings to acquire the OS statistical information when the OS is Windows.

You can acquire the performance data of the system resources using the Windows system monitor. When an error occurs
or signs of an error appear, collection of performance data by Windows system monitor begins and after the error occurs
the performance data log is stored. For details about the operation of the system monitor, see the manual provided with
the OS.

Extract the system monitor logs described in the following table at an interval of 60 seconds. For details about how to
set up, see the manual provided with the OS.

Table 3‒20: Setting contents of the system monitor

Performance object Instance Item name Description

processor -- %Processor Time CPU usage rate (total value excluding
thread in non-idle state)

%Privileged Time CPU usage rate (kernel mode part)

%User Time CPU usage rate (user mode part)

memory -- Cache Bytes Number of bytes currently used by file
system cache

Cache Faults/sec Frequency of extracting the memory
from another location or extracting from
the disk per second

3. Preparing for Troubleshooting

Maintenance and Migration Guide 104

Performance object Instance Item name Description

Page Faults/sec Number of page faults per second

Transition Faults/sec Number of faults per second

process _Total Handle Count Total number of handles currently open

Page Faults/sec Occurrence rate of page faults

Private Bytes Memory Usage (bytes)

Virtual Bytes Virtual memory usage (bytes)

Working Set Bytes Actual memory usage (bytes)

cjstartsv %Processor Time CPU usage rate (total value excluding
thread in non-idle state)

%Privileged Time CPU usage rate (kernel mode part)

%User Time CPU usage rate (user mode part)

Page Faults/sec Occurrence rate of page faults

Thread Count Number of threads

Private Bytes Memory Usage (bytes)

Virtual Bytes Virtual memory usage (bytes)

Working Set Bytes Actual memory usage (bytes)

Legend:
--: Not applicable

3.3.15 Settings for Collecting a User Dump
This section describes the settings to acquire user dumps in Windows.

(1) When the task manager or the Windows debug tool is used
When the product hangs up, the user dump becomes necessary as the data required for troubleshooting. To obtain the
user dump, use the task manager or the Windows debug tool. For details, see the Microsoft website.

Note that if you want to instantly obtain the user dump when JavaVM terminates abnormally, specify the following
settings in the registry before you start the product. The registry settings affect the entire system, so take adequate
precautions when you specify the settings. However, cjstartsv.exe, cjstartweb.exe, cjclstartap.exe,
and adminagent.exe are automatically set up when the product is installed.

• Registry key
\\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows
Error Reporting\LocalDumps

• Registry values

• DumpCount:number-of-stored-dumps

• DumpType:2

3. Preparing for Troubleshooting

Maintenance and Migration Guide 105

(2) Using the cjstopsv command
When acquiring user dumps using the -fd option of the cjstopsv command, you must set up the output
destination directory of the user dump in the environment variable CJMEMDUMP_PATH. File name of the user dump
is cjmemdump.dmp.

The following is a setup example of the environment variable CJMEMDUMP_PATH:

Setup example of the environment variable CJMEMDUMP_PATH

set CJMEMDUMP_PATH=C:\temp

In the above-mentioned example, cjmemdump.dmp is created under C:\temp.

When specifying the environment variable CJMEMDUMP_PATH, note the followings:

• Confirm that there is enough free disk space in the disk where the data is to be stored since the file size of the user
dump is more than the required size of real memory of the J2EE server.

• Do not specify the directory that includes Japanese multibyte characters. The output of the user dump might fail.

• Specify the existing directory in the output destination directory of the user dump.

(3) When the user dump is obtained for the forced termination of a logical
server

When you use Management Server to set up the system, specify the output destination directory of the user dump in the
environment variable CJMEMDUMP_PATH to obtain the user dump for the forceful termination of the logical server. If
you specify this environment variable, the user dump can be collected beneath the directory specified in this environment
variable when the logical J2EE server is terminated forcefully. The user dump file name is cjmemdump.dmp. For
details, see 4.1.11 Setting environment variables of the system in the uCosminexus Application Server System Setup and
Operation Guide.

3.3.16 Settings for Acquiring a Core Dump
This section describes the settings for acquiring core dumps in UNIX.

Important note

Depending on the Linux specifications, the size information in the core file might be invalid.

(1) Setting the maximum size of core files
The maximum size of core files may be 0 depending on the operation environment of the system. In such cases, core
dumps of processes cannot be acquired. Therefore, you need to set in advance the maximum size of core files to infinite.
To set the maximum size of core files to infinite, specify the option in the JavaVM startup parameter in the Easy Setup
definition file or the option definition file, or execute shell commands.

Note that the larger the memory pool size specified in the JavaVM startup parameter in the Easy Setup definition file or
option definition file, the larger the core file size will be, so secure sufficient free disk space.

• Setting up the option in the JavaVM startup parameter in the Easy Setup definition file

3. Preparing for Troubleshooting

Maintenance and Migration Guide 106

Define the JavaVM startup parameter in the <configuration> tag on a logical J2EE server (j2ee-server) in the
Easy Setup definition file. The setting contents of a JavaVM startup parameter are as follows:

<param-name> tag
add.jvm.arg

<param-value> tag
-XX:+HitachiFullCore

Setup example (For definition of the physical tier)

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>add.jvm.arg</param-name>
 <param-value>-XX:+HitachiFullCore</param-value>
 </param>
 :
</configuration>

• Setting up the option in the JavaVM startup parameter in the option definition file
Define the JavaVM startup parameter in the option definition file.
Setup example (For the option definition file for Management Server)

add.jvm.arg=-XX:+HitachiFullCore

• To execute shell commands
Execute the shell command and specify the maximum size of the core file as infinite.
Execution example of Csh (C shell)

limit coredumpsize unlimit

Execution example of sh (standard shell)

ulimit -c unlimited

Also, in addition to these settings, we recommend that you execute the shell commands to set the maximum file size
to unlimited.

• Example of execution for csh (C shell)

limit filesize unlimit

• Example of execution for sh (standard shell)

ulimit -f unlimited

Reference note

Formula for estimating the core file size

The core file size, generated when a JavaVM process is down, is equal to the amount of virtual memory used.
For details on the formula for the virtual memory usage, see the following manuals. The disk, which contains the
current directory of the JavaVM process where the core file is generated, must always have free space greater
than this core file size.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 107

• For the J2EE application execution platform
5.3 Estimating memory used for each process in the uCosminexus Application Server System Design Guide

• For the batch application execution platform
6.3 Estimating virtual memory usage in the uCosminexus Application Server System Design Guide

• For Management Server and Administration Agent
5.3 Estimating memory used for each process in the uCosminexus Application Server System Design Guide
and the standard memory requirements used by Cosminexus Component Container in the Release Notes.

(2) Setting the maximum number of files for core files
• You can define the upper limit for the number of core files of a logical J2EE server in the
ejb.server.corefilenum parameter in the <configuration> tag of j2ee-server in the Easy Setup
definition file. Define the ejb.server.corefilenum parameter in the extension parameter of the J2EE server.
If the total number of core dump files output to working-directory/ejb/server-name/ during the restart of the
cjstartsv process exceeds the specified maximum number, the files are deleted in the order of output date,
starting from the oldest file.

• You can define the upper limit for the number of core files of Management Server in the
ejb.server.corefilenum parameter in the option definition file for Management Server.
If the total number of core dump files output to Application-Server-installation-directory/manager/
containers/m/ejb/server-name-of-Management-Server/ during the restart of the Management Server
process exceeds the specified maximum number, the files are deleted in the order of output date, starting from the
oldest file.

3.3.17 Settings for Acquiring the JavaVM Material
This section describes the settings for acquiring the following JavaVM material:

• Thread dumps of JavaVM

• JavaVM log (JavaVM log file)

• Event log of the Explicit Memory Management functionality

For details about the JavaVM startup options, see 14. Options for Invoking JavaVM in the uCosminexus Application
Server Definition Reference Guide.

By default, the thread dumps of JavaVM are output under the following directory:

• In Windows
working-directory\ejb\server-name

• In UNIX
working-directory/ejb/server-name

By default, the JavaVM log is output under the following directory:

• In Windows
working-directory\ejb\server-name\logs

• In UNIX

3. Preparing for Troubleshooting

Maintenance and Migration Guide 108

working-directory/ejb/server-name/logs

When you want to change the output destination, you must change the log output directory in the
ejb.server.log.directory parameter in the <configuration> tag of a logical J2EE server (j2ee-server)
in the Easy Setup definition file before starting JavaVM or J2EE server.

The respective settings for acquiring the thread dumps of JavaVM, JavaVM log (JavaVM log file), and event log of the
Explicit Memory Management functionality is as follows:

(1) Settings for Acquiring Thread Dumps of JavaVM
This subsection describes the settings for acquiring thread dumps of JavaVM.

The contents output to the thread dump of JavaVM differs depending on the JavaVM startup option specified in the
JavaVM startup parameter in the Easy Setup definition file. Define the JavaVM startup option in the JavaVM startup
parameter in <configuration> tag of a logical J2EE server (j2ee-server). The setting contents of a JavaVM startup
parameter are as follows:

<param-name> tag
add.jvm.arg

<param-value> tag
JavaVM-startup-option

The following table describes the options to be specified for JavaVM startup options. For details about the options, see
14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

Table 3‒21: Options to be specified for JavaVM startup option (Settings for acquiring the thread
dumps of JavaVM)

Option Description

-XX:+HitachiThreadDump Output the extended thread dump. By default, the thread dump is output.

-XX:+HitachiThreadDumpToStdout The extended thread dump is output to the standard output. By default, the
thread dump is output.

-XX:+HitachiThreadDumpWithHashCode The hash code of the thread is output to the thread information. By default, the
thread dump is output.

-XX:+HitachiThreadDumpWithCpuTime The user CPU time and kernel CPU time after the thread starts are output to
the thread information. By default, the thread dump is output.

-XX:+HitachiThreadDumpWithBlockCount The number of times the process was blocked by the thread and the number
of times the process is in the pending state is output to the thread information.
By default, the thread dump is output.

-XX:+HitachiOutOfMemoryAbort
-XX:+HitachiOutOfMemoryAbortThreadDump

In either of the settings, the thread dump is output when forced termination is
performed due to OutOfMemoryError. If the C heap in the J2SE class library
is insufficient, and the C heap in the processing of JavaVM is insufficient, the
thread dump is not output

-
XX:+HitachiOutOfMemoryAbortThreadDumpWith
JHeapProf

A class-wise statistical information is output in the thread dump that is output
when forced termination is performed due to OutOfMemoryError. Nothing is
output by default.

To change the output destination of the thread dump file, specify the output destination in the environment variable
JAVACOREDIR. For details on the environment variable JAVACOREDIR, see 14.7 Details of environment variables
used in JavaVM in the uCosminexus Application Server Definition Reference Guide.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 109

(2) Settings for acquiring JavaVM logs
This subsection describes the settings for acquiring JavaVM logs.

The JavaVM log is a log that you can acquire with the extension option added by Hitachi in the standard JavaVM. You
can acquire more troubleshooting information as compared to the information acquired from the standard JavaVM. This
log file is called JavaVM log file. The JavaVM GC log is also output to this file.

To acquire the JavaVM log file, specify a JavaVM startup option in the JavaVM startup parameter in the Easy Setup
definition file. Define the JavaVM startup option in the JavaVM startup parameter in the <configuration> tag of
the logical J2EE server (j2ee-server). The following are the setting contents of the JavaVM startup parameter:

<param-name> tag
add.jvm.arg

<param-value> tag
JavaVM-startup-option

The following table describes the options to be specified for the JavaVM startup option. For details about the options,
see 14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

Table 3‒22: Options to be specified for JavaVM startup option (Settings for acquiring JavaVM log)

Option Description

-XX:+HitachiOutOfMemoryStackTrace
-XX:+HitachiVerboseGC
-XX:+HitachiOutOfMemoryHandling
-XX:+HitachiJavaClassLibTrace
-XX:+JITCompilerContinuation

If any of the following options is specified, the JavaVM log file is output:
• If -XX:+HitachiOutOfMemoryStackTrace is specified,

the exception information and the stack trace are
output to the JavaVM log file. If you specify
this option, -XX:+HitachiOutOfMemorySize and -
XX:+HitachiOutOfMemoryCause are also specified concurrently.

• If -XX:+HitachiVerboseGC is specified, the extended verboseGC
information is output to the JavaVM log file, when the GC occurs.

• If -XX:+HitachiOutOfMemoryHandling is specified,
information related to the frequency of occurrence of OutOfMemory
is output to the JavaVM log file when OutOfMemory occurs due to Java
heap insufficiency or insufficient metaspace area.

• If -XX:+HitachiJavaClassLibTrace is specified, the stack trace
of the class library is output to the JavaVM log file.

• If -XX:+JITCompilerContinuation is specified, the JIT
compiler continuation functionality is enabled, therefore, if the JIT
compilation fails due to a logical inconsistency in a method configuring
the application, the JIT compiler continuation functionality log is output
to the JavaVM log file.

Specify the following extension options based on the requirements and set the output methods and the output contents
of the JavaVM log file:

• File size and the number of JavaVM log files

• Extended verboseGC function option

• Extension function option when OutOfMemoryError occurs

• Class library trace function option

• Local variable information output function option

• Asynchronous log file output function option, etc.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 110

The settings to output the extended verboseGC information to the maintenance information of JavaVM (Java heap
information) and the GC log are described below. With the options described in the following table, apply the output of
extended verboseGC information and specify the output format of the extended verboseGC information.

Table 3‒23: Options to be specified for output of the extended verbosegc information

Option Description

-XX:+HitachiVerboseGC The extended verboseGC information is output to the JavaVM log file.

-XX:+HitachiVerboseGCPrintDate The date is output to each line of the extended verboseGC information.

-XX:+HitachiVerboseGCCpuTime The CPU usage time of the thread executing the GC from the start until the
termination of the GC is output. The CPU usage time is divided into the CPU
time spent in the user mode and the CPU time spent in the kernel mode and
then output.

-XX:HitachiVerboseGCIntervalTime = Time-
intervals (seconds)

Specify the output intervals of the extended verboseGC information.

-XX:+HitachiVerboseGCPrintCause The cause for occurrence of the GC is output to the extended
verboseGC information.

-XX:+HitachiOutputMilliTime Output the date (up to milliseconds) to each line of the extended
verboseGC information.

-XX:+HitachiCommaVerboseGC The extended verboseGC information is output in the CSV format.

-
XX:+HitachiVerboseGCPrintTenuringDistribu
tion

The tenuring distribution information of the Survivor area is output. For
details about the output format and output information, see 9.11 Tenuring
distribution information output functionality of the Survivor area.

-
XX:+HitachiVerboseGCPrintJVMInternalMemor
y

Heap information managed in JavaVM is output to the JavaVM log file.

-XX:+HitachiVerboseGCPrintThreadCount To monitor the number of Java threads, the number of Java threads is output
to the JavaVM log file.

-XX:+HitachiVerboseGCPrintDeleteOnExit The cumulative heap size secured by JavaVM by invoking
java.io.File.deleteOnExit()and the number of times the method
is invoked are output to the JavaVM log file.

You can acquire the information to estimate the Java heap area size and the metaspace area size required by the server
from the extended verbosegc information.

(3) Settings for acquiring the event log of Explicit Memory Management
functionality

This point describes the settings for acquiring the Event log of Explicit Memory Management functionality. This point
also describes the relation of the event log of the Explicit Memory Management functionality with the JavaVM log file.

The settings required for acquiring the event log of Explicit Memory Management functionality are as follows:

• Settings for log output level
Set up the log output level to output a log depending on the purpose. You can specify the four log output levels;
none, normal, verbose, and debug. Default level of J2EE server is normal. The log details are given in the order of
none<normal<verbose<debug and the output volume increases.
For example, you can perform an operation, where you can specify normal for normal and verbose if an error occurs
and can acquire a detailed log.

• Settings for log output file

3. Preparing for Troubleshooting

Maintenance and Migration Guide 111

The log of Explicit Memory Management functionality is output to a separate file other than the JavaVM log. Set up
the file for the output destination, file size, and number of files according to the assumed operation.

For a J2EE server or batch server, you can set up the above-mentioned settings using JavaVM startup option specified in
the JavaVM startup parameter in the Easy Setup definition file. Set up the JavaVM startup option in the JavaVM startup
parameter in the <configuration> tag of a logical J2EE server (j2ee-server). The settings of the JavaVM startup
parameter are as follows:

<param-name> tag
add.jvm.arg

<param-value> tag
JavaVM- startup-option

The following table describes the options to be specified for the JavaVM startup option. For details about the options,
see 14. Options for Invoking JavaVM in the uCosminexus Application Server Definition Reference Guide.

Table 3‒24: Option to be specified for JavaVM startup option (Settings for acquiring the event log
of the Explicit Memory Management functionality)

Setting contents Option Description

Setting of output level -
XX:HitachiExplicitMemoryLogLevel:char
acter-string

Specify log output level.
• none

Event log of the Explicit Memory Management
functionality is not output.

• normal
Specify for normal operation. The status of the
Explicit heap is output when an event that causes a
significant change in the size of the Explicit heap
occurs or when GC occurs.

• verbose
Specify if a detailed log is required when
error occurs.

• debug
Specify when a detailed log is required more than
verbose. Performance of the system is lowered.

Settings for file to
be output

-
XX:HitachiExplicitMemoryJavaLog:chara
cter-string

Specify the file name of file that outputs event log.

-
XX:HitachiExplicitMemoryJavaLogFileS
ize=positive-integer

specify the maximum file size for each file.

-
XX:HitachiExplicitMemoryJavaLogNumbe
rOfFile=positive-integer

Specify a maximum number of log files to be created.
When a specified value exceeds, a wraparound is
performed, and the log is output to the file that was
created first.

Note that the event log of the Explicit Memory Management functionality is output to a file that differs from the JavaVM
log file. However, the values set up in the JavaVM log file are inherited for some options.

The following table describes the items that inherit the settings of the JavaVM log file.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 112

Table 3‒25: Items that inherit the settings of the JavaVM log file

Option name Meaning Default value

-XX:+HitachiJavaLogNoMoreOutput An option to specify behavior when an attempt to output
the log file fails.

Enabled

-XX:+HitachiOutputMilliTime An option to specify whether to set millisecond as the
unit of time output to the log file.

Disabled

For details about the JavaVM extension options, see 14.2 Details of JavaVM extension options in the uCosminexus
Application Server Definition Reference Guide.

3.3.18 Settings for acquiring the WebSocket container log
This subsection describes the items that you can set up for acquiring the WebSocket container log.

The following table describes the settings of the items that you can change for acquiring the WebSocket container log
and the corresponding parameters of the Easy Setup definition file.

Table 3‒26: Settings for acquiring WebSocket container logs

Log or trace Items Corresponding parameters of the Easy Setup definition file

Access log Whether the access log is output ejbserver.logger.access_log.websocket.enabled
in the <configuration> tag on a logical J2EE server (j2ee-server)
(By default, the access log is not output.)

Format when the access log is output ejbserver.logger.access_log.websocket.format in
the <configuration> tag on a logical J2EE server (j2ee-server)#

File size of the access log ejbserver.logger.channels.define.WebSocketAcce
ssLogFile.filesize in the <configuration> tag on a
logical J2EE server (j2ee-server)

Number of files of access log ejbserver.logger.channels.define.WebSocketAcce
ssLogFile.filenum in the <configuration> tag on a logical
J2EE server (j2ee-server)

Trace based
performance analysis

-- Specify acquisition condition, when you want to execute the cprfed
command for performing a daily system operation same as for other
trace based performance analysis. For details about acquiring the trace
based performance analysis files, see 7. Performance Analysis by
Using Trace Based Performance Analysis.

Legend:
--: Not applicable

#
In the access log, you can customize the log output format by defining the format with the above-mentioned keys. For customization of the
access log of the NIO HTTP server, see 6.11.2 Customizing the access log of the NIO HTTP server in the uCosminexus Application Server Web
Container Functionality Guide.

3. Preparing for Troubleshooting

Maintenance and Migration Guide 113

4 Output Destinations and Output Methods of Data
Required for Troubleshooting

You can acquire the data that is used in the troubleshooting at any time for each data. This chapter
describes how to seperately output the data, such as logs and thread dumps, and the default output
destination for the data. This chapter also describes the directories to be used for troubleshooting.

Maintenance and Migration Guide 114

4.1 Organization of this chapter

This chapter describes the output destination and the output method of the data used for troubleshooting.

There are the respective default output destinations for the data used for troubleshooting. Additionally, you can separately
acquire the data required for troubleshooting, such as the information without using the snapshot log.

The following table describes the organization of this chapter.

Table 4‒1: Organization of this chapter (Output destination and output method of the data used for
troubleshooting)

Category Title Reference

Explanation Types of data used for troubleshooting (When snapshot log is not used) 4.2

Application Server log (Systems for executing J2EE applications) 4.3

Application Server log (Systems for executing batch applications) 4.4

EJB Client Application System Log 4.5

Trace based performance analysis 4.6

JavaVM thread dump 4.7

JavaVM GC Log 4.8

Memory Dump 4.9

JavaVM log (JavaVM log file) 4.10

JavaVM Output Message Logs (Standard Output or Error Report File) 4.11

OS Status Information and OS Logs 4.12

OS Statistical Information 4.13

Application Server definition information 4.14

Contents of J2EE server or batch server working directory 4.15

Application Server Resource Setting Information 4.16

Web Server Logs 4.17

JavaVM stack trace information 4.18

Event log of the Explicit Memory Management functionality 4.19

Information on the execution of the Component Container Administrator
setup command (In UNIX)

4.20

For an overview of troubleshooting, how to output the data automatically, setup related to data acquisition and data
output, and the output contents of the data, see the following respective chapters:

• Overview of troubleshooting and how to output the data automatically
2. Troubleshooting

• Setup related to data acquisition and data output
3. Preparing for Troubleshooting

• Contents output in data
5. Problem Analysis

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 115

4.2 Types of data used for troubleshooting (When snapshot log is not
used)

Materials, such as log outputs by the application server configuration software, can also be acquired separately without
using the snapshot log. This section describes the methods for acquiring the required data separately when a trouble
occurs. For details about acquiring the data using the snapshot log, see 2.3.3 Collecting the Snapshot Log.

The following table describes the reference sections for the required data acquired separately when the snapshot log is
not used.

Table 4‒2: Required data that is to be acquired (When snapshot log is not used)

Data to be acquired Reference

Application Server log (Systems for executing J2EE applications) 4.3

Application Server log (Systems for executing batch applications) 4.4

System log of EJB client application# 4.5

Trace based performance analysis 4.6

JavaVM thread dump 4.7

JavaVM GC log 4.8

Memory dump 4.9

JavaVM log (JavaVM log file) 4.10

JavaVM output message logs (Standard output or error report file) 4.11

OS status information and OS logs 4.12

OS statistical information 4.13

Application Server definition information 4.14

Contents of J2EE server or batch server working directory 4.15

Application Server resource setting information 4.16

Web server logs 4.17

JavaVM stack trace information 4.18

Event log of the Explicit Memory Management functionality 4.19

Information on the execution of the Component Container Administrator setup command (In UNIX) 4.20

#
Acquire for the system executing an EJB client application.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 116

4.3 Application Server log (Systems for executing J2EE applications)

This section describes how to acquire logs output by the component software of the Application Server manually in the
systems for executing J2EE applications. Further, when the application server log is already collected as a snapshot log,
you need not perform the tasks explained here.

This section describes how to acquire the following logs:

• Cosminexus Component Container logs

• Cosminexus Performance Tracer logs

• Cosminexus Component Transaction Monitor logs

• Logs output in audit log

• Application user logs

Reference note

The method of collecting Cosminexus HTTP Server log is described in 4.17 Web Server Logs.

4.3.1 Acquiring the Cosminexus Component Container Logs
This section describes the types and output destinations of Cosminexus Component Container logs. The Cosminexus
Component Container logs include the following logs:

• J2EE server, server management command logs

• Administration agent, Management agent, Management Server logs

• Internal setup tool of the virtual server manager and Server Communication Agent logs

• Integrated user management logs

• Cosminexus JMS Provider logs

The output destination of each of the log is described below.

(1) Acquiring the J2EE server, server management command logs
This section describes the method for acquiring the J2EE server, server management command logs.

Also, in Cosminexus Component Container, the migration command logs are output besides these logs. When the
resource depletion monitoring function is used, the resource depletion monitoring log is output.

• The five types of J2EE server logs are the message log, user log, exception log, access log, and maintenance log. Note
that in addition to these logs, event log or syslog are output in the case of starting, stopping, and abnormal termination
of a J2EE server.

• The three types of server management command logs are message log, exception log, and maintenance log.

• In the resource adapter version up command (cjrarupdate) log, there are three types of logs, message log,
exception log, and maintenance log.

• The three types of migration command logs are message log, exception log, and maintenance log.

Each of these logs is described below:

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 117

Message log
The operation status of a J2EE server, server management command, and migration command is output. Message
log is used as the operation monitoring information for various types of servers and commands.

User log
The information of the standard output and the standard error output in the application is output in the
user log. Use this log to check the operation when developing the application. Note that if you specify the
java.security.debug property and start the server, the standard output and standard error output information
is not output to the user log. This log also includes the JavaVM memory related logs.

Exception log
The exception information of Cosminexus Component Container is output when a problem occurs in the system.
Note that you need not monitor the exception log in daily operations. Use this log to reference exception information
if a message is output to the log.

Access log
The processing results of requests to Web applications and the communication history of WebSocket are output.

Maintenance log
The error maintenance information of Cosminexus Component Container is output when a problem occurs in the
system. Maintenance personnel use this log to analyze the errors that occur in Cosminexus Component Container.

Event log (in Windows)
The information indicating start, stop, or abnormal termination of a J2EE server is output to this log. The output
destination differs depending on the Windows event log settings.
Note that the event log is not output depending on how the J2EE server has been stopped. In the following cases, there
are times when the log is not output correctly:

• When a problem occurs in JavaVM itself when the J2EE server is running

• When the J2EE server process is stopped externally by TerminateProcess

• When the J2EE server terminates abnormally due to insufficient memory when the -
XX:+HitachiOutOfMemoryAbort option is specified to start the JavaVM.
Note that the -XX:+HitachiOutOfMemoryAbort option is set by default.

syslog (in UNIX)
The information indicating start, stop, or abnormal termination of a J2EE server is output to this log. The output
destination differs depending on the settings in the UNIX syslog.
Note that the syslog is not output depending on how the J2EE server has been stopped. In the following cases, there
are times when the log is not output correctly:

• When a problem occurs in JavaVM itself when the J2EE server is running

• When the J2EE server process is stopped externally by the SIGKILL signal (such as kill -9)

• When the J2EE server terminates abnormally due to insufficient memory when the -
XX:+HitachiOutOfMemoryAbort option is specified to start the JavaVM.
Note that the -XX:+HitachiOutOfMemoryAbort option is set by default.

Resource depletion monitoring log
When using the resource depletion monitoring function, the resource depletion monitoring information about the
resources being monitored is output. Use it for investigating the cause if the resource usage or the used resource
quantity exceeds the threshold value.

The log is recorded in an order starting from the log file attached with the smallest file number. When one log file size
attains the maximum size for one file, the log is recorded in the log file attached with the next file number. When the last
log file (log file attached with the file count number) size attains the maximum size for one file, the log file of file number

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 118

1 is made empty and the log is recorded in that file. Thereafter, the log is recorded in the log files in the order of the file
number by emptying those log files before recording a new log.

The following table describes the default of log output destination. The Cosminexus Component Container log can be
acquired according to the server or command.

The working-directory shown in the log output destination indicates a directory specified in the
ejb.public.directory parameter in the <configuration> tag of the logical J2EE server (j2ee-server)
of the Easy Setup definition file. The default value is Cosminexus-installation-directory\CC\server\public (in
Windows) or /opt/Cosminexus/CC/server/public (in UNIX).

(a) J2EE server log
Table 4‒3: Output destination of the J2EE server log (Default)

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Message log Operation log • In Windows
ejb.server.log.directory#2\cj
message[n].log

• In UNIX
ejb.server.log.directory#2/
cjmessage[n].log

1MB × 2 MessageLogFile

Log operation log#3 • In Windows
<ejb.server.log.directory>#2\
cjlogger.log

• In UNIX
<ejb.server.log.directory>#2/
cjlogger.log

1MB × 2 --

Operation log of resource
adapter that is deployed
and used as a J2EE
resource adapter#4

• In Windows
(Resource adapter of Connector
1.0 specifications)
ejb.server.log.directory#2\co
nnectors\resource-adapter-
display-name[n].log
(Resource adapter of Connector
1.5 specifications)
<ejb.server.log.directory>#2\
connectors\resource-adapte-
display-name_connection-
defintion-arrangement-
order_[n].log

• In UNIX
(Resource adapter of Connector
1.0 specification)
ejb.server.log.directory#2/
connectors/resource-adapter-
display-name[n].log
(Resource adapter of Connector
1.5 specification)
<ejb.server.log.directory>#2/
connectors/resource-adapter-
display-name_connetion-
definition-arrangement-
order_[n].log

2 MB × 4 --

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 119

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Operation log of resource
adapter used in a
J2EE application#4

• In Windows
(Resource adapter of normal mode/
Connector 1.0 specifications)
<ejb.server.log.directory>#2\
connectors\J2EE application-
name\resource-adapter-
display-name[n].log
(Resource adapter of test mode/Connector
1.0 specifications)
<ejb.server.log.directory>#2\
connectors\test#J2EE-
application-name\resource-
adapter-display-name[n].log
(Resource adapter of normal mode/
Connector 1.5 specifications)

<ejb.server.log.directory>#2\
connectors\J2EE-application-
name\resource-adapter-
display-name_connection-
defintion-arrangement-
order_[n].log
(Resource adapter of test mode/Connector
1.5 specifications)
<ejb.server.log.directory#2>\
connectors\test#J2EE-
application-name\resource-
adapter-display
name_connection-defintion-
arrangement-order_[n].log

• In UNIX
(Resource adapter of normal mode/
Connector 1.0 specifications)
<ejb.server.log.directory>#2/
connectors/J2EE-application-
name/resource-adapter-
display-name[n].log
(Resource adapter of test mode/Connector
1.0 specifications)
<ejb.server.log.directory>#2/
connectors/test#J2EE-
application-name/resource-
adapter-display-name [n].log
(Resource adapter normal mode/Connector
1.5 specifications)
<ejb.server.log.directory>#2/
connectors/J2EE-application-
name/resource-adapter-
display-name_connection-
defintion-arrangement-
order_[n].log
(Resource adapter of test mode/Connector
1.5 specifications)
<ejb.server.log.directory>#2/
connectors/test#J2EE-
application-name/
resource-adapter-display-

2 MB × 4 --

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 120

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

name _connection-definition-
arrangement-order_[n].log

User log Web servlet log#5 • In Windows
ejb.server.log.directory#2\we
b_servlet[n].log

• In UNIX
ejb.server.log.directory#2/
web_servlet[n].log

4MB × 4 WebServletLogFi
le

User output log • In Windows
ejb.server.log.directory#2\us
er_out[n].log

• In UNIX
ejb.server.log.directory#2/
user_out[n].log

1MB × 2 UserOutLogFile

User error log • In Windows
ejb.server.log.directory#2\us
er_err[n].log

• In UNIX
ejb.server.log.directory#2/
user_err[n].log

1MB × 2 UserErrLogFile

JavaVM maintenance
information and GC log

• In Windows
ejb.server.log.directory#2\ja
valog[nn].log

• In UNIX
ejb.server.log.directory#2/
javalog[nn].log

4MB × 4 --

Event log of Explicit
Memory Management
functionality

• In Windows
ejb.server.log.directory#2\eh
javalog[nn].log

• In UNIX
ejb.server.log.directory#2/
ehjavalog[nn].log

4MB × 4 --

Exception log Exception information
when an error occurs

• In Windows
ejb.server.log.directory#2\cj
exception[n].log

• In UNIX
ejb.server.log.directory#2/
cjexception[n].log

1MB × 2 ExceptionLogFile

Maintenance log Maintenance information • In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjmaintenance[
n].log

• In UNIX
ejb.server.log.director#2/CC/
maintenance/
cjmaintenance[n].log

16MB × 4 MaintenanceLog
File

Console message • In Windows 1MB × 2 ConsoleLogFile

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 121

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

<ejb.server.log.directory>#2\
CC\maintenance\cjconsole[n].l
og

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/cjconsole[n].log

EJB container
maintenance information

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjejbcontaine
r[n].log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/
cjejbcontainer[n].log

1MB × 2 EJBContainerLog
File

Web container
maintenance information

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjwebcontaine
r[n].log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/
cjwebcontainer[n].log

1MB × 2 WebContainerLo
gFile

Start process standard
output information#6

• In Windows
<ejb.server.log.directory>#2\CC\mainte
nance\cjstdout.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/cjstdout.log

-- --

Start process standard
error information#6

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjstderr.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/cjstderr.log

-- --

Termination
process information

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cj_shutdown[n]
.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/
cj_shutdown[n].log

4KB × 2#7 --

Trace log for Web
container maintenance

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjweb_access[n
].log

• In UNIX

4 MB × 16 WebAccessLogFi
le

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 122

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

<ejb.server.log.directory>#2/
CC/maintenance/
cjweb_access[n].log

RMI communication log
of J2EE server

• In Windows
<ejb.server.log.directory>#2\
CC\rmi\cjrmi[n].log

• In UNIX
<ejb.server.log.directory>#2/
CC/rmi/cjrmi[n].log

1MB × 4 --

Event log Log showing J2EE
server start, stop or
abnormal termination

Application log of Windows event viewer#8 -- --

syslog Log showing J2EE
server start, stop or
abnormal termination

Depends on UNIX syslog settings.#9 -- --

Debug log Log for
checking development

• In Windows
<ejb.server.log.directory>#2\
cjdevelopment[n].log

• In UNIX
<ejb.server.log.directory>#2/
cjdevelopment[n].log

1 MB × 4 DevelopmentLog
File

Access log Processing results of
HTTP communication

• In Windows
<ejb.server.log.directory>#2\
cj_access_niohttp[n].log

• In UNIX
<ejb.server.log.directory>#2/
cj_access_niohttp[n].log

4 MB × 16 NIOHTTPAccess
LogFile

Processing results of
WebSocket
communication

• In Windows
<ejb.server.log.directory>#2\
cj_access_websocket[n].log

• In UNIX
<ejb.server.log.directory>#2/
cj_access_websocket[n].log

4 MB × 16 WebSocketAcces
sLogFile

Legend:
--: Not applicable

Note:
Channel name is the name to identify the output destination of the log. Use it as a key value when changing log attributes (size, number of files).

#1
In the part of the log file name [n], the file number (number of files from 1 (maximum 16)) is added.
However, when using the sub directory shared mode of an EJB client application, the maximum number of files is 64.
Moreover, in the [nn] part, a serial number from 01 to 99 is added.

#2
<ejb.server.log.directory> indicates a directory specified in the ejb.server.log.directory parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. The default value is Cosminexus-
installation-directory\CC\server\public\ejb\server-name\logs.
For details about the ejb.server.log.directory parameter in the Easy Setup definition file, see 4.11.3 Parameters used for setting up
the option definitions for the J2EE server and 2.2.2 usrconf.cfg (Option definition file for J2EE servers) in the uCosminexus Application Server
Definition Reference Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 123

#3
Check the file contents when the file is output. If the maximum size is exceeded while checking, rename the cjlogger.log file with the
backup file name (cjlogger_save.log).

#4
Decision about acquiring the resource adapter log depends on the contents specified in server management commands. Moreover, you can use
the simple setup definition file to change the size and number of files for a resource adapter log. For details about the settings for acquiring the
resource adapter logs, see 3.3.11 Settings for Acquiring the Resource Adapter Logs.

#5
Stack trace for the exception that occurred in a servlet and JSP is also output.

#6
It is a log in which only the start process information is acquired. As it is output mainly while starting and terminating J2EE server, this log
is almost not output online. When the file size reaches the upper limit, it is saved in cjstdout_save.log or cjstderr_save.log
under working-directory\ejb\server-name\logs (in Windows) or under working-directory/ejb/server-name/logs (in UNIX). If
cjstdout_save.log or cjstderr_save.log already exists, it is overwritten.

#7
The size and number of files cannot be changed.

#8
The output destination of the log file differs depending on the Windows event log settings.

#9
To output messages related to J2EE server start, stop, and abnormal termination, to syslog, it is necessary to set the priority for the facility
daemon to info or debug in the syslog settings. For details about the syslog settings, see the manual provided with the OS.

Reference note

When the session failover function is used, the log for session failover is output as the log of the J2EE server
using the session failover function.

(b) Server management command log
Table 4‒4: Output destination of the server management command log (Default)

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Message log Operation log#2, #3 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjmessag
e[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/cjmessage[n].log

1024KB × 3 MessageLogFile

Log operation log#2 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjlogger
.log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/ cjlogger.log

1024KB × 2 --

Exception log Exception information
when an error occurs#2, #3

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjexcept
ion[n].log

• In UNIX

1024KB × 6 ExceptionLogFile

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 124

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

/opt/Cosminexus/CC/admin/
logs/cjexception[n].log

Maintenance log Maintenance
information#2

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjmaintenance[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/CC/maintenance/
cjmaintenance[n].log

1024KB × 3 MaintenanceLog
File

Console message#2 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjconsole[n].log

• In UNIX
/opt/Cosminexus/CC/
admin/logs/CC/
maintenance/cjconsole[n].log

32KB × 3 ConsoleLogFile

Maintenance information
of the server
management command#2

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjserveradmin[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/CC/maintenance/
cjserveradmin[n].log

32KB × 3 ServerAdminLog
File

Legend:
--: Not applicable

Note:
Channel name is the name to identify the output destination of the log.

#1
In the [n] part of the log file name, add the file number (from 1 to the maximum number of files for each log).

#2
The command name is displayed in the output message (application identification name) of the Hitachi Trace Common Library format. For
details on the log in the Trace Common Library format, see 5.2 Application Server Log.

#3
For the compatibility mode, the output destination of the operation log and the exception information when an error occurs will differ from the
standard mode. For the compatibility mode, the output destination, the default size, and the number of files are as follows:

Table 4‒5: Output destination of server management commands log (Compatibility mode)

Contents Log output destination and log file name# Default size × number of files

Operation log • In Windows
Cosminexus-installation-
directory\CC\admin\logs\<command-
name>message[n].log

• In UNIX
/opt/Cosminexus/CC/admin/logs/command-
name/message[n].log

128KB × 2

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 125

Contents Log output destination and log file name# Default size × number of files

Exception information when an
error occurs

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\<command-
name>exception[n].log

• In UNIX
/opt/Cosminexus/CC/admin/logs/command-
name/exception[n].log

256KB × 2

#
In the [n] part of the log file name, add the file number (from 1 to the maximum number of files for each log).

In the messages output to the message log of the server management commands, there are the cases when the message
ID field is blank and message ID (such as KDJEnnnnn-Y) is included in the message text field. This is an additional
information of the messages output before or after the messages are output at the server side.

(c) Resource adapter version-up command (cjrarupdate) log
Table 4‒6: Output destination of the resource adapter version-up command (cjrarupdate) log

Category Contents Log output destination and log file name# Default size × number
of files

Message log Operation log • In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdatemessage[n].log#1

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdatemessage[n].log#1

1MB × 2

Exception log Exception
information when
an error occurs

• In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdateexception[n].log#1

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdateexception[n].log#1

1MB × 2

Maintenance log Maintenance
information

• In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdatemaintenance[n].lo
g#2

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdatemaintenance[n].log#2

16 MB × 4

#1
In the[n]part of the log file name, add the file number (1 or 2).

#2
In the[n]part of the log file name, add the file number (from 1 to 4).

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 126

(d) Migration command (cjenvupdate) log
Table 4‒7: Output destination of the migration command (cjenvupdate) log

Category Contents Log output destination and log file name# Default size ×
number of files

Message log Operation log of the
cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdatemessage[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjenvupdatemessage[n].log

4MB × 4

Exception log Exception
information of the
cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdateexception[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjenvupdateexception[n].log

4MB × 4

Maintenance
log

Maintenance
information of the
cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdatemaintenance[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjenvupdatemaintenance[n].log

4MB × 4

#
In [n], the file number (from 1 to 4) is attached.

(e) Resource depletion monitoring log
Table 4‒8: Output destination of resource depletion monitoring log

Monitored
Resources

Log acquisition location and log file name#1 Default size ×
number of files

Channel name

Memory • In Windows
<ejb.server.log.directory>#2\watch
\cjmemorywatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjmemorywatch[n].log

1MB × 2 MemoryWatchLogFile

File descriptors • In UNIX#3

ejb.server.log.directory#2/
watch/cjfiledescriptorwatch[n].log

1MB × 2 FileDescriptorWatchLogFile

Threads • In Windows
<ejb.server.log.directory>#2\watch
\cjthreadwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjthreadwatch[n].log

1MB × 2 ThreadWatchLogFile

Thread dump • In Windows
<ejb.server.log.directory>#2\watc
h\cjthreaddumpwatch[n].log

1MB × 2 ThreaddumpWatchLogFile

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 127

Monitored
Resources

Log acquisition location and log file name#1 Default size ×
number of files

Channel name

• In UNIX
ejb.server.log.directory#2/
watch/cjthreaddumpwatch[n].log

HTTP requests
pending queue

• In Windows
<ejb.server.log.directory>#2\watch
\cjrequestqueuewatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjrequestqueuewatch[n].log

1MB × 2 RequestQueueWatchLogFile

HTTP
session numbers

• In Windows
<ejb.server.log.directory>#2\watch
\cjhttpsessionwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjhttpsessionwatch[n].log

1MB × 2 HttpSessionWatchLogFile

Connection pool • In Windows
<ejb.server.log.directory>#2\watch
\cjconnectionpoolwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjconnectionpoolwatch[n].log

1MB × 2 ConnectionPoolWatchLogFile

Note:
Channel name is the name to identify the output destination of the log. Use it as a key value when changing log attributes (size, number of files).

#1
In [n], the file number (number of files from 1 (maximum 16)) is attached.

#2
<ejb.server.log.directory> indicates the directory specified in the ejb.server.log.directory parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file. The default value is Cosminexus-
installation-directory\CC\server\public\ejb\server-name\logs.
For details about the ejb.server.log.directory parameter in the Easy Setup definition file, see 4.11.3 Parameters used for setting up
the option definitions for the J2EE server and 2.2.2 usrconf.cfg (Option definition file for J2EE servers) in the uCosminexus Application Server
Definition Reference Guide.

#3
The file descriptor cannot be monitored in Windows and AIX.

For details about the information output to the resource depletion monitoring log file and for the output format of the log
file, see 4.3 Resource depletion monitoring functionality and output of resource depletion monitoring information in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

(f) User definition file to set output destination of the log
When the output destination of the J2EE server and server management command log output destination is changed,
reference the user definition file in which the log output destination is set, described in the following table and confirm
the output destination. Note that if the output destination of a log is changed, that log is not collected when the snapshot
log is collected in a batch. Change the collection destination of the snapshot log as and when required.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 128

Table 4‒9: User definition file in which the output destination of log is set

Category User definition file

J2EE server The ejb.server.log.directory parameter is specified in the <configuration> tag of the
logical J2EE server (j2ee-server) of the Easy Setup definition file.
The default is Cosminexus-installation-directory\CC\server\public\ejb\server-name\logs (in
Windows), or /opt/Cosminexus/CC/server/public/ejb/server-name/logs (in UNIX).

Server management commands ejbserver.log.directory key of the server management command usrconf.bat (in Windows) or
usrconf (in UNIX)
The default key is Cosminexus-installation-directory\CC\admin\logs (in Windows) or /opt/
Cosminexus/CC/admin/logs (in UNIX).
You cannot change the output destination of the server management command log when operating from the
Management Server remote management functionality.

For details about the settings of the data acquisition for troubleshooting, such as how to change the output destination
of the logs, see the chapter 3. Preparing for Troubleshooting.

(2) Acquiring the log of Administration agent, Management agent, and
Management Server

This points describes the output destination of the Administration Agent, Management Agent, and the Management
Server log.

In the Administration agent, Management agent, and Management Server logs, besides acquiring separately, you can also
acquire these logs by compiling as a Integrated log. Following are the types of integrated logs:

• Integrated message log
The message logs of the Manager are integrated and output.

• Integrated trace log
The trace logs of the Manager are integrated and output.

• Command maintenance log#

The management commands, the commands used with Smart Composer functionality, and the trace log of the
snapshotlog command are integrated and output.

For details about the commands used with the Smart Composer functionality, see 8. Commands Used with the Smart
Composer Functionality in the uCosminexus Application Server Command Reference Guide.

The following table describes the output destination of integrated logs.

Table 4‒10: Output destination of the integrated log (In Windows)

File name Contents Output destination directory Default size ×
number of files

mngmessage[n].#1log Integrated message log Log-output-directory-of-Manager\message#2 256KB × 4

mngtrace[n]#1.log Integrated trace log Log-output-directory-of-Manager\trace#2 1MB × 4

mngcmd[n]#1.log Command maintenance log Log-output-directory-of-
Manager\maintenance#2

16MB × 4

#1
In the part of the log file name [n], the file number (number of files from 1 (maximum 64)) is added.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 129

#2
Log-output-directory-of-Manager indicates the directory specified in manager.cfg (Manager log settings file). The default value is Cosminexus-
installation-directory\manager\log. For details about manager.cfg, see 8.2.9 manager.cfg (Manager settings file) in the uCosminexus
Application Server Definition Reference Guide.

Table 4‒11: Output destination of the integrated log (in UNIX)

File name Contents Output destination directory Default size ×
number of files

mngmessage[n]#1.log Integrated message log Log-output-directory-of-Manager/message#2 256KB × 4

mngtrace[n]#1.log Integrated trace log Log-output-directory-of-Manager/trace#2 1MB × 4

mngcmd[n]#1.log Command maintenance log Log-output-directory-of-
Manager/maintenance#2

16MB × 4

#1
In the part of the log file name [n], the file number (number of files from 1 (maximum 64)) is added.

#2
Log-output-directory-of-Manager indicates the directory specified in manager.cfg (Manager log settings file). The default value is /opt/
Cosminexus/manager/log. For details about manager.cfg, see 8.2.9 manager.cfg (Manager settings file) in the uCosminexus
Application Server Definition Reference Guide.

Note that the log output in the integrated log is output separately by default.

Additionally, the logs output in the integrated log might not output separately. For details about the settings to output
integrated logs, see 3.3.10 Settings for Acquiring the Cosminexus Manager Log.

The following table describes the Administration agent, Management agent, and Management Server log output
destination as well as the possibility of output to integrated message log and integrated trace log when
acquiring separately.

Table 4‒12: Output destination when acquiring the Administration agent, Management agent, and
Management Server log separately (in Windows)

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

Administr
ation agent

adminagent.err
.[1-16].log#1

Standard error output of
Administration agent

Log-output-directory-of-the-
Manager

64KB × 4 N

adminagent.out
.[1-16].log#1

Standard output of
Administration agent

64KB × 4 N

adminagent.err Standard command
line error output of
Administration agent

-- N

adminagent[1-1
6].log

Administration agent log 64KB × 4 Y

adminagentctl.
exe.[1-2].log

Administration agent
start, stop command log

64KB × 2 N

adminagent[n]#

2.log
Administration agent
maintenance log

Log-output-directory-of-
Manager\maintenance

16MB × 4 N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 130

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

mngrmi[n]#2.lo
g

Maintenance log in RMI
processing executed by
Administration Agent

16MB × 8 N

processConsol
e[n]#2.log

Console log Log-output-directory-of-the-
Manager

64KB × 4 N

adminagentsv.e
xe.[1-16]log#1

Administration agent
service log

64KB × 2 N

adminagentsv.e
xe.out#1

Administration agent
service standard output

-- N

adminagentsv.e
xe.err#1

Administration agent
service standard
error output

-- N

adminagent.jav
alog[01-04].lo
g

JavaVM log file of
Administration Agent

256KB × 4 N

Manageme
nt agent

mngagent-
domain-name-agent-
name.[n]#2.log#3

• Management agent
log and trace

• System JP1 event and
user JP1 event log#4

for J2EE server
• Management event

published log#5

64KB × 4 N

Manageme
nt Server

mngsvr.exe.
[1-2
].log

Management Server
service log

64KB × 2 N

mngsvr.exe.err
#1

Management Server
service standard
error output

-- N

mngsvr.exe.out
#1

Management Server
service standard output

-- N

mngsvrctl.exe.
[1-2].log

Management Server
service start, stop
command log

64KB × 2 N

mngsvr[n]#2.lo
g

• Management
Server log

• Management server#6

system JP1
event log#4

64KB × 4 Y

mngsvr[n]#2.lo
g

Management Server
maintenance log

Log-output-directory-of-
Manager\maintenance

16MB × 2 N

cjmessage[n].l
og

Operation log Manager-log-output-
directory

1 MB ×2 N

cjexception[n]
.log

Exception information
for error

Manager-log-output-
directory\maintenance

1 MB ×2 N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 131

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

cjmaintenance[
n].log

Maintenance information 16 MB ×4 N

cjconsole[n].l
og

Console message 1 MB ×2 N

cjejbcontaine
r[n].log

EJB container
maintenance information

1 MB ×2 N

web_servlet[n]
.log

Web servlet log 4 MB ×4 N

user_out[n].lo
g

User output log 1 MB ×2 N

user_err[n].lo
g

User error log 1 MB ×2 N

cjlogger.log Log operation log 1 MB ×2 N

javalog[nn].lo
g

JavaVM maintenance
information and GC log

4 MB ×4 N

ehjavalog[nn].
log

Event log of the Explicit
Memory Management
functionality

4 MB ×4 N

cjwebcontaine
r[n].log

Web container
maintenance information

1 MB ×2 N

cjstdout.log Standard output
information for the
start process

Manager-log-output-
directory\maintenance/
CC/maintenance

-- N

cjstderr.log Standard error
information for the
start process

-- N

cj_shutdown[n]
.log

End process information 4 KB ×4 N

cjrmi[n].log RMI communication
log of the J2EE
server for the RMI
processing executed by
the Management Server

Manager-log-output-
directory\maintenance\
CC\rmi

1 MB ×4 N

cjhttp_thr.time
-
information.inpro
cess_http.mm

Thread trace information Manager-log-output-
directory\maintenance\
http\maintenance\th
r

About 3.2 MB
×16

N

cjhttp_comm.tim
e-
information.inpro
cess_http.mm

Communication
trace information

Manager-log-output-
directory\maintenance\
http\maintenance\co
mm

About 16.6 MB
×16

N

cjmemorywatch[
n].log

Resource depletion
monitoring log (Memory)

Manager-log-output-
directory\maintenance\
watch

1 MB ×2 N

cjthreadwatch[
n].log

Resource depletion
monitoring log (Thread)

1 MB ×2 N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 132

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

cjthreaddumpwa
tch[n].log

Resource depletion
monitoring log
(Thread dump)

1 MB ×2 N

cjrequestqueue
watch[n].log

Resource depletion
monitoring log (HTTP
request pending queue)

1 MB ×2 N

cjhttpsessionw
atch[n].log

Resource depletion
monitoring log (Number
of HTTP sessions)

1 MB ×2 N

Legend:
Y: Output to an integrated log
N: No output to an integrated log
[1-n]: Shows that a serial number in the range from 1 to n is used for the number of log files.
--: Not applicable

Note:
<Manager-log-output-directory> shows the directory specified in manager.cfg (Manager log setup file). The default is
Cosminexus-installation-directory\manager\log (in Windows) or /opt/Cosminexus/manager/log (in UNIX). For details on
manager.cfg, see 8.2.9 manager.cfg (Manager settings file) in the uCosminexus Application Server Definition Reference Guide.

#1
The log is output in a format different than Hitachi Trace Common Library format. For details on the log in the Trace Common Library format,
see 5.2 Application Server Log.

#2
In the part of file name [n], the serial number from 1 to total number of specified log files is added.

#3
You can change the output destination of Management agent log trace. If the output destination of Management agent log and trace is changed,
see the mngagent.log.filename key value of the mngagent.properties file (Management agent property file).

#4
This log is output if a system built with the application server by integrating with JP1 is to be operated.

#5
This log is output when a Management event is used.

#6
This log is for the Management Server of the Application Server.

Table 4‒13: Output destination when acquiring the Administration agent, Management agent, and
Management Server log separately (in UNIX)

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

Administr
ation agent

adminagent.err
.[1-16].log#1

Standard error output of
Administration agent

Log-output-directory-of-the-
Manager

64KB × 4 N

adminagent.out
.[1-16].log#1

Standard output of
Administration agent

64KB × 4 N

adminagent.err Standard command
line error output of
Administration agent

-- N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 133

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

adminagent[1-1
6].log

Administration agent log 64KB × 4 Y

adminagentctl.
[1-16].log

Administration agent
start, stop command log

64KB × 2 N

adminagent[n]#

2.log
Administration agent
maintenance log

Log-output-directory-of-
Manager/maintenance

16MB × 4 N

mngrmi[n]#2.lo
g

Maintenance log in RMI
processing executed by
Administration Agent

16MB × 8 N

processConsol
e[n]#2.log

Console log Log-output-directory-of-the-
Manager

64KB × 4 N

adminagent.jav
alog[01-04].lo
g

JavaVM log file of
Administration Agent

256KB × 4 N

Manageme
nt agent

mngagent-
domain-name-agent-
name.
[n]#2.log#3

• Management agent
log and trace

• System JP1 event and
user JP1 event log#4

for J2EE server
• Management event

published log#5

64KB × 4 N

Manageme
nt Server

mngsvrctlstart
.[1-2].log

Management Server
start command

64KB × 2 N

mngsvrctlstop.
[1-2].log

Management Server
stop command

64KB × 2 N

mngsvrctlsetup
.[1-2].log

Management Server set
up command

64KB × 2 N

mngsvr[n].log • Management
Server log

• Management server#6

system JP1
event log#4

64KB × 4 Y

mngenvsetup.
[1-2].log

Execution log of the
mngenvsetup
command

Log-output-directory-of-
Manager/maintenance

512KB × 2 N

mngsvr[n]#2.lo
g

Management Server
maintenance log

Log-output-directory-of-
Manager/maintenance

16MB × 2 N

cjmessage[n].l
og

Operation log Manager-log-output-
directory

1 MB ×2 N

cjexception[n]
.log

Exception information
for error

Manager-log-output-
directory/maintenance

1 MB ×2 N

cjmaintenance[
n].log

Maintenance information 16 MB ×4 N

cjconsole[n].l
og

Console message 1 MB ×2 N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 134

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

cjejbcontaine
r[n].log

EJB container
maintenance information

1 MB ×2 N

web_servlet[n]
.log

Web servlet log 4 MB ×4 N

user_out[n].lo
g

User output log 1 MB ×2 N

user_err[n].lo
g

User error log 1 MB ×2 N

cjlogger.log Log operation log 1 MB ×2 N

javalog[nn].lo
g

JavaVM maintenance
information and GC log

4 MB ×4 N

ehjavalog[nn].
log

Event log of the Explicit
Memory Management
functionality

4 MB ×4 N

cjwebcontaine
r[n].log

Web container
maintenance information

1 MB ×2 N

cjstdout.log Standard output
information for the
start process

Manager-log-output-
directory/
maintenance/CC/
maintenance

-- N

cjstderr.log Standard error
information for the
start process

-- N

cj_shutdown[n]
.log

End process information 4 KB ×4 N

cjrmi[n].log RMI communication
log of the J2EE
server for the RMI
processing executed by
the Management Server

Manager-log-
output-directory/
maintenance/CC/rmi

1 MB ×4 N

cjhttp_thr.time
-
information.inpro
cess_http.mm

Thread trace information Manager-log-output-
directory/maintenance/
http/
maintenance/thr

About 3.2 MB
×16

N

cjhttp_comm.tim
e-
information.inpro
cess_http.mm

Communication
trace information

Manager-log-
output-directory/
maintenance/http/
maintenance/comm

About 16.6 MB
×16

N

cjmemorywatch[
n].log

Resource depletion
monitoring log (Memory)

Manager-log-
output-directory/
maintenance/watch

1 MB ×2 N

cjfiledescript
orwatch[n].log

Resource depletion
monitoring log
(File descriptor)

1 MB ×2 N

cjthreadwatch[
n].log

Resource depletion
monitoring log (Thread)

1 MB ×2 N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 135

Category File name Contents Output
destination directory

Default size ×
number of files

Integrated
message log/
integrated trace
log

cjthreaddumpwa
tch[n].log

Resource depletion
monitoring log
(Thread dump)

1 MB ×2 N

cjrequestqueue
watch[n].log

Resource depletion
monitoring log (HTTP
request pending queue)

1 MB ×2 N

cjhttpsessionw
atch[n].log

Resource depletion
monitoring log (Number
of HTTP sessions)

1 MB ×2 N

Legend:
Y: Output to an integrated log
N: No output to an integrated log
[1-n]: Shows that a serial number in the range from 1 to n is used for the number of log files.
--: Not applicable

#1
The log is output in a format different than Hitachi Trace Common Library format. For details on the log in the Trace Common Library format,
see 5.2 Application Server Log.

#2
In the part of file name [n], the serial number from 1 to total number of specified log files is added.

#3
You can change the output destination of Management agent log trace. If the output destination of Management agent log and trace is changed,
see the mngagent.log.filename key value of the mngagent.properties file (Management agent property file).

#4
This log is output if a system built with the application server by integrating with JP1 is to be operated.

#5
This log is output when a Management event is used.

#6
This log is for the Management Server of the Application Server.

Important note

In the console log, the standard output and the standard error output of the server process started by the
Administration agent is output. The precautions related to console log are as follows.

• In Windows, the console log is not output for the following processes:
Logical performance tracer
Logical Web server
Logical CTM domain manager
Logical CTM
Logical user server started indirectly
For the startup types of the logical user server, see 8.2.19 Logical user server definition file in the
uCosminexus Application Server Definition Reference Guide.

• When multiple lines of information to be output to the console log are output at the same time, console log
displays the information by consolidating into a single line.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 136

• When the number of characters of the information to be output in console information exceeds 2039
characters, the information after the 2039th character is split and output to the following line.

(3) Acquiring the logs of the internal setup tool of the virtual server
manager and Server Communication Agent

This subsection describes the output destination for logs of the internal setup tool of the virtual server manager and Server
Communication Agent.

The following table describes the output destination for logs of the internal setup tool of the virtual server manager and
Server Communication Agent, and the presence or absence of output to the integrated message log or integrated trace log.

Table 4‒14: Output destination for logs of the internal setup tool of the virtual server manager and
Server Communication Agent

Category File name Contents Output destination directory Default size ×
number of
files

Integrated
message log/
Integrated
trace log

Internal
setup tool of
the virtual
server
manager

rasetup[n]#2.log Logs for the
internal setup tool
of the virtual
server manager

In Windows
Cosminexus-installation-
directory\manager\setup\
log

In UNIX
/opt/Cosminexus/
manager/setup/log

262144 bytes
× 4

N

rasetup[n#2.log Maintenance logs for
the internal setup
tool of the virtual
server manager

In Windows
Cosminexus-installation-
directory\manager\setup\
log\maintenance

In UNIX
/opt/Cosminexus/
manager/
setup/log/maintenance

16777216
bytes × 4

N

Server
Communica
tion Agent

sinaviagent[n]
#2.log

Server
Communication
Agent logs

Log-output-directory-of-Server-
Communication-Agent#1

524288 bytes
× 4

N

sinaviagentsv[n]
#2.log

Service logs of the
Server
Communication
Agent

65536 bytes ×
4

N

snactl[n] #2.log Start and stop
command logs of the
Server
Communication
Agent

65536 bytes ×
4

N

sinaviagent.err Standard error output
of the Server
Communication
Agent

65536 bytes ×
1

N

sinaviagent.out Standard output of
the Server

65536 bytes ×
1

N

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 137

Category File name Contents Output destination directory Default size ×
number of
files

Integrated
message log/
Integrated
trace log

Communication
Agent

processConsole[n]
#2.log

Console logs 65536 bytes ×
4

N

sinaviagent[n]
#2.log

Maintenance logs of
the Server
Communication
Agent

In Windows
Cosminexus-installation-
directory\sinagent\log\m
aintenance

In UNIX
/opt/Cosminexus/
sinagent/log/
maintenance

1048576 bytes
× 4

N

sinaviagentsv[n]
#2.log

Maintenance logs
for the Server
Communication
Agent services

65536 bytes ×
4

N

snactl[n] #2.log Maintenance logs for
the start and stop
commands of the
Server
Communication
Agent

65536 bytes ×
4

N

sinaviagent.java
log[n]. #2log

JavaVM log file of
the Server
Communication
Agent

256 KB × 4 N

Legend:
N: No output to an integrated log.
[n]: Shows that a serial number in the range from 1 to n is used for the number of log files.

#1
Log-output-directory-of-Server-Communication-Agent indicates the directory specified in sinaviagent.cfg (option definition file
for Server Communication Agent). The default values are Cosminexus-installation-directory\sinagent\log (in Windows), or /opt/
Cosminexus/sinagent/log (in UNIX).

#2
In the [n] part of the file name, a serial number is added sequentially from 1 up to the specified number of log files.

(4) Acquiring the integrated user management log
The integrated user management trace file is output according to the settings in the
com.cosminexus.admin.auth.trace.prefix option of the ua.conf file (integrated user management
configuration file). For details about the ua.conf file, see 14.2.2 ua.conf (integrated user management configuration
file) in the uCosminexus Application Server Security Management Guide.

(5) Collecting Cosminexus JMS Provider logs
This subsection describes the collection of Cosminexus JMS Provider logs. With Cosminexus JMS Provider, you can
collect CJMSP Broker logs, management command (cjmsicmd) logs, and CJMSP resource adapter logs. The following
table describes the default log output destinations.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 138

Table 4‒15: Output destination of Cosminexus JMS Provider logs (Default)

Log type Category Default output destination Default size
×Number of files

CJMSP Broker log Message log • In Windows
<CJMSP_HOME>#1

\var\instances\instanceName\log\cjmsbroke
r_msg[n].log

• In UNIX
<CJMSP_HOME>#

1/var/instances/
instanceName/log/cjmsbroker_msg[n].log

1 MB ×2

Error log • In Windows
<CJMSP_HOME>#1

\var\instances\instanceName\log\cjmsbroke
r_err[n].log

• In UNIX
<CJMSP_HOME>#1

/var/instances/
instanceName/log/cjmsbroker_err[n].log

1 MB ×2

Management command
(cjmsicmd) log#2

Message log • In Windows
<CJMSP_HOME>#1

\var\admin\log\cjmsadmin_msg[n].log
• In UNIX
<CJMSP_HOME>#1

/var/admin/log/cjmsadmin_msg[n].log

1 MB ×2

Error log • In Windows
<CJMSP_HOME>#1

\var\admin\log\cjmsadmin_err[n].log
• In UNIX
<CJMSP_HOME>#1

/var/admin/log/cjmsadmin_err[n].log

1 MB ×2

CJMSP resource adapter log Message log • In Windows
J2EE-server-log-output-directory-
(ejb.server.log.directory)#3

\cjms\Cosminexus_JMS_Provider_RA\cjmsr
a_msg[n].log

• In UNIX
J2EE-server-log-output-directory-
(ejb.server.log.directory)#3

/cjms/Cosminexus_JMS_Provider_RA/
cjmsra_msg[n].log

1 MB ×2

Error log • In Windows
J2EE-server-log-output-directory-
(ejb.server.log.directory)#3

\cjms\Cosminexus_JMS_Provider_RA\cjmsr
a_err[n].log

• In UNIX
J2EE-server-log-output-directory-
(ejb.server.log.directory)#3

1 MB ×2

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 139

Log type Category Default output destination Default size
×Number of files

/cjms/Cosminexus_JMS_Provider_RA/
cjmsra_err[n].log

Note
In [n], add the file number (number of files from 1 (maximum 16)).

#1
<CJMSP_HOME> indicates the following directory:
In Windows
Cosminexus-installation-directory\CC\cjmsp
In UNIX
/opt/Cosminexus/CC/cjmsp

#2
If the log output has reached the specified maximum file size, the log output destination switches to the next file. If the file count reaches the
specified number of files, the output destination switches to the first file by the wraparound method and the original information is overwritten.
Note that the file is initialized only during the creation and not during the wraparound. If the file size is extended, the file is initialized only for
the extended part. Initialization means writing null characters (0x20) in the area from EOF (End Of File) to the specified file size. The existing
data is not affected.

#3
J2EE-server-log-output-directory (ejb.server.log.directory) is the directory specified in the J2EE server option definition. By
default, the following directory is specified:
In Windows
Directory-specified-in-ejb.public.directory\ejb\J2EE-server-name\logs
In UNIX
Directory-specified-in-ejb.public.directory/ejb/J2EE-server-name/logs

(6) Required information to be acquired other than a log
This section describes the required information to be acquired other than a log.

When using the in-process transaction service
When using the in-process transaction service, it is necessary to acquire the status file of the in-process transaction
service. Note that you also acquire the spare status file when the status file is duplicated.
The status file is stored in the path specified in
the ejbserver.distributedtx.ots.status.directory1 parameter and the
ejbserver.distributedtx.ots.status.directory2 parameter (during duplication) in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy setup definition file.

4.3.2 Acquiring the Cosminexus Performance Tracer Log
This section describes the Cosminexus Performance Tracer log type and output destination of the log.

(1) Cosminexus Performance Tracer log type
In Cosminexus Performance Tracer, output the PRF daemon, PRF command log for each PRF identifier. Furthermore,
output the error analysis log (various maintenance information), used by the maintenance personnel for error analysis
when a problem occurs in the system, to the environment variable PRFSPOOL settings directory.

When you want to monitor the daily operations, monitor the event log and syslog.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 140

(2) Cosminexus Performance Tracer log output destination
The output destination of the Cosminexus Performance Tracer log is as follows:

Table 4‒16: Output destination of the Cosminexus Performance Tracer log

Contents Output destination directory#1

PRF daemon and PRF command log • In Windows
environment-variable-PRFSPOOL-settings-directory\log\PRF-
identifier\ctmlog[n]
and event log #2

• In UNIX
$PRFSPOOL/log/PRF-identifier/ctmlog[n]
and syslog #3

Module trace • In Windows
environment-variable-PRFSPOOL-settings-directory\utt\umt

• In UNIX
$PRFSPOOL/utt/umt

Structured exception occurrence log
(In Windows)

Environment-variable-PRFSPOOL-settings-directory\oslttrc

Maintenance information • In Windows
environment-variable-PRFSPOOL-settings-directory

• In UNIX
$PRFSPOOL/

#1
01 or 02 is displayed in [n].

#2
The messages required for operations are output. The log file output destination varies according to the Windows event log settings.

#3
The messages required for operations are output. For details on the syslog settings, see the OS documentation.

4.3.3 Acquiring the Cosminexus Component Transaction Monitor Log
This section describes the output destination of the Cosminexus Component Transaction Monitor log.

(1) Types of Component Transaction Monitor logs
With Component Transaction Monitor, the CTM daemon and the CTM command logs are output for each CTM identifier.
Also, different maintenance information is output to the environment variable CTMSPOOL settings directory for the
maintenance personnel to analyze the errors when a problem occurs in the system. Execute the ctmlogcat command
to check the output messages.

Monitor the event log and syslog when you want to monitor the daily operations.

(2) Output destination of the Component Transaction Monitor logs
The following table describes the output destination of the Component Transaction Monitor logs.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 141

Table 4‒17: Output destination of the Cosminexus Component Transaction Monitor log

Contents Output destination directory#1

CTM daemon and CTM command log • In Windows
environment-variable-CTMSPOOL-settings-directory\log\CTM-daemon-
identifier\ctmlog[n]
and event log #2

• In UNIX
$CTMSPOOL/log/CTM-daemon-identifier/ctmlog[n]
and syslog #3

CTM domain daemon log • In Windows
Environment-variable-CTMSPOOL-settings-directory\log\ctmdmlog[n]

• In UNIX
$CTMSPOOL/log/ctmdmlog[n]

Module trace • In Windows
Environment-variable-CTMSPOOL-settings-directory\utt\umt

• In UNIX
$CTMSPOOL/utt/umt

Structured exception occurrence log
(In Windows)

Environment-variable-PRFSPOOL-settings-directory\oslttrc

Maintenance information • In Windows
environment-variable-CTMSPOOL-settings-directory

• In UNIX
$CTMSPOOL

#1
01 or 02 is displayed in [n].

#2
The messages required for operations are output. The log file output destination varies according to the Windows event log settings.

#3
The messages required for operations are output. For details on the syslog settings, see the OS documentation.

4.3.4 Acquiring the log output in audit log
This subsection describes the log file that is output when the audit log functionality is used.

The following table describes the types and output destinations of the log output in audit logs.

Table 4‒18: Output destination of the logs output in the audit log (Default)

Category Contents Log output destination and log file name# Default size × number
of files

Message log Message log of
the audit log

• In Windows
Cosminexus-installation-
directory\auditlog\rasmessage[n].log

• In UNIX
/opt/Cosminexus/auditlog/rasmessage[n].log

1MB × 4

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 142

Category Contents Log output destination and log file name# Default size × number
of files

Exception log Exception
information of the
audit log

• In Windows
Cosminexus-installation-
directory\auditlog\rasexception[n].log

• In UNIX
/opt/Cosminexus/auditlog/
rasexception[n].log

1MB × 8

#
In the part of the log file name [n], the file number (number of files from 1 (maximum 64)) is added.

4.3.5 Acquiring the Application User Log
You can acquire the application log when the settings are set so that the application log is output in the Hitachi Trace
Common Library format. The user logs are in the following two types:

• User log output in the J2EE application (J2EE component) running on the J2EE server.

• User log output in the EJB client application.

For details on the log in the Trace Common Library format, see 5.2 Application Server Log.

(1) Acquiring the user logs of J2EE application
For the log output destination of a J2EE application, the log is output to a file, which has a name containing the prefix
specified in the ejbserver.application.userlog.CJLogHandler.handler-name.path parameter in the
configuration tag of the logical J2EE server (j2ee-server) in the simple setup definition file, in the directory below. Note
that the handler name is specified in the handler-name to identify the key values.

• In Windows
Log-output-destination-root-(-ejb.server.log.directory-value-)\user\ (default is J2EE-server-work-
directory\ejb\J2EE-server-name\logs\user)

• In UNIX
Log-output-destination-root-(-ejb.server.log.directory-value-)/user/ (default is J2EE-server-work-
directory/ejb/J2EE-server-name /logs/user)

For details on the settings to output user logs in J2EE applications, see 8.8 Setting the user log output of J2EE applications
in the uCosminexus Application Server Expansion Guide.

(2) Acquiring the EJB client application user log
For the user log output destination of an EJB client application, the log is output to the file with the name having the prefix
specified in the ejbserver.application.userlog.CJLogHandler.handler-name.path key value of the
EJB client application system property in the directory below. Note that the handler name is specified in the handler-name
to identify the key values.

• In Windows
Log-output-destination-root-(-ejb.server.log.directory-value-)\user\(default is J2EE-server-work-
directory\ejb\J2EE-server-name\logs\user)

• In UNIX

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 143

Log-output-destination-root-(-ejb.server.log.directory-value-)/user/ (default is J2EE-server-work-directory/ejb/
J2EE-server-name/logs/user)

For the method of setting the system properties to output user logs in EJB client applications, see 8.10 Setting the
user log output of EJB client applications (When using the cjclstartap command) or 8.11 Implementing and setting
the user log output of EJB client applications (When using the vbj command) in the uCosminexus Application Server
Expansion Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 144

4.4 Application Server log (Systems for executing batch applications)

This subsection describes how to acquire logs output by the component software of the Application Server manually in
a system for executing batch applications. Further, when the application server log is already collected as a snapshot log,
you need not perform the tasks explained here.

This section describes how to acquire the following logs:

• Cosminexus Component Container logs

• Application user logs

Additionally, when you acquire the logs output by the component software of the Application Server manually in a
system for executing the batch applications, you also acquire the following logs:

• Cosminexus Performance Tracer log

• Logs output in audit log

For details about how to acquire the above-mentioned logs, see 4.3 Application Server log (Systems for executing J2EE
applications). The respective reference details of these logs are as follows:

• Cosminexus Performance Tracer log
4.3.2 Acquiring the Cosminexus Performance Tracer Log

• Log output in audit log
4.3.4 Acquiring the log output in audit log

4.4.1 Acquiring the Cosminexus Component Container Logs (systems
executing batch applications)

This section describes the types and output destinations of Cosminexus Component Container logs. There are two types
of Cosminexus Component Container logs:

• Batch server, server management commands, batch application logs

• Administration agent, Management agent, Management Server logs

The output destination of each of the log is described below.

(1) Acquiring the batch server, server management commands, batch
application logs

This point describes how to acquire the batch server, server management commands, and batch application logs.

Furthermore, in Cosminexus Component Container, the migration command logs are output in addition to these logs.
When the resource depletion monitoring functionality is used, the resource depletion monitoring log is output.

• The four types of batch server logs are message log, user log, exception log, and maintenance log. Note that in
addition to these logs, event log or syslog are output in the case of starting, stopping, and abnormal termination of
a batch server.

• The three types of server management command logs are message log, exception log, and maintenance log.

• The one type of batch application log is message log.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 145

• In the resource adapter version up command (cjrarupdate) log, there are three types of logs, message log,
exception log, and maintenance log.

• The three types of migration command logs are message log, exception log, and maintenance log.

Each of these logs is described below:

Message log
The operation status of a batch server, server management command, and migration command is output. Message
log is used as the operation monitoring information for various types of servers and commands.

User log
The information of the standard output and the standard error output in the application is output in the
user log. Use this log to check the operation when developing the application. Note that if you specify the
java.security.debug property and start the server, the standard output and standard error output information
is not output to the user log. This log also includes the JavaVM memory related logs.

Exception log
The exception information of Cosminexus Component Container is output when a problem occurs in the system.
Note that you need not monitor the exception log in daily operations. Use this log to reference exception information
if a message is output to the log.

Maintenance log
The error maintenance information of Cosminexus Component Container is output when a problem occurs in the
system. Maintenance personnel use this log to analyze the errors that occur in Cosminexus Component Container.

Event log (in Windows)
The information indicating start, stop, or abnormal termination of a batch server is output to this log. The output
destination differs depending on the Windows event log settings.
Note that the event log is not output depending on how the batch server has been stopped. In the following cases,
there are times when the log is not output correctly:

• When a problem occurs in JavaVM itself when the batch server is running

• When the batch server process is stopped externally by TerminateProcess

• When the batch server terminates abnormally due to insufficient memory when the -
XX:+HitachiOutOfMemoryAbort option is specified to start the JavaVM.
Note that the -XX:+HitachiOutOfMemoryAbort option is set by default.

syslog (in UNIX)
The information indicating start, stop, or abnormal termination of a batch server is output to this log. The output
destination differs depending on the settings in the UNIX syslog.
Note that the event log is not output depending on how the batch server has been stopped. In the following cases,
there are times when the log is not output correctly:

• When a problem occurs in JavaVM itself when the batch server is running

• When the batch server process is stopped externally by the SIGKILL signal (such as kill -9)

• When the batch server terminates abnormally due to insufficient memory when the -
XX:+HitachiOutOfMemoryAbort option is specified to start the JavaVM.
Note that the -XX:+HitachiOutOfMemoryAbort option is set by default.

Resource depletion monitoring log
When using the resource depletion monitoring function, the resource depletion monitoring information about the
resources being monitored is output. Use it for investigating the cause if the resource usage or the used resource
quantity exceeds the threshold value.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 146

The log is recorded in an order starting from the log file attached with the smallest file number. When one log file size
attains the maximum size for one file, the log is recorded in the log file attached with the next file number. When the last
log file (log file attached with the file count number) size attains the maximum size for one file, the log file of file number
1 is made empty and the log is recorded in that file. Thereafter, the log is recorded in the log files in the order of the file
number by emptying those log files before recording a new log.

The following table describes the default of log output destination. The Cosminexus Component Container log can be
acquired according to the server or command.

The working-directory shown in the log output destination indicates a directory specified in the
ejb.public.directory parameter in the <configuration> tag of the logical J2EE server (j2ee-server)
in the Easy Setup definition file. The default value is Cosminexus-installation-directory\CC\server\public (in
Windows) or /opt/Cosminexus/CC/server/public (in UNIX).

(a) Batch server log
Table 4‒19: Output destination of the batch server log (Default)

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Message log Operation log • In Windows
ejb.server.log.directory#2\cj
message[n].log

• In UNIX
ejb.server.log.directory#2/
cjmessage[n].log

1MB × 2 MessageLogFile

Log operation log#3 • In Windows
<ejb.server.log.directory>#2\
cjlogger.log

• In UNIX
<ejb.server.log.directory>#2/
cjlogger.log

1 MB × 2 --

Operation log of resource
adapter that is deployed
and used in batch server#4

• In Windows
ejb.server.log.directory#2\co
nnectors\resource-adapter-
display-name[n].log

• In UNIX
ejb.server.log.directory#2/
connectors/resource-adapter-
display-name[n].log

1MB × 2 --

User log User output log • In Windows
ejb.server.log.directory#2\us
er_out[n].log

• In UNIX
ejb.server.log.directory#2/
user_out[n].log

1MB × 2 UserOutLogFile

User error log • In Windows
ejb.server.log.directory#2\us
er_err[n].log

• In UNIX
ejb.server.log.directory#2/
user_err[n].log

1MB × 2 UserErrLogFile

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 147

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

JavaVM maintenance
information and GC log

• In Windows
ejb.server.log.directory#2\ja
valog[nn].log

• In UNIX
ejb.server.log.directory#2/
javalog[nn].log

4MB × 4 --

Event log of the Explicit
Memory Management
functionality

• In Windows
ejb.server.log.directory#2\eh
javalog[nn].log

• In UNIX
ejb.server.log.directory#2/
ehjavalog[nn].log

4MB × 4 --

Exception log Exception information
when an error occurs

• In Windows
ejb.server.log.directory#2\cj
exception[n].log

• In UNIX
ejb.server.log.directory#2/
cjexception[n].log

1MB × 2 ExceptionLogFile

Maintenance log Maintenance information • In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjmaintenance[
n].log

• In UNIX
ejb.server.log.director#2/CC/
maintenance/
cjmaintenance[n].log

16MB × 4 MaintenanceLog
File

Console message • In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjconsole[n].l
og

• In UNIX
ejb.server.log.directory#2/CC/
maintenance/cjconsole[n].log

1MB × 2 ConsoleLogFile

EJB container
maintenance information

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjejbcontaine
r[n].log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/
cjejbcontainer[n].log

1MB × 2 EJBContainerLog
File

Start process standard
output information#5

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjstdout.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/cjstdout.log

-- --

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 148

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Start process standard
error information#5

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cjstderr.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/cjstderr.log

-- --

Termination
process information

• In Windows
<ejb.server.log.directory>#2\
CC\maintenance\cj_shutdown[n]
.log

• In UNIX
ejb.server.log.directory#2/CC
/maintenance/
cj_shutdown[n].log

4KB × 2#6 --

Event log Log showing batch
server start, stop or
abnormal termination

Application log of Windows event viewer#7 -- --

syslog Log showing batch
server start, stop or
abnormal termination

Depends on UNIX syslog settings. #8 -- --

Legend:
--: Not applicable

Note:
Channel name is the name that identifies the log output destination.

#1
In the [n] part of the log file name, add the file number (from 1 to the maximum number of files for each log).
Moreover, in the [nn] part, a serial number from 01 to 99 is added.

#2
<ejb.server.log.directory> indicates a directory specified in the ejb.server.log.directory parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. The default value is Cosminexus-
installation-directory\CC\server\public\ejb\server-name\logs.
For details about the ejb.server.log.directory parameter, see 3.2.1 usrconf.cfg (Option definition file for batch servers) in the
uCosminexus Application Server Definition Reference Guide.

#3
Check the file size when the file is output. If the maximum size is exceeded when the file size is checked, change the name of the
cjlogger.log file to the name of the backup file (cjlogger_save.log).

#4
Decision about acquiring the resource adapter log depends on the contents specified in server management commands. Moreover, you can use
the simple setup definition file to change the size and number of files for a resource adapter log. For details about settings for acquiring resource
adapter logs, see 3.3.11 Settings for Acquiring the Resource Adapter Logs.

#5
It is a log in which only the start process information is acquired. As it is output mainly while starting and terminating the batch
server, this log is almost not output online. When the file size reaches the upper limit, it is saved in cjstdout_save.log or
cjstderr_save.log under working-directory\ejb\server-name\logs (in Windows) or under working-directory/ejb/server-name/logs (in
UNIX). If cjstdout_save.log or cjstderr_save.log already exists, it is overwritten.

#6
The size and number of files cannot be changed.

#7
The output destination of the log file differs depending on the Windows event log settings.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 149

#8
To output messages related to batch server start, stop, and abnormal termination, to syslog, it is necessary to set the priority for the facility
daemon to info or debug in the syslog settings. For details about the syslog settings, see the manual provided with the OS.

(b) Server management command log
Table 4‒20: Output destination of server management command logs (Default)

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

Message log Operation log#2, #3 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjmessag
e[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/cjmessage[n].log

1024KB × 3 MessageLogFile

Log operation log#2 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjlogger
.log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/ cjlogger.log

1024KB × 2 --

Exception log Exception information
when an error occurs#2, #3

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\cjexcept
ion[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/cjexception[n].log

1024KB × 6 ExceptionLogFile

Maintenance log Maintenance
information#2

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjmaintenance[n].log

• In UNIX
/opt/Cosminexus/CC/admin/
logs/CC/maintenance/
cjmaintenance[n].log

1024KB × 3 MaintenanceLog
File

Console message#2 • In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjconsole[n].log

• In UNIX
/opt/Cosminexus/CC/
admin/logs/CC/
maintenance/cjconsole[n].log

32KB × 3 ConsoleLogFile

Maintenance information
of the server
management command#2

• In Windows
Cosminexus-installation-
directory\CC\admin\logs\CC\maint
enance\cjserveradmin[n].log

• In UNIX

32KB × 3 ServerAdminLog
File

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 150

Category Contents Log output destination and log file name#1 Default size ×
number of files

Channel name

/opt/Cosminexus/CC/admin/
logs/CC/maintenance/
cjserveradmin[n].log

Legend:
--: Not applicable

Note:
Channel name is the name that identifies the log output destination of the log. Use it as a key value when changing log attributes (size, number
of files).

#1
In the [n] part of the log file name, add the file number (from 1 to the maximum number of files for each log).

#2
The command name is displayed in the output message (application identification name) of the Hitachi Trace Common Library format. For
details on the log in the Trace Common Library format, see 5.2 Application Server Log.

#3
For the compatibility mode, the output destination of the operation log and the exception information when an error occurs will differ from the
standard mode. For the compatibility mode, the output destination, default size, and the number of files are as follows:

Table 4‒21: Output destination of server management command log (Compatibility mode)

Contents Log output destination and log file name# Default size × number
of files

Operation log • In Windows
Cosminexus-installation-directory\CC\admin\logs\command-
namemessage[n].log

• In UNIX
/opt/Cosminexus/CC/admin/logs/command-
name/message[n].log

128KB × 2

Exception information when an
error occurs

• In Windows
Cosminexus-installation-directory\CC\admin\logs\command-
nameexception[n].log

• In UNIX
/opt/Cosminexus/CC/admin/logs/command-
name/exception[n].log

256KB × 2

#
In the part of the log file name [n], the file number (number of files from 1 (maximum 16)) is added.

In the messages output to the message log of the server management commands, there are the cases when the message
ID field is blank and message ID (such as KDJEnnnnn-Y) is included in the message text field. This is an additional
information of the messages output before or after the message is output at the server side.

(c) Batch application log
Table 4‒22: Output destination of the Batch application log (Default)

Category Contents Log output destination and log file name#1 Default size × number
of files

Message log Operation log of
the cjexecjob
command, the
cjkilljob
command, and the

• In Windows
<batch.log.directory>#2\cjmessage[n].log

• In UNIX
batch.log.directory#2/cjmessage[n].log

1MB × 2

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 151

Category Contents Log output destination and log file name#1 Default size × number
of files

cjlistjob
command

#1
In the part of the log file name [n], the file number (number of files from 1 (maximum 16)) is added.

#2
The <batch.log.directory> indicates a directory specified in the batch.log.directory of option definition file
(usrconf.cfg file) for batch applications. The default values are as follows:
In Windows
Cosminexus-installation-directory\CC\batch\logs
In UNIX
/opt/Cosminexus/CC/admin/logs

(d) Resource adapter version-up command (cjrarupdate) log
Table 4‒23: Output destination of the resource adapter version-up command (cjrarupdate) log

Category Contents Log output destination and log file name# Default size × number
of files

Message log Operation log • In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdatemessage[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdatemessage[n].log

1MB × 2

Exception log Exception
information when
an error occurs

• In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdateexception[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdateexception[n].log

1MB × 2

Maintenance log Maintenance
information

• In Windows
Cosminexus-installation-
directory\CC\logs\cjrarupdatemaintenance[n].lo
g

• In UNIX
/opt/Cosminexus/CC/
logs/cjrarupdatemaintenance[n].log

1MB × 2

#
In the part of the log file name [n], the file number (number of files from 1 (maximum 16)) is added.

(e) Migration command (cjenvupdate) log
Table 4‒24: Output destination of the migration command (cjenvupdate) log

Category Contents Log output destination and log file name# Default size × number
of files

Message log Operation log of
the cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdatemessage[n].log

• In UNIX

4MB × 4

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 152

Category Contents Log output destination and log file name# Default size × number
of files

/opt/Cosminexus/CC/
logs/cjenvupdatemessage[n].log

Exception log Exception
information of the
cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdateexception[n].log

• In UNIX
/opt/Cosminexus/CC/
logs/cjenvupdateexception[n].log

4MB × 4

Maintenance log Maintenance
information of the
cjenvupdate
command

• In Windows
Cosminexus-installation-
directory\CC\logs\cjenvupdatemaintenance[n].lo
g

• In UNIX
/opt/Cosminexus/CC/
logs/cjenvupdatemaintenance[n].log

4MB × 4

#
In [n], the file number (number of files from 1 (maximum 16)) is attached.

(f) Resource depletion monitoring log
Table 4‒25: Output destination of resource depletion monitoring log

Monitored
Resources

Log acquisition location and log file name#1 Default size ×
number of files

Channel name

Memory • In Windows
<ejb.server.log.directory>#2\watch\cjme
morywatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjmemorywatch[n].log

1MB × 2 MemoryWatchLogFile

File descriptors • In UNIX#3

ejb.server.log.directory#2/
watch/cjfiledescriptorwatch[n].log

1MB × 2 FileDescriptorWatchLo
gFile

Threads • In Windows
<ejb.server.log.directory>#2\watch\cjth
readwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjthreadwatch[n].log

1MB × 2 ThreadWatchLogFile

Thread dump • In Windows
<ejb.server.log.directory>#2\watch\cjth
readdumpwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjthreaddumpwatch[n].log

1MB × 2 ThreaddumpWatchLogFil
e

HTTP requests
pending queue

• In Windows
<ejb.server.log.directory>#2\watch\cjre
questqueuewatch[n].log

1MB × 2 RequestQueueWatchLogF
ile

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 153

Monitored
Resources

Log acquisition location and log file name#1 Default size ×
number of files

Channel name

• In UNIX
ejb.server.log.directory#2/
watch/cjrequestqueuewatch[n].log

HTTP session
numbers

• In Windows
<ejb.server.log.directory>#2\watch\cjht
tpsessionwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjhttpsessionwatch[n].log

1MB × 2 HttpSessionWatchLogFi
le

Connection pool • In Windows
<ejb.server.log.directory>#2\watch\cjco
nnectionpoolwatch[n].log

• In UNIX
ejb.server.log.directory#2/
watch/cjconnectionpoolwatch[n].log

1MB × 2 ConnectionPoolWatchLo
gFile

Note:
Channel name is the name to identify the output destination of the log. Use it as a key value when changing log attributes (size, number of files).

#1
In [n], the file number (number of files from 1 (maximum 16)) is attached.

#2
<ejb.server.log.directory> indicates a directory specified in the ejb.server.log.directory parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. The default value is Cosminexus-
installation-directory\CC\server\public\ejb\server-name\logs.
For details about the ejb.server.log.directory parameter, see 3.2.1 usrconf.cfg (Option definition file for batch servers) in the
uCosminexus Application Server Definition Reference Guide.

#3
The file descriptor cannot be monitored in Windows and AIX.

For details about the information output to the resource depletion monitoring log file and the output format of the log
file, see 4.3 Resource depletion monitoring functionality and output of resource depletion monitoring information in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

(g) User definition file to set output destination of the log
When the batch server and server management command log output destination is changed, reference the user definition
file in which the log output destination is set, described in the following table and confirm the output destination. Note
that if the output destination of a log is changed, that log is not collected when the snapshot log is collected in a batch.
Change the collection destination of the snapshot log as and when required.

Table 4‒26: User definition file in which the output destination of log is set

Category Location specified for user definition file

Batch server The ejb.server.log.directory parameter specified in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file
The default is Cosminexus-installation-directory\CC\server\public\ejb\server name\logs (in
Windows) or /opt/Cosminexus/CC/server/public/ejb/server-name/logs (in UNIX).

Server management commands ejbserver.log.directory key of the server management command usrconf.bat (in Windows) or
usrconf (in UNIX)

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 154

Category Location specified for user definition file

The default key is Cosminexus-installation-directory\CC\admin\logs (in Windows) or /opt/
Cosminexus/CC/admin/logs (in UNIX).
You cannot change the output destination of the server management command logs when operating from
the Management Server Remote Management functionality.

For details about settings of the data acquisition for troubleshooting, such as how to change the output destination of log,
see 3. Preparing for Troubleshooting.

(2) Acquiring the log of Administration agent, Management agent, and
Management Server

This point describes the output destination of Administration Agent, Management Agent, and the Management
Server log.

For the Administration Agent, Management Agent, and the Management Server logs, besides acquiring separately, you
can also acquire these logs by compiling as a integrated log.

For details about the output destination when acquiring the Administration Agent, Management Agent, and the
Management Server log by compiling as an integrated log or separately, see 4.3.1(2) Acquiring the log of Administration
agent, Management agent, and Management Server.

(3) Required information to be acquired other than a log
For details about the required information to be acquired other than a log, see 4.3.1(6) Required information to be
acquired other than a log.

4.4.2 Acquiring the Application User Log (systems executing batch
applications)

You can acquire the user log of the batch application when the settings are set so that the user log is output in the
Hitachi Trace Common Library format. For details on the log in the Trace Common Library format, see 5.2 Application
Server Log.

For the output destination of a batch application user log, the log is output to a file that has a name containing the
prefix specified in the ejbserver.application.userlog.CJLogHandler.handler-name.path parameter
within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file, in the
following directory. Note that the handler name is specified in the handler-name to identify the key values.

• In Windows
Log-output-destination-root-(-ejb.server.log.directory-)\user\ (default is batch-server-work-
directory\ejb\batch-server-name\logs\user)

• In UNIX
log-output-destination-root-(-ejb.server.log.directory-value-)/user/(default is batch-server-work-
directory/ejb/batch-server-name/logs/user)

For details about settings to output batch application user logs, see 2.3.5 Log output of a batch application in the
uCosminexus Application Server Expansion Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 155

4.5 EJB Client Application System Log

This section describes the system log types and output destination of the EJB client application.

Note that for the precautions to be taken when working with the EJB client application system log, see 2.6.1 Precautions
Related to the System Log of an EJB Client Application.

Important note

When using the uCosminexus Client, read the Cosminexus-installation-directory\CC of the EJB client
application log save directory as Cosminexus-installation-directory\CCL.

4.5.1 Types of EJB Client Application System Logs
In an EJB client application, output the system log for every EJB client application process. The system log types of an
EJB client application are as follows:

Table 4‒27: Types of EJB client application system logs

Types Log contents File name Default size ×
number of files

Channel name

Message
log

Operation log cjclmessage[n].log#1 1MB × 2 ClientMessageLogFile

cjclstartap command
operation log

cjclstartap[n].log#2 1MB × 2 --

cjcldellog command
operation log

cjcldellog.log 1MB × 2#3 --

User log User output log user_out[n].log#1 1MB × 2 UserOutLogFile

User error log user_err[n].log#1 1MB × 2 UserErrLogFile

Java log JavaVM maintenance
information, GC log

javalog[n].log#1 256KB × 4 --

Exception
log

Exception information
when an error occurs

cjclexception[n].log#1 1MB × 2 ClientExceptionLogFile

Maintenan
ce log#4

Maintenance information cjclmaintenance[n].log#

1
1MB × 2 ClientMaintenanceLogFile

EJB container
maintenance information

cjejbcontainer[n].log#1 1MB × 2 EJBContainerLogFile

Start process standard
output information

cjstdout[n].log#2 1MB × 2 --

Start process standard
error information

cjstderr[n].log#2 1MB × 2 --

Log
operation information

cjlogger.log 1MB × 2#3 --

Legend:
--: Not applicable

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 156

#1
In the part of file name [n], the serial number from 1 to total number of specified log files is added.

#2
In the part of file name [n], number (1 or 2) of the number of specified log files is attached.

#3
When the size of cjcldellog.log exceeds 1 MB, it is renamed to backup log file called cjcldellog_save.log.

#4
Collect this log if it needs to be sent to maintenance personnel.

4.5.2 Output Destination of the EJB Client Application System Log
The EJB client application system log is output to the directory specified in the following keys:

• Directory specified in the ejb.client.log.directory key and ejb.client.ejb.log key of option
definition file (usrconf.cfg) for Java applications

• Directory specified in the ejbserver.client.log.directory key and
ejbserver.client.ejb.log key in system properties

When different values are specified in both, the Java application option definition file (usrconf.cfg) and system
properties, system property settings are valid.

Note that in system properties, you can set the output destination for the following logs only:

• Operation log (cjclmessage[n].log)

• Exception information when an error occurs (cjclexception[n].log)

• Maintenance information (cjclmaintenance[n].log)

• Log operation information (cjlogger.log)

The cjcldellog command operation log (cjcldellog.log) and cjclstartap command operation log (cjclstartap[n].log)
are output directly under Cosminexus-installation-directory\CC\client\logs (in Windows) or /opt/
Cosminexus/CC/client/logs (in UNIX).

Important note

• The standard output and the standard error contents of an EJB client application are not output to the log file.
To output them to the log file, either uses the user log function or redirect.

Logs for multiple processes are output under a single directory (the default is the ejbcl directory). Note that, if you want
to have a separate log output destination for each process (each application), specify the respective output destinations
in the ejb.client.log.directory key of usrconf.cfg.

The following figure shows the output destination of the EJB client application system log.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 157

Figure 4‒1: Output destination of the EJB client application system log (When specified in the option
definition file for Java applications)

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 158

Figure 4‒2: Output destination of the EJB client application system log (When specified in system
property)

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 159

4.6 Trace based performance analysis

The location for storing the trace based performance analysis is as follows:

• In Windows
Environment-variable-PRFSPOOL-settings-directory\utt\prf\PRF-identifier

• In UNIX
$PRFSPOOL/utt/prf/PRF-identifier

For details about how to collect the trace based performance analysis, see 7. Performance Analysis by Using Trace Based
Performance Analysis. The session trace may also be output to the trace based performance analysis.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 160

4.7 JavaVM thread dump

This section describes the method of acquiring the JavaVM thread dump.

You can use the following method to acquire the JavaVM thread dump:

• Acquire a thread dump of J2EE server, CORBA naming service, and CTM using the management
command (mngsvrutil).

• Acquire a thread dump of J2EE server, CORBA naming service, and EJB client application using
separate commands.

• Acquire the class-wise statistical information or Explicit heap detail information in an extended thread dump using
the JavaVM commands.

Important note

Obtain the thread dump after the output of the previous thread dump ends.

Each method is described below:

4.7.1 When using the management command
To acquire a thread dump of JavaVM using the management command (mngsvrutil), specify server in the argument
of the sub command dump of the command mngsvrutil and execute the command.

The following thread dump can be acquired:

• J2EE server (including cluster)
• CORBA naming service and CTM

For the mngsvrutil command, see mngsvrutil (Management Server management command) in the uCosminexus
Application Server Command Reference Guide. For the sub commands of the mngsvrutil command, see 7.3 Details
of subcommands of the mngsvrutil command in the uCosminexus Application Server Command Reference Guide.

The execution format, an execution example, and output destination for mngsvrutil command are as follows:

Execution format

mngsvrutil -m Management-Server-host-name[:port-number]-u management-user
-ID -p management-password -t logical-server-name dump server

Execution example

mngsvrutil -m mnghost -u user01 -p pw1 -t myserver dump server

Output destination
When the target is a J2EE server

• In Windows
working-directory#\ejb\server-name\javacore*.txt

• In UNIX

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 161

working-directory#/ejb/server-name/javacore*.txt
The working-directory indicates a directory specified in the user definition of a J2EE server
(ejb.public.directory in the usrconf.cfg file). The default values are as follows:

• In Windows
Cosminexus-installation-directory\CC\server\public

• In UNIX
/opt/Cosminexus/CC/server/public

When the target is a CORBA naming service and CMT
• In Windows

Cosminexus-installation-directory\TPB\logj\javacore*.txt
• In UNIX
/opt/Cosminexus/TPB/logj/javacore*.txt

4.7.2 When using separate commands
The method to output a thread dump differs depending on the JavaVM start option in which the specified J2EE server
is running.

• When -XX:+HitachiThreadDump is set, you can acquire the extended thread dump. This option is set
by default.

• If -XX:+HitachiThreadDumpToStdout is set, a thread dump is also output to the standard output. This option
is not set by default. Set this option if required.

• When the following startup options are set, if -XX:+HitachiOutOfMemoryAbortThreadDump is set, a
thread dump is output when forced termination is performed using OutOfMemoryError

• -XX:+HitachiOutOfMemoryAbort
• -XX:+HitachiThreadDump

Except in the following cases:

• When C heap is insufficient in the J2SE class library

• When C heap is insufficient in JavaVM processing

• When the following startup options are set, if -
XX:+HitachiOutOfMemoryAbortThreadDumpWithJHeapProf is set, a class wise statistical
information is output in the thread dump when forced termination is performed using OutOfMemoryError. For details
about the class-wise statistical information, see 9.3 Class-wise statistical functionality. The class-wise statistical
information, which is output while setting this above-mentioned option, is same as the information acquired when
executing the jheapprof command.

• -XX:+HitachiOutOfMemoryAbort
• -XX:+HitachiOutOfMemoryAbortThreadDump
• -XX:+HitachiThreadDump

(1) Acquiring J2EE server thread dump
If the J2EE server process (cjstartsv) exists, the J2EE server thread dump is acquired by executing the cjdumpsv
command. An example of executing the cjdumpsv command is described below. As the transition status of each thread

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 162

is to be confirmed over a period of time, execute the cjdumpsv command multiple times. Execute about 10 times every
3 seconds.

• In Windows

Cosminexus-installation-directory\CC\server\bin\cjdumpsv J2EE-server-name

• In UNIX

/opt/Cosminexus/CC/server/bin/cjdumpsv J2EE-server-name

When you execute the cjdumpsv command, the JavaVM thread dump is output to the following files:

• Server standard output log

• working-directory\ejb\server-name\javacoreprocess-number.command-execution-date-and-time.txt
(in Windows)

• working-directory/ejb/server-name/javacoreprocess-number.command-execution-date-and-time.txt
(in UNIX)

The default output destination of the server standard output log
is ejb.server.log.directory\CC\maintenance\cjstdout.log (in Windows) or
ejb.server.log.directory/CC/maintenance/cjstdout.log (in UNIX). For details about changing
the output destination, see 4.3 Application Server log (Systems for executing J2EE applications) or see 4.4 Application
Server log (Systems for executing batch applications). Note that the default directory path of the working directory
is Cosminexus-installation-directory\CC\server\public (in Windows) or /opt/Cosminexus/CC/server/
public (in UNIX).

Furthermore, the output destination of the javacore process-number.command-execution-date-and-time.txt file can
be changed with the environmental variable JAVACOREDIR. However, when writing to a specified directory fails,
javacore process-number.command-execution-date-and-time.txt file is output to the default output destination.
When it is not possible to output even to this directory, it is output only to the standard error output.

For details about the cjdumpsv command, see cjdumpsv (get thread dump of J2EE server) in the uCosminexus
Application Server Command Reference Guide.

Reference note

When a thread dump is output, the following message is output to the standard output and
the execution of the java program is continued. This message is output irrespective of the -
XX:+HitachiThreadDumpToStdout settings.

Writing Java core to full-file-path-name...OK

(2) Acquiring the CORBA naming service thread dump
In Windows, when the CORBA naming service process (nameserv) exists, press the Ctrl+Break key on the command
prompt from where the CORBA naming service is started. As the transition status of each thread is to be confirmed over
a period of time, execute it multiple times. Execute about 10 times every 3 seconds. Note that you cannot acquire a thread
dump if the CORBA naming service is monitored from the Management Server.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 163

In UNIX, if the CORBA naming service process (java) exists, execute the kill command, and acquire a thread dump
of the CORBA naming service. Note that you cannot acquire a thread dump if the CORBA naming service is monitored
from the Management Server.

To acquire a thread dump of the CORBA naming service in UNIX:

1. Acquire the process ID of the CORBA naming service.
The method of acquiring the process ID of the CORBA naming service differs depending on the following cases:

When no other java process is started

ps -ef | grep java

When multiple java processes are started
If the shell script for starting the CORBA naming service is used, you can output the process ID of the CORBA
naming service in the namesv_pid file generated in the current working directory.
An example of the shell script for starting the CORBA naming service is as follows:

#!/bin/sh
export VBROKER_ADM=/opt/Cosminexus/TPB/adm
export SHLIB_PATH="${SHLIB_PATH}:/opt/Cosminexus/TPB/lib"

start name server process
exec /opt/Cosminexus/TPB/bin/nameserv \
-J-Dvbroker.agent.enableLocator=false \
-J-Djava.security.policy==/opt/Cosminexus/CC/server/sysconf/cli.polic
y \
-J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=900 &

save background java process pid
echo $! > ./namesv_pid

2. Specify the acquired process ID, and execute the kill command.

kill -3 `cat namesv_pid`

(3) Acquiring a thread dump of EJB client applications
Acquire a thread dump of EJB client applications by executing the cjcldumpap command.

When the cjcldumpap command is executed, a thread dump of the EJB client application started by executing the
cjclstartap command is output. Moreover, it is also possible to output a thread dump for a specific process. For
details about the cjcldumpap command, see cjcldumpap (get thread dump of Java application) in the uCosminexus
Application Server Command Reference Guide.

The execution format, execution example, and thread dump output destination of the cjcldumpap command are
as follows:

Execution format
To output a thread dump of an EJB client application started with the cjclstartap command

cjcldumpap

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 164

To output a thread dump for a specific process

cjcldumpap process-ID

Execution example
To output a thread dump of an EJB client application started with the cjclstartap command

cjcldumpap

To output a thread dump for a specific process

cjcldumpap 3264

Output destination
Current directory from where the cjclstartap command is executed

4.7.3 When using JavaVM commands
When using the JavaVM commands, you can acquire the class-wise statistical information or Explicit heap detail
information with the extended thread dump.

(1) Acquiring an extended thread dump of class-wise statistical
information

Execute the jheapprof command to acquire an extended thread dump of the class-wise statistical information. The
class-wise statistical information is output using the class-wise statistic functionality, and this information is used for
changing Java objects and checking the Java object reference depending on the GC. For details about the class-wise
statistical functionality, see the section 9.3 Class-wise statistical functionality and for details about how to output
the class-wise statistical information, see the subsection 9.3.3 Outputting Statistic Information for Each Class. For
the jheapprof command, see jheapprof(Output of extended thread dump containing Hitachi class-wise statistical
information) in the uCosminexus Application Server Command Reference Guide.

(2) Acquiring an extended thread dump of Explicit heap detail information
Among the Explicit heap detail information, if the Explicit Memory Management functionality is valid, acquire the
following information in the extended thread dump:

• Explicit heap information

• Explicit memory block information

Acquire the object statistical information of the Explicit heap detail information and the release rate information of the
Explicit memory block with the extended thread dump by executing the eheapprof command. The object statistical
information is the detailed information in Explicit memory blocks. The release rate information is the ratio of objects
released in the automatic release processing of the Explicit memory block. This information is used for debugging and
for error analysis of the system that uses the Explicit Memory Management functionality.

For details about the Explicit Memory Management functionality, see 7. Suppression of Full GC by Using the Explicit
Memory Management Functionality in the uCosminexus Application Server Expansion Guide. For details about
the eheapprof command, see eheapprof (Output of extended thread dump containing the Explicit heap detailed
information) in the uCosminexus Application Server Command Reference Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 165

Execution format
In Windows

eheapprof [-f|-i] [-freeratio] -p process-ID

In UNIX

eheapprof [-f|-i] [-freeratio] [-force] -p process-ID

Execution example
Here, the class-wise statistical information of Java process with process ID 2463 is output.

1. In the -p option, specify the process ID of Java process to output class-wise statistical information and then execute
the eheapprof command.

% eheapprof -p 2463

When the -f option is omitted using the eheapprof command, the following confirmation message is displayed:

In Windows
The confirmation message whether to output an extended thread dump with Hitachi class-wise statistical
information is displayed in the following format:

Force VM to output ExplicitHeapProf: ? (y/n)

In UNIX
Confirmation message of process ID is displayed in the following format:

send SIGQUIT to 2463: ? (y/n)

2. Enter y
If the extended thread dump with Hitachi class-wise statistics is output, the following message is output in the running
java program:

Writing Java core to javacore2463.030806215140.txt... OK

The running java program creates an extended thread dump with Hitachi class-wise statistics
(javacore<process ID>.<date-time>.txt) in the current directory to continue the program.

4.7.4 Precautions to be taken when class-wise statistical information is
output in the thread dump

If -XX:+HitachiOutOfMemoryAbortThreadDumpWithJHeapProf is set up in the JavaVM startup
option, a class-wise statistical information is output in the thread dump when forced termination is performed
using OutOfMemoryError.

When you use a large amount of heap (Java heap, Explicit heap, or Metaspace area), it takes time to output the class-wise
statistical information in the thread dump. Therefore, when OutOfMemoryError occurs, a JavaVM might not be able to
be recovered at once if terminated forcibly.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 166

Important note

If the following startup options of JavaVM are not set, the class-wise statistical information is not output in the
thread dump:

• -XX:+HitachiOutOfMemoryAbort
• -XX:+HitachiOutOfMemoryAbortThreadDump
• -XX:+HitachiThreadDump

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 167

4.8 JavaVM GC Log

The JavaVM GC log can be acquired only when the log output destination is set before starting JavaVM or the
J2EE server.

The output destination of the GC log is specified in the ejb.server.log.directory parameter in the
<configuration> tag of logical J2EE server (j2ee-server), in the Easy Setup definition file.

Also, when you want to perform a Full GC for the running Java processes, execute the javagc command. The
javagc command can also be used for measuring the memory used for one transaction, investigating memory leak, and
application debugging other than for investigating the cause when a problem occurs.

The execution format of the javagc command when performing a Full GC by specifying a running Java process is
as follows. Note that for other options that can be specified, see javagc (forcibly perform GC) in the uCosminexus
Application Server Command Reference Guide.

Execution format

javagc -p process-ID

The following log is output as the execution result. Note that in this example, -
XX:+HitachiVerboseGCPrintCause has been specified as the option.

[VGC]<Wed Mar 17 00:42:30 2004>(Skip Full:0,Copy:0)[Full GC 149K->149K(19
84K),0.0786038
secs] [DefNew::Eden:264K->0K(512K)] [DefNew::Survivor:0K->63K(64K)] [Te
nured:
85K->149K(1408K)] [Metaspace: 3634K(4492K, 4492K)->3634K(4492K, 4492K)][cl
ass space: 356K(388K, 388K)->356K(388K, 388K)] [cause:JavaGC Command]

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 168

4.9 Memory Dump

When restarting a J2EE server or CORBA naming service, acquire the following files as memory dump:

• User dump (in Windows)

• J2EE server memory dump

• CORBA naming service memory dump

• Management Server memory dump

• Administration Agent memory dump

These files are used by maintenance personnel for analyzing errors if a problem occurs in the system.

4.9.1 Acquiring a User Dump (In Windows)
This subsection describes the collection of user dumps.

Use the task manager or a Windows debug tool to obtain the user dump. For details, see the Microsoft website.

Alternatively, use the -fd option of the cjstopsv command to obtain the following files:

User-dump-output-destination-directory\cjmemdump.dmp

Specify the user-dump-output-destination-directory in the environment variable CJMEMDUMP_PATH.

4.9.2 Acquiring J2EE Server Memory Dump
This section describes how to acquire a J2EE server memory dump for each OS.

(1) In Windows
If the J2EE server is running (if the cjstartsv process exists), collect the memory dump from the task manager#.

If the J2EE server is running and you want to forcibly stop it and acquire the memory dump, execute the cjstopsv
command with the -fd option specified.

If the J2EE server is down, collect the memory dump from the Windows debug tool#.

#
For details, see the Microsoft website.

To acquire the memory dump when the J2EE server is down, you need to specify settings in advance. For details on how
to specify the settings, see 3.3.15 Settings for Collecting a User Dump.

(2) In UNIX
When the cjstartsv process is down, acquire a core dump output in the working-directory/ejb/server-name.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 169

When restarting the cjstartsv process, the names of the core dump files are renamed in core.output-date-time#

(in AIX) or core.process-ID.output-date-and-time# (in Linux). The core dumps are not saved by overwriting when
re-starting the cjstartsv process, therefore, you can save the core dumps generated when errors occur.

#
The output date and time is output in the YYMMDDhhmmss format.
YY: Western calendar year (Last 2 digits) MM: Month (2 digits) DD: Day (2 digits)
hh: Hour (2 digits in 24 hour notation) mm: Minute (2 digits) ss: Seconds (2 digits)

Note that you can set the upper limit value for the core dumps to be saved. In Windows, when restarting the cjstartsv
process and executing the javacore command, starting from the oldest, the core dump is deleted in the order of output
date and time. In UNIX, when the total size of the core dump files output to the working-directory/ejb/server-name
exceeds the upper limit value, the core dump files are deleted in the order of output date and time starting from the oldest.
The upper limit value is specified in ejb.server.corefilenum of the J2EE server extension parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. Note that the files
are deleted during restart of the cjstartsv process. For details about setting the upper limit value for number of core
files, see 3.3.16 Settings for Acquiring a Core Dump.

After acquiring a core dump, execute the javatrace command to acquire only the stack trace information from
the core dump. The stack trace information is the information required for investigating the cause of abnormal
termination of JavaVM. For details about how to acquire the stack trace information, see the section 4.18 JavaVM stack
trace information.

You can acquire a core dump in the following cases. How to acquire a core dump for each case is described below:

• Acquiring a core dump when the cjstartsv process is running
Acquiring a core dump when the cjstartsv process (J2EE server) is running, confirm the process ID of the
cjstartsv process and execute the kill command. Execute the kill command in the following format. Note
that the process terminates when the kill command is executed. Hitachi, therefore, recommends that you execute
the kill command before restarting.

kill -6 cjstartsv-process-ID

• Acquiring a core dump and thread dump concurrently in a running Java process
Execute the javacore command to acquire a core dump and thread dump concurrently in the running Java process.
The execution format of the javacore command is described below. Note that for the options that can be specified,
see javacore (Acquiring the core file and thread dump/in UNIX) in the uCosminexus Application Server Command
Reference Guide.

javacore process-ID

The following message is output if you execute the command in the above-mentioned format.

send SIGQUIT to 8662: ? (y/n)

If you enter y, javacore process-ID.output-date-and-time.core (core dump) and javacore process-
ID.output-date-and-time.txt (thread dump) is output to the current directory from where the Java program is being
executed. If you enter n, the command is terminated without acquiring the core dump and thread dump.
When acquiring a core dump and thread dump, the following message is output by the Java program being executed.
Note that the information in Italics is not actually displayed.

Now generating core file (javacore8662.030806215140.core)...
done

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 170

(output of core dump and thread dump terminated)

Writing Java core to javacore8662.030806215140.txt... OK

4.9.3 Acquiring the CORBA Naming Service Memory Dump
How to acquire the CORBA naming service memory dump for each OS is described below.

(1) In Windows
If the CORBA naming service is running (if the CORBA naming service process exists), collect the memory dump from
the task manager#.

If the CORBA naming service is down, collect the memory dump from the Windows debug tool#.

#
For details, see the Microsoft website.

To acquire the memory dump when the CORBA naming service is down, you need to specify settings in advance. For
details on how to specify the settings, see 3.3.15 Settings for Collecting a User Dump.

(2) In UNIX
When the CORBA naming service is running (when the CORBA naming service process exists), confirm the process
ID of the CORBA naming service and execute the kill command. Execute the kill command in the following format.
Note that the process terminates when the kill command is executed. Hitachi, therefore, recommends that you execute
the kill command before restarting.

ps -ef | grep java
kill -6 CORBA-naming-service-process-ID

4.9.4 Acquiring the Management Server Memory Dump
This section describes how to acquire the Management Server memory dump for each OS.

(1) In Windows
If Management Server is running (if the cjstartsv.exe process exists), collect the memory dump from the
task manager#.

If Management Server is down, collect the memory dump from the Windows debug tool#.

#
For details, see the Microsoft website.

To acquire the memory dump when Management Server is down, you need to specify settings in advance. For details on
how to specify the settings, see 3.3.15 Settings for Collecting a User Dump.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 171

(2) In UNIX
If Management Server (the cjstartsv process) is down, acquire the core dump output in Application-Server-
installation-directory/manager/containers/m/ejb/server-name-of-Management-Server.

When Management Server is restarted, the names of the core dump files are renamed to core.output-date-time# (in
AIX and HP-UX) or core.process-ID.output-date-and-time# (in Linux). The core dumps are not saved by overwriting
when Management Server is restarted, so you can save the core dumps generated when errors occur.

#
The output date and time is output in the YYMMDDhhmmss format.
YY: Western calendar year (Last 2 digits), MM: Month (2 digits), DD: Day (2 digits)
hh: Hour (2 digits in 24 hour notation), mm: Minute (2 digits), ss: Seconds (2 digits)

After acquiring the core dump, if you want to acquire only the stack trace information from the core dump, execute
the javatrace command. The stack trace information is the information required for investigating the cause of
abnormal termination of JavaVM. For details about how to acquire the stack trace information, see 4.18 JavaVM stack
trace information.

You can acquire a core dump in the following cases. The following describes how to acquire a core dump for each case:

• Acquiring a core dump when Management Server is running
To acquire a core dump while Management Server is running, check the process ID of the cjstartsv process and
execute the kill command. Execute the kill command in the following format. Note that the process terminates
when the kill command is executed. Therefore, we recommend that you execute the kill command before
Management Server is restarted.

kill -6 Management-Server-(cjstartsv)-process-ID

• Acquiring a core dump and thread dump concurrently in a running Java process
Execute the javacore command to acquire a core dump and thread dump concurrently in the running Java process.
The execution format of the javacore command is described below. For details about the options that can be
specified, see javacore (Acquiring the core file and thread dump/in UNIX) in the uCosminexus Application Server
Command Reference Guide.

javacore -p process-ID

The following message is output if you execute the command in the above format.

send SIGQUIT to 8662: ? (y/n)

If you enter y, javacoreprocess-ID.output-date-and-time.core (core dump) and javacoreprocess-
ID.output-date-and-time.txt (thread dump) are output to the current directory from where the Java program is
being executed. If you enter n, the command is terminated without acquiring the core dump and thread dump.
When the core dump and thread dump are acquired, the following message is output to the running Java program.
Note that the information in italics is not actually displayed.

Now generating core file (javacore8662.030806215140.core)...
 done

(End of core dump and thread dump output)

Writing Java core to javacore8662.030806215140.txt... OK

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 172

4.9.5 Acquiring the Administration Agent Memory Dump
This section describes how to acquire the Administration Agent memory dump for each OS.

(1) In Windows
If Administration Agent is running (if the adminagent process exists), collect the memory dump from the
task manager#.

If Administration Agent is down, collect the memory dump from the Windows debug tool#.

#
For details, see the Microsoft website.

To acquire the memory dump when Administration Agent is down, you need to specify settings in advance. For details
on how to specify the settings, see 3.3.15 Settings for Collecting a User Dump.

(2) In UNIX
If Administration Agent (the adminagent process) is down, acquire the core dump output in Application-Server-
installation-directory/manager/bin.

After acquiring a core dump, if you want to acquire only the stack trace information from the core dump, execute
the javatrace command. The stack trace information is the information required for investigating the cause of
abnormal termination of JavaVM. For details about how to acquire the stack trace information, see 4.18 JavaVM stack
trace information.

You can acquire a core dump in the following cases. The following describes how to acquire a core dump for each case:

• Acquiring a core dump when Administration Agent is running
To acquire a core dump while Administration Agent is running, check the process ID of the adminagent process
and execute the kill command. Execute the kill command in the following format. Note that the process
terminates when the kill command is executed. Therefore, we recommend that you execute the kill command
before Administration Agent is restarted.

kill -6 Administration-Agent-(adminagent)-process-ID

• Acquiring a core dump and thread dump concurrently in a running Java process
Execute the javacore command to acquire a core dump and thread dump concurrently in the running Java process.
The execution format of the javacore command is described below. For details about the options that can be
specified, see javacore (Acquiring the core file and thread dump/in UNIX) in the uCosminexus Application Server
Command Reference Guide.

javacore -p process-ID

The following message is output if you execute the command in the above format.

send SIGQUIT to 8662: ? (y/n)

If you enter y, javacoreprocess-ID.output-date-and-time.core (core dump) and javacoreprocess-
ID.output-date-and-time.txt (thread dump) are output to the current directory from where the Java program is
being executed. If you enter n, the command is terminated without acquiring the core dump and thread dump.
When the core dump and thread dump are acquired, the following message is output to the running Java program.
Note that the information in italics is not actually displayed.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 173

Now generating core file (javacore8662.030806215140.core)...
 done

(End of core dump and thread dump output)

Writing Java core to javacore8662.030806215140.txt... OK

4.9.6 Notes on obtaining the memory dump

(1) In Windows
• In the following cases, user dumps are not output.

• Forceful termination by specifying the -XX:+HitachiOutOfMemoryAbort option

• Forceful termination due to an insufficient C heap during JavaVM processing

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 174

4.10 JavaVM log (JavaVM log file)

The JavaVM log is a log that you can acquire with the extension option added by Hitachi in the standard JavaVM. You
can acquire more troubleshooting information as compared to the information acquired from the standard JavaVM. The
JavaVM log is output to the log file, when any of the following options are specified. Note that this log file is called the
JavaVM log file.

• -XX:+HitachiOutOfMemoryStackTrace
Note that the JavaVM log file is output even if you specify -XX:+HitachiOutOfMemorySize
and -XX:+HitachiOutOfMemoryCause that are specified when you specify -
XX:+HitachiOutOfMemoryStackTrace option.

• -XX:+HitachiVerboseGC
• -XX:+HitachiOutOfMemoryHandling
• -XX:+HitachiJavaClassLibTrace
• -XX:+JITCompilerContinuation

Other than this, you need to specify in options even for the output contents and output method. For details about settings
to acquire the JavaVM material, see the subsection 3.3.17 Settings for Acquiring the JavaVM Material.

The JavaVM log file is output with the specified file name in the output destination specified with the -
XX:HitachiJavaLog:path-and-file-name option. If the file specification is omitted, the Java VM log file is
output under the name of javalogxx.log in the directory specified in the ejb.server.log.directory
parameter in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. xx
is a serial number of 2 digits starting from 01.

Reference note

When you perform the settings to output the JavaVM log file, create a file while starting the JavaVM. Therefore,
until the JavaVM is terminated, the JavaVM log file without any information remains, if the JavaVM log is
not output.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 175

4.11 JavaVM Output Message Logs (Standard Output or Error Report File)

This section describes how to acquire the message log output by JavaVM.

When the JavaVM crashes, JavaVM outputs the debug information to the standard output and error report file.

The error report file is output in the following cases:

• When a signal occurs in the JNI

• When C heap is insufficient in the JavaVM

• When an unexpected signal occurs in the JavaVM

• When an Internal Error (internal logical error) occurs in the JavaVM

However, this file is not created if a signal or memory is insufficient when creating error report files.

4.11.1 In Windows
The output destination of the Error report file and output file name is as follows.

working-directory\ejb\server-name\hs_err_pidserver-process-ID.log

Reference note

When C heap is insufficient, the message and dump are output in the following order. Acquire the
necessary information.

1. A message log indicating insufficient C heap is output to the error report file and standard output.

2. If the memory is insufficient during the execution of 1., a simple message is output to the standard output.

4.11.2 In UNIX
The output destination of the Error report file and output file name is as follows.

working-directory/ejb/server-name/hs_err_pid server-process-process-ID.log

Reference note

When C heap is insufficient, a message is output and a core dump is generated in the following order. Acquire
the necessary information.

1. A message log indicating insufficient C heap is output to the error report file and standard output.

2. If the memory is insufficient during the execution of 1., a simple message is output to the standard output.

3. If the memory is still insufficient when a simple message is output, output of the message and error log file
is interrupted and a core dump is generated.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 176

4.12 OS Status Information and OS Logs

This section describes the OS log information required as troubleshooting information.

4.12.1 Acquiring the OS Status Information
How to acquire the OS status information required as troubleshooting information, is described below for each OS:

(1) In Windows
You can acquire the OS status information by using the cjgetsysinfo command. If you specify the -f option, you can
output the OS status information to the OS status output file.

Execute the command in the following format.

cjgetsysinfo -f OS-status-output-file-path

The information acquired with this command and the following commands of OS is same.

netstat -e
netstat -s
netstat -an
set

Note that the required OS status information to be acquired as troubleshooting information when the cjgetsysinfo
command is not to be executed is described below. Create a directory for acquiring each information in advance and
generate the file in that directory. Create the directory in any path.

Table 4‒28: Required OS status information as a troubleshooting information

Information type Default file name

Network information Protocol statistical information and current TCP/IP network connection information. Acquire using the
following commands in a sequence.
netstat -e > netstat_e.txt
netstat -s > netstat_s.txt
netstat -an > netstat_an.txt

Environment variable Currently set environment variables. Acquire using the following command.
set >set.txt

(2) In UNIX
You can acquire the OS status information by using the cjgetsysinfo command. If you specify the -f option, you can
output the OS status information to the OS status output file.

Execute the command in the following format.

cjgetsysinfo -f OS-status-output-file-path

The information acquired with this command and the commands of OS shown in the following table is the same.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 177

Table 4‒29: OS commands executed by executing the cjgetsysinfo command

In AIX In Linux

• df -k
• ps -elf
• ps -A -m -o THREAD
• vmstat -t 1 1
• vmstat -s
• lsps -s
• netstat -i
• netstat -m
• netstat -an
• iostat
• svmon -P
• svmon -G
• sar -A 1
• instfix -i
• lslpp -hac
• uname -a
• env
• set
• ipcs -a

• df
• ps -eflm
• vmstat
• netstat -s
• netstat -an
• iostat#

• top -b -n 1
• sysctl -a
• sar -A 1 1#

• rpm -qa
• rpm -qai
• uname -a
• env
• set
• ipcs
• ipcs -t
• ipcs -p
• ipcs -c
• ipcs -u
• ipcs -l

#
To execute the sar command and the iostat command, you must install the sysstat package included in the Linux.

Note that the methods (commands) to acquire the required OS status information to be acquired as troubleshooting
information when the cjgetsysinfo command is not to be executed, are as follows:

In AIX

df -k > df_k`date +"%y%m%d%H%M%S"`.txt
ps -efl > ps_efl`date +"%y%m%d%H%M%S"`.txt
ps -A -m -o THREAD > ps_AmoTHREAD`date +"%y%m%d%H%M%S"`.txt
vmstat -t 1 5 > vmstat`date +"%y%m%d%H%M%S"`.txt
vmstat -s > vmstat_s`date +"%y%m%d%H%M%S"`.txt
lsps -s > lsps_s`date +"%y%m%d%H%M%S"`.txt
netstat -i > netstat_i`date +"%y%m%d%H%M%S"`.txt
netstat -m > netstat_m`date +"%y%m%d%H%M%S"`.txt
netstat -an > netstat_an`date +"%y%m%d%H%M%S"`.txt
iostat 1 5 > iostat`date +"%y%m%d%H%M%S"`.txt
svmon -P > svmon_P`date +"%y%m%d%H%M%S"`.txt#1
svmon -G -i 1 5 > svmon_G`date +"%y%m%d%H%M%S"`.txt#1
sar -A 1 5 > sar_A`date +"%y%m%d%H%M%S"`.txt#1
/usr/samples/kernel/vmtune > vmtune`date +"%y%m%d%H%M%S"`.txt
instfix -i > instfix_i`date +"%y%m%d%H%M%S"`.txt
lslpp -hac > lslpp_hac`date +"%y%m%d%H%M%S"`.txt
uname -a > uname_a`date +"%y%m%d%H%M%S"`.txt
env > env`date +"%y%m%d%H%M%S"`.txt
set > set`date +"%y%m%d%H%M%S"`.txt
ipcs -a > ipcs_a`date +"%y%m%d%H%M%S"`.txt

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 178

In Linux

df > df`date +"%y%m%d%H%M%S"`.txt
ps -eflm > ps`date +"%y%m%d%H%M%S"`.txt
vmstat 1 5 > vmstat`date +"%y%m%d%H%M%S"`.txt
netstat -s > netstat_s`date +"%y%m%d%H%M%S"`.txt
netstat -an > netstat_an`date +"%y%m%d%H%M%S"`.txt
iostat 1 5 > iostat`date +"%y%m%d%H%M%S"`.txt#2
top n 5 > top`date +"%y%m%d%H%M%S"`.txt
sar -A 1 5 > sar`date +"%y%m%d%H%M%S"`.txt#2
sysctl -a > sysctl`date +"%y%m%d%H%M%S"`.txt
rpm -qa > rpm_qa`date +"%y%m%d%H%M%S"`.txt
rpm -qai > rpm_qai`date +"%y%m%d%H%M%S"`.txt
uname -a > uname_a`date +"%y%m%d%H%M%S"`.txt
env > env`date +"%y%m%d%H%M%S"`.txt
set > set`date +"%y%m%d%H%M%S"`.txt
ipcs > ipcs`date +"%y%m%d%H%M%S"`.txt
ipcs -t > ipcs_t`date +"%y%m%d%H%M%S"`.txt
ipcs -p > ipcs_p`date +"%y%m%d%H%M%S"`.txt
ipcs -c > ipcs_c`date +"%y%m%d%H%M%S"`.txt
ipcs -u > ipcs_u`date +"%y%m%d%H%M%S"`.txt
ipcs -l > ipcs_l`date +"%y%m%d%H%M%S"`.txt

#1
The root permissions are required for executing the command.

#2
To execute the sar command and the iostat command, you must install the sysstat package included in
the Linux.

4.12.2 Acquiring OS Logs
How to acquire the OS logs required as troubleshooting information is described below for each OS:

(1) In Windows
The following table describes the OS logs required as troubleshooting information.

Table 4‒30: OS log information required as troubleshooting information

Information type Default file name

Event log Open the event viewer and save the application and system log.

(2) In UNIX
The location to save the OS logs (syslog) required as a troubleshooting information is as follows:

In AIX
All under /var/adm/ras

In Linux
All under /var/log

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 179

4.13 OS Statistical Information

How to acquire the statistical information of OS is described below for each OS.

4.13.1 In Windows
Save the performance log after the occurrence of errors. For details on the performance operation, see the manuals
provided with the OS.

Tip

The OS statistical information can be acquired only when collection of the performance log is started by the
OS-dependent performance function in advance.

Extract the following system monitor logs when a J2EE server is running at an interval of 60 seconds. For details about
the settings methods, see the manuals provided with the OS.

Table 4‒31: System monitor settings

Performance
object

Instance Item name Description

processor -- %Processor Time CPU utilization (total value excluding the threads in non-
idle state).

%Privileged Time CPU utilization (in kernel mode).

%User Time CPU utilization (in user mode).

memory -- Cache Bytes Number of bytes used currently by the file system cache.

Cache Faults/sec Frequency of fetching from different memory location or from
the disk per second.

Page Faults/sec Number of page faults per second.

Transition Faults/sec Number of faults per second.

process _Total Handle Count Total number of handles currently opened.

Page Faults/sec Occurrence rate of page faults.

Private Bytes Used memory (bytes).

Virtual Bytes Used virtual memory (bytes).

Working Set Bytes Used actual memory (bytes).

cjstartsv %Processor Time CPU utilization (total value excluding the threads in non-
idle state).

%Privileged Time CPU utilization (in kernel mode).

%User Time CPU utilization (in user mode).

Page Faults/sec Occurrence rate of page faults.

Thread Count Thread count.

Private Bytes Used memory (bytes).

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 180

Performance
object

Instance Item name Description

Virtual Bytes Used virtual memory (bytes).

Working Set Bytes Used actual memory (bytes).

Legend:
--: Not applicable

4.13.2 In UNIX
Execute the commands shown below while starting the application server and acquire the OS statistical information.
Though Hitachi recommends you to acquire the OS statistical information at an interval of 60 seconds, you can decide
the interval according to your disk capacity. Note that if you make the acquisition interval longer, the performance
deterioration due to acquiring of statistical information of an OS can be reduced, but the accuracy of the OS statistical
information might deteriorate.

In AIX

ps -efl
ps -A -m -o THREAD
vmstat -t
vmstat -s
lsps -s
svmon -P <Process ID of cjstartsv, cjstartweb>#1
svmon -G#1
sar -A 1#1

In Linux

ps -eflm
top n 1
vmstat
sar -A 1#2

#1
The root permissions are required for executing the command.

#2
To execute the sar command, you must install the sysstat package included in the Linux.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 181

4.14 Application Server definition information

Acquire the Application Server definition. Use this information to confirm the set definitions when an error occurs.

Definition information related to Cosminexus Component Container
Acquire the set of files that have been saved under the following directory.

In Windows

• Cosminexus-installation-directory\CC\server\usrconf\ejb\server-name

In UNIX

• /opt/Cosminexus/CC/server/usrconf/ejb/server-name

We recommend you to delete the information such as password that cannot be made public, from the files saved
for troubleshooting.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 182

4.15 Contents of J2EE server or batch server working directory

When a problem occurs in a system, maintenance personnel may examine the working directory for investigating the
cause. A working directory is specified in the ejb.public.directory parameter in the <configuration>
tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. Note that the default directory
path of the working directory is Cosminexus-installation-directory\CC\server\public (in Windows) or /opt/
Cosminexus/CC/server/public (in UNIX).

Confirm the settings, and when trouble occurs, save the files in this directory.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 183

4.16 Application Server Resource Setting Information

Acquire the resource settings information to confirm the resource settings such as connection pool settings. The location
to save the settings information is as follows:

• In Windows

• working-directory\ejb\server-name\import
• working-directory\ejb\server-name\rars

• In UNIX

• working-directory/ejb/server-name/import
• working-directory/ejb/server-name/rars

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 184

4.17 Web Server Logs

Acquire Web server (Cosminexus HTTP Server or Microsoft IIS) logs that are used in the system.

• In the case of Cosminexus HTTP Server
The location to save the log is as follows:

• In Windows
Cosminexus-installation-directory\httpsd\logs

• In UNIX
/opt/hitachi/httpsd/logs (default)

• Microsoft IIS
The location to save the log is as follows:
C:\inetpub\logs (Specify the system drive in place of C:)

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 185

4.18 JavaVM stack trace information

In UNIX, when JavaVM terminates abnormally and a core dump is output, the information (stack trace information)
required for investigating the cause for such abnormal termination can be acquired by the javatrace command. With the
javatrace command, acquire the stack trace information from the core dump output. The javatrace command is
installed in /opt/Cosminexus/jdk/bin.

The execution format of the javatrace command is as follows:

javatrace core dump file name, Execution file name where core dump is creat
ed

When JavaVM terminates abnormally and you execute this command when a core dump is created with a file name called
core, as a result, a file called javatrace.log is output under the current directory. Send this file to maintenance personnel.

Execution example
The example below describes a message that is output when JavaVM terminates abnormally and a core dump
is created.

 ...
You can get further information from javatrace.log file generated
by using javatrace command.
usage: javatrace core-file-name loadmodule-name [out-file-name] [-l(libr
ary-name)...]
Please use javatrace command as follows and submit a bug report
to Hitachi with javatrace.log file:
[/opt/Cosminexus/jdk/bin/javatrace core /opt/Cosminexus/CC/server/bin/cj
startsv]
#

Execute the character string of the javatrace command displayed in the message. In the case of this example,
execute /opt/Cosminexus/jdk/bin/javatrace core /opt/Cosminexus/CC/server/bin/
cjstartsv. As a result of execution, a file called javatrace.log is output under the current directory.

Note that the file name of the core dump actually output depends on the OS and it may be core.process ID in some cases.
In such cases, specify the file name of the core dump actually output in the javatrace argument.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 186

4.19 Event log of the Explicit Memory Management functionality

An event log output by an Explicit Memory Management functionality is output to the file specified in the
-XX:HitachiExplicitMemoryJavaLog option in the JavaVM startup option. Moreover, the output contents
differ depending on the log output level specified in the -XX:HitachiExplicitMemoryLogLevel option.

For details about setting the above-mentioned options, see 3.3.17(3) Settings for acquiring the event log of Explicit
Memory Management functionality.

For details about the JavaVM startup option, see 14. Options for Invoking JavaVM in the uCosminexus Application
Server Definition Reference Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 187

4.20 Information on the execution of the Component Container
Administrator setup command (In UNIX)

When Component Container Administrator is specified, the information on the execution of the Component Container
Administrator setup (cjenvsetup command) is output to a message log and a text file. If the previous execution
information exists, a maximum of five files are stored including the latest execution information stored until the fourth
generation for each type.

Also, in the case of an overwrite installation, if Component Container Administrator was set up before the overwrite
installation, the Component Container Administrator setup (cjenvsetup command) is automatically executed
during installation.

The following table describes the output destination of the execution information.

Table 4‒32: Output destination of the information on the execution of the Component Container
Administrator setup (cjenvsetup command)

Classificatio
n

Contents Log output destination and log file name

Message log Operation log of the
cjenvsetup command

/opt/Cosminexus/CC/logs/cjenvsetupmessage[n]#.log

Text file File (directory) information before change /opt/Cosminexus/CC/
logs/before_cjenvsetup_files[n]#.txt

Text file File (directory) information after change /opt/Cosminexus/CC/
logs/after_cjenvsetup_files[n]#.txt

#:
In [n], specify the generation number (from 1 to 4). The generation number is not added to the latest execution information. A maximum of
five log files are stored.

For details on the output contents, see 4.1.4 Notes on setting Component Container administrator (For UNIX) in the
uCosminexus Application Server System Setup and Operation Guide.

4. Output Destinations and Output Methods of Data Required for Troubleshooting

Maintenance and Migration Guide 188

5 Problem Analysis

This chapter describes the log and trace information used for troubleshooting.

Maintenance and Migration Guide 189

5.1 Organization of this chapter

This section describes the output contents of the data for troubleshooting, from among the description related to
the troubleshooting.

Determine the cause for a trouble on the basis of contents output to the acquired data. Note that among the data acquired
in 2.3 Acquiring the Data, for the OS statistical information, see the manuals provided with the OS being used. Moreover,
the memory dump is not explained here as it is checked by maintenance personnel.

Important note

• In Windows, if you open a large log file (3 megabytes or more) with a text editor, the computer is burdened
and this might affect the system. When you want to reference a log file, take proper precautions.

• Note the following points if you are using Windows.
When there is a Unicode supplementary character in the contents output to a log or a PRF trace that
supplementary character cannot be output correctly. Other than this, there will not be any problem in other
output contents or the application operations. The Unicode supplementary character is sometimes included
in the requests from the clients, such as Internet Explorer.

The following table describes the organization of this chapter.

Table 5‒1: Organization of this chapter (Data Output Contents used for troubleshooting)

Category Title Reference

Explanation Application Server Log 5.2

Contents of the EJB Client Application Log 5.3

Contents of the Trace based performance analysis 5.4

Contents of the JavaVM Thread Dump 5.5

Contents of the JavaVM GC Log 5.6

Contents of the JavaVM log (JavaVM log file) 5.7

Contents of the Message Log Output by JavaVM (Standard Output and Error
Report File)

5.8

OS Status Information and Contents of the OS Log 5.9

Contents of the JavaVM Stack Trace Information 5.10

Contents of event log of Explicit Memory Management functionality 5.11

For an overview of troubleshooting, output destinations and output methods of data, and settings related to the data
acquisition and output, see the respective sections:

• Overview of troubleshooting and methods for automatic output of data
2. Troubleshooting

• Settings related to data acquisition and output
3. Preparing for Troubleshooting

• Default output destination of data and methods to output data separately
4. Output Destinations and Output Methods of Data Required for Troubleshooting

5. Problem Analysis

Maintenance and Migration Guide 190

5.2 Application Server Log

This section describes how to investigate Application Server log.

By investigating message logs and user logs of Application Server, you can investigate the cause of error occurrence.
Moreover, even in the case of process errors, you can confirm the progress status of the process and error indications.

Furthermore, among Application Server logs, for the precautions when referencing a system log of the EJB client
applications, see 2.6.1 Precautions Related to the System Log of an EJB Client Application.

The Application Server log includes the following three types of logs:

• Trace common library format (single process)

• Trace common library format (multi-process)

• Specific format

The trace common library format is the log that is output by using the trace common library. For details on the
trace common library format, see 8.2.2 Mechanism of the user log output in the uCosminexus Application Server
Expansion Guide.

The specific format is the log that is output in a format other than the trace common library format.

This section classifies and describes the Application Server log for each log type. The following Application Server log
is described here:

• Hitachi Trace Common Library format log

• Event log

• syslog

• Log output to audit log

• Log output by Cosminexus JMS Provider

Note that the time-based switching of output destinations and file naming in Shift mode might be enabled in the Hitachi
Trace Common Library format log. For details, see 3.2.1 Specifiable contents.

The following table describes the logs that are output, the corresponding log types, and whether time-specified switching
and shift mode are supported, for each acquired log.

Table 5‒2: J2EE server log type

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Message log Operation log Hitachi Trace Common Library format
(single process)

Y

Log operation log Proprietary format --

Operation log of resource adapter
that is deployed and used as J2EE
resource adapter

Hitachi Trace Common Library format
(single process)

Y

5. Problem Analysis

Maintenance and Migration Guide 191

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Operation log of resource adapter used
by including in J2EE application

Hitachi Trace Common Library format
(single process)

Y

Web servlet log Hitachi Trace Common Library format
(single process)

Y

User log User output log Hitachi Trace Common Library format
(single process)

Y

User error log Hitachi Trace Common Library format
(single process)

Y

JavaVM maintenance information and
GC log

Proprietary format --

Event log of the Explicit Memory
Management functionality

Proprietary format --

Exception log Exception information when an
error occurs

Hitachi Trace Common Library format
(single process)

Y

Maintenance log Maintenance information Hitachi Trace Common Library format
(single process)

Y

Console message Hitachi Trace Common Library format
(single process)

Y

EJB container maintenance information Hitachi Trace Common Library format
(single process)

Y

Web container maintenance information Hitachi Trace Common Library format
(single process)

Y

Start process standard
output information

Proprietary format --

Start process standard error information Proprietary format --

Termination process information Hitachi Trace Common Library format
(single process)

--

Event log Log showing J2EE server start, stop or
abnormal termination

Hitachi Trace Common Library format
(single process)

--

syslog Log showing J2EE server start, stop or
abnormal termination

Hitachi Trace Common Library format
(single process)

--

Access log Processing results of HTTP and
WebSocket communication

Access log format Y

Legend:
Y: Supported
--: Not supported or not applicable

5. Problem Analysis

Maintenance and Migration Guide 192

Table 5‒3: Server management command log

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Message log Operation log Hitachi Trace Common Library format
(multi processes)

--

Log operation log Proprietary format --

Exception log Exception information when an
error occurs

Hitachi Trace Common Library format
(multi processes)

--

Maintenance log Maintenance information Hitachi Trace Common Library format
(multi processes)

--

Console message Hitachi Trace Common Library format
(multi processes)

--

Server management command
maintenance information

Hitachi Trace Common Library format
(multi processes)

--

Legend:
--: Not supported or not applicable

Table 5‒4: Resource adapter version-up command (cjrarupdate) log

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Message log Operation log Hitachi Trace Common Library format
(multi processes)

--

Exception log Exception information when an
error occurs

Hitachi Trace Common Library format
(multi processes)

--

Maintenance log Maintenance information Hitachi Trace Common Library format
(multi processes)

--

Legend:
--: Not supported or not applicable

Table 5‒5: Migration command (cjenvupdate) log

Category Contents Type Support for time-specified
switching and Shift mode

Message log Operation log of the
cjenvupdate command

Hitachi Trace Common Library
format (multi processes)

--

Exception log Exception information of the
cjenvupdate command

Hitachi Trace Common Library
format (multi processes)

--

Maintenance log Maintenance information of the
cjenvupdate command

Hitachi Trace Common Library
format (multi processes)

--

Legend:
--: Not supported or not applicable

5. Problem Analysis

Maintenance and Migration Guide 193

Table 5‒6: Resource depletion monitoring log

Monitored Resources Type Support
for time-
specified
switching
and Shift
mode

Memory Hitachi Trace Common Library format (single process) Y

File descriptors Hitachi Trace Common Library format (single process) Y

Threads Hitachi Trace Common Library format (single process) Y

Thread dump Hitachi Trace Common Library format (single process) Y

HTTP requests pending queue Hitachi Trace Common Library format (single process) Y

HTTP session numbers Hitachi Trace Common Library format (single process) Y

Connection pool Hitachi Trace Common Library format (single process) Y

Legend:
Y: Supported

Table 5‒7: Administration agent, Management agent, and Management Server log

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Integrated log Integrated message log Hitachi Trace Common Library format
(multi processes)

Y

Integrated trace log Hitachi Trace Common Library format
(multi processes)

Y

Command maintenance log Hitachi Trace Common Library format
(multi processes)

--

Administration agent Standard error output of
Administration agent

Hitachi Trace Common Library format
(single process)

--

Standard output of Administration agent Hitachi Trace Common Library format
(single process)

--

Standard command line error output of
Administration agent

Proprietary format --

Administration agent log Hitachi Trace Common Library format
(single process)

--

Administration agent start, stop
command log

Hitachi Trace Common Library format
(single process)

--

Administration agent maintenance log Hitachi Trace Common Library format
(single process)

--

Console log Hitachi Trace Common Library format
(single process)

Y

Administration agent service log Hitachi Trace Common Library format
(single process)

--

5. Problem Analysis

Maintenance and Migration Guide 194

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Administration agent service
standard output

Proprietary format --

Administration agent service standard
error output

Proprietary format --

Management agent Management agent log and trace
J2EE server system JP1 event and J2EE
server user JP1 event log
Management event issue log

Hitachi Trace Common Library format
(single process)

--

Management Server Management Server service log Hitachi Trace Common Library format
(single process)

--

Management Server service standard
error output

Proprietary format --

Management Server service
standard output

Proprietary format --

Management Server service start
stop command

Hitachi Trace Common Library format
(single process)

--

Management Server log
System JP1 event log of
Management Server#

Hitachi Trace Common Library format
(single process)

--

Execution log of the
mngenvsetup command

Hitachi Trace Common Library format
(single process)

--

Management Server maintenance log Hitachi Trace Common Library format
(single process)

--

Legend:
Y: Supported
--: Not supported or not applicable

#
Management Server of Application Server.

Table 5‒8: Internal setup tool of the virtual server manager and Server Communication Agent logs

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Internal setup tool of the virtual
server manager

Logs for the internal setup tool of the
virtual server manager

Trace common library format (single process) Y

Maintenance logs for the internal setup
tool of the virtual server manager

Trace common library format (single process) --

Server Communication Agent Server Communication Agent logs Trace common library format (single process) Y

Service logs of the Server
Communication Agent

Trace common library format (single process) --

5. Problem Analysis

Maintenance and Migration Guide 195

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Start and stop command logs of the
Server Communication Agent

Trace common library format (single process) --

Standard error output of the Server
Communication Agent

Trace common library format (single process) --

Standard output of the Server
Communication Agent

Trace common library format (single process) --

Console logs Trace common library format (single process) Y

Maintenance logs of the Server
Communication Agent

Trace common library format (single process) --

Maintenance logs for the Server
Communication Agent services

Trace common library format (single process) --

Maintenance logs for the start
and stop commands of the Server
Communication Agent

Trace common library format (single process) --

JavaVM log file of the Server
Communication Agent

Trace common library format (single process) --

Legend:
Y: Supported
--: Not supported or not applicable

Table 5‒9: Cosminexus Performance Tracer log

Contents Type

PRF daemon and PRF command log Proprietary format

Module trace Proprietary format

Structured exception occurrence log Proprietary format

Maintenance information Proprietary format

Table 5‒10: Cosminexus Component Transaction Monitor log

Contents Type

CTM daemon or CTM command log Proprietary format

Maintenance information Proprietary format

Table 5‒11: Log output to audit log

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Message log Message log of audit log Hitachi Trace Common Library format
(multi processes)

--

5. Problem Analysis

Maintenance and Migration Guide 196

Category Contents Type Support
for time-
specified
switching
and Shift
mode

Exception log Exception information of audit log Hitachi Trace Common Library format
(multi processes)

--

Legend:
--: Not supported or not applicable

Table 5‒12: Log output by Cosminexus JMS Provider

Category Contents Type Support for time-specified
switching and Shift mode

Message log CJMSP Broker message log Hitachi Trace Common Library
format (single process)

--

Management command (cjmsicmd
command) message log

Hitachi Trace Common Library
format (multi processes)

--

CJMSP resource adapter message log Hitachi Trace Common Library
format (single process)

Y

Exception log CJMSP Broker exception log Hitachi Trace Common Library
format (single process)

--

Management command (cjmsicmd
command) exception log

Hitachi Trace Common Library
format (multi processes)

--

CJMSP resource adapter exception log Hitachi Trace Common Library
format (single process)

Y

Legend:
Y: Supported
--: Not supported or not applicable

5.2.1 Output Format and Output Items of the Hitachi Trace Common
Library Format Log

The output format and output items of the Hitachi Trace Common Library format log are described below.

Application Server log is output in the Hitachi Trace Common Library format.

(1) Output format
The output format of Hitachi Trace Common Library format log is as follows:

Number Date Time AP name pid tid message ID Type Message text CRLF

(2) Output items
The output items of the Hitachi Trace Common Library format log are as follows:

5. Problem Analysis

Maintenance and Migration Guide 197

Table 5‒13: Output items of the Hitachi Trace Common Library format log

Item name Description

No. A 4 digit number showing the trace record serial number is output.

Date Date of acquiring the trace is output in the yyyy/mm/dd format.

Time Time of acquiring the trace is output in the hh:mm:ss.sss format.

AP name String showing the program is output.

Pid Process ID is output.

Tid Thread ID is output.

Message ID Message ID is output in the XXXXnnnnn-Y format.

Type Event type that triggers the trace output is output.

Message text Message text is output (up to 4,095 bytes). Any part that exceeds 4,095 bytes will be truncated.
Additional information might also be output.

CRLF Terminal code of the record (0x0D, 0x0A) is output.

Editing and displaying log files
When the sort or filter function is used by displaying the Hitachi Trace Common Library format log in Microsoft
Excel, you can effectively investigate the cause of the error that occurred.
The example of displaying the Hitachi Trace Common Library format log by using Microsoft Excel is as follows:

Figure 5‒1: Display example of log of Hitachi Trace Common Library format using Microsoft
Excel

Reference note

• As a delimiting data format, select fixed length field data that is right or left justified by using spaces.

• Delete the unnecessary arrows in the Data Preview box.

• Specify Character string in Display format of each column.

5.2.2 Precautions to Be Taken When Referencing the Hitachi Trace
Common Library Format Log

This section describes the precautions to be taken when using the Hitachi Trace Common Library format log.

5. Problem Analysis

Maintenance and Migration Guide 198

(1) Common precautions for multi and single processes
The common precautions for multi and single processes are as follows:

• Do not edit the log file that has been output.

• Do not lock files by using a function such as the text editor.

• When setting the access rights for the output log file manually, assign the appropriate access rights.

• Do not change the update time of the log file that has been output.

• During trace output, do not delete log files or change file names. Delete the log files or change file names after
stopping all the trace output processes.

• The management file xxxxxx.conf is output with the log file. Do not edit or delete this file while the trace output
process is running.

• Stop the trace output process before changing the log file size, number of log files, or other settings. When
doing so, back up or delete all log files and management files (xxxxxx.conf) under the log output directory
(including subdirectories).

• If you change the owner or owner group of the log files, also change the owner or owner group of the management
file (xxxxxx.conf) to the same owner or owner group.

(2) Precautions when referencing multi processes Hitachi Trace Common
Library

The precautions to be taken when referencing multi processes compliant Hitachi Trace Common Library format log file
are as follows:

• The line feed code at the end of the message is CRLF, regardless of the OS being used.

• In some cases you may need to delete the log files to enable changes in the log file size, number of files and mode
options. Before deleting the log files, stop all the processes that output trace.

• Even if trace is output, there are cases when the update time of the log file is not updated. Therefore, you cannot judge
whether the trace is output based on the updated time of the file.

(3) Changes in the multi-process trace common library from the earlier
versions

The log files of the multi-process trace common library have been changed from the earlier versions. The following table
describes the changes.

Table 5‒14: Differences with the earlier versions of the multi-process trace common library

Item Application Server V9 Earlier than Application Server V9

File size Variable (specified size might be exceeded) Fixed (specified size)

File switching time The files are switched at the following times:
• When the file size exceeds the specified size
• For time specified rotation
• When the specified time is reached while the

process is runing

When the file size + the size you want to output exceeds
the specified size

Size when the files
are switched

0 (All lines will be deleted) Fixed (overwrite and store)

5. Problem Analysis

Maintenance and Migration Guide 199

Item Application Server V9 Earlier than Application Server V9

File switching operation
(Wraparound method)

The trace data is overwritten and output from
the beginning of the file (the information before
wraparound remains as is)

The trace data is overwritten and output from
the beginning of the file (the information before
wraparound remains as it is)

File switching operation
(Shift method)

All the lines are deleted and the trace data is output from
the beginning of the file

--

Log file name
numbering rules
(Wraparound method)

xxxxxx1.log,
xxxxxx2.log,
xxxxxx3.log,
...

xxxxxx1.log,
xxxxxx2.log,
xxxxxx3.log,
...

Log file name numbering
rules (Shift method)

xxxxxx.log,
xxxxxx1.log,
xxxxxx2.log,
...

--

End identifier No (end of file) Yes#

Management file Created Created

Determining the output
file used when the
process restarts

Time stamp Management file, or time stamp

Legend:
--: Not applicable.

#
The end identifier used in the multi-process trace common library of the earlier versions is as follows:

EOF CRLF CRLF CRLF CRLF----------< End of Data >----------CRLF CRLF

EOF is the character (0x1A) that indicates the end of the trace data. CRLF indicates the linefeed (0x0D, 0x0A).

Table 5‒15: List of change files for the multi-process trace common library format

Classification
of log

Log type Log file and default file output destination

Common log Audit log Product-installation-directory/auditlog/audit?.log

Product-installation-directory/auditlog/rasexception?.log

Product-installation-directory/auditlog/rasmessage?.log

Functionality-
specific public
log

Performance, error analysis trace Product-work-directory/ejb/J2EE-server-name/logs/RM/
maintenance/mtd_RM-display-name_??.log

Product-work-directory/ejb/J2EE-server-name/logs/RM/
maintenance/shq_RM-display-name_??.log

Product-work-directory/ejb/J2EE-server-name/logs/RM/
maintenance/lin_RM-display-name_??.log

Product-installation-directory/CC/server/public/ejb/J2EE-server-
namecsmxsec_trace?.log

Message log Product-work-directory/ejb/J2EE-server-name/
logs/CJW/cjwmessage?.log

5. Problem Analysis

Maintenance and Migration Guide 200

Classification
of log

Log type Log file and default file output destination

Product-work-directory/ejb/J2EE-server-name/
logs/CJR/cjrmessage?.log

Product-work-directory/ejb/J2EE-server-name/
logs/WS/ <log_file_prefix>-j2ee-J2EE-server-name-
<log_file_num>.log

Product-work-directory/ejb/J2EE-server-name/logs/WS/ c4webcl-
default-?.log

Manager log Integrated message log Product-installation-directory/manager/log/
message/mngmessage?.log

Integrated trace log Product-installation-directory/manager/log/trace/mngtrace?.log

Console log Product-installation-directory/manager/log/processConsole?.log

Internal setup tool log of the
virtual functionality

Product-installation-directory/manager/setup/log/rasetup?.log

Server communication agent log Product-installation-directory/sinagent/log/sinaviagent?.log

Server communication agent
console log

Product-installation-directory/sinagent/log /processConsole?.log

5.2.3 Output format and output items of access log of NIO HTTP Server
This subsection describes the output format and the output items of access log of the NIO HTTP Server.

The processing results of requests of the NIO HTTP server are output to the access log. The following tables describe the
output format and output items for the HTTP communication and the WebSocket communication handled by the NIO
HTTP server.

(1) Access log for HTTP communication
The following table describes the output contents.

Table 5‒16: Output contents for HTTP communication

Format
argument

Output contents Output example

%a IP address of the Web client 10.20.30.40

%A IP address of the J2EE server 10.20.30.100

%b Number of bytes sent excluding the
HTTP header.
A hyphen (-) is output when the number of bytes
is 0.

2048

%B Number of bytes sent excluding the
HTTP header.
0 is output when the number of bytes is 0.

1024

%h Host name or IP address of the Web client.
The IP address is output when the host name
cannot be obtained.

10.20.30.40

5. Problem Analysis

Maintenance and Migration Guide 201

Format
argument

Output contents Output example

%H Request protocol HTTP/1.1

%l Remote log name.
A hyphen (-) is always output#1.

--

%m Request method GET

%p Port number that received the request from the
Web client

80

%q Query string.
The query string begins with a question
mark (?).
If the query string does not exist, an empty string
is output.

?id=100&page=15

%r Request line GET /index.html HTTP/1.0

%s Final status code 200

%S#2 The value of the cookie name JSESSIONID
is output.
If the value does not exist, a hyphen (-)
is output.

00455AFE4DA4E7B7789F247B8FE5D605

%t The time when the processing of the request
from the Web client was started is displayed with
second precision.
[dd/MMM/YYYY:HH:mm:ss Z]

[18/Jan/2005:13:06:10 +0900]

%T Time required for processing the request from
the Web client (unit: seconds)

2

%d The time when the processing of the request
from the Web client was started is displayed with
millisecond precision.
[dd/MMM/YYYY:HH:mm:ss.nnn Z] (nnn
indicates milliseconds.)

[18/Jan/2005:13:06:10.152 +0900]

%D Time required for processing the request from
the Web client (unit: milliseconds)

38

%u Basic authentication user name or form
authentication user name.
If there is no authentication user name, a hyphen
(-) is output.

user

%U Request file path /index.html

%v Local host name of the J2EE server server

%{foo}i#3 Contents of the request header foo.
If the foo header does not exist, a hyphen (-)
is output.

In the case of %{Host}i:
www.example.com:8888

%{foo}c Of the cookie information sent by the Web
client, the contents of the cookie whose name
is foo.
If there is no cookie whose name is foo, a
hyphen (-) is output.

In the case of %{MYSESSIONID}c:
00455AFE4DA4E7B7789F247B8FE5D605

%{foo}o#3 Contents of the response header foo. In the case of %{Server}o:

5. Problem Analysis

Maintenance and Migration Guide 202

Format
argument

Output contents Output example

If the foo header does not exist, a hyphen (-)
is output.

CosminexusComponentContainer

%rootap Root application information 10.100.10.100/1234/0x0000000000000001

%clport Port number that sent the request from the
Web client

888

Notes

• If you specify a character string that begins with % (such as %G) other than those listed in the preceding table, the
message KDJE39401-W is output and the default format is used. Also, if you specify 0 characters (for example,
%{}i) in the header content or cookie name specified in %{foo}i, %{foo}c, or %{foo}o, the message
KDJE39401-W is output and the default format is used.

• The maximum string length that can be used for the format type is 1,024 characters. If the string exceeds 1,024
characters, the message KDJE39400-W is output and the default value is used.

• The characters that can be used for the format type are those from ASCII code 32 (decimal number) to less than
127 (decimal number).

• If no string is specified, the message KDJE39009-W is output and the default value is used.

• If a character outside the range is specified, the message KDJE39401-W is output and the default value is used.

#1
The remote log name is the user name on the Web client side that is obtained by the Identification Protocol stipulated
by RFC 1413.

#2
The value displayed by %S is the value of the cookie name JSESSIONID, which is used as the standard HTTP session
ID. If the name of the cookie name JSESSIONID has been changed in Servlet 3.0 or later, use %{foo}c.

#3
The same header name might be sent multiple times in one HTTP request or HTTP response. In this case, the contents
of all headers are output separated by commas (,).

The following shows the notation described with the format arguments.

%h %{X-Forwarded-For}i %l %u %d %rootap "%r" %s %b %D %S

The following shows the output format.

host-name-or-IP-address-of-the-Web-clientΔX-Forwarded-For-headerΔremote-log-
nameΔauthentication-user-nameΔtime-when-the-processing-of-the-request-from-t
he-Web-client-was-startedΔroot-application-informationΔ"request-line"Δfinal-
status-codeΔnumber-of-bytes-sent-excluding-the-HTTP-headerΔtime-required-for
-processing-the-request-from-the-Web-clientΔHTTP-session-ID

Note
A new line is inserted after the HTTP session ID.

Legend
Δ: Single byte space

5. Problem Analysis

Maintenance and Migration Guide 203

The following shows an example of output.

10.20.30.40 50.60.70.80 - user [18/Jan/2005:13:06:10.152 +0900] 10.100.10.10
0/1234/0x0000000000000001 "GET /index.html HTTP/1.0" 200 1024 38 00455AFE4DA
4E7B7789F247B8FE5D605

(2) Access log for WebSocket communication
The following table describes the output contents.

Table 5‒17: Output contents for WebSocket communication

Format argument Output contents Output example

%TS Time of sending or receiving the
WebSocket frame

2001/01/01 01:01:01.111 +0900

%IO Direction of sending or receiving
the WebSocket frame. IN or OUT
is output.

IN:
Indicates that the server
instance received a
WebSocket frame.

OUT:
Indicates that the
server instance sent a
WebSocket frame.

IN

%OPCODE Type of the WebSocket frame.
Text, Binary, Ping, Pong, or
Close is output.

Text

%URI Request URL /websocket_server/test001

%FIN Identifier that indicates the end of
the WebSocket frame. CONT or
FINAL is output.

CONT:
Continuation of the
WebSocket frame.

FINAL:
End of the WebSocket frame.

CONT

%PAYLOADDATALEN Payload data length 100

%ROOTAP Root application information 10.100.10.100/1234/0x0000000000000001

%CLIENTAP Client application information 10.100.10.100/1234/0x0000000000000001

%CLOSEREASON Reason why the WebSocket
connection was disconnected

NORMAL_CLOSURE:closereason specified
by WebSocketClient001

%CLIENTADDR IP address and port number of the
Web client

10.20.30.40:55555

%SERVERADDR IP address and port number of the
J2EE server

10.20.30.100:44444

%SESSIONID WebSocket session ID 11111111-2222-3333-4444-555555555555

5. Problem Analysis

Maintenance and Migration Guide 204

Format argument Output contents Output example

%MASK Indicates the mask set for the
WebSocket frame information.

MASK:
The information is masked.

NOMASK:
The information is not masked.

MASK

%MASKKEY Key used to mask the information
in the WebSocket frame.
If the information is not masked, a
hyphen (-) is output.

EEEEEEEE

%ISEXTENDED Indicates the frame for which
the endpoint is set to send or
receive messages.

BASE:
A basic frame is used.

EXTENDED:
An extended frame is used.

BASE

%RSV Indicates reserved bits set by
the client endpoint during the
negotiation of an extension.

RSV-000

%FRAMEMAINTYPE Specify whether the WebSocket
frame is a data frame or
control frame.

Data:
A data frame is used.

Control:
A control frame is used.

Data

%PAYLOADDATA Payload data aaaaaa

%PAYLOADDATA(n) Payload data when displaying only
a certain number of characters
indicating the beginning and end
of the message.
For binary, this is always a
hyphen (-).

aaaaaaaaaa....aaaaaaaaaa

Notes

• The maximum string length that can be used for the format type is 1,024 characters. If the string exceeds 1,024
characters, the message KDJE39400-W is output and the default value is used.

• If no string is specified, the message KDJE39009-W is output and the default value is used.

• You can specify only the format arguments defined in the table connected by single byte spaces. When doing so,
note the following points:
- The number of single byte spaces is not preserved.
- Leading and trailing spaces are not preserved.
- There are no restrictions on the order of the format arguments.
- There is a restriction on the number of occurrences (the use of the same format argument multiple times). If
the same format argument is defined multiple times, only the first definition will be valid, and the second and
subsequent definitions will not be valid.

5. Problem Analysis

Maintenance and Migration Guide 205

The following shows the notation described with the format arguments.

%TS %IO %OPCODE %ROOTAP %URI %FIN %PAYLOADDATALEN %CLIENTAP %CLOSEREASON

The following shows the output format.

time-of-sending-or-receiving-the-WebSocket-frameΔdirection-of-sending-or-rec
eiving-the-WebSocket-frameΔtype-of-the-WebSocket-frameΔroot-application-info
rmationΔrequest-URLΔidentifier-that-indicates-the-end-of-the-WebSocket-frame
Δpayload-data-lengthΔclient-application-informationΔreason-why-the-WebSocket
-connection-was-disconnected

Note
A new line is inserted after the payload data length.

Legend
Δ: Single byte space

The following shows an example of output.

2001/01/01 01:01:01.111 +0900 IN Text10.100.10.100/1234/0x0000000000000001
/websocket_server/test001 CONT 100 10.100.10.100/1234/0x0000000000000003 -

5.2.4 Output Format and Output Items of the Event Log (In Windows)
The output format and output items of the event log are described below.

An Event log is output when starting, stopping, and abnormally terminating the J2EE server. The output format is
as follows:

ID character string pid: Message text

The output items are as follows:

Table 5‒18: Output items of event log

Item name Description

ID character string HEJB is output as the character string showing the application.

Pid Process ID is output.

Message text Message text is output.

5.2.5 Output Format and Output Items of syslog (In UNIX)
The output format and output items of syslog are described below.

syslog is output when starting, stopping, and abnormally terminating the J2EE server. The output format is as follows:

5. Problem Analysis

Maintenance and Migration Guide 206

Date Time Host name ID character string pid: Message text

The output items are as follows:

Table 5‒19: Output items of syslog

Item name Description

Date Date when the message is output.

Time Time when the message is output.

Host name Character string that shows host name is output.

Pid Process ID is output.

ID character string HEJB is output as the character string showing the application.

Message text Message text is output.

5. Problem Analysis

Maintenance and Migration Guide 207

5.3 EJB Client Application Log

The EJB client application log types are described below. For details on log types, log output format and output items
for each log, and precautions while referencing logs, see the section 5.2 Application Server Log.

The log types of an EJB client application are as follows:

Table 5‒20: Types of log of EJB client application

Types Contents Type

Message log Operation log Hitachi Trace Common Library format
(multi processes)

cjclstartap command operation log Hitachi Trace Common Library format
(multi processes)

cjcldellog command operation log Hitachi Trace Common Library format
(multi processes)

User log User output log Hitachi Trace Common Library format
(multi processes)

User error log Hitachi Trace Common Library format
(multi processes)

Java log JavaVM maintenance information, GC log Proprietary format

Exception log Exception information when an error occurs Hitachi Trace Common Library format
(multi processes)

Note that the EJB client application logs only support the wraparound mode of switching the output destinations for
file sizes.

5. Problem Analysis

Maintenance and Migration Guide 208

5.4 Trace based performance analysis

By investigating the trace based performance analysis, you can analyze the processes that are moving further or the
processes that are in a bottleneck for each request. Moreover, when you investigate a session trace, the life cycle of that
session can be confirmed.

With these traces as a base, you can locate the places where problem has occurred and take appropriate measures for the
places with a bottleneck. Check as per the requirement.

For details on the output contents of the trace based performance analysis, see 7. Performance Analysis by Using Trace
Based Performance Analysis.

5. Problem Analysis

Maintenance and Migration Guide 209

5.5 JavaVM Thread Dump

When you investigate the JavaVM thread dump, it is easy to investigate the cause of the error at the Java program level
such as system dead locks.

The type of output information differs depending on the options specified when starting the J2EE server. For details on
settings for acquiring the JavaVM material, see the subsection 3.3.17 Settings for Acquiring the JavaVM Material.

5.5.1 Structure of thread dump information
The structure of JavaVM thread dump information is as follows:

Table 5‒21: Structure of the thread dump information

Output information Contents

Header Date, JavaVM version information, start command line is output.

System settings Following information is output:
• Java home path indicating the installation location of the JDK execution environment
• Java DLL path indicating the installation directory of the library configuring JDK
• System class path
• Java command options

Operation environment Following information is output:
• Host name
• OS version
• CPU information
• Resource information (in UNIX)

Memory information (in Windows) Current memory usage size and various unused size information is output.

Java heap information Memory usage status of each generation of Java heap is output.

JavaVM internal memory map information Memory area information securing the JavaVM its self is output.

JavaVM internal memory size information Memory size information securing the JavaVM its self is output.

Application environment Following information is output:
• Signal handler
• Environment variable

Library information Loaded library information is output.

Thread information
<Thread 1>
...
<Thread n>

Thread information for each thread is output.

Java monitor dump# List of Java monitor objects is displayed.

JNI global reference information#2 Output the number of global references to JNI maintained by JavaVM.

Explicit heap detail information Output the following information for each class of Java process when you use the Explicit
Memory Management functionality:
• Use status of entire Explicit heap
• Use status for each Explicit memory block

5. Problem Analysis

Maintenance and Migration Guide 210

Output information Contents

When you execute the eheapprof command while using the Explicit Memory
Management functionality, the statistical information of object within the Explicit memory
block and the release rate information for the Explicit memory block is output.

Class-wise statistical information Output the following information for each class of Java process specified by the
jheapprof command.
• Total size and reference of instance as the member of an instance
• Total size of instances possessed by static member
• Total size of object classes and instances causing an increase in the Tenured area

Footer The time when thread dump terminated is displayed.

#
In UNIX, the notify pending list might not be displayed.

For details on the JavaVM thread dump information, see -XX:[+|-]HitachiThreadDump (Option to output the extended
thread dump information) in the uCosminexus Application Server Definition Reference Guide. For details on the
class-wise statistical information, see 9.3 Class-wise statistical functionality. For details on the Explicit heap details
information, see 5.5.3 Output contents of Explicit heap details information.

5.5.2 Mapping between thread dump and trace based performance
analysis file

Moreover, when slowdown or hang-up occurs in a J2EE application, you can investigate the locations where the errors
occurred by correlating the thread dump with trace based performance analysis.

To correlate the thread dump with trace based performance analysis, use the thread ID output to the trace based
performance analysis file with the nativeID (OS level thread ID) of the thread information output to the thread dump.
To specify the corresponding trace based performance analysis file from the thread dump:

1. Collect the thread dump and trace based performance analysis file.
For details on the collection methods of thread dump, see 4.7 JavaVM thread dump. For details on the collection
methods of the trace based performance analysis file, see 7.3.1 How to collect a trace based performance analysis file.

2. Select the thread dump and trace based performance analysis file to be used.
Based on the time when the thread dump and trace based performance analysis file are output, select the thread
dump and trace based performance analysis file to be used for investigation. For details on the output time, see the
following information:

Thread dump
Date and time output at the end of the file name and file.
The following is an example showing the date and time output at the end of a file:

 ...
 ...
Full thread dump completed. Fri Jul 21 19:22:47 2006

Trace based performance analysis file
Time and Time(msec/usec/nsec)
The following figure shows the Time and Time (msec/usec/nsec) of the trace based performance analysis file.

5. Problem Analysis

Maintenance and Migration Guide 211

3. Convert nid (hexadecimal) and jid (hexadecimal) of thread dump to decimal.

• In Windows and AIX
Convert the thread dump nid (hexadecimal) to decimal value.

 ...
 ...
"VBJ ThreadPool Worker" daemon prio=5 jid=0x00054f93 tid=0x04cef380 nid
=0x1124 in Object.wait() [0x0632f000..0x0632fd18]
 stack=[0x06330000..0x062f5000..0x062f1000..0x062f0000]
 [user cpu time=0ms, kernel cpu time=15ms] [blocked count=1, waited cou
nt=29]
at java.lang.Object.wait(Native Method)
 ...
 ...

1124(Hexadecimal)=4388(Decimal)
• In Linux

Convert the thread dump nid (hexadecimal) to decimal value.

 ...
 ...
"main" prio=1 jid=0x00006d75 tid=0x00201d70 nid=0x1e51 waiting on condi
tion [0x00000000..0xbfe80488] stack=[0xbfe87000..0xbfc8c000..0xbfc88000
..0xbfc87000] [user cpu time=1320ms, kernel cpu time=4280ms] [blocked c
ount=5, waited count=4]
 ...
 ...

6d75(Hexadecimal) = 28021 (Decimal)

4. Search the row in which the value (Decimal) of Thread(hashcode) in the trace based performance analysis file
matches with the value converted to decimal by procedure 3., and specify the trace information.

• In Windows and AIX
Search the line where value of Thread (Thread ID) is matching with the value converted to decimals.

• In Linux
Search the line where value of hashcode (Hashcode) is matching with the value converted to decimals.

5. Problem Analysis

Maintenance and Migration Guide 212

5.5.3 Output contents of Explicit heap details information
The Explicit heap information and the Explicit memory block information is output to the Explicit heap details
information. When there is more than one Explicit memory block, they are output to the Explicit memory block
information. You can also output the object statistical information within the Explicit memory blocks and the release rate
information for the Explicit memory block to the Explicit memory block information.

The output format, output items, and output examples of Explicit heap details information are as follows:

Output format
The output format differs depending on the execution of eheapprof command.

• When the eheapprof command is executed

Explicit Heap Status

 max <EH_MAX>, total <EH_TOTAL>, used <EH_USED>, garbage <EH_GARB> (<EH
_PER1> used/max, <EH_PER2> \
used/total, <EH_PER3> garbage/used), <EM_NUMS> spaces exist

 Explicit Memories(<EM_MGR_PTR>)
...
 "<EM_NAME>" eid=<EID>(<EM_PTR>)/<EM_TYPE>, total <EM_TOTAL>, used <EM_
USED>, garbage <EM_GARB> \
(<EM_PER1> used/total, <EM_PER2> garbage/used, <FL_BLOCKS> blocks) <EM_
STAT>
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 <ISIZE> <INUM> <FRATIO> <CNAME>
 ...
 <AISIZE> <AINUM> total
...

Note: For details on the signs used in the output format, see 5.11.2(3) Signs used in description of output format
of event log.

• When the eheapprof command is not executed

Explicit Heap Status

 max <EH_MAX>, total <EH_TOTAL>, used <EH_USED>, garbage <EH_GARB> (<EH
_PER1> used/max, <EH_PER2> \
used/total, <EH_PER3> garbage/used), <EM_NUMS> spaces exist

 Explicit Memories(<EM_MGR_PTR>)
...
 "<EM_NAME>" eid=<EID>(<EM_PTR>)/<EM_TYPE>, total <EM_TOTAL>, used <EM_
USED>, garbage <EM_GARB> \
(<EM_PER1> used/total, <EM_PER2> garbage/used, <FL_BLOCKS> blocks) <EM_
STAT>
...

Note: For details on the signs used in the output format, see 5.11.2(3) Signs used in description of output format
of event log.

Output items
The following table describes about each item in output format.

5. Problem Analysis

Maintenance and Migration Guide 213

Table 5‒22: Output items (Explicit heap details information)

Category Output items Output contents Meaning

Explicit heap
information

<EH_MAX> <const>K Maximum size of Explicit heap is output. The unit is kilo bytes.

<EH_TOTAL> <const>K Secured Explicit heap size is output. The unit is kilo bytes.

<EH_USED> <const>K Used Explicit heap size is output. The unit is kilo bytes.

<EH_GARB> <const>K The internal status of Explicit heap is output.

<EH_PER1> <decimal>% Explicit heap utilization rate (<EH_USED>/<EH_MAX>) is
output in % sign.

<EH_PER2> <decimal>% Explicit heap utilization rate (<EH_USED>/<EH_TOTAL>) is
output in % sign.

<EH_PER3> <decimal>% The internal status of Explicit heap is output.

<EM_NUMS> <const> The valid Explicit memory blocks are output.

<EM_MGR_PTR> <ptr> Memory address that has internal information for Explicit
heap control is output. The memory address can be used for
investigating errors.

Explicit memory
block information

<EM_NAME> <letters> Name of Explicit memory block is output.
The output contents are uncertain when multi byte characters
are included in name of Explicit memory block (Usually
garbled and output).
At times "NULL" is output when name of Explicit memory
block is output at about the same time of initialization of
Explicit memory block or when JavaVM generates the Explicit
memory block internally.

<EID> <const> ID of Explicit memory block is output.

<EM_PTR> <ptr> Memory address with Explicit memory block internal
structure is output. The memory address can be used for
investigating errors.

<EM_TYPE> R|B|A Explicit type is output. R indicates Explicit memory block
used internally in Application Server. B indicates Explicit
memory block used by application. A indicates the Explicit
memory block that is specified using the automatic allocation
configuration file.

<EM_TOTAL> <const>K Secured memory size of Explicit memory block is output. The
unit is kilo bytes.

<EM_USED> <const>K Used size of Explicit memory block is output. The unit is
kilo bytes.

<EM_GARB> <const>K Internal status of Explicit memory block is output. The unit is
kilo bytes.

<EM_PER1> <decimal>% Explicit memory block utilization ratio (<EM_USED>/
<EM_TOTAL>) is output in % sign.

<EM_PER2> <decimal>% Internal status of Explicit memory block is output.

<FL_BLOCKS> <const> Normally 0 is output

<EM_STAT> Enable|Disable Sub-status of Explicit memory block is output.

Object statistical
information#1

<ISIZE> <const> Size in Explicit memory block of the object that sets the
instance of a certain class is output.

5. Problem Analysis

Maintenance and Migration Guide 214

Category Output items Output contents Meaning

<INUM> <const> Fixed quantity within the Explicit memory block of the object
that sets the instance of certain class is displayed.

<CNAME> <letters> Entire class name of class indicating <ISIZE> and <INUM>
is output.

<AISIZE> <const> Total size of all objects in Explicit memory block is output.

<AINUM> <const> Number of all blocks in Explicit memory block is output.

Object release rate
information#2

<FRATIO> <decimal>% The ratio of the objects released (object release rate) in the
automatic release processing of the Explicit memory block is
output with the % (percentage) sign.
Object release rate =
(Number-of-class-objects-before-the-automatic-release-
processing - Number-of-class-objects-after-
the-automatic-release-processing)/Number-of-class-objects-
before-the-automatic-release-processing ×100
Note that when the object release rate information is output,
"--" is output for the Explicit memory block that was not
subject to the automatic release processing.

Note:
For details on the signs used in the output contents, see 5.11.2(3) Signs used in description of output format of event log.

#1
The object statistical information is output while executing the eheapprof command. You can output actually created size, "[I" indicating
the int type array greater than the quantity, in the object statistical information. In such cases, "[I" indicates objects that are not used in an
Explicit memory block. Create the int type array in internal process of JavaVM for objects that are not used in the Explicit memory block.

#2
The object release rate information is output when you execute the eheapprof command specifying the -freeratio option.

Example of output
The output format differs depending on execution of the eheapprof command.

• When eheapprof command is executed

Explicit Heap Status

 max 31415926K, total 162816K, used 150528K, garbage 10004K (0.0% used/
max, 91.1% used/total, 6.6% garbage/used), 3 spaces exist

 Explicit Memories(0x12345678)

 "EJBMgrData" eid=1(0x02f25610)/R, total 54272K, used 50176K, garbage 0
K (91.2% used/total, 0.0% garbage/used, 0 blocks)
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 35234568 10648 - java.util.HashMap
 5678900 10668 - [Ljava.util.HashMap$Entr
y;
 4456788 7436 - java.util.HashMap$Entry
 4321000 200 - java.util.WeakHashMap
 1234568 190 - [Ljava.util.WeakHashMap$
Entry;
 454400 4 - java.util.WeakHashMap$En
try
 51380224 29146 total

 "VJBStored" eid=3(0x02f25910)/B, total 54272K, used 50176K, garbage 10

5. Problem Analysis

Maintenance and Migration Guide 215

004K (90.7% used/total, 19.9% garbage/used, 5 blocks)
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 35234568 10648 49 java.util.HashMap
 5678900 10668 43 [Ljava.util.HashMap$Ent
ry;
 4456788 7436 50 java.util.HashMap$Entry
 4321000 200 32 java.util.WeakHashMap
 1234568 190 45 [Ljava.util.WeakHashMap
$Entry;
 454400 4 22 java.util.WeakHashMap$E
ntry
 51380224 29146 total

 "ExplicitMemory-2" eid=2(0x02f25700)/B, total 54272K, used 50176K, gar
bage 0K (91.1% used/total, 0.0% garbage/used, 0 blocks)
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 35234568 10648 - java.util.HashMap
 5678900 10668 - [Ljava.util.HashMap$Ent
ry;
 4456788 7436 - java.util.HashMap$Entry
 4321000 200 - java.util.WeakHashMap
 1234568 190 - [Ljava.util.WeakHashMap
$Entry;
 454400 4 - java.util.WeakHashMap$E
ntry
 51380224 29146 total

• When the eheapprof command is not executed

Explicit Heap Status

 max 31415926K, total 213971K, used 205369K, garbage 1234K (1.1% used/m
ax, 96.2% used/total, 0.0% garbage/used), 3 spaces exist

 Explicit Memories(0x12345678)

 "EJBMgrData" eid=1(0x02f25610)/R, total 154272K, used 150176K, garbag
e 1234K (97.0% used/total, 1.2% garbage/used, 0 blocks) Enable

 "VJBStored" eid=3(0x02f25910)/B, total 54272K, used 50176K, garbage 0
K (90.9% used/total, 0.0% garbage/used, 2 blocks) Enable

 "ExplicitMemory-2" eid=2(0x02f25700)/R, total 5427K, used 5017K, garba
ge 0K (92.1% used/total, 0.0% garbage/used, 0 blocks) Enable

5. Problem Analysis

Maintenance and Migration Guide 216

5.6 JavaVM GC Log

The GC log is output to the JavaVM log file.

For details, see 5.7 JavaVM log (JavaVM log file).

5. Problem Analysis

Maintenance and Migration Guide 217

5.7 JavaVM log (JavaVM log file)

The JavaVM log file is output by using extended options added by Hitachi in the standard JavaVM. To acquire this log,
you need to specify the necessary options when starting the target J2EE server.

5.7.1 Options to output the JavaVM log file
The options to output the JavaVM log file are as follows:

• -XX:+HitachiOutOfMemoryStackTrace
It is an option to output the stack trace when OutOfMemoryError occurs. Note that the JavaVM log file is output
even if you specify -XX:+HitachiOutOfMemorySize and -XX:+HitachiOutOfMemoryCause that are
specified when you specify the -XX:+HitachiOutOfMemoryStackTrace option.

• -XX:+HitachiVerboseGC
It is an option to output the extended verbosegc information when GC is performed. For acquiring the extended
verbosegc information, see 5.7.2 Acquiring the extended verbosegc information.

• -XX:+HitachiJavaClassLibTrace
This option is to output the API call trace of System.gc(),
System.exit(), System.runFinalizersOnExit(), Runtime.exit(), Runtime.halt(), or
Runtime.runFinalizersOnExit() APIs when either of them is executed.
Note that when you specify the -XX:HitachiJavaClassLibTraceLineSize option, the number of
characters in the output trace are within the specified number of characters (number of bytes). When the number
of characters in one line exceeds the specified value, the first half of the character string after at is deleted and the
specified number of characters is output.

• -XX:+JITCompilerContinuation
This option enables the JIT compiler continuation functionality. If the JIT compilation fails due to a logical
inconsistency in a method configuring the application, the JIT compiler continuation functionality log is output to
the JavaVM log file.

For details on the output contents when specifying each option, see the following points in the uCosminexus Application
Server Definition Reference Guide:

• -XX:[+|-]HitachiOutOfMemoryStackTrace (Option for stack trace output)

• -XX:[+|-]HitachiVerboseGC (Option for extended verbosegc information output)

• -XX:[+|-]HitachiJavaClassLibTrace (Option to output the stack trace of class library)

• -XX:[+|-]JITCompilerContinuation (Option for the JIT compiler continuation functionality)

5.7.2 Acquiring the extended verbosegc information
In the J2EE server usrconf.cfg file, if you specify the options shown in the table below, you can acquire extended
verbosegc information. From the extended verbosegc information, you can acquire the information for estimating the
Java heap area size, Metaspace area size, required for that server. Note that the stack trace at OutOfMemoryError
occurrence time is also output in the Java log.

5. Problem Analysis

Maintenance and Migration Guide 218

Table 5‒23: Options to be specified for acquiring the extended verbosegc information

Optional Meaning

-XX:+HitachiVerboseGC Specify whether to output the extended verbosegc information. The information is
output for each type of GC's internal areas: Eden, Survivor, Tenured, and Metaspace
areas. Nothing is output by default. If -XX:+HitachiVerboseGC is specified,
the extended verbosegc information is output and if -XX:-HitachiVerboseGC
is specified, the extended verbosegc information is not output.

-XX:+HitachiVerboseGCPrintDate Specify whether to display the date of log output at the beginning of each line of the
log in which the extended verbosegc information is output.

-XX:+HitachiVerboseGCCpuTime During the period between the start of GC until the end of GC, specify whether only
the time spent in user mode and kernel mode by the GC execution thread should be
displayed or the execution time should be displayed.

-
XX:HitachiVerboseGCIntervalTime=Time-
interval

Specify a numeric value (Unit: Seconds) as an output time interval for -
XX:+HitachiVerboseGC. The default value for the time interval is 0 (Output
every time GC occurs). Note that when you specify the time interval, the GC
frequency during that time interval is also displayed.

-XX:+HitachiVerboseGCPrintCause Specify whether to display the cause for the occurrence of GC in the log in which the
extended verbosegc information is output.

-XX:+HitachiCommaVerboseGC Specify whether the log in which the extended verbosegc information is output
should be in CSV format. If the log is output in the CSV format, all the brackets (()
[] < >) and delimiters of the extended verbosegc information are omitted, and the
numeric values or character strings delimited by comma (,) are output.

-
XX:+HitachiVerboseGCPrintTenuringDis
tribution

Specify whether to output Tenuring Distribution information of Survivor area.
Nothing is output by default. For output format or output information, see 9.11
Tenuring distribution information output functionality of the Survivor area.

-
XX:+HitachiVerboseGCPrintJVMInternal
Memory

Specify whether the heap information managed in JavaVM is output to the JavaVM
log file.

-
XX:+HitachiVerboseGCPrintThreadCount

Specify whether the Java thread count is output to the JavaVM log file to monitor the
Java thread count.

-
XX:+HitachiVerboseGCPrintDeleteOnExi
t

Specify whether the cumulative heap size allocated by JavaVM by invoking
java.io.File.deleteOnExit()and the frequency of method invocation
are output to the JavaVM log file.

-XX:+PrintCodeCacheInfo Specify whether to output the usage of the code cache area, and also whether to output
a message informing the user that the usage has reached the threshold value.

The format and the example of the log file output are as follows:

Output format

[id]<date>(Skip Full:full_count, Copy:copy_count)[gc_kind gc_info, gc_tim
e secs][DefNew::Eden: eden_info][DefNew::Survivor: survivor_info][Tenured
: tenured_info][Metaspace: metaspace_info][class space: class_space_info
] [cause:cause_info][User: user_cpu secs][Sys: system_cpu secs]][IM:jv
m_alloc_size, mmap_total_size, malloc_total_size][TC: thread_count][DOE: d
oe_alloc_size, called_count] [CCI: cc_used_sizeK, cc_max_sizeK, cc_infoK]

Description

• id: JavaVM log file identifier
The following table describes the JavaVM log file identifiers. Use these identifiers for investigation by filtering
log as per log contents (functions).

5. Problem Analysis

Maintenance and Migration Guide 219

Table 5‒24: JavaVM log file identifiers

Identifiers Log contents

CCI Code cache area information

CLT Stack trace of class library

JCC Information on the failure of JIT compilation

JMS Information on the JIT complier thread that prevents JIT compilation

OMH Information on the frequency of OutOfMemory occurrences

OOM Exception information when OutOfMemoryError occurs and stack trace

PTD Tenuring distribution information of Survivor area

VGC Extended verbosegc information

• date: Date and time

• full_count: Frequency of skipping Full GC (Only when you specify -
XX:HitachiVerboseGCIntervalTime)

• copy_count: Frequency of skipping copy GC (Only when you specify -
XX:HitachiVerboseGCIntervalTime)

• gc_kind: GC type (Full GC or GC)

• gc_info: GC information (Area length prior to GC-> Area length after GC (Area size))
(Example) 264K->0K(512K)

• gc_time: GC elapsed time (Unit: Seconds)

• eden_info: Eden information

• survivor_info: Survivor information

• tenured_info: Tenured information

• metaspace_info: Metaspace area information

• class_space_info: CompressedClassSpace information

• cause_info: Cause of GC

• user_cpu secs: CPU time spent in user mode by the GC thread (Unit: Seconds)

• system_cpu secs: CPU time spent in kernel mode by the GC thread. (Unit: Seconds)

• jvm_alloc_size: The size of the area currently in use, among the areas managed in JavaVM (size of the area
currently in use among the total size of mmap_total_size and malloc_total_size) (only when
-XX:+HitachiVerboseGCPrintJVMInternalMemory is specified)

• mmap_total_size: The total size of C heap allocated by mmap (in Windows VirtualAlloc) , among the areas
managed in JavaV (only when -XX:+HitachiVerboseGCPrintJVMInternalMemory is specified)

• malloc_total_size: The total size of C heap allocated by malloc, among the areas managed in JavaVM (only when
-XX:+HitachiVerboseGCPrintJVMInternalMemory is specified)

• thread_count: Java thread count (only when -XX:+HitachiVerboseGCPrintThreadCount
is specified)

• doe_alloc_size: The accumulated heap size allocated by invoking java.io.File.deleteOnExit() (only
when -XX:+HitachiVerboseGCPrintDeleteOnExit is specified)

5. Problem Analysis

Maintenance and Migration Guide 220

• called_count: The number of times java.io.File.deleteOnExit() is invoked (only when -
XX:+HitachiVerboseGCPrintDeleteOnExit is specified)

• cc_used_size: Size of the code cache area used during GC (unit: kilobyte) (only when -
XX:+PrintCodeCacheInfo is specified)

• cc_max_size: Maximum size of the code cache area (unit: kilobyte) (only when -
XX:+PrintCodeCacheInfo is specified)

• cc_info: Maintenance information (only when -XX:+PrintCodeCacheInfo is specified)

Example of output
Examples of output when the -XX:+HitachiCommaVerboseGC option is specified are as follows:

VGC,Fri Jan 23 21:37:50 2004,11,41,0,GC,16886,16886,65088,0.0559806,
4094,0,4096,447,447,448,12345,16439,60544,1116,1116,4096,0,0.0312500, 0.01
56250,729,928,0,509,2167,2054,2301,49152,2304
VGC,Fri Jan 23 21:37:55 2004,6,24,0,Full GC,65082,65082,65088,0.4294532,
4094,4094,4096,447,447,448,60541,60541,60544,1116,1116,4096,0,0.0156250, 0
.0312500,729,928,0,509,16,170,2301,49152,2304

5.7.3 Contents of the code cache area-related log
JavaVM speeds up the processing by executing the JIT compilation for the Java methods with a high invocation count
and loop count. The JIT compile code generated by the JIT compilation is allocated to the code cache area.

Normally there is no problem if the code cache area size is the default value. However, depending on the scale of the
execution environment and Java applications, the code cache area size might be depleted with the default value.

If the code cache area is depleted, JavaVM cannot execute the JIT compilation and, proper performance might not be
obtained from the execution of Java applications. In such cases, enable -XX:[+|-]PrintCodeCacheInfo (option
to output the code cache area information) or -XX:[+|-]PrintCodeCacheFullMessage (option to output the
code cache area depletion message), and then monitor the usage of the code cache area and the messages that are output.

For details on these options, see -XX:[+|-]PrintCodeCacheInfo (Option for the output of the code cache area
information) and -XX:[+|-]PrintCodeCacheFullMessage (Option for the output of the code cache area depletion
message) in the uCosminexus Application Server Definition Reference Guide.

(1) Output contents of the message informing the user that the usage of
the code cache area has reached the threshold value

The output format of the message informing the user that the usage of the code cache area has reached the threshold value
is as follows:

[cc_id]<cc_date>CodeCache usage has exceeded the threshold.[cc_used_sizeK, c
c_max_sizeK, cc_infoK]

The following table describes the output items:

Output item Explanation

cc_id Outputs the CCI (JavaVM log file identifier).

cc_date Outputs the data and time of JIT compilation.

5. Problem Analysis

Maintenance and Migration Guide 221

Output item Explanation

cc_used_size Outputs the size of the code cache area used after the JIT compilation (unit: kilobyte).

cc_max_size Outputs the maximum size of the code cache area (unit: kilobyte).

cc_info Outputs the maintenance information.

(2) Output contents of the message informing the user that the code cache
area has depleted

The output format of the message informing the user that the code cache area has depleted is as follows:

[cc_id]<cc_date>CodeCache is full. Compiler has been disabled.[cc_used_sizeK
, cc_max_sizeK, cc_infoK]

The following table describes the output items:

Output item Explanation

cc_id Outputs the CCI (JavaVM log file identifier).

cc_date Outputs the date on which the Java method became subject to the JIT compilation.

cc_used_size Outputs the used size of the code cache area when the Java method became subject to the JIT compilation
(unit: kilobyte).

cc_max_size Outputs the maximum size of the code cache area (unit: kilobyte).

cc_info Outputs the maintenance information.

5. Problem Analysis

Maintenance and Migration Guide 222

5.8 Message log output by JavaVM (Standard output and error report file)

When the JavaVM crashes, JavaVM outputs the debug information to the standard output and error report file.

The following are cases when the debug information is output to the error report file:

• When a signal occurs in JNI

• When C heap is insufficient in the JavaVM

• When an unexpected signal occurs in the JavaVM

• When an Internal Error (internal logical error) occurs in the JavaVM

The contents of message log output in the following cases are as follows.

Table 5‒25: Message log output by JavaVM

Message type Output destination

When a signal occurs in JNI or message in JavaVM# Standard output
Error report files

Insufficient C heap message# Standard output
Error report files

Internal Error occurrence message# Standard output
Error report files

Thread creation failure message# Standard output

#
The JavaVM proprietary output destination or output contents exist.

Note that the thread creation failure message is output only in the standard output.

5.8.1 When a Signal Occurs
When a signal occurs, the items shown below are output to the log. The JavaVM extended contents are included in the
output contents.

• Abnormal termination location and signal type#

• Current thread information

• Save destination address of signal information#

• Signal information

• siginfo information# (in UNIX)

• Register information

• Information saved from the beginning of the stack

• Command code information

• Stack trace

• Thread information

• VM status

5. Problem Analysis

Maintenance and Migration Guide 223

• Memory information#

• Usage status of Java heap#

• Card table map address display

• Polling page address display

• Large pages allocation failure information

• CodeCache information

• Event information

• Library

• Command and VM parameters#

• Environment variable

• Registered signal handlers

• Machine information#

• System name, CPU, actual memory and VM information

• Time information#

• Command line of the javatrace startup command# (in UNIX)

#
These are the output contents extended by Hitachi.

Each output contents are described below.

(1) Abnormal termination location and signal type
Any one of the following contents are output in compliance with the status at the time of abnormal termination. These
contents are extended by JavaVM.

(a) When a signal is detected
The following message is output:

#
A fatal error has been detected by the Java Runtime Environment:

The following contents are output:

Contents output when a signal is detected

#
A fatal error has been detected by the Java Runtime Environment:
#
Occurred-signal-name (signal-number) at pc=PC-address, pid=Process-ID, tid
=Thread-ID
#
JRE version :(jre version information)
Java VM: Java HotSpot(TM) VM-type (Sun-version-information-Hitachi-version
-information-build-date mixed modeOS-name-CPU-type)
Problematic frame:

5. Problem Analysis

Maintenance and Migration Guide 224

<type-code> <library-name-where-signal-occurred+Offset
#

Note:
When you are able to extract a function name where the signal occurred, that function name and offset may be
displayed in continuation to library-name-where-signal-occured+offset.

(b) When an internal logical error occurs
The following contents are output:

Contents output when an internal logical error occurs

#
Internal Error (file-name:number-of-lines or internal-error-code), pid=pro
cess-ID, tid=thread-ID
Internal logical Error: Internal logical error message
#
JRE version: JRE-version-information
Java VM: Java HotSpot(TM) VM-type (Sun-version-information-Hitachi-version
-information-build-date mixed modeOS-name-CPU-type compressed-OOP)
#
core-file-information

Note:
Either a combination of the file name and number of lines or the Internal Error code is output to the Internal Error.
In Internal logical Error, any one of fatal error, guarantee(logical type)failed, or
Error is output, according to the type of the internal logical error.

(2) Current thread information
The following three types of information are output to the messages according to the thread type:

Current thread (address): thread-name "thread-name" [_state, id=thread-ID, s
tack(start-address,end-address)]

Or
Current thread (address): thread-name [_id=thread-ID, stack(start-address,en
d-address)]

Or
Current thread is native thread

(3) Save destination address of the signal information
The following contents are output. These contents are extended by JavaVM.

siginfo address: address, context address: address

(4) Signal information
The following contents are output.

5. Problem Analysis

Maintenance and Migration Guide 225

In Windows
EXCEPTION_ACCESS_VIOLATION(Read violation)

siginfo: ExceptionCode=signal-number, reading address address

EXCEPTION_ACCESS_VIOLATION(Write violation)

siginfo: ExceptionCode=signal-number, writing address address

EXCEPTION_ACCESS_VIOLATION(Others)

siginfo: ExceptionCode=signal-number, ExceptionInformation=additional-info
rmation

Other than EXCEPTION_ACCESS_VIOLATION

siginfo: ExceptionCode=signal-number, ExceptionInformation=additional-info
rmation-1 additional-information-2 ...

In UNIX

siginfo:si_signo= occurred-signal-number (occurred-signal-name), si_errno
: number, si_code: number(signal-reason-type), si_addr: address

(5) siginfo information (in UNIX)
The following contents are output. These contents are extended by JavaVM.

siginfo structure dump (location: siginfo-address)
siginfo-address siginfo-address siginfo-address siginfo-address
 ...
siginfo-address siginfo-address siginfo-address siginfo-address

Note:
The siginfo-address is output in hexadecimal.

(6) Register information
The following contents are output. However, these contents are not output in the case of internal logical errors.

Registers: register-information
...

Note:
In UNIX, different BSP register value and debugger (gdb) value are output. This is because, in debugger, the contents
of the backing store area that indicates BSP is output and the position that indicates BSP is modified.

(7) Information saved from the top of stack
The following contents are output. However, these contents are not output in the case of internal logical errors.

Top of Stack: (sp=Address-of-stack-pointer)
Address: Saved-contents
...

5. Problem Analysis

Maintenance and Migration Guide 226

Note:
saved-contents are output in hexadecimal.

(8) Stack trace
The following contents are output. However, these contents are not output when the Current thread is other
than JavaThread.

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
 Stack-trace
...

(9) Thread information
The following contents are output:

Java Threads: (=> current thread)
 address JavaThread "thread-name" [state, id=thread-ID, stack(start-address,
end-address)]
 :
=>address JavaThread "thread-name" [state, id=thread-ID, stack(start-address
,end-address)]
Other Threads:
 address thread-name [stack(start-address,end-address)] [id=thread-ID]
 :

(10) VM status
The following contents are output.

VM state: current-status

VM Mutex/Monitor currently owned by a thread: <mutexs/moniter>

Note:
The lock information may be output in continuation with this information.

(11) Memory information
The following contents are output. These contents are extended by JavaVM.

Memory:
secure-memory-function:addressStart-address - End-address (size: size)
 ...

 Heap Size: secured-memory-size
 Alloc Size: memory-size-in-use
 Free Size: unused-memory-size

memory-securing-function is either mmap()or malloc(). The address is displayed in hexadecimal.

The unit of each type of memory size is bytes.

5. Problem Analysis

Maintenance and Migration Guide 227

(12) Java heap usage status
The following contents are output. These contents are extended by JavaVM.

Heap#
Java-heap-information

#
The header section differs between the extended thread dump and the error report file.

For the extended thread dump Heap Status

For the error report file Heap

(13) Card table map address display
The following contents are output.

Card table byte_map: [address,address] byte_map_base: address

(14) Polling page address display
The following contents are output.

Polling page: address

(15) Large pages allocation failure information
If memory allocation by using the mmap() function fails, the number of failures is output.

Large page allocation failures have occurred number-of-times times

(16) CodeCache information
The following contents are output.

CodeCache: size=total-size used=used-size max_used=maximum-size free=free-sp
ace-size
 bounds [bottom, commit-addr, reserve-addr]
 total_blobs=total-number-of-CodeBlobs nmethods=total-number-of-methods adap
ters=total-number-of-adapters
 compilation: enabled or disabled

(17) Event information
All contents of the event buffer are output.

5. Problem Analysis

Maintenance and Migration Guide 228

event-type-name (number-of-events events):
event-record
 :

Event information is managed in a ring buffer, and the maximum number of events retained per event type is 10. If the
number of events is 0, No events is output to event-record.

The following are examples of output for each event-type that can be output.

• Compilation events
JIT compilation information

Compilation events (10 events):
Event: 0.923 Thread 0x00002aaab2f01800 389 b java.io.FileOutput
Stream::write (12 bytes)
Event: 0.923 Thread 0x00002aaab2f01800 nmethod 389 0x00002aaaac3ea490 cod
e [0x00002aaaac3ea5e0, 0x00002aaaac3ea668]
 :

• GC Heap History
Information before GC and information after GC

GC Heap History (4 events):
Event: 23.719 GC heap before
{Heap before GC invocations=0 (full 0):
 def new generation max 154880K, total 9664K, used 345K (0.2% used/max,
3.6% used/total)
 :

• Deoptimization events
Deoptimization information

Deoptimization events (10 events):
Event: 0.818 Thread 0x00002aaaaba7e000 Uncommon trap 24 fr.pc 0x00002aaaac
3d1eec
Event: 0.818 Thread 0x00002aaaaba7e000 Uncommon trap 54 fr.pc 0x00002aaaac
3d0dd8
 :

• Internal exceptions
Internal exception information

Internal exceptions (2 events):
Event: 0.025 Thread 0x00002aaaaba7e000 Threw 0x00000000db606140 at /hotspo
t/src/share/vm/prims/jni.cpp:4008
Event: 0.061 Thread 0x00002aaaaba7e000 Threw 0x00000000db649980 at /hotspo
t/src/share/vm/prims/jvm.cpp:1167
 :

• Events
Class loader information and other information

Events (10 events):
Event: 0.080 loading class 0x00002aaab302e990
Event: 0.080 loading class 0x00002aaab302e990 done
Event: 4.286 Executing VM operation: EnableBiasedLocking

5. Problem Analysis

Maintenance and Migration Guide 229

Event: 4.286 Executing VM operation: EnableBiasedLocking done
 :

(18) Libraries
The list of loaded libraries is output in continuation to the following contents.

Dynamic libraries:
libraries
...

(19) Command and VM parameters
The following contents are output. These contents are extended by JavaVM.

Command : command-line

Java Home Dir : JDK-execution-environment-install-directory
Java DLL Dir : JDK-library-install-directory
Sys Classpath : system-class-path
User Args :
command-option-1
command-option-2
...

(20) Environment variables
The following contents are output.

Environment Variables:
environment-variable=value
...

(21) Registered signal handlers
The following contents are output.

Signal Handlers:
signal-type:
 [signal-handler-address], sa_mask[0]= mask-signal, sa_flags=special-flag
...
Changed Signal Handlers -
signal-type: [signal-handler-address], sa_mask[0]=signal-mask, sa_flags=spec
ial-flag
...

The meaning of output contents are as follows:

• signal-type: It is the signal name defined in /usr/include/sys/signal.h.

• signal-handler-address: It is the signal handler address output in hexadecimal. It may also be displayed in the
library-name+offset format.

5. Problem Analysis

Maintenance and Migration Guide 230

• signal-mask: It is the value where the sa_mask field value of the structure extracted by sigaction() is output
in hexadecimal.

• special-flag: It is the value where the sa_flags field value of the structure extracted by sigaction() is output
in hexadecimal.

(22) Machine information
The following contents are output. These contents are extended by JavaVM.

Host: host-name:IP-address

Note:
Multiple IP addresses may be displayed in IP-address.

(23) System name, CPU, actual memory, and VM information
The following contents are output.

In Windows

OS:OS-version

CPU: number-of-CPUs-that-can-be-used, CPU-type

Memory:actual-memory-information

vm_info:VM-information

In UNIX

OS:OS version

[uname:uname output]
[libc:version-number-of-libc(at-times-version number-is-not-output)]
[rlimit:limit-value]
[load average:load-average]
[/proc/meminfo:/proc/meminfo contents]

CPU:number-of-CPUs-that-can-be-used,CPU-type

Memory:actual-memory-information

vm_info:VM-information

Time information

The following contents are output:

time: execution-date

elapsed time: execution-time seconds (formatted-execution-time-output)

5. Problem Analysis

Maintenance and Migration Guide 231

Note:
An example of the execution date is as follows:
Example: Wed Aug 25 14:55:04 2004
It is difficult to understand the execution time given only in unit of seconds, so the execution time is output in
(formatted-execution-time-output) in the format of days, hours, minutes, and seconds.
(Example) elapsed time: 900 seconds (0d 0h 15m 0s)

(24) Command line of javatrace start command (in UNIX)
The following contents are output. These contents are extended by JavaVM.

You can get further information from javatrace.log file generated
by using javatrace command.
usage: javatrace core-file-name loadmodule-name [out-file-name] [-l(librar
y-name)...]
Please use javatrace command as follows and submit a bug report
to Hitachi with javatrace.log file:
#[installation-directory/bin/javatrace core-file load-module]

5.8.2 When C Heap Is Insufficient
When C heap is insufficient, the message output, and dump output or core dump generation is performed in the
following order:

1. A message log indicating insufficient C heap is output to the error report file and standard output.

2. If the memory is insufficient during the execution of 1., a simple message is output to the standard output.

3. In UNIX, if the memory is still insufficient during the output of a simple message, output of the message and error
log file is interrupted and a core dump is generated.

Each output format is described below.

(1) Output contents of a message log indicating insufficient C heap
The output format of a message log indicating insufficient C heap is described below. This format is common for the error
report file and standard output.

• In Windows

Exception in thread <ThreadName> java.lang.OutOfMemoryError:requested <n>
bytes [for <message>].

Memory Status

 Memory in use: utilization-rate%
 Physical memory: free-memory-size/total-memory-sizefree
 Virtual memory: free-memory-size/Total-memory-sizefree
 Paging file: free-volume/total-volumefree

Heap Status

5. Problem Analysis

Maintenance and Migration Guide 232

Java-heap-information

Stack Trace

stack-trace
JVM Internal Memory Status

area-information-managed-by-the-unique-memory-management-function
Insufficient memory for malloc. JVM generates core file.

• In AIX or Linux

Exception in thread <ThreadName> java.lang.OutOfMemoryError: requested <n
> bytes [for <message>].

Memory Status

 maximum size of data segment
 soft(current) limit: software-limit-value-acquired-by-getrlimit(RLIMIT_DA
TA) kbytes (Hexadecimal)
 hard limit: hardware-limit-value-acquired-by-getrlimit(RLIMIT_DATA) kbyte
s (Hexadecimal)
 current end of the heap: value-acquired-by-sbrk(0)
 JVM allocation size by malloc: memory-size-allocated-to-JavaVM kbytes (He
xadecimal)
 malloc information
 total space in arena :mallinfo.arena value
 number of ordinary blocks :mallinfo.ordblks value
 number of small blocks :mallinfo.smblks value
 number of holding blocks :mallinfo.hblks value
 space in holding block headers :mallinfo.hblkhd value
 space in small blocks in use :mallinfo.usmblks value
 space in free small blocks :mallinfo.fsmblks value
 space in ordinary blocks in use :mallinfo.uordblks value
 space in free ordinary blocks :mallinfo.fordblks value
 cost of enabling keep option :mallinfo.keepcost value

Heap Status

Java-heap-information

Stack Trace

stack-trace

JVM Internal Memory Status

area-information-managed-by-the-unique-memory-management-function

When such a message is output, take appropriate measures such as reducing C heap.

The output contents are as follows:

5. Problem Analysis

Maintenance and Migration Guide 233

Table 5‒26: Output items of message log when C heap is insufficient

Output items Description

ThreadName The thread name extracted by the Thread#getName() method is output.

n The size of memory securing requests is output.

message The internal message required by maintenance personnel for investigation is output. In some cases it may
not be output.

Java heap information The usage status of Java heap is output.

Stack trace The stack trace is output when the thread for which the memory is insufficient is the thread that is executing
a Java code.
The stack trace is not output when the memory is insufficient in the thread that is executing internal process
such as compilation process in JavaVM.

(2) Output contents of message showing memory insufficiency
If memory becomes insufficient while a message log indicating insufficient C heap is being output, the process cannot
be continued. In this case, a simple message in the following format is output to the standard output.

java.lang.OutOfMemoryError:requested <n> bytes for <message>

The output contents are as follows:

Table 5‒27: Output contents of a simple message when the memory is insufficient

Output items Description

n The size of memory securing requests is output.

message The internal message required by maintenance personnel for investigation is output.

(3) Output contents of the message indicating core dump generation
If the memory is still insufficient when a simple message is output, output of the message and error log file is interrupted
and a core dump is generated. When a core dump is generated, the message in the following format is output in the
standard output.

Can't create logs because of memory shortage.
Insufficient memory for malloc. JVM generates core file

5.8.3 When an Internal Error Occurs
When an internal error that is a logical error within JavaVM occurs, the following information is output.

• Abnormal termination location and signal type

• Current thread information

• Save destination address of signal information#

• Thread information

• VM status

5. Problem Analysis

Maintenance and Migration Guide 234

• Memory information#

• Heap information#

• Card table map address

• Polling page address

• Large pages allocation failure information

• CodeCache information

• Event information

• Library

• Command VM parameter#

• Environment variable

• Registered signal handlers

• Machine information#

• System name, CPU, actual memory and VM information

• Time information

• Command line of the javatrace startup command# (in UNIX)

#
These are the output contents extended by Hitachi.

For the output format of each information, see 5.8.1 When a Signal Occurs.

5.8.4 When Thread Creation Fails
When memory insufficiency (OutOfMemoryError) occurs and a new thread cannot be created, the number of threads at
that time is output to the standard output. The threads that could not be created are also included in this number of threads.

An example of output when thread creation failed due to memory insufficiency is as follows:

java.lang.OutOfMemoryError:unable to create new native thread.1200 threads e
xist.
...

An example of output when thread creation failed at JavaVM startup time is as follows:

Error occurred during initialization of VM
Could not create thread for VM:VM Thread.5 threads exist.

5. Problem Analysis

Maintenance and Migration Guide 235

5.9 OS status information and OS log

Confirm the existence of an abnormal trend from the acquired OS status and log information. For more details on this,
see the manuals provided with the OS.

5. Problem Analysis

Maintenance and Migration Guide 236

5.10 JavaVM stack trace information

Of the information output in the stack trace, the contents extended by JavaVM are described here.

When an error occurs in a server and applications, you can investigate the cause for error occurrence by confirming the
stack trace contents until the error occurred.

The stack trace is output at either of the following timings:

• When an exception occurs in the J2EE servers or J2EE applications

• When an exception occurs in batch servers or batch applications

• When JavaVM thread dump is output

In JavaVM, you can output the information of local variables in Java methods in the stack trace by specifying start options
when starting the server. The information of local variables defined in Java methods is effective for analyzing the cause
of errors when exceptions occur.

Note that, the Local variables referenced here are the objects (this) that are passed to the methods as arguments and
are invoked by instance methods. In the local variable information, these local variable names, type names, and local
variable values are output. Note that the type name is the basic type name, class name (including interface name), or array
type name.

The following table describes the options to output the local variable information to stack trace. For details on settings
for acquiring the JavaVM material, see the subsection 3.3.17 Settings for Acquiring the JavaVM Material.

Table 5‒28: Options to output the local variable information to stack trace

Startup options Timing to output stack trace Option that can be specified simultaneously

-XX:+HitachiLocalsInThrowable When an exception occurred in servers
or applications#

• -
XX:+HitachiLocalsSimpleFormat

• -XX:+HitachiTrueTypeInLocals
• -
XX:HitachiCallToString=applicab
le-range

-XX:+HitachiLocalsInStackTrace When JavaVM thread dump is output • -
XX:+HitachiLocalsSimpleFormat

• -XX:+HitachiTrueTypeInLocals

#
However, when the exception occurred is java.lang.StackOverflowError or java.lang.OutOfMemoryError, the local
variables are not output to stack trace.

The contents output is described with an example as base when you specify each of these options. For details on the
items output when each option is specified, see the following points in the uCosminexus Application Server Definition
Reference Guide:

• -XX:[+|-]HitachiLocalsInThrowable (Option for collecting the local variable information when an
exception occurs)

• -XX:[+|-]HitachiLocalsInStackTrace (Option to output the local variable when the thread dump is output)

5. Problem Analysis

Maintenance and Migration Guide 237

5.10.1 When the -XX:+HitachiLocalsInThrowable Option Is Specified
For each stack frame information of the stack trace information output by the
java.lang.Throwable.printStackTrace method, the local variable information within the method
corresponding to that stack frame is inserted and output.

(1) Example of output in standard format and simple output format
This is the example of output when you specify the -XX:+HitachiLocalsInThrowable option only as a function
to output local variables.

The example of Java program and output of the corresponding local variable information within the stack trace are
as follows:

Java program example 1

class Example1 {
 public static void main(String[] args) {
 Example1 e1 = new Example1();
 Object obj = new Object();
 e1.method(1, 'Q', obj); // Execute-e1.method (5th line).
 }

 void method(int l1, char l2, Object l3) {
 float l4 = 4.0f;
 boolean l5 = true;
 double l6 = Double.MAX_VALUE;
 Object[] l7 = new Object[10];

 try {
 <Exception occurred!> // methodProcess-when-there-is-an-exception-in
-process-of-method(15th line).
 } catch (Exception e) {
 e.printStackTrace(); // output-stack-trace-information (17th line
).
 }
 }
}

The example of output is described below.

This example is the stack trace information output by e.printStackTrace method on the 17th line when an
exception occurs in e1.method method executed on the 5th line of example 1 of the Java program.

5. Problem Analysis

Maintenance and Migration Guide 238

Figure 5‒2: Output example of local variable information for example 1 of Java program (When the
class file is created by specifying -g option or -g:vars option)

The output contents are as follows:

1. The information of the method that executes the stack trace output process is output. This example shows the output
of the stack trace information when an exception occurs on the 15th line of the Java program 1.

2. As the local variable information, the information of objects invoked by the instance method is output. In this
example, the class name and address of the object of example 1 class created on the 3rd line of example 1 of the Java
program is output.

3. As local variable information, the information of the values of local variables specified as arguments of the method
are output. The [arg*] after variable name is the information indicating the number of the method argument. The
values specified when executing the e1.method method on the 5th line of example 1 of Java program are output.
Note that for local variables 11 and 12, the actual value is output since they are basic type (int type and char type)
variables. The local variable l3 is a java.lang.Object class type variable, as a result, the address is output.

4. As local variable information, from the local variables in the method, information of the values of local variables that
are not specified as method argument is output.
Note that since the local variables l4 to l6 are of basic type (float type, boolean type, and double type), their actual
value is output. Since the local variable l7 is the java.lang.Object class type variable, the address is output.

The example of output in the simple output format when you specify -XX:+HitachiLocalsSimpleFormat
option, is described below. Further, the explanation of the output contents is the same as that for standard format.

5. Problem Analysis

Maintenance and Migration Guide 239

Figure 5‒3: Output example when -XX:+HitachiLocalsSimpleFormat option is specified

Moreover, if the -g option or -g:vars option is not specified when executing javac command, and since there is no
local variable information, the output contents are restricted in the following manner. This is same as when executing
the native method.

• The local variables that can be output are only the arguments that are passed to the method and objects (this) invoked
by the instance method.

• For the arguments passed to the method, the variable name is not output. Only the argument number is output.

• In the case of the native method, the value when the native method is invoked is output as the value of the local
variable. It is not the output result that reflects the result of the executing native method.

The example of output in the case of Java program example 1, when the local variable information does not exist, is
described below. The example of output in the simple output format is as follows:

Figure 5‒4: Output example when local variable information does not exist (Simple output format)

There are following differences as compared to Figure 5-3.

• The variable names of the arguments (l1 to l3) passed to the method is not output.

• As the value is output when the method is invoked, the information (l4 to l7) for the local variables set in the method
is not output.

(2) Example of output when class or array type variables are output as a
character string

When the local variables to be output are of class or array type, there are times when the information required for
troubleshooting cannot be acquired in the value expression of only the address. At this time, if you specify the
-XX:HitachiCallToString option, you can acquire the value of class or array type variable as a character string.
In options, you can specify minimal or full as the applicable scope.

When you specify -XX:HitachiCallToString=minimal option, among the classes in the java.lang
package, String, StringBuffer, Boolean, Byte, Character, Short, Integer, Long, Float, or Double are the targets of a
parameter. When specifying the -XX:HitachiCallToString=full option, all the classes are targets.

5. Problem Analysis

Maintenance and Migration Guide 240

An example of the Java program and example of output when the -XX:HitachiCallToString option is specified
is described below. Further, the simple output format is used below.

Java program example 2

class Example2 {
 public static void main(String[] args) {
 Example2 e2 = new Example2();
 e2.method();// Executes-e2.method-method (4th line).
 }

 void method() {
 String l1 = "local 1";
 StringBuffer l2 = new StringBuffer(l1);
 l2.append(" + local 2");
 Boolean l3 = new Boolean(false);
 Character l4 = new Character('X');
 Long l5 = new Long(Long.MIN_VALUE);
 Object l6 = new Thread();
 Object[] l7 = new Thread[10];

 try {
 <Exception occurred!> // Process-when-exception-occurred-in-proces
s-of-method (18th line).
 } catch (Exception e) {
 e.printStackTrace(); // Output stack trace information (20th line
).
 }
 }

 public String toString() {
 return "I am an Example2 instance.";
 }
}

An example of output when specifying the -XX:HitachiCallToString=minimal option is described below:

This example is the stack trace information output by the 20th line e.printStackTrace method when an exception
occurs in the e2.method method executed on the 4th line of example 1 of the Java program.

Figure 5‒5: Output example when -XX:HitachiCallToString=minimal option is specified (Simple
output format)

The output contents are as follows:

5. Problem Analysis

Maintenance and Migration Guide 241

1. Among the local variables of class type, this information is that of the local variables of class type for which a
character string is to be output. In continuation to the address, the value converted into a character string is output.

2. Among the local variables of class type, this information is that of local variables of class type for which a character
string is not to be output. Only the address is output.

Shown below is the example of output when you specify the -XX:HitachiCallToString=full option.

Figure 5‒6: Output example when -XX:HitachiCallToString=full option is specified (Simple output
format)

There are following differences as compared to Figure 5-5.

• When you specify minimal, the character string is output even for the local variables (l6 and l7) of the arrays of
java.lang.Object and java.lang.Object class for which a character string is not to be output.

However, the character string is not output and only the address is output, such as in the following cases:

• If the value of the local variable is null

• If an error occurs again when a character string is being output, you cannot acquire the value successfully.

Important note

The object output in the local variable information may be operated in parallel by other threads. For this reason,
the character string output by specifying this option may be different than the information corresponding to that
object when an exception actually occurs.

(3) Example of output when the actual type name of class or array type
variables is to be output

When local variables that are output are of class or array type, there are cases when that variable type name and the
type name of actually substituted value differ. For example, depending on the inheritance relationship of classes or the
implementation relationship of interfaces, values of different type names are substituted in variables.

In this case, by specifying the -XX:+HitachiTrueTypeInLocals option, you can add the type name of a value
actually substituted to the class or array type variables and acquire the character string.

The acquired character string is output by adding one single byte space at the end of the value expression and enclosing
with parentheses (()). At this time, there is no limit on the output character string length.

5. Problem Analysis

Maintenance and Migration Guide 242

An example of output when you specify -XX:+HitachiTrueTypeInLocals option is described below. Simple
output format is shown below. The program to be executed is example 2 of the Java program. Moreover, this example
is an example where you specify the -XX:HitachiCallToString=minimal option.

Figure 5‒7: Output example when -XX:+HitachiTrueTypeInLocals option is specified (Simple output
format)

The output contents are as follows:

1. The variable type name is an array of java.lang.Object class or java.lang.Object class but
the type name of the actually substituted value is output as the array of java.lang.Thread class and
java.lang.Thread class.

Note that you can specify the -XX:+HitachiTrueTypeInLocals option along with the -
XX:HitachiCallToString=full option.

5.10.2 When the -XX:+HitachiLocalsInStackTrace Option Is Specified
For each stack frame information of stack trace information in a thread dump, the local variable information in the method
corresponding to that stack frame is inserted and output.

The output format and output contents are the same as the contents output to the standard output when you
specify -XX:+HitachiLocalsInThrowable.

However, specifying this option with the -XX:+HitachiLocalsInStackTrace option is invalid.

• -XX:HitachiCallToString option

The example of Java program and output of the corresponding local variable information within the stack trace are
as follows:

Java program example 3

class Example3 {
 public static void main(String[] args) {
 Example3 e3 = new Example3();
 e3.method();
 }

 synchronized void method() {
 int l1 = 1;
 float l2 = 2.0f;

5. Problem Analysis

Maintenance and Migration Guide 243

 String l3 = "local 3";
 Character l4 = new Character('X');
 Object l5 = new Thread();
 Object[] l6 = new Thread[10];

 The-thread-dump-is-output-here!
 }
}

The example of output is described below. This is an example of the following cases.

• The class file is created by specifying the -g option or -g:vars option

• -XX:+HitachiLocalSimpleFormat option is specified

• -XX:+HitachiTrueTypeInLocals option is specified

Figure 5‒8: Output example of the local variable information for example 3 of a Java program

5. Problem Analysis

Maintenance and Migration Guide 244

5.11 Event log of Explicit Memory Management functionality

This subsection describes the contents of event log of the Explicit Memory Management functionality.

The event log of Explicit Memory Management functionality is output at the timing when events related to the Explicit
Memory Management functionality, such as occurrence of GC, initialization, release, extension of Explicit memory
block, moving object to Explicit memory block occur. The output contents differ as per the settings of log output level
specified in the Java VM start option.

The event log of the Explicit Memory Management functionality can be used for the following purpose:

• Tuning of Explicit HEAP

• Debug of application implementing the Explicit Memory Management functionality

• Statistics collection

For details on the changes in the size of Explicit heap, number of Explicit memory blocks, and changes in each area size
of Java heap, see the event log. Furthermore, event log is output as a text file.

5.11.1 Output trigger of event log of the Explicit Memory Management
functionality

This subsection describes the output trigger for event log of the Explicit Memory Management functionality. The events
triggered differ depending on the set log output level.

The log output level comprises of three types; normal, verbose and debug. When you specify verbose, besides
the contents output to normal, the contents corresponding to verbose are output. When you specify debug, besides
the contents output to verbose, the contents corresponding to debug are output.

The following table describes the correspondence between log output levels and the events that trigger the output.
Prefixes output for the corresponding events are also displayed in the following table. See the reference sections for
contents output to each event.

Table 5‒29: Correspondence between log output levels and events that trigger the output

Log output level Events that trigger the output Prefix# Reference

normal GC occurrence (Output Explicit
heap usage status)

ENS 5.11.3(1)

Explicit memory block explicit
release process

ENS 5.11.3(2)

Java heap overflow in
Explicit memory block explicit
release process

ENS 5.11.3(3)

Automatic release processing of
the explicit memory block

ENS 5.11.3(4)

Java heap overflow in the
automatic release processing for
the explicit memory block

ENS 5.11.3(5)

Error in opening the automatic
allocation configuration file for
explicit memory management

ENA 5.11.3(6)

5. Problem Analysis

Maintenance and Migration Guide 245

Log output level Events that trigger the output Prefix# Reference

Error in parsing the automatic
allocation configuration file for
explicit memory management

ENA 5.11.3(7)

Automatic allocation error in
explicit memory management

ENA 5.11.3(8)

Error in opening the
configuration file of the
functionality for specifying
the classes to be excluded
from the Explicit Memory
Management functionality

ENO 5.11.3(9)

Error in parsing the
configuration file of the
functionality for specifying
the classes to be excluded
from the Explicit Memory
Management functionality

ENO 5.11.3(10)

verbose Initialization of Explicit
memory block

EVO 5.11.4(1)

Initialization failure of Explicit
memory block

EVO 5.11.4(2)

Disabling sub status of Explicit
memory block

EVO 5.11.4(3)

Object generation to Explicit
memory block

EVS 5.11.4(4)

Migration to Explicit memory
block (Output detail information)

EVS 5.11.4(5)

Explicit memory block explicit
release process (Output
detail information)

EVS 5.11.4(6)

Release reservation of Explicit
memory block by finalize

EVO 5.11.4(7)

Automatic allocation to explicit
memory management

EVA 5.11.4(8)

debug Migration of object to Java heap
by explicit release of Explicit
memory block

EDO 5.11.5(1)

Initialization of Explicit memory
block (Output detail information)

EDO 5.11.5(2)

Details of automatic release
processing for the explicit
memory block (Output
detail information)

EDO 5.11.5(3)

#
Prefixes are the alphabetic characters (three characters) enclosed in "[" and "]" that are output at the beginning of the log line.

For details on each event, see the uCosminexus Application Server Expansion Guide.

5. Problem Analysis

Maintenance and Migration Guide 246

5.11.2 Confirmation method of event log of Explicit Memory Management
functionality

This subsection describes the reference method of event log output by the Explicit Memory Management functionality.

(1) Confirmation method of output trigger
Events that trigger the log output are output in [cause:<CAUSE>] format. You can confirm the event triggered by
confirming the item.

The following table describes the meaning of character string output to <CAUSE>.

Table 5‒30: Meaning of character string output to <CAUSE>

<CAUSE> Meaning

GC Copy GC occurrence

Full GC Full GC occurrence

Reclaim Explicit memory block explicit release process

Reclaiming Java heap overflow in Explicit memory block explicit release process

New Object generation in Explicit memory block

Migrate Automatic release processing for the explicit memory block

Migrating Java heap overflow in the automatic release processing for the explicit memory block

However, <CAUSE> is not output in a part of the log.

(2) Checking methods using log prefix
You can use log prefixes such as ENS, EVO to perform checking by filtering the log.

The meaning of prefixes of the Explicit Memory Management functionality is as follows:

• "E" of first character indicates that a prefix is for the log of Explicit Memory Management functionality.

• Second character indicates log output level. N is output for normal level, V is output for verbose level and D is
output for debug level.

• The third character indicates whether the memory size of Explicit heap or Java heap will change. The memory size
changes if the third character is S. The memory size does not change when third character is O. When O, the names
of events occurred are output to log. Also, A indicates the log of the automatic allocation configuration file for the
explicit memory management.

For example, when you want to check changes of each heap size, perform filtering by S and when you want to check the
occurred event, perform filtering by O.

(3) Signs used in description of output format of event log
The following table describes the signs used in the description of output format.

5. Problem Analysis

Maintenance and Migration Guide 247

Table 5‒31: Signs used in description of output format

Signs Usage
examples

Meaning

* X* Repeat the left side items for minimum zero times.
Usage example indicates that X is repeated for minimum zero times.

? X? Repeat the left side items for minimum one time.
Usage example indicates that X is repeated for minimum once.

{n,m} X{1,5} Repeat the left side items for minimum n times and maximum m times.
Usage example indicates that X is repeated minimum once and maximum five times.

{ {ABC}* The range included in { and } is reference unit at left side of *, ?, {n,m}.
Usage example indicates that ABC is repeated for minimum zero times.}

\ None This sign indicates the places with linefeed for visibility in the manual.
There is no linefeed in the actual output contents.

| X|Y This sign indicates either the left side or the right side.
Usage example indicates either X or Y.

. None Indicates any character.

... X|Y... Repeat minimum once from the line that has same indent as this line and that is nearest to forward
match of this line, to the line previous to this line.
Usage example indicates that either of X or Y is repeated minimum once.

In the description of output format, numeric values are expressed by combining signs as in Table 5-32 and signs in
Table 5-33.

The following table describes the signs used to indicate numeric values.

Table 5‒32: Signs used to indicate numeric values

Sign Definition Meaning

<digit> 0|1|2|3|4|5|6|7|8|9 Indicates 0 to 9.

<hex> <digit>|a|b|c|d|e|f Indicates hexadecimals.

<const> <const><digit>|<digit> Indicates positive whole number.

<decimal> <const>.<digit> Indicates positive integer (Up to 1st Decimal position).

<ptr64> 0x<hex><hex><hex><hex><hex><hex><hex
><hex><hex><hex><hex><hex><hex><hex>
<hex><hex>

Indicates 64 bit pointer value.

<ptr32> 0x<hex><hex><hex><hex><hex><hex><hex
><hex>

Indicates 32 bit pointer value.

<ptr> <ptr64>|<ptr32> Indicates pointer value.

<letters> .? Indicates any character or character string.

Note The signs indicated in Table 5-32 would be the reference unit at left side or right side of *, ? or |. For example,
when <digit>|<hex> is mentioned, indicates numeric value from zero to nine or hexadecimal.

5. Problem Analysis

Maintenance and Migration Guide 248

5.11.3 Contents output when output level is normal
This subsection describes the contents output for each event when normal is specified in log output levels.

The normal is the log output level specified when there are normal operations.

(1) GC occurrence (Output Explicit heap usage status)
Output Explicit heap usage status when GC occurred.

Output this log when there is no object for migration from Java heap to Explicit heap. <EH_USED_BF> and
<EH_USED_AF> would have same value when there is no object to migrate to Explicit heap.

(a) Output trigger
Output trigger is the termination of GC.

(b) Output format

[ENS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EH_TOTAL>/<EH_MAX>)][E/F/D: <AC
_NUM>/<FL_NUM>/<DA_NUM>][cause:<CAUSE>][CF: <CF_CNT>]

(c) Output items
The following table describes each item indicated in (b) output format.

Table 5‒33: Output items (GC occurrence (Output Explicit heap usage status))

Output items Output contents Meaning

<ctime> <letters> Indicates occurrence date and time of GC. Output in the format same
as extended verbosegc information.
Output in millisecond units when the -
XX:+HitachiOutputMilliTime option is set.

<EH_USED_BF> <const>K Output used size of Explicit heap before execution of GC. The unit is
kilo bytes.

<EH_USED_AF> <const>K Output used size of Explicit heap after execution of GC. The unit is
kilo bytes.

<EH_TOTAL> <const>K Output secured memory size of Explicit heap after execution of GC.
The unit is kilo bytes.

<EH_MAX> <const>K Output Explicit heap maximum size. The unit is kilo bytes.

<AC_NUM> <const> Output number of Explicit memory blocks whose sub status is Enable
after GC execution.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of Explicit memory blocks whose sub status is Disable
after GC execution.

<CAUSE> GC|Full GC Output type of GC that is triggered.
GC indicates copy GC and Full GC indicates Full GC.

<CF_CNT> <const> Output the failure count of initialization of Explicit memory blocks
from the occurrence of previous GC up to occurrence of current GC.

5. Problem Analysis

Maintenance and Migration Guide 249

(d) Example of output
Output example

[ENS]<Thu Oct 21 14:55:50 2007>[EH: 150528K->162816K(162816K/1048576K)][E/F/
D: 200/0/0][cause:GC][CF: 0]

You can check the following contents in this output example:

• Output trigger is copy GC occurred on October 21, 2007 (Friday) 14:55:50.

• Migration to Explicit heap occurred in GC and used size of Explicit heap changed from 150,528K to 162,816K.

• The secured size of Explicit heap after occurrence of GC is 162,816K. Maximum size of Explicit heap is 1,048,576K.

• After the occurrence of GC, Explicit memory blocks whose sub status is Enable are 200 blocks.

(2) Explicit memory block explicit release process
Output usage status of the Explicit heap or Java heap after termination of the explicit release process of Explicit
memory block.

(a) Output trigger
The Explicit release process of Explicit memory block.

The Explicit release of Explicit memory block occurs immediately after GC The following log is output after log
described in (1) GC occurrence (Output Explicit heap usage status).

(b) Output format

[ENS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EH_TOTAL>/<EH_MAX>), <ELAPSED>
secs][E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>]\
[DefNew::Eden: <ED_USED_BF>-><ED_USED_AF>(<ED_TOTAL>)][DefNew::Survivor: <SV
_USED_BF>-><SV_USED_AF>(<SV_TOTAL>)]\
[Tenured: <TN_USED_BF>-><TN_USED_AF>(<TN_TOTAL>)][User: <USERCPU> secs][Sys
: <SYSCPU> secs][cause:<CAUSE>]

(c) Output items
The following table describes each item indicated in (b) output format.

Table 5‒34: Output items (Explicit memory block explicit release process)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence date and time of the Explicit memory block
explicit release process. Output in the format same as extended
verbosegc information.
Output in milli-seconds unit when -XX:+HitachiOutputMilliTime
option is set.

<EH_USED_BF> <const>K Output used size of the Explicit heap before the Explicit memory block
explicit release process. The unit is kilo bytes.

<EH_USED_AF> <const>K Output used size of the Explicit heap after the Explicit memory block explicit
release process. The unit is kilo bytes.

5. Problem Analysis

Maintenance and Migration Guide 250

Output items Output contents Meaning

<EH_TOTAL> <const>K Output secured size of the Explicit heap after the Explicit memory block
explicit release process. The unit is kilo bytes.

<EH_MAX> <const>K Output Explicit heap maximum size. The unit is kilo bytes.

<ELAPSED> <time> Output time required for the Explicit memory block explicit release process.
The unit is seconds.

<AC_NUM> <const> Output number of Explicit memory blocks whose sub status is Enable after
execution of the Explicit memory block explicit release process.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of Explicit memory blocks whose sub status is Disable after
execution of the Explicit memory block explicit release process.

<ED_USED_BF> <const>K Output used size of the Eden area before executing the Explicit memory block
explicit release process. The unit is kilo bytes.

<ED_USED_AF> <const>K Output used size of the Eden area after executing the Explicit memory block
explicit release process. The unit is kilo bytes.

<ED_TOTAL> <const>K Output secured size of the Eden area after executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<SV_USED_BF> <const>K Output used size of the Survivor area before executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<SV_USED_AF> <const>K Output used size of the Survivor area after executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<SV_TOTAL> <const>K Output secured size of the Survivor area after executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<TN_USED_BF> <const>K Output used size of the Tenured area before executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<TN_USED_AF> <const>K Output used size of the Tenured area after executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<TN_TOTAL> <const>K Output secured size of the Tenured area after executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<USERCPU> <time> Output the user CPU time taken by the explicit release processing of the
Explicit memory block. The unit is seconds.

<SYSCPU> <time> Output the system CPU time taken by the explicit release processing of the
Explicit memory block. The unit is seconds.

<CAUSE> Reclaim Output as Reclaim. Reclaim is the log output in the explicit release
processing of the Explicit memory block.

(d) Example of output
Output example:

[ENS]<Tue Jul 24 01:23:51 2007>[EH: 150528K->149528K(162816K/1048576K), 0.11
29602 secs][E/F/D: 523/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 1
03400K->103400K(556800K)]\
[User: 0.0900000 secs][Sys: 0.0200000 secs][cause:Reclaim]

You can check the following contents in this output example:

5. Problem Analysis

Maintenance and Migration Guide 251

• Output trigger is the Explicit memory block explicit release process occurred on July 24, 2007 (Tuesday) 1:23:51.

• Explicit heap used size reduced from 150,528K to 149,528K by the explicit release process of the Explicit
memory block.

• Secured size of Explicit heap after Explicit memory block explicit release process is 162,816K. Maximum size of
Explicit heap is 1,048,576K.

• The time for the explicit release process of Explicit memory block is 0.1129602 seconds.

• There are 523 Explicit memory blocks whose sub status is Enable after Explicit memory block explicit
release process.

• There are no changes in each area of Java heap by the Explicit memory block explicit release process. In other words,
there is no object moved to Java heap.

• The explicit release processing of the Explicit memory block took 0.0900000 seconds of the user CPU time, and
0.0200000 seconds of the system CPU time.

(3) Java heap overflow in Explicit memory block explicit release process
The object moves to Java heap in the explicit release process of Explicit memory block and the status is output when Java
heap overflows. Output the usage status of Explicit heap and Java heap when Java heap overflows.

(a) Output trigger
The object moves from Explicit heap to Java heap in the explicit release process of the Explicit memory block and output
is triggered when Java heap overflows.

(b) Output format

[ENS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EM_TOTAL>/<EH_MAX>), <ELAPSED>
secs][E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>]\
[DefNew::Eden: <ED_USED_BF>-><ED_USED_AF>(<ED_TOTAL>)][DefNew::Survivor: <SV
_USED_BF>-><SV_USED_AF>(<SV_TOTAL>)]\
[Tenured: <TN_USED_BF>-><TN_USED_AF>(<TN_TOTAL>)][User: <USERCPU> secs][Sys
: <SYSCPU> secs][cause:<CAUSE>]

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒35: Output items (Java heap overflow in the explicit release process of the Explicit memory
block)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence date and time of the Explicit memory block
explicit release process. Output in the format same as extended
verbosegc information.
Output in milli-seconds unit when -XX:+HitachiOutputMilliTime
option is set.

<EH_USED_BF> <const>K Output used size of the Explicit heap before the Explicit memory block
explicit release process. The unit is kilo bytes.

<EH_USED_AF> <const>K Output used size of the Explicit heap after Java heap overflow. When Java
heap overflows, the explicit release process of Explicit memory block is not
executed and hence the value is always same as <EH_USED_BF>. The unit
is kilo bytes.

5. Problem Analysis

Maintenance and Migration Guide 252

Output items Output contents Meaning

<EH_TOTAL> <const>K Output secured size of the Explicit heap after Java heap overflow. The unit is
kilo bytes.

<EH_MAX> <const>K Output Explicit heap maximum size. The unit is kilo bytes.

<ELAPSED> <time> Output time from start of the Explicit memory block explicit release process
to Java heap overflow. The unit is seconds.

<AC_NUM> <const> Output number of the Explicit memory blocks whose sub status is Enable
after Java heap overflow.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of the Explicit memory blocks whose sub status is Disable
after Java heap overflow.

<ED_USED_BF> <const>K Output used size of the Eden area before executing the Explicit memory block
explicit release process. The unit is kilo bytes.

<ED_USED_AF> <const>K Output used size of the Eden area after Java heap overflow. The unit is
kilo bytes.

<ED_TOTAL> <const>K Output secured size of the Eden area after Java heap overflow. The unit is
kilo bytes.

<SV_USED_BF> <const>K Output used size of the Survivor area before executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<SV_USED_AF> <const>K Output used size of the Survivor area after Java heap overflow. The unit is
kilo bytes.

<SV_TOTAL> <const>K Output secured size of the Survivor area after Java heap overflow. The unit is
kilo bytes.

<TN_USED_BF> <const>K Output used size of the Tenured area before executing the Explicit memory
block explicit release process. The unit is kilo bytes.

<TN_USED_AF> <const>K Output used size of the Tenured area after Java heap overflow. The unit is
kilo bytes.

<TN_TOTAL> <const>K Output secured size of the Tenured area after Java heap overflow. The unit is
kilo bytes.

<USERCPU> <time> Output the user CPU time taken from the start of the explicit release
processing of the Explicit memory block until Java heap overflows. The unit
is seconds.

<SYSCPU> <time> Output the system CPU time taken from the start of the explicit release
processing of the Explicit memory block until Java heap overflows. The unit
is seconds.

<CAUSE> Reclaiming Output as "Reclaiming". Reclaiming is the log output by Java heap
overflow in the release process of Explicit memory block.

(d) Example of output
Output example:

[ENS]<Tue Jul 24 01:23:51 2007>[EH: 706728K->706728K(706728K/1048576K), 0.11
29602 secs][E/F/D: 523/0/0]\
[DefNew::Eden: 0K->243600K(243600K)][DefNew::Survivor: 0K->17400K(17400K)][T
enured: 278000K->556800K(556800K)]\
[User: 0.0900000 secs][Sys: 0.0200000 secs][cause:Reclaiming]
[ENS]<Tue Jul 24 01:23:51 2007>[EH: 706728K->706728K(706728K/1048576K)][E/F/

5. Problem Analysis

Maintenance and Migration Guide 253

D: 523/0/0][cause:Full GC][CF: 0]
[ENS]<Tue Jul 24 01:23:53 2007>[EH: 706728K->148528K(148528K/1048576K), 0.01
23405 secs][E/F/D: 521/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 5
51800K->552800K(556800K)]\
[User: 0.0090000 secs][Sys: 0.0020000 secs][cause:Reclaim]

You can confirm the following contents in this output example:

• Output trigger is the Java heap overflow in the Explicit memory block explicit release process occurred on July 24,
2007(Tuesday) 1:23:51.

• The time from starting the explicit release process of Explicit memory block to Java heap overflow is
0.1129602 seconds.

• There are 523 Explicit memory blocks whose sub status is Enable after Java heap overflow.

• 5,398,00K moved to Java heap in the explicit release process of Explicit memory block causing Java heap overflow.

• The process from the start of the explicit release processing of the Explicit memory block until the overflowing of
the Java heap took 0.0900000 seconds of the user CPU time, and 0.0200000 seconds of the system CPU time.

In the output contents of output example, third line ENS onwards is the log output by the explicit release process of
Explicit memory block. Always output the log of Explicit memory block release process after log output by Java heap
overflow. In this example, the following contents are output:

• Restarted the explicit release process of Explicit memory block on July 24, 2007 1:23:53 and output this log.

• The used size of Explicit heap reduced from 706,728K to 148,528K in the explicit release process of Explicit memory
block that was restarted.

• The secured size of Explicit heap after executing the explicit release process of restarted Explicit memory block is
148,528K. Maximum size of Explicit heap is 1,048,576K.

• The time for the explicit release process of restarted Explicit memory block is 0.0123405 seconds.

• There are 521 Explicit memory blocks whose sub status is Enable after the restarted Explicit memory block explicit
release process.

• The usage size of Tenured area of Java heap increased from 551,800K to 552,800K as a result of the explicit release
process of restarted Explicit memory block.

• The explicit release processing of the restarted Explicit memory block took 0.0090000 seconds of the user CPU time
and 0.0020000 seconds of the system CPU time.

(4) Automatic release processing of the explicit memory block
The usage status of the explicit memory and explicit memory block is output from the automatic release - automatic
reserve or automatic release - explicit reserve of the explicit memory block up to the automatic release processing of the
explicit memory block.

(a) Output trigger
The log is output when the automatic release - automatic reserve or automatic release - explicit reserve of the explicit
memory block and automatic release processing of the Explicit memory block occur.

(b) Output format

[ENS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EH_TOTAL>/<EH_MAX>), <ELAPSED>
secs][E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>]\

5. Problem Analysis

Maintenance and Migration Guide 254

[DefNew::Eden: <ED_USED_BF>-><ED_USED_AF>(<ED_TOTAL>)]
[DefNew::Survivor: <SV_USED_BF>-><SV_USED_AF>(<SV_TOTAL>)]\
[Tenured: <TN_USED_BF>-><TN_USED_AF>(<TN_TOTAL>)][target:<EH_MIG_TRG>/<EH_MI
G_DED>/<EH_MIG_LIV>]\
[User: <USERCPU> secs][Sys: <SYSCPU> secs][cause:<CAUSE>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒36: Output items (Automatic release processing of the explicit memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence date and time of automatic release - automatic reserve of the explicit
memory block. Output with the format same as the extended verboseGC functionality.
Output in milliseconds, when the HitachiOutputMilliTime option is set up.

<EH_USED_BF> <const>K Outputs the used size of the explicit memory before the automatic release processing of the
explicit memory block. The unit is kilobytes.

<EH_USED_AF> <const>K Outputs the used size of the explicit memory after the automatic release processing of the
explicit memory block. The unit is kilobytes.

<EH_TOTAL> <const>K Outputs the secured size of the explicit memory after the automatic release processing of the
Explicit memory block. The unit is kilobytes.

<EH_MAX> <const>K Outputs the maximum explicit memory size. The unit is kilobytes.

<ELAPSED> <time> Outputs the time from the start of the automatic release-automatic reserve process of the
explicit memory block up to the end of the automatic release processing. The unit is seconds.

<AC_NUM> <const> Outputs the number of valid explicit memory blocks that have the Enable sub state, after
the automatic release processing of the explicit memory block.

<FL_NUM> <const> Always outputs 0.

<DA_NUM> <const> Outputs the number of valid explicit memory blocks that have the Disable sub state, after
the automatic release processing of the explicit memory block.

<ED_USED_BF> <const>K Outputs the used size of the Eden area before the automatic release processing of the explicit
memory block. The unit is kilobytes.

<ED_USED_AF> <const>K Outputs the used size of the Eden area after the automatic release processing of the explicit
memory block. The unit is kilobytes.

<ED_TOTAL> <const>K Outputs the secured size of the Eden area after the automatic release processing of the explicit
memory block. The unit is kilobytes.

<SV_USED_BF> <const>K Outputs the used size of the Survivor area before the automatic release processing of the
explicit memory block. The unit is kilobytes.

<SV_USED_AF> <const>K Outputs the used size of the Survivor area after the automatic release processing of the explicit
memory block. The unit is kilobytes.

<SV_TOTAL> <const>K Outputs the secured size of the Survivor area after the automatic release processing of the
explicit memory block. The unit is kilobytes.

<TN_USED_BF> <const>K Outputs the used size of the Tenured area before the automatic release processing of the
Explicit memory block. The unit is kilobytes.

<TN_USED_AF> <const>K Outputs the used size of the Tenured area after the automatic release processing of the explicit
memory block. The unit is kilobytes.

<TN_TOTAL> <const>K Outputs the secured size of the Tenured area after the automatic release processing of the
explicit memory block. The unit is kilobytes.

5. Problem Analysis

Maintenance and Migration Guide 255

Output items Output contents Meaning

<EH_MIG_TRG> <const>K Outputs the used size of the explicit memory for which the automatic release processing of
the explicit memory block was executed. The unit is kilobytes.

<EH_MIG_DED> <const>K Outputs the used size of the explicit memory that decreased due to the execution of the
automatic release processing of the explicit memory block. The unit is kilobytes.

<EH_MIG_LIV> <const>K Outputs the used size of the explicit memory that did not decrease in spite of the execution
of the automatic release processing of the explicit memory block. The unit is kilobytes.

<USERCPU> <time> Outputs the user CPU time taken from the start of the automatic release - automatic reserve
processing of the Explicit memory block until the end of the automatic release processing.
The unit is seconds.

<SYSCPU> <time> Outputs the system CPU time from the start of the automatic release - automatic reserve
processing of the Explicit memory block until the end of the automatic release processing.
The unit is seconds.

<CAUSE> Migrate Outputs Migrate. Indicates that the log was output due to the automatic release processing
of the explicit memory block.

(d) Example of output
The following is an output example:

[ENS]<Tue Jul 14 02:31:22 2009>[EH: 256512K->256128K(256256K/1048576K), 0.11
24626 secs][E/F/D: 423/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 1
03400K->103400K(556800K)][target:584K/384K/200K]\
[User: 0.0900000 secs][Sys: 0.0200000 secs][cause:Migrate]

You can check the following details in this output example:

• The output trigger is the automatic release processing of the explicit memory block in the GC that occurred on July
14, 2009 (Tuesday) at 2:31:22.

• The used size of explicit memory changed from 256,512K to 256,128K due to the automatic release processing.

• The secured size of explicit memory after the automatic release processing is 256,256K and the maximum size
is 1,048,576K.

• The time taken for the automatic release processing was 0.1124626 seconds.

• There are 423 explicit memory blocks whose sub-state is Enable after the automatic release processing.

• Among the used size of explicit memory, 584K were automatically released using the automatic release processing.
The size that decreased was 384K and the size that did not decrease was 200K.

• There are no changes in the Java heap areas due to the automatic release processing for the explicit memory block.

• The automatic release processing took 0.0900000 seconds of the user CPU time, and 0.0200000 seconds of the
system CPU time.

(5) Java heap overflow in the automatic release processing of the explicit
memory block

During the automatic release processing of the explicit memory block, objects were moved to the Java heap. In this case,
the usage status of the explicit memory and the Java heap is output when the Java heap overflows.

5. Problem Analysis

Maintenance and Migration Guide 256

The overflow of Java heap indicates that while moving the objects to the Java heap, there was no free space in the
Java heap. For details, see 7. Suppression of Full GC by Using the Explicit Memory Management Functionality in the
uCosminexus Application Server Expansion Guide.

(a) Output trigger
If there is a shortage of free space in the explicit memory area during the automatic release processing of the explicit
memory block, the objects are moved to the Java heap. A log is output, when the Java heap overflows.

(b) Output format

[ENS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EH_TOTAL>/<EH_MAX>), <ELAPSED>
secs][E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>]\
[DefNew::Eden: <ED_USED_BF>-><ED_USED_AF>(<ED_TOTAL>)]
[DefNew::Survivor: <SV_USED_BF>-><SV_USED_AF>(<SV_TOTAL>)]\
[Tenured: <TN_USED_BF>-><TN_USED_AF>(<TN_TOTAL>)][target:<EH_MIG_TRG>/<EH_MI
G_DED>/<EH_MIG_LIV>]\
[User: <USERCPU> secs][Sys: <SYSCPU> secs][cause:<CAUSE>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒37: Output items (Java heap overflow in the automatic release processing for the explicit
memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence date and time of the automatic release
processing of the explicit memory block. Output in the format same
as would output for the extended verboseGC functionality. Output
in milliseconds when the HitachiOutputMilliTime option is
set up.

<EH_USED_BF> <const>K Outputs the used size of the explicit memory before the automatic
release processing of the explicit memory block. The unit is kilobytes.

<EH_USED_AF> <const>K Outputs the used size of the explicit memory after the Java heap
overflows. The unit is kilobytes.

<EH_TOTAL> <const>K Outputs the secured size of explicit memory after the Java heap
overflows. The unit is kilobytes.

<EH_MAX> <const>K Outputs the maximum explicit memory size. The unit is kilobytes.

<ELAPSED> <time> Outputs the time from the start of the automatic release processing of
the explicit memory block to the overflow of the Java heap. The unit
is seconds.

<AC_NUM> <const> Outputs the number of explicit memory blocks that have the Enable
sub state after the automatic release processing of the explicit
memory block.

<FL_NUM> <const> Always outputs 0.

<DA_NUM> <const> Outputs the number of explicit memory blocks that have the Disable
sub state after the Java heap overflows.

<ED_USED_BF> <const>K Outputs the used size of the Eden area before the automatic release
processing of the explicit memory block. The unit is kilobytes.

5. Problem Analysis

Maintenance and Migration Guide 257

Output items Output contents Meaning

<ED_USED_AF> <const>K Outputs the used size of the Eden area after the Java heap overflows.
The unit is kilobytes.

<ED_TOTAL> <const>K Outputs the secured size of the Eden area after the Java heap overflows.
The unit is kilobytes.

<SV_USED_BF> <const>K Outputs the used size of the Survivor area before the automatic release
processing of the explicit memory block. The unit is kilobytes.

<SV_USED_AF> <const>K Outputs the used size of the Survivor area after the Java heap
overflows. The unit is kilobytes.

<SV_TOTAL> <const>K Outputs the secured size of the Survivor area after the Java heap
overflows. The unit is kilobytes.

<TN_USED_BF> <const>K Outputs the used size of the Tenured area before the automatic release
processing of the explicit memory block. The unit is kilobytes.

<TN_USED_AF> <const>K Outputs the used size of the Tenured area after the Java heap overflows.
The unit is kilobytes.

<TN_TOTAL> <const>K Outputs the secured size of the Tenured area after the Java heap
overflows. The unit is kilobytes.

<EH_MIG_TRG> <const>K Outputs the used size of the explicit memory for which the automatic
release processing of the explicit memory block was executed. The unit
is kilobytes.

<EH_MIG_DED> <const>K Outputs the used size of explicit memory that has decreased due to the
execution of the automatic release processing of the explicit memory
block, until the Java heap overflowed. The unit is kilobytes. Always
outputs OK.

<EH_MIG_LIV> <const>K Outputs the used size of the explicit memory that did not decrease
due to the execution of the automatic release processing of the
explicit memory block, until the Java heap overflowed. The unit is
kilobytes. Does not include the size of the objects that caused the Java
heap overflow.

<USERCPU> <time> Outputs the user CPU time taken from the start of the automatic release
processing of the Explicit memory block until the overflowing of the
Java heap. The unit is seconds.

<SYSCPU> <time> Outputs the system CPU time taken from the start of the automatic
release processing of the Explicit memory block until the overflowing
of the Java heap. The unit is seconds.

<CAUSE> Migrating Outputs Migrating. Indicates that the log was output due to the
Java heap overflow in the automatic release processing of the explicit
memory block.

(d) Example of output
An output example is as follows:

[ENS]<Tue Jul 14 02:31:22 2009>[EH: 706728K->706728K(706728K/706728K), 0.112
9602 secs][E/F/D: 522/0/1]\
[DefNew::Eden: 0K->243600K(243600K)][DefNew::Survivor: 0K->17400K(17400K)][T
enured: 278000K->556800K(556800K)]\
[target:372000K/0K/339800K] [User: 0.0900000 secs][Sys: 0.0200000 secs][caus
e:Migrating]

5. Problem Analysis

Maintenance and Migration Guide 258

You can check the following details in this output example:

• The output trigger is the Java heap overflow in the automatic release processing for the explicit memory block in the
GC that occurred on July 14, 2009 (Tuesday) at 2:31:22.

• The used size of explicit memory changed from 706,728K due to the automatic release processing.

• The secured size of explicit memory after the automatic release processing is 706,728K and the maximum size
is 706,728K.

• The time taken for the automatic release processing was 0.1129602 seconds.

• There are 522 explicit memory blocks that have Enable sub state after the automatic release processing. There is
one explicit memory block that has Disable sub state.

• Among the used size of explicit memory, 372,000K were automatically released using the automatic release
processing. The size that did not decrease until Java heap overflow was 339,800K.

• Due to Java heap overflow during the automatic release processing, the used size of Java heap reached the upper limit
for each area.

• The process from the start of the automatic release processing of the Explicit memory block until the overflowing
of the Java heap took 0.0900000 seconds of the user CPU time, and 0.0200000 seconds of the system CPU time.

(6) Error in opening the automatic allocation configuration file for Explicit
Memory Management

An error message is output, when an attempt to open or read the automatic allocation configuration file for Explicit
Memory Management fails.

(a) Output trigger
The error message is output when an attempt to open or read the automatic allocation configuration file for Explicit
Memory Management fails. For example, when the file does not exist, the user does not have the permission to read the
file, or an unexpected IO error occurs while reading the file.

(b) Output format

[ENA]<ctime> failed to open file. [file=<FILENAME>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒38: Output items (Error in opening the automatic allocation configuration file for Explicit
Memory Management)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence time, when an attempt to open the automatic
allocation configuration file using Explicit Memory Management
has failed. Output with the format same as would output for the
extended verboseGC functionality. Output in milliseconds, when the
HitachiOutputMilliTime option is set up.

<FILENAME> <letters> Outputs the name of the automatic allocation configuration file that has
failed to open (does not include the directory name).

5. Problem Analysis

Maintenance and Migration Guide 259

(d) Example of output
An output example is as follows:

[ENA]<Tue Jul 24 01:23:51 2007> failed to open file. [file=usrexmem.cfg]

You can check the following details in this output example:

• An attempt to open the automatic allocation configuration file for Explicit Memory Management failed on July 24,
2007 (Tuesday) at 1:23:51.

(7) Error in parsing the automatic allocation configuration file for Explicit
Memory Management

An error message is output, when a line that failed in the parsing of the automatic allocation configuration file for Explicit
Memory Management exists.

(a) Output trigger
The error message is output when a line that failed in the parsing of the automatic allocation configuration file for Explicit
Memory Management exists. If there are coding format errors in multiple lines of the file, the log is output several times.

(b) Output format

[ENA]<ctime> parsed error line. [file=<FILENAME> line=<LINENO>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒39: Output items (Error in parsing the automatic allocation configuration file for Explicit
Memory Management)

Output items Output contents Meaning

<ctime> <letters> Indicates the time when an attempt to parse the automatic
allocation configuration file using the Explicit Memory Management
functionality has failed. Output with the format same as would output
for the extended verboseGC functionality. Output in milliseconds,
when the HitachiOutputMilliTime option is set up.

<FILENAME> <letters> Outputs the name of the automatic allocation configuration file for
which file parsing failed (does not include the directory name).

<LINENO> <const> Outputs the line number where the parsing failed.

(d) Example of output
An output example is as follows:

[ENA]<Tue Jul 24 01:23:51 2007> parsed error line. [file=usrexmem.cfg line=2
5]

You can check the following details in this example of output:

5. Problem Analysis

Maintenance and Migration Guide 260

• The parsing of the automatic allocation configuration file for the Explicit Memory Management functionality failed
in the 25th line on July 24, 2007 (Tuesday) at 1:23:51.

(8) Automatic allocation error in Explicit Memory Management
An error message is output, when a class specified by the Explicit Memory Management functionality fails to allocate
automatically to Explicit Memory Management.

(a) Output trigger
The error message is output, when a class specified by the Explicit Memory Management functionality fails to allocate
automatically to Explicit Memory Management.

(b) Output format

[ENA]<ctime> creation <CLASS_LIST> class's object in explicit memory is fail
ed. [target=<CLASS_METHOD> \
detail=<MESSAGE>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒40: Output items (Automatic allocation error in Explicit Memory Management)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence time when an attempt of the automatic
allocation using Explicit Memory Management has failed.
Output with the format same as would output for the
extended verboseGC function. Output in milliseconds, when the
HitachiOutputMilliTime option is set.

<CLASS_LIST> <letters> Outputs the list of fully qualified class names of the objects for
which an attempt of the automatic allocation using Explicit Memory
Management has failed. The list might be blank.

<CLASS_METHOD> <letters> Outputs the fully qualified names of the classes for which an attempt
of the automatic allocation using Explicit Memory Management has
failed. The method names indicating more detailed failure locations
might also be output.

<MESSAGE> <letters> Outputs a detailed message indicating the cause of the failure during
the automatic allocation using Explicit Memory Management.

(d) Example of output
An output example is as follows:

[ENA]<Tue Jul 24 01:23:51 2007> creation java.util.HashMap, java.util.Linked
List \
class's object in explicit memory is failed. [target=com.sample.MainClass.ma
in \
detail=Invalid class file format. (max_stack = 65536, max = 65535, min = 0)]

You can check the following details in this output example:

5. Problem Analysis

Maintenance and Migration Guide 261

• With the Explicit Memory Management functionality, an attempt to automatically allocate the class
jp.co.sample.Main on the explicit memory management using has failed on July 24, 2007 (Tuesday)
at 1:23:51.

(9) Error in opening the configuration file of the functionality for
specifying the classes to be excluded from the Explicit Memory
Management functionality

When an attempt to open and read the configuration file of the functionality for specifying the classes to be excluded
from the Explicit Memory Management functionality fails, an error message is output.

(a) Output trigger
The error message is output when an attempt to open and read the configuration file of the functionality for specifying
the classes to be excluded from the Explicit Memory Management functionality fails. For example, this includes cases
such as when the file does not exist, the user does not have the permission to read the file, and an unexpected IO error
occurs while the file is being read.

(b) Output format

[ENO]<ctime> failed to open file. [<TYPE>] [file=<FILENAME>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒41: Output items (Error in opening the configuration file of the functionality for specifying
the classes to be excluded from the Explicit Memory Management functionality)

Output items Output contents Meaning

<ctime> <letters> Specifies the time at which the configuration file failed to open. The
time is output in the same format as the time output by the extended
VerboseGC functionality.
If the HitachiOutputMilliTime option is set up, the time is
output in milliseconds.

<TYPE> SYS|USR|DEF Outputs the type of the configuration file that could not be opened
and read.
SYS indicates the configuration file provided with the system, USR
indicates the configuration file with the file path specified in the
JavaVM invocation option, and DEF indicates the configuration file
existing in the default file path of the JavaVM invocation option.

<FILENAME> <letters> Outputs the name of the configuration file that could not be opened
(does not include the directory name).

(d) Example of output
An example of output is as follows:

[ENO]<Fri Aug 10 17:41:51 2012> failed to open file. [USR] [file=javamove.cf
g]

You can check the following details in this example of output:

5. Problem Analysis

Maintenance and Migration Guide 262

• The configuration file with the file path specified in the JavaVM invocation option failed to open on August 10, 2012
(Friday) at 17:41:51.

(10) Error in parsing the configuration file of the functionality for
specifying the classes to be excluded from the Explicit Memory
Management functionality

If there is a line in which the parsing of the configuration file of the functionality for specifying the classes to be excluded
from the Explicit Memory Management functionality has failed, an error message is output.

(a) Output trigger
The error message is output if there is a line in which the parsing of the configuration file of the functionality for
specifying the classes to be excluded from the Explicit Memory Management functionality has failed. If a coding format
error exists in multiple lines of a file, the log is output multiple times.

(b) Output format

[ENO]<ctime> parsed error line. [TYPE] [file=<FILENAME> line=<LINENO>]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒42: Output items (Parsing error in the automatic allocation configuration file for Explicit
Memory Management)

Output items Output contents Meaning

<ctime> <letters> Specifies the time at which the parsing of the configuration file of
the functionality for specifying the classes to be excluded from the
Explicit Memory Management functionality failed. The time is output
in the same format as the time output by the extended verboseGC
functionality. If the HitachiOutputMilliTime option is set up,
the time is output in milliseconds.

<TYPE> SYS|USR|DEF Outputs the type of configuration file for which the file parsing failed.
SYS indicates the configuration file provided with the system, USR
indicates the configuration file with the file path specified in the
JavaVM invocation option, and DEF indicates the configuration file
existing in the default file path of the JavaVM invocation option.

<FILENAME> <letters> Outputs the name of the configuration file for which the file parsing
failed (does not include the directory name).

<LINENO> <const> Outputs the line number for which the parsing has failed.

(d) Example of output
An example of output is as follows:

[ENO]<Fri Aug 10 17:41:51 2012> parsed error line. [USR] [file=javamove.cfg
line=25]

You can check the following details in this example of output:

5. Problem Analysis

Maintenance and Migration Guide 263

• The parsing of the configuration file with the file path specified in the JavaVM invocation option failed in the 25th

line on August 10, 2012 (Friday) at 17:41:51.

5.11.4 Contents output when output level is verbose
This subsection describes the contents output for each event when you specify verbose in the log output level.
Verbose is a log output level to output detail information required for the error analysis.

Supplement
In verbose, besides contents output for normal, detail log is output for contents that are not output in normal.
The log output would cost some overheads and there might be the degradation in throughput, if verbose is specified
for normal operations.

(1) Initialization of Explicit memory block
When you initialize the Explicit memory block newly, the name, ID and type of initialized Explicit memory block
is output.

(a) Output trigger
Initialization of Explicit memory block.

(b) Output format

[EVO]<ctime>[Created]["<EM_NAME>" eid=<EID>(<EM_PTR>)/<EM_TYPE>]

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒43: Output items (Initialization of Explicit memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates the date and time on which Explicit memory block
was initialized. Output in the format same as extended
verbosegc information.
Output in milli-seconds unit when -
XX:+HitachiOutputMilliTime option is set.

<EM_NAME> <letters> Output name of initialized Explicit memory block.
The output contents are uncertain when multi byte characters
are included in name of Explicit memory block (Usually garbled
and output).

<EID> <const> Output ID of initialized Explicit memory block.

<EM_PTR> <ptr> Output value that indicates internal status of Explicit memory block.

<EM_TYPE> R|B Output type of initialized Explicit memory block.
R indicates Explicit memory block used internally in Application
Server. B indicates the type of the Explicit memory block in JavaVM.

5. Problem Analysis

Maintenance and Migration Guide 264

(d) Example of output
Output example:

[EVO]<Tue Jul 24 01:23:51 2007>[Created]["BasicExplicitMemory-2" eid=2(0x123
4568)/B]

You can confirm the following contents in this output example:

• Output trigger is the initialization of Explicit memory block executed on July 24. 2007 (Tuesday) 1:23:51.

• The name of initialized Explicit memory block is BasicExplicitMemory-2.

(2) Initialization failure of Explicit memory block
Output when an attempt to initialize Explicit memory block failed while initializing Explicit memory block. The cause
for failure is that the Explicit memory blocks have reached the maximum count. Output the number of Explicit memory
blocks and stack trace of Java program that failed in initialization.

This log is output on multiple lines. This log is output asynchronously with the execution of the Java program. Hence,
there are cases when some other log is output within the lines of this log. However, other logs are not output within
one line.

(a) Output trigger
The output is triggered when Explicit memory block reaches the upper limit of Explicit memory blocks and when an
attempt to initialize the Explicit memory block fails.

(b) Output format

[EVO]<ctime>[Creation failed][EH: <EH_USED>(<EH_GARB>)/<EH_TOTAL>/<EH_MAX>][
E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>][Thread: <TH_PTR>]
[EVO][Thread: <TH_PTR>] at <FRAME><SOURCE>
...

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒44: Output contents (Initialization failure of Explicit memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates failure date and time of initialization of Explicit
memory block. Output in the format same as extended
verbosegc information.
Output in milli-seconds unit when -
XX:+HitachiOutputMilliTime option is set.

<EH_USED> <const>K Output used size of Explicit heap when failed in initialization of
Explicit memory block. The unit is kilo bytes.

<EH_GARB> <const>K The internal status of Explicit heap is output.

<EH_TOTAL> <const>K Output secured size of Explicit heap when failed in initialization of
Explicit memory block. The unit is kilo bytes.

<EH_MAX> <const>K Output Explicit heap maximum size. The unit is kilo bytes.

5. Problem Analysis

Maintenance and Migration Guide 265

Output items Output contents Meaning

<AC_NUM> <const> Output number of Explicit memory blocks whose sub status is Enable
when failed in initialization of Explicit memory block.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of Explicit memory blocks whose sub status is Disable
when failed in initialization of Explicit memory block.

<TH_PTR> <ptr> Output thread ID of threads failed in initialization of Explicit memory
block. Thread ID is same as tid output to thread dump.

<FRAME> <letters>.<letters> Output one frame in stack trace when failed in initialization of
Explicit memory block. Output all class names and method names by
delimiting them by a ".".

<SOURCE> (<letters>:<const>)|
(Native Method)|
(Unknown Source)

Output the source file names where methods output to <FRAME> are
described and the line numbers match the stack trace. Output the file
name and line numbers by delimiting them by a ":".
Output as "(Native Method)" for native method. Output as
"(Unknown Source)" when you cannot acquire source file name.

(d) Example of output
Output example.

[EVO]<Tue Jul 24 01:23:51 2007>[Creation failed][EH: 12000K(0K)/15000K/30000
K][E/F/D: 65535/0/0][Thread: 0x00035a60]
[EVO][Thread: 0x00035a60] at ExplicitMemory.registerExplicitMemory(Native Me
thod)
[EVO][Thread: 0x00035a60] at BasicExplicitMemory.<init>(Unknown Source)
[EVO][Thread: 0x00035a60] at AllocTest.test(AllocTest.java:64)
[EVO][Thread: 0x00035a60] at java.lang.Thread.run(Thread.java:2312)

You can confirm the following contents in this output example:

• Output trigger is the failure in initialization of Explicit memory block occurred on July 24, 2007 (Tuesday) 1:23:51.
The maximum number of Explicit memory blocks is 65535 that already exist and hence failed in initialization of new
Explicit memory block.

• On the 64th line of AllocTest.java, try initializing Explicit memory block by executing constructor of
BasicExplicitMemory class.

(3) Disable of sub status of Explicit memory block
Output the information of Explicit memory block in which the usage status and sub status are changed to Disable,
when the sub status of Explicit memory block is changed to Disable. This log is output on multiple lines and output
asynchronously with the execution of Java program. Hence, there are cases where some other log is output within the
lines of this log. However, other logs are not output within one line.

(a) Output trigger
Output is triggered when sub status of Explicit memory block is Disable and when you cannot map the object to respective
Explicit memory block.

5. Problem Analysis

Maintenance and Migration Guide 266

(b) Output format

[EVO]<ctime>[Alloc failed(Disable)][EH: <EH_USED>(<EH_GARB>)/<EH_TOTAL>/<EH_
MAX>][E/F/D: <AC_NUM>/<FL_NUM>/<DA_NUM>][cause:<CAUSE>]\
["<EM_NAME>" eid=<EID>/<EM_TYPE>: <EM_USED>(<EM_GARB>)/<EM_TOTAL>][Thread: <
TH_PTR>]
[EVO][Thread: <TH_PTR>] at <FRAME><SOURCE>
...

#
The Underlined part is output only for New.

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒45: Output items (Disable sub status of Explicit memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates the date and time when sub status of Explicit memory block
with <EID> is changed to Disable. Output in the format same as
extended verbosegc information.
Output in milli-seconds unit when -
XX:+HitachiOutputMilliTime option is set.

<EH_USED> <const>K Output used size of Explicit heap when sub status of Explicit memory
block with <EID> is Disable. The unit is kilo bytes.

<EH_GARB> <const>K Output value indicating internal status of Explicit heap.

<EH_TOTAL> <const>K Output secured size of Explicit heap when sub status of Explicit
memory block with <EID> is Disable. The unit is kilo bytes.

<EH_MAX> <const>K Output Explicit heap maximum size. The unit is kilo bytes.

<AC_NUM> <const> Output number of Explicit memory blocks that are Enable after
changing the sub status of Explicit memory block with <EID>
to Disable.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of Explicit memory blocks that whose sub status is
Disable after changing the sub status of Explicit memory block with
<EID> to Disable.

<CAUSE> New|GC|Full GC Output the process that cause Disable of sub status.
The output contents and measures for the cause are as follows:
• "New"

The cause is direct generation of object in Explicit heap
by newInstance().

• "GC"
The cause is moving the object to Explicit heap by copy GC.

• "Full GC"
The cause is moving the object to Explicit heap by Full GC.

<EM_NAME> <letters> Output name of Explicit memory block whose sub status is Disable.
The output contents are uncertain when multi byte characters
are included in name of Explicit memory block (Usually garbled
and output).

5. Problem Analysis

Maintenance and Migration Guide 267

Output items Output contents Meaning

<EID> <const> Output ID of Explicit memory block whose sub status is Disable.

<EM_TYPE> R|B|A Output type of Explicit memory block whose sub status is Disable.
R indicates Explicit memory block used internally in Application
Server. B indicates the type of the Explicit memory block in JavaVM.
A indicates the Explicit memory block specified using the automatic
allocation configuration file.

<EM_USED> <const>K Output used size of Explicit memory block whose sub status is Disable.
The unit is kilo bytes.

<EM_GARB> <const>K Output value indicating internal status of Explicit memory block.

<EM_TOTAL> <const>K Output secured size of Explicit memory block whose sub status is
Disable. The unit is kilo bytes.

<TH_PTR> <ptr> Output thread ID of thread executing object generation to Explicit heap
as the sub status is Disable. Thread ID is same as the tid output to
thread dump.
This item is output only when <CAUSE> is "New".

<FRAME> <letters>.<letters> Output one frame in stack trace output as a result of direct object
generation when sub status is Disable due to direct object generation in
Explicit heap.
Output all class names and method names by delimiting them by a ".".
This item is output only when <CAUSE> is "New".

<SOURCE> (<letters>:<const>)|
(Native Method)|
(Unknown Source)

Output the source file names where methods output to <FRAME> are
described and the line numbers that match the stack trace. Output the
file name and line numbers by delimiting them by a ":".
Output as "(Native Method)" for native method. Output as
"(Unknown Source)" when you cannot acquire source file name.
This item is output only when <CAUSE> is "New".

(d) Example of output
Output example.

[EVO]<Tue Jul 24 01:23:51 2007>[Alloc failed(Disable)][EH: 12000K(1258K)/150
00K/30000K][E/F/D: 321/0/1][cause:GC]\
["ReferenceExplicitMemory-3" eid=3/R: 108K(20K)/108K]

You can confirm the following contents in this output example:

• Output trigger is Disable of sub status of Explicit memory block on July 24, 2007 1:23:51.

• For Explicit heap, 12000K is used and 15000K is secured.

• Maximum size of Explicit heap is 30000K.

• There are only 322 valid Explicit memory blocks in the entire Explicit heap. In these blocks, the blocks whose sub
status is Enable are 321 blocks and the blocks whose sub status is Disable is 1 block.

• The migration of objects to the Explicit memory block during GC is the process as a result of which the sub status
is Disabled.

• The Explicit memory blocks whose sub status is Disable is when ID is "3" and name of Explicit memory block
is "ReferenceExplicitMemory-3".

• In "ReferenceExplicitMemory-3", 108k memory is already used.

5. Problem Analysis

Maintenance and Migration Guide 268

(4) Object generation to Explicit memory block
Output when object is generated directly in Explicit memory block using ExplicitMemory.newInstance().

(a) Output trigger
Output is triggered when object is generated in Explicit memory block.

(b) Output format

[EVS]<ctime>[EH: <EH_USED_BF>-><EH_USED_AF>(<EH_TOTAL>/<EH_MAX>)][E/F/D: <AC
_NUM>/<FL_NUM>/<DA_NUM>][cause:<CAUSE>]\
["<EM_NAME>" eid=<EID>/<EM_TYPE>: <EM_USED_BF>-><EM_USED_AF>(<EM_TOTAL>)]

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒46: Output items (Object generation to Explicit memory block)

Output items Output contents Meaning

<ctime> <letters> Indicates the date and time when object is generated in
Explicit memory block. Output in the format same as extended
verbosegc information.
Output in milli-seconds unit when -
XX:+HitachiOutputMilliTime option is set.

<EH_USED_BF> <const>K Output used size of Explicit heap before object generation. The unit is
kilo bytes.

<EH_USED_AF> <const>K Output used size of Explicit heap after object generation. The unit is
kilo bytes.

<EH_TOTAL> <const>K Output secured size of Explicit heap after object generation. The unit
is kilo bytes.

<EH_MAX> <const>K Output maximum size of Explicit heap. The unit is kilo bytes.

<AC_NUM> <const> Output the number of Explicit memory blocks whose sub status is
Enable after object generation.

<FL_NUM> <const> Normally 0 is output

<DA_NUM> <const> Output number of Explicit memory blocks whose sub status is Disable
after object generation.

<CAUSE> New Always output as "New".
Indicates that migration of object to Explicit memory block is executed
from Java program.

<EM_NAME> <letters> Output name of Explicit memory block where object is generated.
The output contents are uncertain when multi byte characters
are included in name of Explicit memory block (Usually garbled
and output).

<EID> <const> Output ID of Explicit memory block where object is generated.

<EM_TYPE> R|B|A Output type of Explicit memory block where object is generated.
R indicates Explicit memory block used internally in Application
Server. B indicates the type of the Explicit memory block in JavaVM.
A indicates the Explicit memory block specified using the automatic
allocation configuration file.

5. Problem Analysis

Maintenance and Migration Guide 269

Output items Output contents Meaning

<EM_USED_BF> <const>K Output used size of Explicit memory block that is generation
destination before object generation. The unit is kilo bytes.

<EM_USED_AF> <const>K Output used size of Explicit memory block that is generation
destination after object generation. The unit is kilo bytes.

<EM_TOTAL> <const>K Output secured size of Explicit memory block that is generation
destination after object generation. The unit is kilo bytes.

(d) Example of output
Output example.

[EVS]<Thu Oct 21 14:55:50 2007>[EH: 150528K->150529K(150532K/1048576K)][E/F/
D: 200/0/0][cause:New]["BEM" eid=2/B: 30K->31K(32K)]

You can confirm the following contents in this output example:

• Output trigger is the generation of object to Explicit memory block executed on October 21, 2007
(Thursday) 14:55:50.

• The used size of Explicit heap changed from 150528K to 150529K as object is generated in Explicit heap.

• Secured size of Explicit heap after object generation to Explicit heap is 150532K. Maximum size is 1048576K.

• The number of Explicit memory blocks whose sub status is Enable after object generation to Explicit heap, is 200.

• Changed the used size of memory block named "BEM" from 30K to 31K. Secured size of BEM after object
generation is 32K.

(5) Moving to Explicit memory block (Output detail information)
Output detail information for moving object to Explicit memory block. Besides the output contents described in 5.11.3(1)
GC occurrence (Output Explicit heap usage status), output the usage status of all Explicit memory blocks where the
objects are to be moved.

(a) Output trigger
Output is triggered when object moves to Explicit memory block as a result of occurrence of GC.

(b) Output format

<Explicit heap usage status when GC occurred>#
[EVS]{["<EM_NAME>" eid=<EID>/<EM_TYPE>: <EM_USED_BF>-><EM_USED_AF>(<EM_TOTAL
>)]}{1,5}
...

Note:
Linefeed information of Explicit memory block after output of every five blocks.

#
For output items, see 5.11.3(1) GC occurrence (Output Explicit heap usage status).

(c) Output items
The following table describes each item indicated in (b) output trigger.

5. Problem Analysis

Maintenance and Migration Guide 270

Table 5‒47: Output items (Moving to Explicit memory block (Output detail information))

Output items Output contents Meaning

Explicit heap usage status when GC occurred See 5.11.3(1) GC occurrence (Output Explicit heap usage status).

<EM_NAME> <letters> Output name of Explicit memory block where the object is to be moved when
GC occurred.
The output contents are uncertain when multi byte characters are included in
name of Explicit memory block (Usually garbled and output).

<EID> <const> Output ID of Explicit memory block where the object is to be moved when
GC occurred.

<EM_TYPE> R|A Output type of Explicit memory block where the object is to be moved
whenGC occurred.
R or A is output. R indicates the type of the Explicit memory block in JavaVM.
A indicates the Explicit memory block specified by using the automatic
allocation configuration file.

<EM_USED_BF> <const>K Output used size before occurrence of GC of Explicit memory block where the
object is to be moved when GC occurred. The unit is kilo bytes.

<EM_USED_AF> <const>K Output used size after occurrence of GC of Explicit memory block where the
object is to be moved when GC occurred. The unit is kilo bytes.

<EM_TOTAL> <const>K Output secured size after occurrence of GC of Explicit memory block where
the object is to be moved when GC occurred. The unit is kilo bytes.

(d) Example of output
Output example.

[ENS]<Thu Oct 21 14:55:50 2007>[EH: 150528K->162816K(162816K/1048576K)][E/F/
D: 200/0/0][cause:GC][CF: 0]
[EVS]["REM2" eid=2/R: 0K->88K(128K)]["REM3" eid=3/R: 30K->230K(256K)]["REM6
" eid=6/R: 30K->2030K(2048K)]\
["Session1" eid=8/R: 30K->2530K(2548K)]["Session2" eid=10/R: 30K->2530K(2548
K)]
[EVS]["Session3" eid=12/R: 30K->5030K(5048K)]

You can confirm the following contents in this output example:

• Output trigger is the moving of object to Explicit heap in GC occurred on October 21, 2007 (Thursday) 14:55:50.

• Used size of Explicit heap changed from 150528K to 162816K.

• Secured size of Explicit heap after executing GC is 162816K. Maximum size is 1048576K.

• There are 200 Explicit memory blocks whose sub status is Enable after executing GC.

• Type of GC is copy GC.

• There are minimum five Explicit memory blocks where the objects are to be moved. Perform one linefeed after output
of five blocks.

• Following is the breakdown for moving 2288k to (162816K-150528K) explicit heap:

• Move 88K in Explicit memory block "REM2"(eid=2).

• Move 200K in Explicit memory block "REM3"(eid=3).

• Move 2000K in Explicit memory block "REM6"(eid=6).

• Move 2500K in Explicit memory block "Session1"(eid=8).

5. Problem Analysis

Maintenance and Migration Guide 271

• Move 2500K in Explicit memory block "Session2"(eid=10).

• Move 5000K in Explicit memory block "Session3"(eid=12).

Moved to Explicit memory blocks used internally in all Application Servers.

(6) Explicit memory block explicit release process (Output detail
information)

Output detail information when the explicit release process of Explicit memory block occurred. Besides the contents
output to 5.11.3(2) Explicit memory block explicit release process, output the information of all the explicitly released
Explicit memory blocks.

While explicitly releasing the Explicit memory block, if there is a Java heap overflow, output the information by adding
information of Explicit memory blocks explicitly released before overflow. The information described here is not output
to the output contents of 5.11.3(3) Java heap overflow in Explicit memory block explicit release process.

(a) Output trigger
The Explicit release process of Explicit memory block.

(b) Output format

<Explicit memory block explicit release process>#
[EVS]{["<EM_NAME>" eid=<EID>/<EM_TYPE>: <EM_TOTAL>]}{1,5}
...

Note:
Linefeed information of Explicit memory block after every five blocks.

#
For details on the output item, see 5.11.3(2) Explicit memory block explicit release process.

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒48: Output items (Explicit memory block explicit release process (Output detail
information))

Output items Output contents Meaning

Information output by release process of Explicit
memory block

See 5.11.3(2) Explicit memory block explicit release process.

<EM_NAME> <letters> Output name of the explicitly released Explicit memory block.
The output contents are uncertain when multi byte characters are included in
name of Explicit memory block (Usually garbled and output).

<EID> <const> Output ID of the explicitly released Explicit memory blocks.

<EM_TYPE> R|B|A Output type of the explicitly released Explicit memory blocks.
R indicates Explicit memory block used internally in Application Server.
B indicates the type of the Explicit memory block in JavaVM. A
indicates the Explicit memory block specified using the automatic allocation
configuration file.

5. Problem Analysis

Maintenance and Migration Guide 272

Output items Output contents Meaning

<EM_TOTAL> <const>K Output secured memory size (memory size released explicitly in the explicit
release process) of the explicitly released Explicit memory blocks. The unit is
kilo bytes.

(d) Example of output
Output example.

[ENS]<Tue Jul 24 01:23:51 2007>[EH: 150528K->149528K(162816K/1048576K), 0.11
29602 secs][E/F/D: 523/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 1
03400K->103400K(556800K)][cause:Reclaim]
[EVS]["REM2" eid=3/R: 300K]["BEM3" eid=5/B: 300K]["BEM1" eid=7/B: 400K]

You can confirm the following contents in this output example:

• Output trigger is the explicit release process of Explicit memory block occurred on July 24, 2007 (Friday) 1:23:51.

• The used size of Explicit heap reduced from 150528K to 149528K by the explicit release process of Explicit
memory block.

• The secured size of Explicit heap after Explicit memory block explicit release process is 162816K. Maximum size
is 1048576K.

• The explicit release process of Explicit memory block took 0.1129602 seconds.

• The number of Explicit memory blocks, whose sub status is Enable after Explicit memory block explicit release
process, are 523 blocks.

• The memory size of each area of Java heap is not changed as a result of the explicit release process of Explicit memory
block. In other words, no objects were moved to Java heap.

• The following Explicit memory blocks were target for the explicit release process:

• Explicit memory block "REM2"(eid=3) whose secured memory size is 300K

• Explicit memory block "BEM3"(eid=5) whose secured memory size was 300K

• Explicit memory block "BEM1"(eid=7) whose secured memory size was 400K

REM2 is the Explicit memory block used internally in Application Server. BEM3 and BEM1 are Explicit memory
blocks used by application.

(7) Release reservation of Explicit memory block by finalize
Output when an Explicit memory block corresponding to the finalize method of the ExplicitMemory class is
reserved for release as a result of the disconnection of a reference to an ExplicitMemory instance.

(a) Output trigger
Output is triggered when release of Explicit memory block is reserved by ExplicitMemory.finalize() method.

(b) Output format

[EVO]<ctime>[Finalized]["<EM_NAME>" eid=<EID>/<EM_TYPE>: <EM_TOTAL>]

5. Problem Analysis

Maintenance and Migration Guide 273

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒49: Output items (Release reservation of Explicit memory block by finalize)

Output items Output contents Meaning

<ctime> <letters> Indicates the reserved date and time for release. Output in the format
same as extended verbosegc information.
Output in milli-seconds unit when -
XX:+HitachiOutputMilliTime option is set.

<EM_NAME> <letters> Output name of Explicit memory block reserved for release.
The output contents are uncertain when multi byte characters
are included in name of Explicit memory block (Usually garbled
and output).

<EID> <const> Output ID of Explicit memory block reserved for release.

<EM_TYPE> B Output type of Explicit memory block reserved for release.
B indicates the type of the Explicit memory block in JavaVM. Indicates
Explicit memory block used by the application if Application Server
version is earlier than 08-50.

<EM_TOTAL> <const>K Output size secured (Memory size released by release process) by
Explicit memory blocks reserved for release. The unit is kilo bytes.

(d) Example of output
Output example.

[EVO]<Tue Jul 24 01:23:51 2007>[Finalized]["REM1" eid=3/R: 512K]

You can confirm the following contents in this output example:

• Output trigger is reservation for release of Explicit memory block "REM1"(eid=3) on July 24, 2007 (Friday) 1:23:51.
Release and reservation is executed by finalize().

(8) Automatic allocation to Explicit Memory Management
A log message is output, when the specified class succeeds in automatic allocation to Explicit Memory Management.

(a) Output trigger
The log message is output, when the specified class succeeds in automatic allocation to Explicit Memory Management.

(b) Output format

[EVA]<ctime> creation in explicit memory is succeeded. [class=<CLASSNAME>]

(c) Output items
The following table describes the items specified in (b) Output format.

5. Problem Analysis

Maintenance and Migration Guide 274

Table 5‒50: Output items (Automatic allocation to Explicit Memory Management)

Output items Output contents Meaning

<ctime> <letters> Indicates the occurrence time when the specified class succeeded
in automatic allocation to Explicit Memory Management. Output
with the format same as would output for the extended
verboseGC functionality. Output in milliseconds, when the
HitachiOutputMilliTime option is set.

<CLASSNAME> <letters> Outputs the fully qualified class name of the class that succeeded in
automatic allocation to Explicit Memory Management.

(d) Example of output
An output example is as follows:

[EVA]<Tue Jul 24 01:23:51 2007> creation in explicit memory is succeeded. [c
lass=jp.co.sample.Main]

You can check the following details in this output example:

• When the Explicit Memory Management functionality succeeds in automatic allocation of the class
jp.co.sample.Main to Explicit Memory Management on July 24, 2007 (Tuesday) at 1:23:51.

5.11.5 Contents Output when Output Level is Debug
This subsection describes the contents output for each event when you specify debug in log output level.

Supplement
Use debug, for detail information besides the contents output to verbose, while implementing by debugging. In
the logs output within debug, there are some logs with high overheads than that of the logs that require execution of
Full GC for output.

(1) Migration of object to Java heap by the explicit release of Explicit
memory block

If you want to refer an object in Explicit memory block from the Explicit memory block that is not the target for
explicit release, move that object to Java heap for explicitly releasing the Explicit memory block. This log does output
of information of object moved to Java heap and object of the reference source.

(a) Output trigger
Output is triggered when an object is moved to Java heap in the explicit release process of Explicit memory block.

(b) Output format

[EDO][eid=<EID>: Reference to <REFED_NAME>(<REFED_PTR>), total <R_SIZE>]
[EDO] <REF_NAME>(<REF_PTR>)<REF_GEN>

Note:
Output for each object referred by Explicit memory block that is not the target for explicit release.

5. Problem Analysis

Maintenance and Migration Guide 275

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒51: Output items (Migration of objects to Java heap as a result of the explicit release of
Explicit memory block)

Output items Output contents Meaning

<EID> <const> Output ID of the Explicit memory block that has objects referred from
other Explicit heap and that are not target for explicit release in the
Explicit memory block explicit release process.

<REFED_NAME> <letters> Output all class names of objects (Objects shown
in<REF_NAME>(<REF_PTR>)) referred from objects other than
Explicit heap that are not target for explicit release in Explicit memory
block explicit release process.

<REFED_PTR> <ptr> Output memory address before migration of objects indicating
<REFED_NAME> to Java heap.

<R_SIZE> <const>K Output total size of objects to be moved to Java heap by
referring from <REF_NAME>(<REF_PTR>). Total size is the value
including the objects in the Explicit memory block that are to
be released explicitly and objects that are indirectly referred from
<REF_NAME>(<REF_PTR>)#. The unit is kilo bytes.

<REF_NAME> <letters>|JVM Output all class names of objects referring
<REFED_NAME>(<REFED_PTR>). Output as "JVM" when reference
source is stack or internal JavaVM.

<REF_PTR> <ptr> Output object indicating <REF_NAME>, stack or memory address
in JavaVM.

<REF_GEN> (eid=<EID>)|(DefNew)|
(Tenured)|(JVM)

Output area belonging to <REF_NAME>(<REF_PTR>) or generation
name. Output ID of Explicit memory block for Explicit memory block.
Output "JVM" when referred from stack or JavaVM.

#
Also refer to the following supplement:

Supplement
This supplement gives an overview when there are many reference routes to an object moving to Java heap.
The description is provided with following figure as an example.

Figure 5‒9: Example where there are multiple reference routes to object moving to Java heap

5. Problem Analysis

Maintenance and Migration Guide 276

Output when object to be moved to Java heap is referred from multiple objects
There are cases when the objects to be moved to Java heap are referred from multiple objects. In the figure, there
are two types; A->B and E->B of reference routes for object B.
In such cases, the information related to reference of A->B, E->B is output separately in logs.

<R_SIZE> calculation when there is indirect referring from multiple objects
Output value that includes objects in the Explicit memory block that are to be released explicitly and objects
that are referred indirectly from <REF_NAME>(<REF_PTR>) in <R_SIZE>. However, the calculation method
differs when object to be moved to Java heap is indirectly referred from multiple objects.
In the figure, object D is indirectly referred by the following three types of routes:

• A->B->D

• E->B->D

• E->F->D

When referred by multiple routes, the size of object is added to <R_SIZE> reference relation calculated initially.
For example, when the reference relation is output in the following A->B, E->B, E->F sequence, the size of object
D is added in <R_SIZE> of A->B. In such cases, the output of <R_SIZE> of each reference relation would be
as follows:

• A->B
Total of size of object B and object D is 4K.

• E->B
2k that is the size of object B.

• E->F
1K that is the size of object F.

(d) Example of output
Output example.

[EDO][eid=5: Reference to java.lang.HashMap$Entry(0x1234568), total 125K]
[EDO] java.util.HashMap$KeyIterator(0x1134428)(eid=1)
[EDO][eid=5: Reference to ClassA(0x1234580), total 19250K]
[EDO] ClassV(0x1234468)(Tenured)
[EDO][eid=5: Reference to ClassZ(0x1234680), total 12K]
[EDO] ClassU(0x1233468)(DefNew)
[EDO][eid=9: Reference to JP.co.Hitachi.soft.jvm.BBB(0x1034428), total 1250
K]
[EDO] JVM(0x23456780)(JVM)

You can check the following contents in this output example:

• Object of java.lang.HashMap$Entry that is in the Explicit memory block of eid=5 is referred from object of
java.util.HashMap$KeyIterator that is in the Explicit memory block of eid=1 which is not the explicit
release target. As a result, object of 125Kbyte is moved to Java heap.

• Object of ClassA that is in Explicit memory block of eid=5 is referred from object of ClassV in Tenured area.
As a result, an object of 19,250 Kbyte is moved to Java heap.

• Object of ClassZ in Explicit memory block of eid=5 is referred from object of ClassU in New area. As a result,
object of 12Kbyte is moved to Java heap.

5. Problem Analysis

Maintenance and Migration Guide 277

• Object of JP.co.Hitachi.soft.jvm.BBB that is in Explicit memory block of eid=9 is referred from stack
or internal JavaVM. As a result, an object of 1,250 kilobyte is moved to Java heap.

(2) Initialization of Explicit memory block (Output detail information)
Output detail information when you initialize a new Explicit memory block. Besides the output contents in 5.11.4(1)
Initialization of Explicit memory block, output the stack trace of Java program executing initialization process. This log
is output asynchronously with the execution of Java program on multiple lines. Hence, there are cases where some other
log is output within the lines of this log. However, other logs are not output within one line.

(a) Output trigger
Initialization of Explicit memory block.

(b) Output format

<Information(verbose) of initialization of Explicit memory block>#[Thread: <
TH_PTR>]
[EDO][Thread: <TH_PTR>] at <FRAME><SOURCE>
...

#
For output items, see 5.11.4(1) Initialization of Explicit memory block.

(c) Output items
The following table describes each item indicated in (b) output trigger.

Table 5‒52: Output items (Initialization of Explicit memory block(Output detail information))

Output items Output contents Meaning

Information(vervose) when initialization of Explicit
memory block

See 5.11.4(1) Initialization of Explicit memory block.

<TH_PTR> <ptr> Output thread ID of thread to initialize Explicit memory block. Thread ID is
same as tid output to thread dump.

<FRAME> <letters>.<letters> Output one frame in stack trace when initializing Explicit memory block.
Output all class names and method names by delimiting them by a ".".

<SOURCE> (<letters>:<const>)|
(Native Method)|
(Unknown Source)

Output the source file names where methods output to <FRAME> are
described and line numbers match the stack trace. Output file names and line
numbers by delimiting them by a ":".
Output as "(Native Method)" when native method.
Output as "(Unknown Source)" when you cannot acquire the source file name.

(d) Example of output
Output example.

[EVO]<Tue Jul 24 01:23:51 2007>[Created]["BasicExplicitMemory-2" eid=2(0x123
4568)/B][Thread: 0x00035a60]
[EDO][Thread: 0x00035a60] at ExplicitMemory.registerExplicitMemory(Native Me
thod)
[EDO][Thread: 0x00035a60] at BasicExplicitMemory.<init>(Unknown Source)

5. Problem Analysis

Maintenance and Migration Guide 278

[EDO][Thread: 0x00035a60] at AllocTest.test(AllocTest.java:64)
[EDO][Thread: 0x00035a60] at java.lang.Thread.run(Thread.java:2312)

You can check the following contents in this output example:

• Output trigger is initialization of memory block executed on July 24, 2007 1:23:51. Name of Explicit memory block
is "BasicExplicitMemory-2". ID of Explicit memory block is eid=2.

• Try initializing Explicit memory block by executing constructor of BasicExplicitMemory class on 64th line
of AllocTest.java.

(3) Details of automatic release processing of the Explicit memory block
(Output detailed information)

Output the detailed information when the automatic release processing of the Explicit memory block occurs. Besides
the output contents described in the subsection 5.11.3(4) Automatic release processing of the explicit memory block,
output the EID information of the Explicit memory block executing the automatic release processing. The automatic
release processing of the Explicit memory block might include the automatic release processing without the movement
of objects, many-to-one automatic release processing, and one-to-one automatic release processing. Therefore, the
information about EID without object movement, many-to-one EID, and one-to-one EID is output.

(a) Output trigger
The log is output when the automatic release processing for the explicit memory block occurs.

(b) Output format

[EDO][migrate:(<EID_DEL>{,<EID_DEL>}*|)/(<EID_MBF>{,<EID_MBF>}*-><EID_MAF>|)
/(<EID_MIG>{,<EID_MIG>}*|)]

(c) Output items
The following table describes the items specified in (b) Output format.

Table 5‒53: Output items (Details of automatic release processing of the Explicit memory block
(output detailed information))

Output items Output contents Meaning

<EID_DEL> <const> Outputs EID of the Explicit memory blocks without moving the
objects, among the Explicit memory blocks released by the automatic
release processing of the Explicit memory block.

<EID_MBF> <const> Outputs EID used before reserving the automatic release of the Explicit
memory block where many-to-one automatic release processing
occurred, among the Explicit memory blocks released by the automatic
release processing of the Explicit memory block.

<EID_MAF> <const> Outputs EID of the Explicit memory blocks generated by the many-
to-one automatic release processing, among the Explicit memory
blocks generated by the automatic release processing of the Explicit
memory block.

<EID_MIG> <const> Outputs EID of the Explicit memory blocks where the one-to-one
automatic release processing occurred, among the Explicit memory
blocks released by the automatic release processing of the Explicit
memory block.

5. Problem Analysis

Maintenance and Migration Guide 279

(d) Example of output
An output example is as follows:

[EVS]<Tue Jul 14 02:31:22 2009>[EH: 256512K->256128K(256256K/1048576K), 0.11
24626 secs][E/F/D: 423/0/0][target:584K/384K/200K]\
[cause:Migrate]
[EDO][migrate:()/(2,4,6,9->10)/(1,8)]

You can check the following details in this output example:

• The output trigger is the automatic release processing of the Explicit memory block in the GC that occurred on July
14, 2009 (Tuesday) at 2:31:22.

• The used size of Explicit memory changed from 256,512K to 256,128K due to the automatic release processing.

• The secured size of Explicit memory after the automatic release processing is 256,256K and the maximum size
is 1,048,576K.

• The time taken for the automatic release processing was 0.1124626 seconds.

• There are 423 Explicit memory blocks whose sub-state is Enable after the automatic release processing.

• The automatic release processing was executed for the Explicit memory used size 584K.

• The Explicit memory blocks with IDs (2, 4, 6, 9) are moved to the Explicit memory block with ID (10).

• The Explicit memory blocks with IDs (1, 8) are moved to the same IDs (1, 8).

5. Problem Analysis

Maintenance and Migration Guide 280

6 Troubleshooting Procedure

This chapter describes the troubleshooting procedure for Application Server.

Maintenance and Migration Guide 281

6.1 Organization of this chapter

This chapter describes the main problems that occur in Application Server and how to troubleshoot the problems.

The following table describes the organization of this chapter.

Table 6‒1: Organization of this chapter (Troubleshooting procedure)

Category Title Reference section

Explanation List of main problems 6.2

Processes that output logs 6.3

Troubleshooting during setup 6.4.1

Troubleshooting during operations 6.4.2

Troubleshooting the server management commands 6.4.3

Examples of troubleshooting during operations 6.5

6. Troubleshooting Procedure

Maintenance and Migration Guide 282

6.2 List of main problems

This section describes the locations to check the main causes of problems and logs required for actions, for the different
times at which problems occur.

This subsection describes the main causes and actions for problems, for each of the following times:

• During installation

• During server setup

• During server startup

• During application startup

• During operations

• During server or application maintenance

The following is a description of each of the above problems:

6.2.1 Main problems occurring during installation
The following table describes the main problems that occur during installation.

Table 6‒2: List of main problems occurring during installation

Tool reporting
the problem

Event Main effects Main causes Checking location

Installer Output of error
message (dialog box or
command prompt)

Installation will be
interrupted. In some cases,
un-installation is required.

There is a problem with the
environment (such as the OS
or disk).

• Dialog box
• install.log

Legend:
--: Not applicable.

Reference note

For details on the notes related to installation and un-installation, see Appendix I Notes on installation and
un-installation in the uCosminexus Application Server System Setup and Operation Guide.

6.2.2 Main problems occurring during server setup
The following table describes the main problems that occur during server setup.

Table 6‒3: List of main problems occurring during server setup

Tool reporting
the problem

Event Main effects Main causes Checking location Reference
location

Setup Wizard Output of error
message
(command
prompt)

The setup operation
is interrupted. In
some cases, un-
setup is required.

The possible causes are
as follows:
• There is a problem with

the environment (such

• Command error
• Setup Wizard log
• Manager log

6.4.1

6. Troubleshooting Procedure

Maintenance and Migration Guide 283

Tool reporting
the problem

Event Main effects Main causes Checking location Reference
location

as the OS, network,
memory, disk)

• Operation error
• Settings error

• J2EE server log
• Web server log
• OS

SmartComposer Output of error
message
(command
prompt)

• Command error
• Manager log
• J2EE server log
• Web server log
• OS

Management
portal

Output of error
message (GUI)

• Displayed log
• Manager log
• J2EE server log
• Web server log
• OS

6.2.3 Main problems occurring during server startup
The following table describes the main problems that occur when you start a server.

Table 6‒4: List of main problems occurring during server startup

Tool reporting
the problem

Event Main effects Main causes Checking location Reference

SmartComposer Output of error
message
(command
prompt)

The deploy
operation is
interrupted.

The possible causes are
as follows:
• There is a problem with

the environment (such
as the OS, network,
memory, disk)

• Operation error
• Settings error

• Command error
• Manager log
• J2EE server log
• Web server log
• OS

6.4.1

Management
portal

Output of error
message (GUI)

• Displayed log
• Manager log
• J2EE server log
• Web server log
• OS

6.2.4 Main problems occurring during application startup
The following table describes the main problems that occur when you start an application.

Table 6‒5: List of main problems occurring during application startup

Tool reporting
the problem

Event Main effects Main causes Checking location Reference

SmartComposer
(for
compatibility)

Output of error
message
(command
prompt)

The deploy
operation is
interrupted.

The possible causes are
as follows:
• There is a problem with

the environment (such

• Command error
• Manager log
• J2EE server log
• Web server log
• OS

6.4.1

6. Troubleshooting Procedure

Maintenance and Migration Guide 284

Tool reporting
the problem

Event Main effects Main causes Checking location Reference

Management
portal

as the OS, network,
memory, disk)

• Operation error
• Settings error
• There is a problem with

the created application
• There is a problem

between an application
and Application Server

Output of error
message (GUI)

• Displayed log
• Manager log
• admin log
• J2EE server log
• Web server log
• OS

Server
management
commands#

Output of error
message
(command
prompt)

• Command error
• admin log
• J2EE server log
• Application

6.4.3

#
When you use the server management commands, the action to be taken for the problems varies. Check the action described at the Reference
column indicated in the table.

6.2.5 Main problems occurring during operations
The following table describes the main problems that occur during operations.

Table 6‒6: List of main problems occurring during operations

Tool reporting
the problem

Event Main effects Main causes Checking location Reference

Management
portal

Output of error
message (GUI)

The business
cannot continue.

The possible causes are
as follows:
• There is a problem with

the environment (such
as the OS, network,
memory, disk)

• Resource depletion in the
server (such as OOM)

• There is a problem with
the integrated system
(such as DB)

• Lengthy processing on
an application

• HA switching

• Displayed log
• Manager log
• J2EE server log
• Web server log
• OS
• JavaVM,

container
resources

• PRF trace
• Thread dump
• Application

6.4.2

(Client)# • Output of
business
errors

• Browser-
specific
errors (such
as server not
found, 404,
500, 503)

• No response
• Delayed

response
(performanc
e
deterioration
)

The business might
not be continued.

• Displayed log
• Manager log
• J2EE server log
• Web server log
• OS
• JavaVM,

container
resources

• PRF trace
• Thread dump
• Application

6. Troubleshooting Procedure

Maintenance and Migration Guide 285

#
Appears as an event on the client using the service.

6.2.6 Main problems occurring during server/application maintenance
The following table describes the main problems that occur during server/application maintenance.

Table 6‒7: List of main problems occurring during server/application maintenance

Tool reporting
the problem

Event Main effects Main causes Checking location Reference

SmartComposer Output of error
message
(command
prompt)

• The server
settings cannot
be changed

• The application
cannot be
updated

The possible causes are
as follows:
• There is a problem with

the environment (such
as the OS, network,
memory, disk)

• Operation error
• Settings error
• There is a problem with

the created application
• There is a problem

between an application
and Application Server

• Command error
• Manager log
• J2EE server log
• Web server log
• OS

6.4.1

Management
portal

Output of error
message (GUI)

• Displayed log
• Manager log
• admin log
• J2EE server log
• Web server log
• OS

Server
management
commands#

Output of error
message
(command
prompt)

• Command error
• admin log
• J2EE server log
• OS
• Application

6.4.3

#
The action to be taken for the problems varies when you use the server management commands. Check the action described at the Reference
column indicated in the table.

6. Troubleshooting Procedure

Maintenance and Migration Guide 286

6.3 Processes that output logs

Multiple logs are output by Application Server. You reference the logs to identify the cause of a problem, and then
take action.

This section describes the logs that are mainly used for troubleshooting and the processes that output the logs. The
following figure shows the logs that are mainly used for troubleshooting and the processes that output the logs.

Figure 6‒1: Processes that output logs

Four types of logs are mainly used for troubleshooting with Application Server. The following table describes each of
the logs.

Table 6‒8: Log types and output contents

Number in the figure Log type Output contents

1 Manager logs Logs output by Management Server or Administration
Agent. This type of log is output during the setup,
operations, and maintenance by using the Cosminexus
Manager functionality.

2 Server management command logs This type of log is output during the server management
command operations.

3 Web server logs This type of log is output by Cosminexus HTTP Server.

4 J2EE server logs This type of log is output by the J2EE server.

6. Troubleshooting Procedure

Maintenance and Migration Guide 287

During troubleshooting, you check these logs and then take action. The following sections describe specific
troubleshooting procedure for each tool used.

6. Troubleshooting Procedure

Maintenance and Migration Guide 288

6.4 Overview of troubleshooting

6.4.1 Troubleshooting during setup
This section describes the actions for problems that occur during setup.

Setup refers to the following times:

• During server setup

• During server startup

• During application startup

• During server/ application maintenance

The following figure shows the procedure of checks during setup.

Figure 6‒2: Procedure of checks for the tools being used (During setup)

Implement the required checks as per the procedure shown in the figure for the tools being used. The following
subsections describe the details for the respective checks.

Reference note

Use the management portal to check the Manager logs. For details on the Management portal, see the
uCosminexus Application Server Management Portal User Guide.

6. Troubleshooting Procedure

Maintenance and Migration Guide 289

(1) Checking the command errors

Tip

This check is required when you use the following tools:

• Setup Wizard

• SmartComposer

The errors are displayed in the Setup Wizard and Smart Composer windows. Check the displayed error contents, and then
take action. For details on the actions for the error messages, see the manual uCosminexus Application Server Messages.

(2) Checking the Setup Wizard logs

Tip

This check is required when you use the following tool:

• Setup Wizard

Check the Setup Wizard logs. The output destination of the Setup Wizard logs is specified in setup.log.dir of
setup.cfg. For details on setup.cfg, see 8.2.18 setup.cfg (Setup file for the Setup Wizard) in the uCosminexus
Application Server Definition Reference Guide.

(3) Checking the Manager logs

Tip

This check is required when you use the following tools:

• Setup Wizard

• SmartComposer

Check the logs output by Manager. The following table lists and describes the log files to be checked.

Log file name# Log description Checking method

mngsvr?.log Management Server log Check the contents of the error message
ID (message with message type E) for the
time at which the error message is output by
Cosminexus Manager.

#:
? indicates the number of log files.

For details on the default output destination of the log files, see 4.3.1 Acquiring the Cosminexus Component
Container Logs.

6. Troubleshooting Procedure

Maintenance and Migration Guide 290

(4) Checking the admin logs

Tip

This check is required when you use the following tools:

• Management portal

Note that this check is necessary when an error occurs while an application is being started.

Check the server management command logs.

The server management command logs include the message log, exception log, and maintenance log. These logs output
information such as the operating status of the server management commands, the standard output and standard error
output information output in an application, and the information used by the maintenance personnel to analyze the
Component Container errors.

For details on the default output destination and the names of the log files, see the description related to the server
management command logs in 4.3.1 Acquiring the Cosminexus Component Container Logs.

(5) Checking the J2EE server logs

Tip

This check is required when you use the following tools:

• Setup Wizard

• Management portal

• SmartComposer

Check the contents of the log files output by the J2EE server. The following table lists and describes the log files to
be checked.

Table 6‒9: List of log files to be collected

Log file name# Log description Checking method

cjmessage?.log Log for J2EE server operations Check the contents of the error message
ID (message with message type E) for the
time at which the error message is output by
Cosminexus Manager.

cjexception?.log Exception information log for J2EE
server operations

web_servlet?.log Web servlet log (messages output in
JSP/ Servlet)

user_out?.log User output log (standard output of messages
in applications)

user_err?.log User error log (standard error output of
messages in applications)

javalog?.log Logs for JavaVM maintenance information
and GC information

hs_err? JavaVM error report file Send to maintenance personnel.

6. Troubleshooting Procedure

Maintenance and Migration Guide 291

#:
? indicates the number of log files.

For details on the default output destination of the log files, see 4.3.1 Acquiring the Cosminexus Component
Container Logs.

For details on how to acquire hs_err, see 4.11 JavaVM Output Message Logs (Standard Output or Error Report File).

(6) Checking the Web server logs

Tip

This check is required when you use the following tools:

• Setup Wizard

• Management portal

• SmartComposer

Check the log files output by the Web server. The following table lists and describes the log files to be checked.

Table 6‒10: List of log files to be collected

Log file name# Log description Checking method

processConsole?.log Console logs for Manager (Error information
when the Web server starts)

Check the contents of the error message
ID (message with message type E) for the
time at which the error message is output by
Cosminexus Manager.

error? Web server error log Check the contents of the error message
(emerg, alert, and crit) for the time
at which the error message is output by
Cosminexus Manager.

#:
? indicates the number of log files.

For details on the default output destination of the console logs for Manager, see 4.11 JavaVM Output Message Logs
(Standard Output or Error Report File).

For details on the default output destination of the Web server error logs, see 6.2.4 Directives that start with E, F, G, H,
and I in the uCosminexus Application Server HTTP Server User Guide.

(7) OS peripheral checks

Tip

This check is required when you use the following tools:

• Setup Wizard

• Management portal

• SmartComposer

6. Troubleshooting Procedure

Maintenance and Migration Guide 292

Check the memory size and operating status of the machine on which Application Server is installed.

6.4.2 Troubleshooting during operations
This section describes the actions to be taken for the problems occurring during operations.

"During operations" indicates the time immediately after the server startup is complete or when the server is running.

The following figure shows the procedure of checks during the operations of the tools being used.

Figure 6‒3: Procedure of checks for the tools being used (during operations)

Implement the required checks as per the procedure shown in the figure for the tools being used. The following
subsections describe the details for the respective checks.

(1) Checking the Manager logs
Check the log files output by Manager. For details on the Manager log checks, see 6.4.1(3) Checking the Manager logs.

(2) Checking the J2EE server logs
Check the log files output by the J2EE server. For details on the J2EE server log checks, see 6.4.1(5) Checking the J2EE
server logs.

(3) Checking the Web server logs
Check the log files output by Web server. For details on the Web server log checks, see 6.4.1(6) Checking the Web
server logs.

6. Troubleshooting Procedure

Maintenance and Migration Guide 293

(4) OS peripheral checks
Check the memory size and operating status of the machine on which the Application Server is installed.

(5) Checking JavaVM and container resources
Check whether there are errors in JavaVM (occurrence of OutOfMemoryError) and in resources. For details on the action
to be taken when an error occurs in JavaVM, see 2.5.4 If JavaVM Terminates abnormally.

(6) Checking the PRF trace
Check the trace based performance analysis and verify if there are any bottlenecks or if the processing is delayed at
any location. For details on the trace based performance analysis, see 7. Performance Analysis by Using Trace Based
Performance Analysis.

(7) Checking the thread dump
Check the thread dump and verify if there are any deadlocks or if there are any errors in the Java programs. For details
on the information output to a thread dump, see 5.5 JavaVM Thread Dump.

(8) Checking the applications
Check the contents of the applications in which you think errors might have occurred. Request the creators of the
application to perform the check.

6.4.3 Troubleshooting the server management commands
This section describes the actions to be taken for the problems that occur when the server management commands
are used.

The actions for problems described in this section are as follows:

• During application startup

• During server/ application maintenance

The following figure shows the procedure of checks using the server management commands.

Figure 6‒4: Procedure of checks using the server management commands

The details of the respective operations are as follows:

6. Troubleshooting Procedure

Maintenance and Migration Guide 294

(1) Checking the command errors
The errors are displayed on the command prompt. Check the displayed error contents, and then take action.

(2) Checking the admin logs
Check the server management command logs. For details on the default output destination of the log files, see
the description related to the server management command logs in 4.3.1 Acquiring the Cosminexus Component
Container Logs.

(3) Checking the J2EE server logs
Check the log files output by the J2EE server. For details on the J2EE server log checks, see 6.4.1(5) Checking the J2EE
server logs.

(4) Checking the applications
Check the contents of the applications in which you think errors might have occurred. Request the creators of the
application to perform the check.

6. Troubleshooting Procedure

Maintenance and Migration Guide 295

6.5 Examples of troubleshooting during operations

This section describes the procedure of troubleshooting for the following problems as examples of troubleshooting
during operations:

• Process down

• Delayed response

Important note

This section specifies the default path settings of Application Server. Also, the OS used is Windows.

6.5.1 Troubleshooting when a process is down
This subsection describes troubleshooting when a process is down.

(1) Flow of actions when a process is down
The following figure shows the flow of troubleshooting when a process is down.

6. Troubleshooting Procedure

Maintenance and Migration Guide 296

Figure 6‒5: Flow of actions when a process is down

The details of the processing shown in the figure are described in subsection (2).

(2) Flow of actions when a process is down
The following points describe the operations according to the contents of the process down flow:

1. Open the error report file (hs_err_pidprocess-ID.log)
Open the error report file that was output around the time the error occurred and compare it with the Manager log.

• Output destination of the error report file and the output file name
C:\Program Files\Hitachi\Cosminexus\CC\server\public\ejb\server-
name\hs_err_pidserver-process-ID.log

2. Check whether OutOfMemoryError occurs
If OutOfMemoryError has occurred, java.lang.OutOfMemoryError occurred. is displayed.
The following are examples of the output of the error report file and the action to be taken when OutOfMemoryError
has occurred and when OutOfMemoryError has not occurred.

When OutOfMemoryError has occurred
Output example

6. Troubleshooting Procedure

Maintenance and Migration Guide 297

 :
#
java.lang.OutOfMemoryError occurred.
JavaVM aborted because of specified -XX:+HitachiOutOfMemoryAbort opti
ons.
Please check Javacorefile:D:\Cosminexus\CC\server\public\ejb\MyJ2EESe
rver\javacore2100.120124144835.txt
#

The part shown in bold with a colored background is the string that is output when OutOfMemoryError
has occurred.
Action
You need to examine the error report file. Go to step 3.

When OutOfMemoryError has not occurred
Output example

 :
#
A fatal error has been detected by the Java Runtime Environment
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x0000000008303b00, pid
=1356, tid=2604
#
Java VM: Java HotSpot(TM) 64-Bit Server VM (25.20-b23-CDK0970-2015012
7 mixed mode windows-amd64)
Problematic frame:
V [C:\Program Files\Hitachi\Cosminexus\jdk\jre\bin\server\jvm.dll+0x3
03b00]
#

Action
The following checks are required. Perform the following steps. Note that the step numbers correspond to
Figure 6-5.
3-1 Check the library where the signal occurred
Check the red portion in the example of output, and make a note of the down library name and the down
native function.
In the example of output, the library name is NativeCrash.dll and the down native function is
(null)+0x77C785BA.
3-2 Check the signal
If the location specified after "An unexpected error has been detected by HotSpot Virtual Machine: " is down due
to signal 6 (SIGABRT, SIGIOT), the invocation destination library must be checked because the library is aborted
by a higher abort function.
The above example is not aborted.
In this example, request a detailed check to the Oracle support service.
3-3 Send the collected results to the helpdesk
Send the library you have noted and the signal contents to the module developer or to the helpdesk based on the
purchase agreement and request a check.

3. Check the extended verbosegc information and tune the memory size
Check the extended verbosegc information and adjust the Java heap memory size.

6. Troubleshooting Procedure

Maintenance and Migration Guide 298

Using the set value of the -Xmx option as an indicator, specify 1.5 to 2 times the value. However, note that the hard
disk memory size must not be exceeded.

4. Restart the machine
Restart the machine and check if the operations can be executed without any problems.

Tip

Troubleshooting is complete when you restart the machine and can perform operations without
any problems.

If the operations are not performed correctly even after the machine is restarted, go to step 5.

5. Output the class-wise statistics
Check the JavaVM GC log (javalog[n].log), or operation log (HJVMStats_YYYYMMDDhhmmTZ.csv),
for every 10 MB to 20 MB memory increased, execute the jheapprof command to output the class-wise statistics
(txt file).
Repeat the process until the memory is increased to 100 MB or more.
If the command execution interval is short, the leaked memory size is also small, so it is difficult to find the class for
which the memory has been increased.
By increasing the execution interval and incrementing the increase in memory, the class from which the memory is
leaking is made to stand out.

Example of execution
% jheapprof -p 2463

Note
2463 in the example of execution becomes the process ID. When you execute the command, specify the process
ID with the problem.

6. Output the class structure list
List and output the class structure containing the class picked up in the previous step as a member, create the class
list to be checked, and then list up the check targets.

Example of execution
% jheapprof -class org.apache.catalina.loader.WebappClassLoder -p 2463

Note
2463 in the example of execution becomes the process ID. When you execute the command, specify the class
with the problem.
org.apache.catalina.loader.WebappClassLoder in the example of execution becomes the class
name. Use this class to check OutOfMemoryError caused by an insufficient Metaspace area.

7. Request the developer to perform the check
Send the information collected in the previous step to the developer and request a check.

6.5.2 Troubleshooting when a response is delayed
This subsection describes troubleshooting for a delayed response.

6. Troubleshooting Procedure

Maintenance and Migration Guide 299

(1) Flow of actions when a response is delayed
The following figure shows the flow of troubleshooting when a response is delayed.

Figure 6‒6: Flow of actions when a response is delayed

The details of the processing shown in the figure are described in subsection (2).

(2) Flow of actions when a response is delayed
The following points describe the operations according to the contents of the delayed response flow:

1. Check the CPU usage
Check the CPU usage of the applicable process.
The following is an example display of CPU usage with the task manager.

6. Troubleshooting Procedure

Maintenance and Migration Guide 300

Figure 6‒7: CPU usage

Tip

If 1core is close to 100%
This includes cases that run into an infinite loop and recursive invocation. A CPU bottleneck is a possible
cause. Go to step 2 and proceed with the check.

If 1core is close to 0%
A possible cause is a non-responding or deadlocked back-end process, based on the reason that the
back-end process does not return a response. Go to step 2 and proceed with the check.

2. Acquire the PRF trace
Execute the mngsvrutil command to output the PRF trace.

Example of execution
mngsvrutil -m 123.45.67.89 -u admin2 collect allPrfTraces

3. Open the PRF trace
Open the PRF trace.

Output destination
C:\Program Files\Hitachi\Cosminexus\manager\log\prf

File name
The file is output with the following file names for the trace information to be collected.
Note that the date and time at which the PRF trace was collected is displayed in date-and-time.

Performance tracer types File name

All the performance tracers running on the hosts in the management domain management-domain-name-date-and-time.zip

All the performance tracers running on a specific host host-name-date-and-time.zip

6. Troubleshooting Procedure

Maintenance and Migration Guide 301

Performance tracer types File name

Specific performance tracer logical-server-name-date-and-time.zip

4. Check the PRF trace
Check the Time column in PRF trace and find the processing that requires a long period of time.
The PRF trace is a trace information that outputs events across processes and effective data for performance analysis
or error analysis.

Figure 6‒8: Example of output of PRF trace

In the example, there is a gap of 11 minutes after the SQL statement is issued. Furthermore, the execution of the SQL
statement has not ended. Therefore, a problem might have occurred in the database while the SQL statement was
being executed.
Note that the PRF trace is easy to check if you use spreadsheet software.

5. Output the thread dump
Execute the mngsvrutil command to output the thread dump.

Example of execution
mngsvrutil -m 123.45.67.89 -u admin2 dump server

6. Check the thread dump

For an infinite loop
The following figure shows an example of the thread dump output and the check points in the case of an
infinite loop.

6. Troubleshooting Procedure

Maintenance and Migration Guide 302

Figure 6‒9: Example of thread dump output (infinite loop)

Output the thread dump multiple times, observe the time series, and perform a comparative check of the stack
trace of the threads with the same tid in each thread dump.
Point 1
If the thread attribute is runnable, this thread is executable. This thread is participating in the increased CPU
usage (if the attribute is waiting for monitor entry, the thread is not executable and so does not
increase the CPU usage).
Point 2
All the thread attributes with the same tid are runnable in multiple thread dump files.
The threads might be running for a long period of time.
Point 3
If a specific line in the same method is being executed repeatedly, an infinite loop might be suspected.

Tip

If an infinite loop is suspected in the checks until now, request the developer to perform the check.

If an infinite loop is not suspected, go to step 7.

For a deadlock
The following figure shows an example of thread dump output and the check points in the case of a deadlock.

6. Troubleshooting Procedure

Maintenance and Migration Guide 303

Figure 6‒10: Example of thread dump output (deadlock)

The above figure shows an example of thread dump when a deadlock occurs.
The thread attributes are output after nid:... in the example of output.
Find the thread with the attribute waiting for monitor entry.
Check the contents of "-waiting to lock..." and "-locked...". There is a deadlock if the threads are waiting to
acquire a lock for the areas that are mutually locked.
Point 1
If the thread attribute is runnable, this thread is executable, and so this thread is irrelevant to a deadlock.
Point 2
If the thread attribute is waiting for monitor entry, it indicates that this thread is waiting to acquire
a lock.
This thread might have caused the deadlock.
Point 3
If a thread has acquired a lock, and if the thread is waiting for a lock at Point 2, there is a high possibility that the
thread is causing the deadlock.
Compare the addresses of the locked objects to detect the deadlock for a thread applicable to Point 2 and Point 3.
In the example, Thread-3 has acquired the <02A328C8> lock and is waiting to acquire <02A328C0>.
On the other hand, Thread-1 has acquired the <02A328C0> lock and is waiting to acquire <02A328C8>. This
shows that Thread-3 and Thread-1 are in a deadlock.

Tip

If a deadlock is suspected in the checks until now, request the developer to perform the check.

If a deadlock is not suspected, go to step 7.

7. Improve the business application. Remove redundant processing
Based on the results of checks on the PRF trace and the thread dump, check and take action if you suspect delays in
the business application.

Tip

If the problem is resolved, the troubleshooting process ends at this point.

If the problem is not resolved and if the CPU usage is high, go to step 8.

If the problem is not resolved and if the CPU usage is low, request the helpdesk to check, based on the
purchase agreement.

6. Troubleshooting Procedure

Maintenance and Migration Guide 304

8. Reduce the parameters with concurrently executing threads and control the number of concurrently
executing processing
The pending requests might accumulate, but you must wait for some time for the processing.

9. Upgrade the machine CPU
Note the additional middleware license costs when you upgrade the CPU.

10. Add more machines and distribute the load of the transactions
Note the additional hardware and software license costs when you add machines.

Tip

If the problem is resolved, the troubleshooting process is complete.

If the problem is not resolved, request the helpdesk to check, based on the purchase agreement.

6. Troubleshooting Procedure

Maintenance and Migration Guide 305

7 Performance Analysis by Using Trace Based
Performance Analysis

The trace based performance analysis is the functionality to collect the performance analysis
information (trace information) output by each functionality of Application Server when processing
the requests from the client, and the performance analysis information (trace information) output by
the processing of applications.

You can analyze the system and application performance based on this information. This chapter
describes methods for analyzing the performance of the system and applications using the trace
based performance analysis. For details on the collection of performance analysis information by the
trace based performance analysis (trace collection point) and acquisition range of the information
(PRF trace collection level), see the chapter 8. Trace Collection Points and PRF Trace Collection
Levels of the Trace Based Performance Analysis.

Maintenance and Migration Guide 306

7.1 Organization of this chapter

By using the trace based performance analysis, you can monitor the operational status of each software type that
configures the system and the trace information output by each server during request processing, thus you can check the
processing performance of the whole system. If you monitor the processing performance, you can determine whether
the study of an Application Server bottleneck and implementation of performance tuning is required. Furthermore, by
analyzing the trace information output by the processing of the applications, you can check and compare the application
performance. If you analyze the performance, you can check for application bottlenecks and determine whether the
application requires improvement.

The following table describes the organization of this chapter.

Table 7‒1: Organization of this chapter (Trace based Performance Analysis)

Category Title Reference location

Explanation Overview of the trace based performance analysis 7.2

Collecting the trace based performance analysis file by using
Management Server

7.3

Implementation Implementation for collection of root application information of trace based
performance analysis

7.4

Setting Settings of execution environment 7.5

Operation Logs output when the user-extended trace based performance analysis
is executed

7.6

Analysis operation of the processing performance by using the trace based
performance analysis file

7.7

Notes Notes on using the user-extended trace based performance analysis 7.8

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 307

7.2 Overview of the trace based performance analysis

The trace based performance analysis functionality uses the performance analysis information output by the
Application Server functionality and the application processing to analyze the performance of Application Server
and application processing.

The trace based performance analysis functionality includes the following types based on the performance analysis
information to be used:

• Trace based performance analysis of Application Server

• Trace based performance analysis of applications

Note that in both the cases you use the component software Cosminexus Performance Tracer to analyze the
processing performance.

The following figure gives an overview of the trace based performance analysis.

Figure 7‒1: Overview of the trace based performance analysis

Points 1 and 2 in the figure indicate the trace based performance analysis of Application Server, and points 3 and
4 indicate the trace based performance analysis of applications. You can collectively analyze both the trace based
performance analysis as the trace based performance analysis information.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 308

7.2.1 Overview of the trace based performance analysis of Application
Server

The trace based performance analysis of Application Server is a functionality that analyzes the Application Server
performance by using the performance analysis information (trace information) output by the Application Server
functionality in the processes that handle the requests from the client, and the information used to determine the
session life cycle (hereafter, the trace based performance analysis of Application Server will be referred to as trace
based performance analysis). This analysis enables you to analyze the Application Server bottlenecks, to improve the
efficiency of troubleshooting by checking the extent to which request processing has been attained when an error occurs,
and to understand the session and global session information life cycles.

(1) Collecting the trace information of the trace based performance
analysis

The trace information of the trace based performance analysis collects the performance analysis information output in
a series of processing of requests until the client reaches the components of the EIS such as a database, and until the
processing results are returned to the client.

The following figure shows an overview of the trace information collection by the trace based performance analysis.

Figure 7‒2: Overview of trace information collection of trace based performance analysis

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 309

When a request is sent from the Web client or the EJB client, the Web server, J2EE server, and CTM output the trace
information to the buffer at determined processing points. If constant output information is collected, the trace is output
in the trace file (PRFTrace file) depending on the performance tracer (PRF daemon). The point at which the trace is
output is called the trace get point. You can set the trace collection levels (standard or detailed) in the performance tracer.
The trace collection levels set in the performance tracer are called PRF trace collection levels.

When you use Management Server for operations, you can collect the trace based performance analysis file by editing
the PRF trace file in the text format. On the basis of the collected trace based performance analysis file, the operations
administrator can perform the entire performance and bottleneck analysis in the management domain. For details on how
to collect the trace based performance analysis file and the information that is output, see 7.3 Collecting the trace based
performance analysis file by using Management Server.

(2) Working of Trace based performance analysis
You can use the trace based performance analysis to collect the trace information across multiple nodes and processes
in an event within the system. This helps to trace the process in a sequence of processes in which there is a bottleneck.

To obtain the trace in an event, set a uniform key for the sequence of processes of an event in the trace based performance
analysis. The information of the key is added to the trace that is output at the trace acquisition point in an event. The
sequence of processes can be traced in this way.

Figure 7‒3: Overview of trace output depending on the trace based performance analysis

The EJB container and the Web container that output the trace are referred to as the function layer. In the trace based
performance analysis, trace information is output at the entrance and the exit of the following function layer. Moreover,
the trace information is output as and when necessary for each process that affects the performance among the processes
of the function layers. The following table describes the execution environment of the application and the applicable
function layer. In the trace based performance analysis, trace information is output at the entrance and the exit of the
following function layer.

Table 7‒2: Execution environment of the application and the applicable function layer

Function layer Execution environment of the application

Execution environment of the
J2EE application

Execution environment of the
batch application

CTM Y --

Web container Y --

EJB container Y --

Timer Service Y --

JNDI Y Y

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 310

Function layer Execution environment of the application

Execution environment of the
J2EE application

Execution environment of the
batch application

JTA Y Y

JCA container Y Y

DB Connector Y Y

RMI (communication processing)#1 Y Y

OTS Y Y

Standard output, standard error output,
and user log

Y Y

DI Y --

Batch application
execution functionality

-- Y#2

JPA Y --

TP1 inbound integrated function Y --

Cosminexus JMS Provider Y --

JavaMail Y --

CDI Y --

JSF 2.2 Y --

JAX-RS Y --

Java Batch Y --

Legend:
Y: Applicable
--: Not applicable

#1
You can control the collection of the layer information for the function layer of RMI (communication processing). In such cases, you have to
set control in the trace collection level. For details on the setting methods, see cprfstart (start PRF daemon) in the uCosminexus Application
Server Command Reference Guide or cprflevel (display or change the PRF trace collection level) in the uCosminexus Application Server
Command Reference Guide.

#2
The trace information is output immediately before (immediately before invoking main method) executing the batch application
and immediately after terminating the batch application. The trace information is not output at the execution of cjexecjob and
cjkilljob command.

In addition to these function layers, the trace based performance analysis outputs the trace for the start process and stop
process of the J2EE server, as well as when transaction timeout occurs, and when a session is generated or cancelled.

The trace information contains information such as the process ID used to get the trace information, eventID that indicates
the get point, and the IP address of the client application that gets the trace get date or the trace information.

Reference note

In addition to these function layers, you can also obtain the PRF trace in the following function layers with the
configuration software and related programs of Application Server:

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 311

• Cosminexus Web Services - Base

• uCosminexus TP1 Connector

• TP1/Client/J

• TP1/MQ Access

• Cosminexus RM

• HCSC server

• HCSC server (Object Access adapter)

• Service Coordinator Interactive Workflow

• HCSC server (file adapter)

• HCSC server (Message Queue adapter)

• HCSC server (FTP adapter)

• JAX-WS Engine

• Elastic Application Data store

The key information of the trace information consists of the following elements:

Configuration of the key information
• Process ID used to obtain the key information

• IP address of the host that invoked the process of acquiring the key information

• Communication number allocated to the I/O process (PRF daemon) of the PRF trace
If the PRF daemon is not running, the time is returned as the communication number. It is important, however,
to ensure that the PRF daemon is running, because the communication number may not be unique.

The following two types of key information are added to the PRF trace:

• Root application information
This is the information obtained during the process that is executed first in the sequence of the processes in
every event.

• In the case of J2EE application
It is the information obtained in the HTTP Server, the NIO HTTP server, or the EJB client.

• In the case of Batch application
It is the information obtained immediately before executing the batch application.

• Client application information
In case of J2EE application, this is the information that is set for each processing that invokes the following
Enterprise Beans:

• Invoking the EJB container from the Web container

• Invoking the EJB container from the EJB client

• Invoking the EJB container from the EJB container

For batch applications, it is the information set immediately before executing batch application.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 312

(3) Configuration of the trace based performance analysis
The trace based performance analysis consists of the following programs:

• PRF trace output library
This program is embedded in each function layer of Application Server. The PRF trace output by each function layer
is output in the buffer that is created in the shared memory.

• PRF daemon
This is the I/O process to output the PRF trace that is output in the buffer to a file, after a certain amount of PRF trace
is collected. At least one PRF daemon is invoked on each host that obtains the PRF trace. We recommend that you
deploy one PRF daemon on one host.

The following figure shows the relationship between the PRF trace output library and the PRF daemon.

Figure 7‒4: Relation between PRF trace output library and PRF daemon

The buffer area output by trace is created when the PRF daemon starts, depending on the PRF trace output library. The
buffer area is created in the common memory. Any buffer area that was created in the previous invocations of the PRF
daemon that is still remaining is re-used. The buffer area is not deleted when the PRF daemon that was invoked previously
ends abnormally.

When the PRF daemon ends normally, the buffer data in the buffer area is output to a PRF trace file and the buffer area
is deleted.

When the buffer area is insufficient, the message of KFCT26999-W might output and the PRF trace might not output at
all. Therefore, you must tune the buffer size when the message is output.

(4) Troubleshooting by acquiring the Trace Information
The use of trace information in troubleshooting errors is explained below.

You can output the information in the trace based performance analysis and use it for troubleshooting as follows:

• If a transaction in a J2EE application times out or if a timeout occurs when receiving a response on the reverse proxy
of the HTTP Server, you can use the root application information that is output in the trace based performance analysis
to identify the transaction or request that timed out.

• If a failure occurs while connecting to the database, you can use the connection ID that is output in the trace based
performance analysis to identify the connection in which the error occurred.

7.2.2 Overview of the trace based performance analysis of applications
The trace based performance analysis of applications is a functionality that analyzes the application processing
performance by using the performance analysis information (trace information) output when the application processing

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 313

to be traced is executed in the processes from the start up to the termination of an application (hereafter, the trace
based performance analysis of applications is referred to as the user-extended trace based performance analysis).
The user-extended trace based performance analysis presumes the use of the trace based performance analysis of the
Application Server. This analysis enables you to identify the processing bottlenecks and to improve the efficiency of
troubleshooting by checking the extent to which the processing has been attained when an error occurs. Furthermore, you
specify the processing for which you want to acquire the performance analysis information in the configuration file for
the user-extended trace based performance analysis. You can efficiently check and compare the application performance
because the application need not acquire the performance analysis information.

(1) Collecting the trace information of the user-extended trace based
performance analysis

The trace information of the user-extended trace based performance analysis collects the performance analysis
information that is output when the processing specified in the configuration file for the user-extended trace based
performance analysis is executed.

The following figure gives an overview of the trace information collection for the user-extended trace based
performance analysis.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 314

Figure 7‒5: Overview of the trace information collection for the user-extended trace based
performance analysis

When you start the J2EE server, the configuration file for the user-extended trace based performance analysis is
read. When the processing (trace collection point) specified in the configuration file for the user-extended trace based
performance analysis is invoked, the trace information is output to a buffer. When a certain amount of information is
collected, the performance tracer (PRF daemon) outputs the information to a trace file (PRF trace file).

When you use Management Server for operations, you can collect the trace based performance analysis file by editing
the PRF trace file in the text format. On the basis of the collected trace based performance analysis file, the operations
administrator can perform the entire performance and bottleneck analysis in the management domain. For details on how
to collect the trace based performance analysis file and the information that is output, see 7.3 Collecting the trace based
performance analysis file by using Management Server.

(2) Working of the user-extended trace based performance analysis
In the user-extended trace based performance analysis, you specify the names of the methods that will be used to acquire
the trace information, in the configuration file for the user-extended trace based performance analysis. The following
figure gives an overview of trace output for the specified methods.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 315

Figure 7‒6: Overview of trace output by the user-extended trace based performance analysis

If you enable the user-extended trace based performance analysis, the user-extended trace based performance analysis
reads the configuration file for the user-extended trace based performance analysis. If the application is executed and
if the methods (methods to be traced) specified in the configuration file for the user-extended trace based performance
analysis are invoked, the trace information is output to the following locations:

• Method entry
Trace information immediately after the method is started.

• Normal exit of method
Trace information just before the method terminates normally.

• Abnormal exit of method
Trace information immediately after an exception or error occurs in the method. However, the exceptions or errors
thrown at the method invocation source are excluded.

(3) Configuration of the user-extended trace based performance analysis
The user-extended trace based performance analysis is configured from the following elements.

Note that the user-extended trace based performance analysis uses the class load hook processing of the instrumentation
functionality and rewrites the applications to be traced in order to output the trace based performance analysis.

• Configuration file for the user-extended trace based performance analysis
You set up the information about the methods to be traced by the user-extended trace based performance analysis by
using the configuration file for the user-extended trace based performance analysis. For details on the contents of the
configuration file for the user-extended trace based performance analysis, see 7.5.3 Settings for the methods to be
traced by the user-extended trace based performance analysis.

• PRF daemon

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 316

This is the I/O process to output the PRF trace that is output in the buffer to a file, after a certain amount of PRF trace
is collected. At least one PRF daemon is invoked on each host that acquires the PRF trace. We recommend that you
allocate one PRF daemon to one host.

The following figure shows the relationship between the configuration file for the user-extended trace based performance
analysis and the PRF daemon.

Figure 7‒7: Relationship between the configuration file for the user-extended trace based
performance analysis and the PRF daemon

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 317

7.3 Collecting the trace based performance analysis file by using
Management Server

When you use Management Server for operations, you can collect the contents of the trace file output to each host on the
management server in a batch by using the management commands (mngsvrutil) of Management Server. Note that
the PRF trace file output by the PRF daemon is a binary file. Management Server collects the file obtained by issuing
instructions to Administration Agent, editing the PRF trace file in a text-format (CSV) file, and then compressing it (ZIP
format). The PRF trace output by the hosts in the management domain can be collected on Management Server.

Note that the trace file edited in the text format is called the trace based performance analysis file.

For details on the management commands, see mngsvrutil (Management Server management command) in the
uCosminexus Application Server Command Reference Guide.

This section describes about the collection methods, output destination and the information of the trace based
performance analysis file.

7.3.1 How to collect a trace based performance analysis file
When collecting the trace based performance analysis file, you have to use the management command (mngsvrutil)
of the Management Server. Specify the subcommand collect to the mngsvrutil command. In the case of collecting
a trace based performance analysis file, select the target for collecting the trace information. The following are the targets
for collecting the trace information when using management command:

• All the performance tracer that operate on the host in the management domain.

• All the performance tracer that operate on a specific host

• An identified performance tracer

The execution format and example of each case is described below:

When all the performance tracer that operate on the host in the management domain is the target
Execution format

mngsvrutil-m Host-name-of-Management-Server [:Port-Number]-u Management
-user-ID -p Management-password collect allPrfTraces

Execution example

mngsvrutil -m mnghost -u user01 -p pw1 collect allPrfTraces

When all the performance tracer that operate on specific host is the target
Execution format

mngsvrutil-m Host-name-of-Management-Server -[:Port-Number]-u Managemen
t-user-ID -p Management-password -t Host-name -k host collect prfTrace

Execution example

mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host collect prfTra
ce

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 318

When an identified performance tracer is the target
Execution format

mngsvrutil -m Host-name-of-Management-Server -u[:Port-Number] Managemen
t-user-ID -p Management-password -t Logical-performance-trace-user -k l
ogicalServer collect prfTrace

Execution example

mngsvrutil -m mnghost -u user01 -p pw1 -t ID01 -k logicalServer collec
t prfTrace

7.3.2 Output destination of trace based performance analysis files
• In Windows

log-output-directory-of-the-Manager\prf
• In UNIX

log-output-directory-of-the-Manager/prf

Note that a trace based performance analysis file is output based on the trace information to be collected by the following
file names.

Table 7‒3: File names of trace based performance analysis files

Target for collecting trace information File name

All the performance tracer that operate on the host in the management domain. Management-domain-name - date-and-time#1.zip

All the performance tracer that operate on a specific host. Host-name - date-and-time#1.zip

An identified performance tracer Logical-server-name#2 - date-and-time#1.zip

#1
The date when the trace based performance analysis file is collected is displayed.

#2
The name of the identified performance tracer is displayed.

7.3.3 Output information of the trace based performance analysis file (for
the trace based performance analysis)

The trace based performance analysis collects the trace information for the functionality layer.

The following table describes the information output to trace based performance analysis file (CSV format) from the
performance tracer. The collection items differ in CTM and the other function layers. Note that the output items are
different depending on each collection point such as the existence of the additional information. For details on the items
output for each collection point, see the chapter 8. Trace Collection Points and PRF Trace Collection Levels of the Trace
Based Performance Analysis.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 319

Table 7‒4: Information output to the trace based performance analysis file (for the trace based
performance analysis)

Trace information header Description Range of values

PRF Record status of that process (normal
and abnormal).

Either of the following is output:
Normal: Rec
Abnormal: ErrRec

Process Process ID of the process that acquired the
trace information.

A decimal number of ten digits is output.

Thread Thread ID and hash value of the thread in the
process that acquired the trace information#1.

Thread ID: A decimal number up to twenty digits
is output.
Hash value: A decimal number up to ten digits is output.

Trace Trace sequence number of the thread in the
process that acquired the trace information.

A decimal number of ten digits is output.

ProcessName Process name A string#2 displaying the process up to 32 characters
is output.

Event Event ID showing the trace collection point. A hexadecimal number of six digits (include 0x also in
six digits) is output#3.

Date Date when the trace information is acquired. The date is output in the yyyy/mm/dd format.
yyyy: Year
mm: Month
dd: Day

Time Time when the trace information is acquired
(Hours: Minutes: Seconds).

The time is output in the hh:mm:ss format.
hh: Hours
mm: Minutes
ss: Seconds

Time(msec/usec/nsec) Time when the trace information is acquired
(milli seconds/micro seconds/nanoseconds).

The time is output in the ms/us/ns format.
ms: Milli seconds
us: micro seconds
ns: nanoseconds

Rc Return code. A hexadecimal number of sixteen digits (include "0x"
also in sixteen digits) is output.
Normal:0
Abnormal:1 (or other than 0)

ClientAP IP#4 IP address of the client application that acquired
the trace information.

The IP address is output in the aaa.bbb.ccc.ddd format.

ClientAP PID#4 Process ID of the client application that acquired
the trace information.

A decimal number of ten digits is output.

ClientAP CommNo.#4 Communication number of the client
application that acquired the trace information.

A hexadecimal number of 18 digits (include 0x also in
18 digits) is output.

RootAP IP#5 IP address of a root application that acquired the
trace information.

The IP address is output in the aaa.bbb.ccc.ddd format.

RootAP PID#5 Process ID of a root application that acquired the
trace information.

A decimal number of ten digits is output.

RootAP CommNo.#5 The communication number of the root
application that acquired the trace information.

A hexadecimal number of eighteen digits (include "0x"
also in eighteen digits) is output.

SendSCD IP#5 IP address of the request source CTM. The IP address is output in the aaa.bbb.ccc.ddd format.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 320

Trace information header Description Range of values

SendSCD PID#6 Process ID of the request source CTM. A decimal number of ten digits is output.

ReceiveSCD IP#6 IP address of the request destination CTM The IP address is output in the aaa.bbb.ccc.ddd format.

ReceiveSCD PID#6 Process ID of the request destination CTM. The decimal number of ten digits is output.

INT Interface name for each collection point. A string#7 up to 33 characters is output.

OPR Operation information related to the
collection point.

A string#7 up to 33 characters is output.

LookupName#6 Lookup name. A string#7 up to 33 characters is output.

OPT#8 Additional information for each
collection point.

A hexadecimal number string up to 514 characters
is output.

ASCII ASCII character output of the additional
information for each collection point.

The OPT contents is output as ASCII character strings
within 514 characters.

#1
There are cases when the hash value of a thread is not output in the trace information acquired by CTM.

#2
The process name is decided as described below:

• In the case of EJB client applications
The name specified in the system property ejbserver.server.prf.processName of the EJB
client application.
If this system property is not specified or null character is specified in this property, the process name will
be EJBClient.

• In the case of J2EE server, batch server, or Web container server
The server name will be the process name.

• In case of CTM
It is the name of each CTM process.

#3
An event ID is allocated to each trace collection point of the function layer. For details, see 8. Trace Collection Points
and PRF Trace Collection Levels of the Trace Based Performance Analysis.

#4
This is a component of client application information.

#5
This is a component of root application information. At the trace point that is output to the Web container, there are
cases when the IP address, process ID, and communication number of the root application that acquired the trace
information are output as 0.0.0. 0/0/0x0000000000000000. For details, see 7.7.7 Investigating the Log Using the
Root Application Information.
Note that when you operate an HTTP server in a dual stack environment of IPv4 and IPv6, the IPv4 address is output
to the process ID of the root application. Also, if the client address is IPv6 and is 33 characters or more, edit and output
the trace information event IDs 0x8000 and 0x8100.

• For event ID 0x8000: 32-characters-from-the-beginning + *
• For event ID 0x8100: 16-characters-from-the-beginning + * + 16-characters-from-behind

In such cases, if both event IDs 0x8000 and 0x8100 are referenced, you can obtain the entire client address.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 321

#6
The information that is output only for CTM. "****" is displayed in the layer other than CTM. In the systems
executing batch application, the schedule group name is displayed.

#7
If the interface name, operation name, and lookup name exceeds 32 characters, the name is changed to 33 characters
and is output with one of the following methods. For details, see 8. Trace Collection Points and PRF Trace Collection
Levels of the Trace Based Performance Analysis.
First 32 characters + *
First 16 characters + * + last 16 characters
* + last 32 characters

#8
Some function layers have trace collection points that output the entry time to OPT. The entry time is the time at which
the entry trace corresponding to the trace of the trace collection point is output.
Note that the entry time is output in 16 bytes that is the time elapsed from 01/01/1970 00:00:00. The first 8 bytes of
the value are seconds and the last 8 bytes of the value are microseconds.

7.3.4 Output information of the trace based performance analysis file (for
the user-extended trace based performance analysis)

The user-extended trace based performance analysis collects the trace information output by the application processing.

For details on the items output in the trace based performance analysis, see 7.3.3 Output information of the trace based
performance analysis file (for the trace based performance analysis).

Note that the items output at each collection point, such as presence or absence of the operation information, are different.
For details on the items output at the collection points, see 8.23 Trace collection points of an application.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 322

7.4 Implementation for collection of root application information of trace
based performance analysis

This section describes an overview and implementation methods of the functionality of acquiring root application
information of the trace based performance analysis.

root application information is the information that is acquired by the HTTP Server, the NIO HTTP server, or the
EJB client among the information acquired by trace based performance analysis functionality. You can implement the
functionality of acquiring the character string expression of the root application information in the J2EE application and
batch application using API. When implemented, it would be helpful in troubleshooting when the trouble occurs since
the functionality of acquiring the character string expression of the root application information can be compared with
the trace based performance analysis file at the optional timing when the acquired character string expression is recorded
in log file.

Use CprfTrace class for implementing the functionality of acquiring root application information of trace based
performance analysis. To use CprfTrace class, specify the following path in the class path and compile.

• In Windows
Cosminexus-installation-directory\CC\lib\ejbserver.jar

• In Unix
/opt/Cosminexus/CC/lib/ejbserver.jar

For details on the investigation of using the root application information, see the subsection 7.7.7 Investigating the Log
Using the Root Application Information.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 323

7.5 Settings of execution environment

This section describes the settings required for using the trace based performance analysis and user-extended trace based
performance analysis.

Different items will be set up for the trace based performance analysis and the user-extended trace based performance
analysis. The following table describes the settings required for the trace information to be acquired.

Table 7‒5: Settings required for the trace information to be acquired

Settings Trace information to be acquired Reference
location

Trace based
performance analysis

User-extended trace based
performance analysis

Settings for using the trace based
performance analysis

Y Y 7.5.1

Settings for using the user-extended trace based
performance analysis

-- Y 7.5.2

Settings for the methods to be traced by the user-
extended trace based performance analysis

-- Y 7.5.3

Legend:
Y: Settings are required.
--: Settings are not required.

7.5.1 Settings for using the trace based performance analysis
The following settings are required when using the trace based performance analysis:

• Management Server

• Performance tracer

Important note

Note the following points when you specify the environment variables in AIX:

• With the Performance Tracer execution environment, set up early in the environment variable PSALLOC.
If this value is not set and if a memory shortage occurs, the operations might not function correctly.

• Set up early in the environment variable PSALLOC specifying the early paging space allocation in AIX.
For the points to be considered when you estimate the paging space for the early paging space allocation,
see the AIX manual System Management Concepts: Operation Systems and Devices.

• With the Performance Tracer execution environment, set up true in the environment variable
NODISCLAIM. If you specify early in the environment variable PSALLOC, and do not specify
true in the environment variable NODISCLAIM, the responses, throughput, and CPU usage might
deteriorate greatly.

• To extend the user data area and shared memory area to be used with Performance Tracer, set up
MAXDATA=0x40000000 in the environment variable LDR_CNTRL. Allocate 1 gigabyte memory.

• With the Performance Tracer execution environment, set up ON in the environment variable EXTSHM. If no
value is set up, sometimes the shared memory cannot be referenced.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 324

(1) Management Server settings
The setting of the Management Server is executed by mserver.properties (Management Server environment
setting file). The setting parameters are as follows:

• com.cosminexus.manager.tracelog.size
Specify the number of files of the trace based performance analysis file collected by Management Server.

For details on mserver.properties and the key, see 8.2.6 mserver.properties (Management Server environment
settings file) in the uCosminexus Application Server Definition Reference Guide. For details on the trace based
performance analysis file, see the section 7.3 Collecting the trace based performance analysis file by using
Management Server.

(2) Setting of performance trace
The setting of the performance tracer (PRF daemon) is implemented by the Easy Setup definition file. Specify the
definition of trace based performance analysis in the <configuration> tab of the logical performance trace
(performance-tracer) of the Easy Setup definition file.

The following table describes the definition of the trace based performance analysis in the Easy Setup definition file.

Table 7‒6: Definition of trace based performance analysis in the Easy Setup definition file

Parameter to specify Setting contents

PrfTraceLevel The functionality (Web server, J2EE server, CTM) of Application Server outputs in the buffer, specifies
trace collection level of the performance trace.

PrfTraceCount Specifies the number of files of the PRF trace of performance trace.

PrfTraceFileSize Specifies the file size of the performance tracer. Set the value consisting the relation of
PrfTraceFileSize ≥ PrfTraceBufferSize.

PrfTraceBufferSize Specifies the buffer size of the performance tracer. Set the value consisting the relation of
PrfTraceFileSize ≥ PrfTraceBufferSize.

Note:
For details on the Easy Setup definition file and each parameter to be specified, see 4.3 Easy Setup definition file in the uCosminexus Application
Server Definition Reference Guide.

7.5.2 Settings for using the user-extended trace based performance
analysis

To use the user-extended trace based performance analysis, you must specify the following settings before you start
the server:

• J2EE server

• Batch server

• EJB client application

• Settings for the methods to be traced by the user-extended trace based performance analysis

(1) J2EE server settings
Implement the J2EE server settings using the Easy Setup definition file.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 325

Define the user-extended trace based performance analysis in the JavaVM startup parameter (add.jvm.arg) in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table describes the definition of the user-extended trace based performance analysis in the Easy Setup
definition file.

Table 7‒7: Definition of the user-extended trace based performance analysis in the Easy Setup
definition file

Item Specified parameter Settings

Settings to enable the
user-extended trace based
performance analysis

jvm.userprf.Enable To use the user-extended trace based
performance analysis, specify the settings
to enable.

Settings to specify the
configuration file for the
user-extended trace based
performance analysis

jvm.userprf.File#1 Specify the file path of the user-
extended trace based performance
analysis configuration file to be used
for the user-extended trace based
performance analysis.

Settings related to
application rewriting

jvm.userprf.Limit Specify the maximum number of
methods to be rewritten from the methods
specified in the configuration file for the
user-extended trace based performance
analysis. Among the methods specified
in the configuration file for the
user-extended trace based performance
analysis, the methods exceeding this
value are not traced.

jvm.userprf.Trace Specify whether log will be output
when the class files specified in the
configuration file for the user-extended
trace based performance analysis are
successfully rewritten. Note that if the
rewriting of the class files fails, the log is
necessarily output.

Settings related to the output
information of the user-extended
trace based performance analysis

jvm.userprf.ExtendedSetting#2 Specify whether the trace target can
be specified for packages or classes in
addition to methods.

jvm.userprf.LineNumber Specify whether the line number of the
line that the method executes last in the
case of a normal exit, will be output to the
trace information.

jvm.userprf.ThrowableName Specify whether the exception or error
class name will be output to the
trace information.

jvm.userprf.ThrowableNameEditMethod Specify how the name will be edited when
the exception or error class name exceeds
the limit of 32 characters.

jvm.userprf.LogLevel Specify the trace output level
of the user-extended trace based
performance analysis.

#1
The default values are as follows:
In Windows
JDK-installation-directory\usrconf\userprf.cfg

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 326

In UNIX
/opt/Cosminexus/jdk/usrconf/userprf.cfg

#2
The amount of methods to be traced increases due to the specification format of the user-extended trace based performance analysis
configuration file permitted by setting up the jvm.userprf.ExtendedSetting property. Therefore, note that the amount of trace that
is output increases and affects the system performance. For details on the notes for using the user-extended trace based performance analysis,
see 7.8 Notes on using the user-extended trace based performance analysis.

For details on the Easy Setup definition file and the parameters to be specified, see 4.3 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

An example of definition is as follows:

 ...
<param>
<param-name>add.jvm.arg</param-name>
<param-value>-Djvm.userprf.Enable=true</param-value>
<param-value>-Djvm.userprf.File=Cosminexus-installation-directory/CC/server/
usrconf/ejb/real-server-name/userprf.cfg</param-value>
<param-value>-Djvm.userprf.LogLevel=class</param-value>
</param>
 ...

Reference note

You can also specify the J2EE server settings in the Start Parameter Settings window (defining the logical J2EE
server) of the management portal. For details on how to specify the settings on the management portal, see
10.8.23 Startup parameter settings (J2EE server) in the uCosminexus Application Server Management Portal
User Guide.

(2) Batch server settings
Implement the batch server settings using the Easy Setup definition file.

Define the user-extended trace based performance analysis in the JavaVM startup parameter (add.jvm.arg) in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. For details on
the parameter values to be specified, see (1) J2EE server settings.

(3) EJB client application settings
Implement the settings for an EJB client application, which is running with the cjclstartap command, using the
option definition file for EJB client applications (usrconf.cfg).

Define the user-extended trace based performance analysis in the JavaVM startup parameter (add.jvm.arg) of the
option definition file for EJB client applications (usrconf.cfg). For details on the parameter values to be specified,
see (1) J2EE server settings.

An example of definition in the option definition file for EJB client applications (usrconf.cfg) is as follows:

 ...
add.jvm.arg=-Djvm.userprf.Enable=true
add.jvm.arg=-Djvm.userprf.File=user-definition-file-storage-directory#/userpr
f.cfg

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 327

add.jvm.arg=-Djvm.userprf.LogLevel=class
 ...

#
The directory specified in the user definition file storage destination environment variable (CJCLUSRCONFDIR).
If the user definition file storage destination environment variable is not set, the current directory is referenced.

(4) Settings for the user-extended trace based performance analysis
configuration file

To use the user-extended trace based performance analysis, you must create the configuration file for the user-extended
trace based performance analysis and specify the settings for the methods to be traced.

Specify the settings for the methods to be traced in the UserPrfText parameter in the <configuration> tag of
the logical J2EE server (J2EE-Server) in the Easy Setup definition file.

An example of definition is as follows:

 ...
<param>
<param-name>UserPrfText</param-name>
<param-value>
<![CDATA[
org.apache.struts.action.Action.execute(*), struts, true
Info.getInfo(*), struts, true
]]>
</param-value>
</param>
 ...

For details on how to create the configuration file for the user-extended trace based performance analysis, see 7.5.3
Settings for the methods to be traced by the user-extended trace based performance analysis.

Reference note

You can also set up the configuration file for the user-extended trace based performance analysis in the Start
Parameter Settings window (defining the logical J2EE server) of the management portal or a user optional file
(file specified in the jvm.userprf.File property).

7.5.3 Settings for the methods to be traced by the user-extended trace
based performance analysis

Use the configuration file for the user-extended trace based performance analysis to specify the settings for the methods
to be traced by the user-extended trace based performance analysis. You can code the contents of the configuration file
for the user-extended trace based performance analysis in one of the following files or window:

• Easy Setup definition file

• Start Parameter Settings window (defining the logical J2EE server) of the management portal

• Default file or any user-specified file (file specified in the jvm.userprf.File property)

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 328

(1) Format of description
The format for coding the configuration file for the user-extended trace based performance analysis is as follows:

specification-format#, identity-ID, subclass-flag [, [event-ID][,[trace-colle
ction-level]]] [# Comment]

#1
You can omit the items enclosed within [].

#2
To trace all the methods with matching class names and package names, set up true in the value of the
jvm.userprf.ExtendedSetting property.

#
Specify specification-format in one of the following formats:

• To trace a method with matching method name and argument types
package-name.class-name.method-name (type name of the method argument)

• To trace methods with matching method names
package-name.class-name.method-name(*)

• To trace all the methods with matching class names
package-name.class-name

• To trace all the methods with matching package names
package-name.*

Example of coding format:

com.sample.Test.method(),TEST1,false,0xae02,A
com.sample.Test.method(),TEST1,false,0xae02
com.sample.Test.method(),TEST1,false,0xae02,
com.sample.Test.method(),TEST1,false,,A
com.sample.Test.method(),TEST1,false
com.sample.Test.method(),TEST1,false,
com.sample.Test.method(),TEST1,false,,

(2) Description items
The items coded in the configuration file for the user-extended trace based performance analysis are as follows:

Specification-format
Specify the method to be traced.

package-name
Specify the package name of the class or interface of the method to be traced.

class-name
Specify the class name or interface name of the method to be traced. If you specify the interface name instead of
the class name, and if true is specified in the subclass flag, the method implementing that interface is traced.

method-name
Specify the method to be traced.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 329

type-name-of-the-method-argument
Specify the argument type of the method to be traced using the fully qualified name.

identity-ID
Specify the character string for identifying the method to be traced.
The characters you can use are the ASCII characters from 0x21(!) to 0x7e(~). However, you cannot specify 0x22(") ,
0x23(#), and 0x2c(,).
The identity ID is output to the PRF trace file. Note that up to 32 characters are output to the PRF trace file. The 33rd

and subsequent characters are omitted and * (asterisk) is output as the 33rd character.

Important note

If a subclass exists in the class defining the method to be traced and if the method to be traced is not
overridden in that subclass, the specified identity ID is output for the superclass method to be traced.

subclass-flag
Specify whether to trace the methods of the class that has an inheritance relationship with the classes or interfaces
of the specified method, using true or false.

• If you specify true, the specified method and the methods overriding the specified method are traced.

• If you specify false, only the specified method is traced, and the methods overriding the specified method are
not traced.

event-ID
Specify the point for acquiring the trace information (trace collection point) using a hexadecimal value (0xae02 to
0xae7e and 0xc000 to 0xcffe). The default value is 0xae00.
This value is output in the trace information that is output at the method entry, and this value + 1 is output in the trace
information that is output at the method exit.

trace-collection-level
Specify A, B, C, or their respective lower cases in the trace collection level of the methods to be traced. The default
value is A.

• A: Standard level

• B: Advanced level

• C: Maintenance level

Reference note

The trace collection level is the same as the PRF trace collection level of the cprflevel command. All
the methods to be traced reference the levels of the Java VM layers. For details on the PRF collection levels
and layers, see cprflevel (display or change the PRF trace collection level) in the uCosminexus Application
Server Command Reference Guide.

comment
A comment begins with # (hash mark). All the characters from # (hash mark) up to the end of the line are assumed
to be a comment.

(3) Rules of description
The rules for coding the configuration file for the user-extended trace based performance analysis are as follows:

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 330

• You can use only single-byte characters in the code.

• A space character becomes a single-byte space character (0x20) or a tab character (\t or 0x09). Note that the space
characters are ignored when the configuration file for the user-extended trace based performance analysis is read.

• Code one method to be traced on one line.

• You can specify up to 2,048 characters in 1 line. This character count includes the spaces and comments.

• The end of the line is indicated by 1 or more continuous linefeed characters (\n or 0x0A) or carriage return characters
(\r or 0x0D).

• If the description in the configuration file for the user-extended trace based performance analysis is incorrect, a
message describing the incorrect contents is displayed. Also, if invalid values are coded for the items, a message
indicating incorrect contents is output, and the settings for that line are disabled.
For details on the message, see 7.6 Logs output when the user-extended trace based performance analysis is executed.

• With the user-extended trace based performance analysis, you cannot specify the JavaVM classes and Cosminexus
classes in the methods to be traced. The following packages are applicable:

• Classes beneath java
• Classes beneath javax
• Classes beneath com.hitachi
• Classes beneath JP.co.Hitachi

Therefore, when you want to specify a package name by specifying the jvm.userprf.ExtendedSetting
property, code the package name such that only the application classes are included.

• You cannot specify the following methods as the methods to be traced:

• Non-existent package name, class name, and method name

• native method

• abstract method

• Classes in JavaVM and the methods of those classes
(Example) Classes of packages beginning with java and javax

• Classes specified in -Xbootclasspath and the methods of those classes

• Classes in Cosminexus

• You can specify the following methods as the methods to be traced using the following code:

• You can specify the constructor using the same method name as the class name, or <init>.
(Example) Specify as follows for the constructor of the MyMain class:
MyMain.MyMain() or MyMain.<init>()

• If you specify a method with the same name as a non-constructor class name, whether a constructor or a method
has been specified cannot be determined, therefore, the constructor and method are traced.

• When specifying a method with variable length arguments, describe the variable length arguments as an array.
(Example) Specification of a method with variable length argument
Example of correct specification: com.sample.Test.method(java.lang.String[])
Example of incorrect specification: com.sample.Test.method(java.lang.String...)

• Specify the name of a nested class using '$' (dollar sign) as a delimiter instead of '. ' (period).
(Example) Specification of a nested class
Example of correct specification: com.sample.Test$NestClass

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 331

Example of incorrect specification: com.sample.Test.NestClass
• You can specify a non-generics and non-parameter class name (raw type).

(Example) Specification of a non-generics class
Example of correct specification: com.sample.Test.method()
Example of incorrect
specification: com.sample.Test<java.lang.String,java.lang.Object>.method()

• The methods to be traced differ when you specify a class name and when you specify an interface name in class-name
in specification-format.
The following table describes the methods to be traced based on the class or interface specification.

Table 7‒8: Methods to be traced based on the class or interface specification

Class or interface Method to be traced

When false is specified in the subclass flag When true is specified in the subclass flag

Class Method of the specified class The methods of the specified class and the methods
overriding these methods

Interface None The methods of the class#1 that directly implements
the specified interface and the class#2 that
indirectly implements the interface, and the methods
overriding these methods

#1
This class implements the interface specified by using implements when the class is declared.

#2
This subclass of the class that directly implements the specified interface, or the class that directly implements the interface that inherits
the specified interface.

(4) Example of description of the configuration file for the user-extended
trace based performance analysis

This section describes the examples of coding of the configuration file for the user-extended trace based performance
analysis for each method to be traced.

Note that the examples of code assume that the package name is com.sample, and that the application has the class
structure shown in the following figure.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 332

Figure 7‒8: Example of the class structure of the application

(a) To trace a method with matching method name and argument types
The following is an example of coding the user-extended trace based performance analysis configuration file when you
want to trace a method with a matching method name and argument types:

• If the subclass flag is false
com.sample.ClassA.methodA1(java.lang.String,java.lang.Object),1000,false

If the subclass flag is false, the coded method with a matching method name and argument types is traced.

Method to be traced
- methodA1(String,Object) of the ClassA class

The event ID is not set for the method to be traced, so if you invoke the method to be traced, the default value 0xae00
is output as the event ID at the method entry, 0xae01 is output at the method exit. Also, 1000 is set in the identity
ID, so 1000 is output as the identity ID.

• If the subclass flag is true
com.sample.ClassA.methodA2(),2000,true

If the subclass flag is true, in addition to the method in which the method name and argument types match the code,
the methods overriding the coded method are also traced.

Methods to be traced
- methodA2() of the ClassA class
- methodA2() of the ClassB class that overrides methodA2() of the ClassA class

The event ID is not set for the method to be traced, so if you invoke the method to be traced, the default value 0xae00
is output as the event ID at the method entry, 0xae01 is output at the method exit. Also, 2000 is set in the identity
ID, so 2000 is output as the identity ID for all the methods to be traced.

(b) To trace methods with matching method names
The following is an example of coding the user-extended trace based performance analysis configuration file when you
want to trace methods with matching method names:

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 333

• If the subclass flag is false
com.sample.ClassA.methodA1(*),methodA1,false,0xae30

If the subclass flag is false, all the methods matching with the coded method names are traced.

Methods to be traced
- methodA1(String,Object) of the ClassA class
- methodA1(int) of the ClassA class

If the method to be traced is invoked, 0xae30 is output as the event ID at the method entry, and 0xae31 is output
at the method exit. Also, methodA1 is output as the identity ID for all the methods to be traced.

• If the subclass flag is true
com.sample.ClassA.methodA1(*),methodA1,true,0xae30

If the subclass flag is true, all the methods matching with the coded method names are traced. Also, in addition to
the coded method, the methods overriding the coded method are also traced.

Methods to be traced
- methodA1(String,Object) and methodA1(int) of the ClassA class
- methodA1(String,Object) of the ClassB class that overrides methodA1(String,Object) of
the ClassA class
- methodA1(String,Object) of the ClassC class that overrides methodA1(String,Object) of
the ClassB class

If the method to be traced is invoked, 0xae30 is output as the event ID at method entry, and 0xae31 is output at
method exit. Also, methodA1 is output as the identity ID for all the methods to be traced.

(c) To trace all the methods with matching class names
The following is an example of coding the user-extended trace based performance analysis configuration file when you
trace all the methods with matching class names, omitting the methods and arguments.

• If the subclass flag is false
com.sample.ClassA,TEST01,false

If the subclass flag is false, all the methods with the coded class name (ClassA class) are traced.

Methods to be traced
methodA1(String,Object), methodA1(int), and methodA2() of the ClassA class

If the method to be traced is invoked, 0xae00 is output at method entry and 0xae01 is output at method exit because
the event ID is omitted. Also, TEST01 is output as the identity ID for all the methods.

• If the subclass flag is true
com.sample.ClassB,TEST02,true

If the subclass flag is true, all the methods with the coded class name (ClassB class), and all the methods that
override these methods are traced.

Methods to be traced
- methodA1(String,Object) of the ClassB class
- methodA2() of the ClassB class
- methodB1() of the ClassB class

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 334

- methodA1(String,Object) of the ClassC class that overrides methodA1(String,Object) of
the ClassB class

If the method to be traced is invoked, 0xae00 is output at method entry and 0xae01 is output at method exit because
the event ID is omitted. Also, TEST02 is output as the identity ID for all the methods.

(d) To trace all the methods with matching package names
The following is an example of coding the user-extended trace based performance analysis configuration file when
you trace all the methods of all the classes with matching package names, omitting the class names, method names,
and arguments.

Important note

This specification also includes the sub-packages as trace targets. When a sub-package is to be traced, the trace
is output when the target method is invoked.

If the com.sample package has a sub-package, all the methods of all the classes of that sub-package are
also traced.

• If the subclass flag is false
com.sample.*,6000,false

If the subclass flag is false, all the methods of all the classes in the coded package (com.sample) are traced.

Methods to be traced
All the methods of ClassA, ClassB, ClassC, and ClassD are traced.

If the method to be traced is invoked, 0xae00 is output at method entry and 0xae01 is output at method exit because
the event ID is omitted. Also, 6000 is output as the identity ID for all the methods.

• If the subclass flag is true
com.sample.*,6000,false

If the subclass flag is true, all the methods of all the classes in the coded package (com.sample), and all the
methods that override these methods are traced.

Methods to be traced
All the methods of ClassA, ClassB, ClassC, and ClassD, and all the methods that override these methods
are traced.

If the method to be traced is invoked, 0xae00 is output at method entry and 0xae01 is output at method exit because
the event ID is omitted. Also, 6001 is output as the identity ID for all the methods.

(5) Notes on creating the configuration file for the user-extended trace
based performance analysis

The precautions to be taken when you create a configuration file for the user-extended trace based performance analysis
are as follows:

• If you specify a different event ID or identity ID in multiple lines for the same method in the configuration file for the
user-extended trace based performance analysis, the settings coded first in the configuration file for the user-extended
trace based performance analysis will have priority.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 335

• If you code multiple methods as targets in the configuration file for the user-extended trace based performance
analysis, all the target methods are output with the same event ID or identity ID. In this case, if the method name that
is output exceeds the number of characters that can be output, you might not be able to identify the method. Specify
the settings so that one method can be identified.

• If you want to trace an interface, specify true in the subclass flag. If you specify false in the subclass flag, the
trace information is not output because the methods to be traced do not exist in an interface.

• Use the specification format where multiple methods are the targets for user-extended analysis trace only when you
want to understand the application operations.
In the code of the configuration file for the user-extended trace based performance analysis, if true is specified in the
subclass flag, and you specify the specification format by which the methods with matching method names are traced,
many unintended methods become targets of the user-extended trace based performance analysis, and identifying the
cause of performance deterioration might become difficult. To identify the cause of performance deterioration, we
recommend that you limit the targets for user-extended trace based performance analysis by specifying false in the
subclass flag of the configuration file for the user-extended trace based performance analysis, or use the specification
format by which the methods with matching method name and argument types are traced.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 336

7.6 Logs output when the user-extended trace based performance
analysis is executed

When you execute the user-extended trace based performance analysis, the following logs are output to the JavaVM
log file:

• Logs for reading the configuration file for the user-extended trace based performance analysis

• Logs for application rewriting

The following points describe the respective logs.

7.6.1 Logs for the reading of the configuration file for the user-extended
trace based performance analysis

The following table describes the logs output when the configuration file for the user-extended trace based performance
analysis is read during the user-extended trace based performance analysis.

Table 7‒9: Logs output the configuration file for the user-extended trace based performance
analysis is read

Output format Output contents Explanation

[UPR#1]<DATE>Setting file
not found.<file=FILEPATH>

• DATE#2

The date and time at which an attempt
to read the configuration file for the
user-extended trace based performance
analysis failed.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace based
performance analysis that could not
be read.

The default configuration
file, or the configuration
file for the user-extended
trace based performance
analysis specified in
the jvm.userprf.File
property does not exist.

[UPR#1]<DATE>Failed to open
setting file.<file=FILEPATH>

• DATE#2

The date and time at which an attempt
to read the configuration file for the
user-extended trace based performance
analysis failed.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace based
performance analysis that could not
be read.

The configuration file for
the user-extended trace based
performance analysis cannot
be opened or read.

[UPR#1]<DATE>Failed to parse
setting file.<file=FILEPATH><line=LINE>

• DATE#2

The date and time at which an
error was detected in the configuration
file for the user-extended trace based
performance analysis.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace based
performance analysis.

• LINE

There is a description
format error in the contents
of the configuration file
for the user-extended trace
based performance.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 337

Output format Output contents Explanation

The line number in the configuration
file for the user-extended trace based
performance analysis.

[UPR#1]<DATE>Event ID is invalid
value.<file=FILEPATH><eventID=EventID>

• DATE#2

The date and time at which an
error was detected in the configuration
file for the user-extended trace based
performance analysis.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace based
performance analysis.

• EventID: The event ID specified in the
user-extended trace based performance
analysis configuration file.

The event ID of the
configuration file for the
user-extended trace based
performance analysis is
outside the range of
valid values.

[UPR#1]<DATE>No valid settings in
setting file.<file=FILEPATH>

• DATE#2

The date and time at which invalid
settings were detected in the configuration
file for the user-extended trace based
performance analysis.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace based
performance analysis.

The settings in the
configuration file for
the user-extended trace
based performance analysis
are invalid.

[UPR#1]<DATE>User Extended PRF
started successfully.<file=FILEPATH>

• DATE#2

The date and time at which the reading
of the configuration file for the user-
extended trace based performance analysis
was successful.

• FILEPATH
The absolute file path of the configuration
file for the user-extended trace
based performance analysis that was
read properly.

The user-extended trace
based performance analysis
configuration file is read
correctly, and the user-
extended trace based
performance analysis is
now valid.

#1
An identifier indicating that the log was output by the user-extended trace based performance analysis.

#2
Output in the same format as the extended verbosegc information.

7.6.2 Logs for application rewriting
The user-extended trace based performance analysis uses the instrumentation functionality and rewrites the application
classes when the class is loaded, in order to output the trace based performance analysis. The following table describes
the logs output at this time.

Table 7‒10: Logs for application rewriting

Output format Output contents Explanation

[UPR#1]<DATE>BCI
process failed.<class=CLASS>

• DATE#2

The date and time at which an attempt to
rewrite failed.

An attempt to rewrite the class
specified in the configuration
file for the user-extended

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 338

Output format Output contents Explanation

• CLASS
The fully qualified class name for which
rewriting failed.

trace based performance
analysis failed.

[UPR#1]<DATE>BCI process
finished successfully.<class=CLASS>

• DATE#2

The date and time at which rewriting
was successful.

• CLASS
The fully qualified class name for which
rewriting was successful.

The class specified in the
configuration file for the user-
extended trace based
performance analysis was
successfully rewritten. Note
that this log is output when
true is specified in the
jvm.userprf.Trace
property.

[UPR#1]<DATE>BCI count exceeded a limit. • DATE#2

The date and time at which the rewriting
count exceeded the upper limit.

An attempt was made
to rewrite the methods
to be traced, exceeding
the number specified in
the jvm.userprf.Limit
property. Take one of the
following actions:
• Reduce the number of

target methods of the
user-extended trace based
performance analysis.

• Increase the value
specified in the
jvm.userprf.Limit
property.

Note that this log is output
when the value specified in
the jvm.userprf.Limit
property is exceeded for the
first time.

#1
An identifier indicating that the log was output by the user-extended trace based performance analysis.

#2
Output in the same format as the extended verbosegc information.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 339

7.7 Analysis operation of the processing performance by using the trace
based performance analysis file

This section describes about the analysis operation of the processing performance using the trace based performance
analysis file.

7.7.1 Overview of the Operation for Analyzing the Processing
Performance

You can analyze the processing performance of Application Server based on the trace information output from the
function layer such as the EJB container and Web container, in the series of processes from the client to EIS such as
databases, until the processing result is returned to the client.

Note that the trace information of each function layer is output to the PRF trace file in the binary format. When analyzing
the processing performance of Application Server, use the trace based performance analysis file where PRF trace file is
converted in to text format (CSV format).

The description of the operation of analyzing the processing performance of Application Server is as follows:

Reference note

Maintenance level trace information

The PRF trace collection level includes the maintenance level in addition to the standard level and detailed level.
The maintenance level is a level for acquiring the maintenance information in the case of an error. Do not specify
the maintenance level in normal cases.

For how to set up the maintenance level in PRF trace collection levels, see cprflevel (display or change the PRF
trace collection level) in the uCosminexus Application Server Command Reference Guide.

(1) Collecting a trace based performance analysis file
Collect the trace based performance analysis files used for analyzing the processing performance of Application
Server, which is output using the management command mngsvrutil. For details on how to collect the trace based
performance analysis file and on the output destinations and output information of the trace based performance analysis
file, see 7.3 Collecting the trace based performance analysis file by using Management Server.

(2) Analyzing the processing performance of Application Server using a
trace based performance analysis file

To analyze the performance using a trace based performance analysis file, display the file in an application program that
can edit CSV format files, and use the filtering or sorting function as required.

For example, when the information is output in the CSV format, you can filter the output items as 'event-wise', or
'process-wise', in the application programs that can edit files in the CSV format, list the locations to be focused, and
analyze the information according to your requirement.

How to use the trace based performance analysis file is described below by giving an example.

• For details on analyzing the response time of the Web server, see 7.7.2 Analyzing the Response Time of a Web Server.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 340

• For details on investigating the processing status of a request in Application Server, see 7.7.3 Investigating the
Processing Status of a Request in an Application Server.

• For details on investigating the life cycle of the session, see 7.7.4 Investigating the Life Cycle of a Session.

• For details on identifying the transaction in which the timeout occurs, see 7.7.5 Identifying the Transaction in Which
a Timeout Occurred.

• For details on identifying of the request for which time-out occurs, see 7.7.6 Identifying the Request for Which
Timeout Occurred.

• For details on the log investigation where root application information is used, see 7.7.7 Investigating the Log Using
the Root Application Information.

• For details on identifying the connection where the trouble occurred, see 7.7.8 Identifying the Connection in Which
an Error Occurred.

• For details on the investigation about the location of the problem associated to Trace based performance analysis and
thread dump, see 7.7.9 Investigation about the location of the problem associated to the trace based performance
analysis file and thread dump.

Note that the collection of trace based performance analysis files in such an environment as the following Web client
configuration environment is a prerequisite.

Figure 7‒9: Example of Web client configuration

7.7.2 Analyzing the Response Time of a Web Server
This subsection describes how to analyze the time from when a Web server received a request from a client to when the
response was returned to the client, with an example.

You can output the time taken to process the request in the access log of the Web server. For details, see the directive
in 6.2.3(6) CustomLog {file-name | pipe} {"format" | label-name} [env=[!]environment-variable] in the uCosminexus
Application Server HTTP Server User Guide.

The following is an example of the output of the access log specified in the default configuration file.

Output example

192.168.10.10 - - [12/Feb/2020:20:52:16.352 +0900] "GET /index.html HTTP/1.1
" 200 53 0.013 11340 "192.168.10.10/5636/0x0000000000000022"
192.168.10.10 - - [12/Feb/2020:20:52:19.439 +0900] "GET /wait.pl HTTP/1.1" 5
04 319 3.004 12548 "192.168.10.10/5636/0x0000000000000023"

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 341

The output example shows that it took 0.013 seconds to process the request to index.html and 3.004 seconds to
process the request to wait.pl. In addition, by comparing the root application information output in each message with
the root application information output in the trace based performance analysis file, you can analyze the processing time
for each functionality layer.

7.7.3 Investigating the Processing Status of a Request in an Application
Server

This subsection gives an example to describe how to investigate whether the request received by a Web server from a
client is processed on an application server.

In the following figure, from the trace based performance analysis files collected on the Web server you will understand
that the request is received on 2004/2/5 16:32:31.

Figure 7‒10: Example of the trace based performance analysis file collected in the Web server

You use the root application information of this request as a key to investigate trace based performance analysis files
collected on Application Server.

The following figure shows an example of filtering the trace based performance analysis files collected in Application
Server with RootAP IP:10.209.13.123, RootAP ID:2200, and RootAP CommNo.:0x00000000000000c7 as keys.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 342

Figure 7‒11: Example of the filtered trace based performance analysis file collected in Application
Server

In this way, if you filter the trace based performance analysis files collected on an application server with a root
application information as a key, you can investigate the processing of a series of requests in an application server.

7.7.4 Investigating the Life Cycle of a Session
This subsection describes how to investigate the life cycle of a session using a trace based performance analysis.

You can investigate the life cycle of a session by using the trace (Session trace) that is output when the PRF trace
collection level is set as details.

You can investigate session trace information by using the session ID in the output trace based performance analysis file
as a key.

The session ID is output to the option area of the event, output as the session trace information in the following format:

Number of session characters: Session ID

For example, if there is a session ID called as abc123, in the option area 6:abc123 is output. When the session ID is a blank
character, 0: is output as the number of session characters. When the session ID cannot be acquired, nothing is output.

The following figure gives an example of trace based performance analysis file in which the session trace information is
output. In this example, the trace information of a request to generate a session, a request to use the session, and a request
to destroy the session are output in the validity period of one session. Also, a request to generate a session, a request to
use the session, and a request to destroy the session are shown separately. In reality, the trace information in these three
examples is output one after another. In these windows, all items are related to the session trace.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 343

Figure 7‒12: Example of trace based performance analysis file where the session trace information
is output (request part where the session is created)

1. In the ASCII example of the 0x8208 event, the generated session ID is output. 1800 in the option column indicate
the session validity period.

The items that you can confirm in this trace file are described here.

Confirming the validity period of the session
When generating a session, the 0x8208 event is output. When destroying a session, the 0x8209 event is output. You
can confirm the validity range of the session from the date and time of these acquisitions. Also, in the case of the
0x8208 event, you can even confirm the validity period (seconds) of the session generated from the operation name.
The same ID is output to the event 0x8209 of the request to destroy the session until the session is destroyed. You
can confirm the date and time of generating the session that is destroyed from the operation name.

7.7.5 Identifying the Transaction in Which a Timeout Occurred
This subsection describes how to identify the transaction that is timed out using the message or trace based performance
analysis information file, if a timeout occurs in the transaction of a J2EE application or batch application.

The subsection describes the following two methods:

• Method of identifying the transaction using messages

• Method of identifying the transaction depending on the output contents of the trace based performance analysis file

(1) Method of identifying the transaction using messages
If a timeout occurs in a transaction, the KDJE31002-W and KDJE50080-W messages are output. The following
information is output in these messages:

KDJE31002-W
• J2EE application name or the class name of the batch application that started the transaction.

• Hash code of the instance and the class name of J2EE component (Enterprise Bean, servlets, or JSPs) that started
the transaction

• Maintenance information

• Root application information of the trace based performance analysis

You can confirm the location where the transaction timeout occurred in the trace based performance analysis by
matching and confirming the root application information of the trace based performance analysis output to the
message with the root application information that is output to the trace based performance analysis file.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 344

You can confirm the trace information before and after the timeout for checking the process contents of the transaction
in which a timeout occurred.

KDJE50080-W
• IP address, process ID, and root application information

• Connection ID of the connection that executed the SQL

• Name of the method that executed SQL

• Whether the method that executed SQL is running

• SQL executed last

You can refer to the SQL information that is output in the message, and can investigate the location where the
timeout occurred.

For details on messages, see KDJE31002-W and KDJE50080-W in the uCosminexus Application Server Messages.

(2) Method of identifying the transaction depending on the output
contents of the trace based performance analysis file

In the trace based performance analysis file, the trace information is output at the trace collection point immediately
before or after the occurrence of timeout in the transaction.

Check the processing contents of the following event IDs.

Table 7‒11: Trace based performance analysis that is output when timeout occurs in the transaction

Event ID Description

0x8819 This information is output in the process immediately before a timeout occurs in the transaction. The root
application information of the transaction that is timed out is output to the interface name.

0x8820 This information is output to the process immediately after a transaction is timed out.

0x8C41 This information is output when the SQL for investigating an error is output.

7.7.6 Identifying the Request for Which Timeout Occurred
This subsection describes how to use trace based performance analysis to identify a request that has timed out if a timeout
occurs while receiving a response on the reverse proxy of a Web server.

If a timeout occurs while receiving a response on the reverse proxy, the message AH01102 is output to the error log of
the Web server, with the detailed information indicating that a timeout has occurred. Based on the thread ID and time
included in this message, search the Web server request log for a proxy trace. The following information is output in the
proxy trace:

• Connection status with the backend server

• IP address of the connection destination

• Port number of the connection destination

• Root application information of the trace based performance analysis

By comparing the root application information of the trace based performance analysis output in the message of the proxy
trace with the root application information output in the trace based performance analysis file, you can check where in
the trace based performance analysis the request timeout occurred.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 345

You can also check the URI of the request that has timed out by comparing the corresponding root application information
with the root application information output to the access log of the Web server. Based on the information, identify the
request that has timed out.

7.7.7 Investigating the Log Using the Root Application Information
If the application API is used in a J2EE application or batch application, the character string expression of root application
information of the performance analysis information can be output to the log file at any time.

The character string expression of the root application information is output to the following format (maximum
48 characters):

IP address / process ID / communication number
(Example: 10.209.15.130/1234/0x0000000000000001)

If the root application information is output to a log file using an API, you compare the log file with the trace based
performance analysis file to investigate.

When a new request is received in the Web container, a new root application information is assigned to the single request.
The following table describes the trace points to which the new root application information is assigned.

Table 7‒12: Trace point to which the new root application information is assigned

Event ID (process contents) Process contents

0x8236 When acquiring a request, when completing the request
header analysis

#
If a Web server is connected, the root application information obtained by the HTTP Server is assigned. If the root
application information was not issued because the HTTP Server or the PRF trace output library used by the HTTP
Server failed to load, new root application information is assigned by the Web container.

Moreover, in the following trace collection point, 'IPaddress / process ID / communication number' might be output as
'0.0.0. 0/0/0x0000000000000000'

• 0x8237
When data is read from Web client.

• 0x8238
When data is written to the Web client.

In the following cases the IP-address/process-ID/communication-number is output as 0.0.0. 0/0/0x0000000000000000:

• If an HTTP request header is received

• If an incorrect data that is not an HTTP request is received

• If an exception occurs during processing of the request

Note that the APIs used to output the character string expression of the root application
information is the getRootApInfo method of the CprfTrace class, provided in the
com.hitachi.software.ejb.application.prf package.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 346

For details on the implementation of acquiring the root application when the J2EE application or batch application is
started, see the section 7.4 Implementation for collection of root application information of trace based performance
analysis. For details on the APIs, see the uCosminexus Application Server API Reference Guide.

7.7.8 Identifying the Connection in Which an Error Occurred
When HiRDB or Oracle is used as a database, you can compare the connection ID output to the trace based performance
analysis file with the connection ID output to the log file and trace file , HiRDB client, and Oracle client for confirming
the connection in which an error has occurred. For details on how to confirm, see Appendix B. Identifying the Connection
in Which an Error Has Occurred When Connecting to a Database.

7.7.9 Investigation about the location of the problem associated to the
trace based performance analysis file and thread dump

If slow down or hang-up occurs in a J2EE application or batch application, you can investigate the location of the error
by correlating the trace based performance analysis file with the thread dump.

Use the thread ID that is output to the trace based performance analysis file and nativeID (thread IDs of the OS level)
of the thread information output to the thread dump, for correlating the trace based performance analysis file with the
thread dump. This subsection describes how to identify the corresponding thread dump from the trace based performance
analysis file.

The following are the steps to identify the corresponding thread dump from the trace based performance analysis file:

1. Collect the trace based performance analysis file and thread dump.
For details on the collection methods of trace based performance analysis file, see 7.3.1 How to collect a trace based
performance analysis file. For details on the collection method of thread dump, see 4.7 JavaVM thread dump.

2. Select the trace based performance analysis file and thread dump to be used.
Select the trace based performance analysis file and thread dump to be used, based on the date and time when
the trace based performance analysis file and thread dump are output. For details on the output time, see the
following information:

Trace based performance analysis file
Time and Time(msec/usec/nsec)
The following figure shows the Time and Time (msec/usec/nsec) of the trace based performance analysis file.

Thread dump
Date and time output at the end of the file name and file.
The following is an example showing the date and time output at the end of a file:

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 347

 ...
 ...
Full thread dump completed. Fri Jul 21 19:22:47 2006

3. Convert the value of Thread (hash code), corresponding to the event ID of the trace based performance analysis file
that you want to investigate, in to a hexadecimal number.

• In Windows or AIX
Change the value of the thread (thread ID) from decimal numbers to hexadecimal numbers.

• In Linux
Change the value of the hashcode (hash code) from decimal numbers to hexadecimal numbers.

4. Specify the thread information corresponding to the thread matching to the value of Thread (hashcode) that is
converted into a hexadecimal number in step 3.

• In Windows or AIX
The thread dump nid searches for the thread that matches with the value (1124) of the Thread (Thread ID)
that is converted into hexadecimal numbers.

 ...
 ...
"VBJ ThreadPool Worker" daemon prio=5 jid=0x00054f93 tid=0x04cef380 nid
=0x1124 in Object.wait() [0x0632f000..0x0632fd18]
 stack=[0x06330000..0x062f5000..0x062f1000..0x062f0000]
 [user cpu time=0ms, kernel cpu time=15ms] [blocked count=1, waited cou
nt=29]
at java.lang.Object.wait(Native Method)
 ...
 ...

• In Linux
The thread dump jid searches for the thread that matches with the value (6d75) of hashcode (hash code) that
is converted into hexadecimal numbers.

 ...
 ...
"main" prio=1 jid=0x00006d75 tid=0x00201d70 nid=0x1e51 waiting on condi
tion [0x00000000..0xbfe80488]

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 348

 stack=[0xbfe87000..0xbfc8c000..0xbfc88000..0xbfc87000]
 [user cpu time=1320ms, kernel cpu time=4280ms] [blocked count=5, waite
d count=4]
 ...
 ...

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 349

7.8 Notes on using the user-extended trace based performance analysis

This section describes the notes on using the user-extended trace based performance analysis.

• If the methods to be traced are invoked frequently, it might be difficult to identify the method that causes performance
deterioration, due to the performance deterioration caused by the processing overhead of the user-extended trace
based performance analysis. Therefore, in the methods to be traced, specify a method that serves as the entry to the
processing that can identify the cause of deterioration.
For example, in the case of applications with a method invocation relationship as shown in the following figure, take
method 1 (trace collection point 1) that serves as an entry to processing as the target. If you specify the methods 4,
5, and 6 of the trace collection point 2, and if the processing of the user-extended trace based performance analysis
for these methods takes time, the performance measurement of this application might be affected.

Figure 7‒13: Method invocation relationship in an application

• If you use the user-extended trace based performance analysis for a method invoked before the root application
information is acquired, the root application information might be output with 0.

• If you increase the frequency of invoking the method to be traced and specify a property that increases the amount
of trace output, the amount of PRF trace file output increases. In this case, increase the number of PRF trace files or
the PRF trace file size. For details on how to change the number and size of PRF trace files, see 10.3.1 Setting up the
performance tracer in the uCosminexus Application Server Management Portal User Guide.
Note that the increase in the amount of PRF trace files that are output causes the following events:

• Overhead occurs due to the writing to the trace files and leads to performance deterioration.

• The number of trace files is switched due to a large amount of writing, and the J2EE server can no longer obtain
the trace that could be obtained.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 350

For normal operations, specify the contents of the user-extended trace based performance analysis configuration file
appropriately and adjust the trace collection amount.

• The application classes are rewritten in the user-extended trace based performance analysis. At this time, if the
rewritten class size exceeds 64 KB, the rewriting fails. In this case, take actions such as dividing the class to reduce
the class size.

7. Performance Analysis by Using Trace Based Performance Analysis

Maintenance and Migration Guide 351

8 Trace Collection Points and PRF Trace Collection
Levels of the Trace Based Performance Analysis

The trace based performance analysis includes the trace based performance analysis that analyzes
the Application Server performance, and the user-extended trace based performance analysis
that extends the target of the trace based performance analysis and analyzes the performance
of the applications set up on an Application Server machine. This chapter describes the trace
collection points and PRF trace collection levels output in the trace based performance analysis and
user-extended trace based performance analysis.

For an overview of the trace based performance analysis and for details about how to perform the
analysis, see the chapter 7. Performance Analysis by Using Trace Based Performance Analysis.

Maintenance and Migration Guide 352

8.1 Organization of this chapter

This chapter describes the trace collection points and PRF trace collection levels of the following trace based
performance analysis.

• Trace collection points and PRF trace collection levels output for each function layer by the trace based
performance analysis
When a request is sent from a Web client or EJB client, the J2EE server, EJB client, and CTM output trace information
at fixed processing points (trace collection points). Furthermore, in the trace based performance analysis, the trace
can be output by setting up the PRF trace collection level, such as Standard and Advanced.

• Trace collection points and PRF trace collection levels output for each method forming the starting point of
application processing by the user-extended trace based performance analysis
In the user-extended trace based performance analysis, by specifying a method that forms the starting point of
application processing as the processing point for acquiring the application performance analysis information, you
can output the trace at the point when that method is called.

The following table describes the organization of this chapter.

Table 8‒1: Organization of this chapter (trace based performance analysis)

Category Title Reference
location

Explanation Trace Get Point of trace based performance analysis and the PRF Trace Get Level 8.2

Trace collection points of a CTM 8.3

Trace collection points of a Web container (trace of request processing) 8.4

Trace collection points of a Web container (session trace) 8.5

Trace collection points of a Web container (filter trace) 8.6

Trace collection points of a Web container (trace of the database session failover functionality) 8.7

Trace collection points of an EJB container 8.8

Trace collection points of a JNDI 8.9

Trace collection points of a JTA 8.10

Trace collection points of a DB Connector and JCA container 8.11

Trace collection points of an RMI 8.12

Trace collection points of an OTS 8.13

Trace collection points of standard output, standard error output, and user log 8.14

Trace collection points of a DI 8.15

Trace collection points of the batch application execution functionality 8.16

Trace collection points of the TP1 inbound integrated function 8.17

Trace collection points of Cosminexus JMS Provider 8.18

Trace collection points of JavaMail 8.19

Trace collection points of JSF 2.2 8.20

Trace collection points of CDI 8.21

Trace collection points when a J2EE server is started or terminated 8.22

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 353

Category Title Reference
location

Trace collection points of an application 8.23

Trace collection points of JAX-RS 8.24

Trace collection points of Java batch 8.25

Trace collection points of WebSocket 8.26

Trace collection points of Concurrency Utilities 8.27

Note:
There is no specific description of Implementation, Setup, Operation, and Notes for this functionality.

For an overview of the trace based performance analysis, and details on how to perform the analysis, see 7. Performance
Analysis by Using Trace Based Performance Analysis.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 354

8.2 Trace Get Point of trace based performance analysis and the PRF
Trace Get Level

This section describes the trace collection points and PRF trace collection levels.

8.2.1 Trace collection point
The trace collection points are broadly classified into trace collection during the startup and termination of a J2EE
server, trace collection during processing in each function layer, and trace collection during the startup and termination
of application methods.

(1) Trace collection during the startup and termination of the J2EE server
The trace information can be collected when the startup processing of the J2EE server ends, and when the termination
processing of the J2EE server starts. The event IDs that can be acquired, and the references are as follows:

• Event ID
0x8FFE to 0x8FFF

• Reference
For details about trace collections during the startup and termination of the J2EE server, see 8.22 Trace collection
points when a J2EE server is started or terminated.

(2) Trace collection in each function layer
The following table describes the correspondence between the event IDs that can be acquired and the function layers.

Table 8‒2: Event IDs that can be acquired and function layers

Event ID Function layer No. in the figures# Reference
location

0x1101 to 0x1102
0x1301 to 0x1302
0x1401 to 0x1406
0x2002 to 0x2003
0x2101 to 0x2104
0x3000 to 0x3008

CTM 5 8.3

0x8202 to 0x8203
0x8206 to 0x8210
0x8214 to 0x8216
0x8219 to 0x8225
0x8234 to 0x8239
0x8302 to 0x8303
0x8306 to 0x8310
0x8314 to 0x8316
0x8319 to 0x8325
0x8334 to 0x8339

Web container 2 8.4, 8.5, 8.6, 8.7

0x8401 to 0x840A
0x8425 to 0x8428
0x842D to 0x8434

EJB container 6 8.8

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 355

Event ID Function layer No. in the figures# Reference
location

0x8453 to 0x8454
0x8460 to 0x846D
0x8470 to 0x8477
0x8490 to 0x8491
0x84A0 to 0x84D9
0x8C41

0x8603 to 0x861C JNDI 4 8.9

0x8435 to 0x843F
0x8811 to 0x8820
0x8C41

JTA 7 8.10

0x8B00 to 0x8B01
0x8B80 to 0x8B89
0x8B8A to 0x8C03
0x8C10 to 0x8C13
0x8C20 to 0x8C41
0x8C60 to 0x8C65
0x8C80 to 0x8C93
0x8CC0 to 0x8CD9
0x8D00 to 0x8D19
0x8D60 to 0x8D63
0x8D80 to 0x8D89
0x8D8A to 0x8D8F
0x8D90 to 0x8D99

DB Connector and JCA container 8 8.11

0x8E01 to 0x8E06 RMI 3 8.12

0x9400 to 0x9413 OTS 9 8.13

0x9C00 to 0x9C03 Standard output, standard error output, and
user log

-- 8.14

0x9D00, 0x9D01 DI 10 8.15

0xA100, 0xA101 Batch application execution functionality 11 8.16

0x842F
0x8430 to 0x8432
0x8825
0x8826
0x8B86, 0x8B87
0x8B8A to 0x8B93
0xAA00 to 0xAA06
0xAA08 to 0xAA0D
0xAA10 to 0xAA19

TP1 inbound integrated function 14 8.17

0xA600 to 0xA60F
0xA610 to 0xA619
0xA61E, 0xA61F
0xA620 to 0xA62F
0xA630 to 0xA63F
0xA640 to 0xA64F
0xA650 to 0xA65F
0xA660 to 0xA667

Cosminexus JMS Provider 15 8.18

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 356

Event ID Function layer No. in the figures# Reference
location

0xA61A, 0xA61B
0xA668 to 0xA66F
0xA670 to 0xA67F
0xA686 to 0xA68D
0xA692 to 0xA69B
0xA69E, 0xA69F
0xA6A0, 0xA6A1
0xA6A6 to 0xA6AB

0xAD00 to 0xAD15
0xAD80 to 0xAD93

JavaMail 16 8.19

0xAF20 to 0xAF2D JSF 2.2 17 8.20

0xb002 to 0xb009 CDI 18 8.21

0xD000 to 0xD005 JAX-RS 19 8.24

0xD020 to 0xD04D Java Batch 20 8.25

0xE100 to 0xE147 WebSocket 21 8.26

0xD050 to 0xD057 Concurrency Utilities 22 8.27

Legend:
--: Not applicable

#
Corresponds to the numbers in Figure 8-1 through Figure 8-4.

The following figures show the function layers for which the PRF trace is output, and the trace collection points for each
system configuration.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 357

Figure 8‒1: Function layers and trace collection points (in the case of Web client configuration)

Figure 8‒2: Function layers and trace collection points (in the case of a system for executing batch
applications)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 358

Figure 8‒3: Function layers and trace collection points (in the case of EJB client, TPBroker client,
or TPBroker OTM client configuration (CTM usage))

Figure 8‒4: Functionality layers and trace collection points (In the TP1 inbound integrated function)

The trace collection points are divided in detail in each function layer, and the PRF trace collection level differs depending
on the trace collection point. For details about trace collection points of each function layer, and the PRF trace collection
level, see the references described in Table 8-2.

Reference note

Apart from the function layers described in Table 8-2, the PRF trace can be collected for some Application Server
processes, component software, and related programs as well.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 359

The following table describes the correspondence between the function layers other than those described in
Table 8-2 for which the PRF trace can be collected, and their event IDs.

Table 8‒3: Correspondence between the event IDs and function layers other than those
described in table 8-2 for which the PRF trace can be collected

Event ID Function layer

0x9000 to 0x90FF
0xA400 to 0xA4FF

Cosminexus Web Services - Base

0x9100 to 0x91FF • uCosminexus TP1 Connector
• TP1/Client/J

0x9200 to 0x92FF TP1/MQ Access

0x9300 to 0x93FF Cosminexus RM

0x9800 to 0x9B6E HCSC server

0x9E00 to 0x9EFF Service Coordinator Interactive Workflow

0x9F00 to 0x9FFF HCSC server (Object Access adapter)

0xA000 to 0xA0FF HCSC server (File adapter)

0xA200 to 0xA2FF HCSC server (Message Queue adapter)

0xAB00 to 0xABFF
0xAC00 to 0xACFF

HCSC server (FTP adapter)

0xA400 to 0xA4FF JAX-WS Engine

0xE000 to 0xE0FF Elastic Application Data store

(3) Trace collection during the startup and termination of application
methods

You can collect the trace information when an application method starts and terminates. The trace information that you
can collect is as follows:

• Method start and termination time

• Identity ID

• Package name, class name, method name

• Line number of the last line executed by the method

• Class name of the exception or error that occurs

For details on the trace information, see 8.23 Trace collection points of an application.

(4) Return codes for each trace
For an entrance trace, the return code of each trace is always output as 0.

For an exit trace and the trace after invocation, the return codes are output as follows:

Normal termination: 0

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 360

Abnormal termination: Other than 0

8.2.2 PRF trace collection level
In the trace based performance analysis, you can specify the following four types of PRF trace collection levels to output
the trace. The number of trace collection points differs depending upon the PRF trace level used. For details about the
trace collection points, and PRF trace collection levels, see the references described in Table 8-2.

• Standard level
Output the trace information that can identify the boundaries (entrance and exit) of each function layer.

• Advanced level
Output the trace information of processes in every function layer, in addition to the output contents of the
standard level.

• Maintenance level
This is the level for acquiring the maintenance information required when a failure occurs.

• Prevention level
This is the level for preventing the output of trace information. This level can be set up in the functional layers of
RMI, JSF 2.2, JAX-RS, Java batch, WebSocket, and Concurrency Utilities.

When the operation is performed by using the Management Server, the trace information is output by setting up a
common level for all function layers, in the Easy Setup definition file.

In the next sections, the trace collection points for the trace collection levels Standard and Advanced are described.
Because the Maintenance level is the level for collecting maintenance information, such as when a failure occurs, the
information for this level need not usually be collected.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 361

8.3 Trace collection points of a CTM

This section describes the trace collection points in a CTM, and the trace information that can be collected.

8.3.1 Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒4: Details of trace collection points in a CTM

Event ID No. in the
figures#

Trace acquisition points Level

0x1101 21 Immediately before sending a request from the OTM gateway A

0x1102 22 Immediately before receiving a response from the OTM gateway A

0x1301 4 Immediately before sending a request from the EJB regulator A

0x1302 13 Immediately after receiving a response in the EJB regulator A

0x1401 1 Entrance of the Create method in the CTM A

0x1402 2 Exit of the Create method in the CTM A

0x1403 5 Immediately after receiving a request from the EJB regulator A

0x1404 8 Immediately before sending a request from the CTM to the J2EE server or
batch server

A

0x1405 9 Immediately after receiving a request from the J2EE server or batch server in
the CTM

A

0x1406 12 Immediately before sending a response from the CTM to the EJB regulator A

0x2002 23 Immediately before receiving a request from the OTM client A

0x2003 24 Immediately before receiving a response from the OTM client A

0x2101 3 Immediately after receiving a request from the EJB client or
cjexecjob command

A

0x2102 14 Immediately before sending a response to the EJB client or
cjexecjob command

A

0x2103 15 Entrance of the Remove method in the CTM A

0x2104 16 Exit of the Remove method in the CTM A

0x3000 6 Immediately before queue of the request A

0x3001 7 Immediately after extracting a request from the queue A

0x3002 17 Immediately before sending a request to another CTM A

0x3003 18 Immediately after receiving a request from another CTM A

0x3004 10 Immediately before queue of the request response B

0x3005 11 Immediately after extracting the request response from the queue B

0x3006 19 Immediately before sending a request response to another CTM A

0x3007 20 Immediately after receiving a request response from another CTM A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 362

Event ID No. in the
figures#

Trace acquisition points Level

0x3008 -- Collected when the server status changes. (Not collected when a request is
being processed)

B

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-5 through Figure 8-8.

The following figure shows the trace collection points in a CTM.

Figure 8‒5: Trace collection points of a CTM

For linkage with another CTM, the trace information is also collected at the locations shown in the following figure. The
figure might be referenced in connection with the above figure. Note that this figure displays only the locations that are
linked with another CTM.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 363

Figure 8‒6: Trace collection points of a CTM (For linkage with another CTM)

Furthermore, when using the OTM gateway or ORB gateway, the trace information is also collected at the locations
shown in the following figure. The figure might be referenced in connection with the above figure. Note that this figure
displays only the locations that are linked with another CTM.

Figure 8‒7: Trace collection points of a CTM (when using the OTM gateway)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 364

Figure 8‒8: Trace collection points of a CTM (when using the ORB gateway)

8.3.2 Trace information that can be collected
The following table describes the trace information that can be collected in a CTM.

Table 8‒5: Trace information that can be collected in a CTM

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x1401 A Remote interface name Method name --

2 0x1402 A Remote interface name Method name Internal information

3 0x2101 A Remote interface name Method name --

4 0x1301 A Remote interface name Method name --

5 0x1403 A Remote interface name Method name --

6 0x3000 A -- -- --

7 0x3001 A -- -- Internal information

8 0x1404 A Remote interface name Method name Internal information

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 365

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

9 0x1405 A Remote interface name Method name Internal information

10 0x3004 B -- -- --

11 0x3005 B -- -- Internal information

12 0x1406 A Remote interface name Method name --

13 0x1302 A Remote interface name Method name --

14 0x2102 A Remote interface name Method name --

15 0x2103 A Remote interface name Method name --

16 0x2104 A Remote interface name Method name --

17 0x3002 A -- -- --

18 0x3003 A -- -- --

19 0x3006 A -- -- --

20 0x3007 A -- -- --

21 0x1101 A Remote interface name Method name --

22 0x1102 A Remote interface name Method name --

23 0x2002 A Remote interface name Method name --

24 0x2003 A Remote interface name Method name --

-- 0x3008 B -- -- Internal information

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-5 through Figure 8-8.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 366

8.4 Trace collection points of a Web container (trace of request
processing)

This section describes the trace collection points of a Web container, and the trace information that can be collected.
In a Web container, the trace of request processing and the session trace are output. The trace of request processing is
described below.

8.4.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒6: Details of trace collection points in a Web container (trace of request processing)

Event ID No. in the
figure#1

Trace acquisition points Level

0x8202#2 6 Immediately before a servlet or JSP is invoked A/B

0x8203 5 Immediately before the filter is invoked B

0x8206 7 Immediately before forward() or include() of RequestDispatcher
is invoked

B

0x8207 6 When the static contents are invoked A/B

0x8234 4 Immediately after the start of synchronous processing A

0x8235 14 Immediately after the start of asynchronous processing A

0x8236 3 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8237 1 Immediately before the start of the reading of data from the reverse proxy B

0x8238 8 Immediately before the start of the writing of data to the reverse proxy B

0x8239 16 Immediately after the start of asynchronous servlet processing A

0x8302 11 Immediately after the processing of the servlet or JSP is complete A/B

0x8303 12 Immediately after the completion of processing of the filter B

0x8306 10 Immediately after the completion of the forward() or include()
processing of RequestDispatcher

B

0x8307 11 Immediately after the completion of processing of static contents A/B

0x8334 13 Immediately before the completion of synchronous processing A

0x8335 15 Immediately before the completion of asynchronous processing A

0x8336 18 Immediately after the completion of request processing A

0x8337 2 Immediately after the completion of the reading of data from the reverse proxy B

0x8338 9 Immediately after the completion of the writing of data to the reverse proxy B

0x8339 17 Immediately before the completion of asynchronous servlet processing A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 367

#1
Corresponds to the numbers in Figure 8-9.

#2
If a JSP compilation is required, the trace is collected after the JSP compilation is executed.

The following figure shows the trace collection points in a Web container.

Figure 8‒9: Trace collection points of a Web container (trace of request processing)

8.4.2 Trace information that can be collected
The following table describes the trace information that can be collected in a Web container.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 368

Table 8‒7: Trace information that can be collected in a Web container (trace of request processing)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8237 B Requested size -- --

2 0x8337 B Size that could be read -- • When normal:
Entrance-time

• For an exception:
Entrance-time-exception-
name

3 0x8236 A HTTP method URI Value for the request header
name specified in the property
(none if the header name is
not specified)

4 0x8234 A -- -- --

5 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

6 0x8202 A Class name (JSP file name when
JSP is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time-exception-
name

B Context root name • When normal:
Entrance-time-
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time-exception-
name: number-of-session-
ID-characters: session-ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

7 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-ID:
number-of-global-session-ID-
characters: global-session-ID

8 0x8238 B Write size -- --

9 0x8338 B Size that could be written -- • When normal:
Entrance-time

• For an exception:
Entrance-time-exception-
name

10 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time-
number-of-session-ID-
characters: session-ID

• For an exception:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 369

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time-exception-
name: number-of-session-
ID-characters: session-ID

11 0x8302 A Class name (JSP file name when
JSP is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time- exception-
name

Context root name • When normal:
Entrance-time-
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time-exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time-
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time-exception-
name: number-of-session-
ID-characters: session-ID

12 0x8303 B Class name Context root name • When normal:
Entrance-time-
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time-exception-
name: number-of-session-
ID-characters: session-ID

13 0x8334 A -- -- Entrance-time

14 0x8235 A Implementation class name for
asynchronous processing

-- --

15 0x8335 A Implementation class name for
asynchronous processing

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

16 0x8239 A -- -- --

17 0x8339 A -- -- Entrance-time

18 0x8336 A HTTP method URI Entrance-time-status-code

Legend:
A: Standard
B: Advanced
--: Not applicable

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 370

#
Corresponds to the numbers in Figure 8-9.

Reference note

When a request is received from other than the SOAP client, 0 is displayed always in the client application
information that is the key information of the trace information. The client application information is output only
when a request is received from the SOAP client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 371

8.5 Trace collection points of a Web container (session trace)

This section describes the trace collection points of the trace of a Web container, and the trace information that can be
collected. In a Web container, the trace of request processing and the session trace are output. The trace collection points
of the session trace and global session, and the trace information that can be collected is described below.

8.5.1 Trace Get Point and the PRF Trace Get Level (Session Trace)
The following table describes the event IDs, trace collection points, and PRF trace collection levels of the trace
concerning the session trace. Note that the information about the global session is also output at points 0x8203,
0x8202, 0x8207, and 0x8206.

Table 8‒8: Details of trace collection points in a Web container (session trace)

Event ID No. in the
figure#1

Trace acquisition points Level#2

0x8202 4, 9 Immediately before a servlet or JSP is invoked A/B

0x8203 2, 3 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (when the <dispatcher>
tag of the <filter-mapping> tag of web.xml is omitted, or when a filter
for which REQUEST is specified in the <dispatcher> tag is invoked)

B

0x8206 7 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 4, 9 Immediately before the static contents are invoked (DefaultServlet) B

0x8208 5 After a session is generated B

0x8209 6 After a session is discarded B

0x8210 17 After the session times out B

0x8214 8 Immediately before the filter executed during Forward is invoked (when the
filter for which FORWARD is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8215 8 Immediately before the filter executed during Include is invoked (when the
filter for which INCLUDE is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8216 2 Immediately before the filter that is executed during transfer to the error page
is invoked
(when the filter for which ERROR is specified in the <dispatcher> tag of
the <filter-mapping> tag of web.xml is invoked)

B

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 10, 13 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 14, 15 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request
(when the processing of the filter for which REQUEST is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8306 12 Immediately after the completion of the processing of the servlet or JSP
via RequestDispatcher

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 372

Event ID No. in the
figure#1

Trace acquisition points Level#2

0x8307 10, 13 Immediately after the completion of the processing of the static
contents (DefaultServlet)

B

0x8314 11 Immediately after the completion of the processing of the filter executed
during Forward
(when the processing of the filter for which FORWARD is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8315 11 Immediately after the completion of the processing of the filter executed
during Include
(when the processing of the filter for which INCLUDE is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8316 15 Immediately after the completion of the processing of the filter executed
during transfer to the error page
(when the processing of the filter for which ERROR is specified in the
<dispatcher> tag of the <filter-mapping> tag of web.xml
is complete)

B

0x8336 16 Immediately after the completion of request processing A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#1
Corresponds to the numbers in Figure 8-10.

#2
The information about the session trace is output only when the level is Advanced.

The following figure shows the trace collection points of the session trace in a Web container.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 373

Figure 8‒10: Trace collection points of a Web container (session trace)

The session ID that can be acquired at each point is as follows:

Points 2, 3, 4, 7, 8, and 9
A valid session ID can be acquired at the trace collection points. However, the session might be discarded in the
J2EE application.
Furthermore, the global session ID can also be acquired at these points. The contents of the global session ID that
can be acquired are different for each trace collection point.

• Point 2 is the trace collection point at which the event ID 0x8203 is output initially for one request. At this trace
collection point, the global session ID sent as a request from the Web client can be acquired. However, at this
point, a global session ID that has already become invalid might also be output.

• Valid global session IDs can be acquired from the trace with event IDs 0x8216, 0x8202, 0x8203, 0x8206,
0x8207, 0x8214, and 0x8215 output at points 3, 4, 7, 8, and 9.

Point 5
A valid session ID can be acquired at the trace collection point only when a session is generated in the J2EE
application. However, the session might be discarded in the J2EE application.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 374

Point 6
An invalid session ID can be acquired at the trace collection point only when a session is discarded in the J2EE
application. However, the session might be discarded in the J2EE application.

Points 10, 11, 12, and 13
A valid session ID can be acquired at the trace collection points. However, the session might be discarded in the
J2EE application.

Points 14 and 15
A valid session ID can be acquired at the trace collection points. When the request processing finishes at these trace
collection points, the session is not discarded in the J2EE application thereafter.

Point 17
An invalid session ID can be acquired only when a session that has exceeded the valid period is discarded.

8.5.2 Trace information that can be collected
The following table describes the trace information about the session trace that can be collected in a Web container.
The information about the global session is also output at the trace collection points with event IDs 0x8202, 0x8203,
0x8206, 0x8207, 0x8214, and 0x8215.

Table 8‒9: Trace information that can be collected in a Web container (session trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if the
header name is not specified)

4, 9 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

2, 3 0x8203 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

7 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

4, 9 0x8207 B -- Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

5 0x8208 B Context root name Session valid period Number-of-session-ID-
characters: Session-ID

6 0x8209 B Context root name Session generation time Number-of-session-ID-
characters: Session-ID

17 0x8210 B Context root name Session valid period: session
generation time

Number-of-session-ID-
characters: Session-ID

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 375

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

8 0x8214 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

8 0x8215 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

2 0x8216 B Class name Context root name Number-of-session-ID-characters:
session-ID: number-of-global-
session-ID-characters: global-
session-ID

16 0x8336 A HTTP method URI Entrance-time status-code

10, 13 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-name

B Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

14, 15 0x8303 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

12 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

10, 13 0x8307 B -- Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

11 0x8314 B Class name Context root name • When normal:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 376

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

11 0x8315 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

15 0x8316 B Class name Context root name • When normal:
Entrance-time number-of-
session-ID-characters: session-
ID

• For an exception:
Entrance-time exception-
name: number-of-session-ID-
characters: session-ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-10.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 377

8.6 Trace collection points of a Web container (filter trace)

This section describes the trace collection points of the trace of a Web container when a filter that is invoked during
Forward or Include is specified, and also describes the trace information that can be collected.

In the case of a Web container in which a filter that is invoked during Forward or Include is specified, the trace information
that can be collected is different when the processing terminates normally, and when an error occurs. Trace acquisition
points for both cases are explained below.

When an error page is set up by using the errorPage attribute in the page directive of a JSP, and an exception occurs
in the JSP, the error page will be displayed when forwarding the request. Therefore, the trace output during Forward will
be output even when an error page is displayed in the JSP.

8.6.1 Trace collection points of a Web container when the processing
terminates normally (filter trace)

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒10: Details of trace collection points in a Web container during normal termination (filter
trace)

Event ID No. in the figure# Trace acquisition points Level

0x8202 3 Immediately before a servlet or JSP is invoked A/B

0x8202 6 Immediately before a servlet or JSP is invoked A/B

0x8203 2 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8206 4 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 6 Immediately before the static contents are invoked (DefaultServlet) B

0x8214 5 Immediately before the filter executed during Forward is invoked (when the
filter for which FORWARD is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml is invoked)

B

0x8215 5 Immediately before the filter executed during Include is invoked
(filter for which INCLUDE is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 7 Immediately after completion of the processing of the servlet or JSP
is complete

A/B

0x8302 10 Immediately after completion of the processing of the servlet or JSP
is complete

A/B

0x8303 11 Immediately before the processing of the filter that is executed before
the execution of the servlet or JSP that receives the request is complete

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 378

Event ID No. in the figure# Trace acquisition points Level

(filter for which REQUEST is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

0x8306 9 Immediately after the processing of the servlet or JSP via RequestDispatcher
is complete

B

0x8307 7 Immediately after completion of the processing of the static
contents (DefaultServlet)

B

0x8314 8 Immediately after completion of the processing of the filter executed during
Forward (filter for which FORWARD is specified in the <dispatcher> tag
of the <filter-mapping> tag of web.xml)

B

0x8315 8 Immediately after completion of the processing of the filter executed during
Include (filter for which INCLUDE is specified in the <dispatcher> tag
of the <filter-mapping> tag of web.xml)

B

0x8336 12 Immediately after the completion of request processing A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 8-11.

The following figure shows the trace collection points in a Web container, when the filter that is invoked during Forward
or Include is specified.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 379

Figure 8‒11: Trace collection points in a Web container during normal termination (filter trace)

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Web container, when the filter that is invoked
during Forward or Include is specified.

Table 8‒11: Trace information that can be collected in a Web container during normal termination
(filter trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if
the header name is not specified)

2 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 380

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

ID-characters: global-session-
ID

3 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

4 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

5 0x8214 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8215 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

6 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 381

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8314 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8315 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

9 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

11 0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

12 0x8336 A HTTP method URI Entrance-time status-code

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 382

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-11.

8.6.2 Trace collection points of a Web container when an exception occurs
(filter trace)

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒12: Details of trace collection points in a Web container when an exception occurs (filter
trace)

Event ID No. in the figure# Trace acquisition points Level

0x8202 3 Immediately before a servlet or JSP is invoked A/B

0x8202 8 Immediately before a servlet or JSP is invoked A/B

0x8203 2 Immediately before the filter that is executed before the execution of the
servlet or JSP that receives the request is invoked (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8206 6 Immediately before a servlet or JSP is invoked via RequestDispatcher B

0x8207 8 Immediately before the static contents are invoked (DefaultServlet) B

0x8216 7 Immediately before the filter that is executed during transfer to the error page
is invoked
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 4, 9 Immediately after completion of the processing of the servlet or JSP A/B

0x8303 5 Immediately after completion of the processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8306 11 Immediately after completion of the processing of the servlet or JSP
via RequestDispatcher

B

0x8307 9 Immediately after completion of the processing of the static
contents (DefaultServlet)

B

0x8316 10 Immediately after completion of the processing of the filter executed during
transfer to the error page
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8336 12 Immediately after the completion of request processing A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 383

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 8-12.

The following figure shows the trace collection points in a Web container when an exception occurs.

Figure 8‒12: Trace collection points in a Web container when an exception occurs

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Web container, when the filter that is invoked
during Forward or Include is specified.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 384

Table 8‒13: Trace information that can be collected in a Web container when an exception occurs
(filter trace)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if
the header name is not specified)

2 0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

3 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

4 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

5 0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

6 0x8206 B Class name Dispatch type
Context root name

Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8216 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

8 0x8202 A Class name (JSP file
name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 385

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

9 0x8302 A Class name (JSP file
name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

11 0x8306 B Class name Dispatch type
Context root name

• When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

12 0x8336 A HTTP method URI Entrance-time status-code

Legend:
A: Standard
B: Advanced
--: Not applicable

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 386

#
Corresponds to the numbers in Figure 8-12.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 387

8.7 Trace collection points of a Web container (trace of the database
session failover functionality)

This section describes the trace collection points and the trace information that can be collected when the database session
failover functionality is used.

8.7.1 Trace collection points and trace information that can be collected
during request processing for creating an HTTP session (Trace of
the database session failover functionality)

This subsection describes the trace collection points and the trace information that can be collected during request
processing for creating an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒14: Details of trace collection points of the request processing for creating an HTTP session
(database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8202 2 Immediately before invoking a servlet or JSP A/B

0x8203 2 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 2 Immediately before invoking the static contents (DefaultServlet) B

0x8219 6 Immediately before starting the serialization of the HTTP session property
information with the database session failover functionality

A

0x8222 8 Immediately before starting database access after the Web application
processing with the database session failover functionality

A

0x8223 3 Immediately before starting database access during the creation of the HTTP
session with the database session failover functionality

A

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 5 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 5 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 5 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

0x8316 5 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete (filter for which ERROR is specified in
the <dispatcher> tag of the <filter-mapping> tag of web.xml)

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 388

Event ID No. in the figure# Trace acquisition points Level

0x8319 7 Immediately after the termination of serialization of the HTTP session
property information with the database session failover functionality

A

0x8322 9 Immediately after the termination of database access after the Web application
processing with the database session failover functionality

A

0x8323 4 Immediately after the termination of database access during the creation of the
HTTP session with the database session failover functionality

A

0x8336 10 Immediately after the completion of request processing A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 8-13.

The following figure shows the trace collection points.

Figure 8‒13: Trace collection points of the request processing for creating an HTTP session
(database session failover functionality)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 389

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for creating an
HTTP session.

Table 8‒15: Trace information that can be collected during request processing for creating an HTTP
session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if
the header name is not specified)

2 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

3 0x8223 A -- -- --

4 0x8323 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is

-1

-- • When normal:
Entrance-time number-
of-session-ID-characters:
session-ID: session-ID-of-
HTTP-session-created

• For an exception:
Entrance-time exception-
name

5 0x8302 A Class name
(JSP file name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 390

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

6 0x8219 A Request URL -- Number-of-session-ID-
characters: session-ID

7 0x8319 A Request URL Size (bytes) of the HTTP
session property information
after serialization

• When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

8 0x8222 A -- -- Number-of-session-ID-
characters: session-ID-of-
HTTP-session

9 0x8322 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

10 0x8336 A HTTP method URI Entrance-time status-code

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-13.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 391

8.7.2 Trace collection points and trace information that can be collected
during request processing for updating an HTTP session (Trace of
database session failover functionality)

This subsection describes the trace collection points and the trace information that can be collected during request
processing for updating an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒16: Details of trace collection points of the request processing for updating an HTTP
session (database session failover functionality)

Event ID No. in the
figure#1

Trace acquisition points Level

0x8202 6 Immediately before invoking a servlet or JSP A/B

0x8203 6 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 6 Immediately before invoking the static contents (DefaultServlet) B

0x8219#2 8 Immediately before starting the serialization of the HTTP session property
information with the database session failover functionality

A

0x8220 4 Immediately before starting the de-serialization of the HTTP session property
information with the database session failover functionality

A

0x8221 2 Immediately before starting database access before the Web application
processing with the database session failover functionality

A

0x8222#2 10 Immediately before starting database access after the Web application
processing with the database session failover functionality

A

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 7 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 7 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 7 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

0x8316 7 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8319#2 9 Immediately after the termination of serialization of the HTTP session
property information with the database session failover functionality

A

0x8320 5 Immediately after the termination of de-serialization of the HTTP session
property information with the database session failover functionality

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 392

Event ID No. in the
figure#1

Trace acquisition points Level

0x8321 3 Immediately after the termination of database access before the Web
application processing with the database session failover functionality

A

0x8322#2 11 Immediately after the termination of database access after the Web application
processing with the database session failover functionality

A

0x8336 12 Immediately after the completion of request processing A

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#1
Corresponds to the numbers in Figure 8-14.

#2
Not output for requests meant for referencing the HTTP session.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 393

Figure 8‒14: Trace collection points of the request processing for updating an HTTP session
(database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for updating an
HTTP session.

Table 8‒17: Trace information that can be collected during request processing for creating an HTTP
session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if
the header name is not specified)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 394

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

2 0x8221 A -- -- Number-of-session-ID-
characters: session-ID-received-
with-the-request

3 0x8321 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

4 0x8220 A Request URL Size (bytes) of the HTTP session
property information before de-
serialization

Number-of-session-ID-
characters: session-ID

5 0x8320 A Request URL -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

6 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8302 A Class name
(JSP file name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 395

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

8 0x8219 A Request URL -- Number-of-session-ID-
characters: session-ID

9 0x8319 A Request URL Size (bytes) of the HTTP
session property information
after serialization

• When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

10 0x8222 A -- -- Number-of-session-ID-
characters: session-ID-of-
HTTP-session

11 0x8322 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

12 0x8336 A HTTP method URI Entrance-time status-code

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-14.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 396

8.7.3 Trace collection points and trace information that can be collected
during request processing for disabling an HTTP session (Trace of
database session failover functionality)

This subsection describes the trace collection points and the trace information that can be collected during request
processing for disabling an HTTP session.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒18: Details of trace collection points of the request processing for disabling an HTTP
session (database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8202 6 Immediately before invoking a servlet or JSP A/B

0x8203 6 Immediately before invoking the filter that is executed before the execution
of the servlet or JSP that receives the request (filter for which the
<dispatcher> tag of the <filter-mapping> tag of web.xml is
omitted, or for which REQUEST is specified in the <dispatcher> tag)

B

0x8207 6 Immediately before invoking the static contents (DefaultServlet) B

0x8220 4 Immediately before starting the de-serialization of the HTTP session property
information with the database session failover functionality

A

0x8221 2 Immediately before starting database access before the Web application
processing with the database session failover functionality

A

0x8224 7 Immediately before starting database access when disabling the HTTP
session with the database session failover functionality

A

0x8236 1 Immediately after a request is acquired, or when the request header analysis
is complete

A

0x8302 9 Immediately after the completion of processing of the servlet or JSP A/B

0x8303 9 Immediately after the completion of processing of the filter that is executed
before the execution of the servlet or JSP that receives the request (filter for
which REQUEST is specified in the <dispatcher> tag of the <filter-
mapping> tag of web.xml)

B

0x8307 9 Immediately after the completion of processing of the static
contents (DefaultServlet)

B

0x8316 9 Immediately after the completion of processing of the filter executed during
transfer to the error page is complete
(filter for which ERROR is specified in the <dispatcher> tag of the
<filter-mapping> tag of web.xml)

B

0x8320 5 Immediately after the termination of de-serialization of the HTTP session
property information with the database session failover functionality

A

0x8321 3 Immediately after the termination of database access before the Web
application processing with the database session failover functionality

A

0x8324 8 Immediately after the termination of database access when the HTTP session
is disabled with the database session failover functionality

A

0x8336 10 Immediately after the completion of request processing A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 397

Legend:
A: Standard
B: Advanced
A/B: Different information is collected for the Standard and Advanced levels.

#
Corresponds to the numbers in Figure 8-15.

The following figure shows the trace collection points.

Figure 8‒15: Trace collection points of the request processing for disabling an HTTP session
(database session failover functionality)

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for disabling an
HTTP session.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 398

Table 8‒19: Trace information that can be collected during request processing for disabling an
HTTP session (database session failover functionality)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8236 A HTTP method URI Value for the request header name
specified in the property (none if
the header name is not specified)

2 0x8221 A -- -- Number-of-session-ID-
characters: session-ID-received-
with-the-request

3 0x8321 A When integrity protection
mode is set

Number of the record
for which exclusion
is acquired

When integrity protection
mode is disabled

-1

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

4 0x8220 A Request URL Size (bytes) of the HTTP session
property information before de-
serialization

Number-of-session-ID-
characters: session-ID

5 0x8320 A Request URL -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

6 0x8202 A Class name
(JSP file name when a JSP
is invoked)

-- --

B Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8207 B -- Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

0x8203 B Class name Context root name Number-of-session-ID-
characters: session-
ID: number-of-global-session-
ID-characters: global-session-
ID

7 0x8224 A -- -- Number-of-session-ID-
characters: session-ID-of-the-
disabled-HTTP-session

8 0x8324 A When integrity protection
mode is set

Number of the record
for which exclusion
is released

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 399

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

When integrity protection
mode is disabled

-1

9 0x8302 A Class name
(JSP file name when a JSP
is invoked)

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

B Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8307 B -- Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8303 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

0x8316 B Class name Context root name • When normal:
Entrance-time
number-of-session-ID-
characters: session-ID

• For an exception:
Entrance-time exception-
name: number-of-session-
ID-characters: session-ID

10 0x8336 A HTTP method URI Entrance-time status-code

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-15.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 400

8.7.4 Trace collection points and trace information that can be collected
during request processing for disabling an HTTP session through
valid period monitoring (Trace of database session failover
functionality)

This subsection describes the trace collection points and the trace information that can be collected during request
processing for disabling an HTTP session by monitoring the valid period.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒20: Details of trace collection points of the request processing for disabling an HTTP
session through valid period monitoring (database session failover functionality)

Event ID No. in the figure# Trace acquisition points Level

0x8210 3 After session timeout B

0x8225 1 Immediately before starting the valid period monitoring process of the global
session information on the database

A

0x8325 2 Immediately after the termination of the valid period monitoring process of
the global session information on the database

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-16.

The following figure shows the trace collection points.

Figure 8‒16: Trace collection points of the request processing for disabling an HTTP session
through valid period monitoring (database session failover functionality)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 401

(2) Trace information that can be collected
The following table describes the trace information that can be collected during request processing for disabling an HTTP
session through valid period monitoring.

Table 8‒21: Trace information that can be collected during request processing for disabling an
HTTP session through valid period monitoring (database session failover functionality)

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8225#2 A -- -- --

2 0x8325#2 A When the valid period
checking of the global
session information
is executed

Number of disabled
global sessions

When the valid period
checking of the global
session information is
not executed

Name (IP address) of
the J2EE server that
currently manages the
valid period checking

-- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

3 0x8210 B Context root name Session valid period: session
generation time

Number-of-session-ID-
characters: session-ID

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers in Figure 8-16.

#2
Not output when the integrity protection mode is disabled.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 402

8.8 Trace collection points of an EJB container

This section describes the trace collection points of an EJB container and also the trace information that can be collected,
in different cases of a Session Bean or Entity Bean, Message-driven Bean, or during the use of the Timer Service, and
in the case of occurrence of method cancellation.

8.8.1 In the case of a Session Bean or Entity Bean
This subsection describes the trace collection points of a Session Bean or Entity Bean, and the trace information that can
be collected.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒22: Details of trace collection points in a Session Bean or Entity Bean

Event ID No. in the figure# Trace acquisition points Level

0x8401 1 In the case of a remote
home interface

Immediately after the EJB container
receives a request

A

0x8402 4 Immediately before the EJB container
sends a response

A

0x8403 1 In the case of a local
home interface

Immediately after the EJB container
receives a request

A

0x8404 4 Immediately before the EJB container
sends a response

A

0x8405 1 In the case of a remote
component interface

Immediately after the EJB container
receives a request

A

0x8406 4 Immediately before the EJB container
sends a response

A

0x8407 1 In the case of a local
component interface

Immediately after the EJB container
receives a request

A

0x8408 4 Immediately before the EJB container
sends a response

A

0x8409 2 Immediately before the EJB container calls back the business method of
the EJB

B

0x840A 3 Immediately after returning from the callback of the EJB business method B

0x8453 2 Immediately before the EJB container calls back the home method of the EJB B

0x8454 3 Immediately after returning from the callback of the EJB home method B

0x8470 1 In the case of a remote
business interface

Immediately after the EJB container
receives a request

A

0x8471 4 Immediately before the EJB container
sends a response

A

0x8472 1 In the case of a local
business interface

Immediately after the EJB container
receives a request

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 403

Event ID No. in the figure# Trace acquisition points Level

0x8473 4 Immediately before the EJB container
sends a response

A

0x8474 1 In the case of a remote
business interface

Immediately after the EJB container
receives a request for creating an
instance of the Stateful Session Bean via
remote business interface

A

0x8475 1 Immediately before the EJB container
sends a response for the request to create
an instance of the Stateful Session Bean
via remote business interface

A

0x8476 1 In the case of a local
business interface

Immediately after the EJB container
receives a request for creating an
instance of the Stateful Session Bean via
local business interface

A

0x8477 1 Immediately before the EJB container
sends a response for the request to create
an instance of the Stateful Session Bean
via local business interface

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-17.

The following figure shows the trace collection points in a Session Bean or Entity Bean.

Figure 8‒17: Trace collection points of a Session Bean or Entity Bean

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Session Bean or Entity Bean.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 404

Table 8‒23: Trace information that can be collected in a Session Bean or Entity Bean

No. in
the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8401 A Bean name Method name, number of arguments --

0x8403 A Bean name Method name, number of arguments --

0x8405 A Bean name Method name, number of arguments --

0x8407 A Bean name Method name, number of arguments --

0x8470 A Bean name Method name, number of arguments --

0x8472 A Bean name Method name, number of arguments --

0x8474 A Bean name -- --

0x8475 A Bean name -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

0x8476 A Bean name -- --

0x8477 A Bean name -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

2 0x8409 B Bean name Method name, number of arguments --

0x8453 B Bean name Method name, number of arguments --

3 0x840A B Bean name Method name, number of arguments • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

0x8454 B Bean name Method name, number of arguments

4 0x8402 A Bean name Method name, number of arguments

0x8404 A Bean name Method name, number of arguments

0x8406 A Bean name Method name, number of arguments

0x8408 A Bean name Method name, number of arguments

0x8471 A Bean name Method name, number of arguments

0x8473 A Bean name Method name, number of arguments

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-17.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 405

8.8.2 In the Case of Message-driven Bean (EJB2.0)
This subsection describes the trace collection points of a Message-driven Bean (EJB2.0), and also the trace information
that can be collected.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒24: Details of trace collection points in a Message-driven Bean (EJB2.0)

Event ID No. in the figure# Trace acquisition points Level

0x8425 1 When the message processing in the EJB container starts A

0x8426 4 When the message processing in the EJB container ends A

0x8427 2 Immediately before the EJB container call backs the onMessage method of
the Message-driven Bean

B

0x8428 3 Immediately after returning from the callback of the onMessage method of
the Message-driven Bean

B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-18.

The following figure shows the trace collection points in a Message-driven Bean (EJB2.0).

Figure 8‒18: Trace collection points of a Message-driven Bean (EJB2.0)

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Message-driven Bean (EJB2.0).

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 406

Table 8‒25: Trace information that can be collected in a Message-driven Bean (EJB2.0)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8425 A Bean name -- --

2 0x8427 B -- -- --

3 0x8428 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

4 0x8426 A Bean name --

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-18.

8.8.3 In the case of a Message-driven Bean (EJB2.1 and later)
This subsection describes the trace collection points of a Message-driven Bean (EJB2.1 and later), and also the trace
information that can be collected.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒26: Details of trace collection points in a Message-driven (EJB2.1 and later)

Event ID No. in the
figures#

Trace acquisition points Level

0x842D 1 Immediately after invoking the beforeDelivery() method of the
Message-driven Bean

A

0x842E 2 Immediately before the return the beforeDelivery() method of the
Message-driven Bean

A

0x842F 3 Immediately after invoking the method of message listener of the Message-
driven Bean from the resource adapter

A

0x8431 4 Immediately before the EJB container calls back the method of message
listener of the Message-driven Bean

A

0x8432 5 Immediately after returning from the callback of the method of message
listener of the Message-driven Bean

A

0x8430 6 Immediately before the return of the method of message listener of the
Message-driven Bean that is invoked from the resource adapter

A

0x8433 7 Immediately after invoking the beforeDelivery() method of the
Message-driven Bean

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 407

Event ID No. in the
figures#

Trace acquisition points Level

0x8434 8 Immediately before the return the beforeDelivery() method of the
Message-driven Bean

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-19 and Figure 8-20.

The following figure shows the trace collection points in a Message-driven Bean (EJB2.1 and later).

Figure 8‒19: Trace collection points of a Message-driven Bean (EJB2.1 and later) (in the case of
optionA#)

Indicates the message delivery option described in Connector 1.5 specifications.

Figure 8‒20: Trace collection points of a Message-driven Bean (EJB2.1 and later) (in the case of
optionB#)

Indicates the message delivery option described in Connector 1.5 specifications.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 408

(2) Trace information that can be collected
The following table describes the trace information that can be collected in a Message-driven Bean (EJB2.1 and later).

Table 8‒27: Trace information that can be collected in a Message-driven Bean (EJB2.1 and later)

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x842D A Bean name -- --

2 0x842E A Bean name -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

3 0x842F A Bean name Method name --

4 0x8431 A Bean name Method name --

5 0x8432 A Bean name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

6 0x8430 A Bean name Method name

7 0x8433 A Bean name -- --

8 0x8434 A Bean name -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-19 and Figure 8-20.

8.8.4 For Timer Service
This subsection describes the trace collection points of the Timer Service, and the trace information that can be collected.

(1) For createTimer

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 409

Table 8‒28: Details of trace collection points in Timer Service (for createTimer)

Event ID No. in the figure# Trace collection points Level

0x8460 1 When the processing of TimerService.createTimer(Date
initialExpiration, long intervalDuration,
Serializable info) starts

A

0x8462 1 When the processing of TimerService.createTimer(Date
expiration, Serializable info) starts

A

0x8464 1 When the processing of TimerService.createTimer(long
initialDuration, long intervalDuration,
Serializable info) starts

A

0x8466 1 When the processing of 'TimerService.createTimer(long
duration, Serializable info) starts

A

0x8461 2 When the processing of TimerService.createTimer(Date
initialExpiration, long intervalDuration,
Serializable info) ends

A

0x8463 2 When the processing of TimerService.createTimer(Date
expiration, Serializable info) ends

A

0x8465 2 When the processing of 'TimerService.createTimer(long
initialDuration, long intervalDuration,
Serializable info) ends

A

0x8467 2 When the processing of TimerService.createTimer(long
duration, Serializable info) ends

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-21.

The following figure shows the trace collection points of Timer Service for createTimer.

Figure 8‒21: Trace collection points of Timer Service (for createTimer)

(b) Trace information that can be collected
The following table describes the trace information that can be collected in Timer Service for createTimer.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 410

Table 8‒29: Trace information that can be collected in Timer Service (for createTimer)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8460 A Class name of the Bean to be called back -- Argument information

1 0x8462 A Class name of the Bean to be called back -- Argument information

1 0x8464 A Class name of the Bean to be called back -- Argument information

1 0x8466 A Class name of the Bean to be called back -- Argument information

2 0x8461 A Class name of the Bean to be called back -- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

2 0x8463 A Class name of the Bean to be called back --

2 0x8465 A Class name of the Bean to be called back --

2 0x8467 A Class name of the Bean to be called back --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-21.

(2) For cancel

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒30: Details of the trace collection points in Timer Service (for cancel)

Event ID No. in the figure# Trace collection points Level

0x8468 1 When the processing of javax.ejb.Timer.cancel() starts A

0x8469 2 When the processing of javax.ejb.Timer.cancel() ends A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-22.

The following figure shows the trace collection points of Timer Service for cancel.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 411

Figure 8‒22: Trace collection points of Timer Service (for cancel)

(b) Trace information that can be collected
The following table describes the trace information that can be collected in Timer Service for cancel.

Table 8‒31: Trace information that can be collected in Timer Service (for cancel)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8468 A Class name of the Bean to be called back -- --

2 0x8469 A Class name of the Bean to be called back -- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-22.

(3) In the case of a callback

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒32: Details of the trace collection points in Timer Service (for a callback)

Event ID No. in the figure# Trace collection points Level

0x846C 1 When the thread starts the callback processing B

0x846A 2 When the callback of the timeout callback method of the Enterprise
Bean starts

A

0x846B 3 When the callback of the timeout callback method of the Enterprise Bean ends A

0x846D 4 When the thread terminates the callback processing B

Legend:
A: Standard
B: Advanced

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 412

#
Corresponds to the numbers in Figure 8-23.

The following figure shows the trace collection points of Timer Service for a callback.

Figure 8‒23: Trace collection points of Timer Service (for a callback)

(b) Trace information that can be collected
The following table describes the trace information that can be collected in Timer Service for a callback.

The information collected during callback of the timeout method is output to the root application information.
Furthermore, 0 is output to the client application information.

Table 8‒33: Trace information that can be collected in Timer Service (for a callback)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x846C B Class name of the Bean to be called back -- --

2 0x846A A Class name of the Bean to be called back -- --

3 0x846B A Class name of the Bean to be called back -- • When normal:
Entrance-time

• For an
exception:
Entrance-
timeexception-
name

4 0x846D B Class name of the Bean to be called back --

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-23.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 413

(4) In the case of createSingleActionTimer

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒34: Details of the trace collections points in Timer Service (for createSingleActionTimer)

Event ID No. in the figure# trace collection point Level

0x84A0 1 When the processing of
TimerService.createSingleActionTimer(long
duration, TimerConfig timerConfig) starts

A

0x84A1 2 When the processing of
TimerService.createSingleActionTimer(long
duration, TimerConfig timerConfig) ends

A

0x84A2 1 When the processing of
TimerService.createSingleActionTimer(Date
expiration, TimerConfig timerConfig) starts

A

0x84A3 2 When the processing of
TimerService.createSingleActionTimer(Date
expiration, TimerConfig timerConfig) ends

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-24.

The following figure shows the trace collection points in createSingleActionTimer.

Figure 8‒24: Trace collection points of Timer Service (for createSingleActionTimer)

(b) trace information that can be collected
The following table describes the trace information that can be collected in createSingleActionTimer.

Table 8‒35: Trace information that can be collected in Timer Service (for createSingleActionTimer)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x84A0 A Class name of the Bean to
be called back

-- Argument information

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 414

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

2 0x84A1 A Class name of the Bean to
be called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

1 0x84A2 A Class name of the Bean to
be called back

-- Argument information

2 0x84A3 A Class name of the Bean to
be called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-24.

(5) In the case of createIntervalTimer

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒36: Details of the trace collections points in Timer Service (for createIntervalTimer)

Event ID No. in the figure# Trace collection points Level

0x84A4 1 When the processing
of TimerService.createIntervalTimer(long
initialDuration, long intervalDuration,
TimerConfig timerConfig) starts

A

0x84A5 2 When the processing
of TimerService.createIntervalTimer(long
initialDuration, long intervalDuration,
TimerConfig timerConfig) ends

A

0x84A6 1 When the processing
of TimerService.createIntervalTimer(Date
initialExpiration, long intervalDuration,
TimerConfig timerConfig) starts

A

0x84A7 2 When the processing
of TimerService.createIntervalTimer(Date
initialExpiration, long intervalDuration,
TimerConfig timerConfig) ends

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-25.

The following figure shows the trace collection points of createIntervalTimer.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 415

Figure 8‒25: Trace collection points of Timer Service (for createIntervalTimer)

(b) Trace information that can be collected
The following table describes the trace information that can be collected in createIntervalTimer.

Table 8‒37: Trace information that can be collected in Timer Service (for createIntervalTimer)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x84A4 A Class name of the Bean to be
called back

-- Argument information

2 0x84A5 A Class name of the Bean to be
called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

1 0x84A6 A Class name of the Bean to be
called back

-- Argument information

2 0x84A7 A Class name of the Bean to be
called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-25.

(6) In the case of createCalendarTimer

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 416

Table 8‒38: Details of the trace collections points in Timer Service (for createCalendarTimer)

Event ID No. in the figure# Trace collection points Level

0x84A8 1 When the processing of
TimerService.createCalendarTimer(ScheduleExpression
schedule) starts

A

0x84A9 2 When the processing of
TimerService.createCalendarTimer(ScheduleExpression
schedule) ends

A

0x84AA 1 When the processing of
TimerService.createCalendarTimer(ScheduleExpression
schedule, TimerConfig config) starts

A

0x84AB 2 When the processing of
TimerService.createCalendarTimer(ScheduleExpression
schedule, TimerConfig config) ends

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-26.

The following figure shows the trace collection points of createCalendarTimer.

Figure 8‒26: Trace collection points of Timer Service (for createCalendarTimer)

(b) trace information that can be collected
The following table describes the trace information that can be collected in createCalendarTimer.

Table 8‒39: Trace information that can be collected in Timer Service (for createCalendarTimer)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x84A8 A Class name of the Bean to be
called back

-- Argument information

2 0x84A9 A Class name of the Bean to be
called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 417

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x84AA A Class name of the Bean to be
called back

-- Argument information

2 0x84AB A Class name of the Bean to be
called back

-- • When normal:
Entrance-time

• For an exception:
Entrance-
timeexception-name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-26.

8.8.5 When the Session Bean is invoked asynchronously
This subsection describes the trace collection points when the Session Bean is invoked asynchronously, and the trace
information that can be collected.

In an asynchronous invocation, the output order of the event IDs output by the same thread is guaranteed, but the output
order of the event IDs output by different threads is not guaranteed. Therefore, the following events might occur:

• The output order of the event IDs might differ from the order described in this subsection.

• The event IDs of asynchronous invocation might be output between the event IDs of other functionality.

(1) When a Session Bean is invoked asynchronously from the local client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒40: Details of the trace collection points when the Session Bean is invoked asynchronously
from the local client

Event ID No. in the figure# Trace collection points Level

0x8472 1 Immediately after the EJB container receives a request (for a local invocation) A

0x8473 2 Immediately before the EJB container sends a response (for a
local invocation)

A

0x84C0 3 Immediately before the EJB container calls back the asynchronous business
method of EJB

A

0x84D6 4 Immediately before the EJB container starts the asynchronous business
method of EJB (for a local invocation)

A

0x8409 5 Immediately before the EJB container calls back the EJB business method B

0x840A 6 Immediately after returning from a callback of the EJB business method B

0x84D7 7 Immediately after the asynchronous business method of EJB is terminated
(for a local invocation)

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 418

Event ID No. in the figure# Trace collection points Level

0x84C1 8 Immediately after returning from a callback of the asynchronous business
method of EJB

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-27.

The following figure shows the trace collection points when the Session Bean is invoked asynchronously from the
local client.

Figure 8‒27: Trace collection points when the Session Bean is invoked asynchronously from the
local client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when the Session Bean is invoked
asynchronously from the local client.

Table 8‒41: Trace information that can be collected when the Session Bean is invoked
asynchronously from the local client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x8472 A Bean name Method name, number
of arguments

--

2 0x8473 A Bean name Method name, number
of arguments

• When normal:
Entrance-time

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 419

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

• For an exception:
Entrance-timeexception-
name

3 0x84C0 A Class name of the Bean to
be called back

Method name, number
of arguments

Root application information
at the source
of an asynchronous
method invocation

4 0x84D6 A Class name of the Bean to
be called back

Method name, number
of arguments

--

5 0x8409 B Bean name Method name, number
of arguments

--

6 0x840A B Bean name Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

7 0x84D7 A Class name of the Bean to
be called back

Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

8 0x84C1 A Class name of the Bean to
be called back

Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-27.

(2) When the Session Bean is invoked asynchronously from the remote
client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒42: Details of the trace collection points when the Session Bean is invoked asynchronously
from the remote client

Event ID No. in the figure# Trace collection points Level

0x8470 1 Immediately after the EJB container receives a request (for a
remote invocation)

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 420

Event ID No. in the figure# Trace collection points Level

0x8471 2 Immediately before the EJB container sends a response (for a
remote invocation)

A

0x84C0 3 Immediately before the EJB container calls back the asynchronous business
method of EJB

A

0x84D8 4 Immediately before the EJB container starts the asynchronous business
method of EJB (for a remote invocation)

A

0x8409 5 Immediately before the EJB container calls back the EJB business method B

0x840A 6 Immediately after returning from a callback of the EJB business method B

0x84D9 7 Immediately after the asynchronous business method of EJB is terminated
(for a remote invocation)

A

0x84C1 8 Immediately after returning from a callback of the asynchronous business
method of EJB

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-28.

The following figure shows the trace collection points when the Session Bean is invoked asynchronously from the
remote client.

Figure 8‒28: Trace collection points when the Session Bean is invoked asynchronously from the
remote client

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 421

(b) Trace information that can be collected
The following table describes the trace information that can be collected when the Session Bean is invoked
asynchronously from the remote client.

Table 8‒43: Trace information that can be collected when the Session Bean is invoked
asynchronously from the remote client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x8470 A Bean name Method name, number
of arguments

--

2 0x8471 A Bean name Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

3 0x84C0 A Class name of the Bean to
be called back

Method name, number
of arguments

Root application information
at the source
of an asynchronous
method invocation

4 0x84D8 A Class name of the Bean to
be called back

Method name, number
of arguments

--

5 0x8409 B Bean name Method name, number
of arguments

--

6 0x840A B Bean name Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

7 0x84D9 A Class name of the Bean to
be called back

Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

8 0x84C1 A Class name of the Bean to
be called back

Method name, number
of arguments

• When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-28.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 422

(3) When get is invoked from the local client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒44: Details of the trace collection points when get is invoked from the local client

Event ID No. in the figure# Trace collection points Level

0x84C2 1 When the processing of Future.get() starts (for a local invocation) B

0x84C3 2 When the processing of Future.get() ends (for a local invocation) B

0x84C4 1 When the processing of Future.get(long timeout, TimeUnit
unit) starts (for a local invocation)

B

0x84C5 2 When the processing of Future.get(long timeout, TimeUnit
unit) ends (for a local invocation)

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-29.

The following figure shows the trace collection points when get is invoked from the local client.

Figure 8‒29: Trace collection points when get is invoked from the local client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when get is invoked from the local client.

Table 8‒45: Trace information that can be collected when get is invoked from the local client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84C2 B -- -- --

2 0x84C3 B -- -- • When normal:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 423

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

Entrance-time
• For an exception:

Entrance-timeexception-
name

1 0x84C4 B -- -- Method name,
argument information

2 0x84C5 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-29.

(4) When get is invoked from the remote client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒46: Details of the trace collection points when get is invoked from the remote client

Event ID No. in the figure# Trace collection points Level

0x84C6 1 When the processing of Future.get() starts (for a remote invocation) B

0x84C2 2 When the processing of Future.get() starts (for a local invocation) B

0x84C3 3 When the processing of Future.get() ends (for a local invocation) B

0x84C7 4 When the processing of Future.get() ends (for a remote invocation) B

0x84C8 1 When the processing of Future.get(long timeout, TimeUnit
unit) starts (for a remote invocation)

B

0x84C4 2 When the processing of Future.get(long timeout, TimeUnit
unit) starts (for a local invocation)

B

0x84C5 3 When the processing of Future.get(long timeout, TimeUnit
unit) ends (for a local invocation)

B

0x84C9 4 When the processing of Future.get(long timeout, TimeUnit
unit) ends (for a remote invocation)

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-30.

The following figure shows the trace collection points when get is invoked from the remote client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 424

Figure 8‒30: Trace collection points when get is invoked from the remote client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when get is invoked from the remote client.

Table 8‒47: Trace information that can be collected when get is invoked from the remote client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x84C6 B -- -- --

2 0x84C2 B -- -- --

3 0x84C3 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

4 0x84C7 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

1 0x84C8 B -- -- Method name,
argument information

2 0x84C4 B -- -- Method name,
argument information

3 0x84C5 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-timeexception-
name

4 0x84C9 B -- -- • When normal:
Entrance-time

• For an exception:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 425

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-timeexception-
name

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-30.

(5) When isDone is invoked from the local client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒48: Details of the trace collection points when isDone is invoked from the local client

Event ID No. in the figure# Trace collection points Level

0x84CA 1 When the processing of Future.isDone() starts (for a local invocation) B

0x84CB 2 When the processing of Future.isDone() ends (for a local invocation) B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-31.

The following figure shows the trace collection points when isDone is invoked from the local client.

Figure 8‒31: Trace collection points when isDone is invoked from the local client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when isDone is invoked from the local client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 426

Table 8‒49: Trace information that can be collected when isDone is invoked from the local client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84CA B -- -- --

2 0x84CB B -- -- Return value of isDone()

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-31.

Note
No exceptions are thrown in the execution of this method. Therefore, the logs showing abnormal status are
not generated.

(6) When isDone is invoked from the remote client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒50: Details of the trace collection points when isDone is invoked from the remote client

Event ID No. in the figure# Trace collection points Level

0x84CE 1 When the processing of Future.isDone() starts (for a
remote invocation)

B

0x84CA 2 When the processing of Future.isDone() starts (for a local invocation) B

0x84CB 3 When the processing of Future.isDone() ends (for a local invocation) B

0x84CF 4 When the processing of Future.isDone() ends (for a remote invocation) B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-32.

The following figure shows the trace collection points when isDone is invoked from the remote client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 427

Figure 8‒32: Trace collection points when isDone is invoked from the remote client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when isDone is invoked from the
remote client.

Table 8‒51: Trace information that can be collected when isDone is invoked from the remote client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84CE B -- -- --

2 0x84CA B -- -- --

3 0x84CB B -- -- Return value of isDone()

4 0x84CF B -- -- • When normal:
Entrance-time

• For an exception:
exception-name

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-32.

(7) When isCancelled is invoked from the local client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒52: Details of the trace collection points when isCancelled is invoked from the local client

Event ID No. in the figure# Trace collection points Level

0x84CC 1 When the processing of Future.isCancelled() starts (for a
local invocation)

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 428

Event ID No. in the figure# Trace collection points Level

0x84CD 2 When the processing of Future.isCancelled() ends (for a
local invocation)

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-33.

The following figure shows the trace collection points when isCancelled is invoked from the local client.

Figure 8‒33: Trace collection points when isCancelled is invoked from the local client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when isCancelled is invoked from the
local client.

Table 8‒53: Trace information that can be collected when isCancelled is invoked from the local client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84CC B -- -- --

2 0x84CD B -- -- Return value
of isCancelled()

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-33.

Note
No exceptions are thrown in the execution of this method. Therefore, the logs showing abnormal status are
not generated.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 429

(8) When isCancelled is invoked from the remote client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒54: Details of the trace collection points when isCancelled is invoked from the remote client

Event ID No. in the figure# Trace collection points Level

0x84D0 1 When the processing of Future.isCancelled() starts (for a
remote invocation)

B

0x84CC 2 When the processing of Future.isCancelled() starts (for a
local invocation)

B

0x84CD 3 When the processing of Future.isCancelled() ends (for a
local invocation)

B

0x84D1 4 When the processing of Future.isCancelled() ends (for a
remote invocation)

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-34.

The following figure shows the trace collection points when isCancelled is invoked from the remote client.

Figure 8‒34: Trace collection points when isCancelled is invoked from the remote client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when isCancelled is invoked from the
remote client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 430

Table 8‒55: Trace information that can be collected when isCancelled is invoked from the remote
client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84D0 B -- -- --

2 0x84CC B -- -- --

3 0x84CD B -- -- Return value of isCancelled()

4 0x84D1 B -- -- • When normal:
Return value
of isCancelled()

• For an exception:
exception-name

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-34.

(9) When cancel is invoked from the local client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒56: Details of the trace collection points when cancel is invoked from the local client

Event ID No. in the figure# Trace collection points Level

0x84D2 1 When the processing of Future.cancel() starts (for a local invocation) A

0x84D3 2 When the processing of Future.cancel() ends (for a local invocation) A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-35.

The following figure shows the trace collection points when cancel is invoked from the local client.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 431

Figure 8‒35: Trace collection points when cancel is invoked from the local client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when cancel is invoked from the local client.

Table 8‒57: Trace information that can be collected when cancel is invoked from the local client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84D2 A -- -- Method name,
argument information

2 0x84D3 A -- -- Return value of cancel()

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-35.

Note
No exceptions are thrown in the execution of this method. Therefore, the logs showing abnormal status are
not generated.

(10) When cancel is invoked from the remote client

(a) Trace collection points and PRF trace
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒58: Details of the trace collection points when cancel is invoked from the remote client

Event ID No. in the figure# Trace collection points Level

0x84D4 1 When the processing of Future.cancel() starts (for a
remote invocation)

A

0x84D2 2 When the processing of Future.cancel() starts (for a local invocation) A

0x84D3 3 When the processing of Future.cancel() ends (for a local invocation) A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 432

Event ID No. in the figure# Trace collection points Level

0x84D5 4 When the processing of Future.cancel() ends (for a remote invocation) A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-36.

The following figure shows the trace collection points when cancel is invoked from the remote client.

Figure 8‒36: Trace collection points when cancel is invoked from the remote client

(b) Trace information that can be collected
The following table describes the trace information that can be collected when cancel is invoked from the
remote client.

Table 8‒59: Trace information that can be collected when cancel is invoked from the remote client

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Option

1 0x84D4 A -- -- Method name,
argument information

2 0x84D2 A -- -- Method name,
argument information

3 0x84D3 A -- -- Return value of cancel()

4 0x84D5 A -- -- • When normal:
Return value
of cancel()

• For an exception:
exception-name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-36.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 433

8.8.6 When method cancellation occurs
This subsection describes the trace collection points when method cancellation occurs, and also describes the trace
information that can be collected.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒60: Details of the trace collection points when method cancellation occurs

Event ID No. in the figure# Trace collection points Level

0x8490 1 When the method cancellation processing starts A

0x8C41 2 When an SQL statement is output to check errors A

0x8491 3 When the method cancellation processing is completed A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-37.

The following figure shows the trace collection points when method cancellation occurs.

Figure 8‒37: Trace collection points when method cancellation occurs

(2) Trace information that can be collected
The following table describes the trace information that can be collected when method cancellation occurs.

Table 8‒61: Trace information that can be collected when method cancellation occurs

No. in
the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8490 A Root application information of
the application for which method
cancellation is to be executed

-- --

2 0x8C41 A Root application information
of the connection for
which a transaction timeout,

-- SQL statement

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 434

No. in
the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

forced termination of the
J2EE application, or method
cancellation was executed

3 0x8491 A -- -- Entrance-time

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-37.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 435

8.9 Trace collection points of a JNDI

This section describes the trace collection points of a JNDI, and the trace information that can be collected.

8.9.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒62: Details of trace collection points in a JNDI

Event ID No. in the figure# Trace acquisition points Level

0x8603 1 When searching the name
space in JNDI, or the
CORBA Naming Service

javax.naming.Cont
ext.lookup

Immediately after
invocation

A

0x8604 2 Immediately
before return

A

0x8605 1 javax.naming.Cont
ext.list

Immediately after
invocation

B

0x8606 2 Immediately
before return

B

0x8607 1 javax.naming.Cont
ext.listBindings

Immediately after
invocation

B

0x8608 2 Immediately
before return

B

0x8609 1 When searching the name
space in which
javax.ejb.EJBLoca
lHome is saved

javax.naming.Cont
ext.lookup

Immediately after
invocation

A

0x860A 2 Immediately
before return

A

0x860B 1 javax.naming.Cont
ext.list

Immediately after
invocation

B

0x860C 2 Immediately
before return

B

0x860D 1 javax.naming.Cont
ext.listBindings

Immediately after
invocation

B

0x860E 2 Immediately
before return

B

0x860F 1 When searching the Java
name space: java

javax.naming.Cont
ext.lookup

Immediately after
invocation

A

0x8610 2 Immediately
before return

A

0x8611 1 javax.naming.Cont
ext.list

Immediately after
invocation

B

0x8612 2 Immediately
before return

B

0x8613 1 javax.naming.Cont
ext.listBindings

Immediately after
invocation

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 436

Event ID No. in the figure# Trace acquisition points Level

0x8614 2 Immediately
before return

B

0x8615 1 When using the round-
robin search functionality

javax.naming.Cont
ext.lookup

Immediately after
invocation

A

0x8616 2 Immediately
before return

A

0x8617 1 When using the
CORBA Naming Service
switch functionality

javax.naming.Cont
ext.lookup

Immediately after
invocation

A

0x8618 2 Immediately
before return

A

0x8619 1 javax.naming.Cont
ext.list

Immediately after
invocation

B

0x861A 2 Immediately
before return

B

0x861B 1 javax.naming.Cont
ext.listBindings

Immediately after
invocation

B

0x861C 2 Immediately
before return

B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-38.

The following figure shows the trace collection points in a JNDI.

Figure 8‒38: Trace collection points of a JNDI

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 437

8.9.2 Trace information that can be collected
The following table describes the trace information that can be collected in a JNDI.

Table 8‒63: Trace information that can be collected in a JNDI

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8603 A -- Specified name --

0x8609 A

0x860F A

0x8615 A

0x8617 A

0x8605 B

0x860B B

0x8611 B

0x8619 B

0x8607 B

0x860D B

0x8613 B

0x861B B

2 0x8604 A -- • When normal:
Entrance-time

• For an
exception:
Entrance-time:
exception name

0x860A A

0x8610 A

0x8616 A

0x8618 A

0x8606 B

0x860C B

0x8612 B

0x861A B

0x8608 B

0x860E B

0x8614 B

0x861C B

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-38.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 438

Reference note

• In the trace information of a JNDI, 0 is displayed in the root application information and client application
information that constitutes the key information, in the following cases:
- When the lookup method is invoked from the client
- When the server is either starting or stopping

• 0x8609 and 0x860A are output twice when you are using business interface.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 439

8.10 Trace collection points of a JTA

This section describes the trace collection points of the JTA and the trace information that can be collected.

8.10.1 When a CMT and TransactionManager are used
This subsection describes the trace collection points when a CMT and
javax.transaction.TransactionManager are used, and also the trace information that can be collected.

(1) Trace collection points and the PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒64: Details of trace collection points when a CMT and TransactionManager are used

Event ID No. in the figure# Trace acquisition points Level

0x8811 1 Immediately before the transaction starts A

0x8812 2 Immediately after the transaction starts A

0x8815 3 Immediately before the transaction is committed A

0x8816 4 Immediately after the transaction is committed A

0x8817 3 Immediately before the transaction rolls back A

0x8818 4 Immediately after the transaction rolls back A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-39 and Figure 8-40.

The following figure shows the trace collection points when a CMT is used.

Figure 8‒39: Trace collection points when a CMT is used

The following figure shows the trace collection points when TransactionManager is used.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 440

Figure 8‒40: Trace collection points when TransactionManager is used

(2) Trace information that can be collected
The following table describes the trace information that can be collected when a CMT and TransactionManager are used.

Table 8‒65: Trace information that can be collected when a CMT and TransactionManager are used

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8811 A -- -- --

2 0x8812 A -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

3 0x8815 A -- -- --

0x8817 A -- -- --

4 0x8816 A -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time exception-
name

0x8818 A -- --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-39 and Figure 8-40.

8.10.2 When UserTransaction is used
This subsection describes the trace collection points when UserTransaction is used, and also the trace information that
can be collected.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 441

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒66: Details of trace collection points when UserTransaction is used

Event ID No. in the figure# Trace acquisition points Level

0x8813 1 Immediately before the transaction starts A

0x8814 2 Immediately after the transaction starts A

0x8815 3 Immediately before the transaction is committed A

0x8816 4 Immediately after the transaction is committed A

0x8817 3 Immediately before the transaction rolls back A

0x8818 4 Immediately after the transaction rolls back A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-41.

The following figure shows the trace collection points when UserTransaction is used.

Figure 8‒41: Trace collection points when UserTransaction is used

(2) Trace information that can be collected
The following table describes the trace information that can be collected when UserTransaction is used.

Table 8‒67: Trace information that can be collected when UserTransaction is used

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8813 A -- -- --

2 0x8814 A -- -- • When normal:
Entrance-time

• For an exception:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 442

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-
time exception-name

3 0x8815 A -- -- --

0x8817 A -- -- --

4 0x8816 A -- -- • When normal:
Entrance-time

• For an exception:
Entrance-
time exception-name

0x8818 A -- --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-41.

8.10.3 In the case of a transaction timeout
This subsection describes the trace collection points in the case of a transaction timeout, and also describes the trace
information that can be collected.

(1) Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒68: Details of trace collection points in the case of a transaction timeout

Event ID No. in the figure# Trace acquisition points Level

0x8819 1 Immediately before the transaction timeout processing A

0x8C41 2 SQL output for failure checking A

0x8820 3 Immediately after the transaction timeout processing A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-42.

The following figure shows the trace collection points in the case of a transaction timeout.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 443

Figure 8‒42: Trace collection points in the case of a transaction timeout

(2) Trace information that can be collected
The following table describes the trace information that can be collected in the case of a transaction timeout.

Table 8‒69: Trace information that can be collected in the case of a transaction timeout

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8819 A Root application information of
the transaction that has timed out

-- --

2 0x8C41 A Root application information
of the connection for
which a transaction timeout,
forced termination of the
J2EE application, or method
cancellation was executed

-- SQL statement

3 0x8820 A -- -- Entrance-time

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-42.

8.10.4 When using the asynchronous concurrent processing for threads
This subsection describes the trace collection points and the trace information that can be acquired, when you use the
asynchronous concurrent processing for threads.

(1) Trace collection points of TimerManager
• Trace collection points and PRF trace collection levels

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 444

The following table describes the event IDs, trace collection points, and PRF trace collection levels:

Table 8‒70: Details of the trace collection points of TimerManager

Event ID Number in the
figure#

Trace collection point Level

0x8435 1 Immediately before TimerManager starts A

0x8436 2 Just after TimerManager starts A

0x8439 5 Immediately before TimerManager stops A

0x843A 6 Just after TimerManager stops A

0x843D 3 Immediately before executing the listener for TimerManager A

0x843E 4 Just after executing the listener for TimerManager A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-43.

The following figure shows the trace collection points of TimerManager.

Figure 8‒43: Trace collection points of TimerManager

• Trace information that can be collected
The following table describes the trace information that can be collected for TimerManager.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 445

Table 8‒71: Trace information that can be collected for TimerManager

Numbe
r in the
figure#

1

Event ID Level Information that can be collected

Interface name Operation name Option

1 0x8435 A -- -- --

2 0x8436 A -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

3 0x843D A Method name#2 Unique number for each schedule --

4 0x843E A Method name#2 Unique number for each schedule • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

5 0x8439 A -- -- --

6 0x843A A -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 8-43.

#2
TimerManager.timerExpired, StopTimerListener.timerStop, or CancelTimerListener.timerCancel
is output.

(2) Trace collection points of WorkManager
• Trace collection points and PRF trace collection levels

The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒72: Details of the trace collection points of WorkManager

Event ID Number in the
figure#

Trace collection point Level

0x8437 1 Immediately before WorkManager starts A

0x8438 2 Just after WorkManager starts A

0x8440 4 Just after executing the listener or task processing for WorkManager A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 446

Event ID Number in the
figure#

Trace collection point Level

0x843B 5 Immediately before WorkManager stops A

0x843C 6 Just after WorkManager stops A

0x843F 3 Immediately before executing the listener or task processing
for WorkManager

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-44.

The following figure shows the trace collection points of WorkManager.

Figure 8‒44: Trace collection points of WorkManager

• Trace information that can be collected
The following table describes the trace information that can be collected for WorkManager.

Table 8‒73: Trace information that can be collected for WorkManager

Numbe
r in the
figure#

1

Event ID Level Information that can be collected

Interface name Operation name Option

1 0x8437 A -- -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 447

Numbe
r in the
figure#

1

Event ID Level Information that can be collected

Interface name Operation name Option

2 0x8438 A -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

3 0x843F A Method name#2 Unique number for each schedule --

4 0x8440 A Method name#2 Unique number for each schedule • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

5 0x843B A -- -- --

6 0x843C A -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-
name

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 8-44.

#2
Work.run, WorkListener.workAccepted, WorkListener.workRejected, WorkListener.workStarted, or
WorkListener.workCompleted is output.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 448

8.11 Trace collection points of a DB Connector and JCA container

This section describes the trace collection points of a DB Connector and JCA container, and also the trace information
that can be collected.

Of the trace collection points related to a connection, some can be collected only when a local transaction is used. This
section separately describes the trace collection points that can be collected irrespective of the transaction support level,
and the trace collection points that can be collected only when a local transaction is used. Here, the trace collection points
that can be collected irrespective of the transaction support level are called connection-related trace collection points.

8.11.1 Connection-related trace collection points and trace information
that can be collected

This subsection describes the connection-related trace collection points and trace information that can be collected.

(1) Trace get point and the PRF trace get level
The following four tables describe the event IDs, trace collection points, and PRF trace collection levels with reference
to each event ID:

• In the case of 0x8B00, 0x8B01, 0x8B80-0x8B83, 0x8C00-0x8C03, 0x8C10-0xC13, 0x8C20-0x8C29,
0x8C2A-0x8C3F (when connection-related processing is executed)
Reference: Table 8-74

• In the case of 0x8C80-0x8C93 (when a method of the java.sql.Statement interface is executed)
Reference: Table 8-75

• In the case of 0x8CC0-0x8CD9 (when a method of the java.sql.PreparedStatement interface is executed)
Reference: Table 8-76

• In the case of 0x8D00-0x8D19 (when a method of the java.sql.CallableStatement interface is executed)
Reference: Table 8-77

Tip

For details about the event ID 0x8C41, see the sections 8.8 Trace collection points of an EJB container and
8.10 Trace collection points of a JTA.

Table 8‒74: Details of trace collection points in a DB Connector and JCA container (when
connection-related processing is executed) 1

Event ID No. in the figure# Trace acquisition points Level

0x8B00 2 Immediately after invoking the connection acquisition request from the
resource adapter

B

0x8B01 5 Immediately before the return of the connection acquisition request from the
resource adapter

B

0x8B80 3 Immediately before the invocation of physical connection creation B

0x8B81 4 Immediately after the return of physical connection creation B

0x8B82 14 Immediately before the invocation of physical connection discard B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 449

Event ID No. in the figure# Trace acquisition points Level

0x8B83 15 Immediately after the return of physical connection discard B

0x8C00 1 When a database connection is established with
javax.sql.DataSource.getConnection()

When the
processing starts

A

0x8C01 6 When the
processing ends

A

0x8C02 1 When a database connection is established with
javax.sql.DataSource.getConnection(S
tring username, String password)

When the
processing starts

A

0x8C03 6 When the
processing ends

A

0x8C10 1 When a database connection is established with
javax.sql.DataSource.getConnection()
during the use of the connection pool clustering
functionality (compatibility functionality)

When the
processing starts

A

0x8C11 6 When the
processing ends

A

0x8C12 1 When a database connection is established with
javax.sql.DataSource.getConnection(S
tring username, String password)
during the use of the connection pool clustering
functionality (compatibility functionality)

When the
processing starts

A

0x8C13 6 When the
processing ends

A

0x8C20 13 When the database and JDBC resources
of the Connection object are released
with java.sql.Connection.close()

When the
processing starts

A

0x8C21 16 When the
processing ends

A

0x8C22 11 java.sql.Connection.commit() When the
processing starts

B

0x8C23 12 When the
processing ends

B

0x8C24 11 java.sql.Connection.rollback() When the
processing starts

B

0x8C25 12 When the
processing ends

B

0x8C26 11 java.sql.Connection.rollback(Savepoi
nt savepoint)

When the
processing starts

B

0x8C27 12 When the
processing ends

B

0x8C28 7 java.sql.Connection.createStatement(
)

When the
processing starts

B

0x8C29 8 When the
processing ends

B

0x8C2A 7 java.sql.Connection.createStatement(
int resultSetType, int
resultSetConcurrency)

When the
processing starts

B

0x8C2B 8 When the
processing ends

B

0x8C2C 7 java.sql.Connection.createStatement(
int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

When the
processing starts

B

0x8C2D 8 When the
processing ends

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 450

Event ID No. in the figure# Trace acquisition points Level

0x8C2E 7 java.sql.Connection.prepareCall(Stri
ng sql)

When the
processing starts

B

0x8C2F 8 When the
processing ends

B

0x8C30 7 java.sql.Connection.prepareCall(Stri
ng sql, int resultSetType, int
resultSetConcurrency)

When the
processing starts

B

0x8C31 8 When the
processing ends

B

0x8C32 7 java.sql.Connection.prepareCall(Stri
ng sql, int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

When the
processing starts

B

0x8C33 8 When the
processing ends

B

0x8C34 7 java.sql.Connection.prepareStatemen
t(String sql)

When the
processing starts

B

0x8C35 8 When the
processing ends

B

0x8C36 7 java.sql.Connection.prepareStatemen
t(String sql, int autoGeneratedKeys)

When the
processing starts

B

0x8C37 8 When the
processing ends

B

0x8C38 7 java.sql.Connection.prepareStatemen
t(String sql, int[] columnIndexes)

When the
processing starts

B

0x8C39 8 When the
processing ends

B

0x8C3A 7 java.sql.Connection.prepareStatemen
t(String sql, int resultSetType, int
resultSetConcurrency)

When the
processing starts

B

0x8C3B 8 When the
processing ends

B

0x8C3C 7 java.sql.Connection.prepareStatemen
t(String sql, int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

When the
processing starts

B

0x8C3D 8 When the
processing ends

B

0x8C3E 7 java.sql.Connection.prepareStatemen
t(String sql, String[] columnNames)

When the
processing starts

B

0x8C3F 8 When the
processing ends

B

Legend:
A: Standard
B: Advanced

Note: Event ID of DB Connector is not output, if you are using SQL Server 2005.

#
Corresponds to the numbers in Figure 8-45.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 451

Table 8‒75: Details of trace collection points in a DB Connector and JCA container (when a method
of the java.sql.Statement interface is executed) 2

Event ID No. in the figure# Trace acquisition points Level

0x8C80 9 execute(String sql) When the
processing starts

B

0x8C81 10 When the
processing ends

B

0x8C82 9 execute(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8C83 10 When the
processing ends

B

0x8C84 9 execute(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8C85 10 When the
processing ends

B

0x8C86 9 execute(String sql,
String[] columnNames)

When the
processing starts

B

0x8C87 10 When the
processing ends

B

0x8C88 9 executeBatch() When the
processing starts

B

0x8C89 10 When the
processing ends

B

0x8C8A 9 executeQuery(String sql) When the
processing starts

B

0x8C8B 10 When the
processing ends

B

0x8C8C 9 executeUpdate(String sql) When the
processing starts

B

0x8C8D 10 When the
processing ends

B

0x8C8E 9 executeUpdate(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8C8F 10 When the
processing ends

B

0x8C90 9 executeUpdate(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8C91 10 When the
processing ends

B

0x8C92 9 executeUpdate(String sql,
String[] columnNames)

When the
processing starts

B

0x8C93 10 When the
processing ends

B

Legend:
B: Advanced

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 452

#
Corresponds to the numbers in Figure 8-45.

Table 8‒76: Details of trace collection points in a DB Connector and JCA container (when a method
of the java.sql.PreparedStatement interface is executed) 3

Event ID No. in the figure# Trace acquisition points Level

0x8CC0 9 execute() When the
processing starts

B

0x8CC1 10 When the
processing ends

B

0x8CC2 9 execute(String sql) When the
processing starts

B

0x8CC3 10 When the
processing ends

B

0x8CC4 9 execute(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8CC5 10 When the
processing ends

B

0x8CC6 9 execute(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8CC7 10 When the
processing ends

B

0x8CC8 9 execute(String sql,
String[] columnNames)

When the
processing starts

B

0x8CC9 10 When the
processing ends

B

0x8CCA 9 executeBatch() When the
processing starts

B

0x8CCB 10 When the
processing ends

B

0x8CCC 9 executeQuery() When the
processing starts

B

0x8CCD 10 When the
processing ends

B

0x8CCE 9 executeQuery(String sql) When the
processing starts

B

0x8CCF 10 When the
processing ends

B

0x8CD0 9 executeUpdate() When the
processing starts

B

0x8CD1 10 When the
processing ends

B

0x8CD2 9 executeUpdate(String sql) When the
processing starts

B

0x8CD3 10 When the
processing ends

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 453

Event ID No. in the figure# Trace acquisition points Level

0x8CD4 9 executeUpdate(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8CD5 10 When the
processing ends

B

0x8CD6 9 executeUpdate(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8CD7 10 When the
processing ends

B

0x8CD8 9 executeUpdate(String sql,
String[] columnNames)

When the
processing starts

B

0x8CD9 10 When the
processing ends

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-45.

Table 8‒77: Details of trace collection points in a DB Connector and JCA container (when a method
of the java.sql.CallableStatement interface is executed) 4

Event ID No. in the figure# Trace acquisition points Level

0x8D00 9 execute() When the
processing starts

B

0x8D01 10 When the
processing ends

B

0x8D02 9 execute(String sql) When the
processing starts

B

0x8D03 10 When the
processing ends

B

0x8D04 9 execute(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8D05 10 When the
processing ends

B

0x8D06 9 execute(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8D07 10 When the
processing ends

B

0x8D08 9 execute(String sql,
String[] columnNames)

When the
processing starts

B

0x8D09 10 When the
processing ends

B

0x8D0A 9 executeBatch() When the
processing starts

B

0x8D0B 10 When the
processing ends

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 454

Event ID No. in the figure# Trace acquisition points Level

0x8D0C 9 executeQuery() When the
processing starts

B

0x8D0D 10 When the
processing ends

B

0x8D0E 9 executeQuery(String sql) When the
processing starts

B

0x8D0F 10 When the
processing ends

B

0x8D10 9 executeUpdate() When the
processing starts

B

0x8D11 10 When the
processing ends

B

0x8D12 9 executeUpdate(String sql) When the
processing starts

B

0x8D13 10 When the
processing ends

B

0x8D14 9 executeUpdate(String sql,
int autoGeneratedKeys)

When the
processing starts

B

0x8D15 10 When the
processing ends

B

0x8D16 9 executeUpdate(String sql,
int[] columnIndexes)

When the
processing starts

B

0x8D17 10 When the
processing ends

B

0x8D18 9 executeUpdate(String sql,
String[] columnNames)

When the
processing starts

B

0x8D19 10 When the
processing ends

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-45.

The following figure shows the trace collection points in a DB Connector and JCA container.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 455

Figure 8‒45: Trace collection points in a DB Connector and JCA container (connection-related)

(2) Trace information that can be collected
The trace information that can be collected in a DB Connector or JCA container is described below. The details are
explained in correlation to the numbers of Figure 8-45.

• Trace information corresponding to numbers 1-6 and 11-16
The following table describes the event IDs and trace information corresponding to numbers 1-6 and 11-16.

Table 8‒78: Trace information that can be collected in a DB Connector and JCA container (when
connection-related processing is executed)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8C00 A -- -- --

0x8C02 A -- -- --

0x8C10 A -- -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 456

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

0x8C12 A -- -- --

2 0x8B00 B -- -- --

3 0x8B80 B -- -- --

4 0x8B81 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

5 0x8B01 B -- --

6 0x8C01 A Connection ID --

0x8C03 A Connection ID --

0x8C11 A Connection ID --

0x8C13 A Connection ID --

11 0x8C22 B -- -- --

0x8C24 B -- -- --

0x8C26 B -- -- --

12 0x8C23 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

0x8C25 B -- --

0x8C27 B -- --

13 0x8C20 A Connection ID -- --

14 0x8B82 B -- -- --

15 0x8B83 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

16 0x8C21 A -- --

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-45.

• Trace information corresponding to number 7
The event IDs corresponding to number 7 are as follows:
0x8C28, 0x8C2A, 0x8C2C, 0x8C2E, 0x8C30, 0x8C32, 0x8C34,
0x8C36, 0x8C38, 0x8C3A, 0x8C3C, 0x8C3E
The trace information that can be collected at these event IDs is as follows:

• PRF trace collection level
All Advanced.

• Interface name and operation name
Not output at these event IDs.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 457

• Optional
If an sql exists in the method argument, the SQL statement is displayed:

• Trace information corresponding to number 8
The event IDs corresponding to number 8 are as follows:
0x8C29, 0x8C2B, 0x8C2D, 0x8C2F, 0x8C31, 0x8C33, 0x8C35,
0x8C37, 0x8C39, 0x8C3B, 0x8C3D, 0x8C3F
The trace information that can be collected at these event IDs is as follows:

• PRF trace collection level
All Advanced.

• Interface name and operation name
Not output at these event IDs.

• Optional
At these event IDs, the entrance time is displayed when the processing is performed normally. When an exception
occurs, the entrance time and exception are displayed.

• Trace information corresponding to number 9
The event IDs corresponding to number 9 are as follows:
0x8C80, 0x8C82, 0x8C84, 0x8C86, 0x8C88, 0x8C8A, 0x8C8C, 0x8C8E, 0x8C90, 0x8C92, 0x8CC0, 0x8CC2,
0x8CC4, 0x8CC6, 0x8CC8, 0x8CCA, 0x8CCC, 0x8CCE, 0x8CD0, 0x8CD2, 0x8CD4, 0x8CD6, 0x8CD8, 0x8D00,
0x8D02, 0x8D04, 0x8D06, 0x8D08, 0x8D0A, 0x8D0C, 0x8D0E, 0x8D10, 0x8D12, 0x8D14, 0x8D16, 0x8D18
The trace information that can be collected at these event IDs is as follows:

• PRF trace collection level
All Advanced.

• Interface name and operation name
Not output at these event IDs.

• Optional
If an sql exists in the method argument, the SQL statement is displayed:

• Trace information corresponding to number 10
The event IDs corresponding to number 10 are as follows:
0x8C81, 0x8C83, 0x8C85, 0x8C87, 0x8C89, 0x8C8B, 0x8C8D, 0x8C8F, 0x8C91, 0x8C93, 0x8CC1, 0x8CC3,
0x8CC5, 0x8CC7, 0x8CC9, 0x8CCB, 0x8CCD, 0x8CCF, 0x8CD1, 0x8CD3, 0x8CD5, 0x8CD7, 0x8CD9, 0x8D01,
0x8D03, 0x8D05, 0x8D07, 0x8D09, 0x8D0B, 0x8D0D, 0x8D0F, 0x8D11, 0x8D13, 0x8D15, 0x8D17, 0x8D19
The trace information that can be collected at these event IDs is as follows:

• PRF trace collection level
All Advanced.

• Interface name and operation name
Not output at these event IDs.

• Optional
At these event IDs, the entrance time is displayed when the processing is performed normally. When an exception
occurs, the entrance time and exception are displayed.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 458

8.11.2 Trace collection points and trace information that can be collected
when a local transaction is used

This subsection describes the trace collection points and the trace information that can be collected when a local
transaction is used.

(1) Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒79: Details of trace collection points in a DB Connector and JCA container (when the
processing of a local transaction is executed)

Event ID No. in the figure# Trace acquisition points Level

0x8C60 1 When a local transaction starts When the
processing starts

B

0x8C61 2 When the
processing ends

B

0x8C62 3 When the local transaction is committed When the
processing starts

B

0x8C63 4 When the
processing ends

B

0x8C64 3 When the local transaction rolls back When the
processing starts

B

0x8C65 4 When the
processing ends

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-46.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 459

Figure 8‒46: Details of trace collection points in a DB Connector and JCA container (local
transaction-related)

(2) Trace information that can be collected
The following table describes the trace information that can be collected.

Table 8‒80: Details of trace collection points in a DB Connector and JCA container (when the
processing of a local transaction is executed)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8C60 B -- -- --

2 0x8C61 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

3 0x8C62 B -- -- --

0x8C64 B -- -- --

4 0x8C63 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

0x8C65 B -- --

Legend:
B: Advanced
--: Not applicable

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 460

#
Corresponds to the numbers in Figure 8-46.

8.11.3 Trace collection points and trace information that can be collected
when a connection association is used

This subsection describes the trace collection points and the trace information that can be collected when a connection
association is used.

(1) Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒81: Details of trace collection points in a DB Connector and JCA container (when the
processing of a connection association is executed)

Event ID No. in the figure# Trace acquisition points Level

0x8C40 1 When a logical connection is replaced with a physical connection with the
connection association functionality

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-47.

The following figure shows the trace collection points.

Figure 8‒47: Details of trace collection points in a DB Connector and JCA container (connection
association-related)

(2) Trace information that can be collected
The following table describes the trace information that can be collected.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 461

Table 8‒82: Details of trace collection points in a DB Connector and JCA container (when the
connection association processing is executed)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8C40 A Connection ID (connection
ID of the physical
connection that replaces another
connection with the connection
association functionality)

-- --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-47.

8.11.4 Trace collection points and trace information that can be collected
when the automatic connection close functionality is used

This subsection describes the trace collection points and the trace information that can be collected when the connection
closes automatically.

(1) Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒83: Details of trace collection points in a DB Connector and JCA container (when the
connection closes automatically)

Event ID No. in the figure# Trace acquisition points Level

0x8B84 1 Immediately after the invocation of the close processing by the automatic
connection close functionality

B

0x8B82 2 Immediately before the invocation of physical connection discard B

0x8B83 3 Immediately after the return of physical connection discard B

0x8B85 4 Immediately before the return of the close processing by the automatic
connection close functionality

B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-48.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 462

Figure 8‒48: Details of trace collection points in a DB Connector and JCA container (when the
connection closes automatically)

(2) Trace information that can be collected
The following table describes the trace information that can be collected.

Table 8‒84: Details of trace collection points in a DB Connector and JCA container (when the
connection closes automatically)

No. in
the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8B84 B Connection ID -- --

2 0x8B82 B -- -- --

3 0x8B83 B -- -- • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

4 0x8B85 B -- -- Entrance-time

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-48.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 463

8.11.5 Trace collection points and trace information that can be collected
in the case of linkage with the DB Connector for Cosminexus RM

This subsection describes the trace collection points and the trace information that can be collected in the case of linkage
with the DB Connector for Cosminexus RM.

In the case of the DB Connector for Cosminexus RM, a connection is established to the database by using the DB
Connector. Therefore, when the DB Connector for Cosminexus RM is used, the trace points of the DB Connector are also
collected. The items generated during the JDBC connection (such as java.sql.Statement) have the same trace collection
points as the DB Connector.

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒85: Details of trace collection points in a DB Connector and JCA container (during linkage
with the DB Connector for Cosminexus RM)

Event ID No. in the figure# Trace acquisition points Level

0x8D60 1 When a database connection is established with
javax.sql.DataSource.getConnection()
during the use of the DB Connector for
Cosminexus RM

When the
processing starts

A

0x8D61 2 When the
processing ends

A

0x8D62 1 When a database connection is established with
javax.sql.DataSource.getConnection(S
tring username, String password)
during the use of the DB Connector for Cosminexus
RM

When the
processing starts

A

0x8D63 2 When the
processing ends

A

0x8D80 5 When the database and JDBC resources
of the Connection object are released with
java.sql.Connection.close() during the
use of the DB Connector for Cosminexus RM

When the
processing starts

A

0x8D81 6 When the
processing ends

A

0x8D82 3 Connection.createStatement() during the
use of the DB Connector for Cosminexus RM

When the
processing starts

B

0x8D83 4 When the
processing ends

B

0x8D84 3 Connection.createStatement(int
resultSetType, int
resultSetConcurrency) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D85 4 When the
processing ends

B

0x8D86 3 Connection.createStatement(int
resultSetType, int
resultSetConcurrency, int
resultSetHoldability) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D87 4 When the
processing ends

B

0x8D88 3 Connection.prepareCall(String sql)
during the use of the DB Connector for
Cosminexus RM

When the
processing starts

B

0x8D89 4 When the
processing ends

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 464

Event ID No. in the figure# Trace acquisition points Level

0x8D8A 3 (String sql, int resultSetType, int
resultSetConcurrency) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D8B 4 When the
processing ends

B

0x8D8C 3 Connection.prepareCall(String sql,
int resultSetType, int
resultSetConcurrency, int
resultSetHoldability) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D8D 4 When the
processing ends

B

0x8D8E 3 Connection.prepareStatement(String
sql) during the use of the DB Connector for
Cosminexus RM

When the
processing starts

B

0x8D8F 4 When the
processing ends

B

0x8D90 3 Connection.prepareStatement(String
sql, int autoGeneratedKeys) during the
use of the DB Connector for Cosminexus RM

When the
processing starts

B

0x8D91 4 When the
processing ends

B

0x8D92 3 Connection.prepareStatement(String
sql, int[] columnIndexes) during the use
of the DB Connector for Cosminexus RM

When the
processing starts

B

0x8D93 4 When the
processing ends

B

0x8D94 3 Connection.prepareStatement(String
sql, int resultSetType, int
resultSetConcurrency) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D95 4 When the
processing ends

B

0x8D96 3 Connection.prepareStatement(String
sql, int resultSetType,
int resultSetConcurrency, int
resultSetHoldability) during the use of the
DB Connector for Cosminexus RM

When the
processing starts

B

0x8D97 4 When the
processing ends

B

0x8D98 3 Connection.prepareStatement(String
sql, String[] columnNames) during the use
of the DB Connector for Cosminexus RM

When the
processing starts

B

0x8D99 4 When the
processing ends

B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-49.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 465

Figure 8‒49: Details of trace collection points in a DB Connector and JCA container (during linkage
with the DB Connector for Cosminexus RM)

(2) Trace information that can be collected
The following table describes the trace information that can be collected.

Table 8‒86: Details of trace collection points in a DB Connector and JCA container (during linkage
with the DB Connector for Cosminexus RM)

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8D60 A -- -- --

2 0x8D61 A Connection ID -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

1 0x8D62 A -- -- --

2 0x8D63 A Connection ID -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

5 0x8D80 A Connection ID -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 466

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

6 0x8D81 A -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D82 B -- -- --

4 0x8D83 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D84 B -- -- --

4 0x8D85 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D86 B -- -- --

4 0x8D87 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D88 B -- -- SQL statement

4 0x8D89 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D8A B -- -- SQL statement

4 0x8D8B B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D8C B -- -- SQL statement

4 0x8D8D B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D8E B -- -- SQL statement

4 0x8D8F B -- -- • When normal:
Entrance-time

• For an exception:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 467

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Entrance-time
exception-name

3 0x8D90 B -- -- SQL statement

4 0x8D91 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D92 B -- -- SQL statement

4 0x8D93 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D94 B -- -- SQL statement

4 0x8D95 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D96 B -- -- SQL statement

4 0x8D97 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

3 0x8D98 B -- -- SQL statement

4 0x8D99 B -- -- • When normal:
Entrance-time

• For an exception:
Entrance-time
exception-name

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-49.

8.11.6 Trace collection points and trace information that can be collected
when work management is used

This subsection describes the trace collection points and the trace information that can be collected when work
management is used in a resource adapter conforming to Connector1.5.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 468

Note that if you are using a resource adapter other than the product resource adapter, new numbers will be allotted to the
root AP information when 0x8B86 is output. If the <resourceadapter>-<resourceadapter-class> value
of DD (ra.xml) starts with "com.hitachi" or "com.cosminexus", the resource adapter will be considered as a product
resource adapter.

The root AP information set at the entrance of MDB container is treated as the root AP information of Work, if you invoke
Message-driven Bean from Work. Individual Message-driven Bean processing is distinguished by the thread ID.

(1) Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒87: Details of trace collection points in a DB Connector and JCA container (when work
management is used)

Event ID No. in the figure# Trace acquisition points Level

0x8B86 1 Immediately after invoking a method
of javax.resource.spi.work.WorkManager

A

0x8B87 6, 9, 14 Immediately before the return of the method
of javax.resource.spi.work.WorkManager

A

0x8B88 2, 4, 7, 12 Immediately before invoking a method
of javax.resource.spi.work.WorkListener

B

0x8B89 3, 5, 8, 13 Immediately after the return of the method
of javax.resource.spi.work.WorkListener

B

0x8B8A 10 Immediately before invoking a method
of javax.resource.spi.work.Work

A

0x8B8B 11 Immediately after the return of the method
of javax.resource.spi.work.Work

A

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-50 through Figure 8-52.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 469

Figure 8‒50: Details of trace collection points in a DB Connector and JCA container (when
scheduleWork() is invoked)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 470

Figure 8‒51: Details of trace collection points in a DB Connector and JCA container (when
startWork() is invoked)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 471

Figure 8‒52: Details of trace collection points in a DB Connector and JCA container (when doWork()
is invoked)

(2) Trace information that can be collected
The following table describes the trace information that can be collected.

Table 8‒88: Details of trace collection points in a DB Connector and JCA container (when work
management is used)

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8B86 A Work class name Method name Display name of the
resource adapter

2 0x8B88 B Work class name Method name Display name of the
resource adapter#2

3 0x8B89 B Work class name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 472

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

4 0x8B88 B Work class name Method name Display name of the
resource adapter#2

5 0x8B89 B Work class name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

6 0x8B87 A Work class name Method name

7 0x8B88 B Work class name Method name Display name of the
resource adapter#2

8 0x8B89 B Work class name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

9 0x8B87 A Work class name Method name

10 0x8B8A A Work class name Method name Display name of the
resource adapter#2

11 0x8B8B A Work class name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

12 0x8B88 B Work class name Method name Display name of the
resource adapter#2

13 0x8B89 B Work class name Method name • When normal:
Entrance-time

• For an
exception:
Entrance-time
exception-name

14 0x8B87 A Work class name Method name

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers from Figure 8-50 to Figure 8-52.

#2
In the case of a resource adapter included in the application, application-name: display-name-of-resource-adapter is displayed.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 473

8.12 Trace collection points of an RMI

This section describes the trace collection points of an RMI, and the trace information that can be collected.

8.12.1 Trace get point and the PRF trace get level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒89: Details of trace collection points in an RMI

Event ID No. in the figure# Trace acquisition points Level

0x8E01 1 When the process for sending a request with the stub starts A

0x8E02 6 When the process for receiving a response with the stub is complete A

0x8E03 2 During the processing for sending the request at the client side A

0x8E04 5 During the processing for receiving the response at the client side A

0x8E05 3 During the processing for receiving the request at the server side A

0x8E06 4 During the processing for sending the response at the server side A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-53.

The following figure shows the trace collection points in an RMI.

Figure 8‒53: Trace collection points of an RMI

8.12.2 Trace information that can be collected
The following table describes the trace information that can be collected in an RMI.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 474

Table 8‒90: Trace information that can be collected in an RMI

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8E01 A Interface name Operation name --

2 0x8E03 A -- -- --

3 0x8E05 A -- -- --

4 0x8E06 A -- -- --

5 0x8E04 A -- -- --

6 0x8E02 A Interface name#2 Operation name#2 --#2

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 8-53.

#2
When an exception occurs, the interface name and operation name are not displayed. Furthermore, the exception that has occurred is displayed
in the option.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 475

8.13 Trace collection points of an OTS

This section describes the trace collection points of an OTS, and also the trace information that can be collected.

8.13.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒91: Details of trace collection points in an OTS

Event ID No. in the figure# Trace acquisition points Level

0x9400 1 Immediately after a transaction is generated A

0x9401 2 Immediately after the transaction status transits to MarkedRollback A

0x9402 3 Immediately after the transaction status transits to Rollingback A

0x9403 12 Immediately after the transaction concludes A

0x9404 4 Immediately before the conclusion processing
to javax.transaction.xa.XAResource

B

0x9405 5 Immediately after the conclusion processing
to javax.transaction.xa.XAResource

B

0x9406 6 Immediately before the conclusion processing to a subordinate transaction B

0x9407 9 Immediately after the conclusion processing to a subordinate transaction B

0x9408 7 Immediately after receiving a request for conclusion processing from a
superior transaction

B

0x9409 8 Immediately before replying to the request for conclusion processing from the
superior transaction

B

0x9410 13 Immediately before acquiring the
javax.transaction.xa.XAResource object

B

0x9411 14 Immediately after acquiring the
javax.transaction.xa.XAResource object

B

0x9412 10 Immediately before writing into or reading from the status file B

0x9413 11 Immediately after writing into or reading from the status file B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers from Figure 8-54 to Figure 8-59.

The following figure shows the trace collection points in an OTS.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 476

Figure 8‒54: Trace collection points from the generation of a transaction until its conclusion

Figure 8‒55: Trace collection points related to reading or writing into the status file during the in-
process OTS initialization

Figure 8‒56: Trace collection points during the recovery process of javax.transaction.xa.Xid

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 477

Figure 8‒57: Trace collection points in a typical one-phase commit model

Figure 8‒58: Trace collection points in a typical two-phase commit model

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 478

Figure 8‒59: PRF acquisition information during transaction linkage with OpenTP1

8.13.2 Trace information that can be collected
The following table describes the trace information that can be collected in an OTS. Note that when more than one
instance of information is described for a single item as different points, it implies that any one of those is output.

Table 8‒92: Trace information that can be collected in an OTS

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x9400 A global transaction • | created
Generated upon receiving an
instruction for starting a transaction.

• | recreated

Global-
transaction-ID

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 479

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

Generated upon receiving
an instruction from another
node for participating in a
transaction processing.

• | recovered
Recovered from the status file.

• | recovered(orphan)
Xid was recovered from
javax.transaction.xa.XAR
esource, but because no
corresponding transaction existed, a
new transaction was generated.

2 0x9401 A global transaction | marked rollback(reason-for-
transition#2)

Global-
transaction-ID

3 0x9402 A global transaction | rolling back(reason-for-
transition#3)

Global-
transaction-ID

12 0x9403 A global transaction • | committed
Committed.

• | rolled back
Rolled back.

• | heuristic commit
Committed forcibly.

• | heuristic rollback
Rolled back forcibly.

• | heuristic mixed
Committed and rolled back partially.

• | heuristic hazard
Not clear if committed or
rolled back.

• | unknown
Unknown if committed or
rolled back.

• | invalid status
Concluded with a status other than
those described above.

Global-
transaction-ID

4 0x9404 B • XAResource-identifier
• None

• > prepare
Prepare is issued.

• > commit(second phase)
Second-phase commit is issued.

• > commit(one phase)
First-phase commit is issued.

• > rollback
Rollback is issued.

• > forget
Forget is issued.

• > recover
recover is issued.

• Global-
transaction-ID

• None

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 480

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

5 0x9405 B • XAResource-identifier
• None

In the case of normal return
• < prepare
• < commit(second phase)
• < commit(one phase)
• < rollback
• < forget
• < recover

In the case of abnormal return (when an
unexpected value is returned, or when an
exception occurs)
• <!prepare
• <!commit(second phase)
• <!commit(one phase)
• <!rollback
• <!forget
• <!recover

• Global-
transaction-
ID:result#4

• None

6 0x9406 B resource • > prepare
Prepare is issued.

• > commit(second phase)
Second-phase commit is issued.

• > commit(one phase)
First-phase commit is issued.

• > rollback
Rollback is issued.

• > forget
Forget is issued.

Global-
transaction-ID

9 0x9407 B resource In the case of normal return
• < prepare
• < commit(second phase)
• < commit(one phase)
• < rollback
• < forget

In the case of abnormal return (when an
unexpected value is returned, or when an
exception occurs)
• <!prepare
• <!commit(second phase)
• <!commit(one phase)
• <!rollback
• <!forget

• Global-
transaction-ID

• Global-
transaction-
ID:result#5

7 0x9408 B subordinate transaction • > prepare
A prepare instruction is received.

• > commit(second phase)
A second-phase commit instruction
is received.

• > commit(one phase)
A first-phase commit instruction
is received.

Global-
transaction-ID

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 481

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

• > rollback
A rollback instruction is received.

• > forget
A forget instruction is received.

8 0x9409 B subordinate transaction In the case of normal return
• < prepare
• < commit(second phase)
• < commit(one phase)
• < rollback
• < forget

In the case of abnormal return (when an
unexpected value is returned, or when an
exception occurs)
• <!prepare
• <!commit(second phase)
• <!commit(one phase)
• <!rollback
• <!forget

• Global-
transaction-ID

• Global-
transaction-
ID:result#6

13 0x9410 B • None
• XAResource-identifier

> get xaresource • None
• Global-

transaction-ID

14 0x9411 B • None
• XAResource-identifier

In the case of normal return
• < get xaresource

In the case of abnormal return (when an
unexpected value is returned, or when an
exception occurs)
• <!get xaresource

• None
• result#7

• Global-
transaction-ID

• Global-
transaction-
ID:result#7

10 0x9412 B • Status-file-name
• Status-file-name:entry-

number#8

• > write(contents-to-be-
written#9)

• > read(contents-to-be-read#10)

• None
• Global-

transaction-ID

11 0x9413 B • Status-file-name
• Status-file-name:entry-

number#8

In the case of normal return
• < write
• < read

In the case of abnormal return (when an
unexpected value is returned, or when an
exception occurs)
• <!write
• <!read

• None
• result#11

• Global-
transaction-ID

• Global-
transaction-
ID:result#11

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers from Figure 8-54 to Figure 8-59.

#2
Any one of the following is output as the reason for transition:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 482

• operation
The instruction is received from outside the in-process OTS.

• server call
An attempt to send a call to a server in another node has failed.

• superior
An instruction for participating in the transaction processing was received from another node, but that transaction
was already in the MarkedRollback status.

• sync before
The callback processing to a JTA for which the conclusion processing is in progress has failed.

#3
Any one of the following is output as the reason for transition:

• operation
The instruction is received from outside the in-process OTS.

• timeout
The global transaction has timed out.

• superior
The instruction is received from a superior transaction or the cjrollbacktrn command.

• forgotten
It is determined that the transaction that outputs the conclusion instruction to the subordinate transaction, or
javax.transaction.xa.XAResource does not exist.

• end
An attempt to execute end for javax.transaction.xa.XAResource has failed.

• prepare
An attempt to execute prepare for javax.transaction.xa.XAResource has failed.

• write prepared
An attempt to write prepared in the status file has failed.

• write committing
An attempt to write committing in the status file has failed.

#4
Any of the following is output as the result in the case of prepare, commit, rollback, or forget
• Return value

• Error code of the XAException

• toString() of the exception (an exception other than the XAException)

Any of the following is output as the result in the case of recover:

• Number of recovered Xids

• Null (when the Xid array itself is null)

• Error code of the XAException

• toString() of the exception (an exception other than the XAException)

#5
Any of the following is output as the result in the case of prepare:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 483

• Returned value

• toString() of the exception

In cases other than prepare, toString() of the exception is output as the result.

#6
Any of the following is output as the result in the case of prepare:

• Value to be returned

• toString() of the exception

In cases other than prepare, toString() of the exception is output as the result.

#7
Any of the following is output as the result:

• toString() of the exception

• Null (when the return value is null)

#8
This is the internal information.

#9
Any of the following are output as the contents to be written:

• management info
Status file management information

• status file body
Status file body

• prepared
Prepared status

• committing
Commit determined status

• heuristic commit
Forced commit status

• heuristic rollback
Forced rollback status

• heuristic mixed
Partially committed and rolled back status

• heuristic hazard
Unclear committed or rolled status

• forgotten
Transaction conclusion complete status

#10
Any of the following are output as the contents to be read:

• management info
Status file management information

• status file body
Status file body

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 484

#11
Any of the following is output as the result:

• Writing size (unit: bytes)

• Reading size (unit: bytes)

• toString() of the exception

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 485

8.14 Trace collection points of standard output, standard error output,
and user log

This subsection describes the trace collection points of the standard output, standard error output, and user log, and also
describes the trace information that can be collected.

8.14.1 Trace collection points of standard output or standard error output

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒93: Details of trace collection points in the case of standard output or standard error output

Event ID No. in the figure# Trace acquisition points Level

0x9C00 1 When the output to standard output or standard error output starts B

0x9C01 2 When the output to standard output or standard error output is complete B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-60.

The following figure shows the trace collection points in the case of standard output or standard error output.

Figure 8‒60: Trace collection points of standard output or standard error output

(2) Trace information that can be collected
The following table describes the trace information that can be collected in the case of standard output or standard
error output.

Table 8‒94: Trace information that can be collected in the case of standard output or standard error
output

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x9C00 B Stream name (out or err) -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 486

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

2 0x9C01 B Stream name (out or err) -- --

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-60.

8.14.2 Trace collection points of the user log

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒95: Details of trace collection points of the user log

Event ID No. in the figure# Trace acquisition points Level

0x9C02 1 When message output using the user log starts B

0x9C03 2 When message output using the user log is complete B

Legend:
B: Advanced

#
Corresponds to the numbers in Figure 8-61.

The following figure shows the trace collection points of the user log.

Figure 8‒61: Trace collection points of the user log

(2) Trace information that can be collected
The following table describes the trace information that can be collected in the user log.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 487

Table 8‒96: Trace information that can be collected in the user log

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x9C02 B Application distinguished name Message ID --

2 0x9C03 B Application distinguished name Message ID --

Legend:
B: Advanced
--: Not applicable

#
Corresponds to the numbers in Figure 8-61.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 488

8.15 Trace collection points of a DI

This section describes the trace collection points of a DI, and the trace information that can be collected.

8.15.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒97: Details of trace collection points in a DI

Event ID No. in the figure# Trace acquisition points Level

0x9D00 1 Immediately before injecting the dependency A

0x9D01 2 Immediately after injecting the dependency A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-62.

The following figure shows the trace collection points in a DI.

Figure 8‒62: Trace collection points of a DI

8.15.2 Trace information that can be collected
The following table describes the trace information that can be collected in a DI.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 489

Table 8‒98: Trace information that can be collected in a DI

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x9D00 A Target name of the destination
where dependency is to
be injected

Reference name to be injected --

2 0x9D01 A Target name of the destination
where dependency is injected

Injected reference name #2

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 8-62.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 490

8.16 Trace collection points of the batch application execution
functionality

This section describes the trace collection points of the batch application execution functionality, and the trace
information that can be collected.

8.16.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒99: Details of trace collection points in the batch application execution functionality

Event ID Number in the
figure#1

Trace acquisition point Level

0x8E05 1#2 Just after receiving the batch application execution request A

0xA100 2 Immediately before the execution of the batch application A

0xA101 3 Immediately after the termination of the batch application A

0x8E06 4#2 Immediately before sending the termination results of the batch application A

Legend:
A: Standard

#1
Corresponds to the numbers in Figure 8-63.

#2
The trace is only collected when the scheduling function is used.

The following figure shows the trace collection points in the batch application execution functionality.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 491

Figure 8‒63: Trace collection points in the batch application execution functionality

8.16.2 Trace information that can be collected
The following table describes the trace information that can be collected in the batch application execution functionality.

Table 8‒100: Trace information that can be collected in the batch application execution functionality

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0x8E05 A -- -- --

2 0xA100 A Class name of the batch
application (including the
package name)

-- --

3 0xA101 A Class name of the batch
application (including the
package name)

-- #2

4 0x8E06 A -- -- --

Legend:
A: Standard
--: Not applicable

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 492

#1
Corresponds to the numbers in Figure 8-63.

#2
When the processing is performed normally, the entrance time is displayed.
When an exception occurs, the entrance time and exception are displayed.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 493

8.17 Trace collection points of the TP1 inbound integrated function

This section describes the trace collection points of the TP1 inbound integrated function and the trace information that
can be collected.

8.17.1 Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels:

(1) Details of trace collection points of the TP1 inbound integrated
function

The following table describes the details of trace collection points of the TP1 inbound integrated function.

Table 8‒101: Details of trace collection points of the TP1 inbound integrated function

Event ID Number in the
figure#

Trace collection point Level

0x842F 19 Immediately after invoking the message listener method of Message-driven
Bean from the resource adapter

A

0x8430 22 Immediately before the message listener method of Message-driven Bean that
is invoked from the resource adapter returns

A

0x8431 20 Immediately before the EJB container calls back the message listener method
of Message-driven Bean

A

0x8432 21 Immediately after returning from the callback of the message listener method
of Message-driven Bean

A

0x8825 17 Immediately before the completion of recreate process of the transaction B

0x8826 18 Immediately after the completion of recreate process of the transaction B

0x8B86 14 Immediately after invoking the method
of javax.resource.spi.work.WorkManager

A

0x8B87 15 Immediately before returning the method
of javax.resource.spi.work.WorkManager

A

0x8B8A 16 Immediately before invoking the method
of javax.resource.spi.work.Work

A

0x8B8B 29 Immediately after returning the method
of javax.resource.spi.work.Work

A

0x8B8C 33 Immediately after invoking
javax.resource.spi.XATerminator.prepare (Xid xid)

B

0x8B8D 34 Immediately before returning
javax.resource.spi.XATerminator.prepare (Xid xid)

B

0x8B8E -- Immediately after invoking
javax.resource.spi.XATerminator.commit (Xid xid,
boolean onePhase)

B

0x8B8F -- Immediately before returning
javax.resource.spi.XATerminator.commit (Xid xid,
boolean onePhase)

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 494

Event ID Number in the
figure#

Trace collection point Level

0x8B90 -- Immediately after invoking
javax.resource.spi.XATerminator.rollback (Xid xid)

B

0x8B91 -- Immediately before returning
javax.resource.spi.XATerminator.rollback (Xid xid)

B

0x8B92 -- Immediately after invoking
javax.resource.spi.XATerminator.forget (Xid xid)

B

0x8B93 -- Immediately before returning
javax.resource.spi.XATerminator.forget (Xid xid)

B

0xAA00 8 Immediately after the message reception starts A

0xAA01 12 Immediately after the sending of RPC response is completed A

0xAA02 4 Immediately after the reading of the message from OpenTP1 starts A

0xAA03 10 Immediately before disconnecting from OpenTP1 (when
rpc_close_after_send=Y is specified in OpenTP1 definition)

A

0xAA04 5 Immediately before invoking socket read B

0xAA05 6 Immediately after completing socket read B

0xAA06 13 Immediately before inserting the message into the schedule queue once the
message reception is completed.

A

0xAA08 23 Immediately before the sending of RPC response starts A

0xAA09 27 Immediately before disconnecting the connection for response (when
rpc_close_after_send=true is specified in TP1 inbound
adaptor property)

A

0xAA0A 25 Immediately before invoking socket write B

0xAA0B 26 Immediately after completing socket write B

0xAA0C 30 Sending has failed. Immediately before the standby for retry starts A

0xAA0D 31 Immediately before retry starts A

0xAA10 11 • Immediately after disconnecting the connection, if an invalid message
is received

• Immediately after disconnecting the connection, if reception
timeout occurs

• Immediately after reception timer monitoring thread detects reception
timeout for RPC requests and destroys the message

A

0xAA11 28 Immediately after an attempt to send the RPC response fails A

0xAA12 2 Immediately before including the connection with OpenTP1 in
reception monitoring

B

0xAA13 3 When message reception is detected in the connection with OpenTP1 B

0xAA14 32 Immediately after the completion of reception from OpenTP1 during
synchronization point processing

A

0xAA15 35 Immediately after the completion of sending to OpenTP1 during
synchronization point processing or immediately after an error occurs in
the sending process

A

0xAA16 1 Immediately after the connection with OpenTP1 is established A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 495

Event ID Number in the
figure#

Trace collection point Level

0xAA17 9 Immediately before disconnecting the connection with OpenTP1 or
immediately after disconnection from OpenTP1, since a communication
error is detected

A

0xAA18 7 Immediately after analyzing the received message B

0xAA19 24 Immediately before sending the message B

Legend:
A: Standard
B: Advanced
--: Not applicable

#
Corresponds to the numbers from Figures 8-64 to 8-70.

(2) Trace collection points of the TP1 inbound integrated function
The following figure shows the overall trace collection points in the TP1 inbound integrated function. Note that there
are detailed trace collections points for A and B parts of the figure.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 496

Figure 8‒64: Overall trace collection points in the TP1 inbound integrated function

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 497

The following two figures show the detailed trace collections points for A and B parts in the above figure.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 498

Figure 8‒65: Trace collection points of part A

#1
Nothing is output, if an exception occurs in read.

#2
This is output after message reception. For segmented mails, the output is generated for each segmented mail.
However, nothing is output for invalid messages.

#3
For processing of RPC response sending (PRF trace collection points other than 0xAA01), see Figure 8-66.

In addition to Figure 8-65, the PRF trace collection point for RPC reception is 0xAA10 that is output immediately after
the reception timer monitoring thread detects a reception timeout for RPC requests and destroys the message.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 499

Figure 8‒66: Trace collection points of part B

For the PRF trace output point of response sending in Figure 8-66, the trace is not only output during RPC
communication, but also when J2EE applications stop. The root application information at this time is not the root
application information inherited from OpenTP1, but the root application information generated by the J2EE server.
Therefore, use the root application information, output to the interface name of 0xAA08 when the J2EE applications
stop, to associate the PRF trace output points for stopping J2EE applications and the other PRF trace output points for
RPC communication.

(3) Trace point collection in synchronous point processing
The following figure describes the trace collection points in the synchronous point processing. Note that points A and
B in the figure have further detailed trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 500

Figure 8‒67: Overview of the trace collection points in the synchronous point processing

#1
When the processing request is passed on to XATerminator, different Event IDs are output for each method. The
following table describes the mapping between each method and its Event ID.

Table 8‒102: Method and Event ID mapping

Method Event ID Number used in the figure

prepare method 0x8B8C 33

commit method 0x8B8E --

rollback method 0x8B90 --

forget method 0x8B92 --

Legend:
--: Not used in the figure

#2
For OTS output points, see 8.13 Trace collection points of an OTS.

#3
When the processing request is passed on from XATerminator to the synchronous point mail sending thread, different
Event IDs are output for each method. The following table describes the mapping between each method and its
Event ID.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 501

Table 8‒103: Method and Event ID mapping

Method Event ID Number used in the figure

prepare method 0x8B8D 34

commit method 0x8B8F --

rollback method 0x8B91 --

forget method 0x8B93 --

Legend:
--: Not used in the figure

For the detailed trace collection points of A and B in the figure, see the following 2 figures.

Figure 8‒68: Trace collection point of the A part in the synchronous point processing

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 502

#1
Nothing is output, if read throws an exception.

#2
Outputs after receiving the mail. For segmented mails, output is generated for each segmented mail. However,
nothing is output, for invalid mails.

Figure 8‒69: Trace collection point of the B part in the synchronous point processing

The following figure shows the trace collection points for the connection count adjustment thread.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 503

Figure 8‒70: Trace collection points for the connection count adjustment thread

8.17.2 Trace information that can be collected
The following table describes the trace information that can be collected for the TP1 inbound integrated function.

Table 8‒104: Trace information that can be collected for the TP1 inbound integrated function

Number
in the
figure#1

Event ID Level Information that can be collected

Interface name Operation name Option

1 0xAA16 A IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

2 0xAA12 B IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

3 0xAA13 B IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

4 0xAA02 A IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

5 0xAA04 B Request size -- --

6 0xAA05 B Read size -- --

7 0xAA18 B IP address of OpenTP1: listen port
number of OpenTP1#2

Message type Listen port number
of TP1 inbound
adapter side

8 0xAA00 A Service group name Service name Node identifier of
OpenTP1 that
invokes the

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 504

Number
in the
figure#1

Event ID Level Information that can be collected

Interface name Operation name Option

service#3,
transaction global
identifier (for
transactional RPC)

9 0xAA17 A IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

10 0xAA03 A IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

11 0xAA10 A Service group name#4 Service name #5 Entrance time

12 0xAA01 A Service group name Service name When successful:
Entrance time
In the case of an
error: Entrance time
and error response
code

13 0xAA06 A Service group name Service name Node identifier of
OpenTP1 that
invokes the
service#3 , number
of messages in the
queue

14 0x8B86 A Work class name Method name Resource adapter
display name

15 0x8B87 A Work class name Method name When normal:
Entrance time
In the case of an
error: Entrance time
and exception

16 0x8B8A A Work class name Method name Resource adapter
display name

17 0x8825 B -- -- Global transaction
ID of OpenTP1
(byte column)

18 0x8826 B -- -- When normal:
Entrance time
For an error:
Entrance time and
exception

19 0x842F A Bean name Method name --

20 0x8431 A Bean name Method name --

21 0x8432 A Bean name Method name When normal:
Entrance time
For an error:
Entrance time and
exception

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 505

Number
in the
figure#1

Event ID Level Information that can be collected

Interface name Operation name Option

22 0x8430 A Bean name Method name When normal:
Entrance time
In the case of an
error: Entrance time
and exception

23 0xAA08 A Root application information#6 -- --

24 0xAA19 B IP address of OpenTP1: listen port
number of OpenTP1#2

Message type Listen port number
of TP1 inbound
adapter side

25 0xAA0A B Writing size -- --

26 0xAA0B B Written size -- --

27 0xAA09 A IP address of OpenTP1: listen port
number of OpenTP1#2

-- Listen port number
of TP1 inbound
adapter side

28 0xAA11 A Service group name Service name Entrance time

29 0x8B8B A Work class name Method name When normal:
Entrance time
For an error:
Entrance time and
exception

30 0xAA0C A -- -- --

31 0xAA0D A -- -- --

32 0xAA14 A Node identifier of OpenTP1 Output one of the following
• prepare
• commit
• rollback

Transaction global
identifier

33 0x8B8C B -- -- Global transaction
ID of xid argument
of XATerminator
(byte column)

34 0x8B8D B -- -- When normal:
Entrance time
For an error:
Entrance time and
exception

35 0xAA15 A -- In normal cases output one of
the following:#7

• prepared
• read only
• committed
• rolled back

No output in the case of an error.

Entrance time

-- 0x8B8E B -- -- Global transaction
ID of xid argument
of XATerminator
(byte column)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 506

Number
in the
figure#1

Event ID Level Information that can be collected

Interface name Operation name Option

-- 0x8B8F B -- -- When normal:
Entrance time
For an error:
Entrance time and
exception

-- 0x8B90 B -- -- Global transaction
ID of xid argument
of XATerminator
(byte column)

-- 0x8B91 B -- -- When normal:
Entrance time
For an error:
Entrance time and
exception

-- 0x8B92 B -- -- Global transaction
ID of xid argument
of XATerminator
(byte column)

-- 0x8B93 B -- -- When normal:
Entrance time
For an error:
Entrance time and
exception

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers from Figures 8-64 to 8-70.

#2
If the listen port of OpenTP1 cannot be determined, "IP address of OpenTP1: --" is output.

#3
If the PRF information is inherited from OpenTP1 that invokes the service, "root RPC node identifier" is output. If the information is not
inherited, "invocation source node ID" is output.

#4
If the service group name output in the interface name cannot be determined, "--" is output.

#5
If the service name output in the operation name cannot be determined, "--" is output.

#6
Outputs only when the J2EE applications stop. The following contents are output:

 If the PRF information is inherited from OpenTP1 that invokes the service, the root application information inherited from OpenTP1 is output.
 If the PRF information is not inherited from OpenTP1 that invokes the service, the root application information numbered by the TP1 inbound

adapter is output.

#7
These are output in the following respective conditions:

 prepared: When prepare is completed
 read only: When the result of prepare is read only (such as when access to the resouce is by reference) or when the transaction setting of

Message-driven Bean (service) that is executed is CMT NotSupported or BMT
 committed: When commit is completed
 rolled back: When rollback is completed. This includes the cases when the result of prepare and commit is treated as rollback.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 507

8.18 Trace collection points of Cosminexus JMS Provider

This section describes the trace collection points of Cosminexus JMS Provider and the trace information that can
be collected.

8.18.1 Trace collection points of the JMS ConnectionFactory interface and
the trace information that can be collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒105: Details of the trace collection points in the JMS ConnectionFactory interface

Event ID Number in the
figure#

Trace collection point Level

0xA600 1 When the processing of
ConnectionFactory.createConnection() starts

A

0xA601 4 When the processing of
ConnectionFactory.createConnection() ends

A

0xA602 1 When the processing of
ConnectionFactory.createConnection(uname,pwd) starts

A

0xA603 4 When the processing of
ConnectionFactory.createConnection(uname,pwd) ends

A

0xA604 1 When the processing of
QueueConnectionFactory.createQueueConnection()starts

A

0xA605 4 When the processing of
QueueConnectionFactory.createQueueConnection()ends

A

0xA606 1 When the processing of
QueueConnectionFactory.createQueueConnection(uname
,pwd) starts

A

0xA607 4 When the processing of
QueueConnectionFactory.createQueueConnection(uname
,pwd) ends

A

0xA608 1 When the processing of
TopicConnectionFactory.createTopicConnection() starts

A

0xA609 4 When the processing of
TopicConnectionFactory.createTopicConnection() ends

A

0xA60A 1 When the processing of
TopicConnectionFactory.createTopicConnection(uname
,pwd) starts

A

0xA60B 4 When the processing of
TopicConnectionFactory.createTopicConnection(uname
,pwd) ends

A

0xA60C 2 When the processing of
ManagedConnectionFactory.matchManagedConnections()
starts

B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 508

Event ID Number in the
figure#

Trace collection point Level

0xA60D 3 When the processing of
ManagedConnectionFactory.matchManagedConnections()
ends

B

Legend:
A: Standard
B: Advanced

#
Corresponds to the numbers in Figure 8-71.

The following figure shows the trace collection points of the JMS ConnectionFactory interface.

Figure 8‒71: Trace collection points in JMS ConnectionFactory interface

(2) Trace information that can be collected
Trace information (interface name, operation name, and option) cannot be collected for the JMS
ConnectionFactory interface.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 509

8.18.2 Trace collection points of the JMS Connection interface and the
trace information that can be collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒106: Details of the trace collection points in JMS Connection interface

Event ID Number in the
figure#

Trace collection point Level

0xA60E 1 When the processing of
Connection.createSession(transacted,acknowledgeMod
e) starts

A

0xA60F 4 When the processing of
Connection.createSession(transacted,acknowledgeMod
e) ends

A

0xA610 1 When the processing of
QueueConnection.createQueueSession(transacted,ackn
owledgeMode) starts

A

0xA611 4 When the processing of
QueueConnection.createQueueSession(transacted,ackn
owledgeMode) ends

A

0xA612 1 When the processing of
TopicConnection.createTopicSession(transacted,ackn
owledgeMode) starts

A

0xA613 4 When the processing of
TopicConnection.createTopicSession(transacted,ackn
owledgeMode) ends

A

0xA614 5 When the processing of Connection.close() starts A

0xA615 8 When the processing of Connection.close() ends A

0xA616 2 Invocation by CJMSP Broker immediately before creating the session A

0xA617 3 Invocation by CJMSP Broker just after creating the session A

0xA618 6 Invocation by CJMSP Broker immediately before disconnection A

0xA619 7 Invocation by CJMSP Broker just after disconnection A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-72.

The following figure shows the trace collection points of the JMS Connection interface.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 510

Figure 8‒72: Trace collection points of the JMS Connection interface

(2) Trace information that can be collected
The following table describes the trace information that can be collected for the JMS Connection interface.

Table 8‒107: Trace information that can be collected for the JMS Connection interface

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

1 0xA60E A Transaction Ack mode --

0xA610 A

0xA612 A

2 0xA616 A -- -- --

3 0xA617 A -- -- --

4 0xA60F A -- -- --

0xA611 A

0xA613 A

5 0xA614 A -- -- --

6 0xA618 A -- -- --

7 0xA619 A -- -- --

8 0xA615 A -- -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 511

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-72.

Important note

The event IDs 0xA618 and 0xA619 are also output when the Message-driven Bean applications are not running.

Reference note

The Acknowledgement mode is output using a numerical value. The numerical value is mapped to the types of
Acknowledgement modes. The mapping is as follows:

• AUTO_ACKNOWLEDGE = 1

• CLIENT_ACKNOWLEDGE = 2

• DUPS_OK_ACKNOWLEDGE = 3

• SESSION_TRANSACTED = 0

The numerical values of the respective modes are defined in the JMS specifications.

8.18.3 Trace collection points of the JMS session interface and the trace
information that can be collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒108: Details of trace collection points in the JMS session interface

Event ID Number in the
figure#

Trace collection point Level

0xA61E 5 When the processing of Session.createSubscriber(topic) starts A

0xA61F 8 When the processing of Session.createSubscriber(topic) ends A

0xA620 1 When the processing of Session.createBrowser(queue) starts A

0xA621 4 When the processing of Session.createBrowser(queue) ends A

0xA622 1 When the processing of
Session.createBrowser(queue,selector) starts

A

0xA623 4 When the processing of
Session.createBrowser(queue,selector) ends

A

0xA624 5 When the processing of
Session.createSubscriber(topic,selector,noLocal)
starts

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 512

Event ID Number in the
figure#

Trace collection point Level

0xA625 8 When the processing of
Session.createSubscriber(topic,selector,noLocal)
ends

A

0xA626 5 When the processing of
Session.createDurableSubscriber(topic,name) starts

A

0xA627 8 When the processing of
Session.createDurableSubscriber(topic,name) ends

A

0xA628 5 When the processing of
Session.createDurableSubscriber(topic,name,selecto
r,noLocal) starts

A

0xA629 8 When the processing of
Session.createDurableSubscriber(topic,name,selecto
r,noLocal) ends

A

0xA62A 5 When the processing of
Session.createConsumer(destination) starts

A

0xA62B 8 When the processing of
Session.createConsumer(destination) ends

A

0xA62C 5 When the processing of
Session.createConsumer(destination,selector) starts

A

0xA62D 8 When the processing of
Session.createConsumer(destination,selector) ends

A

0xA62E 5 When the processing of
Session.createConsumer(destination,selector,noLoca
l) starts

A

0xA62F 8 When the processing of
Session.createConsumer(destination,selector,noLoca
l) ends

A

0xA630 5 When the processing of Session.createReceiver(queue) starts A

0xA631 8 When the processing of Session.createReceiver(queue) ends A

0xA632 5 When the processing of
Session.createReceiver(queue,selector) starts

A

0xA633 8 When the processing of
Session.createReceiver(queue,selector) ends

A

0xA634 9 When the processing of Session.createPublisher(topic) starts A

0xA635 12 When the processing of Session.createPublisher(topic) ends A

0xA636 9 When the processing of
Session.createProducer(destination) starts

A

0xA637 12 When the processing of
Session.createProducer(destination) ends

A

0xA638 9 When the processing of Session.createSender(queue) starts A

0xA639 12 When the processing of Session.createSender(queue) ends A

0xA63A 13 When the processing of Session.createQueue() starts A

0xA63B 16 When the processing of Session.createQueue() ends A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 513

Event ID Number in the
figure#

Trace collection point Level

0xA63C 13 When the processing of Session.createTopic() starts A

0xA63D 16 When the processing of Session.createTopic() ends A

0xA63E 13 When the processing of Session.createTemporaryQueue() starts A

0xA63F 16 When the processing of Session.createTemporaryQueue() ends A

0xA640 13 When the processing of Session.createTemporaryTopic() starts A

0xA641 16 When the processing of Session.createTemporaryTopic() ends A

0xA642 17 When the processing of Session.unsubscribe() starts A

0xA643 20 When the processing of Session.unsubscribe() ends A

0xA644 21 When the processing of Session.commit() starts A

0xA645 24 When the processing of Session.commit() ends A

0xA646 21 When the processing of Session.rollback() starts A

0xA647 24 When the processing of Session.rollback() ends A

0xA648 25 When the processing of Session.recover() starts A

0xA649 26 When the processing of Session.recover() ends A

0xA64A 25 When the processing of Session.close() starts A

0xA64B 26 When the processing of Session.close() ends A

0xA64C 2 Invocation by CJMSP Broker immediately before invoking destination
authentication for the browser

A

0xA64D 3 Invocation by CJMSP Broker just after invoking destination authentication
for the browser

A

0xA64E 6 Invocation by CJMSP Broker immediately before invoking consumer A

0xA64F 7 Invocation by CJMSP Broker just after invoking consumer A

0xA650 10 Invocation by CJMSP Broker immediately before invoking producer A

0xA651 11 Invocation by CJMSP Broker just after invoking producer A

0xA652 14 Invocation by CJMSP Broker immediately before invoking create destination A

0xA653 15 Invocation by CJMSP Broker just after invoking create destination A

0xA654 18 Invocation by CJMSP Broker immediately before invoking create
persistence subscriber

A

0xA655 19 Invocation by CJMSP Broker just after invoking create persistence subscriber A

0xA656 22 Invocation by CJMSP Broker immediately before invoking session commit A

0xA657 23 Invocation by CJMSP Broker just after invoking session commit A

0xA658 22 Invocation by CJMSP Broker immediately before invoking session rollback A

0xA659 23 Invocation by CJMSP Broker just after invoking session rollback A

0xA65A 22 Invocation by CJMSP Broker immediately before invoking session recovery A

0xA65B 23 Invocation by CJMSP Broker just after invoking session recovery A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 514

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-73.

Important note

• The methods corresponding to the event IDs 0xA644 and 0xA645, 0xA646 and 0x647,
Session.commit(), and Session.rollback() are not supported.

• The event IDs 0xA65A and 0xA65B are not output. The event IDs are output when XATransaction
is used.

The following figure shows the trace collection points in the JMS session interface.

Figure 8‒73: Trace collection points in the JMS session interface

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 515

Reference note

destination is created during the creation of producer or consumer. Therefore, the event IDs 0xa652 and
0xa653 might be invoked in the createProducer() and createConsumer() methods.

(2) Trace information that can be collected
The following table describes the trace information that can be collected for the JMS session interface.

Table 8‒109: Trace information that can be collected for the JMS session interface

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

1 0xA620 A Queue name -- --

0xA622 A Selector string

2 0xA64C A -- -- --

3 0xA64D A -- -- --

4 0xA621 A -- -- --

0xA623 A

5 0xA61E A Topic name -- --

0xA624 A Selector string

0xA626 A --

0xA628 A Selector string

0xA62A A Destination name --

0xA62C A Selector string

0xA62E A

0xA630 A Queue name --

0xA632 A Selector string

6 0xA64E A -- -- --

7 0xA64F A -- -- --

8 0xA61F A -- -- --

0xA625 A

0xA627 A

0xA629 A

0xA62B A

0xA62D A

0xA62F A

0xA631 A

0xA633 A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 516

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

9 0xA634 A Topic name -- --

0xA636 A Destination name -- --

0xA638 A Queue name -- --

10 0xA650 A -- -- --

11 0xA651 A -- -- --

12 0xA635 A -- -- --

0xA637 A

0xA639 A

13 0xA63A A Queue name -- --

0xA63C A Topic name -- --

0xA63E A -- -- --

0xA640 A

14 0xA652 A -- -- --

15 0xA653 A -- -- --

16 0xA63B A -- -- --

0xA63D A

0xA63F A

0xA641 A

17 0xA642 A -- -- --

18 0xA654 A -- -- --

19 0xA655 A -- -- --

20 0xA643 A -- -- --

21 0xA644 A -- -- --

0xA646 A

0xA648 A

22 0xA656 A -- -- --

0xA658 A

0xA65A A

23 0xA657 A -- -- --

0xA659 A

0xA65B A

24 0xA645 A -- -- --

0xA647 A

0xA649 A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 517

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

25 0xA64A A -- -- --

26 0xA64B A -- -- --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-73.

8.18.4 Trace collection points of the JMS messages, producer, consumer,
and queue browser and the trace information that can be collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒110: Details of the trace collection points in the JMS messages, producer, consumer, and
queue browser

Event ID Number in the
figure#

Trace collection point Level

0xA65C 1 When the processing of MessageProducer.send(msg) starts A

0xA65D 4 When the processing of MessageProducer.send(msg) ends A

0xA65E 1 When the processing of
MessageProducer.send(msg,deliveryMode,priority,tim
eToLive) starts

A

0xA65F 4 When the processing of
MessageProducer.send(msg,deliveryMode,priority,tim
eToLive) ends

A

0xA660 1 When the processing of
MessageProducer.send(destination,msg) starts

A

0xA661 4 When the processing of
MessageProducer.send(destination,msg) ends

A

0xA662 1 When the processing of
MessageProducer.send(destination,msg,deliveryMode,
priority,timeToLive) starts

A

0xA663 4 When the processing of
MessageProducer.send(destination,msg,deliveryMode,
priority,timeToLive) ends

A

0xA664 9 When the processing of MessageProducer.close() starts A

0xA665 10 When the processing of MessageProducer.close() ends A

0xA666 5 When the processing of MessageConsumer.receive() starts A

0xA667 8 When the processing of MessageConsumer.receive() ends A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 518

Event ID Number in the
figure#

Trace collection point Level

0xA61A 5 When the processing of
MessageConsumer.receive(timeout) starts

A

0xA61B 8 When the processing of
MessageConsumer.receive(timeout) ends

A

0xA668 5 When the processing of MessageConsumer.receiveNoWait() starts A

0xA669 8 When the processing of MessageConsumer.receiveNoWait() ends A

0xA66A 9 When the processing of MessageConsumer.close() starts A

0xA66B 10 When the processing of MessageConsumel.close() ends A

0xA66C 11 When the processing of QueueBrowser.getEnumeration() starts A

0xA66D 14 When the processing of QueueBrowser.getEnumeration() ends A

0xA66E 15 When the processing of Message.acknowledge() starts A

0xA66F 18 When the processing of Message.acknowledge() ends A

0xA670 2 Invocation by CJMSP Broker immediately before invoking the writing of the
JMS messages

A

0xA671 3 Invocation by CJMSP Broker just after invoking the writing of the
JMS messages

A

0xA672 6 Invocation by CJMSP Broker immediately before invoking the receiving of
the JMS messages

A

0xA673 7 Invocation by CJMSP Broker just after invoking the receiving of the
JMS messages

A

0xA674 12 Invocation by CJMSP Broker immediately before invoking the delivery of all
the JMS messages

A

0xA675 13 Invocation by CJMSP Broker just after invoking the delivery of all the
JMS messages

A

0xA676 16 Invocation by CJMSP Broker immediately before invoking the authentication
of the JMS messages

A

0xA677 17 Invocation by CJMSP Broker just after invoking the authentication of the
JMS messages

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-74.

Important note

• When Transaction is used, or when the acknowledgement mode is not set to CLIENT_ACKNOWLEDGE, and
if a message is received, the event IDs 0xA676 and 0xA677 are output.

• When a Message-driven Bean is executed, the root application information for the event IDs 0xA672 and
0xA673 becomes invalid.

The following figure shows the trace collection points in the JMS messages, producer, consumer, and queue browser.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 519

Figure 8‒74: Trace collection points of the JMS messages, producer, consumer, and queue browser

(2) Trace information that can be collected
The following table describes the trace information that can be collected for the JMS messages, producer, consumer, and
queue browser.

Table 8‒111: Trace information that can be collected for the JMS messages, producer, consumer,
and queue browser

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

1 0xA65C A Destination name -- --

0xA65E A Priority

0xA660 A --

0xA662 A Priority

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 520

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

2 0xA670 A -- -- --

3 0xA671 A -- -- --

4 0xA65D A -- -- --

0xA65F A

0xA661 A

0xA663 A

5 0xA666 A Destination name 0 --

0xA61A A Timeout

0xA668 A --

6 0xA672 A -- -- --

7 0xA673 A -- -- --

8 0xA667 A -- -- --

0xA61B A

0xA669 A

9 0xA664 A -- -- --

0xA66A A

10 0xA665 A -- -- --

0xA66B A

11 0xA66C A -- -- --

12 0xA674 A -- -- --

13 0xA675 A -- -- --

14 0xA66D A -- -- --

15 0xA66E A -- -- --

16 0xA676 A -- -- --

17 0xA677 A -- -- --

18 0xA66F A -- -- --

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-74.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 521

8.18.5 Trace collection points of CJMSP Broker when connecting to the
CJMSP resource adapter and the trace information that can be
collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒112: Details of trace collection points in CJMSP Broker when connecting to the CJMSP
resource adapter

Event ID Number in the
figure#

Trace collection points Level

0xA678 1 When the processing of ResourceAdapter.start(ctx) starts A

0xA679 4 When the processing of ResourceAdapter.start(ctx) ends A

0xA67A 5 When the processing of ResourceAdapter.stop() starts A

0xA67B 8 When the processing of ResourceAdapter.stop() ends A

0xA67C 2 Invocation by CJMSP Broker immediately before invoking the
hello method

A

0xA67D 3 Invocation by CJMSP Broker just after invoking the hello method A

0xA67E 6 Invocation by CJMSP Broker immediately before invoking the good
bye method

A

0xA67F 7 Invocation by CJMSP Broker just after invoking the good bye method A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-75.

Important note

The event IDs 0xA67C and 0xA67D are also output when CJMSP Broker and the CJMSP resource adapter are
communicating in order to establish the connection.

The following figure shows the trace collection points in CJMSP Broker when connecting to the CJMSP
resource adapter.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 522

Figure 8‒75: Trace collection points of CJMSP Broker when connecting to the CJMSP resource
adapter

(2) Trace information that can be collected
Trace information (interface name, operation name, and option) cannot be collected for CJMSP Broker when connecting
to the CJMSP resource adapter.

8.18.6 Trace collection points of the transaction management in the
CJMSP resource adapter and trace information that can be
collected

(1) Transaction management in the CJMSP resource adapter (for
LocalTransaction)

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒113: Details of the trace collection points of the transaction management (for
LocalTransaction) in the CJMSP resource adapter

Event ID Number in the
figure#

Trace collection point Level

0xA656 6 Invocation by CJMSP Broker immediately before invoking session commit A

0xA657 7 Invocation by CJMSP Broker just after invoking session commit A

0xA658 6 Invocation by CJMSP Broker immediately before invoking session rollback A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 523

Event ID Number in the
figure#

Trace collection point Level

0xA659 7 Invocation by CJMSP Broker just after invoking session rollback A

0xA686 1 When the processing of LocalTransaction.begin() starts A

0xA687 4 When the processing of LocalTransaction.begin() ends A

0xA688 5 When the processing of LocalTransaction.commit() starts A

0xA689 8 When the processing of LocalTransaction.commit() ends A

0xA68A 5 When the processing of LocalTransaction.rollback() starts A

0xA68B 8 When the processing of LocalTransaction.rollback() ends A

0xA68C 2 Invocation by CJMSP Broker immediately before the transaction starts A

0xA68D 3 Invocation by CJMSP Broker just after the transaction starts A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-76.

The following figure shows the trace collection points of the transaction management in the CJMSP resource adapter
(for LocalTransaction).

Figure 8‒76: Trace collection points of the transaction management in the CJMSP resource adapter
(for LocalTransaction)

(b) Trace information that can be collected
Trace information (interface name, operation name, and option) cannot be collected for the transaction management in
the CJMSP resource adapter (for LocalTransaction).

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 524

(2) Transaction management in the CJMSP resource adapter (for
XAResource)

(a) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒114: Details of the trace collection points of the transaction management in the CJMSP
resource adapter (for XAResource)

Event ID Number in the
figure#

Trace collection points Level

0xA656 2 Invocation by CJMSP Broker immediately before invoking session commit A

0xA657 3 Invocation by CJMSP Broker just after invoking session commit A

0xA658 2 Invocation by CJMSP Broker immediately before invoking session rollback A

0xA659 3 Invocation by CJMSP Broker just after invoking session rollback A

0xA68C 2 Invocation by CJMSP Broker immediately before the transaction starts A

0xA68D 3 Invocation by CJMSP Broker just after the transaction starts A

0xA692 1 When the processing of XAResource.start() starts A

0xA693 4 When the processing of XAResource.start() ends A

0xA694 1 When the processing of XAResource.end() starts A

0xA695 4 When the processing of XAResource.end() ends A

0xA696 1 When the processing of XAResource.prepare() starts A

0xA697 4 When the processing of XAResource.prepare() ends A

0xA698 1 When the processing of XAResource.commit() starts A

0xA699 4 When the processing of XAResource.commit() ends A

0xA69A 1 When the processing of XAResource.rollback() starts A

0xA69B 4 When the processing of XAResource.rollback() ends A

0xA69E 2 Invocation by Broker immediately before invoking stop XAResource A

0xA69F 3 Invocation by Broker just after invoking stop XAResource A

0xA6A0 2 Invocation by Broker immediately before preparing XAResource A

0xA6A1 3 Invocation by Broker just after preparing XAResource A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-77.

The following figure shows the trace collection points of the transaction management in the CJMSP resource adapter
(for XAResource).

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 525

Figure 8‒77: Trace collection points of the transaction management in the CJMSP resource adapter
(for XAResource)

(b) Trace information that can be collected
The following table describes the trace information that can be collected for the transaction management in the CJMSP
resource adapter (for XAResource).

Table 8‒115: Trace information that can be collected for the transaction management in the CJMSP
resource adapter (for XAResource)

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

1 0xA692 A Flag -- --

0xA694 A Flag

0xA696 A --

0xA698 A Flag

0xA69A A --

2 0xA656 A -- -- --

0xA658 A

0xA68C A

0xA69E A

0xA6A0 A

3 0xA657 A -- -- --

0xA659 A

0xA68D A

0xA69F A

0xA6A1 A

4 0xA693 A -- -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 526

Number
in the
figure#

Event ID Level Information that can be collected

Interface name Operation name Option

0xA695 A

0xA697 A

0xA699 A

0xA69B A

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-77.

8.18.7 Trace collection points when Message-driven Bean is deployed
from the CJMSP resource adapter and the trace information that
can be collected

(1) Trace collection points and PRF trace collection levels
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒116: Details of trace collection points when Message-driven Bean is deployed from the
CJMSP resource adapter

Event ID Number in the
figure#

Trace collection point Level

0xA6A6 1 When the processing of
ResourceAdapter.endpointActivation(endpointFactory
,spec) starts

A

0xA6A7 2 When the processing of
ResourceAdapter.endpointActivation(endpointFactory
,spec) ends

A

0xA6A8 3 When the processing of
ResourceAdapter.endpointDeactivation(endpointFacto
ry,spec) starts

A

0xA6A9 4 When the processing of
ResourceAdapter.endpointDeactivation(endpointFacto
ry,spec) ends

A

0xA6AA 5 When the processing of MessageListener.onMessage() starts A

0xA6AB 6 When the processing of MessageListener.onMessage() ends A

Legend:
A: Standard

#:
Corresponds to the numbers in Figure 8-78.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 527

Important note

• 0xA67E and 0xA67F are output when you invoke endpointDeactivation().

• 0xA67C are 0xA67D are output when you invoke endpointActivation().

The following figure shows the trace collection points when Message-driven Bean is deployed from the CJMSP
resource adapter.

Figure 8‒78: Trace collection points when Message-driven Bean is deployed from the CJMSP
resource adapter

(2) Trace information that can be collected
Trace information (interface name, operation name, and option) cannot be collected when Message-driven Bean is
deployed from the CJMSP resource adapter.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 528

8.19 Trace collection points of JavaMail

This section describes the trace collection points of JavaMail and the trace information that you can collect.

8.19.1 Trace collection points of JavaMail transmission and the trace
information that you can collect

(1) Trace collection points and PRF trace collection levels
The following table describes the information such as Event ID, trace collection points, and PRF trace collection level.

Table 8‒117: Details of trace collection points on JavaMail transmission

Event ID Numbers used
in the figures#1

Trace collection point Level

0xAD00 1 Entry point of the connect(String host, int port,
String user, String password) method of the
javax.mail.Transport class

A

0xAD01 22 Exit point of the connect(String host, int port,
String user, String password) method of the
javax.mail.Transport class

A

0xAD02 23 Entry point of the sendMessage(Message message, Address[]
addresses) method of the javax.mail.Transport class

A

0xAD03 38 Exit point of the sendMessage(Message message, Address[]
addresses) method of the javax.mail.Transport class

A

0xAD04 39 Entry point of the close method of the javax.mail.Transport class A

0xAD05 44 Exit point of the close method of the javax.mail.Transport class A

0xAD06 2 Immediately before starting the process to fetch the connection A

0xAD07 3 Immediately after ending the process to fetch the connection A

0xAD08 26#2 Immediately before starting to send the entire recipient information A

0xAD09 29#2 Immediately after sending the entire recipient information A

0xAD0A 34#3 Immediately before starting to send the mail A

0xAD0B 35#3 Immediately after sending the mail A

0xAD0C 42 Immediately before starting the process to terminate the connection B

6 Immediately before starting the process to terminate the connection B

0xAD0D 43 Immediately after ending the process to terminate the connection B

7 Immediately after ending the process to terminate the connection B

0xAD0E 45 Entry point of the send(Message msg, Address[]
addresses) method and send(Message msg) method of the
javax.mail.Transport class

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 529

Event ID Numbers used
in the figures#1

Trace collection point Level

0xAD0F 46 Exit point of the send(Message msg, Address[]
addresses) method and send(Message msg) method of the
javax.mail.Transport class

A

0xAD10 8#4 Immediately before issuing the EHLO or HELO command A

0xAD11 9#4 Immediately after receiving a response to the EHELO or HELO command A

0xAD12 10 Immediately before issuing the AUTH command B

14 Immediately before starting to send the user name and password B

16 Immediately before starting to notify the end of authentication B

18 Immediately before starting to send the user name B

20 Immediately before starting to send the password B

24 Immediately before starting to issue the MAIL command B

27#5 Immediately before starting to issue the RCPT command B

30 Immediately before starting to issue the RSET command B

32 Immediately before starting to issue the DATA command B

36 Immediately before starting to issue the notification for the end of mail
text transmission

B

40 Immediately before starting to issue the QUIT command B

47#6 Immediately after receiving a response to the NOOP command B

12 Immediately after starting to issue the STARTTLS command B

0xAD13 11 Immediately after receiving a response to AUTH B

15 Immediately after receiving a response to the sent user name and password B

17 Immediately after notifying the end of authentication B

19 Immediately after receiving a response to the sent user name B

21 Immediately after receiving a response to the sent password B

25 Immediately after receiving a response to the MAIL command B

28#5 Immediately after receiving a response to the RCPT command B

31 Immediately after receiving a response to the RSET command B

33 Immediately after receiving a response to the DATA command B

37 Immediately after receiving a response to the notification for the end of mail
text transmission

B

41 Immediately after receiving a response to the QUIT command B

48#6 Immediately before starting to issue the NOOP command B

13 Immediately after receiving a response to the STARTTLS command B

0xAD14 4 Immediately before receiving the server response on connection B

0xAD15 5 Immediately after receiving the server response on connection B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 530

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers used in Figure 8-79, Figure 8-80, or Figure 8-81.

#2
Fetched at the start and end of sending the entire recipient information.

#3
The data to be sent is read and sent to the mail server in the data transfer described in the Trace collection point column of point 32 or 33. For
example, if a file is attached, the file is read and the data of the file is sent to the mail server.

#4
Sometimes 1 log each for EHLO and HELO is output, because if EHLO fails, the reconnection is tried by issuing HELO.

#5
Fetched at the start and end of sending the individual recipient information.

#6
Fetched only when connected with the server.

The following figure shows the trace collection points on JavaMail transmission.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 531

Figure 8‒79: Trace collection points on JavaMail transmission (when the sendMessage(Message
message, Address[] addresses) method of the javax.mail.Transport class is used)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 532

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 533

Figure 8‒80: Trace collection points on JavaMail transmission (when the send(Message msg,
Address[] addresses) method and send(Message msg) method of the
javax.mail.Transport class are used)

#1: The connect method of the javax.mail.Transport class is invoked internally, so the collection points from
1 to 20, shown in Figure 8-79, are also output.

#2: The sendMessage method of the javax.mail.Transport class is invoked internally, so the collection points
from 21 to 36, shown in Figure 8-79, are also output.

#3: The close method of the javax.mail.Transport class is invoked internally, so the collection points from
37 to 42, shown in Figure 8-79, are also output.

Figure 8‒81: Trace collection point on confirming the JavaMail connection

(2) Trace information that you can collect
The following table describes the trace information that you can collect on JavaMail transmission.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 534

Table 8‒118: Trace information that you can collect on JavaMail transmission

Numbers
used in the
figures#1

Event ID Level Interface name Operation name Option

1 0xAD00 A -- -- --

2 0xAD06 A -- -- #2

3 0xAD07 A -- -- Exception class name in the event of
an abnormality

4 0xAD14 B String that shows
communication#3

-- --

5 0xAD15 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

6 0xAD0C B -- -- --

7 0xAD0D B -- -- Exception class name in the event of
an abnormality

8 0xAD10 A String that shows
communication#3

-- --

9 0xAD11 A String that shows
communication#3

Response code from
the mail server#4, #6

Exception class name in the event of
an abnormality#7

10 0xAD12 B String that shows
communication#3

-- --

11 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

12 0xAD12 B String that shows
communication #3

-- --

13 0xAD13 B String that shows
communication #3

Response code from
the mail server #4, #5, #6

Name of the exception class if an error
occurs #7

14 0xAD12 B String that shows
communication#3

-- --

15 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

16 0xAD12 B String that shows
communication#3

-- --

17 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

18 0xAD12 B String that shows
communication#3

-- --

19 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

20 0xAD12 B String that shows
communication#3

-- --

21 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 535

Numbers
used in the
figures#1

Event ID Level Interface name Operation name Option

22 0xAD01 A -- -- Exception class name in the event of
an abnormality

23 0xAD02 A -- -- --

24 0xAD12 B String that shows
communication#3

-- --

25 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

26 0xAD08 A -- -- --

27 0xAD12 B String that shows
communication#3

-- --

28 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

29 0xAD09 A -- -- Exception class name in the event of
an abnormality

30 0xAD12 B String that shows
communication#3

-- --

31 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

31 0xAD12 B String that shows
communication#3

-- --

32 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

33 0xAD0A A -- -- --

34 0xAD0B A -- -- Exception class name in the event of
an abnormality

35 0xAD12 B String that shows
communication#3

-- --

36 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

37 0xAD03 A -- -- Exception class name in the event of
an abnormality

38 0xAD04 A -- -- --

39 0xAD12 B String that shows
communication#3

-- --

40 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

41 0xAD0C B -- -- --

42 0xAD0D B - - Exception class name in the event of
an abnormality

43 0xAD05 A -- -- Exception class name in the event of
an abnormality

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 536

Numbers
used in the
figures#1

Event ID Level Interface name Operation name Option

44 0xAD0E A Method name
(send(Message,
Address[])
or send(Message))

-- --

45 0xAD0F A Method name
(send(Message,
Address[])
or send(Message))

-- Exception class name in the event of
an abnormality

46 0xAD12 B String that shows
communication#3

-- --

47 0xAD13 B String that shows
communication#3

Response code from
the mail server#4, #5, #6

Exception class name in the event of
an abnormality#7

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers used in Figure 8-79, Figure 8-80, or Figure 8-81.

#2
Outputs the following items:
host-name port-number timeout-value-when-fetching-connection communication-timeout-value
Each of the items must be output by separating them with a single byte space.
0 is output if the timeout is set to infinite. -1 is output, if the user omits the timeout setting.
(Example) localhost 25 10000 10000

#3
The following table describes the output contents of the strings that show communication:

Sr. No. String that shows communication Communication process

1 -- (Not applicable) Fetch connection

2 connect-mail-server Fetch server response on connection

3 EHLO command arguments Issue EHLO command

4 HELO command arguments Issue HELO command

5 AUTH LOGIN Issue AUTH command
(LOGIN as argument)

6 AUTH PLAIN Issue AUTH command
(PLAN as argument)

7 AUTH DIGEST-MD5 Issue AUTH command
(DIGEST-MD5 as argument)

8 SEND USER Send user name

9 SEND PASS Send password

10 SEND USER PASS Send user name and password

11 AUTH END Notify authentication end

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 537

Sr. No. String that shows communication Communication process

12 QUIT Issue QUIT command

13 MAIL command arguments Issue MAIL command

14 RCPT command arguments Issue RCPT command

15 RSET Issue RSET command

16 NOOP Issue NOOP command

17 DATA Issue DATA command

18 SEND MAIL Send mail body data

19 . Notifying the end of the mail text transmission

20 STARTTLS Issuing the STARTTLS command

#4
The following table describes the output contents of responses:

Response Output contents

Response code is correct (satisfies the RFC specifications) Response code

Response code is incorrect (does not satisfy the RFC specifications) Header 4 letters of the 1st line of the response (See KDJE59111-E
message for details)
• If the 1st line is less than 4 letters

Output all the letters that exist in the 1st line
• No response

Output empty string

#5
In the QUIT command, response code is output only if mail.smtp.quitwait or mail.smtps.quitwait is true.

#6
Response code is output only if the response is received. Response code is not output, if the response is not received due to the abnormal
conditions such as occurrence of IOException in communication.

#7
If the response code does not satisfy the RFC specifications and if EOF is detected, the exception class is not output.

8.19.2 Trace collection points on JavaMail receipt and the trace
information that you can collect

(1) Trace collection points and PRF trace collection levels
The following table describes the information such as Event ID, trace collection points, and PRF trace collection level.

Table 8‒119: Details of trace collection points on JavaMail receipt

Event ID Numbers used
in the figures#1

Trace collection points Level

0xAD80 1 Entry point of the connect(String host, int port,
String user, String password) method of the
javax.mail.Store class

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 538

Event ID Numbers used
in the figures#1

Trace collection points Level

0xAD81 14 Exit point of the connect(String host, int port,
String user, String password) method of the
javax.mail.Store class

A

0xAD82 2 Immediately before starting the process to fetch the connection A

0xAD83 3 Immediately after ending the process to fetch the connection A

0xAD84 15 Entry point of the open(int) method of the javax.mail.Folder class A

0xAD85 18 Exit point of the open(int) method of the javax.mail.Folder class A

0xAD86 25 Entry point of the close(boolean) method of the
javax.mail.Folder class

A

0xAD87 36 Exit point of the close(boolean) method of the
javax.mail.Folder class

A

0xAD88 34 Immediately before starting the process to terminate the connection B

6 Immediately before starting the process to terminate the connection B

0xAD89 35 Immediately after ending the process to terminate the connection B

7 Immediately after ending the process to terminate the connection B

0xAD8A 19#2 Immediately before starting the process to fetch the entire message
information

A

0xAD8B 22#2 Immediately after ending the process to fetch the entire message information. A

0xAD8C 28#2 Immediately before issuing the DELE command for all the messages to
be deleted

A

0xAD8D 31#2 Immediately after receiving the response to the DELE command for all the
messages to be deleted

A

0xAD8E 10 Immediately before starting to issue the USER command A

23#3 Immediately before starting to issue the LIST, UIDL, RETR, or
TOP commands

A

26 Immediately before starting to issue the RSET command A

8 Immediately before starting to issue the CAPA command A

0xAD8F 11 Immediately after receiving the response to the USER command A

24#3 Immediately after receiving the response to the LIST, UIDL, RETR, or
TOP command

A

27 Immediately after receiving the response to the RSET command A

9 Immediately after receiving the response to the CAPA command A

0xAD90 12 Immediately before starting to issue the PASS command B

16 Immediately before starting to issue the STAT command B

20#4, #5 Immediately before starting to issue the TOP or LIST command B

29#5 Immediately before starting to issue the DELE command B

32 Immediately before starting to issue the QUIT command B

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 539

Event ID Numbers used
in the figures#1

Trace collection points Level

37#6 Immediately before starting to issue the NOOP command B

0xAD91 13 Immediately after receiving the response to the PASS command B

17 Immediately after receiving the response to the STAT command B

21#4, #5 Immediately after receiving the response to the TOP command B

30#5 Immediately after receiving the response to the DELE command B

33 Immediately after receiving the response to the QUIT command B

38#6 Immediately after receiving the response to the NOOP command B

0xAD92 4 Immediately before receiving the server response on connection B

0xAD93 5 Immediately after receiving the server response on connection B

Legend:
A: Standard
B: Advanced

#1
Corresponds to the numbers used in Figure 8-82 or Figure 8-83.

#2
Fetched at the start and end of receiving the entire mail information.

#3
If not called by specifying ENVELOPE in the 2nd argument of the fetch method of the javax.mail.Folder class.

#4
Only if called by specifying ENVELOPE in the 2nd argument of the fetch method of the javax.mail.Folder class.

#5
Fetched at the start and end of receiving the individual mail information.

#6
Collected only when connected to the server.

The following figure shows the trace collection points on JavaMail receipt.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 540

Figure 8‒82: Trace collection points on JavaMail receipt

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 541

Figure 8‒83: Trace collection point on confirming the JavaMail connection

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 542

(2) Trace information that you can collect
The following table describes the trace information that you can collect on JavaMail receipt.

Table 8‒120: Trace information that you can collect on JavaMail receipt

Numbers
used in the
figures#1

Event ID Level Interface name Operation name Option

1 0xAD80 A -- -- --

2 0xAD82 A -- -- #2

3 0xAD83 A -- -- Exception class name in the event of
an abnormality

4 0xAD92 B String that shows
communication#3

-- --

5 0xAD93 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

6 0xAD88 B -- -- --

7 0xAD89 B -- -- Exception class name in the event of
an abnormality

8 0xAD8E A String that shows
communication #3

-- --

9 0xAD8F A String that shows
communication #3

Response code from
the mail server #4

Name of the exception class if an
error occurs

10 0xAD8E A String that shows
communication#3

-- --

11 0xAD8F A String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

12 0xAD90 B String that shows
communication#3

-- --

13 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

14 0xAD81 A -- -- Exception class name in the event of
an abnormality

15 0xAD84 A -- -- --

16 0xAD90 B String that shows
communication#3

-- --

17 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

18 0xAD85 A -- -- Exception class name in the event of
an abnormality

19#5 0xAD8A A -- -- --

20 0xAD90 B String that shows
communication#3

-- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 543

Numbers
used in the
figures#1

Event ID Level Interface name Operation name Option

21#6 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

22#5 0xAD8B A -- -- Exception class name in the event of
an abnormality

23 0xAD8E A String that shows
communication#3

-- --

24#6 0xAD8F A String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

25 0xAD86 A -- -- --

26 0xAD8E A String that shows
communication#3

-- --

27 0xAD8F A String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

28 0xAD8C A -- -- --

29 0xAD90 B String that shows
communication#3

-- --

30 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

31 0xAD8D A -- -- Exception class name in the event of
an abnormality

32 0xAD90 B String that shows
communication#3

-- --

33 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

34 0xAD88 B -- -- --

35 0xAD89 B -- -- Exception class name in the event of
an abnormality

36 0xAD87 A -- -- Exception class name in the event of
an abnormality

37 0xAD90 B String that shows
communication#3

-- --

38 0xAD91 B String that shows
communication#3

Response code from
the mail server#4

Exception class name in the event of
an abnormality

Legend:
A: Standard
B: Advanced
--: Not applicable

#1
Corresponds to the numbers used in Figure 8-82 or Figure 8-83.

#2
Outputs the following items:
host-name port-number timeout-value-when-fetching-connection communication-timeout-value

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 544

Each of the items should be output by separating them with a space.
0 is output if the timeout is set to infinite. -1 is output, if the user omits the timeout setting.
(Example) localhost 25 10000 10000

#3
The following table describes the output contents of the strings that show communication:

Sr. No. String that shows communication Communication process

1 -- (Not applicable) Fetch connection

2 connect-mail-server Fetch server response on connection

3 USER Issue USER command

4 PASS Issue PASS command

5 QUIT Issue QUIT command

6 STAT Issue STAT command

7 LIST command arguments Issue LIST command

8 UIDL command arguments Issue UIDL command

9 RETR command arguments Issue RETR command

10 TOP command arguments Issue TOP command

11 DELE command arguments Issue DELE command

12 NOOP Issue NOOP command

13 RSET Issue RSET command

14 CAPA Issuing the CAPA command

#4
Response code is output only if the 1st line of the response is received. Response code is not output, if the response is not received due to the
abnormal conditions such as occurrence of IOException in communication.

#5
The following table describes the output contents of responses:

Response Output contents

Response code is correct (satisfies the RFC specifications) Response code

Response code is incorrect (does not satisfy the RFC specifications) Header 4 letters of the 1st line of the response (See KDJE59112-E
message for details)
• If the 1st line is less than 4 letters

Output all the letters present in the 1st line
• No response

Output empty string

#6
For the commands (RETR command, TOP command, and UIDL command) that receive multiple-line response, return code 0 is output on
fetching the 1st line of the response.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 545

8.20 Trace collection points of JSF 2.2

This section describes the trace collection points of JSF 2.2 and the trace information that can be collected.

8.20.1 Trace collection points and the trace information that can be
collected

The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒121: Details of trace collection points of JSF 2.2

Event ID No. in the figure# Trace collection points Level

0xAF20 1 Immediately before a custom converter is invoked A

0xAF21 2 Immediately after the processing of the custom converter ends A

0xAF22 3 Immediately before a custom validator is invoked A

0xAF23 4 Immediately after the processing of the custom validator ends A

0xAF24 5 Immediately before ValueChangeListener is invoked A

0xAF25 6 Immediately after the processing of ValueChangeListener ends A

0xAF26 7 Immediately before ActionListener is invoked A

0xAF27 8 Immediately after the processing of ActionListener ends A

0xAF28 9 Immediately before AjaxBehaviorListener is invoked A

0xAF29 10 Immediately after the processing of AjaxBehaviorListener ends A

0xAF2A 11 Immediately before Action Method is invoked A

0xAF2B 12 Immediately after the processing of Action Method ends A

0xAF2C 13 Immediately before ComponentSystemEventListener is invoked A

0xAF2D 14 Immediately after the processing of
ComponentSystemEventListener ends

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-84 through Figure 8-90.

The following figures show the trace collection points of JSF 2.2.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 546

Figure 8‒84: Collection points for trace-based performance analysis for JSF 2.2 (custom converter)

Figure 8‒85: Collection points for trace-based performance analysis for JSF 2.2 (custom validator)

Figure 8‒86: Collection points for trace-based performance analysis for JSF 2.2
(ValueChangeListener)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 547

Figure 8‒87: Collection points for trace-based performance analysis for JSF 2.2 (ActionListener)

Figure 8‒88: Collection points for trace-based performance analysis for JSF 2.2
(AjaxBehaviorListener)

Figure 8‒89: Trace collection points for JSF (Action Method)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 548

Figure 8‒90: Trace collection points for JSF 2.2 (ComponentSystemEventListener)

8.20.2 Trace information that can be collected
The following table describes the trace information that can be collected in JSF 2.2.

Table 8‒122: Trace information that can be collected in JSF 2.2

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xAF20 A Client ID Class name and method name of the
custom converter

--

2 0xAF21 A Client ID Class name and method name of the
custom converter

• In a normal
state:
None

• In an abnormal
state:
Exception name

3 0xAF22 A Client ID Class name of the custom validator.
If the custom validator is invoked
by using MethodExpression,
MethodExpression is acquired.

Note
When MethodExpression
with multiple arguments is used,
the columns in the trace based
performance analysis file (CSV
format) might shift.

--

4 0xAF23 A Client ID Class name of the custom validator.
If the custom validator is invoked
by using MethodExpression,
MethodExpression is acquired.

Note
When MethodExpression
with multiple arguments is used,

• In a normal
state:
None

• In an abnormal
state:
Exception name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 549

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

the columns in the trace based
performance analysis file (CSV
format) might shift.

5 0xAF24 A Client ID Class name
of ValueChangeListener.
If ValueChangeListener
is invoked by
using MethodExpression,
MethodExpression is acquired.

--

6 0xAF25 A Client ID • In a normal state:
If ValueChangeListener
is invoked by using
MethodExpression and ends
successfully, and if a method with
one argument is invoked, one
argument is output.
If a method with no argument
is invoked, no argument
is output.

• In an abnormal state:
None.

• In a normal
state:
None

• In an abnormal
state:
Exception name

7 0xAF26 A Client ID Class name of ActionListener.
If ActionListener is invoked
by using MethodExpression,
MethodExpression is acquired.

--

8 0xAF27 A Client ID • In a normal state:
If ActionListener is invoked
by using MethodExpression
and ends successfully, and if
a method with one argument
is invoked, one argument
is output.
If a method with no argument
is invoked, no argument
is output.

• In an abnormal state:
None.

• In a normal
state:
None

• In an abnormal
state:
Exception name

9 0xAF28 A Client ID Class name
of AjaxBehaviorListener.
If AjaxBehaviorListener
is invoked by
using MethodExpression,
MethodExpression is acquired.

--

10 0xAF29 A Client ID • In a normal state:
When
AjaxBehaviorListener
is invoked by using
MethodExpression and ends
successfully, and if a method with
one argument is invoked, one
argument is output.

• In a normal
state:
None

• In an abnormal
state:
Exception name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 550

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

If a method with no argument
is invoked, no argument
is output.

• In an abnormal state:
None.

11 0xAF2A A Client ID -- --

12 0xAF2B A Client ID -- • In a normal
state:
None

• In an abnormal
state:
Exception name

13 0xAF2C A Client ID Class name of
ComponentSystemEventList
ener.
If
ComponentSystemEventList
ener is invoked by using
MethodExpression,
MethodExpression is acquired.

--

14 0xAF2D A Client ID • In a normal state:
If
ComponentSystemEventLi
stener is invoked by using
MethodExpression and ends
successfully, and if a method with
one argument is invoked, one
argument is output.
If a method with no argument
is invoked, no argument
is output.

• In an abnormal state:
None.

• In a normal
state:
None

• In an abnormal
state:
Exception name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-84 through Figure 8-90.

8.20.3 Data output to the exception log
If an exception name is output to the additional information (OPT) column at a trace based performance analysis
collection point, detailed information about the exception is output to the exception log at the same time. You can analyze
the failure by comparing the exception name output by the trace based performance analysis with the exception log.
However, if you intentionally raise exceptions in a batch application or other application and use them to control the
processing of jobs, the amount of log output might increase because detailed information is output to the exception log
each time an exception is raised. When executing such an application, set a larger size for the exception log in advance.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 551

8.21 Trace collection points of CDI

This section describes the trace collection points of CDI and the trace information that can be collected.

8.21.1 Trace collection points of CDI and the trace information that can be
collected

This subsection describes the trace collection points of CDI and the trace information that can be collected. The following
two cases will be described separately:

• When a combination of JSF 2.2 and CDI is used

• When a combination of servlets and CDI is used

(1) Trace collection points and PRF trace collection levels

(a) When a combination of JSF and CDI is used
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒123: Details of the trace collection points when a combination of JSF 2.2 and CDI is used

Event ID No. in the figure# Trace collection points Level

0xb002 1 When the reading of the JSF 2.2 settings required for using CDI starts A

0xb003 2 When the reading of the JSF 2.2 settings required for using CDI ends
(normal termination)

A

0xb004 3 When the JSF 2.2 preparations required for using CDI start A

0xb005 4 When the JSF 2.2 preparations required for using CDI end
(normal termination)

A

0xb006 5 When the EL assessment starts B

0xb007 6 When the EL assessment ends (normal termination) B

Legend:
A: Standard
B: Advanced

#:
Corresponds to the numbers in Figure 8-91 and Figure 8-92.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 552

Figure 8‒91: Trace collection points when a combination of JSF 2.2 and CDI is used (when the JSF
2.2 settings are read and prepared)

Figure 8‒92: Trace collection points when a combination of JSF 2.2 and CDI is used (for EL
evaluation)

(b) When a combination of servlets, filters, listeners, and CDI is used
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒124: Details of the trace collection points when a combination of servlets, filters, listeners,
and CDI is used

Event ID No. in the figure# Trace collection points Level

0xb008 1 When the generation of servlet/filter/listener instances starts A

0xb009 2 When the generation of servlet/filter/listener instances ends
(normal termination)

A

Legend:
A: Standard

#:
Corresponds to the numbers in Figure 8-93.

The following figure shows the trace collection points.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 553

Figure 8‒93: Trace collection points when a combination of servlets, filters, listeners, and CDI is
used

(2) Trace information that can be collected

(a) When a combination of JSF 2.2 and CDI is used
The following table describes the trace information that can be collected when a combination of JSF 2.2 and CDI is used.

Table 8‒125: Trace information that can be collected when a combination of JSF 2.2 and CDI is used

No. in the
figure#1

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xb002#2 A WeldFacesConfigProvid
er

-- Context
information of the
Web container

2 0xb003#2 A WeldFacesConfigProvid
er

-- Entrance time

3 0xb004#2 A WeldApplicationFactor
y

-- --

4 0xb005#2 A WeldApplicationFactor
y

-- Entrance time

5 0xb006#3 B WeldApplication -- --

6 0xb007#3 B WeldApplication -- Entrance time

Legend:
A: Standard
B: Advanced
--: Not applicable

#1:
Corresponds to the numbers in Figure 8-91 and Figure 8-92.

#2:
The trace information for the reading of the JSF 2.2 settings required for using CDI and for the JSF 2.2 preparations required for using CDI is
collected when the application starts.

#3:
The trace information for EL assessment is collected when FacesServlet is initialized and when Expression Language specified in JSF 2.2
is evaluated.

(b) When servlets are invoked from CDI
The following table describes the trace information that can be collected when servlets are invoked from CDI.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 554

Table 8‒126: Trace information that can be collected when servlets are invoked from CDI

No. in the
figure#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xb008 A CDIServiceImpl -- The following
information is
output:
• Managed

class
• Class name
• Context root

2 0xb009 A CDIServiceImpl -- Entrance time

Legend:
A: Standard
--: Not applicable

#:
Corresponds to the numbers in Figure 8-93.

Note that the trace information is collected when the servlet/filter/listener interfaces are generated.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 555

8.22 Trace collection points when a J2EE server is started or terminated

Trace information can be collected when the startup processing of a J2EE server finishes, and when the termination
processing of the J2EE server starts.

8.22.1 Trace Get Point and the PRF Trace Get Level
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒127: Details of trace collection points in a J2EE server

Event ID Trace acquisition points Level

0x8FFE When the startup processing of the J2EE server is complete (message KDJE30028-I is output) A

0x8FFF When the shutdown of the J2EE server starts (message KDJE30031-I is output) A

Legend:
A: Standard

8.22.2 Trace information that can be collected
The trace information that can be collected when a J2EE server is started or terminated is as follows:

• Event ID
0x8FFE, 0x8FFF

• PRF trace collection level
All Standard.

• Interface name, operation name, and optional
The information is not output.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 556

8.23 Trace collection points of an application

The application trace is output in the user-extended trace based performance analysis. The user-extended trace based
performance analysis outputs the trace information when the methods specified in the configuration file for the
user-extended trace based performance analysis are invoked.

This section describes the trace points and trace information for the user-extended trace based performance analysis.

8.23.1 Trace collection points and PRF trace collection levels
The following table describes the points at which the user-extended trace based performance analysis outputs the trace.

Table 8‒128: Trace collection points of the user-extended trace based performance analysis

Trace collection points No. in the
figure#1

Explanation Level

Normal entry of method 1 Immediately after a method is invoked. Trace collection
levels specified in
the user-extended
trace based
performance analysis
configuration file#2

Normal exit of method 2 Immediately before a method terminates normally.

Abnormal exit of method 3 Immediately before a method terminates abnormally due to
an exception or error.

Legend:
A: Standard

#1:
Corresponds to the numbers in Figure 8-94.

#2:
For details on the specification of the trace collection levels specified in the user-extended trace based performance analysis configuration file,
see 7.5.3 Settings for the methods to be traced by the user-extended trace based performance analysis.

Reference note

If a method to be traced terminates because an exception or error occurred in the method to be traced or in
the invocation destination method of the method to be traced, the trace is collected as the abnormal exit of
the method.

If an exception or error is processed by the try-catch syntax in a method to be traced, and if an exception or
error is not thrown at the invocation source of the method to be traced, the trace is collected as the normal exit
of the method.

The following figure shows the trace collection points in the user-extended trace based performance analysis.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 557

Figure 8‒94: Trace collection points of the user-extended trace based performance analysis

8.23.2 Trace information that can be collected
This subsection describes the trace information of the user-extended trace based performance analysis.

(1) Trace information of the user-extended trace based performance
analysis

The following table describes the trace information of the user-extended trace based performance analysis.

Table 8‒129: Trace information of the user-extended trace based performance analysis

No. in the
figure#1

Information that you can acquire

Event ID
(Event)

Return code
(Rc)

Interface
name (INT)

Operation
information
(OPR)

Additional information#2

(OPT/ASCII#3)

1 Event ID specified
in the configuration
file for the user-
extended trace based
performance analysis.
When not
specified, 0xae00.

0 Identity ID specified
by the user in the
configuration file for
the user-extended
trace based
performance
analysis.

-- The following information
is output:
• Package name
• Class name
• Method name

2 Event ID specified
in the configuration
file for the user-
extended trace based

0 Identity ID specified
by the user in the
configuration file for
the user-extended

Line number of
the text executed
last by the
method #4.

The following information
is output:
• Package name
• Class name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 558

No. in the
figure#1

Information that you can acquire

Event ID
(Event)

Return code
(Rc)

Interface
name (INT)

Operation
information
(OPR)

Additional information#2

(OPT/ASCII#3)

performance analysis
+ 1.
When not
specified, 0xae01.

trace based
performance
analysis.

• Method name

3 Event ID specified
in the configuration
file for the
user-extended trace
based performance
analysis +1.
When not
specified, 0xae01.

1 Identity ID specified
by the user in the
configuration file for
the user-extended
trace based
performance
analysis.

Class name of
the exception or
error#5.

The following information
is output:
• Package name
• Class name
• Method name

Legend:
--: No output.

#1:
Corresponds to the numbers in Figure 8-94.

#2:
The user-extended trace based performance analysis outputs the method name with the output level specified in the
jvm.userprf.LogLevel property. For details on the output levels and the information output at each level, see (2) Output levels.

#3:
If the additional information output to the ASCII area exceeds 256 ASCII characters, 256 characters are output from the beginning.

#4:
Output when true is specified for the jvm.userprf.LineNumber property. For details on the jvm.userprf.LineNumber property,
see 14.3 Properties used in JavaVM in the manual uCosminexus Application Server Definition Reference Guide.

#5:
When true is specified for the jvm.userprf.ThrowableName property, the class name is output with the output level specified
in the jvm.userprf.LogLevel property, and the editing method specified in the jvm.userprf.ThrowableNameEditMethod
property. For details on the jvm.userprf.ThrowableName and jvm.userprf.ThrowableNameEditMethod properties, see 14.3
Properties used in JavaVM in the manual uCosminexus Application Server Definition Reference Guide.

(2) Output levels
You specify the trace information output level for the user-extended trace based performance analysis in the
jvm.userprf.LogLevel property.

The following table describes the output levels and the trace information that is output.

Table 8‒130: Specification of the output levels and the trace information that is output

Specification in the
jvm.userprf.LogLevel property

Additional information (OPT/ASCII) Operation information for abnormal exit
of the method (OPR)

class Class name Class name of the exception or error

package Fully qualified class name Fully qualified class name of the exception
or error

method Fully qualified class name + method name

signature Fully qualified class name + method name + method
argument type

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 559

For details on the jvm.userprf.LogLevel property, see 14.3 Properties used in JavaVM in the manual
uCosminexus Application Server Definition Reference Guide.

(3) Example of output of the user-extended trace based performance
analysis

The following are the examples of output of the user-extended trace based performance analysis.

(a) Example when the output contents of the trace information are not changed
The following is an example of settings when the output contents of the trace information are not changed:

Example of settings in the Easy Setup definition file

...
<param>
<param-name>UserPrfText</param-name>
<param-value>
<![CDATA[
com.sample.ClassA.method1(int),test00,false
]]>
</param-value>
</param>
<param>
<param-name>add.jvm.arg</param-name>
<param-value>-Djvm.userprf.Enable=true</param-value>
</param>
...

Output contents

Event Rc INT OPR ASCII

0xae00 0 test00 (Blank) ClassA

0xae01 0 test00 (Blank) ClassA

The trace information is output as follows in this example:

• The event ID settings are omitted for the method to be traced, so if the method to be traced is invoked, the default
value of 0xae00 is output as the event ID at the method entry, and 0xae01 is output as the event ID at the
method exit.

(b) Example for the output of the line number in the operation information
The following is an example of settings when the configuration file for the user-extended trace based performance
analysis (/test/setting.txt) is used to output the line number in the operation information:

Example of settings in the Easy Setup definition file

...
<param>
<param-name>add.jvm.arg</param-name>
<param-value>-Djvm.userprf.Enable=true</param-value>
<param-value>-Djvm.userprf.File=/test/setting.txt</param-value>
<param-value>-Djvm.userprf.LineNumber=true</param-value>
</param>
...

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 560

Example of settings in the configuration file for the user-extended trace based performance analysis (setting.txt)

com.sample.ClassA.method1(java.lang.String),test00,false,0xae77
com.sample.ClassB.method2(boolean),test01.false

Output contents
jvm.userprf.LineNumber=true is specified in this example, so the line number executed last by each
method is output in the operation information (OPR area) if the method exits normally.

Event Rc INT OPR ASCII

0xae77 0 test00 (Blank) ClassA

0xae78 0 test00 324 ClassA

0xae00 0 test01 (Blank) ClassB

0xae01 0 test01 15 ClassB

The trace information is output as follows in this example:

• In the second line specified in the configuration file for the user-extended trace based performance analysis, the
event ID settings are omitted for the method to be traced, so if the method to be traced is invoked, the default value
of 0xae00 is output as the event ID at the method entry, and 0xae01 is output as the event ID at the method exit.

(c) Example for the output of the exception or error class name
The following is an example of settings when the class name of the thrown exception is output in the operation
information (OPR area) if the method exits abnormally. Note that this example describes the case in which ClassC exists
in the subclass ClassA, and ClassA.method1 is overridden in ClassC.

Example of settings in the Easy Setup definition file

...
<param>
<param-name>UserPrfText</param-name>
<param-value>
<![CDATA[
com.sample.ClassA.method1(),test00,true,0xae0a
]]>
</param-value>
</param>
<param>
<param-name>add.jvm.arg</param-name>
<param-value>-Djvm.userprf.Enable=true</param-value>
<param-value>-Djvm.userprf.LineNumber=true</param-value>
<param-value>-Djvm.userprf.ThrowableName=true</param-value>
</param>
...

Output contents

Event Rc INT OPR ASCII

0xae0a 0 test00 (Blank) ClassA

0xae0b 0 test00 324 ClassA

0xae0a 0 test00 (Blank) ClassC

0xae0b 1 test00 IOException ClassC

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 561

The trace information is output as follows in this example:

• true is set in the subclass flag, so the information of ClassC.method1 that overrides ClassA.method1
is also output.

• jvm.userprf.LineNumber=true is specified, so the line number executed last by each method is output
in the operation information (OPR area) if the method exits normally.

• jvm.userprf.ThrowableName=true is set, so the class name of the thrown exception is output in the
operation information (OPR area) if the method exits abnormally. However, the jvm.userprf.LogLevel
property is not specified, so only the class name of the thrown exception is output.

(d) Example of changing the output method of the exception or error class name
The following is an example of settings when the output method of the exception or error class name is changed.

Example of settings in the Easy Setup definition file

...
<param>
<param-name>UserPrfText</param-name>
<param-value>
<![CDATA[
com.sample.ClassA.method1(),test00,false
]]>
</param-value>
</param>
<param>
<param-name>add.jvm.arg</param-name>
<param-value>-Djvm.userprf.Enable=true</param-value>
<param-value>-Djvm.userprf.ThrowableName=true</param-value>
<param-value>-Djvm.userprf.ThrowableNameEditMethod=FRONT_CUT</param-value>
<param-value>-Djvm.userprf.LogLevel=method</param-value>
</param>
...

Output contents

Event Rc INT OPR ASCII

0xae00 0 test00 (Blank) com.sample.ClassA.method1

0xae01 1 test00 *ment.IllegalClassFormatException com.sample.ClassA.method1

The trace information is output as follows in this example:

• The event ID settings are omitted for the method to be traced, so if the method to be traced is invoked, the default
value of 0xae00 is output as the event ID at the method entry, and 0xae01 is output as the event ID at the
method exit.

• jvm.userprf.ThrowableName=true is specified, so the exception or error class name is output to the
operation information (OPR area) if the method exits abnormally. However, the thrown exception name is 33
characters or more and jvm.userprf.ThrowableNameEditMethod=FRONT_CUT is specified, so the
name is output with the front part omitted. The omitted part is displayed using * (asterisk).

• jvm.userprf.LogLevel=method is specified, so the fully qualified class name + method name is output
in the additional information (ASCII area).

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 562

8.24 Trace collection points of JAX-RS

This section describes the trace collection points of JAX-RS and the trace information that can be collected.

8.24.1 Trace collection points and trace information that can be collected
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒131: Details of trace collection points in JAX-RS

Event ID No. in the
figures#

Trace acquisition points Level

0xD000 1 At the start of the HTTP method call A

0xD001 2 At the end of the HTTP method call A

0xD002 3 Before sending the HTTP message of the client library A

0xD003 4 After receiving the HTTP message of the client library A

0xD004 5 Before calling a web resource A

0xD005 6 After calling a web resource A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-95.

The following figure showsthe trace collection points in JAX-RS.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 563

Figure 8‒95: Trace collection points of JAX-RS

8.24.2 Trace information that can be collected
The following table describes the trace information that can be collected in JAX-RS.

Table 8‒132: Trace information that can be collected in JAX-RS

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xD000 A Class name Method name --

2 0xD001 A Class name Method name • In a normal
state:
None

• In an abnormal
state:
Exception name

3 0xD002 A Class name Method name Endpoint URI

4 0xD003 A Class name Method name • In a normal
state:
None

• In an abnormal
state:
Exception name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 564

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

5 0xD004 A Class name Method name The call type is one
of the following:
• ObjectOut

Invoker
• ResponseOut

Invoker
• TypeOutInvoke

r
• VoidOutInvoke

r
• VoidToVoid

Dispatcher

6 0xD005 A Class name Method name • In a normal
state:
None

• In an abnormal
state:
Exception name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-95.

8.24.3 Data output to the exception log
If an exception name is output to the additional information (OPT) column at a trace based performance analysis
collection point, detailed information about the exception is output to the exception log at the same time. You can analyze
the failure by comparing the exception name output by the trace based performance analysis with the exception log.
However, if you intentionally raise exceptions in a batch application or other application and use them to control the
processing of jobs, the amount of log output might increase because detailed information is output to the exception log
each time an exception is raised. When executing such an application, set a larger size for the exception log in advance.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 565

8.25 Trace collection points of a Java batch

This section describes the trace collection points of a Java batch and the trace information that can be collected.

8.25.1 Trace collection points and trace information that can be collected
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒133: Details of trace collection points in a Java batch

Event ID No. in the
figures#

Trace acquisition points Level

0xD020 1 Immediately after the
javax.batch.runtime.BatchRuntime.getJobOperator()
method starts

A

0xD021 2 Immediately before the
javax.batch.runtime.BatchRuntime.getJobOperator()
method ends

A

0xD022 3 Immediately after the
javax.batch.operations.JobOperator.start(String
jobXMLName, Properties jobParameters) method starts

A

0xD023 4 Immediately before the
javax.batch.operations.JobOperator.start(String
jobXMLName, Properties jobParameters) method ends

A

0xD024 5 Immediately after the
javax.batch.operations.JobOperator.restart(long
executionId, Properties restartParameters)
method starts

A

0xD025 6 Immediately before the
javax.batch.operations.JobOperator.restart(long
executionId, Properties restartParameters) method ends

A

0xD026 7 Immediately after the
javax.batch.operations.JobOperator.stop(long
executionId) method starts

A

0xD027 8 Immediately before the
javax.batch.operations.JobOperator.stop(long
executionId) method ends

A

0xD028 9 Immediately after the
javax.batch.operations.JobOperator.abandon(long
executionId) method starts

A

0xD029 10 Immediately before the
javax.batch.operations.JobOperator.abandon(long
executionId) method ends

A

0xD02A 11 Immediately after the job starts A

0xD02B 12 Immediately after the job ends A

0xD02C 13 Immediately after the step processing starts A

0xD02D 14 Immediately before the step processing ends A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 566

Event ID No. in the
figures#

Trace acquisition points Level

0xD02E 15 Immediately before invoking the open(Serializable
checkpoint) method of the implementation class
of javax.batch.api.chunk.ItemReader

A

0xD02F 16 Immediately after the processing of the open(Serializable
checkpoint) method of the implementation class of
javax.batch.api.chunk.ItemReader is complete

A

0xD030 17 Immediately before invoking the close() method of the implementation
class of javax.batch.api.chunk.ItemReader

A

0xD031 18 Immediately after the processing of the close() method of the
implementation class of javax.batch.api.chunk.ItemReader
is complete

A

0xD032 19 Immediately before invoking the readItem() method of the
implementation class of javax.batch.api.chunk.ItemReader

A

0xD033 20 Immediately after the processing of the readItem() method of the
implementation class of javax.batch.api.chunk.ItemReader
is complete

A

0xD034 21 Immediately before invoking the checkpointInfo() method of the
implementation class of javax.batch.api.chunk.ItemReader

A

0xD035 22 Immediately after the processing of the checkpointInfo() method of
the implementation class of javax.batch.api.chunk.ItemReader
is complete

A

0xD036 23 Immediately before invoking the processItem(Object
item) method of the implementation class
of javax.batch.api.chunk.ItemProcessor

A

0xD037 24 Immediately after the processing of the processItem(Object
item) method of the implementation class of
javax.batch.api.chunk.ItemProcessor is complete

A

0xD038 25 Immediately before invoking the open(Serializable
checkpoint) method of the implementation class
of javax.batch.api.chunk.ItemWriter

A

0xD039 26 Immediately after the processing of the open(Serializable
checkpoint) method of the implementation class of
javax.batch.api.chunk.ItemWriter is complete

A

0xD03A 27 Immediately before invoking the close() method of the implementation
class of javax.batch.api.chunk.ItemWriter

A

0xD03B 28 Immediately after the processing of the close() method of the
implementation class of javax.batch.api.chunk.ItemWriter
is complete

A

0xD03C 29 Immediately before invoking the writeItems(List<Object>
items) method of the implementation class
of javax.batch.api.chunk.ItemWriter

A

0xD03D 30 Immediately after the processing of the writeItems(List<Object>
items) method of the implementation class of
javax.batch.api.chunk.ItemWriter is complete

A

0xD03E 31 Immediately before invoking the checkpointInfo() method of the
implementation class of javax.batch.api.chunk.ItemWriter

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 567

Event ID No. in the
figures#

Trace acquisition points Level

0xD03F0 32 Immediately after the processing of the checkpointInfo() method of
the implementation class of javax.batch.api.chunk.ItemWriter
is complete

A

0xD040 33 Immediately before invoking the beforeJob()
method of the implementation class
of javax.batch.api.listener.JobListener

A

0xD041 34 Immediately after the processing of the
beforeJob() method of the implementation class of
javax.batch.api.listener.JobListener is complete

A

0xD042 35 Immediately before invoking the afterJob()
method of the implementation class
of javax.batch.api.listener.JobListener

A

0xD043 36 Immediately after the processing of the
afterJob() method of the implementation class of
javax.batch.api.listener.JobListener is complete

A

0xD044 37 Immediately before invoking the beforeStep()
method of the implementation class
of javax.batch.api.listener.StepListener

A

0xD045 38 Immediately after the processing of the
beforeStep() method of the implementation class of
javax.batch.api.listener.StepListener is complete

A

0xD046 39 Immediately before invoking the afterStep()
method of the implementation class
of javax.batch.api.listener.StepListener

A

0xD047 40 Immediately after the processing of the
afterStep() method of the implementation class of
javax.batch.api.listener.StepListener is complete

A

0xD048 41 Immediately before invoking the beforeChunk()
method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener

A

0xD049 42 Immediately after the processing of the
beforeChunk() method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener
is complete

A

0xD04A 43 Immediately before invoking the afterChunk()
method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener

A

0xD04B 44 Immediately after the processing of the
afterChunk() method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener
is complete

A

0xD04C 45 Immediately before invoking the onError(Exception
ex) method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener

A

0xD04D 46 Immediately after the processing of the onError(Exception
ex) method of the implementation class
of javax.batch.api.chunk.listener.ChunkListener
is complete

A

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 568

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-96 through Figure 8-99.

The following figures show the trace collection points in Java batch.

Figure 8‒96: Trace collection points of Java batch (points output between the client, synchronous
execution thread, and asynchronous execution thread)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 569

Figure 8‒97: Trace collection points of Java batch (points output during job execution)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 570

Figure 8‒98: Trace collection points of Java batch (points output during step processing)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 571

Figure 8‒99: Trace collection points of Java batch (points output during step processing (processing
in range A))

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 572

8.25.2 Trace information that can be collected
The following table describes the trace information that can be collected in a Java batch.

Table 8‒134: Trace information that can be collected in a Java batch

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xD020 A -- -- --

2 0xD021 A -- -- • In a normal
state:
None

• In an abnormal
state:
Exception name

3 0xD022 A -- -- jobXMLName,
which is an
argument of

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 573

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

JobOperator.s
tart()

4 0xD023 A instanceId executionId • In a normal
state:
None

• In an abnormal
state:
Exception name

5 0xD024 A -- executionId, which is an argument
of JobOperator.restart()

--

6 0xD025 A instanceId Newly assigned executionId • In a normal
state:
None

• In an abnormal
state:
Exception name

7 0xD026 A -- executionId, which is an argument
of JobOperator.stop()

--

8 0xD027 A -- -- • In a normal
state:
None

• In an abnormal
state:
Exception name

9 0xD028 A -- executionId, which is an argument
of JobOperator.abandon()

--

10 0xD029 A -- -- • In a normal
state:
None

• In an abnormal
state:
Exception name

11 0xD02A A -- -- --

12 0xD02B A Job batch status -- • In a normal
state:
Job exit status

• In an abnormal
state:
Exception name

13 0xD02C A -- Step ID --

14 0xD02D A • When TransitionElement
is applied:
Name of the applied
TransitionElement (next, fail,
end, or stop)

• When the next attribute
is applied:
next

• When the next
ExecutionElement exists:
ID of the next ExecutionElement
to be executed

• In other cases:
None

• In a normal
state:
Step exit status

• In an abnormal
state:
Exception name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 574

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

• In other cases:
Step batch status

15 0xD02E A Called class name -- --

16 0xD02F A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

17 0xD030 A Called class name -- --

18 0xD031 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

19 0xD032 A Called class name -- --

20 0xD033 A Called class name • When the return value is null:
null

• When the return value is
not null:
not null

• In an abnormal state:
None

• In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

21 0xD034 A Called class name -- --

22 0xD035 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

23 0xD036 A Called class name -- --

24 0xD037 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

25 0xD038 A Called class name -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 575

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

26 0xD039 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

27 0xD03A A Called class name -- --

28 0xD03B A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

29 0xD03C A Called class name -- --

30 0xD03D A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

31 0xD03E A Called class name -- --

32 0xD03F0 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

33 0xD040 A Called class name -- --

34 0xD041 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

35 0xD042 A Called class name -- --

36 0xD043 A Called class name -- • In a normal
state:
None

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 576

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

• In an abnormal
state:
Name of the
exception
raised from UP

37 0xD044 A Called class name -- --

38 0xD045 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

39 0xD046 A Called class name -- --

40 0xD047 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

41 0xD048 A Called class name -- --

42 0xD049 A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

43 0xD04A A Called class name -- --

44 0xD04B A Called class name -- • In a normal
state:
None

• In an abnormal
state:
Name of the
exception
raised from UP

45 0xD04C A Called class name -- Exception, which is
the argument of
ChunkListener
.onError(Exce
ption)

46 0xD04D A Called class name -- • In a normal
state:
None

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 577

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

• In an abnormal
state:
Name of the
exception
raised from UP

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-96 through Figure 8-99.

8.25.3 Data output to the exception log
If an exception name is output to the additional information (OPT) column at a trace based performance analysis
collection point, detailed information about the exception is output to the exception log at the same time. You can analyze
the failure by comparing the exception name output by the trace based performance analysis with the exception log.
However, if you intentionally raise exceptions in a batch application or other application and use them to control the
processing of jobs, the amount of log output might increase because detailed information is output to the exception log
each time an exception is raised. When executing such an application, set a larger size for the exception log in advance.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 578

8.26 Trace collection points of WebSocket

This section provides the details of trace collection points in WebSocket.

8.26.1 When an opening handshake request is received
The following figure shows the trace collection points in WebSocket.

Figure 8‒100: Trace collection points of WebSocket (when an opening handshake request is
received)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒135: Details of the trace collection points of WebSocket (when an opening handshake
request is received)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE100 1 A Immediately before the start of processing after
receiving the opening handshake request

CONNECT URI at the time of
handshake

--

0xE120 2 A Immediately before invoking a
method annotated with @OnOpen
or the onOpen method of
the javax.websocket.Endpoint
implementation class

Class name of the
endpoint

Method name --

0xE121 3 A Immediately after the processing of the
method annotated with @OnOpen or
the processing of the onOpen method
of the javax.websocket.Endpoint
implementation class is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 579

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

Exception
name

0xE101 4 A Immediately after the completion of processing
after receiving the opening handshake request

CONNECT URI at the time of
handshake

• In a normal
state:
Session ID

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-100.

8.26.2 When a message is received
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 580

Figure 8‒101: Trace collection points of WebSocket (when a message (data frame) is received)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 581

Figure 8‒102: Trace collection points of WebSocket (when a split message is received by a
message handler with a Reader or InputStream type argument)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒136: Details of the trace collection points of WebSocket (when a message is received)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE102 5 A Immediately before the start of processing for
the received WebSocket frame

READ -- --

0xE103 12 A Immediately after the completion of processing
for the received WebSoket frame

READ -- • In a normal
state:
None

• In an
abnormal
state:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 582

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

Exception
name

0xE140 6 A Immediately before the start of processing after
receiving a data frame

MESSAGE One of the
following:
• onMessag
e(String)

• onMessag
e(ByteBuf
fer)

• onPartial
Message(S
tring)

• onPartial
Message(B
yteBuffer
)

--

0xE141 11 A Immediately after the completion of processing
after receiving a data frame

MESSAGE One of the
following:
• onMessag
e(String)

• onMessag
e(ByteBuf
fer)

• onPartial
Message(S
tring)

• onPartial
Message(B
yteBuffer
)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE122 7 A Immediately before invoking a method
annotated with @OnMessage

Class name of the
endpoint

Method name --

0xE123 8 A Immediately after the processing of a method
annotated with @OnOpen is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE124 7 A Immediately before invoking the onMessage
method of the implementation class of
javax.websocket.MessageHandler.
Whole

Implementation
class name of
javax.websoc
ket.MessageH
andler.Whole

Method name --

0xE125 8 A Immediately after the processing of the
onMessage method of the implementation
class of
javax.websocket.MessageHandler.
Whole is complete

Implementation
class name of
javax.websoc
ket.MessageH
andler.Whole

Method name • In a normal
state:
None

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 583

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

• In an
abnormal
state:
Exception
name

0xE126 7 A Immediately before invoking the onMessage
method of the implementation class of
javax.websocket.MessageHandler.
Partial

Implementation
class name of
javax.websoc
ket.MessageH
andler.Parti
al

Method name --

0xE127 8 A Immediately after the processing of the
onMessage method of the implementation
class of
javax.websocket.MessageHandler.
Partial is complete

Implementation
class name of
javax.websoc
ket.MessageH
andler.Parti
al

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE128 9 A Immediately before invoking a
method annotated with @OnError
or the onError method of
the javax.websocket.Endpoint
implementation class

Class name of the
endpoint

Method name --

0xE129 10 A Immediately after the processing of the
method annotated with @OnError or
the processing of the onError method
of the javax.websocket.Endpoint
implementation class is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-101 and Figure 8-102.

8.26.3 When data is sent
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 584

Figure 8‒103: Trace collection points of WebSocket (when data is sent)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒137: Details of the trace collection points of WebSocket (when data is sent)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE112 14 A Immediately before the WebSocket frame
transmission processing starts

WRITE -- --

0xE113 15 A Immediately after the WebSocket frame
transmission processing is complete

WRITE -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE130 13 A Immediately after the
javax.websocket.RemoteEndpoint.
Async.sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint.Async

Method name
(argument type)

Destination
session ID

0xE131 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
Async.sendXXX method

javax.websoc
ket.RemoteEn
dpoint.Async

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 585

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

Exception
name

0xE132 13 A Immediately after the
javax.websocket.RemoteEndpoint.
Basic.sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint.Basic

Method name
(argument type)

Destination
session ID

0xE133 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
Basic.sendXXX method

javax.websoc
ket.RemoteEn
dpoint.Basic

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE134 13 A Immediately after the
javax.websocket.RemoteEndpoint.
sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint

Method name
(argument type)

Destination
session ID

0xE135 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
sendXXX method

javax.websoc
ket.RemoteEn
dpoint

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-103.

8.26.4 When a Ping is received
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 586

Figure 8‒104: Trace collection points of WebSocket (when a Ping is received)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒138: Details of the trace collection points of WebSocket (when a Ping is received)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE102 5 A Immediately before the start of processing for
the received WebSocket frame

READ -- --

0xE103 12 A Immediately after the completion of processing
for the received WebSoket frame

READ -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 587

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE112 14 A Immediately before the WebSocket frame
transmission processing starts

WRITE -- --

0xE113 15 A Immediately after the WebSocket frame
transmission processing is complete

WRITE -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE142 17 A Immediately before the start of processing after
receiving a Ping frame

PING -- --

0xE143 18 A Immediately after the completion of processing
after receiving a Ping frame

PING -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE130 13 A Immediately after the
javax.websocket.RemoteEndpoint.
Async.sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint.Async

Method name
(argument type)

Destination
session ID

0xE131 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
Async.sendXXX method

javax.websoc
ket.RemoteEn
dpoint.Async

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE132 13 A Immediately after the
javax.websocket.RemoteEndpoint.
Basic.sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint.Basic

Method name
(argument type)

Destination
session ID

0xE133 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
Basic.sendXXX method

javax.websoc
ket.RemoteEn
dpoint.Basic

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE134 13 A Immediately after the
javax.websocket.RemoteEndpoint.
sendXXX method is invoked

javax.websoc
ket.RemoteEn
dpoint

Method name
(argument type)

Destination
session ID

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 588

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE135 16 A Immediately before the return of the
javax.websocket.RemoteEndpoint.
sendXXX method

javax.websoc
ket.RemoteEn
dpoint

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-104.

8.26.5 When a Pong is received
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 589

Figure 8‒105: Trace collection points of WebSocket (when a Pong is received)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒139: Details of the trace collection points of WebSocket (when a Pong is received)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE102 5 A Immediately before the start of processing for
the received WebSocket frame

READ -- --

0xE103 12 A Immediately after the completion of processing
for the received WebSoket frame

READ -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE144 19 A Immediately before the start of processing after
receiving a Pong frame

PONG -- --

0xE145 20 A Immediately after the completion of processing
after receiving a Pong frame

PONG -- • In a normal
state:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 590

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

None
• In an

abnormal
state:
Exception
name

0xE122 7 A Immediately before invoking a method
annotated with @OnMessage

Class name of the
endpoint

Method name --

0xE123 8 A Immediately after the processing of a method
annotated with @OnOpen is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE124 7 A Immediately before invoking the onMessage
method of the implementation class of
javax.websocket.MessageHandler.
Whole

Implementation
class of
javax.websoc
ket.MessageH
andler.Whole

Method name --

0xE125 8 A Immediately after the processing of the
onMessage method of the implementation
class of
javax.websocket.MessageHandler.
Whole is complete

Implementation
class of
javax.websoc
ket.MessageH
andler.Whole

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE126 7 A Immediately before invoking the onMessage
method of the implementation class of
javax.websocket.MessageHandler.
Partial

Implementation
class of
javax.websoc
ket.MessageH
andler.Parti
al

Method name --

0xE127 8 A Immediately after the processing of the
onMessage method of the implementation
class of
javax.websocket.MessageHandler.
Partial is complete

Implementation
class of
javax.websoc
ket.MessageH
andler.Parti
al

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE128 9 A Immediately before invoking a
method annotated with @OnError
or the onError method of
the javax.websocket.Endpoint
implementation class

Class name of the
endpoint

Method name --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 591

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE129 10 A Immediately after the processing of
a method annotated with @OnError
or of the onError method
of the javax.websocket.Endpoint
implementation class is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-105.

8.26.6 When a closing handshake request is received
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 592

Figure 8‒106: Trace collection points of WebSocket (when a closing handshake request is received
(with payload data))

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 593

Figure 8‒107: Trace collection points of WebSocket (when a closing handshake request is received
(no payload data))

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒140: Details of the trace collection points of WebSocket (when a closing handshake request
is received)

Event ID No.
in
the
fig
ure
s#

Le
vel

Operation name Information that you can acquire

Interface name Operation name Optional

0xE102 5 A Immediately before the start of processing for
the received WebSocket frame

READ -- --

0xE103 12 A Immediately after the completion of processing
for the received WebSoket frame

READ -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE112 14 A Immediately before the WebSocket frame
transmission processing starts

WRITE -- --

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 594

Event ID No.
in
the
fig
ure
s#

Le
vel

Operation name Information that you can acquire

Interface name Operation name Optional

0xE113 15 A Immediately after the WebSocket frame
transmission processing is complete

WRITE -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE146 21 A Immediately before the start of processing
after receiving or sending a closing
handshake request

CLOSE Cause of
disconnection

--

0xE147 24 A Immediately after the completion of processing
after receiving or sending a closing
handshake request

CLOSE Cause of
disconnection

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE12A 22 A Immediately before invoking a
method annotated with @OnClose
or the onClose method of
the javax.websocket.Endpoint
implementation class

Class name of the
endpoint

Method name --

0xE12B 23 A Immediately after the processing of
a method annotated with @OnClose
or of the onClose method
of the javax.websocket.Endpoint
implementation class is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-106, Figure 8-107.

8.26.7 When a closing handshake request is sent
The following figure shows the trace collection points in WebSocket.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 595

Figure 8‒108: Trace collection points of WebSocket (when a closing handshake request is sent)

The following table describes the event IDs, trace levels, trace collection points, and information that can be collected.

Table 8‒141: Details of the trace collection points of WebSocket (when a closing handshake request
is sent)

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE112 14 A Immediately before the WebSocket frame
transmission processing starts

WRITE -- --

0xE113 15 A Immediately after the WebSocket frame
transmission processing is complete

WRITE -- • In a normal
state:
None

• In an
abnormal
state:
Exception
name

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 596

Event ID No.
in
the
fig
ure
s#

Le
vel

Trace acquisition points Information that you can acquire

Interface name Operation name Optional

0xE146 21 A Immediately before the start of processing
after receiving or sending a closing
handshake request

CLOSE Cause of
disconnection

--

0xE147 24 A Immediately after the completion of processing
after receiving or sending a closing
handshake request

CLOSE Cause of
disconnection

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE12A 22 A Immediately before invoking a
method annotated with @OnClose
or the onClose method of
the javax.websocket.Endpoint
implementation class

Class name of the
endpoint

Method name --

0xE12B 23 A Immediately after the processing of
a method annotated with @OnClose
or of the onClose method
of the javax.websocket.Endpoint
implementation class is complete

Class name of the
endpoint

Method name • In a normal
state:
None

• In an
abnormal
state:
Exception
name

0xE136 25 A Immediately after the
javax.websocket.Session.close
method is invoked

javax.websoc
ket.Session

Method name
(argument type)

Destination
session ID

0xE137 26 A Immediately before the return of the
javax.websocket.Session.close
method

javax.websoc
ket.Session

Method name
(argument type)

• In a normal
state:
None

• In an
abnormal
state:
Exception
name

Legend:
A: Standard
--: Not applicable

#
Corresponds to the numbers in Figure 8-108.

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 597

8.27 Trace collection points of Concurrency Utilities

This section describes the trace collection points of Concurrency Utilities and the trace information that can be collected.

8.27.1 Trace collection points and trace information that can be collected
The following table describes the event IDs, trace collection points, and PRF trace collection levels.

Table 8‒142: Details of trace collection points in Concurrency Utilities

Event ID No. in the
figures#

Trace acquisition points Level

0xD050 1 Entry point of the new task registration method A

0xD051 2 Exit point of the new task registration method A

0xD052 3 Immediately before calling a task A

0xD053 4 Immediately after the task ends A

0xD054 5 Entry point of the get method of the Future or ScheduledFuture
object returned as a return value upon task registration

A

0xD055 6 Exit point of the get method of the Future or ScheduledFuture object
returned as a return value upon task registration

A

0xD056 7 Entry point of the cancel method of the Future or ScheduledFuture
object returned as a return value upon task registration

A

0xD057 8 Exit point of the cancel method of the Future or ScheduledFuture
object returned as a return value upon task registration

A

Legend:
A: Standard

#
Corresponds to the numbers in Figure 8-109 through Figure 8-116.

Figure 8-109 shows the trace collection points when the following methods are called:

• javax.enterprise.concurrent.ManagedExecutorService#execute(Runnable)
• javax.enterprise.concurrent.ManagedScheduledExecutorService#execute(Runnable
)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 598

Figure 8‒109: Trace collection points of Concurrency Utilities (1)

Figure 8-110 through Figure 8-114 show the trace collection points when the following methods are called. The trace
collection points differ depending on the timing of calling the get method or the cancel method.

When the get method is called before the task finishes: Figure 8-110

When the get method is called after the task finishes: Figure 8-111

When the cancel method is called before the task execution starts: Figure 8-112

When the cancel method is called during task processing: Figure 8-113

When the cancel method is called after the task finishes: Figure 8-114

• javax.enterprise.concurrent.ManagedExecutorService#submit(Runnable)
• javax.enterprise.concurrent.ManagedExecutorService#submit(Runnable, T)
• javax.enterprise.concurrent.ManagedExecutorService#submit(Callable<T>)
• javax.enterprise.concurrent.ManagedScheduledExecutorService#submit(Runnable)
• javax.enterprise.concurrent.ManagedScheduledExecutorService#submit(Runnable,
T)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#submit(Callable<
T>)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#schedule(Callabl
e<V>, long, TimeUnit)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#schedule(Callabl
e<V>, Trigger)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#schedule(Runnabl
e, long, TimeUnit)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#schedule(Runnabl
e, Trigger)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#scheduleAtFixedR
ate(Runnable, long, long, TimeUnit)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 599

• javax.enterprise.concurrent.ManagedScheduledExecutorService#scheduleWithFixe
dDelay(Runnable, long, long, TimeUnit)
Figure 8‒110: Trace collection points of Concurrency Utilities (2) (when the get method is called

before the task finishes)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 600

Figure 8‒111: Trace collection points of Concurrency Utilities (3) (when the get method is called
after the task finishes)

Figure 8‒112: Trace collection points of Concurrency Utilities (4) (when the cancel method is
called before the task execution starts)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 601

Figure 8‒113: Trace collection points of Concurrency Utilities (5) (when the cancel method is
called during task processing)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 602

Figure 8‒114: Trace collection points of Concurrency Utilities (6) (when the cancel method is
called after the task finishes)

Figure 8-115 shows the trace collection points when the following methods are called:

• javax.enterprise.concurrent.ManagedExecutorService#invokeAll(Collection<?
Extends Callable<T>>)

• javax.enterprise.concurrent.ManagedExecutorService#invokeAll(Collection<?
Extends Callable<T>>, long, TimeUnit)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#invokeAll(Collec
tion<? Extends Callable<T>>)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#invokeAll(Collec
tion<? Extends Callable<T>>, long, TimeUnit)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 603

Figure 8‒115: Trace collection points of Concurrency Utilities (7)

Figure 8-116 shows the trace collection points when the following methods are called:

• javax.enterprise.concurrent.ManagedExecutorService#invokeAny(Collection<?
Extends Callable<T>>)

• javax.enterprise.concurrent.ManagedExecutorService#invokeAny(Collection<?
Extends Callable<T>>, long, TimeUnit)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#invokeAny(Collec
tion<? Extends Callable<T>>)

• javax.enterprise.concurrent.ManagedScheduledExecutorService#invokeAny(Collec
tion<? Extends Callable<T>>, long, TimeUnit)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 604

Figure 8‒116: Trace collection points of Concurrency Utilities (8)

8.27.2 Trace information that can be collected
The following table describes the trace information that can be collected in Concurrency Utilities.

Table 8‒143: Trace information that can be collected at the JMS Connection interface

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

1 0xD050 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

Name of the invoked method (For a
method for which multiple tasks can
be specified#2, the number of tasks is
output in parentheses.)

Class name of the
new task (If there
are multiple tasks,
the class names are
separated by
commas.)

2 0xD051 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

Task ID • In a normal
state:
None

• In an abnormal
state:

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 605

No. in the
figures#

Event ID Level Information that you can acquire

Interface name Operation name Optional

Exception name

3 0xD052 A JNDI name of the calling
ManagedExecutorService
or
ManagedScheduledExecut
orService

• For a single task
Task ID

• For multiple tasks
Task ID-List serial number

--

4 0xD053 A JNDI name of the calling
ManagedExecutorService
or
ManagedScheduledExecut
orService

• For a single task
Task ID

• For multiple tasks
Task ID-List serial number

• In a normal
state:
None

• In an abnormal
state:
Exception name

5 0xD054 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

• For a single task
Task ID

• For multiple tasks
Task ID-List number

--

6 0xD055 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

• For a single task
Task ID

• For multiple tasks
Task ID-List number

• In a normal
state:
None

• In an abnormal
state:
Exception name

7 0xD056 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

• For a single task
Task ID

• For multiple tasks
Task ID-List number

--

8 0xD057 A JNDI name of the registration
destination
ManagedExecutorService
or
ManagedScheduledExecut
orService

• In a normal state:
Return value of the
cancel method

• In an abnormal state:
None

• In a normal
state:
None

• In an abnormal
state:
Exception name

Legend:
A: Standard
--: Not applicable

#1
Corresponds to the numbers in Figure 8-109 through Figure 8-116.

#2
A method for which multiple tasks can be specified is one that takes a Collection object as its first argument. The size of the Collection object
that is the actual argument is output in parentheses.
Example: When a Collection object of three elements is passed by the invokeAny method
invokeAny(3)
If the Collection object is null, null is output in parentheses.
Example: When the Collection object is null
invokeAny(null)

8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis

Maintenance and Migration Guide 606

9 Product JavaVM Functionality

The product JavaVM is JavaVM that is provided in Application Server. You can use the product
JavaVM for acquiring the data at error time and the information used for tuning. This chapter
describes about the functionality provided by the product JavaVM. For details about the Explicit
Memory Management functionality provided by the product JavaVM, see 7. Suppression of Full GC
by Using the Explicit Memory Management Functionality in the uCosminexus Application Server
Expansion Guide.

Maintenance and Migration Guide 607

9.1 Organization of this chapter

The product JavaVM is provided by the component software, Cosminexus Developer's Kit for Java. The process of the
J2EE server or the batch server running in the Application Server is executed on the JavaVM. This section explains the
functionality of the product JavaVM.

For an overview of the product JavaVM functionality, see 9.2 Overview of the product JavaVM functionality.

The following table lists the product JavaVM functionality provided in the Application Server and corresponding
reference section.

Table 9‒1: product JavaVM functionality provided in the Application Server

Functionality name Reference location

Class-wise statistical functionality 9.3

Instance statistical functionality# 9.4

STATIC member statistical functionality# 9.5

Reference-related information output functionality# 9.6

Pre-statistical GC selection functionality# 9.7

Unused objects statistical functionality in the Tenured area# 9.8

Base object list output functionality for Tenured augmentation factors# 9.9

Class-wise statistical information analysis functionality 9.10

Tenuring distribution information output functionality of the Survivor area 9.11

hndlwrap functionality 9.12

Functionality to set the upper limit of allocation size of C heap during JIT compilation 9.13

Functionality to set the upper limit of number of threads 9.14

Notes on using the product JavaVM functionality 9.15

#
One of the class-wise statistical functionality that outputs the class-wise statistical information.

9. Product JavaVM Functionality

Maintenance and Migration Guide 608

9.2 Overview of the product JavaVM functionality

The process of the J2EE server or the batch server running in the Application Server is executed on the JavaVM. The
functionality provided by the product JavaVM is as follows:

• Explicit Memory Management functionality

• Class-wise statistical functionality

• Instance statistical functionality

• STATIC member statistical functionality

• Reference-related information output functionality

• Pre-statistical GC selection functionality

• Unused objects statistical functionality in the Tenured area

• Base object list output functionality for Tenured augmentation factors

• Class-wise statistical information analysis functionality#

• Tenuring distribution output functionality of the Survivor area

• hndlwrap functionality

• Functionality to set the upper limit of allocation size of C heap during JIT compilation

• Functionality to set the upper limit of the number of threads

#
If using the class-wise statistical information analysis functionality, you can output the class-wise statistical
information to the extended thread dump file in the CSV format.

Tip

When you execute the unused objects statistical functionality in the Tenured of the class-wise statistical
functionality, the following functionality are disabled:

• Instance statistical functionality

• STATIC member statistical functionality

• Pre-statistical GC selection functionality

In the product JavaVM, the output contents of the log are expanded so that the output contents can be used for the cause
analysis of the error occurrence and for checking the system state. This log is output to the Hitachi JavaVM log file,
and therefore, you can acquire many troubleshoot information than the standard JavaVM. You can improve the system
availability by implementing an appropriate tuning using this log (extended verbose information). For details about
the Hitachi JavaVM log files, see 5.7 JavaVM log (JavaVM log file). For details about the tuning of the Java VM, see
7. JavaVM Memory Tuning in the uCosminexus Application Server System Design Guide.

Hereafter, the following section describes each functionality of the product JavaVM. For details about the Explicit
Memory Management functionality, see 7. Suppression of Full GC by Using the Explicit Memory Management
Functionality in the uCosminexus Application Server Expansion Guide.

9. Product JavaVM Functionality

Maintenance and Migration Guide 609

9.3 Class-wise statistical functionality

This section describes the class-wise statistical functionality.

You can use the class-wise statistical functionality to output the instance information of the reference-related class for
each class, to the extended thread dump.

The following table describes the organization of this section.

Table 9‒2: Organization of this section (class-wise statistical functionality)

Category Title Reference

Explanation Overview of the class-wise statistical functionality 9.3.1

Functionality that requires the class-wise statistical functionality 9.3.2

Operation Outputting statistic information for each class 9.3.3

Notes Precautions to output the class-wise statistical information 9.3.4

Note:
The function-specific description is not available for "Implementation" and "Settings".

9.3.1 Overview of the class-wise statistical functionality
You can output the size of all instances those are under the members of each class that has instances, to the extended
thread dump, as the statistical information for each class. This statistical information is called as class-wise statistical
information. You can output the class-wise statistical information multiple times for investigating the change in the
Java object by GC, the status of the Java object having short life, change in the size of each class, and the Java
object parent-child relation. You can use this information for measuring the memory used for one transaction and for
investigating the memory leak.

The class-wise statistical information is output based on the following functionality:

• Instance statistical functionality

• STATIC member statistical functionality

• Reference-related information output functionality

• Pre-statistical GC selection functionality

• Unused objects statistical functionality in the Tenured area

• Base object list output functionality for Tenured augmentation factors

For details about each functionality, see 9.3.2 Functionality that requires the class-wise statistical functionality.

In the class-wise statistical functionality, the instances in the Java heap (a combination of the Eden area, the Survivor area,
and the Tenured area) are subject to statistics. Additionally, when using Explicit Memory Management functionality, you
can also target the instances that exists the in Explicit heap for statistics. For details about how to output a class-wise
statistical information, see 9.3.3 Outputting Statistic Information for Each Class.

9. Product JavaVM Functionality

Maintenance and Migration Guide 610

Reference note

The extended thread dump is set such as to be output by default. For details about the settings for acquiring
the extended thread dump, see 3.3.17(1) Settings for Acquiring Thread Dumps of JavaVM. For details about an
output information, see 5.5 JavaVM Thread Dump.

Also, you can output the class-wise statistical information in the CSV format. For details about how to
output the class-wise statistical information in the CSV format, see 9.10 Class-wise statistical information
analysis functionality.

9.3.2 Functionality that requires the class-wise statistical functionality
The following table lists the types and the overview of the functionality that requires the class-wise
statistical functionality.

Table 9‒3: Types and overview of the functionality that requires the class-wise statistical
functionality

Types Overview Reference

Instance statistical functionality Outputs the total size of instances that have instances of class as members, for
each class.

9.4

STATIC member statistical functionality Outputs the total size of the instances of the static members for each class. 9.5

Reference-related information
output functionality

Outputs the reference relation of the class that has a specified class (instance)
as member.

9.6

Pre-statistical GC selection functionality You can select whether to execute the GC before a class-wise statistical
information is output. Use the options to specify this functionality when
executing the jheapprof command. In default setting, the Full GC is
executed before a class-wise statistical information is output.

9.7

Unused objects statistical functionality
in the Tenured area

Identifies the unused objects in the Tenured area. 9.8

Base object list output functionality for
Tenured augmentation factors

Outputs the information about objects acting as the base of the unused objects
that are identified using the unused object statistical functionality in the
Tenured area.

9.9

Among the above functionalities, an instance statistical functionality, the STATIC member statistical functionality,
reference-related information output functionality, and the base object list output functionality for Tenured augmentation
factors are enabled when executing the class-wise statistical functionality.

You can set the pre-statistical GC selection functionality when executing the class-wise statistical functionality. Select
this functionality as per the purpose of investigating the class-wise statistical information. For details, see 9.7.2
Guidelines for selecting the GC.

9.3.3 Outputting Statistic Information for Each Class
This subsection describes how to output the class-wise statistical information.

9. Product JavaVM Functionality

Maintenance and Migration Guide 611

Use the jheapprof commands to output the class-wise statistical information to the extended thread dump. Specify
the Java process, where you want to output the class-wise statistical information, and the class, where you want to output
the reference-related information, and then execute the jheapprof commands.

You can specify the following when executing the jheapprof command:

• Specify whether to output the information of an Explicit heap as class-wise statistical information.

• Specify whether to execute the GC before acquiring the class-wise statistical information.

The execution format and the execution example of the jheapprof command and each specification method are
described as follows:

(1) Execution format and execution example of the jheapprof command
The execution format and example of the jheapprof command are described below: For details about the
jheapprof commands, see jheapprof(Output of extended thread dump containing Hitachi class-wise statistical
information) in the uCosminexus Application Server Command Reference Guide.

Execution format
In Windows

jheapprof [-f|-i] [-explicit|-noexplicit] [-class class-name] [-fullgc|
-copygc|-nogc] [-garbage|-nogarbage] [-rootobjectinfo|-norootobjectinfo
] [-rootobjectinfost size] -p process-ID

In UNIX

jheapprof [-f|-i] [-explicit|-noexplicit] [-class class-name] [-fullgc|
-copygc|-nogc] [-garbage|-nogarbage] [-rootobjectinfo|-norootobjectinfo
] [-rootobjectinfost size] [-force] -p process-ID

Execution example
Here, the class-wise statistical information of Java process with process ID 2463 is output.

1. In the -p option, specify the process ID of the Java process where you want to output the class-wise statistical
information, and then execute the jheapprof command.

% jheapprof -p 2463

When the -f option is being omitted in the jheapprof command, the following confirmation message
is displayed:

In Windows
The confirmation message whether to output an extended thread dump with Hitachi class-wise statistical
information is displayed in the following format:

Force VM to output HitachiJavaHeapProfile: ? (y/n)

In UNIX
The confirmation message of process ID is displayed in the following format:

send SIGQUIT to 2463: ? (y/n)

2. Enter y.

9. Product JavaVM Functionality

Maintenance and Migration Guide 612

An extended thread dump with Hitachi class-wise statistics is output. The following message is output in the running
java program:

Writing Java core to javacore2463.030806215140.txt... OK

The running java program creates an extended thread dump with Hitachi class-wise statistics (javacore.process-
ID.date-time.txt) in the current directory and continues the program.

(2) When the information of an Explicit heap is output to the class-wise
statistical information

If the following conditions are satisfied, you can output the information of an Explicit heap to the class-wise
statistical information:

• -XX:+HitachiUseExplicitMemory is specified in the JavaVM start option.

• Explicit heap is used for implementing the application, or setting the execution environment (J2EE server).

Specify the -explicit option in the jheapprof command, and then execute the command to output the information
of an Explicit heap to the class-wise statistical information.

For details about the Explicit Memory Management functionality, see 7. Suppression of Full GC by Using the Explicit
Memory Management Functionality in the uCosminexus Application Server Expansion Guide.

(3) When specifying whether to execute the GC
You can select whether to execute the GC before the class-wise statistical information is output. This functionality is
called as pre-statistical GC selection functionality. Specify any of the following options in the jheapprof command,
if you want to execute the GC before the class-wise statistical information is output:

• -fullgc
Executes the Full GC, and then outputs the class-wise statistical information.

• -copygc
Executes the copy GC, and then outputs the class-wise statistical information.

• -nogc
Outputs the class-wise statistical information without executing the GC.

For details about the pre-statistical GC selection functionality, see 9.7 Pre-statistical GC selection functionality. Note
that you cannot execute the pre-statistical GC selection functionality, when you execute the unused objects statistical
functionality in the Tenured area.

9.3.4 Precautions to output the class-wise statistical information
The precautions to be taken to output the class-wise statistical information is described as follows:

• For running Java process, if you execute the jheapprof command in which the -copygc option is set, you can
try to execute the pre-statistical copy GC. In this case, if a free space of the Tenured area is insufficient, the copy GC
might not be executed.
When you cannot execute the copy GC, the extended verbosegc information when GC occurred is not output, even
if you specify -XX:+HitachiVerboseGC in the JavaVM start option. Furthermore, an extended thread dump
that contains the class-wise statistical information is output simultaneously when executing the GC.

9. Product JavaVM Functionality

Maintenance and Migration Guide 613

• For Java process where -XX:+PrintGCDetails is specified when starting the JavaVM, you can execute the
jheapprof command in which -copygc option is set, for executing the pre-statistical copy GC. In this case, a
'Full GC' is output in the GC that is output by specifying -XX:+PrintGCDetails.

9. Product JavaVM Functionality

Maintenance and Migration Guide 614

9.4 Instance statistical functionality

This section describes the instance statistical functionality.

The instance statistical functionality is the functionality that outputs the class-wise statistical information. You can output
an instance count of the class and the total size of the instances for each class.

The instance statistical functionality uses the jheapprof commands for output. For details about the execution format
and the execution examples of the jheapprof commands, see 9.3.3 Outputting Statistic Information for Each Class.

The following table describes the organization of this section.

Table 9‒4: Organization of this section (Instance statistical functionality)

Category Title Reference

Description Overview of the instance statistical functionality 9.4.1

Class-wise statistical information output by the instance
statistical functionality

9.4.2

Note:
The function-specific explanation is not available for "Implementation", "Settings", "Operations", and "Notes".

9.4.1 Overview of the instance statistical functionality
The instance statistical functionality is used to check memory leaks in applications.

The instance statistical functionality investigates the reference relation of instances, such as relation with instances of
class A->member variable of class A(the class is classB)->instances of classB->..., and recurrently adds the size of the
instances without referencing to other instances in the class that has the instances as the member. In other words, the
instance statistical functionality outputs the total size of the instances referenced by the class instances.

To check the cause of memory leak, execute the instance statistical functionality as follows, before and after the
application processing for which you want to check the memory leak, then take the difference between the number of
instances and the total size of the instances in points 1 and 3, check the amount of the increase in the numbers, and then
identify the classes that are causing the memory leak.

1. Execute the instance statistical functionality.

2. Execute the application processing for which you want to check the memory leak.

3. Execute the instance statistical functionality.

Note that because the instance statistical functionality recursively adds the size of all the instances referenced by each
class instance, you cannot check the size of only the instances of each class (the size excludes the size of the instances
being referenced).

In the instance statistical functionality, when using the Explicit Memory Management functionality, the output result of
the class-wise statistical information changes according to whether to set the instances of the Explicit heap as a target
for statistics. Furthermore, specify the -explicit option in the jheapprof command, and then execute the same
command to set the instances of an Explicit heap as a target for statistics.

The following figure shows an example of an instance structure that describes the output result of each statistical target.

9. Product JavaVM Functionality

Maintenance and Migration Guide 615

Figure 9‒1: Example of instance structure

When the statistical target contains an Explicit heap, the instances a1, b1, b2, c1, and c2 becomes the target for the
class-wise statistical information. When the statistical target does not contains an Explicit heap, the instances a1, b2, and
c2 becomes the target for the class-wise statistical information.

The following table lists the instance count and the total size of instances for each statistical target.

Table 9‒5: Instance count and total size of instances for each statistical target

Arguments of
the jheapprof
command

Statistical target Class A Class B Class C

Instance
count

Total
size#

Instance
count

Total
size#

Instance
count#

Total
size#

-explicit • Java heap
• Explicit heap

1 122 2 22 2 2

-noexplicit • Java heap 1 111 1 11 1 1

#
The total size indicates the total size of the instances. The unit is bytes.

The formula for calculating the total size of the instances of each class is as follows:

• When statistical target contains an Explicit heap

• In class A: a1+b1+b2+c1+c2

• In class B: b1+b2+c1+c2

• In class C: c1+c2

9. Product JavaVM Functionality

Maintenance and Migration Guide 616

• When statistical target does not contains an Explicit heap

• In class A: a1+b2+c2

• In class B: b2+c2
(Though the instance b1 is not targeted, the instance b2 and c2 under b1 are targeted, and therefore, the size of
those instances that exist in the reference relation is added to the class B)

• In class C: c2

In the instance statistical functionality, investigate for the reference relation of the object referred in the following order
from the object that is the base. The base objects are the objects those are not investigated in other reference relation. 1.,
2., and 3. indicates the priority order for investigating reference relation.

1. Ascending order of the address within the Java heap

2. Ascending order of the address within an Explicit management heap

When the reference destination objects are investigated, return up to the branch point, and investigate for the
reference relation.

Moreover, when the reference destination objects are the objects that is the base of other reference relation, handle it as
a reference destination object. Investigate for the reference relation until all the objects that are the base are lost.

When using instance statistical functionality, instance count of each class is output for number of instances. The
following contents are output for the total size of instances:

• The size of the object that is the base is added to the corresponding class. The size of the reference destination object
is added to the corresponding class, and also added to the object that is the base and to their corresponding class of
all objects that exist in the reference relation extended up to the corresponding class.

9.4.2 Class-wise statistical information output by the instance statistical
functionality

This subsection describes about the output format, the output items, and the output examples of the class-wise statistical
information output by the instance statistical functionality.

(1) Output format and output items
The output format of the class-wise statistical information output by the instance statistical functionality is as follows:

• Output format

Java Heap Profile

________________Size__Instances__Class________________
 <total_size> <Instance_count> <class_name>
 <total_size> <Instance_count> <class_name>
...

• Output items
The items listed in the output format are described as follows.

9. Product JavaVM Functionality

Maintenance and Migration Guide 617

Table 9‒6: Output items (instance statistical functionality)

Output items Meaning

<total_size> The total size of the instance is output in byte unit.

<Instance_count> The number of instance is output.

<class_name> The class name is output.

(2) Example of output
The output example of the class-wise statistical information output by the instance statistical functionality is described
as the example of the following source.

public class instance {
 public static void main(String args[]) {
 classA cls_a = new classA();
 try {
 Thread.sleep(20000);
 } catch (Exception e) {}
 }
}
class classA {
 classB a1;
 classC a2;
 classA() {
 a1 = new classB();
 a2 = new classC();
 }
}
class classB {
 classD b1;
 String b2;
 classB() {
 b1 = new classD();
 b2 = null;
 }
}
class classC {
 String c1, c2;
 classC() {
 c1 = null;
 c2 = null;
 }
}
class classD {
 String d1, d2;
 classD() {
 d1 = null;
 d2 = null;
 }
}

The following figure shows the instance structure for above source.

9. Product JavaVM Functionality

Maintenance and Migration Guide 618

Figure 9‒2: Instance structure (instance statistical functionality)

When using the above instance structure, add the following size for each class in the instance statistical functionality:

• Size of class A: a1+a2+ b1+b2+ c1+c2+ d1+d2

• Size of class B: b1+b2+ d1+d2

• Size of class C: c1+c2

• Size of class D: d1+d2

The following figure shows the output result of the instance statistical functionality.

Figure 9‒3: Output result (instance statistical functionality)

9. Product JavaVM Functionality

Maintenance and Migration Guide 619

9.5 STATIC member statistical functionality

This section describes the STATIC member statistical functionality.

The STATIC member statistical functionality is the functionality that outputs the class-wise statistical functionality. You
can output the total size of instances of static members for each class.

The STATIC member statistical functionality uses the jheapprof command for output. For details about the execution
format and the execution examples of the jheapprof commands, see 9.3.3 Outputting Statistic Information for
Each Class.

The following table describes the organization of this section.

Table 9‒7: Organization of this section (STATIC member statistical functionality)

Category Title Reference

Description Overview of the STATIC member statistical functionality 9.5.1

Class-wise statistical information output by the STATIC member
statistical functionality

9.5.2

Note:
The function-specific explanation is not available for "Implementation", "Settings", "Operations", and "Notes".

9.5.1 Overview of the STATIC member statistical functionality
Like the instance statistical functionality, the STATIC member statistical functionality is used to check the memory leak
in applications.

The point of difference with the instance statistical functionality is that the instance statistical functionality recursively
adds the size of the instances referenced from the non-static fields of the instance retrieved first, while the STATIC
member statistical functionality recursively adds the size of the instances referenced from the static fields (static fields of
the class) of the instance retrieved first. This enables you to acquire the total size of the instances of the static member for
each class. However, apart from the instances retrieved first, both instance statistical functionality and STATIC member
statistical functionality check the reference relationship based on the non-static members of the instances.

For details about the difference between the instance statistical functionality and the STATIC member statistical
functionality, see 9.5.2(2) Output examples.

To check the cause of a memory leak, execute the STATIC member statistical functionality as follows, before and after
the application processing for which you want to check the memory leak, then take the difference between the number
of instances and the total size of the instances in points 1 and 3, check the amount of increase in the numbers, and then
identify the classes that are causing the memory leak.

1. Execute the STATIC member statistical functionality.

2. Execute the application processing for which you want to check the memory leak.

3. Execute the STATIC member statistical functionality.

Note that because the STATIC member statistical functionality recursively adds the size of the instances referenced by
the static fields of each class, you cannot check the total size of only the instances of each class (the size excludes the
size of the instances being referenced).

9. Product JavaVM Functionality

Maintenance and Migration Guide 620

In the STATIC member statistical functionality, investigate for the reference relation from the object that is the base. The
base objects are the object those are not investigated in other reference relation and refers the STATIC member of all
classes of JavaVM.

When the reference destination objects are investigated, return up to the branch point, and investigate for the reference
relation. Investigate for the reference relation until all the objects that are the base are lost.

When using the STATIC member statistical functionality, the following contents are output for instance count and for
the total size of instances:

• Add the size of all objects that exist in the reference relation and number of objects in the object that is the base. Add
this value in the class having STATIC member that is referred by the object that is the base, as a statistical value.

9.5.2 Class-wise statistical information output by the STATIC member
statistical functionality

This subsection describes about the output format, the output items, and the output examples of the class-wise statistical
information output by the STATIC member statistical functionality.

(1) Output format and output items
The output format of the class-wise statistical information output by the STATIC member statistical functionality is
as follows:

• Output format

Java Heap Dump Static Profile

________________Size__Instances__Class________________
 <total_size> <Instance_count> <class_name>
 <total_size> <Instance_count> <class_name>
...

• Output items
The items listed in the output format are described as follows.

Table 9‒8: Output items (STATIC member statistical functionality)

Output items Meaning

<total_size> The total size of the instance is output in byte unit.

<Instance_count> The number of instance is output.

<class_name> The class name is output.

(2) Output examples
The output example of the class-wise statistical information output by the STATIC member statistical functionality, is
described as an example of the following source:

public class static_instance {
 public static void main(String args[]) {
 classA cls_a;
 classB cls_b;

9. Product JavaVM Functionality

Maintenance and Migration Guide 621

 classC cls_c;

 cls_a = new classA();
 cls_b = new classB();
 cls_c = new classC();
 cls_b.cls_c = cls_c;
 cls_a.cls_b = cls_b;

 try {
 Thread.sleep(20000);
 } catch (Exception e) {}
 }
}
class classA {
 static classB cls_b;
}
class classB {
 classC cls_c;
}
class classC {
}

The following figure shows the output result of the STATIC member statistical functionality.

Figure 9‒4: Output result (STATIC member statistical functionality)

Moreover, there is a difference in the reference relation for the above source in the instance statistical functionality and
in the STATIC member statistical functionality and the following figure shows this difference.

9. Product JavaVM Functionality

Maintenance and Migration Guide 622

Figure 9‒5: Difference in reference relation in the instance statistical functionality and in the STATIC
member statistical functionality

The reference relation of the respective functionality is as follows:

• Reference relation of the instance statistical functionality
Instance variable cls_b of Instance A ->Instance variable cls_c of instance B -> Instance C

• Reference relation of the STATIC member statistical functionality
Class variable cls_b of class A ->Instance variable cls_c of instance B -> Instance C

9. Product JavaVM Functionality

Maintenance and Migration Guide 623

9.6 Reference-related information output functionality

This section describes about the reference-related information output functionality.

You can output the reference relation of the instances for the specified class in a sequence from the beginning, using the
reference-related information output functionality.

The following table describes the organization of this section.

Table 9‒9: Organization of this section (reference-related information output functionality)

Category Title Reference

Description Overview of the reference-related information output functionality 9.6.1

Class-wise statistical information output by the reference-related information
output functionality

9.6.2

Class-wise statistical information output by the static field-based reference
relationship output functionality

9.6.3

Notes Notes for the output of the static field-based reference relationships 9.6.4

Note:
The function-specific explanation is not available for "Implementation", "Settings", and "Operations".

9.6.1 Overview of the reference-related information output functionality
The class from which an instance of the class that is specified in the -class option of the jheapprof command is
to be referenced, is output in the sequence beginning from the reference relation of the instance.

If there are many instances of the specified class, all the corresponding instances are output. Even if there are many
instances having same name, you can identify the instances separately since the following information is output after the
instance name:

• Address of the instance

• Area name to which instance belongs

In the reference-related information output functionality, investigate for the reference relation of object referred in the
following order from the object that is the base. The base objects are the objects those are not investigated in other
reference relation. 1., 2., and 3. indicates the priority order for investigating reference relation.

1. Ascending order of the address within the Java heap

2. Ascending order of the address within an Explicit management heap

When the reference destination object is the class specified in the -class option, the reference relation extended from
the base object up to the object of the class specified in the -class option, is output in the reference-related information.
Moreover, when the reference destination objects are investigated, return up to the branch point, and investigate for the
reference relation. Moreover, when the reference destination objects are the objects that is the base of other reference
relation, handle it as a reference destination object. Investigate for the reference relation until all the objects that are the
base are lost.

Also, the static field-based reference relationship output functionality is enabled when you specify the -staticroot
option with the jheapprof command. The reference relationship output functionality is a prerequisite for this
functionality. With the static field-based reference relationship output functionality, the static field-based reference

9. Product JavaVM Functionality

Maintenance and Migration Guide 624

relationship is additionally output to the reference relationship output by the reference relationship output functionality.
This output information is used to ascertain the cause of the memory leak using the reference relationships based on
static fields.

The following figure shows an example of a reference relationship with a memory leak:

If you execute the static field-based reference relationship output functionality for the reference relationship instance
d/Cd in the figure, the following reference relationship is output:

Based on this information, the references of the following fields will be cleared as a measure against the leak. Due to this,
the instance d/Cd is collected by GC, so the memory leak can be resolved.

• Instance field id1 of the instance c/Cc
• Static field sd1 of the class Ca

For details on the reference relationships of the reference relationship output functionality, see 9.6.2 Class-wise
statistical information output by the reference-related information output functionality, and for the static field-based
reference relationships, see 9.6.3 Class-wise statistical information output by the static field-based reference relationship
output functionality.

9. Product JavaVM Functionality

Maintenance and Migration Guide 625

9.6.2 Class-wise statistical information output by the reference-related
information output functionality

This subsection describes about the output format, the output items, and the output examples of the class-wise statistical
information output by the reference-related information output functionality.

(1) Output format and output items
The output format of the class-wise statistical information output by the reference-related information output
functionality is as follows:

• Output format

Reference of class option-specified-class-name
--#
class-name(address)[area-name]
 class-name(address)[area-name]
 option-specified-class-name(address)[area-name]

class-name(address)[area-name]
 java.lang.ref.Finalizerrepetition-count times
 class-name(address)[area-name]
 class-name(address)[area-name]
 option-specified-class-name(address)[area-name]

...

#
'-(hyphen)' for the number in which 19 is added is output to the string length of the option-specified-class-name.

• Output items
The each items listed in the output format are described as follows:

Table 9‒10: Output items (reference-related information output functionality)

Output items Meaning

class-name The class name to be referenced by an instance of the class that is specified in the -class option
of the jheapprof command is output.

address The address of the instance is output.

area-name The area where instance belongs is output.
• Eden: Indicates Eden area.
• Survivor: Indicates Survivor area.
• Tenured: Indicates Tenured area.
• EM(eid=<id>): Indicates Explicit memory block.

option-specified-class-name The class name specified in the -class option of the jheapprof command is output.

java.lang.ref.Finalizer The object of java.lang.ref.Finalizer created in the class having the finalize()
method is output all together.

repetition-count The count where the reference of the Finalizer instance is continuous is output.

(2) Example of output
The output example of the class-wise statistical information output by the reference-related information output
functionality, is described as the example of the following source:

9. Product JavaVM Functionality

Maintenance and Migration Guide 626

public class instance2 {
 public static void main(String args[]) {
 classA cls_a1 = new classA(); classA cls_a2 = new classA();
 classB cls_b1 = new classB(); classB cls_b2 = new classB();
 classC cls_c1 = new classC(); classC cls_c2 = new classC();
 classC cls_c3 = new classC(); classC cls_c4 = new classC();
 cls_a1.cls_a = cls_a2; cls_a1.cls_b = cls_b1;
 cls_a1.cls_c = cls_c1; cls_a2.cls_b = cls_b2;
 cls_b1.cls_c = cls_c2; cls_b2.cls_c = cls_c3;
 cls_c1.cls_c = cls_c4;
 try {
 Thread.sleep(20000);
 } catch (Exception e) {}
 }
}
class classA {
 classA cls_a;
 classB cls_b;
 classC cls_c;

 classA() {
 classB cls_b;
 }
}
class classB {
 classC cls_c;
}
class classC {
 classC cls_c;
}

The following figure shows the instance structure.

9. Product JavaVM Functionality

Maintenance and Migration Guide 627

Figure 9‒6: Instance structure (reference-related information output functionality)

The following figure shows the output result of the reference-related information output functionality. In such case,
specify an argument -class class-name in the jheapprof command, and then execute the command.

Figure 9‒7: Output result (reference-related information output functionality)

The address of all class A has same addresses (0x10766840). Therefore, it is understood that instances of all class A are
same. On the other hand, the class B in (1) and (4) has different address and therefore, has different instances.

Note that the placement for the instances on the memory is changed due to the GC occurrence. Therefore, whenever the
address and the area name is output, they might change every time.

9. Product JavaVM Functionality

Maintenance and Migration Guide 628

9.6.3 Class-wise statistical information output by the static field-based
reference relationship output functionality

This subsection describes the output format, output items, and examples of output of the class-wise statistical information
output by the static field-based reference relationship output functionality.

(1) Output format and output items
• Output format

The output format of the class-wise statistical information output by the static field-based reference relationship
output functionality is as follows:

Reference of class option-specified-class-name from static field
---#1
static field static-field-declaring-class-name#2.static-field-name#2
class-name(address)[area-name]
 class-name(address)[area-name]
 option-specified-class-name(address)[area-name]

...

#1:
The number of "-" (hyphens) that are output is equal to 37 added to the number of characters in option-specified-
class-name.

#2:
Indicates the base of the reference relationship.

• Output items
The following table describes the items shown in the output format.

Table 9‒11: Output items (static field-based reference relationship output functionality)

Output items Meaning

static-field-declaring-class-name The class name declaring the static field that forms the base is output.

static-field-name The name of the static field that forms the base is output.

class-name The class name of the instance that references the instances of the classes specified in the -class
option of the jheapprof command is output.

address The address of the instance is output.

area-name The area to which the instance belongs is output.
• Eden: Indicates the Eden area.
• Survivor: Indicates the Survivor area.
• Tenured: Indicates the Tenured area.
• EM(eid=<id>): Indicates the Explicit memory block.

option-specified-class-name The class name specified in the -class option of the jheapprof command is output.

(2) Examples of output
This subsection gives an example output of the class-wise statistical information output by the static field-based reference
relationship output functionality using the following source as an example:

9. Product JavaVM Functionality

Maintenance and Migration Guide 629

import JP.co.Hitachi.soft.jvm.MemoryArea.*;
public class static_reference {
 public static void main(String args[]) {
 try {
 classA cls_a1 = new classA();
 classB cls_b1 = new classB();
 classB cls_b2 = new classB();
 classC cls_c1 = new classC();
 classC cls_c2 = new classC();
 classC cls_c3 = new classC();
 BasicExplicitMemory emem = new BasicExplicitMemory();
 classC cls_c4 = (classC)emem.newInstance(classC.class);
 cls_a1.s_cls_a = cls_a1;
 cls_a1.s_cls_b = cls_b1;
 cls_a1.s_cls_c = cls_c1;
 cls_a1.cls_b = cls_b2;
 cls_b1.cls_c = cls_c2;
 cls_b2.cls_c = cls_c3;
 cls_c1.cls_c = cls_c4;
 Thread.sleep(20000);
 } catch (Exception e) {e.printStackTrace();}
 }
}
class classA {
 static classA s_cls_a;
 static classB s_cls_b;
 static classC s_cls_c;
 classB cls_b;
}
class classB {
 classC cls_c;
}
class classC {
 classC cls_c;
 public classC(){
 }
}

The following figure shows the structure of the instances.

9. Product JavaVM Functionality

Maintenance and Migration Guide 630

Figure 9‒8: Structure of the instances (static field-based reference relationship output functionality)

The following figure shows the output result of the static field-based reference relationship output functionality. In this
case, the jheapprof command is executed specifying the argument -class class-name -staticroot.

Figure 9‒9: Output result (static field-based reference relationship output functionality)

9. Product JavaVM Functionality

Maintenance and Migration Guide 631

9.6.4 Notes for the output of the static field-based reference relationships
If the static field-based reference relationship output functionality is enabled, the execution time of the jheapprof
command is longer by the time taken for executing the reference relationship output functionality, as compared to when
the static field-based reference relationship output functionality is disabled.

9. Product JavaVM Functionality

Maintenance and Migration Guide 632

9.7 Pre-statistical GC selection functionality

This section describes about the pre-statistical GC selection functionality.

You can use the pre-statistical GC selection functionality for selecting the processing that is to be executed before the
class-wise statistical information is output.

The following table describes the organization of this section.

Table 9‒12: Organization of this section (Pre-statistical GC selection functionality)

Category Title Reference

Description Overview of the pre-statistical GC selection functionality 9.7.1

Guidelines for selecting the GC 9.7.2

Note:
The function-specific explanation is not available for "Implementation", "Settings", "Operations", and "Notes".

9.7.1 Overview of the pre-statistical GC selection functionality
You can execute the class-wise statistical functionality to output the class-wise statistical information to the extended
thread dump. In the pre-statistical GC selection functionality, you can select the processing that is to be executed before
the class-wise statistical information is output. By selecting this processing that is to be executed, you can acquire the
various changes in the appearance of the Java object in the class-wise statistical information, depending on the purpose
of investigation.

When using the pre-statistical GC selection functionality, specify the processing to be executed by an argument of the
jheapprof command. The following table lists the process and the arguments of the jheapprof commands that can
be implemented before executing the class-wise statistical functionality.

Table 9‒13: Process and the arguments of the jheapprof commands that can be implemented
before executing the class-wise statistical functionality

Type of process Process contents Argument of the
jheapprof command

Execution of a Full GC Collects the used object for an entire JavaVM specific area even
including Tenured area.

-fullgc

Execution of a copy GC Collects the used object only for the Eden area and for the Survivor area -copygc

No execution of any GC Does not collect the used object though available. -nogc

Note that if you execute the class-wise statistical functionality when specifying -XX:+HitachiVerboseGC and
-XX:+HitachiVerboseGCPrintCause in the JavaVM start option, the following information is output to
extended verbosegc information:

• Type of GC

• Cause for GC occurrence in the extended thread dump

The above information differs with the information output by an argument specified in the jheapprof command. The
following table lists the relation between the arguments of the jheapprof command and the output information.

9. Product JavaVM Functionality

Maintenance and Migration Guide 633

Table 9‒14: Relation between the arguments of the jheapprof command and the output information

Argument of the jheapprof command Type of GC Cause for GC occurrence

-fullgc Full GC JHeapProf Command

-copygc GC JHeapProf Command

9.7.2 Guidelines for selecting the GC
The processing that is to be specified using the pre-statistical GC selection functionality differs depending on the purpose
of investigating the class-wise statistical information to be output.

The guidelines for selecting the processing depending on the purpose of investigation is described here.

Specify the processing that can be selected using the pre-statistical GC selection functionality by the argument of the
jheapprof command. Depending on the object that is to be investigated or depending on the class-wise statistical
information used in the type of investigation, you can select the processing.

The following table lists the guidelines for selecting the processing.

Table 9‒15: Guidelines for selecting the processing

Processing
(argument of the
jheapprof command)

Investigation target Example of how to investigate the class-wise
statistical information

Execution of a Full GC (-fullgc) Changing the object by Full GC You can identify the object that causes the memory leak
of the Java heap, since the used object is collected by
Full GC.

Execution of a copy GC (-copygc) Changing the object by copy GC With the copy GC, you can identify the object with a
long life that migrates to the Tenured area. From this
information, you can identify the object that causes
increase in the occurrence count of the Full GC.

No execution of any GC (-nogc)# Object with short life is being collected
by executing GC

Information on all objects including the used object is
output. You can identify the object with a high memory
sharing that becomes the cause (super-large object)
when the GC collection occurs frequently.

#
When -nogc is specified in the argument of the jheapprof command, the information on all short-lived objects is output, and therefore,
the log output volume increases.

9. Product JavaVM Functionality

Maintenance and Migration Guide 634

9.8 Unused objects statistical functionality in the Tenured area

This section describes the unused objects statistical functionality in the Tenured area.

The unused objects statistical functionality in the Tenured area is the functionality used to output the class-wise statistical
information. You can use this functionality in the Tenured area to identify the unused objects of the Tenured area.

To use the statistical functionality for the unused objects of the Tenured area, specify -garbage in the arguments of
the jheapprof command. For details on the jheapprof command, see jheapprof(Output of extended thread
dump containing Hitachi class-wise statistical information) in the uCosminexus Application Server Command
Reference Guide.

The following table describes the organization of this section.

Table 9‒16: Organization of this section (Unused objects statistical functionality in the Tenured area)

Category Title Reference

Description Overview of the unused objects statistical functionality in the Tenured area 9.8.1

Class-wise statistical information output by the unused objects statistical
functionality in the Tenured area

9.8.2

Notes Notes for executing the unused objects statistical functionality in the
Tenured area

9.8.3

Note:
The function-specific explanation is not available for "Implementation", "Settings", and "Operations".

9.8.1 Overview of the unused objects statistical functionality in the
Tenured area

You can use the unused objects statistical functionality in the Tenured area to identify only the unused objects that are
accumulated in the Tenured area, and output them to the thread dump file. This subsection describes the mechanism of
the unused objects statistical functionality in the Tenured area.

(1) Output of the size of unused objects
Objects with a long life accumulate in the Tenured area based on iteration of the copy GC. Among the accumulated
objects with a long life, the objects that lose their usage as time lapses, remain in the Tenured area as unused objects.
After this, a Full GC occurs when the memory becomes full. You can check the usage of the Tenured area from the time
of occurrence of a copy GC until the time of occurrence of a Full GC by using the unused objects statistical functionality
in the Tenured area and the instance statistical functionality.

The following figure shows the contents that you can identify using the unused objects statistical functionality in the
Tenured area and the instance statistical functionality.

9. Product JavaVM Functionality

Maintenance and Migration Guide 635

Figure 9‒10: Contents that can be identified using the unused objects statistical functionality in the
Tenured area and the instance statistical functionality

When the instance statistical functionality is executed without executing the pre-statistical GC, the size of the unused
object shown in step 3 in Figure 9-10 is output. This size is same as the memory usage status in the Tenured area that
includes the size of unused objects of the Tenured area corresponding to step 1 of Figure 9-10 and the objects in use in
the Tenured area corresponding to step 2 of Figure 9-10.

On the other hand, when you execute the unused objects statistical functionality in the Tenured area, you can output the
memory usage status (corresponding to step 1 of Figure 9-10) in the Tenured area that excludes the objects in use shown
in step 2 of Figure 9-10. You can use the unused objects statistical functionality in the Tenured area to identify the unused
objects that act as the augmentation factors for the Tenured area, which enables you to inhibit the Full GC.

(2) Checking the reference relationship of unused objects
In the unused objects statistical functionality of the Tenured area, search the base objects in the ascending order of their
address in the Tenured area. Even among the searched objects, the objects that are not investigated in another reference
relationship become the base objects.

When you have already investigated the referenced objects, return to the branching point and investigate the reference
relationship. Also, if a referenced object is the base object of another reference relationship, then handle as a referenced
object. Investigate a reference relationship until all base objects are eliminated.

For the unused objects statistical functionality in the Tenured area, the total of the number of instances and instance size
is output. Add the corresponding classes for number of instances. The following contents are output to the total size
of instances:

• The size of the base objects is added to the corresponding class. The size of the referenced objects is added to the
corresponding class, and then added to the corresponding classes of the base objects and all objects that exist in the
reference relationship up to the corresponding class.

Note that when you execute the unused objects statistical functionality in the Tenured area, the instance statistical
functionality, STATIC member statistical functionality, and pre-statistical GC selection functionality become disabled.

The following figure shows an example of the reference relationship based on the unused objects in the Tenured area.

9. Product JavaVM Functionality

Maintenance and Migration Guide 636

Figure 9‒11: Example of the reference relationship based on the unused objects in the Tenured area

The reference relationship shown in Figure 9-11 is described as follows:

Number of instances

• classA: One, because of the existence of a1

• classB: Two, because of the existence of b1 and b2

• classC: Two, because of the existence of c1 and c2

Total instance size

• classA: 122, when the size of the instance of classA (a1) and the size of the referenced instances (b1, b2, c1, c2)
are added

• classB: 22, when the size of the instances of classB (b1, b2) and the size of the referenced instances (c1, c2)
are added

• classC: 2, when the instances of classC (c1, c2) are added

The following is an output example, when the reference-related information shown in Figure 9-11 is output by executing
the unused objects statistical functionality in the Tenured area:

Garbage Profile

________________Size__Instances__Class________________
 122 1 A
 22 2 B
 2 2 C

9. Product JavaVM Functionality

Maintenance and Migration Guide 637

9.8.2 Class-wise statistical information output by the unused objects
statistical functionality in the Tenured area

This subsection describes the output format, output items, and output example of the class-wise statistical information
output by the unused objects statistical functionality in the Tenured area.

(1) Output format and output items
The output format of the class-wise statistical information output by the unused objects statistical functionality in the
Tenured area is as follows:

• Output format

Garbage Profile

________________Size__Instances__Class________________
 size number class-name
 size number class-name...

• Output items
Each item listed in the output format is described as follows.

Table 9‒17: Output items (Unused objects statistical functionality in the Tenured area)

Output item Meaning

Size The total size of instances is output in bytes.

Number The number of instances is output.

Class-name The class name is output.

(2) Output example
The following is an output example of the class-wise statistical information output by the unused objects statistical
functionality in the Tenured area:

Garbage Profile

________________Size__Instances__Class________________
 35234568 10648 java.util.HashMap
 5678900 10668 [Ljava.util.HashMap$Entry;
 4456788 7436 java.util.HashMap$Entry
 4321000 200 java.util.WeakHashMap
 1234568 190 [Ljava.util.WeakHashMap$Entry
 454400 4 java.util.WeakHashMap$Entry
 0 0 java.lang.Class
...

9.8.3 Notes for executing the unused objects statistical functionality in
the Tenured area

This subsection describes the notes for executing the unused objects statistical functionality in the Tenured area.

9. Product JavaVM Functionality

Maintenance and Migration Guide 638

(1) Notes when the unused objects statistical functionality in the Tenured
area is executed immediately after a Full GC

If you execute the unused objects statistical functionality in the Tenured area immediately after a Full GC, the statistical
processing is executed when the unused objects in the Tenured area for which the statistics are to be collected have been
collected. Therefore, the total instance size within the class-wise statistical information and the number of instances
becomes less, and the unused objects cannot be identified effectively. To effectively identify the unused objects, execute
the unused objects statistical functionality in the Tenured area. The following describes the execution of the unused
objects statistical functionality in the Tenured area separately for the case where the timing of occurrence of a Full GC
is known and for the case where it is not known.

(a) When the timing of occurrence of a Full GC is known
If you execute the unused objects statistical functionality in the Tenured area immediately before a Full GC, the statistical
processing is executed when the number of unused objects in the Tenured area for which the statistics are to be collected is
large. Therefore, the total instance size within the class-wise statistical information and the number of instances becomes
large, and the unused objects can be identified effectively.

(b) When the timing of occurrence of a Full GC is not known
To increase the total instance size within the class-wise statistical information, the number of instances, and effectively
identify the unused objects:

1. To know the timing of occurrence of Full GC, set the -XX:+HitachiVerboseGC option to output the extended
verbosegc information at JavaVM startup. By specifying the option, you can acquire the GC information.

2. Execute the unused objects statistical functionality in the Tenured area at a fixed interval in JavaVM. As a result, you
can acquire the GC information and multiple class-wise statistical information.

3. You can acquire the date and time of a Full GC from the extended verbosegc information, so select the class-wise
statistical information that is close to the Full GC. The class-wise statistical information close to the Full GC is
information about the statistical processing executed when the number of unused objects in the Tenured area for
which statistics are to be collected is large.

(2) Notes on statistical results
The following is an example of reference relationship showing the notes on statistical results.

9. Product JavaVM Functionality

Maintenance and Migration Guide 639

Figure 9‒12: Example of reference relationship (Notes on statistical results)

In this figure, when you assume a1 as the lowest address, the statistical processing is executed with the reference
relationship a1→ b1→ c1 in which a1 is the base object. At this point, if you assume b1 or c1 as the base object,
expected results will not be output to the statistical results of the unused objects statistical functionality in the Tenured
area and the base object list output functionality for Tenured augmentation factors.

(3) Notes on objects for which the statistics are not to be collected
The following figure shows the objects for which the statistics are not to be collected for a case in which the objects (a1
and c1) of the Tenured area have a reference relationship with the object (b1) of other than the Tenured area.

9. Product JavaVM Functionality

Maintenance and Migration Guide 640

Figure 9‒13: Example of reference relationship (Objects for which the statistics are not to be
collected)

In this figure, the statistics are not collected for the object (b1) that belongs to other than the Tenured area. However, the
size of the referenced object (c1) of the Tenured area is added to the total instance size of the class B.

(4) Notes for reference relationship from multiple objects
The following figure shows a reference relationship from multiple objects for a case having a reference relationship in
which one object (b1) is referenced from multiple reference sources (c1 and d1).

Figure 9‒14: Example of reference relationship (For a reference relationship from multiple objects)

In this figure, if you execute the unused objects statistical functionality in the Tenured area, the statistical processing is
executed from the base object having the lowest address among the base objects (c1 and a1) of the reference relationship
to which the reference source belongs. Therefore, if a1 is the object with the lowest address and c1 is the base object, the

9. Product JavaVM Functionality

Maintenance and Migration Guide 641

expected results will not be output in the statistical results of the unused objects statistical functionality in the Tenured
area and the base object list output functionality for Tenured augmentation factors.

(5) Notes for increasing the statistical value
If executing the unused objects statistical functionality in the Tenured area and the base object list output functionality
for Tenured augmentation factors in a Java process in which the -XX:+HitachiAutoExplicitMemory option is
specified, the following phenomena occurs:

• In the class-wise statistical information output by the unused objects statistical functionality in the Tenured area,
the total instance size of the float type array type (information in which [F is output in the class name) and the
statistical value of the number of instances becomes larger than the original statistical value. An output example of
the class-wise statistical information is as follows:

Garbage Profile

________________Size__Instances__Class________________
 43861400 473859 [F
 0 0 java.util.Collections$EmptyMap
 0 0 sun.security.util.Debug
 0 0 java.nio.ByteOrder

• If you output a float type array type (information in which [F is output in the class name) in the base object list
that is output by the base object list output functionality for Tenured augmentation factors, the total statistical value
of the instance size becomes larger than the original statistical value. An output example of the base object list for
Tenured augmentation factors is as follows:

Garbage Profile Root Object Information

*, [F # 43861400

If you are using versions earlier than 08-70, specify the -XX:-
HitachiExplicitMemoryPartialTenuredAreaCollection option to prevent occurrence of
this phenomenon.

9. Product JavaVM Functionality

Maintenance and Migration Guide 642

9.9 Base object list output functionality for Tenured augmentation factors

This section describes the base object list output functionality for Tenured augmentation factors.

The base object list output functionality for Tenured augmentation factors is used to output the class-wise statistical
information. You can use the base object list output functionality for Tenured augmentation factors to output the base
object information of the unused objects that are identified using the unused objects statistical functionality in the
Tenured area.

To use the base object list output functionality for Tenured augmentation factors, specify -rootobjectinfo in the
arguments of the jheapprof command. For details on the jheapprof command, see jheapprof(Output of extended
thread dump containing Hitachi class-wise statistical information) in the uCosminexus Application Server Command
Reference Guide.

The following table describes the organization of this section.

Table 9‒18: Organization of this section (Base object list output functionality for Tenured
augmentation factors)

Category Title Reference

Description An overview of the base object list output functionality for Tenured
augmentation factors

9.9.1

Class-wise statistical information output by the base object list output
functionality for Tenured augmentation factors

9.9.2

Note:
The function-specific explanation is not available for "Implementation", "Settings", "Operations", and "Notes".

9.9.1 Overview of the base object list output functionality for Tenured
augmentation factors

With the base object list output functionality for Tenured augmentation factors, you can use the unused objects statistical
functionality in the Tenured area to list the base object information of unused objects and output to the thread dump file.

The unused objects statistical functionality in the Tenured area is a prerequisite for the base object list output functionality
for Tenured augmentation factors.

Tip

You can specify the information acquired using the base object list output functionality for Tenured
augmentation factors in the automatic allocation setup file that is specified when you use the Explicit Memory
Management functionality. For details about using the Explicit management heap with the automatic allocation
configuration file, see 7.13.2 Using the Explicit Memory Management functionality by using the automatic
placement configuration file in the uCosminexus Application Server Expansion Guide.

This subsection describes the mechanism of the base object list output functionality for Tenured augmentation factors.

9. Product JavaVM Functionality

Maintenance and Migration Guide 643

(1) Output of the base object list
The base object list output functionality for Tenured augmentation factors is executed in continuation after the processing
of the unused objects statistical functionality in the Tenured area. For details about the processing executed in the unused
objects statistical functionality in the Tenured area, see the subsection 9.8.1 Overview of the unused objects statistical
functionality in the Tenured area.

In the base object list output functionality for Tenured augmentation factors, search the objects in the ascending order
of their address within the Tenured area. Among the searched objects, acquire the class information of objects that
are already investigated in a reference relationship, and also the information of unused objects and save in an output
options list.

The information saved in the output options list is sorted according to the total instance size, and only the class
information in which the total size is more than the value specified in the -rootobjectinfost option of the
jheapprof command are output.

(2) Checking the reference relationship of unused objects
The following is an example of the reference relationship based on the unused objects within the Tenured area, when you
execute the base object list output functionality for Tenured augmentation factors to acquire the base objects.

Number of instances

• classA: One, because of the existence of a1
• classB: Two, because of the existence of b1 and b2
• classC: Two, because of the existence of c1 and c2

Total instance size

• classA: 122, when the size of the instance of classA (a1) and the size of the referenced instances (b1, b2, c1,
c2) is totaled

• classB: 22, when the size of the instances of classB (b1, b2) and the size of the referenced instances (c1, c2)
is totaled

• classC: 2, when the instances of classC (c1, c2) are totaled

9. Product JavaVM Functionality

Maintenance and Migration Guide 644

Figure 9‒15: Example of the reference relationship based on the unused objects within the
Tenured area

When you execute the unused objects statistical functionality in the Tenured area to acquire information about a reference
relationship as is shown in Figure 9-15, the information acquired by the base object list output functionality for Tenured
augmentation factors will be as follows:

• Base point object: a1
• Class of the base point object: A
• Total instance size of class A of the base point object: 122

The following is an output example for the case when you execute the base object list output functionality for Tenured
augmentation factors to output the information about the reference relationship as shown in Figure 9-15:

Garbage Profile Root Object Information

*, A # 122

9.9.2 Class-wise statistical information output by the base object list
output functionality for Tenured augmentation factors

This subsection describes the output format and output items of the class-wise statistical information output using the
base object list output functionality for Tenured augmentation factors.

• Output format

9. Product JavaVM Functionality

Maintenance and Migration Guide 645

Garbage Profile Root Object Information

*, class-name # size
...

• Output items
The following table lists each item in the output format.

Table 9‒19: Output items (Base object list output functionality for Tenured augmentation factors)

Output item Meaning

Class-name The class name of base objects acting as the Tenured augmentation factors is output.

Size The total instance size acquired from the class-wise statistical information of the unused objects statistical
functionality in the Tenured area is output in bytes.

9. Product JavaVM Functionality

Maintenance and Migration Guide 646

9.10 Class-wise statistical information analysis functionality

This section describes the class-wise statistical information analysis functionality.

If using the class-wise statistical information analysis functionality, you can output the information acquired as
class-wise statistical information in the CSV format.

The following table describes the organization of this section.

Table 9‒20: Organization of this section (Class-wise statistical information analysis functionality)

Category Title Reference

Description Overview of the class-wise statistical information analysis functionality 9.10.1

Output example of the class-wise statistical information analysis functionality 9.10.2

Notes Notes for the class-wise statistical information analysis functionality 9.10.3

Note:
The function-specific explanation is not available for "Implementation", "Settings", and "Operations".

9.10.1 Overview of the class-wise statistical information analysis
functionality

Execute the jheapprofanalyzer command (class-wise statistical information analysis functionality) to output the
total instance size of each class and the number of instances of each class in the time series, assuming multiple extended
thread dump files with class-wise statistical information as input files. The files are output in the CSV format.

The following figure shows the flow execute the class-wise statistical information analysis functionality for the CSV
output of the information that is acquired as the class-wise statistical information.

Figure 9‒16: Flow of CSV output by executing the class-wise statistical information analysis
functionality

Using the class-wise statistical information analysis functionality, you can output the information
about the instances with large total size and can check the memory usage of only such
instances. To output only the instances with large total size, specify the threshold value in -
DJP.co.Hitachi.soft.jvm.tools.jheapprofanalyzer.threshold, and then specify in the

9. Product JavaVM Functionality

Maintenance and Migration Guide 647

jheapprofanalyzer command and execute the command. For details about the jheapprofanalyzer
command, see jheapprofanalyzer (CSV output of Hitachi class-wise statistical information analysis file) in the
uCosminexus Application Server Command Reference Guide.

9.10.2 Output example of the class-wise statistical information analysis
functionality

This subsection describes the input files, output files, and output format of the class-wise statistical information
analysis functionality.

(1) Input files
The extended thread dump files in which the class-wise statistical information is output are used as the input files in the
class-wise statistical information analysis functionality.

(2) Output files
The files output in the class-wise statistical information analysis functionality include two types of files, such as files that
output the total instance size of each class and files that output the number of instances of each class. The output files
are created in the current directory with the following names.

Table 9‒21: Names of output files

Type of output file Example of output file name

Instance total size file JheapprofAnalyzer_size_nnn.csv

Instance count file JheapprofAnalyzer_num_nnn.csv

Legend:
nnn: The file segmentation number is output. The segmentation number is in the range of 001 to 999.

The output file is segmented when the number of columns exceeds 201. When the number of files exceeds 999, the count
returns to 001 and files are re-written.

When the number of columns at which segmentation is performed exceeds 201 (1 column for class name + 200 columns
for value), the output format is the same for the segmented file as well.

(3) Output format
The following figure shows the output format of the files output in the class-wise statistical information analysis file.
Note that the output format of the CSV file in which the total instance size and number of instances are output is also
the same.

9. Product JavaVM Functionality

Maintenance and Migration Guide 648

Figure 9‒17: Output format of files output in the class-wise statistical information analysis
functionality

Demarcate a class name and value, and a value from another value with a comma. End a line with a value (including
a blank).

Class names are output in a random order. Based on the date displayed as the value in the first row of an input file, the
input files are arranged side by side starting from the file with the oldest date. If input files with the same date exist, they
are connected randomly and arranged side by side.

Reference note

If you execute the class-wise statistical information analysis functionality more than once, classes might be
removed or added during processing. Also, 0 will be output as the value when the corresponding class does not
exist. The following figure shows the class information.

Figure 9‒18: Example of class information

In case with the above class information, the output results when 0 is set as the threshold value
for -DJP.co.Hitachi.soft.jvm.tools.jheapprofanalyzer.threshold are as shown in
Figure 9-19:

Figure 9‒19: Output example of the class-wise statistical information analysis functionality

The maximum value of total instance size is 0 to 263-1, and the maximum value of the number of instances is 0
to 231-1. If the same class name exists in an input file, the total instance size is added. The number of instances
is also added. If the respective maximum values are exceeded due to adding up, the specified maximum value

9. Product JavaVM Functionality

Maintenance and Migration Guide 649

is output. Note that if the corresponding class information does not exist in all input files of a class or if the
threshold value is not reached, the information of that class is not output.

9.10.3 Notes for the class-wise statistical information analysis
functionality

When using the class-wise statistical information analysis functionality, do not update or delete an input file during the
execution of the jheapprofanalyzer command. The class-wise statistical information analysis functionality opens
the file twice: once when acquiring the date and once when reading the data. Therefore, the results will not be guaranteed,
when you update or delete an input file during the execution of the command.

9. Product JavaVM Functionality

Maintenance and Migration Guide 650

9.11 Tenuring distribution information output functionality of the
Survivor area

This section describes about the tenuring distribution information output functionality of the Survivor area.

You can use the tenuring distribution information output functionality of the Survivor area for investigating the Use
Status of the Survivor area when executing the copy GC. You can use this information for tuning the memory size.

The following table describes the organization of this section.

Table 9‒22: Organization of this section (tenuring distribution information output functionality of the
Survivor area)

Category Title Reference

Description Overview of the tenuring distribution information output functionality of the Survivor area 9.11.1

Output format and output example of the tenuring distribution information of the
Survivor area

9.11.2

Settings Settings for execution environment 9.11.3

Notes Precautions when using tenuring distribution information output functionality of the
Survivor area

9.11.4

Note:
The function-specific explanation is not available for "Implementation" and "Operations".

9.11.1 Overview of the tenuring distribution information output
functionality of the Survivor area

In product JavaVM, the output contents of the log are expanded more than that of a standard JavaVM, so that you
can acquire more troubleshooting information. The product JavaVM log is output to the Hitachi JavaVM log file. The
tenuring distribution information output functionality of the Survivor area outputs the tenuring distribution information
of the Java object of the Survivor area to the Hitachi JavaVM log file when executing the copy GC. You can use this
information for investigating the Use Status of the object of the Survivor area and for tuning the memory size of the
Survivor area. For details about the tuning the memory size of the Survivor area, see 7.6.1 Estimating the memory size
of the Survivor area in Java heap in the uCosminexus Application Server System Design Guide.

You can use the tenuring distribution information output functionality of the Survivor area to output the date and time
in addition to the tenuring distribution information of the Survivor area. Moreover, since the output destination is the
Hitachi JavaVM log file, you can obtain synchronization with other logs.

For details about the Hitachi-specific Java VM log file, see 4.10 JavaVM log (JavaVM log file). Moreover, for
details about the tuning of Java VM, see 7. JavaVM Memory Tuning in the uCosminexus Application Server System
Design Guide.

9. Product JavaVM Functionality

Maintenance and Migration Guide 651

9.11.2 Output format and output example of the tenuring distribution
information of the Survivor area

The tenuring distribution information of the Survivor area is output following to the log of the copy GC when the copy
GC occurs. The output format and the output example of the tenuring distribution information of the Survivor area are
as follows:

Output format

[PTD]<date>[Desired survivor:size bytes][New threshold:value][MaxTenuringT
hreshold: max_value][age1:total_age1][age2:total_age2]...[agen:total_agen]

Description

• PTD: An identifier that indicates the tenuring information of the Survivor area

• Date: Date and time when GC occurred (outputs only when -XX:+HitachiVerboseGCPrintDate
(extended verbosegc information date output option) is specified)#1

• size: Size of the Survivor area (unit: bytes)

• value: Tenuring threshold value of the object that migrates to the Tenured area when the GC will occur next time

• max_value: Specified value of -XX:MaxTenuringThreshold#2

• total_age1: Total of memory size used by the one-year-old object (unit: bytes)

• total_age2: Total of memory size used by the one-to-two-year-old object (unit: bytes)

• total_agen: Total of memory size used by the object from 1-year-old to n-year-old (unit: bytes)#3

Note:
When -XX:+HitachiCommaVerboseGC is specified, the tenuring
distribution information is output in the following format:

PTD,date,size,value,max_value,total_age1,total_age2,...,total_agen

#1
The time similar to the log of the corresponding copy GC is displayed.

#2
Set the threshold value of the frequency in which the Java object is replaced in the From space and in the To
space when executing the copy GC in the specified value of the -XX:MaxTenuringThreshold.

#3
The existing object is displayed in the order from minimum years to the maximum years. If the maximum years
of the displayed object are nearer to the value of max_value, then the object with long life exists is indicated.

Example of output

[VGC]<Wed May 28 11:45:23 2008>[GC 648K->136K(1984K), 0.0013020 secs][Def
New::Eden: 512K->0K(512K)][DefNew::Survivor: 0K->0K(64K)][Tenured: 136K->1
36K(1408K)][Metaspace: 3634K(4492K, 4492K)->3634K(4492K, 4492K)][class spa
ce: 356K(388K, 388K)->356K(388K, 388K)][cause:ObjAllocFail][User: 0.000000
0 secs][Sys: 0.0000000 secs]
[PTD]<Wed May 28 11:45:23 2008>[Desired survivor:5467547 bytes][New thresh
old:30][MaxTenuringThreshold:31][age1:1357527][age2:1539661]

You can check the following contents in the above output example:

• The output trigger is a copy GC that occurred at 11:45:23 on Wednesday, May 28, 2008.

9. Product JavaVM Functionality

Maintenance and Migration Guide 652

• The memory size of the Survivor area is 5,467,547 bytes. The object of the Survivor area is of up to two years
old. The memory size used by the one-year-old object is 1,357,527 bytes, and the memory size used by the object
from one-year-old to two-year-old, is 1,539,661 bytes.

9.11.3 Settings for execution environment
You must perform the following settings when using the tenuring distribution information output functionality of the
Survivor area:

• J2EE server

• Batch server

• Java application

(1) Setting the J2EE server
Implement the settings of the J2EE server in the Easy Setup definition file. Specify the definition of the tenuring
distribution information output functionality of the Survivor area in the JavaVM start parameter (add.jvm.arg) in
the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. The parameter
value to be specified is as follows:

• -XX:+HitachiVerboseGCPrintTenuringDistribution
Output the tenuring distribution information of the Survivor area to the Hitachi JavaVM log file. The default value
is -XX:-HitachiVerboseGCPrintTenuringDistribution.

For details on the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(2) Setting the batch server
Implement the settings of the batch server in the Easy Setup definition file. Specify the definition of the tenuring
distribution information output functionality of the Survivor area in the JavaVM start parameter (add.jvm.arg) in
the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. The parameter
value to be specified is as follows:

• -XX:+HitachiVerboseGCPrintTenuringDistribution
Output the tenuring distribution information of the Survivor area to the Hitachi JavaVM log file. The default value
is -XX:-HitachiVerboseGCPrintTenuringDistribution.

For details on the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(3) Setting the Java application
Implement the settings of the Java application in the usrconf.cfg (option definition file for Java application). Specify
the definition of the tenuring distribution information output functionality of the Survivor area in the add.jvm.arg
of the usrconf.cfg key. The parameter value to be specified is as follows:

• -XX:+HitachiVerboseGCPrintTenuringDistribution
Output the tenuring distribution information of the Survivor area to the Hitachi JavaVM log file. The default value
is -XX:-HitachiVerboseGCPrintTenuringDistribution.

9. Product JavaVM Functionality

Maintenance and Migration Guide 653

For details on usrconf.cfg (option definition file for Java applications), see 12.2.1 usrconf.cfg (Option definition file
for Java applications) in the uCosminexus Application Server Definition Reference Guide.

9.11.4 Precautions when using tenuring distribution information output
functionality of the Survivor area

When using the tenuring distribution information output functionality of the Survivor area, the log when executing the
copy GC increases as compared to the case when not used. We recommend that this functionality is to be used only for
the tuning of the Survivor area.

9. Product JavaVM Functionality

Maintenance and Migration Guide 654

9.12 hndlwrap functionality

This section describes the hndlwrap functionality.

The hndlwrap functionality can suppress the occurrence of a logoff event of JavaVM during a logoff. Note that you
can use this functionality only in Windows.

The following table describes the configuration of this section.

Table 9‒23: Configuration of this section (hndlwrap functionality)

Category Title Reference

Description Overview of the hndlwrap functionality 9.12.1

Notes Notes for using the hndlwrap functionality 9.12.2

Note:
The function-specific explanation is not available for "Implementation", "Settings", and "Operations".

9.12.1 Overview of the hndlwrap functionality
The hndlwrap functionality prevents the occurrence of a logoff event and closure of the window during a logoff.

This functionality uses Java Virtual Machine Tool Interface (JVMTI). If hndlwrap2.dll is loaded in the JVMTI
interface, an event handler that detects the class preparation event and ignores the logoff and window closure events
is installed. As a result, when you execute the hndlwrap functionality by specifying the -agentlib:hndlwrap2
option, you can operate the command even after logging off. For details on the options to be specified, see 14.5
Java HotSpot VM options that can be specified in Cosminexus in the uCosminexus Application Server Definition
Reference Guide.

9.12.2 Notes for using the hndlwrap functionality
The notes for using the hndlwrap functionality are as follows:

• When you specify the -XX:+EagerXrunInit option, the -Xrunhndlwrap option becomes disabled.

• When you execute a logoff while a Java application using the hndlwrap functionality on a command prompt is
being executed, a pop-up message indicating an error occurs and you cannot perform the logoff.

• You cannot execute the -agentlib:hndlwrap2 option simultaneously with another JVMTI program. If you
execute this option, the operation will not be guaranteed.

• You cannot specify the -Xrunhndlwrap option and -agentlib:hndlwrap2 option simultaneously.

9. Product JavaVM Functionality

Maintenance and Migration Guide 655

9.13 Functionality to set the upper limit of allocation size of C heap during
JIT compilation

Use C heap when compiling with Just In Time method (JIT compiler) supported by JavaVM. If you execute JIT compiler
for methods with large numbers of processing or for large methods, the C heap size allocated for compilation process
becomes larger and might result into insufficient C heap. In such cases, problems like forced termination of JavaVM or
abnormal end of J2EE server might occur, which might result into complete suspension of the system.

To prevent the occurrence of such problems, you can set an upper limit to the C heap size used in JIT compilation.
When the upper limit is exceeded, JIT compiling will be canceled and the subsequent compilation will be executed by
interpreter method. Thus, you can prevent the forced termination of JavaVM and stopping of the system.

Specify the upper limit of allocation size of C heap during JIT compilation
by using the -XX:HitachiJITCompileMaxMemorySize option. For details on the -
XX:HitachiJITCompileMaxMemorySize option, see -XX:HitachiJITCompileMaxMemorySize (Option for
specifying the maximum memory allocated for JIT compilation) in the uCosminexus Application Server Definition
Reference Guide.

9. Product JavaVM Functionality

Maintenance and Migration Guide 656

9.14 Functionality to set the upper limit of the number of threads

The C heap memory usage increases with the increase in the number of threads used in an application. If an increase in the
memory usage results in insufficient C heap, problems such as forced termination of JavaVM or abnormal end of J2EE
server might occur, which might result into complete suspension of the system.

To prevent the occurrence of such problems, you can set an upper limit to the available number of threads. You can
prevent C heap insufficiency by figuring out in advance the upper limit of the number of threads, and based on this you
can determine the memory size allocated to C heap. Note that an exception is thrown, if the number of threads generated
exceeds the set upper value. You can prevent stopping of the system by catching this exception in the application and
taking appropriate measures.

Specify the upper limit of the number of threads by using the -XX:HitachiThreadLimit option. For details on
the -XX:HitachiThreadLimit option, see -XX:HitachiThreadLimit (Option for specifying the maximum number
of threads) in the uCosminexus Application Server Definition Reference Guide.

9. Product JavaVM Functionality

Maintenance and Migration Guide 657

9.15 Notes on using the product JavaVM functionality (in UNIX)

This section describes the notes for using the product JavaVM functionality.

9.15.1 Common in UNIX
This subsection describes the common notes in UNIX.

• Operations when the SIGXFSZ signal is received
When JavaVM receives the SIGXFSZ signal, the following message is output to the standard output and the
processing continues:

Java HotSpot(TM) 64-Bit Server VM warning: File size limit exceeded.

However, if the upper limit of the file size is exceeded, the data is not written to the file.

• Operations when the SIGXCPU signal is received
When JavaVM receives the SIGXCPU signal, the following message is output to the standard output and the
processing continues:

Java HotSpot(TM) 64-Bit Server VM warning: CPU time limit exceeded.

• AWT (in AIX)
In AIX, AWT of Application Server uses XToolkit (sun.awt.X11.XToolkit). Motif-based MToolkit is not supported.

9.15.2 In AIX
This subsection describes the notes in AIX.

• Estimating the paging space
When a J2EE server and a Web container server are started, to prevent a program from stopping (SIGKILL)
due to insufficient paging while the program is running, set up the environment variable PSALLOC=early that
specifies the early paging space allocation for AIX in the start shell. However, if you specify PSALLOC=early
in the /etc/environment file, the early paging space allocation is specified for all the processes leading to
insufficient paging space. Therefore, specify the environment variable only for the shell that starts the relevant server.
Also, specify the environment variable NODISCLAIM=true at the same time. For the points to be considered when
you estimate the paging space for the early paging space allocation, see the AIX documentation.

• Native library search path

When the java command is used
When you use the java command included in Developer's Kit for Java to execute a Java program, you
can specify the directory search path of the system library loaded with System.loadLibrary() in the
environment variable LIBPATH, and environment variable LD_LIBRARY_PATH. The search order prioritizes
LD_LIBRARY_PATH and then LIBPATH.

When the java command is not used
When you use the JNI to start JavaVM and execute a Java program, the directory search path of the system library
loaded with System.loadLibrary() is the path specified only in the environment variable LIBPATH.

• Using the JNI to start JavaVM

9. Product JavaVM Functionality

Maintenance and Migration Guide 658

Note the following points when you use the JNI to start JavaVM:

• Make sure the following AIX-specific environment variables are set up:
For csh (C shell)
setenv AIXTHREAD_MUTEX_DEBUG OFF
setenv AIXTHREAD_RWLOCK_DEBUG OFF
setenv AIXTHREAD_COND_DEBUG OFF
For sh (standard shell) and ksh
export AIXTHREAD_MUTEX_DEBUG=OFF
export AIXTHREAD_RWLOCK_DEBUG=OFF
export AIXTHREAD_COND_DEBUG=OFF
For these environment variables, see the relevant page (https://www.ibm.com/support/
knowledgecenter/ja/ssw_aix_72/performance/thread_env_vars.html).

• Add the following paths to the environment variable LIBPATH and then execute the start program:
/opt/Cosminexus/jdk/lib
/opt/Cosminexus/jdk/lib/server
Note that the environment variable LIBPATH need not be set up when these paths are specified as the linkage
options for generating the start program.

• Font path
The fonts displayed with the GUI are searched from the system font path. If the program for changing the system
font path is executed before Developer's Kit for Java starts, the GUIs might be displayed incorrectly. Furthermore,
the system font path is also changed by Developer's Kit for Java. Therefore, the GUIs might be incorrectly displayed
with the programs such as the ones that search the system font path after Developer's Kit for Java starts.
Specify the following settings before and after starting Developer's Kit for Java, to return the system font path to the
default status:

% xset fp default

• Program starting time
The server VM (Java HotSpot Server VM) implements the Java virtual machine for Developer's Kit for Java.
Compared to the earlier client VM (Java HotSpot Client VM) version, the program execution speed is generally high
for the server VM, but the starting of the J2EE server programs might become slow. To start the programs quickly,
specify the following option. However, when you specify this option, the execution speed of the program might
become slower than normal.

-XX:CompileThreshold=3000

• Notes on migrating from the 32-bit JavaVM (Application Server Version 8) to the 64-bit JavaVM (Application Server
Version 9)
As compared to the 32-bit JavaVM, the availability of a large address space is an advantage with the 64-bit JavaVM.
Also, the pointer value of objects is 32 bits in the 32-bit JavaVM and 64 bits in the 64-bit JavaVM. Therefore, when
you migrate from the 32-bit JavaVM to the 64-bit JavaVM, you must review the applications, memory tuning, and
the environment. Note the following and then execute the migration process:

• Increased object access cost
The pointer value of the object changes from 32 bit to 64 bit, so the access to the object doubles at the
maximum. The execution performance of applications that frequently access the objects might be affected with
the 64-bit JavaVM.

• Increased Java heap memory size

9. Product JavaVM Functionality

Maintenance and Migration Guide 659

The pointer value of the object changes from 32 bit to 64 bit, so the size per object doubles at the maximum. As
a result, the memory size of the Java heap used by the application also increases.

• Increase in the memory size used by a process
With 64-bit JavaVM, the memory size used by the processes also increases apart from the Java heap memory size.
The method of estimating the memory size used by the processes is the same as the method of estimating the core
file size. For details on the estimation method, see 3.3.16(1) Setting the maximum size of core files.

• JNI compatibility
A native program created as a 32-bit binary and invoked with the JNI cannot be operated on the 64-bit JavaVM.
Also, the 32-bit and 64-bit native programs cannot be operated concurrently in one process. Therefore, when
using a native program invoked with the JNI, you must re-compile that program for the 64-bit JavaVM.

9.15.3 In Linux
This subsection describes the notes for Linux.

• Font-related messages
When you start a GUI application on a non-console remote terminal such as the X server, the following messages
might be output:

Warning: Cannot convert string
"-monotype-arial-regular-r-normal--*-140-*-*-p-*-iso8859-1" to type FontSt
ruct

To avoid this, use the xfs command to start the font server, use the xset command on the X server, and then specify
the font server in the font path. At this time, make sure that the missing font path is specified in the font server
configuration file.

9. Product JavaVM Functionality

Maintenance and Migration Guide 660

9.16 Finalize-retention resolution function

This section describes the finalize-retention resolution function. By using the finalize-retention resolution function, you
can resolve the retention of finalization processing and suppress the occurrence of delays in the release of OS resources.

9.16.1 Overview
In an application that defines OS resource release processing in the finalize() method, the finalization processing
might be retained and delays in the release of OS resources might occur. If you use the finalize-retention resolution
function, whether finalization processing is retained in JavaVM is detected and the retained finalization processing
is resolved.

The finalize-retention resolution function creates a finalization processing monitoring thread that monitors
FinalizerThread when Java starts in order to detect the retention of finalization processing. FinalizerThread is a
thread that is always present when Java is executed and processes the finalize() methods of objects one by one.

The finalization processing monitoring thread periodically monitors the objects being processed by FinalizerThread. If
the following conditions are met, the finalization processing is considered to be retained and a new finalization thread
is created.

• The finalization processing of the objects is not progressing in FinalizerThread.

• There is an object in the finalization queue.

Both FinalizerThread and the finalization thread execute the finalization processing to facilitate the resolution of the
retained finalization processing. Note that the finalization thread ends when the finalization queue becomes empty.

9.16.2 Output information
The finalize-retention resolution function outputs a message to the standard output at the following timings.

• When the retention of finalization processing is detected and a new finalization thread is created

• When the created finalization thread ends

The following shows the format and an output example of the message that is output at each timing.

• When the retention of finalization processing is detected and a new finalization thread is created
The following shows the format of the message that is output when retained finalization processing is detected and
a new finalization thread is created.

FinalizerWatcherThread: Create: create secondary finalizer thread. [queu
e length = queue] <date>

Description
queue: Number of elements in the finalization queue
date: Date and time when the finalization thread was newly created

The following is an output example:

9. Product JavaVM Functionality

Maintenance and Migration Guide 661

FinalizerWatcherThread: Create: create secondary finalizer thread. [queue
length = 128] <Mon May 26 18:00:36 JST 2008>

• When the created finalization thread ends
The following shows the format of the message that is output when the generated finalization thread ends.

FinalizerWatcherThread: Finish: secondary finalizer thread is finished.
<date>

Description
date: Date and time when the created finalization thread ended

The following is an output example:

FinalizerWatcherThread: Finish: secondary finalizer thread is finished. <
Mon May 26 20:12:26 JST 2008>

9.16.3 Settings for execution environment
To use the finalize-retention resolution function, you must specify settings for the following:

• J2EE server

• Batch server

• Java application

(1) Specifying settings for the J2EE server
Specify the J2EE server settings in the Easy Setup definition file. Specify the definition of the finalize-retention
resolution function in the JavaVM startup parameter (add.jvm.arg) in the <configuration> tag of the logical
J2EE server (j2ee-server) in the Easy Setup definition file. The parameter value to be specified is as follows:

• -DJP.co.Hitachi.soft.jvm.autofinalizer=true
This enables the finalize-retention resolution function. If this function is enabled, a monitoring thread is created when
Java starts. The default value is true, so specify false to disable the function.

For details on the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(2) Specifying settings for the batch server
Specify the batch server settings in the Easy Setup definition file. Specify the definition of the finalize-retention
resolution function in the JavaVM startup parameter (add.jvm.arg) in the <configuration> tag of the logical
J2EE server (j2ee-server) in the Easy Setup definition file. The parameter value to be specified is as follows:

• -DJP.co.Hitachi.soft.jvm.autofinalizer=true
This enables the finalize-retention resolution function. If this function is enabled, a monitoring thread is created when
Java starts. The default value is true, so specify false to disable the function.

For details on the Easy Setup definition file and parameters, see 4.3 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

9. Product JavaVM Functionality

Maintenance and Migration Guide 662

(3) Specifying settings for the Java application
Specify the Java application settings in the usrconf.cfg (option definition file for Java applications). Specify the
definition of the finalize-retention resolution function in the add.jvm.arg key in usrconf.cfg. The parameter
value to be specified is as follows:

• -DJP.co.Hitachi.soft.jvm.autofinalizer=true
This enables the finalize-retention resolution function. If this function is enabled, a monitoring thread is created when
Java starts. The default value is true, so specify false to disable the function.

For details on usrconf.cfg (option definition file for Java applications), see 12.2.1 usrconf.cfg (Option definition file
for Java applications) in the uCosminexus Application Server Definition Reference Guide.

9.16.4 Notes
The following are notes on using the finalize-retention resolution function.

• The value of the JavaVM startup parameter is referenced when Java starts. Therefore, even if you change the value
of the JavaVM startup parameter by using the java.lang.System.setProperty() method or any other
method while JavaVM is running, the finalize-retention resolution function will not be enabled.

• If multiple JavaVM startup parameters are specified, the value of the last specified parameter takes effect.

• The finalize-retention resolution function creates one resident thread to monitor the retention of finalization
processing. The function also creates one thread to resolve the retention when it detects the retention of
finalization processing. If the retention of finalization processing does not affect the system, you can suppress the
creation of a thread to monitor the retention of finalization processing and a thread to resolve the retention by
specifying -DJP.co.Hitachi.soft.jvm.autofinalizer=false for the add.jvm.arg parameter or
the add.jvm.arg key to disable the finalize-retention resolution function.

9. Product JavaVM Functionality

Maintenance and Migration Guide 663

9.17 Asynchronous log file output function

This section describes the asynchronous log file output function.

9.17.1 Overview
This function changes the output of log data to files so that it can be done asynchronously. Here, asynchronous means
that, by preparing a thread dedicated to output processing of log data to files, log data can be output to files without
synchronizing the timing of processing with the threads that execute processing other than log output to files. As an
example, the following describes the log file output when a GC occurs.

During a GC, program processing stops. In the Hitachi JavaVM log file function, the thread executing the GC also outputs
the GC information to the log file, so it is not possible to proceed to the next processing until the processing to output
the GC information to the log file is finished.

By enabling this function, the processing to output the GC information to the log file is executed by a dedicated thread.
This reduces the processing delays caused by threads that execute other processing waiting for the processing to output
the GC information to the log file to finish.

Note that using this function might result in some missing log data. This function temporarily stores the log data in a
buffer and then outputs it to a log file. If the amount of log data output is very large, or if the file I/O processing is
extremely slow, some log data might not be output. Therefore, we recommend that you use this function if you have tuned
the system to achieve 100 msec or less of program processing stop time due to a GC. If you have not performed such
tuning, we do not recommend that you use this function.

9.17.2 Target log files
This function targets the following two files:

• Hitachi JavaVM log file

• Event log of the Explicit Memory Management functionality

9.17.3 Error cases
If the speed of writing to the buffer is faster than the speed of I/O processing to the file, the buffer might be rounded and
the log might not be output.

Output format when the buffer is rounded and no log is output

[ASY]<skip_count> log is skipped.

skip_count: Number of skipped lines when the buffer is rounded and the log c
annot be output

If the creation of a dedicated thread for output to the log used by this function fails, the following messages might be
output to the standard output and JavaVM does not start.

When the creation of a thread for the Hitachi JavaVM log file fails

9. Product JavaVM Functionality

Maintenance and Migration Guide 664

Error occurred during initialization of VM
Could not create thread for VM: Asynchronous javalog thread creation failed
. thread_count threads exist.

thread_count: Number of threads that exist

When the creation of a thread for the Explicit management heap log file fails

Error occurred during initialization of VM
Could not create thread for VM: Asynchronous ehjavalog thread creation faile
d. thread_count threads exist.

thread_count: Number of threads that exist

9.17.4 Notes
When using the asynchronous log output function, if a value greater than 4096 is specified for the -
XX:HitachiOutOfMemoryStackTraceLineSize or -XX:HitachiJavaClassLibTraceLineSize
option, the function operates as if 4096 was specified as the option value. For details on the operation in this
case, see 14.2 Details of JavaVM extension options in the uCosminexus Application Server Definition Reference Guide.

9.17.5 Memory requirements
This function creates a new buffer and thread. If the function is enabled, this buffer and thread remain alive until
JavaVM ends. Therefore, using this function consumes memory for the buffer and thread. The following shows the
memory consumption.

First, the following shows the memory consumption of the buffer.

(Size of one log line = 4096 bytes) × (Number of lines stored in the buffer
= 1024 lines) = 4 Mbytes

If the Explicit Memory Management functionality is used, the memory consumption is doubled to 8 Mbytes because a
buffer for the event log of the Explicit Memory Management functionality is also created.

Next, the memory consumption of the thread is the value specified in the -Xss option. Similar to the memory
consumption of the buffer, if the Explicit Memory Management functionality is used, the memory consumption doubles
because a thread for the event log of the Explicit Memory Management functionality is also created.

Table 9‒24: Default values for -Xss for each platform

Platform Default value for -Xss

Linux(EM64T) 1Mbyte

Windows 1Mbyte

AIX 1Mbyte

9. Product JavaVM Functionality

Maintenance and Migration Guide 665

9.18 Object-pointer compression function

This section describes the object-pointer compression function.

9.18.1 Overview
The object-pointer compression function improves the memory usage efficiency of the Java application by compressing
the size of Java objects created by a Java application. By enabling this function, you can reduce the usage of the Java
heap area and explicit heap area# during execution of the Java application running on the Application Server.

You can enable the object-pointer compression function by specifying -XX:+UseCompressedOops. For details
about the UseCompressedOops option, see 14.2 Details of JavaVM extension options in the uCosminexus
Application Server Definition Reference Guide.

If you enable this function, the memory usage during execution and the execution performance of JavaVM might change.
In addition, the execution performance of JavaVM when this function is enabled varies depending on the difference in
the OS environment when JavaVM is executed.

#: The explicit heap area applies only when the Explicit Memory Management functionality is enabled.

9.18.2 Prerequisites
This function is available if the total set size of each heap area (Java heap area and explicit heap area#) is less than 32
GB. If the total set size is 32 GB or more, this function is disabled even if you specify -XX:+UseCompressedOops.

Value specified for the heap area size, which enables the object-pointer com
pression function

(1) When the Explicit Memory Management functionality is used
 (value-specified-for--Xmx-option) + (value-specified-for--XX:HitachiExplic
itHeapMaxSize-option) < 32 GB

(2) When the Explicit Memory Management functionality is not used
 (value-specified-for--Xmx option) < 32 GB

#
The explicit heap area applies only when the Explicit Memory Management functionality is enabled.

9.18.3 Notes
1. If you enable this function, the usage of the Java heap area and explicit heap area when the Java application is executed

decreases, and the amount of change depends on the Java application. If you consider the change in the memory usage
due to the enabling of this function to be a problem, disable this function.

2. Note that enabling this function might affect execution performance such as throughput when the Java application
is executed. This function affects the execution performance in the following two points:
(a) The size of data (Java object) handled by JavaVM is reduced, which enables more efficient memory access
(performance improvement factor).

9. Product JavaVM Functionality

Maintenance and Migration Guide 666

(b) JavaVM requires calculations to compress the size of Java objects (performance degradation factor).
Due to the two factors (a) and (b), when this function is enabled, the performance when JavaVM is executed
changes. Regarding (b), the calculation method also changes depending on the difference in the OS environment
when JavaVM is started, which affects the execution performance. (For details, see (Supplement) below.) If you
consider the change in performance due to the enabling of this function to be a problem, disable this function.

(Supplement) Compression of Java object size
When the object-pointer compression function is enabled, JavaVM compresses and manages the size of Java
objects. There are multiple compression methods (hereinafter called modes). When JavaVM is started, it selects
a mode depending on the execution environment status. From then on, JavaVM applies the mode selected when
it was started to compress the size of Java objects.
The following two conditions are used to select a mode:
1. Total of the values specified for the Java heap area size and the explicit heap area size
2. Where the heap areas of 1 are allocated in the virtual address space
Due to these conditions, depending on whether you change the values specified for the heap area sizes when
JavaVM is started and depending on the loading status of other processes or libraries running on the same OS,
a different mode is applied each time JavaVM is started.
Which mode is selected depends on where the heap areas are actually allocated in the virtual memory space. For
this reason, it is difficult to enable this function so that a specific compression mode is always applied. Note that
not only does a performance difference occur when this function is switched between enabled and disabled but
a performance difference might also occur each time JavaVM is started when this function is enabled.
As a reference, the following table#1, #2 gives an overview of the selection conditions and compression methods
for the modes that can be selected by JavaVM when the object-pointer compression function is enabled.

Table 9‒25:  List of modes for the object-pointer compression function

Selection conditions Overview

Mode 1 When the total size of each heap area (Java heap area and explicit
heap area#3) is less than 4 GB and both heap areas exist at a lower
position than 4 GB in the virtual address space

The simplest calculation method is used to compress
the size of Java objects.

Mode 2 When mode 1 cannot be applied and both heap areas exist at a lower
position than 32 GB in the virtual address space.

The next simplest calculation method after mode 1 is
used to compress the size of Java objects.

Mode 3 When mode 1 and mode 2 could not be applied The most complicated method of these modes is used
to compress the size of Java objects.

#1
The content in the table shows the internal processing of JavaVM as a reference and is subject to change without prior notice due to
subsequent JDK updates and modifications.

#2
In AIX, mode 3 is always selected because enough memory to select mode 1 or mode 2 in Table 9-25 cannot be secured due to
platform-specific restrictions.

#3
For the explicit heap area, this condition applies only when the Explicit Memory Management functionality is used.

9. Product JavaVM Functionality

Maintenance and Migration Guide 667

9.19 Incompatibility between Oracle JDK and the JDK provided by the
Application Server

This section describes incompatibility between Oracle JDK and the JDK provided by the Application Server.

9.19.1 Memory management method selected by default
In Oracle JDK 9 or later, the memory management method selected by default was changed to the Garbage First Garbage
Collector (G1GC). Note, however, that the memory management method provided by the Application Server is the Serial
Garbage Collector (SerialGC), which is the same as the previous version, 09-70.

9.19.2 Runtime image
The Application Server does not support creation and reconfiguration of runtime images. In addition, it does not include
the jlink command for creating runtime images.

9.19.3 Module-related options
The Application Server has module-related options that are not supported or that have restrictions.

(1) Non-supported options
The following options are not supported by the Application Server.

• --limit-modules
• --module (or -m)

• --patch-module
• --upgrade-module-path

For details about each option, see the following Web page.

https://docs.oracle.com/en/java/javase/11/tools/java.html

(2) Options having restrictions
The following options have restrictions. For these options, do not specify modules in the JDK# as modules to be updated.

• --add-exports
• --add-opens
• --add-reads

#
Modules in the JDK are all modules described on the following Web page.
https://docs.oracle.com/javase/jp/11/docs/api/index.html

9. Product JavaVM Functionality

Maintenance and Migration Guide 668

For details about each option, see the following Web page.

https://docs.oracle.com/en/java/javase/11/tools/java.html

The following shows usage examples that are subject to the restrictions.

(Usage example 1)
--add-exports=java.base/jdk.internal.jimage=my.module
Do not specify the java.base module as a module to be updated.

(Usage example 2)
--add-opens=java.base/jdk.internal.jimage=my.module
Do not specify the java.base module as a module to be updated.

(Usage example 3)
--add-reads=java.logging=my.module
Do not specify the java.logging module as a module to be updated.

9. Product JavaVM Functionality

Maintenance and Migration Guide 669

10 Migrating from Application Server of Earlier
Versions (In the J2EE Server Mode)
(INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

Maintenance and Migration Guide 670

10.1 (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

10. Migrating from Application Server of Earlier Versions (In the J2EE Server Mode) (INTENTIONALLY DELETED)

Maintenance and Migration Guide 671

11 Migrating to the Recommended Functionality

This chapter describes the migration from the functionality that was supported until now by
Application Servers to the recommended functionality.

Maintenance and Migration Guide 672

11.1 Notes on migration to a database connection using HiRDB Type4
JDBC Driver

To migrate from a database connection using Cosminexus DABroker Library to a database connection using
HiRDB Type4 JDBC Driver, see the description on the migration from DABroker for Java in the HiRDB UAP
Development Guide.

11. Migrating to the Recommended Functionality

Maintenance and Migration Guide 673

11.2 Migration to a database connection using Oracle JDBC Thin Driver
from DABroker Library

There are differences in specifications for the JDBC drivers of DABroker Library and Oracle JDBC Thin Driver.
Therefore, when you change the Oracle connection method from DABroker Library to Oracle JDBC Thin Driver,
set up the following properties in the config-property tag of the Hitachi Connector property file in order to
ensure compatibility:

• appendZero
Set the appendZero property to true in the Hitachi Connector property file.
For details on the appendZero property, see 4.1.10 Properties that you can specify in the <config-property> tag set
up for DB Connector in the uCosminexus Application Server Application and Resource Definition Reference Guide.

• forceFixedString
Set the forceFixedString property to true in the Hitachi Connector property file.
For details on the forceFixedString property, see 4.1.10 Properties that you can specify in the <config-
property> tag set up for DB Connector in the uCosminexus Application Server Application and Resource Definition
Reference Guide.

11. Migrating to the Recommended Functionality

Maintenance and Migration Guide 674

12 Migrating from Version 9 to Version 11

This chapter describes the migration from version 9 to version 11.

Maintenance and Migration Guide 675

12.1 Overview

Application Server version 11 and Developer version 11 support new Java EE 7 specifications such as Servlet 3.1 and
WebSocket 1.0, which support Hitachi Application Framework and other companies' frameworks that require Java EE
7 specifications.

To support Java EE 7 specifications, some functionality in version 11 was changed, becoming incompatible with version
9 or earlier. This chapter describes the functionality that was changed and the migration method for migrating from
version 9 to version 11.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 676

12.2 New functionality of version 11 and changes from version 9

This section describes the new functionality of version 11 and the changes from version 9.

12.2.1 NIO HTTP server functionality
Application Server version 11 has enhanced support for new functionality that mainly handles the asynchronous
processing of web applications, such as asynchronous servlets of Servlet 3.0, asynchronous I/O APIs of Servlet 3.1,
and WebSocket 1.0. Accordingly, the Web server integration functionality using the redirector and the in-process HTTP
server functionality, which required conventional synchronous processing, were updated, and the NIO HTTP server
functionality, which is the in-process HTTP server functionality newly implemented by using Java NIO technology,
was installed.

The new functionality of Application Server version 11 requires non-blocking I/O of the NIO HTTP server functionality.
For this reason, the conventional redirector functionality and in-process HTTP server functionality cannot be used.
Requests to web applications on the J2EE server are unified to use HTTP communication by the NIO HTTP server
functionality when going through the Web server or when directly accessing the J2EE server.

For this reason, you need to revise the system design supporting the redirector functionality and the in-process HTTP
server functionality to a design supporting the NIO HTTP server.

For details, see 12.4 Migration guide for system design.

Figure 12‒1:  When migrating the Web server integration configuration that uses the redirector to
Application Server version 11

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 677

Figure 12‒2:  When migrating the in-process HTTP server configuration to Application Server
version 11

12.2.2 Support for new Java EE 7 specifications
In Application Server version 11, the supported versions and scope of support for the following Java EE components
were changed. For some specifications, you need to perform migration work on the application side. If the relevant
specifications are used in an application, see the Reference column for each specification in the following table.

Table 12‒1:  Java EE 7 standard specifications supported by Application Server version 11

Specification name Version supported by Application Server Reference

V9 V11

Java Servlet (Servlet) 3.0 3.1 12.3.2

Contexts and Dependency Injection for Java (CDI) 1.0 1.2 12.3.3

Java API for RESTful Web Services (JAX-RS) 1.1 2.0 12.3.4

Java Persistence API (JPA) 1.0 2.1#1 12.3.5

Java Server Faces (JSF) 2.1 2.2 12.3.6

Expression Language (EL) 2.2 3.0 No migration required

Bean Validation (BV) 1.0 1.1

Common Annotations for the Java Platform
(Common Annotations)

1.1 1.2

Java Transaction API (JTA) 1.1 1.2#2

Batch Applications for the Java Platform (JavaBatch) -- 1.0

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 678

Specification name Version supported by Application Server Reference

V9 V11

Java API for JSON Processing (JSON-P) -- 1.0

Java API for WebSocket (WebSocket) -- 1.0

Concurrency Utilities for Java EE -- 1.0#3

Note
Specifications that have not changed from Application Server version 9 are not included in this table.

#1
Only the JPA provider is provided and the JPA container function cannot be used. For this reason, you cannot use
container-managed persistence units or persistence context.

#2
In addition to the functionality of version 9 and earlier, @javax.transaction.Transactional annotation
is additionally supported.

#3
The ContextService function cannot be used.

12.2.3 V9 compatibility mode
For systems that prioritize compatibility with version 9 or earlier and do not use new functionality and for uCosminexus
Service Platform users, Application Server version 11 provides V9 compatibility mode, which restores the operation of
Application Server to specifications equivalent to those in version 9

For details about V9 compatibility mode, see the uCosminexus Application Server Compatibility Guide.

Note that this chapter assumes that users will not use V9 compatibility mode.

12.2.4 Functions not supported in version 11
Application Server version 11 has functions that do not support migration from version 9. With a few exceptions, these
functions can be used in V9 compatibility mode.

(1) Non-supported web container functions

(a) Request distribution by using the round-robin method
The proxy module built into the Web server of Application Server version 11 does not support request distribution
(load balancer) by using the round-robin method, which was supported through Web server integration by using the
conventional redirector.

To achieve request distribution by using the round-robin method, a load balancer or a Web server that has a load balancer
function is separately required.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 679

(b) Request distribution by using the POST data size
The proxy module built into the Web server of Application Server version 11 does not support request distribution by
using the POST data size, which was supported through Web server integration by using the conventional redirector.

To achieve request distribution by using the POST data size, a load balancer that has that function or a Web server that
has a load balancer function is separately required.

(c) Gateway specification functionality by the J2EE server
The NIO HTTP server of Application Server version 11 does not have the gateway specification functionality, which was
provided by the conventional redirector and the in-process HTTP server.

If the URL of a gateway such as a load balancer or an SSL accelerator needs to be returned to the client as the URL to be
added to the Location header when the URL is transferred, specify settings to return the URL of the appropriate gateway,
for example, by rewriting the Location header by using the function of the load balancer or SSL accelerator.

(d) Error page customization function for each web container
The NIO HTTP server of Application Server version 11 does not have the error page customization function for each
web container, which was provided by the conventional redirector and the in-process HTTP server.

If you want to return a user-specific error page corresponding to the error status code as a response, define it for each
application by following the Servlet specifications, or configure Web server integration via the reverse proxy function
of the Web server to customize the error page by using the Web server functionality.

(e) Function that limits HTTP-enabled methods
The NIO HTTP server of Application Server version 11 does not have the function that limits HTTP-enabled methods,
which was provided by the conventional in-process HTTP server.

If you need to limit HTTP-enabled methods, configure Web server integration via the reverse proxy function of the Web
server to limit HTTP-enabled methods by using the Web server functionality.

(f) Request distribution functionality that uses the redirector
The NIO HTTP server of Application Server version 11 does not have the request distribution functionality that uses the
redirector, which was provided by the conventional in-process HTTP server.

If you need to redirect each URL, configure Web server integration via the reverse proxy function of the Web server to
redirect URLs by using the Web server functionality.

(2) Non-supported extended functionality
Application Server version 11 does not support the EADs session failover functionality. This functionality cannot be used
even in V9 compatibility mode.

(3) Non-supported compatibility functionality
The following compatibility functionality, which was retained in Application Server version 9 and earlier for
compatibility with a previous version, cannot be used in Application Server version 11. The functionality cannot be used
even in V9 compatibility mode.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 680

Table 12‒2:  Compatibility functionality that is no longer supported in Application Server version 11

Category Functionality Alternative functionality

Compatibility
functionality

Basic mode Use the J2EE server.

Servlet engine mode
(Web container server)

Use the J2EE server.

Simple web server functionality Use the NIO HTTP server functionality.
For details, see the manual uCosminexus Application
Server Web Container Functionality Guide.

Subdirectory exclusive mode for EJB client
application logs

Use the default subdirectory shared mode.

Memory session failover functionality Use the database session failover functionality.
For details, see 6. Database session failover
functionality in the uCosminexus Application Server
Expansion Guide.

Switching of multiple built execution environments None

Test function for J2EE applications None

Check of JSP source compliant with JSP 1.1 and JSP
1.2 specifications
(cjjsp2java)

None

V7 compatibility mode for logical server
application management

None

Security management
functionality

Inheritance of the login status by using the session
failover functionality

Use the database session failover functionality.
For details, see 6. Database session failover
functionality in the uCosminexus Application Server
Expansion Guide.

Command Commands used by the Management Server
(commands for compatibility with previous versions)
• cmx_define_application command
• cmx_deploy_application command
• cmx_register_application command
• cmx_start_application command
• cmx_stop_application command
• cmx_undefine_application command
• cmx_undeploy_application command
• cmx_unregister_application command
• cmx_define_resource command
• cmx_deploy_resource command
• cmx_register_resource command
• cmx_start_resource command
• cmx_stop_resource command
• cmx_undefine_resource command
• cmx_undeploy_resource command
• cmx_unregister_resource command
• cmx_add_serverref command
• cmx_delete_serverref command

Use commands of the J2EE server.
For details, see 2. Commands Used with a J2EE Server
in the uCosminexus Application Server Command
Reference Guide.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 681

12.3 Application migration guide

This section describes the procedure for migrating user applications.

12.3.1 Migration to alternative functionality
You might need to migrate the functionality used by Application Server version 9 and Developer version 9 to alternative
functionality so that the functionality can operate in Application Server version 11 and Developer version 11. Check
the following table, and migrate applications as needed. Functionality not included in the table is compatible with
Application Server version 9 and Developer version 9.

Table 12‒3:  Cases in which application migration is required

Functionality Case in which migration is required Reference

Servlet If the application uses non-supported Servlet 3.0 APIs and the
UnsupportedOperationException exception is expected to be thrown

12.3.2(1)

If the application uses the dynamic servlet definition API to invoke the addMapping
method of ServletRegistration to map to the context root (URL pattern is /), but
the mapping is not expected to be performed correctly

12.3.2(2)

CDI If the application uses CDI annotations, but CDI is not expected to operate without
beans.xml being stored in the application archive

12.3.3(1)

If a library having a Portable Extension implementation class is added to the class path or
stored in the application, but the Portable Extension is not expected to operate

12.3.3(2)

JAX-RS If the application was using the Cosminexus JAX-RS engine (if cjjaxrs.jar was
added to the class path)

12.3.4(1)

If the application was using parameters unique to the Cosminexus JAX-RS engine 12.3.4(2)

If the application was using client APIs for RESTful Web Services unique to the
Cosminexus JAX-RS engine

12.3.4(3)

JPA If the application was using parameters unique to the CJPA provider
(User properties that start with cosminexus.jpa, or values specified in <property>
tags in persistence.xml)

12.3.5(1)

If the application was using the persistence units or persistence context for
container management.

This case applies when one of the following is used:
• The javax.persistence.PersistenceUnit annotation
• The javax.persistence.PersistenceContext annotation
• The <persistence-unit-ref> element of DD
• The <persistence-context-ref> element of DD

12.3.5(2)

If the application was using a database other than HiRDB for the persistence
destination database

12.3.5(3)

JSF If the application was using JSF (if cjsf.jar was added to the class path) 12.3.6(1)

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 682

12.3.2 Changes in servlets

(1) Handling of non-supported Servlet 3.0 APIs
Application Server version 11 and Developer version 11 now support some Servlet 3.0 APIs that were not supported in
version 9. For this reason, when the relevant APIs are used, they operate according to the Servlet 3.0 specifications in
Application Server version 11 and Developer version 11 even though the UnsupportedOperationException
exception was thrown in Application Server version 9.

The relevant APIs are listed in the following table. If the application always expects the
UnsupportedOperationException exception to be thrown from these APIs, you need to modify the application
so that the implementation is based on the assumption that no exception will be thrown.

Table 12‒4:  Servlet 3.0 APIs that are supported in Application Server version 11 and Developer
version 11

Package Class Method

javax.servlet AsyncContext All methods

AsyncListener All methods

ServletRequest startAsync

isAsyncStarted

isAsyncSupported

getAsyncContext

getDispatcherType

AsyncEvent All methods

ServletRequestWrapper startAsync

isAsyncStarted

isAsyncSupported

getAsyncContext

getDispatcherType

Registration setAsyncSupported

In addition, for APIs that remain unsupported in Application Server version 11 and Developer version 11, no
exception will be thrown by default in Application Server version 11 and Developer version 11 even though the
UnsupportedOperationException exception was thrown in Application Server version 9 and Developer
version 9. The relevant APIs are listed in the following table.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 683

Table 12‒5:  Servlet 3.0 APIs that are not supported in Application Server version 11 and Developer
version 11

Package Class Method Operation for the value specified for
webserver.servlet_api.unsupported.throwUnsupportedOp
erationException

false (default) true

javax.servlet ServletContext getJspConfigDe
scriptor

Returns null. Throws the
UnsupportedOperationExce
ption exception.

If the application always expects the UnsupportedOperationException exception to be thrown from these
APIs, modify the application so that the implementation is based on the assumption that no exception will be thrown, or
add the following definition to the user property file for J2EE servers.

webserver.servlet_api.unsupported.throwUnsupportedOperationException=true

(2) Processing to dynamically add a servlet that maps to the context root
In Application Server version 9 and Developer version 9, if you specified / to indicate the context root for the argument of
the addMapping method of javax.servlet.ServletRegistration, the mapping could not be overwritten
because the default servlet was already mapped.

In Application Server version 11 and Developer version 11, you can overwrite the mapping to the context root only
once for the same ServletContext. This enables you to map a user-defined servlet (instead of the default servlet) to the
context root.

If the application does not expect Application Server version 11 and Developer version 11 to operate accordingly but
expects the addMapping method to refuse to overwrite the mapping, you need to modify the application so that the
addMapping method that performs mapping to the context root is not invoked. If you migrate to Application Server
version 11 and Developer version 11 without modifying the application, the mapping to the default servlet might be
overwritten with mapping to a user servlet.

12.3.3 Changes in CDI

(1) Changes in the conditions to determine whether CDI is enabled when
beans.xml is omitted

In Application Server version 11 and Developer version 11, the handling of the beans.xml file and the conditions to
determine whether CDI is enabled were changed in association with the support for the CDI 1.2 specifications.

Under the CDI 1.2 specifications, CDI is automatically enabled when the CDI annotation is determined to be used even
if the application archive does not include beans.xml. For this reason, if an application that could be deployed in
Application Server version 9 and Developer version 9 does not expect CDI to be enabled, it might fail to be deployed
in Application Server version 11 and Developer version 11.

The CDI 1.2 specifications stipulate to provide an option for restoring the determination conditions to the CDI 1.0 criteria
to avoid such a situation. Application Server version 11 and Developer version 11 also provide that option. To restore the
conditions to determine whether CDI is enabled to the CDI 1.0 criteria, add the following definition to the user property
file for J2EE servers.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 684

ejbserver.javaee.cdi.beansXmlRequired=true

(2) Changes in the handling of Portable Extension APIs
In Application Server version 9 and Developer version 9, CDI's Portable Extension APIs were not supported, and ignored
even if the implementation class of Portable Extension existed in the class path.

Although Application Server version 11 and Developer version 11 continue to not support the use of Portable Extension
APIs by user applications, the implementation class of Portable Extension runs because CDI's Portable Extension APIs
are used within the product.

For the JAR file that stores the implementation class of Portable Extension (a class that implements
the javax.enterprise.inject.spi.Extension interface) and its service definition file (META-INF/
services/javax.enterprise.inject.spi.Extension file), do not add it to the class path of the J2EE
server and do not store it in the application. Failure to follow this instruction might cause the implementation class of
Portable Extension to run, causing the application to fail to be deployed or changing the behavior of the application.

12.3.4 Changes in JAX-RS

(1) Change in the JAX-RS engine
Application Server version 11 and Developer version 11 newly provide the JAX-RS 2.0 engine, which supports JAX-RS
2.0. This engine is stored in a different JAR file from the conventional JAX-RS engine of Application Server version 9
or earlier and of Developer version 9 or earlier. For this reason, the class path settings required to use the JAX-RS engine
are different.

For Application Server version 9 or earlier and Developer version 9 or earlier

add.class.path=<cosminexus.home>\jaxrs\lib\cjjaxrs.jar

For Application Server version 11 or later and Developer version 11 or later

add.class.path=<cosminexus.home>\CC\javaee\1100\lib\jaxrs-impl.jar
add.class.path=<cosminexus.home>\CC\javaee\1100\lib\jaxrs-jackson.jar

If the JAX-RS engine (cjjaxrs.jar) of Application Server version 9 or earlier and of Developer version 9 or earlier
is still set for the class path, the application will not operate normally. Be sure to revise the class path settings.

(2) Abolition of Cosminexus's original parameters for the JAX-RS engine
The JAX-RS 2.0 engine of Application Server version 11 and Developer version 11 does not support Cosminexus's
self-defined files and parameters, which were supported by the JAX-RS engine of Application Server version 9 or earlier
and of Developer version 9 or earlier. The definition files and parameters described in 13.1 Action definition file of the
uCosminexus Application Server Web Service Development Guide cannot be used in Application Server version 11 or
Developer version 11.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 685

(3) Abolition of the client APIs for RESTful Web Services
The JAX-RS 2.0 specifications newly standardized the client APIs. As a result, Cosminexus's original client APIs for
RESTful Web Services, which were supported by the JAX-RS engine of Application Server version 9 or earlier and
of Developer version 9 or earlier, are not supported. The functions described in 25. Support Range of the Client APIs
for RESTful Web Services of the uCosminexus Application Server Web Service Development Guide cannot be used in
Application Server version 11 or Developer version 11.

For applications that use the client APIs of JAX-RS, replace those APIs with JAX-RS 2.0 standard APIs by following
the JAX-RS 2.0 specifications and the JAX-RS 2.0 API specifications.

JAX-RS 2.0 API specifications (provided by Oracle)
https://docs.oracle.com/javaee/7/api/javax/ws/rs/client/package-summary.html

12.3.5 Changes in JPA

(1) Abolition of the CJPA provider
The conventional CJPA provider cannot be used because it does not support JPA 2.1 APIs. Instead, Application Server
version 11 and Developer version 11 newly provide a JPA provider that supports JPA 2.1. However, Cosminexus's
original functions provided by the conventional CJPA provider cannot be used. The following parameters are ignored
even if they are specified.

• Properties starting with cosminexus.jpa specified in the <property> tag in persistence.xml
• Keys starting with cosminexus.jpa specified in the user property file for J2EE servers

• Parameters starting with cosminexus.jpa specified for the logical J2EE server by the Smart
Composer functionality

(2) Persistence units and persistence context of container management
cannot be used

The JPA 2.1 support scope for Application Server version 11 and Developer version 11 does not support the JPA container
functionality. For this reason, applications that assume the use of the following APIs and DD elements to obtain the
persistence units and persistence context for container management cannot be migrated.

• The javax.persistence.PersistenceUnit annotation

• The javax.persistence.PersistenceContext annotation

• The <persistence-unit-ref> element of DD

• The <persistence-context-ref> element of DD

In addition, the following parameters cannot be specified:

• Keys starting with ejbserver.jpa specified in the user property file for J2EE servers

• Parameters starting with ejbserver.jpa specified for the logical J2EE server by the Smart
Composer functionality

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 686

Acquisition of the EntityManagerFactory object can be substituted with the persistence unit for application management.
In accordance with the JPA 2.1 specifications, obtain the EntityManagerFactory object by using the following
implementation example.

EntityManagerFactory factory
= Persistence.createEntityManagerFactory("persistence-unit-name");
EntityManager manager = factory.createEntityManager();

(3) Changes in the database supported as the persistence destination
In the JPA 2.1 support scope for Application Server version 11 and Developer version 11, only the following database
can be used as the persistence destination:

• HiRDB version 10

If persistence to other databases is required, prepare a JPA provider library# corresponding to JPA 2.1 and the persistence
destination database, and add it to the class path instead of the Cosminexus JPA 2.1 provider.

#
EclipseLink, Hibernate JPA, or some other library

12.3.6 Changes in JSF

(1) Change in the JSF library
Application Server version 11 and Developer version 11 now support JSF 2.2. The library for JSF 2.2 is stored in a
different JAR file from the conventional library for JSF 2.1 of Application Server version 9 or earlier and of Developer
version 9 or earlier, and is added to the class path by default. For this reason, you no longer need to add the following
class paths when using JSF.

For Application Server version 9 or earlier and Developer version 9 or earlier

add.class.path=<cosminexus.home>\CC\lib\cjsf.jar
add.class.path=<cosminexus.home>\CC\lib\cjstl.jar

For Application Server version 11 and Developer version 11

You do not need to add class paths.

If the library for JSF 2.1 (cjsf.jar) of Application Server version 9 or earlier and Developer version 9 or earlier is
still set for the class path, the application will not operate normally. Be sure to revise the class path settings.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 687

12.4 Migration guide for system design

This section describes the changes in system design such as tuning parameters and the formula for estimating resources.

For details about the unit, default value, and specifiable range for each parameter, see the uCosminexus Application
Server Definition Reference Guide.

12.4.1 Performance tuning
In Application Server version 11 and Developer version 11, the following viewpoints were changed from the viewpoints
of performance tuning of the J2EE application execution platform:

• Optimization of the number of concurrent executions

• Timeout setting

(1) Optimization of the number of concurrent executions
In Application Server version 9 or earlier and Developer version 9 or earlier, a request processing thread of the Web
container was always assigned to a connection and the request processing thread was occupied until the response body
was sent to the client.

Application Server version 11 or later and Developer version 11 or later support the standard specifications that are
premised on non-blocking I/O such as asynchronous servlets of Servlet 3.0, asynchronous I/O APIs of Servlet 3.1, and
WebSocket. For this reason, management of the connections that receive requests and the threads that process received
requests are separated to enable a connection to use multiple processing threads and enable processing that receives a
request and processing that sends a response to be processed by separate threads.

As a result, Application Server version 11 and Developer version 11 have a different approach to control of the number of
concurrent executions from that of version 9 or earlier. The following describes the differences in the points to set control
of the number of concurrent executions for each Web server configuration.

(a) When migrating from the Web server integration configuration using the
redirector

The redirector functionality used in Application Server version 9 or earlier and Developer version 9 or earlier used
permanent connections to connect the Web server and the Web container, and occupied a request processing thread for
each connection on the Web container. For this reason, the number of threads to be generated is always the same as
the maximum number of connections that can be concurrently connected. In addition, by controlling the number of
concurrently executing threads to control the threads that could be concurrently executed among the generated threads,
you could suppress performance degradation and resource depletion. The following figure shows the mechanism of
controlling the number of threads in Application Server version 9 and Developer version 9.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 688

Figure 12‒3:  Mechanism of controlling the number of threads in Application Server version 9 and
Developer Version 9 (for Web server integration)

With the NIO HTTP server functionality of Application Server version 11 and Developer version 11, even if permanent
connections are used to connect the Web server and the Web container, the request processing threads on the Web
container are not occupied by the connections. Each time the Web container detects the reception of data, it assigns
a thread from the thread pool. In addition, by controlling the number of concurrently executing threads to control the
threads that can be concurrently executed among the threads assigned to requests for processing a request of the servlet,
you can suppress performance degradation and resource depletion in the same way as Application Server version 9 and
Developer version 9. The following figure shows the mechanism of controlling the number of threads in Application
Server version 11 and Developer version 11.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 689

Figure 12‒4:  Mechanism of controlling the number of threads in Application Server version 11 and
Developer version 11 (for Web server integration)

The NIO HTTP server functionality allows you to define the number of threads to be generated in advance in the thread
pool when the J2EE server starts and the maximum number of threads to be dynamically generated. The following table
describes the recommended values set for the number of threads when you migrate from Application Server version 9 and
Developer version 9 in the Web server integration configuration. Note, however, that this does not apply when you use
the WebSocket functionality. For details, see (c) Notes when increasing the maximum number of concurrent connections
to use the WebSocket functionality.

Table 12‒6:  Recommended values set for the number of concurrent executions (for migration from
a Web server integration configuration)

Parameter of the setting destination
NIO HTTP server

Recommended setting value

When using only the functionality up to
Application Server version 9 and Developer
version 9

When using asynchronous processing
supported in Application Server version
11 and Developer version 11

webserver.connector.nio_ht
tp.max_threads

The same value as
webserver.connector.ajp13.max_thr
eads

Value of
webserver.connector.ajp13.max
_threads + Maximum number of
concurrent executions of asynchronous
processing#1 to be concurrently executed in
excess of the number of connections

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 690

Parameter of the setting destination
NIO HTTP server

Recommended setting value

When using only the functionality up to
Application Server version 9 and Developer
version 9

When using asynchronous processing
supported in Application Server version
11 and Developer version 11

webserver.connector.nio_ht
tp.min_threads

The same value as webserver.connector.ajp13.max_threads

webserver.connector.nio_ht
tp.max_connections

Total number of connections to the J2EE server#2

#1
Asynchronous processing to be concurrently executed in excess of the number of connections includes the following:

• Invoking the start method of javax.servlet.AsyncContext of Servlet 3.0

• Invoking the sendBinary method, the sendObject method, and the sendText method of the
javax.websocket.RemoteEndpoint.Async interface of WebSocket

#2
Total number of connections to the J2EE server is the sum of the number of connections to the NIO HTTP server on
the J2EE server. If multiple processes connect to the J2EE server, set the sum of the maximum number of connections
from each process.
For details on the maximum number of connections from the reverse proxy of the Cosminexus HTTP Server to the
J2EE server, see 4.7.4(5) Points to be noted for performance in the uCosminexus Application Server HTTP Server
User Guide.

(b) When migrating from the in-process HTTP server configuration
The in-process HTTP server functionality used in Application Server version 9 or earlier and Developer version 9 or
earlier assigned a thread generated in advance in the thread pool to each connection each time a connection request
was sent from the client, and occupied that thread until the connection with the client is disconnected. In addition, by
controlling the number of concurrently executing threads to control the threads that can be concurrently executed among
the generated threads, you could suppress performance degradation and resource depletion.

In the NIO HTTP server functionality of Application Server version 11 and Developer version 11, the request processing
thread on the Web container is not occupied by the connection, and the Web container assigns a thread from the thread
pool each time it detects the reception of data. In addition, by controlling the number of concurrently executing threads to
control the threads that can be concurrently executed among the threads assigned to the requests for processing a request
of the servlet, you can suppress performance degradation and resource depletion in the same way as Application Server
version 9 and Developer version 9.

The NIO HTTP server functionality allows you to define the number of threads to be generated in advance in the thread
pool when the J2EE server starts and the maximum number of threads to be dynamically generated. The following table
describes the recommended values set for the number of threads when you migrate from Application Server version 9 and
Developer version 9 in the in-process HTTP server configuration. Note, however, that this does not apply when you use
the WebSocket functionality. For details, see (c) Notes when increasing the maximum number of concurrent connections
to use the WebSocket functionality.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 691

Table 12‒7:  Recommended values set for the number of concurrent executions (for migration from
an in-process HTTP server configuration)

Parameter of the setting destination
NIO HTTP server

Recommended setting value in Application Server version 11 and Developer version 11

When using only the functionality up to
Application Server version 9 and Developer
version 9

When using asynchronous processing
supported in Application Server version 11
and Developer version 11

webserver.connector.nio_ht
tp.max_threads

The same value as
webserver.connector.inprocess_ht
tp.max_connections

Value of
webserver.connector.inprocess_
http.max_connections + Maximum
number of concurrent executions of
asynchronous processing# to be concurrently
executed in excess of the number of
connections

webserver.connector.nio_ht
tp.min_threads

The smallest value of webserver.connector.inprocess_http.max_connections,
webserver.connector.inprocess_http.max_spare_threads,
and webserver.connector.inprocess_http.init_threads

webserver.connector.nio_ht
tp.max_connections

The same value as webserver.connector.inprocess_http.max_connections

#
Asynchronous processing to be concurrently executed in excess of the number of connections includes the following:

• Invoking the start method of javax.servlet.AsyncContext of Servlet 3.0

• Invoking the sendBinary method, the sendObject method, and the sendText method of the
javax.websocket.RemoteEndpoint.Async interface of WebSocket

(c) Notes when increasing the maximum number of concurrent connections to use
the WebSocket functionality

For the NIO HTTP server functionality of Application Server version 11 and Developer version 11, the number of threads
and the maximum number of concurrent connections do not necessarily have to be the same value. Even if the number of
threads is smaller than the number of concurrent connections, no pending processing will occur if the maximum number
of concurrently executing threads, which concurrently execute processing to receive data, is within the maximum number
of threads. In addition, even if pending processing occurs because no thread can be assigned, the processing is queued
in the infinite-length pending queue and the processing to receive data will resume when a thread becomes free.

If you use the WebSocket functionality added in Application Server version 11 and Developer version 11, you might
need to increase the maximum number of concurrent connections to maintain connections with many WebSocket clients
for a long time. In Application Server version 9 or earlier and Developer version 9 or earlier, for both Cosminexus
HTTP Server and the in-process HTTP server, the maximum number of concurrent connections was limited to 1024.
However, in Application Server version 11 and Developer version 11, the upper limit was increased in consideration of
WebSocket support.

However, if you increase the maximum number of threads for the NIO HTTP server to match the maximum number of
concurrent connections, the memory usage also increases in proportion to the number of threads. In addition, the number
of threads that can be generated by a process is limited by the OS. If the memory capacity that can be secured for the
minimum number of threads or the upper limit of the number of threads of the OS is insufficient, OutOfMemoryError
might occur during the processing to start the J2EE server, causing the J2EE server to fail to start. If the memory
capacity that can be secured for the maximum number of threads or the upper limit of the number of threads of the OS
is insufficient, OutOfMemoryError might occur during the processing to receive requests, causing the J2EE server
process to go down.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 692

If you want to increase the minimum or maximum number of threads for the NIO HTTP server, appropriately re-estimate
the memory size (physical memory size, the value specified for -Xmx of the J2EE server process) as well.

For details about how to estimate the maximum number of threads, see 5.2.1 Estimating the resources used by J2EE
server in the uCosminexus Application Server System Design Guide. For details about memory usage, see 5.3.1
Estimating virtual memory usage of the J2EE server in the uCosminexus Application Server System Design Guide.

(2) Timeout setting
In Application Server version 11 or later and Developer version 11 or later, the locations where a timeout occurs and
the parameter for which the timeout value is set are different from those in Application Server version 9 or earlier
and Developer version 9 or earlier. The following describes the differences in the timeout setting points for each Web
server configuration.

(a) When migrating from the Web server integration configuration using the
redirector

In Application Server version 11 and Developer version 11, the redirector module (mod_jk) changes to the proxy
module (mod_proxy) and the request receiver on the Web container changes to the NIO HTTP server.

For this reason, the timeouts set for the redirector and the Web container in Application Server version 9 and Developer
version 9 change to the timeouts set for the reverse proxy and the NIO HTTP server in Application Server version 11
and Developer version 11.

The following figure shows the points for which a timeout can be set in Application Server version 9 and Developer
version 9.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 693

Figure 12‒5:  Points for which a timeout can be set in Application Server version 9 and Developer
version 9 (for Web server integration)

The following figure shows the points for which a timeout can be set in Application Server version 11 and Developer
version 11.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 694

Figure 12‒6:  Points for which a timeout can be set in Application Server version 11 and Developer
Version 11 (for Web server integration)

The following table describes the differences for each point that needs to be migrated from Application Server version
9 and Developer version 9 to Application Server version 11 and Developer version 11.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 695

Table 12‒8:  Difference in the timeout set for each point (migration from the Web server integration
configuration)

Point Timeout type

Application Server version 9 and Developer version 9 Application Server version 11 and Developer version 11

2 A timeout for establishing a connection to the Web container,
which is set on the redirector.

Setup target
• mod_jk.conf (redirector action definition file)
• Logical Web server (web-server)

Location of setup
JkConnectTimeout

A timeout for establishing a connection to the Web container
(NIO HTTP server), which is set on the reverse proxy.

Setup target
• httpsd.conf
• Logical Web server (web-server)

Location of setup
The connectiontimeout key of ProxyPass, the
timeout key of ProxyPass, or Timeout

3 A timeout for sending the request header and the request body
to the Web container, which is set on the redirector.

Setup target
• mod_jk.conf (redirector action definition file)
• Logical Web server (web-server)

Location of setup
JkSendTimeout

A timeout for sending the request header and the request body
to the Web container (NIO HTTP server), which is set on the
reverse proxy.

Setup target
• httpsd.conf
• Logical Web server (web-server)

Location of setup
The timeout key of ProxyPass, or Timeout

4 A timeout for receiving data from the Web container, which is
set on the redirector.

Setup target
• worker.properties (worker definition file)
• Logical Web server (web-server)

Location of setup
worker.worker-name.receive_timeout

A timeout for receiving data from the Web container (NIO
HTTP server), which is set on the reverse proxy.

Setup target
• httpsd.conf
• Logical Web server (web-server)

Location of setup
The timeout key of ProxyPass, or Timeout

5 A timeout for receiving data from the redirector, which is set on
the Web container.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.ajp13.receive_time
out

A timeout for receiving data from the reverse proxy, which is
set on the Web container (NIO HTTP server).

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.nio_http.receive_t
imeout

13 A timeout for sending the response to the redirector, which is
set on the Web container.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.ajp13.send_timeout

A timeout for sending data to the reverse proxy, which is set on
the Web container (NIO HTTP server).

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.nio_http.send_time
out

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 696

(b) When migrating from the in-process HTTP server configuration
In Application Server version 11 and Developer version 11, the in-process HTTP server is replaced with the NIO
HTTP server.

For this reason, the timeouts set for the in-process HTTP server in Application Server version 9 and Developer version
9 change to the timeouts set for the NIO HTTP server in Application Server version 11 and Developer version 11.

The following figure shows the points for which a timeout can be set.

Figure 12‒7:  Points for which a timeout can be set (for the in-process HTTP server)

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 697

The following table describes the differences for each point that needs to be migrated from Application Server version
9 and Developer version 9 to Application Server version 11 and Developer version 11.

Table 12‒9:  Difference in the timeout set for each point (migration from the in-process HTTP server
configuration)

Point Timeout type

Application Server version 9 and Developer version 9 Application Server version 11 and Developer version 11

5 A timeout for receiving a request from the client, which is set
on the Web container.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.inprocess_http.rec
eive_timeout

A timeout for receiving data from the client, which is set on the
NIO HTTP server.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.nio_http.receive_t
imeout

13 A timeout for sending the response to the client, which is set on
the Web container.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.inprocess_http.sen
d_timeout

A timeout for sending data to the client, which is set on the NIO
HTTP server.

Setup target
• usrconf.properties (user property file for

J2EE servers)
• Logical J2EE server (j2ee-server)

Location of setup
webserver.connector.nio_http.send_time
out

12.4.2 Estimating the resources to be used
In Application Server version 11 and Developer version 11, the following estimation formula among the formulas for
estimating the resources used by the J2EE application execution platform has changed:

• Formula for estimating the resources used by the J2EE server

(1) Estimating the resources used by the J2EE server
In Application Server version 11 or later and Developer version 11 or later, the in-process HTTP server was replaced
with the NIO HTTP server functionality and new functionality that performs asynchronous processing were added. As
a result, the number of threads for the J2EE server process and the number of file descriptors have changed.

For details, see 5.2.1 Estimating the resources used by J2EE server in the uCosminexus Application Server System
Design Guide.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 698

12.5 Migration guide for system maintenance information

This section describes the changes from Application Server version 9 and Developer version 9 regarding the handling
of maintenance information such as logs and trace based performance analysis.

12.5.1 Changes of the output destination log files
In Application Server version 11 and Developer version 11, the output destination log files for some maintenance
information were changed or abolished.

Table 12‒10:  Changes in the output destinations of maintenance information

Output
source

Category Output destination

Application Server version 9 and Developer
version 9

Application Server version 11 and Developer
version 11

J2EE
server

Access log
of the in-
process
HTTP
server or
the NIO
HTTP
server

ejb.server.log.directory\http\cjhttp_access.i
nprocess_http[n].log

ejb.server.log.directory\cj_access_niohttp[n]
.log

WebSocke
t access
log

-- ejb.server.log.directory\cj_access_websocket[
n].log

Developm
ent
investigati
on log

ejb.server.log.directory\cjdevelopment[n].log The introduced base log output function outputs
the equivalent content to the message log and the
exception log.

Redirector Message
log of the
redirector

Application-Server-installation-
directory\CC\web\redirector\logs
Alternatively, the value specified for JkLogFileDir

Abolished

Maintenan
ce trace
log of the
redirector

Application-Server-installation-
directory\CC\web\redirector\logs
Alternatively, the value specified for JkLogFileDir

Abolished

12.5.2 Changes in the access log
The NIO HTTP server functionality of Application Server version 11 and Developer version 11 has an access log output
function equivalent to the access log of the conventional in-process HTTP server. The following table describes the
changes in the properties for which access log settings are specified.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 699

Table 12‒11:  Recommended values for the properties for the access log of the NIO HTTP server

Setting
item

Property name in Application Server
version 9 and Developer version 9

Property name in Application Server
version 11 and Developer version 11

Recommended value in
Application Server version 11
and Developer version 11

Maximum
file size

webserver.logger.access_log.
inprocess_http.filenum

ejbserver.logger.channels.d
efine.NIOHTTPAccessLogFile.
filenum

The same value as that in
Application Server version 9 and
Developer version 9

Maximum
number of
files

webserver.logger.access_log.
inprocess_http.filesize

ejbserver.logger.channels.d
efine.NIOHTTPAccessLogFile.
filesize

The same value as that in
Application Server version 9 and
Developer version 9

Format webserver.logger.access_log.f
ormat-name

ejbserver.logger.access_log
.nio_http.format

Default value + Format argument
specified individually

12.5.3 Changes in the trace collection points of the trace based
performance analysis

In Application Server version 11 and Developer version 11, some collection points of the trace based performance
analysis were changed or abolished. If the trace based performance analysis functionality was used, replace the event IDs
according to the following table.

Table 12‒12:  Changes in the trace collection points of the trace based performance analysis

Output source Trace collection point Event ID Level

Application Server
version 9 and Developer
version 9

Application Server
version 11 and Developer
version 11

Web container
(Web server integration)

Immediately after the
acquisition of a request
or the completion of the
request header analysis

0x8200 0x8236 A

Immediately after
the completion of
request processing

0x8300 0x8336 A

Web container
(In-process
HTTP server)

When a request is
acquired or immediately
after the completion of
request header analysis

0x8211 0x8236#1 A/B

Immediately after
the completion of
request processing

0x8311 0x8336#1 A/B

Immediately before the
reading of data from the
Web client starts

0x8212 0x8237 B

Immediately after the
completion of the
reading of data from the
Web client

0x8312 0x8337 B

Immediately before the
writing of data to the
Web client starts

0x8213 0x8238 B

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 700

Output source Trace collection point Event ID Level

Application Server
version 9 and Developer
version 9

Application Server
version 11 and Developer
version 11

Immediately after the
completion of the
writing of data to the
Web client

0x8313 0x8338 B

Redirector All collection points 0x8000 to 0x8104 Abolished#2 A/B

#1
In Application Server version 9 and Developer version 9, for level B, more detailed information than level A was
output. However, in Application Server version 11 and Developer version 11, the same content is output for level A
and level B.

#2
The root application information is output to the access log and request log of HTTP Server. Use those logs for
comparison as a substitute.

12.5.4 Changes in messages
In Application Server version 11 and Developer version 11, the message IDs and their content output to the message log
were changed or abolished. The following table lists the message IDs of Application Server version 11 and Developer
version 11 that are output under the equivalent conditions. If you monitored the relevant messages, replace the message
IDs according to the following table.

Table 12‒13:  Changes in the message IDs

Output
source

Message in Application Server version 9 and Developer version 9 Replacement ID
in Application
Server version
11 and
Developer
version 11

Log level

ID Content

Web
container

KDJE39236-I Web server integration will start. None Error

KDJE39237-I The in-process HTTP server will start. The Web server integration
functionality will be disabled.

KDJE39562-I Error

KDJE39238-W The host name specified in the property
webserver.connector.inprocess_http.permitted
.hosts could not be resolved.

KDJE39563-W Error

KDJE39239-W Access to the in-process HTTP server from a forbidden host
was denied.

KDJE39564-W Error

KDJE39240-W The host ({0}) specified in the property
webserver.connector.inprocess_http.bind_host
could not be resolved.

KDJE39565-W Error

KDJE39241-E The in-process HTTP server could not be started on the specified
port number ({0}).

KDJE39566-E Error

KDJE39242-W The host ({0}) specified in the property
webserver.connector.inprocess_http.bind_host
could not be resolved.

KDJE39567-W Error

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 701

Output
source

Message in Application Server version 9 and Developer version 9 Replacement ID
in Application
Server version
11 and
Developer
version 11

Log level

ID Content

KDJE39243-E The HTTP method of the sent request is not allowed. None Error

KDJE39244-E The request line of the sent request has exceeded the maximum size. None Error

KDJE39245-E The request header of the sent request has exceeded the
maximum size.

KDJE39568-E Error

KDJE39246-E The request body of the sent request has exceeded the maximum size. KDJE39569-E Error

KDJE39247-E The number of HTTP headers included in the sent request has
exceeded the maximum number.

KDJE39570-E Error

KDJE39256-W The file sent as the response body of the redirect functionality could
not be read.

None Error

KDJE39257-E An error occurred while the file sent as the response body of the
redirect functionality was being read.

None Error

KDJE39258-W An error occurred while the response body of the redirect
functionality was being sent.

None Information

KDJE39259-W The file sent as the response body of the error contents customization
functionality was not sent to the client because it could not be read.

None Error

KDJE39260-E An error occurred while the file sent as the response body of the error
contents customization functionality was being read.

None Error

KDJE39261-W An error occurred while the response body of the error contents
customization functionality was being sent.

None Information

KDJE39262-E The request processing will be denied because the number of
connections with the Web client has exceeded the maximum value.

None Error

KDJE39263-W The number of request processing threads is insufficient. None Error

KDJE39265-E A timeout occurred while the request header from the client was
being read.

KDJE39576-E Warning

KDJE39267-W The accessed request was denied. A request beginning with /ejb/
or /web/ cannot be used on the in-process HTTP server.

KDJE39571-W Error

KDJE39268-E The file sent as the response body of the redirect functionality could
not be read.

None Error

KDJE39269-E The in-process HTTP server denied the accessed request because the
body information of the HTTP request was too large.

None Error

KDJE39270-W The error page could not be customized because the response was
already committed.

None Error

KDJE39274-E A failure occurred while a connection with the client was
being established.

KDJE39572-E Error

KDJE39276-W An attempt to establish a connection with the client succeeded
although a failure occurred while a connection with the client was
being established.

KDJE39573-W Error

KDJE39277-E The in-process HTTP server denied the accessed request because an
invalid request header was received.

KDJE39574-E Error

KDJE39514-W Some request processing threads have not finished. KDJE39575-W Error

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 702

Output
source

Message in Application Server version 9 and Developer version 9 Replacement ID
in Application
Server version
11 and
Developer
version 11

Log level

ID Content

KDJE39561-W The function that narrows the search range of
ServletContainerInitializer is enabled.

None Error

Redirect
or

KDJE41000 to
KDJE41041

All messages None# --

#
Use the error log of HTTP Server as a substitute.

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 703

12.6 Parameter replacement reference

This section describes how to calculate the values set for the parameters added in Application Server version 11 and
Developer version 11 by using the values set in Application Server version 9 and Developer version 9.

12.6.1 User property definitions for J2EE servers
The following table describes the recommended property values that are specified in the user property file for J2EE
servers, among the parameters added in Application Server version 11 and Developer version 11. For details about the
properties, see the uCosminexus Application Server Definition Reference Guide.

Table 12‒14:  Migration destination properties of the user properties for J2EE servers

Property name in Application Server version
11 and Developer version 11

Recommended value in Application Server version 11 and Developer version 11

For Web server integration For the in-process HTTP server

webserver.connector.nio_http.max
_connections

See 12.4.1(1)(a). See 12.4.1(1)(b).

webserver.connector.nio_http.max
_threads

webserver.connector.nio_http.min
_threads

webserver.connector.nio_http.rec
eive_timeout

See 12.4.1(2)(a). See 12.4.1(2)(b).

webserver.connector.nio_http.sen
d_timeout

webserver.connector.nio_http.bac
klog

The same value as
webserver.connector.ajp13.back
log

The same value as
webserver.connector.inproc
ess_http.backlog

webserver.connector.nio_http.bin
d_host

If the host name of the transfer destination
URL of the reverse proxy is localhost, the
recommended value is localhost.
For other cases, the recommended value is an
IP address or host name that can communicate
with the Web server.

The same value as
webserver.connector.inproc
ess_http.bind_host

webserver.connector.nio_http.hos
tname_lookups

false (default value) The same value as
webserver.connector.inproc
ess_http.hostname_lookups

webserver.connector.nio_http.lim
it.max_headers

100 (default value) The same value as
webserver.connector.inproc
ess_http.limit.max_headers

webserver.connector.nio_http.lim
it.max_request_body

-1 (default value) The same value as
webserver.connector.inproc
ess_http.limit.max_request
_body

webserver.connector.nio_http.lim
it.max_request_header

16384 (default value) The same value as
webserver.connector.inproc
ess_http.limit.max_request
_header

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 704

Property name in Application Server version
11 and Developer version 11

Recommended value in Application Server version 11 and Developer version 11

For Web server integration For the in-process HTTP server

webserver.connector.nio_http.kee
p_alive.max_requests

0 (default value) The same value as
webserver.connector.inproc
ess_http.persistent_connec
tion.max_requests

webserver.connector.nio_http.kee
p_alive.timeout

0 (default value) The same value as
webserver.connector.inproc
ess_http.persistent_connec
tion.timeout

webserver.connector.nio_http.por
t

Any port number that can communicate with
the Web server

The same value as
webserver.connector.inproc
ess_http.port

webserver.connector.nio_http.res
ponse.header.server

CosminexusComponentContainer
(default value)

The same value as
webserver.connector.inproc
ess_http.response.header.s
erver

webserver.connector.nio_http.idl
e_thread_timeout

60 (default value) 60 (default value)

webserver.connector.nio_http.per
mitted.hosts

When the host name of the transfer destination
URL of the reverse proxy is localhost

localhost
For other cases

The IP address or host name of the
Web server

The same value as
webserver.connector.inproc
ess_http.permitted.hosts

webserver.connector.nio_http.max
_servlet_execute_threads

The same value as
webserver.connector.ajp13.max_
threads

The same value as
webserver.connector.inproc
ess_http.max_execute_threa
ds

ejbserver.logger.channels.define
.NIOHTTPAccessLogFile.filenum

16 (default value) The same value as
webserver.logger.access_lo
g.inprocess_http.filenum

ejbserver.logger.channels.define
.NIOHTTPAccessLogFile.filesize

4194304 (default value) The same value as
webserver.logger.access_lo
g.inprocess_http.filesize

ejbserver.logger.access_log.nio_
http.format

%h %{X-Forwarded-For}i %l %u
%d %rootap "%r" %s %b %D %S
(default value)

When the value of
webserver.logger.access_lo
g.inprocess_http.usage_for
mat is common or combined

Default value

For other cases
In addition to the default value, the
format argument individually
specified for
webserver.logger.access_
log.format-name.
format-name is the character string
specified for
webserver.logger.access_
log.inprocess_http.usage
_format.

webserver.context.stop_asyncwait
_timeout

30 (default value)

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 705

Property name in Application Server version
11 and Developer version 11

Recommended value in Application Server version 11 and Developer version 11

For Web server integration For the in-process HTTP server

webserver.servlet_api.unsupporte
d.throwUnsupportedOperationExcep
tion

See 12.3.2(1).

12.6.2 Definitions of the redirector
If the Web server integration configuration using the redirector was used in Application Server version 9 and Developer
version 9, the Web server integration functionality using the redirector is replaced with the reverse proxy functionality
of HTTP Server. The following table describes the replacements from the parameters specified for the conventional
redirector to the directives of the reverse proxy functionality.

Table 12‒15:  Migration destinations of the definition files of the redirector

Specification destination in Application Server version 9 and Developer version 9 Corresponding specification
destination in Application Server
version 11 and Developer version 11Specification destination file Parameter name

mod_jk.conf
(redirector action definition file)

JkConnectTimeout See 12.4.1(2)(a).

JkSendTimeout

JkPrfId HWSPrfId directive

JkRequestRetryCount None (Retries are never performed.)

Other None

worker.properties
(worker definition file)

worker.worker-name.host Host name of the URL specified
for the second argument of the
ProxyPass directive

worker.worker-name.port Port number of the URL specified
for the second argument of the
ProxyPass directive

worker.worker-name.receive_timeout See 12.4.1(2)(a).

Other None

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 706

12.7 Abolished parameter reference

This section describes the parameters abolished in Application Server version 11 and Developer version 11.

12.7.1 Files used by the J2EE server

(1) usrconf.properties (user property file for J2EE servers)
The following table lists the keys that cannot be specified in Application Server version 11 and Developer version 11.

Table 12‒16:  Abolished parameters in the user property file for J2EE servers

Abolished key name of Application Server version 9 and Developer version 9 Remarks

Keys starting with webserver.connector.inprocess_http The in-process HTTP server functionality cannot
be used.

Keys starting with webserver.logger.access_log

webserver.logger.communication_trace.inprocess_http.filen
um

webserver.logger.thread_trace.inprocess_http.filenum

webserver.container.thread_control.enabled The specified value is ignored and the value is
always assumed to be true.

Keys starting with webserver.connector.ajp12 The Web server integration functionality using the
redirector cannot be used.

Keys starting with webserver.connector.ajp13

ejbserver.server.eheap.ajp13.enabled

Keys starting with webserver.eadssfo. The EADs session failover functionality cannot
be used.

webserver.jsp.el2_2.enabled The specified value is ignored and the value is
always assumed to be EL 3.0.

Keys starting with cosminexus.jpa. Parameters unique to the CJPA provider cannot
be used.

Keys starting with ejbserver.jpa The JPA container functionality cannot be used.

ejbserver.server.j2ee.feature Operation modes compatible with old versions such
as 1.3basic cannot be specified.

12.7.2 Files used by Web server integration
The following files cannot be used:

• Redirector action definition file for HTTP Server (mod_jk.conf)

• Worker definition file (workers.properties)

• Redirector action definition file for Microsoft IIS (isapi_redirect.conf)

• Mapping definition file for Microsoft IIS (usrworkermap.properties)

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 707

12.7.3 Files used by JPA

(1) persistence.xml
The following properties cannot be specified as properties specified for the <property> tag in persistence.xml.

• Properties starting with cosminexus.jpa

12.7.4 Parameters specified for the Smart Composer functionality

(1) Parameters specified for the logical J2EE server
The parameters described in Table 12-16 Abolished parameters in the user property file for J2EE servers cannot be
specified as parameters for the logical J2EE server.

(2) Parameters specified for the logical Web server
The following parameters cannot be specified as parameters for the logical Web server:

• Parameters that set up the redirector action definition for HTTP Server

• Parameters that set up the worker definition

12. Migrating from Version 9 to Version 11

Maintenance and Migration Guide 708

Appendixes

Maintenance and Migration Guide 709

A. List of Snapshot Logs to Be Collected

This section describes the execution environment directories of the configuration software that are to be collected when
you want to collect snapshot logs at the same time. Note that if you expand the collected ZIP file, the directories are
extracted in the same directory configuration as that before collection.

When you collect all snapshot logs at the same time, the log files and definition files of the configuration software and
libraries of a system built with the application server are collected. You can change the directory paths to be collected by
editing the following files. For details about the settings for collecting the snapshot log, see the subsection 3.3.3 Settings
for collecting snapshot logs (Systems for executing J2EE applications) or the subsection 3.3.4 Settings for collecting
snapshot log (Systems for executing batch applications).

The following table describes the correspondence with the data required for troubleshooting and the snapshot log
data type.

Table A‒1: Correspondence with the data necessary for troubleshooting and snapshot log data type

Data necessary for troubleshooting Data type of snapshot log

Application Server log Message log Message log

User log Other logs

Exception log Other logs

Maintenance log Maintenance log

EJB client application system log Message log Message log

User log Other logs

Exception log Other logs

Maintenance log Maintenance log

Trace based performance analysis Performance, error analysis trace

Thread dumps of JavaVM Dump

GC logs of JavaVM Other logs

Memory dump Dump

JavaVM log file Other logs

Error report files Dump

OS state or log Other logs

Statistical information of OS Other logs

Definition information Definition information

Operation directory User data

Resource setting User data

Web server log Message log

Other logs

Access log

Internal interface

JavaVM stack trace Other logs

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 710

Data necessary for troubleshooting Data type of snapshot log

Event log of the Explicit Memory Management functionality Other logs

Important note

The snapshot log is collected for directories created by default during installation of the configuration software
in the default state. If the output destination and working directory of the log are changed, customize the
collection destination.

A.1 Overview of the list of the snapshot log to be collected
This appendix describes the storage location of the snapshot log data and the collection method, directories, and file name
described in the list.

(1) Data storage location
The snapshot log is collected in three files, namely snapshotlog.conf, snapshotlog.2.conf,
and snapshotlog.param.conf.

• snapshotlog.conf
This is a file that describes the logs to be collected as primary delivery data. The storage location of this file is
as follows:

• In Windows
Cosminexus-installation-directory\manager\config\snapshotlog.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.conf

• snapshotlog.2.conf
This is a file that describes the logs to be collected as secondary delivery data. The storage location of this file is
as follows:

• In Windows
Cosminexus-installation-directory\manager\config\snapshotlog.2.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.2.conf

• snapshotlog.param.conf
This file describes the logs to be collected for the definition sending data. The storage location of the file is as follows:

• In Windows
Application-Server-installation-directory\manager\config\snapshotlog.param.conf

• In UNIX
/opt/Cosminexus/manager/config/snapshotlog.param.conf

(2) Method of collecting snapshot log
The following types are included in the methods of collecting the snapshot log. The following table describes the method
of collecting the snapshot log.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 711

Table A‒2: Methods of collecting snapshot log

No. How to collect Category

1 Collecting the log from the Snapshot Log window of the Start/ stop logical server anchor of the
management portal

Collection method A

2 Executing management command (mngsvrutil collect snapshot command) Collection method A

3 Auto collecting after detecting the error of the logical server Collection method A

4 Execute snapshotlog command using the standard snapshotlog.conf,
snapshotlog.2.conf, or snapshotlog.param.conf

Collection method B

(3) Availability of snapshot log collection and changes in settings related
to collection

In the tables from Table A-5 to Table A-45, availability of collection and availability of changes in settings for the
mngsvrutil command or snapshotlog command are categorized with labels. The following table describes
each label.

Table A‒3: Definition of label used in Table A-5 to Table A-45

Label used
in table

Default collection Changes in log output destination and
storage destination of definition file

Collection when log output destination
and storage destination of definition file
is changed

A Collected. Possible. Possible.

Y Collected. Not possible. Not possible.

C Collected. Possible. Possible but with some restrictions#1.

D Not collected. Not possible. Not possible#2.

#1
You must edit the definition file (snapshotlog.conf, snapshotlog.2.conf, or snapshotlog.param.conf) for collecting the
snapshot log and set the file to the directory targeted for collection.

#2
You cannot change the log output destination or storage destination of a definition file. You must edit the definition file (snapshotlog.conf,
snapshotlog.2.conf, or snapshotlog.param.conf) for collecting the snapshot log and set the file to the directory targeted
for collection.

Also, the Data column from Table A-5 to Table A-45 indicates the data collected when the mngsvrutil command or
snapshotlog command is executed.

If the data is collected using another method, or if mngsvrutil collect snapshot 2 is executed, all the data
is collected regardless of the contents of the Data column in the table.

The notations and symbols in the Data column are as follows:

• Primary: Primarily sent data
This data is collected when the snapshotlog command specifying snapshotconf.conf, or mngsvrutil
collect snapshot 1 is executed.

• Secondary: Secondarily sent data
This data is collected when the snapshotlog command specifying snapshotconf.2.conf, or
mngsvrutil collect snapshot 2 is executed.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 712

• Definition: Definition sending data
This data is collected when the snapshotlog command is executed specifying snapshotlog.param.conf.

• Symbols in the table
Y: Collected
--: Not collected

(4) Rules for the coding to be collected
The common method to code the directories and files to be collected is as follows:

• The asterisk (*) in the path of the directory or file to be collected indicates any character string of 0 or more characters.

• *** in Windows and /*/*/* in UNIX indicates the hierarchy in which the files are collected. For example,
in the case of log** in Windows or log/*/* in UNIX, the files that are two levels below the log directory are
to be collected.

The following table describes the significance of the files and directories to be collected.

Table A‒4: Significance of files and directories to be collected

Directory or file name Contents Default value Changed Value

Installation-directory-of-
Cosminexus

Installation directory path name
of the Application Server

• In Windows
Decided when installing the
Application Server.

• In UNIX
/opt/Cosminexus

${cosminexus.home}

CTM-identifier -CTMID option name of
ctmstart command

-- .+

CTM-spool-directory-
(ctmspool)

Directory path name
specified for environment
variable CTMSPOOL

Installation-directory-of-
Cosminexus/CTM/spool

&{ctmspool}

DABroker-operation-directory-
(dabroker)

Directory path name set
after DABroker installation by
dabsetup command

/opt/DABroker <DABroker_Oparation>

EJB-client-definition-file-
storage-directory

Directory path name specified
in environment variable
CJCLUSRCONFDIR or
directory path name,
which executed the
cjclstartap command

-- <ejb.client.definitio
n.file.dir>

EJB-client-log-subdirectory-
(ejb.client.ejb.log)

Sub directory name specified
in ejb.client.ejb.log
key of usrconf.cfg for
Java application

system .+

EJB-client-log-subdirectory1-
(ejbserver.client.ejb.log)

Directory path name specified in
ejbserver.client.ejb.
log key of
usrconf.properties for
Java application

-- .+

EJB-client-log-subdirectory2-
(ejb.client.log.appid)

Subdirectory name specified
in ejb.client.log.appid

ejbcl .+

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 713

Directory or file name Contents Default value Changed Value

key of usrconf.cfg for
Java application

EJB-client-log-subdirectory2-
(ejbserver.client.log.appid)

Directory path name specified in
ejbserver.client.log.
appid key of
usrconf.properties for
Java application

-- .+

EJB-client-log-output-directory-
(ejb.client.log.directory)

Directory path name specified in
ejb.client.log.direct
ory key of usrconf.cfg
for Java application

-- <ejb.client.log.direc
tory>

EJB-client-log-output-directory-
(ejbserver.client.log.directory)

Directory path name specified in
ejbserver.client.log.
directory key of
usrconf.properties for
Java application

Installation-directory-
of-Cosminexus/CC/
client/logs

<ejbserver.client.log
.directory>

HCSC-server-property-
(methodtrace-filepath)

Directory path specified
in the methodtrace-
filepath property with
the HCSC server definition
command cscsvconfig

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-name/
logs/csc/maintenance

<methodtrace-
filepath>

HCSC-server-property-
(requesttrace-filepath)

Directory path specified
in the requesttrace-
filepath property with
the HCSC server definition
command cscsvconfig

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-name/
logs/csc/maintenance

<requesttrace-
filepath>

HCSC-repository-root-
(cscmng.repository.root)

Repository root specified in the
cscmng.repository.roo
t key of HCSC-Manager
definition
cscmng.properties

Installation-directory-of-
Cosminexus/CSC/
repository

<cscmng.repository.ro
ot>

HCSC-log-output-directory-
(cscmng.log.dir)

Log directory path specified in
the cscmng.log.dir key of
HCSC-Manager definition
cscmng.properties

Installation-directory-of-
Cosminexus/CSC/log/
manager

<cscmng.log.dir>

HWS-access-log-directory-
(HttpsdCustomLogFileDir)

Directory path name of the file
name specified in CustomLog
directory of httpsd.conf

Installation-directory-of-
HWS/servers/HWS_server-
name/logs

&{hws.logfile.dir}

Installation-directory-of-HWS Cosminexus HTTP Server
installation directory path

In Windows
Installation-directory-of-
Cosminexus/httpsd
In UNIX
opt/hitachi/httpsd

${hws.home}

HWS-error-log-directory-
(HttpsdErrorLogFileDir)

Directory path name of the file
name specified in ErrorLogr
directory of httpsd.conf

Installation-directory-of-
HWS/servers/HWS_server-
name/logs

&{hws.logfile.dir}

HWS-cache-server-
run-directory-
(SSLCacheServerRunDir)

Directory path name specified
in SSLCacheServerRunDir
directory of httpsd.conf

HWS-server-root-directory-
(ServerRoot)

<SSLCacheServerRunDir
>

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 714

Directory or file name Contents Default value Changed Value

HWS-core-dump-output-
directory-(CoreDumpDirectory)

Directory path name specified
in CoreDumpDirectory
directory of httpsd.conf

Installation-directory-of-HWS/
servers/HWS_server-name

&{core.dump.directory
}

HWS-server-root-directory-
(ServerRoot)

Directory path name specified
in ServerRoot directory
of httpsd.conf

Installation-directory-of-HWS <ServerRoot>

HWS-trace-directory-
(HttpsdTraceLogFileDir)

Directory path name of
the file name specified in
HWSTraceLogFile directory
of httpsd.conf

Installation-directory-of-
HWS/servers/HWS_server-
name/logs

&{hws.logfile.dir}

HWS-processID-file-(PidFile) File name specified in PidFile
directory of httpsd.conf

Installation-directory-of-HWS/
servers/HWS_server-name/
logs/httpd.pid

<PidFile>

Redirector-log-output-directory-
for-HWS-(JkLogFileDir)

Directory path specified in
the JkLogFileDir key
of mod_jk.conf

Installation-directory-of-
Cosminexus/CC/web/
redirector/servers/
server-name/logs

&{jklogfiledir}

Redirector-trace-log-
output-directory-for-HWS-
(JkTraceLogFileDir)

Directory path specified in the
JkTraceLogFileDir key
of mod_jk.conf

Installation-directory-of-
Cosminexus/CC/web/
redirector/servers/
server-name/logs

&{jktracelogfiledir}

HWS-request-log-directory-
(HttpsdRequestLogFileDir)

Directory path name
of the file name
specified in HWSRequestLog
directory
of httpsd.conf

Installation-directory-of-
HWS/servers/HWS_server-
name/logs

&{hws.logfile.dir}

IIS-access-log-directory-
(IIS_log_dir)

Access log output directory path
name of Microsoft IIS

System-root-directory-
(systemroot)/system32/
LogFiles/W3SVC1

<IIS_log_dir>

Redirector-trace-log-
output-directory-for-IIS-
(trace_log_file_dir)

Directory path name specified in
trace_log_file_dir key
of isapi_redirect.conf

Installation-directory-of-
Cosminexus/CC/web/
redirector/servers/
server-name/logs

&{jktracelogfiledir}

Redirector-log-output-directory-
for-IIS-(log_file_dir)

Directory path name specified
in log_file_dir key
of isapi_redirect.conf

Installation-directory-of-
Cosminexus/CC/web/
redirector/servers/
server-name/logs

&{jklogfiledir}

J2EE-server-working-directory-
(ejb.public.directory)

Directory path name
specified in the
ejb.public.directory
key of usrconf.cfg for a
J2EE server

Installation-directory-
of-Cosminexus/CC/
server/public

&{ejb.public.director
y}

J2EE-server-log-
output-directory-
(ejb.server.log.directory)

Directory path specified in the
ejb.server.log.direct
ory key of usrconf.cfg for
a J2EE server

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-
name/logs

&{ejb.server.log.dire
ctory}

JAXR-trace-file-name-
(com.cosminexus.xml.registry.tr
ace.file_path)

File path name specified in
com.cosminexus.xml.re
gistry.trace.file_pat
h key of system property

${cosminexus.home}/
c4web/
logs/JAXRAPITrace

<com.cosminexus.xml.r
egistry.trace.file_pa
th>

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 715

Directory or file name Contents Default value Changed Value

Temporary-directory-for-JSP-
(webserver.work.directory)

Directory path specified in the
webserver.work.direct
ory key of
usrconf.properties of a
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
repository/server-
name/web

&{webserver.work.dire
ctory}

Message-ID-list-file-for-
Management-event-publication-
(manager.mevent.message_id.lis
t)

File path name specified in
manager.mevent.messag
e_id.list key of
mevent.server-
name.properties

-- <manager.mevent.messa
ge_id.list>

Manager-log-output-directory-
(com.cosminexus.manager.log.d
ir)

Directory path specified in the
com.cosminexus.manage
r.log.dir key of
manager.cfg

Installation-directory-of-
Cosminexus/manager/log

$
{com.cosminexus.manag
er.log.dir}

PRF-identifier -PRFID option name of
cprfstart command

-- .+

PRF-spool-directory-(prfspool) Directory path name
specified for environment
variable PRFSPOOL

Installation-directory-of-
Cosminexus/PRF/spool

&{prfspool}

RM-installation-directory Directory path name specified for
environment variable HRMDIR

Installation-directory-of-
Cosminexus/RM

<HRMDIR>

TP1-onnector-log-output-
directory-
(jp.co.hitachi_system.tp1connec
tor.logdestination)

Directory path name specified in
jp.co.hitachi_system.
tp1connector.logdesti
nation key of system property

user-home-directory-
(user.home)

<jp.co.hitachi_system
.tp1connector.logdest
ination>

UNIX-syslog-(syslog) syslog file path name in UNIX • In AIX
/var/adm/ras/
syslog*

• In Linux
/var/log/messages*

syslog

VBROKER_ADM-directory-
(vbroker_adm)

Directory path specified
in the environment
variable VBROKER_ADM

Installation-directory-of-
Cosminexus/TPB/adm

<VBROKER_ADM>

Web-container-server-
log-output-directory-
(web.server.log.directory)

Directory path specified in the
web.server.log.direct
ory key of usrconf.cfg for
a J2EE server

Installation-directory-of-
Cosminexus/CC/web/
containers/server-
name/logs

<web.server.log.direc
tory>

Windows-event-log-(EventLog) File where event log of
Windows is collected using
wmic command

-- <EventLog>

Windows-Crash-dump-output-
directory-(CrashDumpDir)

Windows crash dump output
destination directory path name

Users-Application-Data-
directory-(LOCALAPPDATA)/
CrashDumps

<CrashDumpDir>

XML-Security-Core-trace-
output-directory-
(com.cosminexus.xml.security.lo
gging.trace_dir)

Directory path specified in the
com.cosminexus.xml.se
curity.logging.trace_
dir key of usrconf.cfg for
a J2EE server

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-name

<com.cosminexus.xml.s
ecurity.logging.trace
_dir>

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 716

Directory or file name Contents Default value Changed Value

In-process-HTTP-server-access-
log-file-
(webserver.logger.access_log.in
process_http.filename)

Directory path specified in the
webserver.logger.acce
ss_log.inprocess_http
.filename key of
usrconf.properties for a
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-name/
logs/http/
cjhttp_access.inproce
ss_http

&{webserver.logger.ac
cess_log.inprocess_ht
tp.filename}.

statistics-file-output-
destination-directory-
(ejbserver.management.stats_fil
e.dir)

Directory path specified in the
ejbserver.management.
stats_file.dir key of
usrconf.properties for a
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-
name/stats

&{ejbserver.managemen
t.stats_file.dir}

Audit-log-output-directory-
(auditlog.directory)

Directory path name specified in
auditlog.directory key
of audit log definition file

Installation-directory-of-
Cosminexus/auditlog

<auditlog.directory>

Audit-log-message-output-
directory-
(auditlog.raslog.message.direct
ory)

Directory path name specified in
auditlog.raslog.messa
ge.directory key of the
Audit log definition file

Installation-directory-of-
Cosminexus/auditlog

<auditlog.raslog.mess
age.directory>

Audit-log-exception-output-
director-
(auditlog.raslog.exception.direc
tory)

Directory path name specified in
auditlog.raslog.excep
tion.directory key of
Audit log definition file

Installation-directory-of-
Cosminexus/auditlog

<auditlog.raslog.exce
ption.directory>

Context-root Root name of the J2EE
web application executed on
the server

-- .+

Server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)

Directory path name specified in
the -
Dejbserver.log.direct
ory option of
USRCONF_JVM_ARGS key of
the option definition file for
server management commands

Installation-directory-
of-Cosminexus/CC/
admin/logs

<admin_ejb.server.log
.directory>

Server-name Logical server name or
real server name set by
Management Server

-- .+

System-drive-
(SystemDrive)

Directory path name
specified for environment
variable SystemDrive

-- %{SystemDrive}

System-root-directory-
(systemroot)

Directory path name
specified for environment
variable SystemRoot

-- %{SystemRoot}

Status-file-directory-
(ejbserver.distributedtx.ots.statu
s.directory1)

Directory path specified in the
ejbserver.distributed
tx.ots.status.directo
ry1 key of
usrconf.properties of a
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-
name/otsstatus

&{ejbserver.distribut
edtx.ots.status.direc
tory1}

Trace-file-name-of-integrated-
user-management-
(com.cosminexus.admin.auth.tra
ce.prefix)

File path name specified in
com.cosminexus.admin.
auth.trace.prefix option
of ua.conf

-- <com.cosminexus.admin
.auth.trace.prefix>

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 717

Directory or file name Contents Default value Changed Value

Batch-application-definition-
file-storage-directory

Directory path name specified
in environment variable
CJBATCHUSRCONFDIR or
directory path name,
which executed the
cjexecjob, cjkilljob, or
cjlistjob commands

-- <batch.application.de
finition.file.dir>

Batch-application-log-output-
directory-(batch.log.directory)

Directory path name specified
in batch.log.directory
of usrconf.cfg for
batch applications

Installation-directory-
of-Cosminexus/CC/
batch/logs

<batch.log.directory>

User-Application-Data-
directory-(LOCALAPPDATA)

Directory path name
specified for environment
variable LOCALAPPDATA

-- %{LOCALAPPDATA}

User-home-directory-
(user.home)

Home directory path name of the
executing user
• In collection method A:

Home directory of operation
management agent start user

• In collection method B:
Home directory of
the user executing
snapshotlog command

-- ${user.home}and
<user.home>

Spare-status-file-directory-
(ejbserver.distributedtx.ots.statu
s.directory2)

Directory path specified in the
ejbserver.distributed
tx.ots.status.directo
ry2 key of
usrconf.properties of a
J2EE server

-- &{ejbserver.distribut
edtx.ots.status.direc
tory2}

Virtual-server-manager-log-
directory-of-08-50-mode-
(vmx.log.dir)

Directory path name specified
in the vmx.log.dir key
of vmx.properties

Installation-directory-
of-Cosminexus/
manager/vmx/log

<vmx.log.dir>

Processing-data-storage-
directory-of-virtual-server-
manager-of-08-50-mode-
(vmx.spool.dir)

Directory path name specified
in the vmx.spool.dir key
of vmx.properties

Installation-directory-
of-Cosminexus/
manager/vmx/spool

<vmx.spool.dir>

Processing-data-storage-
directory-of--virtual-server-
manager-(vmi.spool.dir)

Directory path name specified
in the vmi.spool.dir key
of vmx.properties

Installation-directory-
of-Cosminexus/
manager/vmi/spool

<vmi.spool.dir>

server-communication-
agent-log-output-directory-
(sinaviagent.log.dir)

Directory path name specified in
the sinaviagent.log.dir
key of sinaviagent.cfg

Installation-directory-of-
Cosminexus/sinagent/log

<sinaviagent.log.dir>

server-communication-agent-
processing-data-storage-
directory-(sinaviagent.spool.dir)

Directory path name
specified in the
sinaviagent.spool.dir
key of sinaviagent.cfg

Installation-directory-
of-Cosminexus/
sinagent/spool

<sinaviagent.spool.di
r>

FTP-adapter-installation-
directory-(ftpadp.home)

Installation directory path name
of FTP Adapter

-- <ftpadp.home>

FTP-adapter-command-
message-log-output-destination-
directory-

Directory path name of operation
command message log output
destination of FTP Adapter

FTP-adapter-installation-
directory-(ftpadp.home)/log

<ftpadp.command.messa
gelog.filepath>

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 718

Directory or file name Contents Default value Changed Value

(ftpadp.command.messagelog.fil
epath)

HCSC-mail-adapter-operation-
command-message-log-output-
destination-directory-
(mailadp.command.messagelog.
filepath)

Directory path name of operation
command execution log of
mail adapter incorporated in
Cosminexus Service Coordinator

Installation-directory-of-
Cosminexus/CSC/log/
adapter/command

<mailadp.command.mess
agelog.filepath>

HCSC-mail-adapter-
maintenance-log-output-
destination-directory-
(mailadp.methodtrace.filepath)

Directory path name specified in
the
mailadp.methodtrace.f
ilepath property in the
execution environment property
file of mail adapter

Installation-directory-of-
Cosminexus/CC/server/
public/ejb/server-
name/logs/CSCADP/
MAILADP/maintenance/

<mailadp.methodtrace.
filepath>

CTM-regulator-setup-file-
(ctm.RegOption)

Path of the CTM regulator
configuration file

-- &{ctm.RegOption}

OTM-gateway-setup-file-
(ctm.TSCGwOption)

Path of the OTM gateway
configuration file

-- &{ctm.TSCGwOption}

Directory-to-output-
temporary-PRF-trace-file-
(adminagent.prftrace_dir)

Path of the directory to output the
temporary PRF trace file

Application-Server-installation-
directory/manager/tmp

$
{adminagent.prftrace_
dir}

Name-of-Explicit-Memory-
Management-functionality-
exclusion-setup-file-
(jvm.exmemexcludeclass.File)

File path specified in the JavaVM
extension option -
XX:ExplicitMemoryExcl
udeClassListFile

Application-Server-installation-
directory/jdk/usrconf/
exmemexcludeclass.cfg

<jvm.exmemexcludeclas
s.File>

Name-of-Explicit-Memory-
Management-functionality-non-
exclusion-setup-file-
(jvm.exmemnotexcludeclass.File
)

File path specified in the JavaVM
extension option -
XX:ExplicitMemoryNotE
xcludeClassListFile

Application-Server-installation-
directory/jdk/usrconf/
exmemnotexcludeclass.
cfg

<jvm.exmemnotexcludec
lass.File>

HWS-WebSocket-log-directory-
(HttpsdWebSocketLogFileDir)

Directory path of the file
name specified for the
HWSWebSocketLog directive
in httpsd.conf

HWS-installation-directory/
servers/HWS_server-
name/logs

&{hws.logfile.dir}

Legend:
--: No default value

A.2 Cosminexus Component Container
The following table describes the logs to be collected in relation to a Cosminexus Component Container.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 719

Table A‒5: Collection method related to Cosminexus Component Container (In Windows)

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

J2EE server Message
log

Operation log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

Log operation log J2EE-server-log-output-directory-
(ejb.server.log.directory)/cjlogger.log

Y -- -- A C

Resource adapter
operation log
deployed and
used as J2EE
resource adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

Resource adapter
operation log
used by including
in J2EE
application
(normal mode)

J2EE-server-log-output-directory-
(ejb.server.log.directory)/connectors/
J2EE-application-name/*.log

Y -- -- A C

Resource adapter
operation log
used by including
in the J2EE
application (test
mode)

J2EE-server-log-output-directory-
(ejb.server.log.directory)/connectors/
TEST#J2EE-application-name/*.log

Y -- -- A C

Web servlet log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
web_servlet*.log

Y -- -- A C

Other logs User output log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
user_out*.log

Y -- -- A C

User error log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
user_err*.log

Y -- -- A C

JavaVM
maintenance
information and
GC log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/javalog*.log

Y -- -- A C

JavaVM Explicit
Memory
Management
functionality
event log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
ehjavalog*.log

Y -- -- A C

Check
development log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjdevelopment*.log

Y -- -- A C

Exception
information when
an error occurs

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjexception*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 720

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

JavaVM event log J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/hs_err*

Y -- -- A A

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/replay_pid*.log

Y -- -- A A

User log of J2EE
applications

J2EE-server-log-output-directory-
(ejb.server.log.directory)/user/*

Y -- -- A C

Maintenanc
e log

Maintenance
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/
cjmaintenance*.log

Y -- -- A C

Console message J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/cjconsole*.log

Y -- -- A C

EJB container
maintenance
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/
cjejbcontainer*.log

Y -- -- A C

Web container
maintenance
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/
cjwebcontainer*.log

Y -- -- A C

Start process
standard output
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/cjstdout*.log

Y -- -- A C

Start process
standard error
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/cjstderr*.log

Y -- -- A C

Termination
process
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CC/
maintenance/cj_shutdown*.log

Y -- -- A C

Dump Thread dump J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/javacore*

Y -- -- A A

Statistical
information

Operation
information file

statistics-file-output-destination-directory-
(ejbserver.management.stats_file.dir)/*

-- Y -- A C

Memory
monitoring log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
watch/cjmemorywatch*.log

Y -- -- A C

Thread
monitoring log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
watch/cjthreadwatch*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 721

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Thread dump
monitoring log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
watch/cjthreaddumpwatch*.log

Y -- -- A C

HTTP request
pending queue
monitoring log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/watch/
cjrequestqueuewatch*.log

Y -- -- A C

HTTP session
count monitoring
log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
watch/cjhttpsessionwatch*.log

Y -- -- A C

Connection pool
monitoring log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/watch/
cjconnectionpoolwatch*.log

Y -- -- A C

Others Log showing
J2EE server start,
stop or abnormal
termination

Windows-event-log-(EventLog) Y -- -- D D

Definition
information

Option definition
file for J2EE
servers

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/usrconf.cfg

Y -- Y Y Y

User property file
for the J2EE
server

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/usrconf.properties

Y -- Y Y Y

Security policy
file for J2EE
server

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/server.policy

Y -- Y Y Y

Backup of various
definition files
created with
MNG

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-name/*

-- Y -- Y Y

Protected area list
file

Installation-directory-of-
Cosminexus/CC/server/
usrconf/criticalList.cfg

Y -- Y Y Y

Resource setting
information

J2EE-server-work-directory-
(ejb.public.directory)/ejb/server-name/
import/**

-- Y -- D D

J2EE-server-work-directory-
(ejb.public.directory)/ejb/server-name/
rars/**

-- Y -- D D

Maintenance
information

Installation-directory-of-Cosminexus/CC/
server/version/**

Y -- Y Y Y

User data Contents of EJB
server working
directory

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/**

-- Y -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 722

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Contents of Web
container
working directory

J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/**

-- Y -- D D

Contents of
temporary
directory for JSP

Temporary-directory-for-JSP-
(webserver.work.directory)/**

-- Y -- D D

Server
management
commands

Message
log

Operation log server-management-command-log-output-
directory-(admin_ejb.server.log.directory)/
cjmessage*.log

Y -- -- C C

Log operation log server-management-command-log-output-
directory-(admin_ejb.server.log.directory)/
cjlogger.log

Y -- -- C C

Operation log in
compatible mode

server-management-command-log-output-
directory-(admin_ejb.server.log.directory)/
message.log

Y -- -- C C

Other logs Exception
information when
an error occurs

server-management-command-log-output-
directory-(admin_ejb.server.log.directory)/
cjexception*.log

Y -- -- C C

Exception
information when
an error occurs in
compatible mode

server-management-command-log-output-
directory-(admin_ejb.server.log.directory)/
exception.log

Y -- -- C C

Maintenanc
e log

Maintenance
information

server-management-command-log-output-
directory-
(admin_ejb.server.log.directory)/CC/
maintenance/
cjmaintenance*.log

Y -- -- C C

Console message server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/CC/
maintenance/cjconsole*.log

Y -- -- C C

Server
management
command
maintenance
information

server-management-command-log-output-
directory-
(admin_ejb.server.log.directory)/CC/
maintenance/
cjserveradmin*.log

Y -- -- C C

Other logs server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/*/*

Y -- -- C C

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/*/*/*

Y -- -- C C

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/*/*/*/*

-- Y -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 723

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Definition
information

Definition file for
server
management
command

Installation-directory-of-Cosminexus/CC/
admin/usrconf/*

Y -- Y Y Y

Batch
application

Message
log

Operation log of
cjexecjob,
cjkilljob,
and cjlistjob
command

batch-application-log-output-directory-
(batch.log.directory)/cjmessage*.log

Y -- -- C C

Maintenanc
e log

Other logs batch-application-log-output-directory-
(batch.log.directory)/*/*

Y -- -- C C

Definition
information

Option definition
file for batch
application

Definition-file-storage-directory-of-batch-
application/usrconf.cfg

Y -- -- D D

User property file
for batch
application

Definition-file-storage-directory-of-batch-
application/usrconf.properties

Y -- -- D D

Resource
adapter version
upgrade
command
(cjrarupdat
e)

Message
log

Operation log Installation-directory-of-Cosminexus/CC/
logs/cjrarupdatemessage*.log

Y -- -- Y Y

Other logs Exception
information when
an error occurs

Installation-directory-of-Cosminexus/CC/
logs/
cjrarupdateexception*.log

Y -- -- Y Y

Maintenanc
e log

Maintenance
information

Installation-directory-of-Cosminexus/CC/
logs/
cjrarupdatemaintenance*.log

Y -- -- Y Y

In-process
HTTP server

Process log Process result of
in-process HTTP
server

In-process-HTTP-server-access-log-file-
(webserver.logger.access_log.inprocess_htt
p.filename)*.log

Y -- -- A C

Module
trace

Thread trace
information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/http/
maintenance/thr/
cjhttp_thr.*.inprocess_http.m
m

Y -- -- A C

Communic
ation trace

Communication
trace information

J2EE-server-log-output-directory-
(ejb.server.log.directory)/http/
maintenance/comm/
cjhttp_comm.*.inprocess_http.
mm

Y -- -- A C

NIO HTTP
server

Access log Processing results
of the NIO HTTP
server (HTTP)

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cj_access_niohttp*.log

Y -- -- A C

Processing results
of the NIO HTTP
server
(WebSocket)

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cj_access_websocket*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 724

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Migration
command
(cjenvupdat
e)

Message
log

Operation log of
the
cjenvupdate
command

Installation-directory-of-Cosminexus/CC/
logs/cjenvupdatemessage*.log

Y -- -- Y Y

Other logs Exception
information of the
cjenvupdate
command

Installation-directory-of-Cosminexus/CC/
logs/
cjenvupdateexception*.log

Y -- -- Y Y

Maintenanc
e log

Maintenance
information of the
cjenvupdate
command

Installation-directory-of-Cosminexus/CC/
logs/
cjenvupdatemaintenance*.log

Y -- -- Y Y

In-process
transaction
service

Others In-process
transaction
service status file

Status-file-directory-
(ejbserver.distributedtx.ots.status.directory1
)/*

-- Y -- A C

Status-file-directory-
(ejbserver.distributedtx.ots.status.directory1
)/*/*

-- Y -- A C

In-process
transaction
service spare
status file

Spare-status-file-directory-
(ejbserver.distributedtx.ots.status.directory2
)/*

-- Y -- A D

Spare-status-file-directory-
(ejbserver.distributedtx.ots.status.directory2
)/*/*

-- Y -- A D

EJB client Message
log

Operation log EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-(ejbserver.client.log.appid)/
cjclmessage*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-log-
subdirectory-1-(ejb.client.ejb.log)/EJB-
client-log-subdirectory-2-
(ejb.client.log.appid)/
cjclmessage*.log

Y -- -- D D

cjclstartap
command
operation log

EJB-client-log-output-directory-
(ejb.client.log.directory)/
cjclstartap*.log

Y -- -- D D

cjcldellog
command
operation log

Installation-directory-of-Cosminexus/CC/
client/logs/cjcldellog.log

Y -- -- Y Y

Other logs User output log EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-
log-subdirectory-(ejb.client.ejb.log)/
EJB-client-log-subdirectory2-
(ejb.client.log.appid)/user_out*.log

Y -- -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 725

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

User error log EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-
log-subdirectory-(ejb.client.ejb.log)/
EJB-client-log-subdirectory2-
(ejb.client.log.appid)/user_err*.log

Y -- -- D D

JavaVM
maintenance
information, GC
log

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-
log-subdirectory-(ejb.client.ejb.log)/
EJB-client-log-subdirectory2-
(ejb.client.log.appid)/javalog*.log

Y -- -- D D

Exception
information when
an error occurs

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-(ejbserver.client.log.appid)/
cjclexception*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-log-
subdirectory-1-(ejb.client.ejb.log)/EJB-
client-log-subdirectory-2-
(ejb.client.log.appid)/maintenance/
cjclmaintenance*.log

Y -- -- D D

EJB client
application user
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/user/*

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/user/*

Y -- -- D D

Maintenanc
e log

Maintenance
information

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-(ejbserver.client.log.appid)/
cjclmaintenance*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-log-
subdirectory-1-(ejb.client.ejb.log)/EJB-
client-log-subdirectory-2-
(ejb.client.log.appid)/maintenance/
cjclmaintenance*.log

Y -- -- D D

EJB container
maintenance
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-client-log-
subdirectory-(ejb.client.ejb.log)/EJB-
client-log-subdirectory2-
(ejb.client.log.appid)/maintenance/
cjejbcontainer*.log

Y -- -- D D

Start process
standard output
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/
EJB-client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-log-
subdirectory2-(ejb.client.log.appid)/
maintenance/cjstdout*.log

Y -- -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 726

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Start process
standard error
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/
EJB-client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-log-
subdirectory2-(ejb.client.log.appid)/
maintenance/cjstderr*.log

Y -- -- D D

Log operation
information

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
cjlogger.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/cjlogger.log

Y -- -- D D

Definition
information

Option definition
file for EJB client

EJB-client-definition-file-storage-
directory/usrconf.cfg

Y -- -- D D

User property file
for EJB client

EJB-client-definition-file-storage-
directory/usrconf.properties

Y -- -- D D

Redirector
(Web server)

Message
log

Redirector
message log for
HWS

Redirector-log-output-directory-for-HWS-
(JkLogFileDir)/hws_redirect*.log

Y -- -- A C

Redirector
message log for
previous version
compatible HWS

Redirector-log-output-directory-for-HWS-
(JkLogFileDir)/hws_redirect*.log

Y -- -- A C

Redirector
message log for
previous version
compatible IIS

Redirector-log-output-directory-for-IIS-
(log_file_dir)/isapi_redirect*.log

Y -- -- C C

Maintenanc
e log

Trace log for
maintenance of
redirector for
HWS

Redirector-trace-log-output-directory-for-
HWS-(JkTraceLogFileDir)/
hws_rd_trace*.log

Y -- -- A C

Trace log for
maintenance of
redirector for
previous version
compatible HWS

Redirector-trace-log-output-directory-for-
HWS-(JkTraceLogFileDir)/
hws_rd_trace*.log

Y -- -- A C

Trace log for
maintenance of
redirector for
previous version
compatible IIS

Redirector-trace-log-output-directory-for-
IIS-(trace_log_file_dir)/
iis_rd_trace*.log

Y -- -- C C

Definition
information

Redirector action
definition file for
HWS

Installation-directory-of-
Cosminexus/CC/web/redirector/
servers/server-name/mod_jk.conf

Y -- Y Y Y

Worker definition
file

Installation-directory-of-
Cosminexus/CC/web/

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 727

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

redirector/servers/server-
name/workers.properties

Redirector action
file for previous
version
compatible HWS

Installation-directory-of-
Cosminexus/CC/web/
redirector/mod_jk.conf

Y -- Y Y Y

Redirector action
definition file for
previous version
compatible IIS

Application-Server-installation-
directory/CC/web/redirector/
isapi_redirect.conf

Y -- Y Y Y

Worker definition
file for previous
version
compatibility

Installation-directory-of-
Cosminexus/CC/web/
redirector/workers.properties

Y -- Y Y Y

Mapping
definition file for
previous version
compatibility

Application-Server-installation-
directory/CC/web/redirector/
uriworkermap.properties

Y -- Y Y Y

TP1/Message
Queue - Access

Maintenanc
e log

Method trace,
message log
related to API and
Cosminexus
interface

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

API Trace API Trace file J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/mqc.api*

Y -- -- A A

TP1 Connector Message
log

TP1 Connector
operation log
deployed and
used as J2EE
resource adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

TP1 Connector
operation log
used by including
in J2EE
application
(Normal mode)

J2EE-server-log-output-directory-
(ejb.server.log.directory)/connectors/
J2EE-application-name/*.log

Y -- -- A C

TP1 Connector
operation log
used in Non-
managed
environment

TP1Connector-log-output-directory-
(jp.co.hitachi_system.tp1connector.logdesti
nation)/tp1connector*.log

Y -- -- C C

TP1/Client/J Other logs Debug trace
information

user-home-directory-(user.home)/
TP1clientJ/dcClt*.dmp

-- Y -- C C

Manager Message
log

Administration
agent log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagent*.log

Y -- -- A Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 728

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Administration
agent start, stop
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagentctl.exe.*.log

Y -- -- A Y

Integrated
message log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
message/mngmessage*.log

Y -- -- A Y

Administration
agent service log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagentsv.exe.*.log

Y -- -- A Y

Management
agent log and
trace

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngagent*.*.log

Y -- -- A Y

Management
Server service log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngsvr.exe.*.log

Y -- -- A Y

Management
Server service
start, stop
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngsvrctl.exe.*.log

Y -- -- A Y

Management
Server log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngsvr*.log

Y -- -- A Y

Other logs Standard error
output of
Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagent.err.*.log

Y -- -- A Y

Standard output
of Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagent.out.*.log

Y -- -- A Y

Standard
command line
error output of
Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagent.err

Y -- -- A Y

Console log Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
processConsole*.log

Y -- -- A Y

Administration
agent service
standard output

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagentsv.exe.out

Y -- -- A Y

Administration
agent service
standard error
output

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
adminagentsv.exe.err

Y -- -- A Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 729

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Management
Server service
standard error
output

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngsvr.exe.err

Y -- -- A Y

Management
Server service
standard output

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
mngsvr.exe.out

Y -- -- A Y

Configuration file
for automatic
allocation used
with the Explicit
Memory
Management
functionality

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/auto_explicit_memory.cfg

Y -- Y C C

User-extended
trace based
performance
analysis
configuration file
used for user-
extended trace
based
performance
analysis

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/userprf.cfg

Y -- Y C C

Definition file for
the setup
commands of
Setup Wizard

Installation-directory-of-Cosminexus/
manager/setup/config/*

Y -- Y Y Y

Setup command
log for Setup
Wizard

Installation-directory-of-Cosminexus/
manager/setup/log/*.log

Y -- -- C C

Maintenanc
e log

Command
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
maintenance/mngcmd*.log

-- Y -- Y Y

Administration
agent
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
maintenance/adminagent*.log

Y -- -- Y Y

Maintenance log
in RMI process
executed by
Administration
Agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
maintenance/mngrmi*.log

-- Y -- Y Y

Management
Server
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
maintenance/mngsvr*.log

Y -- -- Y Y

Definition
information

Administration
agent property
file

Installation-directory-of-
Cosminexus/manager/
config/adminagent.properties

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 730

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Administration
Agent option
definition file

Installation-directory-of-
Cosminexus/manager/
config/adminagentuser.cfg

Y -- Y Y Y

Administration
Agent setup file

Installation-directory-of-Cosminexus/
manager/config/adminagent.xml

Y -- Y Y Y

Management
agent property
file

Installation-directory-of-Cosminexus/
manager/config/mngagent.server-
name.properties

Y -- Y Y Y

Management
Server
environment
setup file

Installation-directory-of-
Cosminexus/manager/
config/mserver.properties

Y -- Y Y Y

Option definition
file for
Management
Server

Installation-directory-of-Cosminexus/
manager/config/mserver.cfg

Y -- Y Y Y

Environment
variable setup file
for Management
Server

Installation-directory-of-Cosminexus/
manager/config/mserverenv.cfg

Y -- Y Y Y

Manager setup
file

Installation-directory-of-Cosminexus/
manager/config/manager.cfg

Y -- Y Y Y

Property file for
Management
action execution

Installation-directory-of-
Cosminexus/manager/
config/maction.properties

Y -- Y Y Y

Property file for
Management
event issue

Installation-directory-of-Cosminexus/
manager/config/mevent.server-
name.properties

-- Y Y Y Y

Message ID list
file for
Management
event issue

Message-ID-list-file-for-
Management-event-issue-
(manager.mevent.message_id.list)

-- Y Y D D

Client-side
definition file of
the
mngsvrutil
command

User-home-directory-
(user.home)/.mngsvrutilrc

-- Y Y C C

Server-side
definition file of
the
mngsvrutil
command

Installation-directory-of-
Cosminexus/manager/
config/mngsvrutil.properties

Y -- Y Y Y

Client-side
definition file of
mngsvrutil
command

Installation-directory-of-Cosminexus/
manager/config/
mngsvrutilcl.properties

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 731

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Monitor start
command setup
file for JP1/IM
linkage

user-home-directory-
(user.home)/.mngsvrmonitorrc

-- Y Y C C

System log
message mapping
file for JP1/IM
linkage

Installation-directory-of-Cosminexus/
manager/config/
mserver.jp1event.system.mappi
ng.properties

Y -- Y Y Y

Installation-directory-of-Cosminexus/
manager/config/
manager.jp1event.system.mappi
ng.properties

Y -- Y Y Y

Installation-directory-of-Cosminexus/
manager/config/manager.server-
name.jp1event.system.mapping.p
roperties

Y -- Y Y Y

Performanc
e, error
analysis
trace

PRF Trace Directory-to-output-temporary-PRF-trace-
file-(adminagent.prftrace_dir)/*.zip

-- Y -- A D

Internal
interface
trace

Integrated trace
log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
trace/mngtrace*.log

Y -- -- Y Y

Others OS state
information etc

Installation-directory-of-Cosminexus/
manager/tmp/*

Y -- -- Y Y

Smart
Composer

Definition
information

Server settings
property file

Installation-directory-of-
Cosminexus/manager/
config/cmxserver.properties

Y -- Y Y Y

Client settings
property file

User-home-directory-
(user.home)/.cmxrc

-- Y Y C C

Client common
settings property
file

Installation-directory-of-
Cosminexus/manager/
config/cmxclient.properties

Y -- Y Y Y

Load balancer
definition
property file

Installation-directory-of-Cosminexus/
manager/config/lb.properties

Y -- Y Y Y

Integrated user
management

Definition
information

JAAS
configuration file

Installation-directory-of-Cosminexus/
manager/config/jaas.conf

Y -- Y Y Y

Configuration file
for integrated
user management

Installation-directory-of-Cosminexus/
manager/config/ua.conf

Y -- Y Y Y

API Trace Trace of
integrated user
management

Integrated-user-management-trace-file-
name-
(com.cosminexus.admin.auth.trace.prefix).
*.log

-- Y -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 732

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Virtual server
manager in the
08-50 mode

Definition
information

Virtual server
manager property
file

Installation-directory-of-
Cosminexus/manager/vmx/
config/vmx.properties

Y -- Y D Y

Client common
settings property
file of virtual
server manager

Installation-directory-of-
Cosminexus/manager/vmx/
config/vmxclient.properties

Y -- Y D Y

Option definition
file for VMware
vCenter Server
connection
processing

Installation-directory-of-
Cosminexus/manager/vmx/
config/vmx_avcs_usrconf.cfg

Y -- Y D Y

Property file for
VMware vCenter
Server
connection
processing

Installation-directory-of-Cosminexus/
manager/vmx/config/
vmx_avcs_usrconf.properties

Y -- Y D Y

Common
definition file for
VMware vCenter
Server
connection
processing

Installation-directory-of-Cosminexus/
manager/vmx/config/
vmx_avcs_cjwconf.properties

Y -- Y D Y

Other log Log of the
cjclstartap
command used
with the virtual
server manager

Manager-log-output-directory-
(com.cosminexus.manager.log.dir)/
vmx_avcs_logs/**

-- Y -- D Y

Log information
collected from the
virtual server

Virtual-server-manager-log-directory-
in-08-50-mode-(vmx.log.dir)/
mngunit/*/*.zip

-- Y -- D C

Virtual server
manager

Definition
information

Virtual server
manager property
file

Installation-directory-of-
Cosminexus/manager/vmi/
config/vmi.properties

Y -- Y D Y

Client settings
property file of
virtual server
manager

User-home-directory-(user.home)/.vmirc -- Y Y C C

Client common
settings property
file of virtual
server manager

Installation-directory-of-
Cosminexus/manager/vmi/
config/vmiclient.properties

Y -- Y D Y

Load balancer
connection
settings property
file

Installation-directory-of-
Cosminexus/manager/vmi/
config/lb/*.properties

Y -- Y D Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 733

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Server
Communicatio
n Agent

Message
log

Server
Communication
Agent log

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
sinaviagent*.log

Y -- -- D Y

Service log of
Server
Communication
Agent

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
sinaviagentsv*.log

Y -- -- D C

snactl
command log

server-communication-
agent-log-output-directory-
(sinaviagent.log.dir)/snactl*.log

Y -- -- D C

Other logs Error information
during Server
Communication
Agent startup

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
sinaviagent.err

Y -- -- D C

Standard output
of Server
Communication
Agent

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
sinaviagent.out

Y -- -- D C

Console output
information of
command
processes started
by Server
Communication
Agent

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
processConsole*.log

Y -- -- D C

Maintenanc
e log

Maintenance log
of Server
Communication
Agent

server-communication-agent-log-
output-directory-(sinaviagent.log.dir)/
maintenance/sinaviagent*.log

-- Y -- D C

Maintenance log
of Server
Communication
Agent service

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
maintenance/
sinaviagentsv*.log

-- Y -- D C

Maintenance log
of snactl
command

server-communication-agent-log-
output-directory-(sinaviagent.log.dir)/
maintenance/snactl*.log

-- Y -- D C

Javalog of Server
Communication
Agent

server-communication-agent-log-output-
directory-(sinaviagent.log.dir)/
maintenance/
sinaviagent.javalog*.log

-- Y -- D C

Definition
information

Option definition
file for Server
Communication
Agent

Installation-directory-of-
Cosminexus/sinagent/
config/sinaviagent.cfg

Y -- Y D Y

Server
Communication
Agent property
file

Installation-directory-of-
Cosminexus/sinagent/
config/sinaviagent.properties

Y -- Y D Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 734

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Cosminexus
Web Services -
Base

Message
log

Message log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

Web-container-server-log-output-directory-
(web.server.log.directory)/
cjweb_message*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-(ejbserver.client.log.appid)/
cjclmessage*.log

Y -- -- C C

Server trace,
client trace,
default trace,
application log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/WS/*.log

Y -- -- A C

Web-container-server-log-output-directory-
(web.server.log.directory)/WS/*.log

Y -- -- C Y

Client trace,
default trace,
provided
command trace,
application log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/WS/*.log

Y -- -- C C

JAXR Trace JAXR-trace-file-name-
(com.cosminexus.xml.registry.trace.file_pat
h)*.log

Y -- -- C C

Definition
information

Common
definition file

Installation-directory-of-Cosminexus/
c4web/conf/c4webcom.cfg

Y -- Y Y Y

Server definition
file

Installation-directory-of-Cosminexus/
c4web/conf/c4websv.cfg

Y -- Y Y Y

Service deploy
definition

Installation-directory-of-Cosminexus/CC/
server/public/web/server-name/
context-root/WEB-INF/server-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/containers/
server-name/webapps/context-root/
WEB-INF/server-config.xml

Y -- Y Y Y

Client definition
file

Installation-directory-of-Cosminexus/CC/
server/public/web/server-
name/context-root/WEB-INF/
classes/c4webcl.properties

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-INF/
classes/c4webcl.properties

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 735

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Cosminexus
JAX-WS

Message
log

cjwsimport
command
operation log

Cosminexus-installation-directory/
jaxws/logs/cjwsimport*.log

Y -- -- Y Y

apt command
operation log

Cosminexus-installation-directory/
jaxws/logs/cjwapt*.log

Y -- -- Y Y

Service and client
operation log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJW/
cjwmessage*.log

Y -- -- A C

Client operation
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW/
cjwmessage*.log

Y -- -- C C

Service and client
operation log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJR/
cjrmessage*.log

Y -- -- A C

Other logs Service and client
communication
log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJW/
cjwtransport*.log

Y -- -- A C

Client
communication
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW/
cjwtransport*.log

Y -- -- C C

Service and client
communication
log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJR/
cjrtransport*.log

Y -- -- A C

Exception
log

cjwsimport
command
exception log

Cosminexus-installation-directory/
jaxws/logs/cjwsimportex*.log

Y -- -- Y Y

apt command
exception log

Cosminexus-installation-directory/
jaxws/logs/cjwaptex*.log

Y -- -- Y Y

Service and client
exception log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJW/
cjwexception*.log

Y -- -- A C

Client exception
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW/
cjwexception*.log

Y -- -- C C

Service and client
exception log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CJR/
cjrexception*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 736

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Definition
information

Action definition
file

Installation-directory-of-Cosminexus/
jaxws/conf/*.properties

Y -- Y Y Y

Process wise
action definition
file

Process-wise-action-definition-file-
(com.cosminexus.jaxws.confpath)

Y -- Y D D

Action definition
file

Installation-directory-of-Cosminexus/
jaxrs/conf/*.properties

Y -- Y C C

Process-wise
action definition
file

Process-wise-action-definition-file-
(com.cosminexus.jaxrs.confpath)

Y -- Y D D

Definition
file

web.xml J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/*/WEB-INF/web.xml

-- Y Y A A

cosminexus-
jaxws.xml

J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/*/WEB-INF/cosminexus-
jaxws.xml

-- Y Y A A

Handler chain
setup file

J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/**

-- Y Y D D

WSDL J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/*/WEB-INF/wsdl/*

-- Y Y A A

Catalog file J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/*/WEB-INF/classes/META-
INF/jax-ws-catalog.xml

-- Y Y A A

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-name/
apps/*/*/*/jax-ws-catalog.xml

-- Y Y A A

Cosminexus
JPA provider

Message
log

Cosminexus JPA
provider
operation log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjpa/cjpaoperation*.log

Y -- -- A C

PRF daemon and
PRF command
log

PRF-spool-directory-(prfspool)/log/
PRF-identifier/ctmlog*

Y -- -- A C

Resource adapter
operation log
deployed and
used as J2EE
resource adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

Message log J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 737

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Pr
im
ar
y

S
ec
on
da
ry

D
efi
nit
io
n

A B

Other logs Exception
information when
an error occurs

J2EE-server-log-output-directory-
(ejb.server.log.directory)/
cjexception*.log

Y -- -- A C

Definition
information

Option definition
file for J2EE
server

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/*.cfg

Y -- Y Y Y

User property file
for the J2EE
server

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/*.properties

Y -- Y Y Y

Security policy
file for J2EE
server

Installation-directory-of-Cosminexus/CC/
server/usrconf/ejb/server-
name/*.policy

Y -- Y Y Y

User data Contents of EJB
server working
directory

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/**

-- Y -- D D

Contents of Web
container
working directory

J2EE-server-working-directory-
(ejb.public.directory)/web/server-
name/**

-- Y -- D D

Cosminexus
JMS provider

Message
log

CJMSP Broker
log

Installation-directory-of-Cosminexus/CC/
cjmsp/var/instances/instance-
name/log/*.log

Y -- -- C C

Management
command log

Installation-directory-of-Cosminexus/CC/
cjmsp/var/admin/log/*.log

Y -- -- C C

CJMSP resource
adapter log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/cjms/resource-
adapter-name/*.log

Y -- -- A C

Definition
information

CJMSP Broker
Common
Property File

Installation-directory-of-Cosminexus/CC/
cjmsp/lib/props/broker/
commonconfig.properties

Y -- Y Y Y

CJMSP Broker
Property File

Installation-directory-of-Cosminexus/CC/
cjmsp/var/instances/instance-
name/props/config.properties

Y -- Y C C

Management
command
definition file

Installation-directory-of-
Cosminexus/CC/cjmsp/var/admin/
config/admin.properties

Y -- Y C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 738

• For collection method
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒6: Collection method related to Cosminexus Component Container (In UNIX)

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

J2EE server Message
log

Operation log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

Log operation
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjlogger.log

Y -- -- A C

Resource
adapter
operation log
deployed and
used as J2EE
resource adapter.

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

Resource
adapter
operation log
used by
including in
J2EE application
(normal mode)

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/J2EE-
application-name/*.log

Y -- -- A C

Resource
adapter
operation log
used by
including in
J2EE application
(test mode)

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/TEST#J2EE-
application-name/*.log

Y -- -- A C

Web servlet log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
web_servlet*.log

Y -- -- A C

Other
logs

User output log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
user_out*.log

Y -- -- A C

User error log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
user_err*.log

Y -- -- A C

JavaVM
maintenance
information and
GC log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
javalog*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 739

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

JavaVM Explicit
Memory
Management
functionality
event log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
ehjavalog*.log

Y -- -- A C

Development
check log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjdevelopment*.log

Y -- -- A C

Exception
information
when an error
occurs

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjexception*.log

Y -- -- A C

JavaVM event
log

J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/hs_err*

Y -- -- A A

J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-
name/replay_pid*.log

Y -- -- A A

User log of
J2EE
applications

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
user/*

Y -- -- A C

Maintena
nce log

Maintenance
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjmaintenance*.log

Y -- -- A C

Console
message

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjconsole*.log

Y -- -- A C

EJB container
maintenance
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjejbcontainer*.log

Y -- -- A C

Web container
maintenance
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjwebcontainer*.log

Y -- -- A C

Start process
standard output
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjstdout*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 740

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Start process
standard error
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cjstderr*.log

Y -- -- A C

Termination
process
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CC/
maintenance/
cj_shutdown*.log

Y -- -- A C

Dump Thread dump J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/javacore*

Y -- -- A A

core dump J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/core*

-- Y -- A A

Statistical
informati
on

Operation
information file

statistics-file-output-destination-
directory-
(ejbserver.management.stats_file.
dir)/*

-- Y -- A C

Memory
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjmemorywatch*.log

Y -- -- A C

File descriptor
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjfiledescriptorwatch*
.log

Y -- -- A C

Thread
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjthreadwatch*.log

Y -- -- A C

Thread dump
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjthreaddumpwatch*.log

Y -- -- A C

HTTP request
pending queue
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjrequestqueuewatch*.l
og

Y -- -- A C

HTTP session
count
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 741

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

cjhttpsessionwatch*.lo
g

Connection pool
monitoring log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
watch/
cjconnectionpoolwatch*
.log

Y -- -- A C

Definitio
n
informati
on

Option
definition file for
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-
name/usrconf.cfg

Y -- Y Y Y

User property
file for the J2EE
server

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-
name/usrconf.properties

Y -- Y Y Y

Security policy
file for J2EE
server

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-
name/server.policy

Y -- Y Y Y

Backup of
various
definition files
created in MNG

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-name/*

-- Y -- Y Y

Protected area
list file

Installation-directory-of-
Cosminexus/CC/server/
usrconf/
criticalList.cfg

Y -- Y Y Y

Resource setup
information

J2EE-server-work-directory-
(ejb.public.directory)/ejb/
server-name/import/**

-- Y -- D D

J2EE-server-work-directory-
(ejb.public.directory)/ejb/
server-name/rars/**

-- Y -- D D

Maintenance
information

Installation-directory-of-
Cosminexus/CC/server/
version/**

Y -- Y Y Y

Others Log showing
J2EE server
start, stop or
abnormal
termination

UNIX-syslog-(syslog) Y -- -- C C

User data Contents of EJB
server working
directory

J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/**

-- Y -- D D

Contents of Web
container
working
directory

J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/**

-- Y -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 742

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Contents of
temporary
directory for JSP

Temporary-directory-for-JSP-
(webserver.work.directory)/**

-- Y -- D D

Server
management
commands

Message
log

Operation log server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
cjmessage*.log

Y -- -- C C

Log operation
log

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
cjlogger.log

Y -- -- C C

Operation log in
compatible
mode

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
message.log

Y -- -- C C

Other
logs

Exception
information
when an error
occurs

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
cjexception*.log

Y -- -- C C

Exception
information
when an error
occurs in
compatible
mode

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
exception.log

Y -- -- C C

Maintena
nce log

Maintenance
information

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
CC/maintenance/
cjmaintenance*.log

Y -- -- C C

Console
message

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
CC/maintenance/
cjconsole*.log

Y -- -- C C

Server
management
command
maintenance
information

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
CC/maintenance/
cjserveradmin*.log

Y -- -- C C

Other logs server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
/

Y -- -- C C

server-management-command-
log-output-directory-
(admin_ejb.server.log.directory)/
//*

Y -- -- C C

server-management-command-
log-output-directory-

-- Y -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 743

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

(admin_ejb.server.log.directory)/
//*/*

Definitio
n
informati
on

Definition file
for server
management
command

Installation-directory-of-
Cosminexus/CC/admin/
usrconf/*

Y -- -- Y Y

Batch
application

Message
log

Operation log of
cjexecjob,
cjkilljob,
and
cjlistjob
command

batch-application-log-output-
directory-(batch.log.directory)/
cjmessage*.log

Y -- -- C C

Maintena
nce log

Other logs batch-application-
log-output-directory-
(batch.log.directory)/*/*

Y -- -- C C

Definitio
n
informati
on

Option
definition file for
batch
application

Definition-file-storage-
directory-of-batch-
application/usrconf.cfg

Y -- -- D D

User property
file for batch
application

Definition-file-storage-directory-
of-batch-application/
usrconf.properties

Y -- -- D D

Resource
adapter version
upgrade
command
(cjrarupdat
e)

Message
log

Operation log Installation-directory-of-
Cosminexus/CC/logs/
cjrarupdatemessage*.lo
g

Y -- -- Y Y

Other
logs

Exception
information
when an error
occurs

Installation-directory-of-
Cosminexus/CC/logs/
cjrarupdateexception*.
log

Y -- -- Y Y

Maintena
nce log

Maintenance
information

Installation-directory-of-
Cosminexus/CC/logs/
cjrarupdatemaintenance
*.log

Y -- -- Y Y

In-process
HTTP server

Access
log

Process result of
in-process
HTTP server

In-process-HTTP-server-access-
log-file-
(webserver.logger.access_log.inpr
ocess_http.filename)*.log

Y -- -- A C

Module
trace

Thread trace
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/http/
maintenance/thr/
cjhttp_thr.*.inprocess
_http.mm

Y -- -- A C

Commun
ication
trace

Communication
trace
information

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/http/
maintenance/comm/
cjhttp_comm.*.inproces
s_http.mm

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 744

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

NIO HTTP
server

Access
log

Processing
results of the
NIO HTTP
server (HTTP)

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cj_access_niohttp*.log

Y -- -- A C

Processing
results of the
NIO HTTP
server
(WebSocket)

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cj_access_websocket*.l
og

Y -- -- A C

Migration
command
(cjenvupdat
e)

Message
log

Operation log of
the
cjenvupdate
command

Installation-directory-of-
Cosminexus/CC/logs/
cjenvupdatemessage*.lo
g

Y -- -- Y Y

Other
logs

Exception
information of
the
cjenvupdate
command

Installation-directory-of-
Cosminexus/CC/logs/
cjenvupdateexception*.
log

Y -- -- Y Y

Maintena
nce log

Maintenance
information of
the
cjenvupdate
command

Installation-directory-of-
Cosminexus/CC/logs/
cjenvupdatemaintenance
*.log

Y -- -- Y Y

Command for
changing CC
Administrator

Message
log

Operation log of
the
cjenvsetup
command

Application-Server-installation-
directory/CC/logs/
cjenvsetupmessage*.log

Y -- -- Y Y

Other File
configuration
information
before executing
the
cjenvsetup
command

Application-Server-installation-
directory/CC/logs/
before_cjenvsetup_file
s*.txt

Y -- -- Y Y

File
configuration
information after
executing the
cjenvsetup
command

Application-Server-installation-
directory/CC/logs/
after_cjenvsetup_files
*.txt

Y -- -- Y Y

In-process
transaction
service

Others In-process
transaction
service status
file

Status-file-directory-
(ejbserver.distributedtx.ots.status.
directory1)/*

-- Y -- A C

Status-file-directory-
(ejbserver.distributedtx.ots.status.
directory1)/*/*

-- Y -- A C

In-process
transaction
service spare
status file

Spare-status-file-directory-
(ejbserver.distributedtx.ots.status.
directory2)/*

-- Y -- A D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 745

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Spare-status-file-directory-
(ejbserver.distributedtx.ots.status.
directory2)/*/*

-- Y -- A D

EJB client Message
log

Operation log EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/
cjclmessage*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-1-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory-2-
(ejb.client.log.appid)/
cjclmessage*.log

Y -- -- D D

cjclstartap
command
operation log

EJB-client-log-output-directory-
(ejb.client.log.directory)/
cjclstartap*.log

Y -- -- D D

cjcldellog
command
operation log

Installation-directory-of-
Cosminexus/CC/client/
logs/cjcldellog.log

Y -- -- Y Y

Other
logs

User output log EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
user_out*.log

Y -- -- D D

User error log EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
user_err*.log

Y -- -- D D

JavaVM
maintenance
information, GC
log

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
javalog*.log

Y -- -- D D

Exception
information
when an error
occurs

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/
cjclexception*.log

Y -- -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 746

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-1-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory-2-
(ejb.client.log.appid)/
maintenance/
cjclmaintenance*.log

Y -- -- D D

EJB client
application user
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
user/*

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/
user/*

Y -- -- D D

Maintena
nce log

Maintenance
information

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/
cjclmaintenance*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-1-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory-2-
(ejb.client.log.appid)/
maintenance/
cjclmaintenance*.log

Y -- -- D D

EJB container
maintenance
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
maintenance/
cjejbcontainer*.log

Y -- -- D D

Start process
standard output
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
maintenance/
cjstdout*.log

Y -- -- D D

Start process
standard error
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/EJB-
client-log-subdirectory-
(ejb.client.ejb.log)/EJB-client-
log-subdirectory2-
(ejb.client.log.appid)/
maintenance/
cjstderr*.log

Y -- -- D D

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 747

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Log operation
information

EJB-client-log-output-directory-
(ejb.client.log.directory)/
cjlogger.log

Y -- -- D D

Definitio
n
informati
on

Option
definition file for
EJB client

EJB-client-definition-file-storage-
directory/usrconf.cfg

Y -- -- D D

User property
file for EJB
client

EJB-client-definition-file-storage-
directory/
usrconf.properties

Y -- -- D D

Redirector (Web
server)

Message
log

Redirector
message log for
HWS

Redirector-log-output-directory-
for-HWS-(JkLogFileDir)/
hws_redirect*.log

Y -- -- A C

Redirector
message log for
previous version
compatible
HWS

Redirector-log-output-directory-
for-HWS-(JkLogFileDir)/
hws_redirect*.log

Y -- -- A C

Maintena
nce log

Trace log for
maintenance of
redirector for
HWS

Redirector-trace-log-output-
directory-for-HWS-
(JkTraceLogFileDir)/
hws_rd_trace*.log

Y -- -- A C

Trace log for
maintenance of
redirector for
previous version
compatible
HWS

Redirector-trace-log-output-
directory-for-HWS-
(JkTraceLogFileDir)/
hws_rd_trace*.log

Y -- -- A C

Definitio
n
informati
on

Redirector
action definition
file for HWS

Installation-directory-of-
Cosminexus/CC/web/
redirector/servers/
server-name/mod_jk.conf

Y -- Y Y Y

Worker
definition file

Installation-directory-of-
Cosminexus/CC/web/
redirector/
servers/server-
name/workers.properties

Y -- Y Y Y

Redirector
action definition
file for previous
version
compatible
HWS

Installation-directory-of-
Cosminexus/CC/web/
redirector/mod_jk.conf

Y -- -- Y Y

Worker
definition file for
previous version
compatibility

Installation-directory-of-
Cosminexus/CC/web/
redirector/
workers.properties

Y -- -- Y Y

TP1/Message
Queue - Access

Maintena
nce log

Method trace,
message log
related to API

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 748

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

and Cosminexus
interface

API
Trace

API Trace file J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/mqc.api*

Y -- -- A A

uCosminexus
TP1 Connector

Message
log

TP1 Connector
operation log
deployed and
used as J2EE
resource adapter

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

TP1 Connector
operation log
used by
including in
J2EE application
(Normal mode)

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/J2EE-
application-name/*.log

Y -- -- A C

TP1 Connector
operation log
used in Non-
managed
environment

TP1-Connectorlog-output-
directory-
(jp.co.hitachi_system.tp1connecto
r.logdestination)/
tp1connector*.log

Y -- -- C C

TP1/Client/J Other
logs

Debug trace
information

user-home-directory-
(user.home)/
TP1clientJ/dcClt*.dmp

-- Y -- C C

Cosminexus
Manager

Message
log

Integrated
message log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/message/
mngmessage*.log

Y -- -- A Y

Administration
agent log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/adminagent*.log

Y -- -- A Y

Administration
agent start, stop
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/adminagentctl.*.log

Y -- -- A Y

Management
agent log and
trace

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/mngagent*.*.log

Y -- -- A Y

Management
Server startup
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/mngsvrctlstart.*.log

Y -- -- A Y

Management
Server stop
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/mngsvrctlstop.*.log

Y -- -- A Y

Management
Server setup
command log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/mngsvrctlsetup.*.log

Y -- -- A Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 749

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Management
Server log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/mngsvr*.log

Y -- -- A Y

Other
logs

Standard error
output of
Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/adminagent.err.*.log

Y -- -- A Y

Standard output
of
Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/adminagent.out.*.log

Y -- -- A Y

Standard
command line
error output of
Administration
agent

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/adminagent.err

Y -- -- A Y

Console log Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/processConsole*.log

Y -- -- A Y

Configuration
file for
automatic
allocation used
with the Explicit
Memory
Management
functionality

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-name/
auto_explicit_memory.c
fg

Y -- Y C C

User-extended
trace based
performance
analysis
configuration
file used for
user-extended
trace based
performance
analysis

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-
name/userprf.cfg

Y -- Y C C

Definition file
for the setup
commands of
Setup Wizard

Installation-directory-of-
Cosminexus/manager/
setup/config/*

Y -- Y Y Y

Setup command
log for Setup
Wizard

Installation-directory-of-
Cosminexus/manager/
setup/log/*.log

Y -- -- C C

Maintena
nce log

Command
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/maintenance/
mngcmd*.log

-- Y -- Y Y

Maintenance log
in RMI process
executed by

Manager-log-output-directory-
(com.cosminexus.manager.log.dir

-- Y -- Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 750

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Administration
Agent

)/maintenance/
mngrmi*.log

Administration
agent
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/maintenance/
adminagent*.log

Y -- -- Y Y

mngenvsetup
command
execution log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/maintenance/
mngenvsetup*.log

-- Y -- Y Y

Management
Server
maintenance log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/maintenance/
mngsvr*.log

Y -- -- Y Y

Definitio
n
informati
on

Administration
agent property
file

Installation-directory-of-
Cosminexus/manager/
config/
adminagent.properties

Y -- Y Y Y

Settings file for
Administration
agent automatic
start

Installation-directory-of-
Cosminexus/manager/
config/AdminAgentrc

Y -- Y Y Y

Option
definition file for
Administration
agent

Installation-directory-of-
Cosminexus/manager/
config/
adminagentuser.cfg

Y -- Y Y Y

Administration
agent setup file

Installation-directory-of-
Cosminexus/manager/
config/adminagent.xml

Y -- Y Y Y

Management
agent property
file

Installation-directory-of-
Cosminexus/manager/
config/mngagent.server-
name.properties

Y -- Y Y Y

Management
Server
environment
setup file

Installation-directory-of-
Cosminexus/manager/
config/
mserver.properties

Y -- Y Y Y

Option
definition file for
Management
Server

Installation-directory-of-
Cosminexus/manager/
config/mserver.cfg

Y -- Y Y Y

Environment
variable
definition file for
Management
Server

Installation-directory-of-
Cosminexus/manager/
config/mserverenv.cfg

Y -- Y Y Y

Manager setup
file

Installation-directory-of-
Cosminexus/manager/
config/manager.cfg

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 751

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Property file for
Management
action execution

Installation-directory-of-
Cosminexus/manager/
config/
maction.properties

Y -- Y Y Y

Property file for
Management
event issue

Installation-directory-of-
Cosminexus/manager/
config/mevent.server-
name.properties

-- Y Y Y Y

Message ID list
file for
Management
event issue

Message-ID-list-file-for-
Management-event-issue-
(manager.mevent.message_id.list)

-- Y Y D D

Client-side
definition file of
the
mngsvrutil
command

user-home-directory-
(user.home)/.mngsvrutilrc

-- Y Y C C

Server-side
definition file of
the
mngsvrutil
command

Installation-directory-of-
Cosminexus/manager/
config/
mngsvrutil.properties

Y -- Y Y Y

Client-side
definition file of
mngsvrutil
command

Installation-directory-of-
Cosminexus/manager/
config/
mngsvrutilcl.propertie
s

Y -- Y Y Y

System log
message
mapping file for
JP1/IM linkage

Installation-directory-of-
Cosminexus/manager/
config/
mserver.jp1event.syste
m.mapping.properties

Y -- Y Y Y

Installation-directory-of-
Cosminexus/manager/
config/
manager.jp1event.syste
m.mapping.properties

Y -- Y Y Y

Installation-directory-of-
Cosminexus/manager/
config/manager.server-
name.jp1event.system.ma
pping.properties

Y -- Y Y Y

Performa
nce, error
analysis
trace

PRF trace Directory-to-output-temporary-
PRF-trace-file-
(adminagent.prftrace_dir)/
*.zip

-- Y -- A D

Internal
interface
trace

Integrated trace
log

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/trace/mngtrace*.log

Y -- -- Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 752

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Others OS state
information

Installation-directory-of-
Cosminexus/manager/tmp/*

Y -- -- Y Y

Smart Composer Definitio
n
informati
on

Server settings
property file

Installation-directory-of-
Cosminexus/manager/
config/
cmxserver.properties

Y -- Y Y Y

Client settings
property file

User-home-directory-
(user.home)/.cmxrc

-- Y Y C C

Client common
settings property
file

Installation-directory-of-
Cosminexus/manager/
config/
cmxclient.properties

Y -- Y Y Y

Load balancer
definition
property file

Installation-directory-of-
Cosminexus/manager/
config/lb.properties

Y -- Y Y Y

Integrated user
management

Definitio
n
informati
on

JAAS
configuration
file

Installation-directory-of-
Cosminexus/manager/
config/jaas.conf

Y -- Y Y Y

Configuration
file for
integrated user
management

Installation-directory-of-
Cosminexus/manager/
config/ua.conf

Y -- Y Y Y

API
Trace

Trace of
integrated user
management

Integrated-user-management-
trace-file-name-
(com.cosminexus.admin.auth.trac
e.prefix).*.log

-- Y -- D D

Virtual server
manager in the
08-50 mode

Definitio
n
informati
on

Virtual server
manager
property file

Installation-directory-of-
Cosminexus/manager/vmx/
config/vmx.properties

Y -- Y D Y

Client common
settings property
file of virtual
server manager

Installation-directory-of-
Cosminexus/manager/vmx/
config/
vmxclient.properties

Y -- Y D Y

Option
definition file for
VMware
vCenter Server
connection
processing

Installation-directory-of-
Cosminexus/manager/vmx/
config/
vmx_avcs_usrconf.cfg

Y -- Y D Y

Property file for
VMware
vCenter Server
connection
processing

Installation-directory-of-
Cosminexus/manager/vmx/
config/
vmx_avcs_usrconf.prope
rties

Y -- Y D Y

Common
definition file for
VMware
vCenter Server
connection
processing

Installation-directory-of-
Cosminexus/manager/vmx/
config/
vmx_avcs_cjwconf.prope
rties

Y -- Y D Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 753

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Other log Log of the
cjclstartap
command used
with the virtual
server manager

Manager-log-output-directory-
(com.cosminexus.manager.log.dir
)/vmx_avcs_logs/**

-- Y -- D Y

Log information
collected from
the virtual server

Virtual-server-manager-
log-directory-in-08-50-
mode-(vmx.log.dir)/
mngunit/*/*.zip

-- Y -- D C

Virtual server
manager

Definitio
n
informati
on

Virtual server
manager
property file

Installation-directory-of-
Cosminexus/manager/vmi/
config/vmi.properties

Y -- Y D Y

Client settings
property file of
virtual server
manager

User-home-directory-
(user.home)/.vmirc

-- Y Y C C

Client common
settings property
file of virtual
server manager

Installation-directory-of-
Cosminexus/manager/vmi/
config/
vmiclient.properties

Y -- Y D Y

Load balancer
connection
settings property
file

Installation-directory-of-
Cosminexus/manager/vmi/
config/lb/*.properties

Y -- Y D Y

Server
Communication
Agent

Message
log

Server
Communication
Agent log

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
sinaviagent*.log

Y -- -- D Y

Service log of
Server
Communication
Agent

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
sinaviagentsv*.log

Y -- -- D C

snactl
command log

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
snactl*.log

Y -- -- D C

Other
logs

Error
information
during Server
Communication
Agent startup

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
sinaviagent.err

Y -- -- D C

Standard output
of Server
Communication
Agent

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
sinaviagent.out

Y -- -- D C

Console output
information of
command
processes started
by Server

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
processConsole*.log

Y -- -- D C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 754

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Communication
Agent

Maintena
nce log

Maintenance log
of Server
Communication
Agent

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
maintenance/
sinaviagent*.log

-- Y -- D C

Maintenance log
of snactl
command

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
maintenance/
snactl*.log

-- Y -- D C

Javalog of
Server
Communication
Agent

server-communication-agent-log-
output-directory-
(sinaviagent.log.dir)/
maintenance/
sinaviagent.javalog*.l
og

-- Y -- D C

Definitio
n
informati
on

Option
definition file for
Server
Communication
Agent

Installation-directory-of-
Cosminexus/sinagent/
config/sinaviagent.cfg

Y -- Y D Y

Server
Communication
Agent property
file

Installation-directory-of-
Cosminexus/sinagent/
config/
sinaviagent.properties

Y -- Y D Y

Cosminexus
Web Services -
Base

Message
log

Message log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

Web-container-server-log-output-
directory-
(web.server.log.directory)/
cjweb_message*.log

Y -- -- C C

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/
cjclmessage*.log

Y -- -- C C

Server trace,
client trace,
default trace,
application log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/WS/
*.log

Y -- -- A C

Web-container-server-log-output-
directory-
(web.server.log.directory)/WS/
*.log

Y -- -- C Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 755

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Client trace,
default trace,
provided
command trace,
application log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/WS/
*.log

Y -- -- C C

JAXR Trace JAXR-Trace-file-name-
(com.cosminexus.xml.registry.trac
e.file_path)*.log

Y -- -- C C

Definitio
n
informati
on

Common
definition file

Installation-directory-of-
Cosminexus/c4web/
conf/c4webcom.cfg

Y -- Y Y Y

Server
definition file

Installation-directory-of-
Cosminexus/c4web/
conf/c4websv.cfg

Y -- Y Y Y

Service deploy
definition

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-
name/context-root/WEB-
INF/server-config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/server-config.xml

Y -- Y Y Y

Client definition
file

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-name/
context-root/WEB-INF/
classes/
c4webcl.properties

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/
c4webcl.properties

Y -- Y Y Y

Cosminexus
JAX-WS

Message
log

Service and
client operation
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJW/
cjwmessage*.log

Y -- -- A C

Client operation
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW
/cjwmessage*.log

Y -- -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 756

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

Service and
client operation
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJR/
cjrmessage*.log

Y -- -- A C

Other
logs

Service and
client
communication
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJW/
cjwtransport*.log

Y -- -- A C

Client
communication
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW
/cjwtransport*.log

Y -- -- C C

Service and
client
communication
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJR/
cjrtransport*.log

Y -- -- A C

Exceptio
n log

Service and
client exception
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJW/
cjwexception*.log

Y -- -- A C

Client exception
log

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/CJW
/cjwexception*.log

Y -- -- C C

Service and
client exception
log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/CJR/
cjrexception*.log

Y -- -- A C

Definitio
n
informati
on

Action
definition file

Installation-directory-of-
Cosminexus/jaxws/
conf/*.properties

Y -- Y Y Y

Process wise
action definition
file

Process-wise-action-
definition-file-
(com.cosminexus.jaxws.confpath)

Y -- Y D D

Action
definition file

Installation-directory-of-
Cosminexus/jaxrs/
conf/*.properties

Y -- Y C C

Process-wise
action definition
file

Process-wise-action-
definition-file-
(com.cosminexus.jaxrs.confpath)

Y -- Y D D

Definitio
n file

web.xml J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/*/WEB-
INF/web.xml

-- Y Y A A

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 757

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

cosminexus-
jaxws.xml

J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/*/WEB-
INF/cosminexus-
jaxws.xml

-- Y Y A A

Handler chain
setup file

J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/**

-- Y Y D D

WSDL J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/*/WEB-INF/
wsdl/*

-- Y Y A A

Catalog file J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/*/WEB-INF/
classes/META-INF/jax-
ws-catalog.xml

-- Y Y A A

J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/
apps/*/*/*/jax-ws-
catalog.xml

-- Y Y A A

Cosminexus
JPA provider

Message
log

Cosminexus JPA
provider
operation log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/cjpa/
cjpaoperation*.log

Y -- -- A C

PRF daemon and
PRF command
log

PRF-spool-directory-
(prfspool)/log/PRF-
identifier/ctmlog*

Y -- -- A C

Resource
adapter
operation log
deployed and
used as J2EE
resource adapter

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
connectors/*.log

Y -- -- A C

Message log J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjmessage*.log

Y -- -- A C

Other
logs

Exception
information
when an error
occurs

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/
cjexception*.log

Y -- -- A C

Definitio
n
informati
on

Option
definition file for
J2EE server

Installation-directory-of-
Cosminexus/CC/server/
usrconf/ejb/server-
name/*.cfg

Y -- Y Y Y

User property
file for the J2EE
server

Installation-directory-of-
Cosminexus/CC/server/

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 758

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Secon
dary

Definit
ion

A B

usrconf/ejb/server-
name/*.properties

Security policy
file for J2EE
server

Cosminexus-installation-
directory/CC/server/
usrconf/ejb/server-
name/*.policy

Y -- Y Y Y

User data EJB server
working
directory
contents

J2EE-server-working-directory-
(ejb.public.directory)/ejb/
server-name/**

-- Y -- D D

Web container
working
directory
contents

J2EE-server-working-directory-
(ejb.public.directory)/web/
server-name/**

-- Y -- D D

Cosminexus
JMS provider

Message
log

CJMSP Broker
log

Installation-directory-of-
Cosminexus/CC/cjmsp/var/
instances/instance-
name/log/*.log

Y -- -- C C

Management
command log

Installation-directory-of-
Cosminexus/CC/cjmsp/var/
admin/log/*.log

Y -- -- C C

CJMSP resource
adapter log

J2EE-server-log-output-
directory-
(ejb.server.log.directory)/cjms/
resource-adapter-name/*.log

Y -- -- A C

Definitio
n
informati
on

CJMSP Broker
Common
Property File

Installation-directory-of-
Cosminexus/CC/cjmsp/lib/
props/broker/
commonconfig.propertie
s

Y -- Y Y Y

CJMSP Broker
Property File

Installation-directory-of-
Cosminexus/CC/cjmsp/var/
instances/instance-name/
props/
config.properties

Y -- Y C C

Management
command
definition file

Installation-directory-of-
Cosminexus/CC/cjmsp/var/
admin/config/
admin.properties

Y -- Y C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 759

See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.3 Cosminexus Component Transaction Monitor
The following table describes directory paths to be collected in relation to a Cosminexus Component Container Monitor.

Table A‒7: Collection target related to Cosminexus Component Transaction Monitor (In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log CTM daemon and
CTM command
log

CTM-spool-directory-(ctmspool)/log/
CTM-identifier/ctmlog*

Y -- -- A C

CTM domain
manager log

CTM-spool-directory-
(ctmspool)/log/ctmdmlog*

Y -- -- A C

Dump Thread dump Installation-directory-
of-Cosminexus/TPB/
logj/javacore*

Y -- -- B B

Definition
information

CTM regulator
configuration file

CTM-regulator-configuration-file-
(ctm.RegOption)

Y -- -- A D

OTM gateway
configuration file

OTM-gateway-configuration-file-
(ctm.TSCGwOption)

Y -- -- A D

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒8: Collection target related to Cosminexus Component Transaction Monitor (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log CTM daemon and
CTM command
log

CTM-spool-directory-(ctmspool)/log/
CTM-identifier/ctmlog*

Y -- -- A C

CTM domain
manager log

CTM-spool-directory-
(ctmspool)/log/ctmdmlog*

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 760

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Dump Thread dump Installation-directory-
of-Cosminexus/TPB/
logj/javacore*

Y -- -- B B

core dump Installation-directory-
of-Cosminexus/TPB/
logj/javacore*

-- Y -- B B

Definition
information

CTM regulator
configuration file

CTM-regulator-configuration-file-
(ctm.RegOption)

Y -- -- A D

OTM gateway
configuration file

OTM-gateway-configuration-file-
(ctm.TSCGwOption)

Y -- -- A D

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot
log. For details about the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules
for the coding to be collected.

A.4 Cosminexus DABroker Library
The following table describes the collection targets related to Cosminexus DABroker Library.

Table A‒9: Collection target related to Cosminexus DABroker Library (In Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Definition
information

Operation
environment
definition file

Installation-directory-
of-Cosminexus/DAB/
conf/dasysconf

Y -- Y B B

Connection
destination
database
definition file

Installation-directory-of-
Cosminexus/DAB/conf/dadbenv

Y -- Y B B

Others Spool information Installation-directory-of-
Cosminexus/DAB/spool/*

Y -- -- B B

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 761

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Installation-directory-of-
Cosminexus/DAB/spool/*/*

-- Y -- B B

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot
log. For details about the meaning of the directories and files to be collected that are described in the table, see Appendix
A.1 (4) Rules for the coding to be collected.

Table A‒10: Collection target related to Cosminexus DABroker Library (In UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Definition
information

Operation
environment
definition file

DABroker-operation-directory-
(dabroker)/conf/dasysconf

Y -- Y C C

Connection
destination
database
definition file

DABroker-operation-directory-
(dabroker)/conf/dadbenv

Y -- Y C C

Others Spool information DABroker-operation-directory-
(dabroker)/spool/*

Y -- -- C C

DABroker-operation-directory-
(dabroker)/spool/*/*

-- Y -- C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 762

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot
log. For details about the meaning of the directories and files to be collected that are described in the table, see Appendix
A.1 (4) Rules for the coding to be collected.

A.5 Cosminexus Developer's Kit for Java
The following table describes the logs to be collected for Cosminexus Developer's Kit for Java.

Table A‒11: Logs to be collected related to Cosminexus Developer's Kit for Java (In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primary Second
ary

Definitio
n

A B

Dump Crash dump Windows-Crash-dump-file-
(CrashDumpFile)

-- Y -- C C

Windows-Crash-Dump-output-
directory-(CrashDumpDir)/
*.dmp

-- Y -- C C

Definition
information

User-extended
trace based
performance
analysis
configuration
file

Configuration-file-for-user-
extended-trace-based-performance-
analysis-(jvm.userprf.File)

Y -- Y C C

Explicit
Memory
Management
functionality
exclusion
configuration
file

Name-of-Explicit-Memory-
Management-functionality-
exclusion-configuration-file-
(jvm.exmemexcludeclass.File)

Y -- Y C C

Explicit
Memory
Management
functionality
non-exclusion
configuration
file

Name-of-Explicit-Memory-
Management-functionality-non-
exclusion-configuration-file-
(jvm.exmemnotexcludeclass.File)

Y -- Y C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 763

Table A‒12: Logs to be collected for Developer's Kit for Java (in UNIX)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Definition
information

User-extended
trace based
performance
analysis
configuration file

User-extended-trace-based-
performance-analysis-configuration-
file-(jvm.userprf.File)

Y -- Y C C

Explicit Memory
Management
functionality
exclusion
configuration file

Name-of-Explicit-Memory-
Management-functionality-
exclusion-configuration-file-
(jvm.exmemexcludeclass.File)

Y -- Y C C

Explicit Memory
Management
functionality non-
exclusion
configuration file

Name-of-Explicit-Memory-
Management-functionality-non-
exclusion-configuration-file-
(jvm.exmemnotexcludeclass.File)

Y -- Y C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.6 Cosminexus Performance Tracer
The following table describes the logs to be collected in relation to Cosminexus Performance Tracer.

Table A‒13: Collection target related to Cosminexus Performance Tracer (In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log PRF daemon and
PRF command log

PRF-spool-directory-(prfspool)/log/
PRF-identifier/ctmlog*

Y -- -- A C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 764

Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒14: Collection target related to Cosminexus Performance Tracer (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log PRF daemon and
PRF command log

PRF-spool-directory-(prfspool)/log/
PRF-identifier/ctmlog*

Y -- -- A C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.7 Cosminexus Web Services - Security
The following table describes the logs to be collected in relation to a Cosminexus Web Services - Security.

Table A‒15: Collection target related to Cosminexus Web Services - Security (In Windows)

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

Cosminexus Web
Services - Security

Message
log

Command trace,
client trace

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/WS/
*.log

Y -- -- C C

Server trace,
client trace

J2EE-server-log-output-directory-
(ejb.server.log.directory)/WS/
*.log

Y -- -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 765

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

Web-container-server-log-output-
directory-
(web.server.log.directory)/WS/
*.log

Y -- -- C C

Definition
informatio
n

Environment
setup file

Installation-directory-
of-Cosminexus/wss/
conf/cwsscfg.properties

Y -- Y Y Y

Client deploy
definition

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-
name/context-root/WEB-
INF/classes/client-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/client-
config.xml

Y -- Y Y Y

Policy definition
file

Cosminexus-installation-
directory/CC/server/
public/web/server-
name/context-root/WEB-
INF/classes/policy-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/policy-
config.xml

Y -- Y Y Y

Function
definition file

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-name/
context-root/WEB-INF/
classes/security-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/security-
config.xml

Y -- Y Y Y

Cosminexus XML
Security - Core

Maintenan
ce log

Trace
maintenance
information such
as method
invocation

XML-Security-Core-Trace-output-
directory-
(com.cosminexus.xml.security.log
ging.trace_dir)/*.log

Y -- -- C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 766

Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒16: Collection target related to Cosminexus Web Services - Security (In UNIX)

Category Type of
data

File to be
collected

Collection Target Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

Cosminexus Web
Services - Security

Message
log

Command trace,
client trace

EJB-client-log-output-directory-
(ejbserver.client.log.directory)/
subdirectory-1-
(ejbserver.client.ejb.log)/
subdirectory-2-
(ejbserver.client.log.appid)/WS/
*.log

Y -- -- C C

Server trace,
client trace

J2EE-server-log-output-directory-
(ejb.server.log.directory)/WS/
*.log

Y -- -- A C

Web-container-server-log-output-
directory-
(web.server.log.directory)/WS/
*.log

Y -- -- C C

Definition
informatio
n

Environment
setup file

Installation-directory-
of-Cosminexus/wss/
conf/cwsscfg.properties

Y -- Y Y Y

Client deploy
definition

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-
name/context-root/WEB-
INF/classes/client-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/client-
config.xml

Y -- Y Y Y

Policy definition
file

Installation-directory-of-
Cosminexus/CC/server/
public/web/server-
name/context-root/WEB-
INF/classes/policy-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 767

Category Type of
data

File to be
collected

Collection Target Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

webapps/context-root/WEB-
INF/classes/policy-
config.xml

Function
definition file

Installation-directory/CC/
server/public/web/
server-name/context-root/WEB-
INF/classes/security-
config.xml

Y -- Y Y Y

Installation-directory-of-
Cosminexus/CC/web/
containers/server-name/
webapps/context-root/WEB-
INF/classes/security-
config.xml

Y -- Y Y Y

Cosminexus XML
Security - Core

Maintenan
ce log

Trace
maintenance
information such
as method
invocation

XML-Security-Core-Trace-output-
directory-
(com.cosminexus.xml.security.log
ging.trace_dir)/*.log

Y -- -- C C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.8 Cosminexus HTTP Server
The following table describes the logs to be collected in relation to Cosminexus HTTP Server.

Table A‒17: Collection target related to Cosminexus HTTP Server (In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Error log HWS-error-log-directory-
(HttpsdErrorLogFileDir)/error*

Y -- -- A C

Log set (for
previous version
compatibility)

Installation-directory-of-HWS/
logs/*

Y -- -- Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 768

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Other logs Request log HWS-request-log-directory-
(HttpsdRequestLogFileDir)/
hwsrequest*

-- Y -- A C

Process ID file HWS-process-ID-file-(PidFile) Y -- -- C C

Process log Access log HWS-access-log-directory-
(HttpsdCustomLogFileDir)/access*

-- Y -- A C

Definition
information

Definition file Installation-directory-of-HWS/
servers/HWS_server-name/
conf/*.conf

Y -- Y Y Y

Definition file set
(for previous
compatibility)

Installation-directory-of-HWS/
conf/*.conf

Y -- Y Y Y

Interface trace Internal trace HWS-internal-trace-directory-
(HttpsdTraceLogFileDir)/hws.trc*

-- Y -- A C

WebSocket log WebSocket log HWSWebSocket-log-directory-
(HttpsdWebSocketLogFileDir)/
hws_websocket_log*

-- Y -- A C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒18: Collection target related to Cosminexus HTTP Server (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Error log HWS-error-log-directory-
(HttpsdErrorLogFileDir)/error*

Y -- -- A C

Log set (for
previous version
compatibility)

Installation-directory-of-HWS/
logs/*

Y -- -- Y Y

Other logs Request log HWS-request-log-directory-
(HttpsdRequestLogFileDir)/
hwsrequest*

-- Y -- A C

Process ID file HWS-process-ID-file-(PidFile) Y -- -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 769

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Access log Access log HWS-access-log-directory-
(HttpsdCustomLogFileDir)/access*

-- Y -- A C

Dump core dump HWS-core-dump-output-directory-
(CoreDumpDirectory)/core*

-- Y -- A C

gcache server
core dump

Work-directory-of-HWS-cache-server-
(SSLCacheServerRunDir)/core*

-- Y -- C C

Definition
information

Definition file Installation-directory-of-HWS/
servers/HWS_server-name/
conf/*.conf

Y -- Y Y Y

Definition file set
(for previous
version
compatibility)

Installation-directory-of-HWS/
conf/*.conf

Y -- Y Y Y

Interface trace Internal trace HWS-internal-trace-directory-
(HttpsdTraceLogFileDir)/hws.trc*

-- Y -- A C

WebSocket log WebSocket log HWSWebSocket-log-directory-
(HttpsdWebSocketLogFileDir)/
hws_websocket_log*

-- Y -- A C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.9 Microsoft Internet Information Service
The following table describes the logs to be collected related to the information of Microsoft Internet
Information Service.

Table A‒19: Collection target related to information of Microsoft Internet Information Service (In
Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Access log IIS-access-log-directory-
(IIS_log_dir)/*

-- Y -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 770

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.10 HCSC server
The following table describes the logs to be collected for the HCSC server information.

Table A‒20: Logs to be collected for the HCSC server information (in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log HCSC-Manager
log

HCSC-log-output-directory-
(cscmng.log.dir)/*

Y -- -- C C

Log of user-
authentication
information
management
commands

output-destination-directory-of-
message-log-files-of-user-
authentication-information-
management-commands-
(authinfo.command.messagelog.filepath
)/*

Y -- -- C C

Access log Request trace HCSC-server-property-(requesttrace-
filepath)/*

Y -- -- C C

Maintenance log Method trace HCSC-server-property-(methodtrace-
filepath)/*

Y -- -- C C

Definition
information

HCSC server
definition
information

Application-Server-installation-
directory/CSC/system/msg/*

Y -- Y Y Y

HCSC-Manager
definition file

Application-Server-installation-
directory/CSC/config/
manager/*

Y -- Y Y Y

HCSC-Messaging
definition file

Application-Server-installation-
directory/CSC/config/msg/*

Y -- Y Y Y

Repository HCSC-repository-root-
(cscmng.repository.root)/**

Y -- -- Y Y

Other logs Business process
activity trace

J2EE-server-log-output-directory-
(ejb.server.log.directory)/csc/*

-- Y -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 771

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒21: Logs to be collected for the HCSC server information (in UNIX)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log HCSC-Manager
log

HCSC-log-output-directory-
(cscmng.log.dir)/*

Y -- -- C C

Access log Request trace HCSC-server-property-(requesttrace-
filepath)/*

Y -- -- C C

Maintenance log Method trace HCSC-server-property-(methodtrace-
filepath)/*

Y -- -- C C

Definition
information

HCSC server
definition
information

Application-Server-installation-
directory/CSC/system/msg/*

Y -- Y Y Y

HCSC-Manager
definition file

Application-Server-installation-
directory/CSC/config/
manager/*

Y -- Y Y Y

HCSC-Messaging
definition file

Application-Server-installation-
directory/CSC/config/msg/*

Y -- Y Y Y

Repository HCSC-repository-root-
(cscmng.repository.root)/**

Y -- -- Y Y

Other logs Business process
activity trace

J2EE-server-log-output-directory-
(ejb.server.log.directory)/csc/*

-- Y -- A C

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 772

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.11 HCSC server (FTP receipt)
The following table describes the logs to be collected for the HCSC server (FTP receipt) information.

Table A‒22: Logs to be collected for the HCSC server (FTP receipt) information (in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Definition
information

FTP receipt
definition
information

Application-Server-installation-
directory/CSC/config/
ftprecp/*

Y -- Y Y Y

FTP receipt
common
definition
information

Application-Server-installation-
directory/CSC/config/ftprecp/
common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒23: Logs to be collected for the HCSC server (FTP receipt) information (in UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Definition
information

FTP receipt
definition
information

Application-Server-installation-
directory/CSC/config/
ftprecp/*

Y -- Y Y Y

FTP receipt
common
definition
information

Application-Server-installation-
directory/CSC/config/ftprecp/
common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 773

Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.12 HCSC server (TP1 adapter)
The following table describes the logs to be collected related to HCSC server (TP1 adapter) information.

Table A‒24: Collection target related to the information of HCSC server (TP1 adapter) (In Window)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/TP1ADP/
maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the TP1 adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/TP1/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒25: Collection target related to the information of HCSC server (TP1 adapter) (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-

-- Y -- A A

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 774

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

name/logs/CSCADP/TP1ADP/
maintenance/*/*

Definition
information

Definition
information for
the TP1 adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/TP1/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.13 HCSC server (File adapter)
The following table describes the logs to be collected related to the information of HCSC server (file adapter).

Table A‒26: Collection target related to the information of HCSC server (file adapter) (In Windows)

Type of data File to be
collected

Default Collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
FFADP/maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the file adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/File/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 775

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot
log. For details about the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules
for the coding to be collected.

Table A‒27: Collection target related to the information of HCSC server (file adapter) (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
FFADP/maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the file adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/File/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.14 HCSC server (Object Access adapter)
The following table describes the logs to be collected related to the information of HCSC server (Object Access adapter).

Table A‒28: Collection target related to the information of HCSC server (Object Access adapter)
(In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace Set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/OAADP/
maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the OA adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/OA/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 776

A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒29: Collection target related to the information of HCSC server (Object Access adapter)
(In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace Set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/OAADP/
maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the OA adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/OA/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.15 HCSC server (Message Queue adapter)
The following table describes the logs to be collected related to the functions of HCSC server (Message Queue adapter).

Table A‒30: Collection target related to the information of HCSC server (Message Queue adapter)
(In Windows)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace Set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-

-- Y -- A A

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 777

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

name/logs/CSCADP/MQADP/
maintenance/*/*

Definition
information

Definition
information for
the MQ adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/MQ/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒31: Collection target related to the information of HCSC server (Message Queue adapter)
(In UNIX)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/MQADP/
maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for
the MQ adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/MQ/config/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 778

A.16 HCSC server (FTP adapter)
The following table describes the logs to be collected related to HCSC server (FTP adapter) information.

Table A‒32: Collection target related to the information of HCSC server (FTP adapter) (In Window)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Communication
trace

FTP adapter
protocol trace

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/FTPADP/*/*

-- Y -- A C

Maintenance log FTP adapter
maintenance log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
FTPADP/maintenance/*/*

-- Y -- A C

Message log Trace set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/TP1ADP/
maintenance/*/*

-- Y -- C C

Definition
information

Definition
information for
the FTP adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/FTP/config/*

Y -- Y Y Y

Common
definition
information for
the FTP adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/FTP/config/
common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒33: Collection target related to the information of HCSC server (FTP adapter) (In UNIX)

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Communication
trace

FTP adapter
protocol trace

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/FTPADP/*/*

-- Y -- A C

Maintenance log FTP adapter
maintenance log

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
FTPADP/maintenance/*/*

-- Y -- A C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 779

Type of data File to be
collected

Collection target Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log Trace set J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/TP1ADP/
maintenance/*/*

-- Y -- C C

Definition
information

Definition
information for
the FTP adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/FTP/config/*

Y -- Y Y Y

Common
definition
information for
the FTP adapter

Installation-directory-of-
Cosminexus/CSC/custom-
adapter/FTP/config/
common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A.17 HCSC server (SFTP adapter)
The following table describes the logs to be collected related to HCSC server (SFTP adapter) information.

Table A‒34: Collection target related to the information of HCSC server (SFTP adapter) (In Window)

Type of data File to be collected Collection target Data How to
collect

Pri
ma
ry

Se
co
nd
ary

De
fini
tio
n

A B

Communicatio
n trace

SFTP adapter
protocol trace

J2EE-server-log-output-directory-(ejb.server.log.directory)/
CSCADP/SFTPADP/*/*

-- Y -- A A

Maintenance
log

SFTP adapter
maintenance log

J2EE-server-log-output-directory-(ejb.server.log.directory)/
CSCADP/SFTPADP/maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for the
SFTP adapter

Installation-directory-of-Cosminexus/CSC/custom-
adapter/SFTP/config/*

Y -- Y Y Y

Common definition
information for the
SFTP adapter

Installation-directory-of-Cosminexus/CSC/custom-
adapter/SFTP/config/common/*

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 780

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

Table A‒35: Collection target related to the information of HCSC server (SFTP adapter) (In UNIX)

Type of data File to be collected Collection target Data How to
collect

Pri
ma
ry

Se
co
nd
ary

De
fini
tio
n

A B

Communicatio
n trace

SFTP adapter
protocol trace

J2EE-server-log-output-directory-(ejb.server.log.directory)/
CSCADP/SFTPADP/*/*

-- Y -- A A

Maintenance
log

SFTP adapter
maintenance log

J2EE-server-log-output-directory-(ejb.server.log.directory)/
CSCADP/SFTPADP/maintenance/*/*

-- Y -- A A

Definition
information

Definition
information for the
SFTP adapter

Installation-directory-of-Cosminexus/CSC/custom-
adapter/SFTP/config/*

Y -- Y Y Y

Common definition
information for the
SFTP adapter

Installation-directory-of-Cosminexus/CSC/custom-
adapter/SFTP/config/common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot
log. For details about the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules
for the coding to be collected.

A.18 HCSC server (file operation adapter)
The following table describes the logs to be collected for the HCSC server (file operation adapter) information.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 781

Table A‒36: Logs to be collected for the HCSC server (file operation adapter) information (in
Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the file
operation adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPFOP/maintenance/*/
cscadpfopmnt_*.log

Y -- -- A C

Exception log Exception log for
the file operation
adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPFOP/maintenance/*/
cscadpfopexp_*.log

Y -- -- A C

Definition
information

Definition
information for
the file operation
adapter

Application-Server-installation-
directory/CSC/config/adpfop/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒37: Logs to be collected for the HCSC server (file operation adapter) information (in UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the file
operation adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPFOP/maintenance/*/
cscadpfopmnt_*.log

Y -- -- A C

Exception log Exception log for
the file operation
adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPFOP/maintenance/*/
cscadpfopexp_*.log

Y -- -- A C

Definition
information

Definition
information for
the file operation
adapter

Application-Server-installation-
directory/CSC/config/adpfop/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 782

Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.19 HCSC server (FTP inbound adapter)
The following table describes the logs to be collected for the HCSC server (FTP inbound adapter) information.

Table A‒38: Logs to be collected for the HCSC server (FTP inbound adapter) information (in
Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log Message log for
the FTP inbound
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/csc/inbound-
adapter/ftp/resource-adapter-
name/*

Y -- -- A A

Message log for
the operation
commands of the
FTP inbound
adapter

Application-Server-installation-
directory/CSC/inbound-
adapter/ftp/logs/resource-
adapter-name/*

Y -- -- Y Y

Definition
information

FTP inbound
adapter definition
file

Application-Server-installation-
directory/CSC/inbound-
adapter/ftp/config/resource-
adapter-name/server-name/*.xml

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 783

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒39: Logs to be collected for the HCSC server (FTP inbound adapter) information (in UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log Message log for
the FTP inbound
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/csc/inbound-
adapter/ftp/resource-adapter-
name/*

Y -- -- A A

Message log for
the operation
commands of the
FTP inbound
adapter

Application-Server-installation-
directory/CSC/inbound-
adapter/ftp/logs/resource-
adapter-name/*

Y -- -- Y Y

Definition
information

FTP inbound
adapter definition
file

Application-Server-installation-
directory/CSC/inbound-
adapter/ftp/config/resource-
adapter-name/*.xml

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.20 HCSC server (mail adapter)
The following table describes the logs to be collected for the HCSC server (mail adapter) information.

Table A‒40: Logs to be collected for the HCSC server (mail adapter) information (in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log Message log for
the mail adapter

Message-log-output-directory-for-the-
HCSC-mail-adapter-operation-
commands-

Y -- -- C C

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 784

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

operation
commands

(mailadp.command.messagelog.filepath
)/*

Maintenance log Maintenance log
for the mail
adapter

Maintenance-log-output-directory-
for-the-HCSC-mail-adapter-
(mailadp.methodtrace.filepath)/*/*

-- Y -- A C

Definition
information

Definition
information for
the mail adapter

Application-Server-installation-
directory/CSC/config/mail/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒41: Logs to be collected for the HCSC server (mail adapter) information (in UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log Message log for
the mail adapter
operation
commands

Message-log-output-directory-for-the-
HCSC-mail-adapter-operation-
commands-
(mailadp.command.messagelog.filepath
)/*

Y -- -- C C

Maintenance log Maintenance log
for the mail
adapter

Maintenance-log-output-directory-
for-the-HCSC-mail-adapter-
(mailadp.methodtrace.filepath)/*/*

-- Y -- A C

Definition
information

Definition
information for
the mail adapter

Application-Server-installation-
directory/CSC/config/mail/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 785

--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.21 HCSC server (HTTP adapter)
The following table describes the logs to be collected for the HCSC server (HTTP adapter) information.

Table A‒42: Logs to be collected for the HCSC server (HTTP adapter) information (in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the HTTP
adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPHTTP/maintenance/*/
cscadphttpmnt_*.log

-- Y -- A C

Exception log Exception log for
the HTTP adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPHTTP/maintenance/*/
cscadphttpexp_*.log

Y -- -- A C

Definition
information

Definition
information for
the HTTP adapter

Application-Server-installation-
directory/CSC/custom-adapter/
HTTP/config/**

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 786

Table A‒43: Logs to be collected for the HCSC server (HTTP adapter) information (in UNIX)

Type of data File to be
collected

Collection target Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the HTTP
adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPHTTP/maintenance/*/
cscadphttpmnt_*.log

-- Y -- A C

Exception log Exception log for
the HTTP adapter

J2EE-server-log-output-directory-
(ejb.server.log.directory)/CSCADP/
ADPHTTP/maintenance/*/
cscadphttpexp_*.log

Y -- -- A C

Definition
information

Definition
information for
the HTTP adapter

Application-Server-installation-
directory/CSC/custom-adapter/
HTTP/config/**

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.22 HCSC server (command adapter)
The following table describes the logs to be collected for the information about the HCSC server (command adapter).

Table A‒44:  Logs to be collected for the information about the HCSC server (command adapter)
(in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the command
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/ADPCMD/
maintenance/*/
cscadpcmdmnt_*.log

-- Y -- A A

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 787

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Exception log Exception log for
the command
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/ADPCMD/
maintenance/*/
cscadpcmdexp_*.log

Y -- -- A A

Definition
information

Definition
information for
the command
adapter

Application-Server-installation-
directory/CSC/custom-adapter/
Command/config/*

Y -- Y Y Y

Application-Server-installation-
directory/CSC/custom-adapter/
Command/config/common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

Table A‒45:  Logs to be collected for the information about the HCSC server (command adapter)
(in UNIX)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Maintenance log Maintenance log
for the command
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/ADPCMD/
maintenance/*/
cscadpcmdmnt_*.log

-- Y -- A A

Exception log Exception log for
the command
adapter

J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/CSCADP/ADPCMD/
maintenance/*/
cscadpcmdexp_*.log

Y -- -- A A

Definition
information

Definition
information for
the command
adapter

Application-Server-installation-
directory/CSC/custom-adapter/
Command/config/*

Y -- Y Y Y

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 788

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Application-Server-installation-
directory/CSC/custom-adapter/
Command/config/common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A.23 HCSC server (file event reception)
The following table describes the logs to be collected for the information about the HCSC server (file event reception).

Table A‒46:  Logs to be collected for the information about the HCSC server (file event reception)
(in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log File event trace J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/csc/rcp/
fileevent/*/
fileeventtrace_*.log

-- Y -- A A

Definition
information

Definition
information for
file event
reception

Application-Server-installation-
directory/CSC/custom-
reception/fileevent/
config/*

Y -- Y Y Y

Application-Server-installation-
directory/CSC/custom-
reception/fileevent/
config/common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 789

Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

Table A‒47:  Logs to be collected for the information about the HCSC server (file event reception)
(in UNIX)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log File event trace J2EE-server-working-directory-
(ejb.public.directory)/ejb/server-
name/logs/csc/rcp/
fileevent/*/
fileeventtrace_*.log

-- Y -- A A

Definition
information

Definition
information for
file event
reception

Application-Server-installation-
directory/CSC/custom-
reception/fileevent/
config/*

Y -- Y Y Y

Application-Server-installation-
directory/CSC/custom-
reception/fileevent/
config/common/*

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot
log. For the meanings of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules
for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 790

A.24 Audit log
The following table describes the logs to be collected in relation to audit log information.

Table A‒48: Collection target related to audit log information (In Windows)

Category Type of
data

File to be
collected

Default collection destination Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

None Message
log

Message log
audit log

Audit-log-message-output-
directory-
(auditlog.raslog.message.director
y)/rasmessage*.log

Y -- -- C C

Other logs Audit log Audit-log-output-directory-
(auditlog.directory)/*

-- Y -- C C

Audit log
exception
information

Audit-log-exception-output-
directory-
(auditlog.raslog.exception.directo
ry)/rasexception*.log

Y -- -- C C

Maintenan
ce log

Other logs Audit-log-message-output-
directory-
(auditlog.raslog.message.director
y)/*/*

Y -- -- C C

Audit-log-exception-output-
directory-
(auditlog.raslog.exception.directo
ry)/*/*

Y -- -- C C

Definition
informatio
n

Audit log
definition file

Cosminexus-installation-
directory/common/conf/
auditlog.properties

Y -- Y C C

Naming service Others Log showing
naming service
start, stop or
abnormal
termination

Windows-event-log-(EventLog) Y -- -- D D

Dump Thread dump Cosminexus-installation-
directory/TPB/
logj/javacore*

Y -- -- Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 791

Table A‒49: Collection target related to audit log information (In UNIX)

Category Type of
data

File to be
collected

Collection target Data How to collect

Prima
ry

Seco
ndary

Defini
tion

A B

None Message
log

Message log of
audit log

Audit-log-message-output-
directory-
(auditlog.raslog.message.director
y)/rasmessage*.log

Y -- -- C C

Other logs Audit log Audit-log-output-directory-
(auditlog.directory)/*

-- Y -- C C

Audit log
exception
information

Audit-log-exception-output-
directory-
(auditlog.raslog.exception.directo
ry)/rasexception*.log

Y -- -- C C

Maintenan
ce log

Other logs Audit-log-message-output-
directory-
(auditlog.raslog.message.director
y)/*/*

Y -- -- C C

Audit-log-exception-output-
directory-
(auditlog.raslog.exception.directo
ry)/*/*

Y -- -- C C

Definition
informatio
n

Audit log
definition file

Cosminexus-installation-
directory/common/conf/
auditlog.properties

Y -- Y C C

Naming service Others Log showing
naming service
start, stop or
abnormal
termination

UNIX-syslog-(syslog) Y -- -- C C

Dump Thread dump Cosminexus-installation-
directory/TPB/
logj/javacore*

Y -- -- Y Y

core dump Cosminexus-installation-
directory/TPB/logj/core*

-- Y -- Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1 (4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 792

A.25 Other information
The following table describes the logs to be collected in relation to other information.

Table A‒50: Logs to be collected for the other information (in Windows)

Type of data File to be
collected

Default collection destination Data Collection
method

Primar
y

Secon
dary

Definiti
on

A B

Message log cosmienv
command log

Application-Server-installation-
directory/env/log/*

Y -- -- Y Y

Definition
information

Host definition
file (for Windows)

System-root-directory-(systemroot)/
system32/drivers/etc/hosts

Y -- Y Y Y

Other Program product
information

/etc/.hitachi/
pplistd/pplistd

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

• For the collection methods
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details on the collection method A and collection method B, see Appendix A.1(2) Method of collecting snapshot log. For the meanings
of the directories and files to be collected and described in the table, see Appendix A.1(4) Rules for the coding to be collected.

Table A‒51: Collection target related to other information (In UNIX)

Type of data File to be
collected

Default collection destination Data How to collect

Primar
y

Secon
dary

Definiti
on

A B

Message log cosmienv
command log

Cosminexus-installation-
directory/env/log/*

Y -- -- Y Y

Definition
information

Host Definition
log (for UNIX)

/etc/hosts Y -- Y Y Y

Others Program product
information

/etc/.hitachi/
pplistd/pplistd

Y -- Y Y Y

Legend:
Primary: Primary delivery data
Secondary: Secondary delivery data
Definition: Definition sending data
A: mngsvrutil collect snapshot command
B: snapshotlog command

• For data
Y: Collected
--: Not collected

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 793

• For methods of collection
See Appendix A.1(3) Availability of snapshot log collection and changes in settings related to collection.

Note: For details about collection method A and collection method B, see Appendix A.1 (2) Method of collecting snapshot log. For details about
the file significance and directory to be collected described in the table, see Appendix A.1(4) Rules for the coding to be collected.

A. List of Snapshot Logs to Be Collected

Maintenance and Migration Guide 794

B. Identifying the Connection in Which an Error Has Occurred When
Connecting to a Database

To handle a database-related error, it is important to identify the connection used to connect to the database.

This section describes how to identify a connection in which trouble occurred while connecting to the database (HiRDB
or Oracle) using the information output from the applications server (trace based performance analysis and logs) and
information output from the database (trace information and execution results of the pdls command, and contents of
dynamic performance view).

With the application server, the connection information (connection ID) for unique identification of the connection you
use in connecting to HiRDB and Oracle is output to a trace based performance analysis. In a series of processing from
the J2EE server to the database, and until the processing results are returned from the database to the J2EE server, a
connection ID and a connect serial number assigned by the database server are output to the log and trace information
of the related configuration software. By comparing and checking this information, you can identify the connection in
which an error has occurred.

An overview of output of connection IDs when you use HiRDB, and when you use Oracle, and the information used to
identify the connection where an error has occurred is described below:

• When you use HiRDB
An overview of output of connection IDs is described below:

Figure B‒1: Output overview of connection ID (In HiRDB)

The following table describes the information used to identify the connection where an error has occurred.

Table B‒1: Information used to identify the connection where an error has occurred (in HiRDB)

No. Output source Information type Reference

1 Component Container Trace based performance analysis file Appendix B.1

2 Exception message when
SQLException occurs

3 DABroker Library Extended database access trace Appendix B.2

4 HiRDB client SQL trace file Appendix B.3

5 Error log information

6 Reconnection trace

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 795

No. Output source Information type Reference

7 HiRDB server Execution results of the pdls command Appendix B.4

The connection ID includes the following information:

• server-name
The front-end server name (when using HiRDB or a Parallel Server) or single server name (when using HiRDB
or a Single Server) is displayed.

• connect-serial-number
A connect serial number assigned by the HiRDB server that is displayed in server name is displayed.

• server-process-ID
The process ID of the HiRDB server that is displayed in the server name is displayed.

The output format and an output example of a connection ID is described below:
Output format of a connection ID (In HiRDB)

server-name:connect-serial-number:server-process-ID

Output example of a connection ID (In HiRDB)

fes01:15:2351

Reference note

During the processing of a global transaction, if a connection gets broken due to an error, the connection is
automatically re-established. This reconnection is, however, not output to the reconnection trace. In such a
case, a discrepancy occurs in the connection ID output to the reconnection trace and the actual connection
information. Basically, however, a connection does not get broken while processing a global transaction.

• When you use Oracle
An overview of output of connection IDs is described below:

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 796

Figure B‒2: Output overview of Connection ID (In Oracle)

The following table describes the information used to identify the connection where an error has occurred.

Table B‒2: Information used to identify the connection where an error has occurred (In Oracle)

No. Output source Information type Reference

1 Component Container Trace based performance analysis file Appendix B.1

2 Exception message when
SQLException occurs

3 DABroker Library Extended database access trace Appendix B.2

4 Oracle client Net client trace Appendix B.5

5 Oracle server Alert file Appendix B.6

6 User trace

7 Net server trace

8 Dynamic performance view

The connection ID includes the following information:

• instance-name
The instance name of the Oracle server is displayed.

• session-ID
The session ID assigned by the Oracle server is displayed.

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 797

• session-serial-number
The session serial number assigned by the Oracle server is displayed.

• OS-process-ID
The OS process ID is displayed.

Output format of a connection ID (In Oracle)

instance-name:session-ID:session-serial-number:OS-process-name

Output example of a connection ID (In Oracle)

ORCL:17:5:920

The dynamic performance view of Oracle is used to generate the connection ID, therefore, a user connecting to Oracle
must have permission to view the dynamic performance view. Use either of the following methods to grant viewing
permission to a user connecting to Oracle:

• Execute GRANT SELECT_CATALOG_ROLE TO user-name;.

• Execute GRANT SELECT ON V_$INSTANCE TO user-name;, GRANT SELECT ON V_$PROCESS
TO user-name;, and GRANT SELECT ON V_$SESSION TO user-name;.

Also, when using Oracle, if you set true in the value of the property item ConnectionIDUpdate, in property definitions
of a DB Connector, you can generate a connection ID when acquiring connection. However, the SQL for generating
connection ID is issued when you acquire a connection, as a result, the performance may be affected. Set false in an
environment where you do not wish to perform a reconnection. For details about how to set property definitions of
a DB Connector, see 4.2.2 Property definition of DB Connector in the uCosminexus Application Server Application
Setup Guide.

Important note

When you use transparent application failover of Oracle, the connection ID output to the PRF trace and the
actual connection ID may be different. This is because the connection is re-established in Oracle. When the
connection ID output to the PRF trace and the actual connection ID are different, you cannot track the trace
information of Oracle with the connection ID.

B.1 Cosminexus Component Container
The output destination of connection IDs output from Cosminexus Component Container differs depending on the status
of transaction processing (normal or abnormal).

In the case of normal processing
Output to a trace based performance analysis file.

In the case of abnormal processing
Output in an exception message when SQLException occurs.

In the trace based performance analysis file, connection IDs are output at the following three timings:

• When you acquire a connection to the database
When using HiRDB, output the connection ID of the acquired connection immediately before the
DataSource.getConnection() method or DataSource.getConnection(String username,
String password) method terminates.

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 798

When using Oracle, output the connection ID of the acquired connection immediately before the
DataSource.getConnection() method terminates.

• When you release the database connection
Immediately after starting the Connection.close() method, output the connection ID of the connection
acquired with the getConnection method that corresponds to the Connection.close() method.

• When you replace a connection to the database with the association function
When you invoke the ManagedConnection.associateConnection() method, the connection ID of the
destination connection is output when you replace with the association function.

The connection IDs acquired at the above timings are output to the interface name of the trace information of event IDs
described in the following table.

Table B‒3: Trace based performance analysis where connection IDs are output

Event ID Description

0x8C01 Information output during the processing immediately before the termination of the
DataSource.getConnection() method.

0x8C03 Information output during the processing immediately before the termination of the
DataSource.getConnection(String username, String password) method.

0x8C20 Information output during the processing immediately after starting the
Connection.close() method.

0x8C40 Information output during the invocation of the
ManagedConnection.associateConnection() method.

For details about trace collection points and the trace information that you can acquire, see 8.11 Trace collection points
of a DB Connector and JCA container.

How to acquire a trace based performance analysis, the exception message when SQLException occurs, and their output
format is described below:

(1) Trace based performance analysis file
This is a file that edits and outputs trace information, that is output during a series of processing of requests from the
client to an EIS such as databases and until the processing results are returned to the client, to a PRF trace file. The trace
information is output in CSV format.

Conditions for output of a connection ID
If all the below-mentioned conditions are fulfilled, the connection ID is output to a trace based performance
analysis file:

• The database used is either of the following:
HiRDB
Oracle

• Logical performance tracer is starting

• A DB Connector is used as the resource adapter.

(a) Points to be noted
The points to be noted when you view a trace based performance analysis are described below:

• Points to be noted for releasing a connection

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 799

When you invoke the Connection.close() method multiple times for the same connection, the trace based
performance analysis is output only for that many number of times.

• Points to be noted when you use the association functionality
When you replace a connection to the database with the association functionality, the connection to the database
is established with a physical connection different from the connection ID output with the getConnection()
method. In such a case, when you invoke the ManagedConnection.associateConnection() method,
the connection ID corresponding to the destination physical connection when you replace with the association
functionality, is output to a trace based performance analysis. As a result, to identify the connection ID that is actually
connected to the database, you need to track even the connection ID output to a trace based performance analysis with
the event ID 0x8C40.
Note that the connection may not be replaced even if you invoke the
ManagedConnection.associateConnection() method. In such a case, the connection ID is not output
to a trace based performance analysis.

Reference note

The association functionality replaces normal 1:1 correspondence between a logical connection and a
physical connection by sharing one physical connection among multiple logical connections.

• Points to be noted when you use the automatic reconnection function
When you use the automatic reconnection function of HiRDB, the connection ID output to a trace based performance
analysis and the connection ID of the actual connection may be different. In such a case, you also need to reference
the reconnection trace of the HiRDB client.

(b) How to acquire
Acquire the trace based performance analysis file by executing the management command (mngsvrutil). The
trace based performance analysis file is output to Manager-log-output-directory\prf (in Windows), or to Manager-log-
output-directory/prf (in UNIX). For details about how to acquire a trace based performance analysis file, see 7.3.1 How
to collect a trace based performance analysis file.

(c) Output format
An output example of a trace based performance analysis is described below. The connection ID is output in the interface
name (INT column).

Figure B‒3: Trace based performance analysis output example

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 800

(2) Exception message when SQLException occurs
This is a message that indicates that SQLException is thrown as an exception, when an error occurs in the database access,
Cosminexus DABroker Library, or JDBC driver.

Conditions for output of a connection ID
If the database in use is either of the following, the connection ID is output in the exception message when
SQLException occurs:

• HiRDB

• Oracle

(a) Points to be noted
The points to be noted when you view the exception message when SQLException occurs, are described below:

• Points to be noted for the output connection ID
The latest connection ID is always output to the exception message when SQLException occurs. When reconnected
by the automatic reconnecting functionality of HiRDB, the connection ID after being reconnected is output.

(b) How to acquire
An exception message is output to the following log files when SQLException occurs:

• In Windows

• working-directory\ejb\server-name\logs\cjexception[n].log

• working-directory\ejb\server-name\logs\connectors\display-name-of-resource-adapter[n].log

• In UNIX

• working-directory/ejb/server-name/logs/cjexception[n].log

• working-directory/ejb/server-name/logs/connectors/display-name-of-resource-adapter[n].log

In the part of log file name [n], the file number (From 1 to the total number of files (maximum 16)) is added.

(c) Output format

HiRDB
The connection ID is output at the end of ErrMsg of the message KFDJ00001-E. The example of output is described
below. The bold, highlighted part is the connection ID.

JP.co.Hitachi.soft.DBPSV_Driver.SQLException: KFDJ00001-E Error occurred a
t server.
[JdbcDbpsvResultSQLExecute.SQLExecute]
OperationType : 2002
ReturnCode : -100
ErrorCode : -404
WarningInfo : 0
ErrorMsg : KFPA11404-E Input data too long for column or assignment ta
rget in variable 1 [HiRDB_CONNECTION_ID(sds01:7:2988)]

In the case of Oracle
The connection ID is output at the end of ErrMsg of the message ORA-00942. The example of output is described
below. The bold, highlighted part is the connection ID.

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 801

JP.co.Hitachi.soft.DBPSV_Driver.SQLException: KFDJ00001-E Error occurred a
t server.
[JdbcDbpsvResultSQLExecute.SQLPrepare]
OperationType : 2002
ReturnCode : -200
ErrorCode : 942
WarningInfo : 0
ErrorMsg : ORA-00942: Table or view does not exist. [ORACLE_CONNECTIO
N_ID(ORCL:17:5:920)]
PreparedSQL : selectSectionID : 2

B.2 Cosminexus DABroker Library
In Cosminexus DABroker Library, the connection ID is output to extended database access trace.

This section describes the how to acquire the extended database access trace and output format of the trace.

(1) Extended database access trace
The Extended database access trace is a trace that outputs the access information from the time of database connection
until disconnection. The extended database access trace is output each time a connection is established with the database.

The following conditions must be satisfied to output the connection ID to the extended database access trace:

Conditions for output of the connection ID (In HiRDB)
• The version of HiRDB client must be 07-01 or later.

• 0 or a higher value must be specified in DABEXSQL_TRC_LINE of the Cosminexus DABroker Library
operation environment definition file.

For details about setting the operation environment of Cosminexus DABroker Library in Windows, see
Chapter 18 in the uCosminexus Application Server Compatibility Guide, and for UNIX, see Chapter 18 in
the uCosminexus Application Server Compatibility Guide. For details about the Cosminexus DABroker Library
operation environment definition file, see Chapter 18 in the uCosminexus Application Server Compatibility Guide.

Conditions for output of the connection ID (In Oracle)
• You must be using Oracle9i or Oracle10g.

• -1, 0, or a value in the range of 1024 to 32767 must be specified in DABEXSQL_TRC_LINE E of the Cosminexus
DABroker Library operation environment definition file.

In Windows, use the environment settings utility to set the Cosminexus DABroker Library operation environment
definition file. For details about setting the operation environment of Cosminexus DABroker Library using the
environment settings utility in Windows, see Chapter 18 in the uCosminexus Application Server Compatibility
Guide, and for UNIX, see Chapter 18 in the uCosminexus Application Server Compatibility Guide. For details
about the Cosminexus DABroker Library operation environment definition file, see Chapter 18 in the uCosminexus
Application Server Compatibility Guide.

(a) How to acquire
The storage location of extended database access trace is as follows:

• In Windows
Files under the Cosminexus-DABroker-Library-operation-directory\spool\db_access directory

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 802

• In UNIX
Files under the /opt/DABroker/spool/db_access directory

(b) Output format
The output format of extended database access trace is as follows:

For details about the output format of extended database access trace, see Chapter 18 in the uCosminexus Application
Server Compatibility Guide.

In HiRDB
The connection ID is output to the HiRDB_CONNECTION_ID column.

• In Windows

- DataBase Access Information (DRV) -
- Date YYYY/MM/DD hh:mm:ss.nnnnnn -

DABroker Connect ID : AAAA(BBBBB)
Process ID : CCCCC
UserID : DDDD
Client Name : EEEEE
(information-output-for-each-DB)
Lang Mode : GGGGG

THREAD-ID CID EVT START-TIME END-TIME RETCODE BLOCKCNT (Windows Que
ryPerformance Counter) HiRDB_CONNECTION_ID
(trace-information)
(SQL)SS...SS
(trace-information)

• In UNIX

- DataBase Access Information (DRV) -
- Date YYYY/MM/DD hh:mm:ss.nnnnnn -

DABroker Connect ID : AAAAA(BBBBB)
Process ID : CCCCC
UserID : DDDDD
Client Name : EEEEE
(information-output-for-each-DB)
Lang Mode : GGGGG

THREAD-ID CID EVT START-TIME END-TIME RETCODE
BLOCKCNT HiRDB_CONNECTION_ID
(trace-information)
(SQL)SS...SS
(trace-information)

In Oracle
The connection ID is output to the ORACLE_CONNECTION_ID column.

- DataBase Access Information (ORACLE8i Driver) -
- Date YYYY/MM/DD hh:mm:ss.nnnnnn -

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 803

DABroker Connect ID : AAAAAAAA(BBBBB)
Process ID : CCCC
UserID : DDDDDD
Client Name : EEEEEE
SQLNET : FFFFFF
Lang Mode : GGGG
--
 THREAD-ID CID EVT START-TIME END-TIME RETCODE B
LOCKCNT ORACLE_CONNECTION_ID
(trace-information)
(SQL)SS...SS
(trace-information)

B.3 HiRDB Client
In a HiRDB client, information such as the connection ID and connect serial number is output to the SQL trace file, error
log file, and reconnection trace file.

How to acquire the SQL trace file, error log file, and reconnection trace file, and the output format of each one is
described below:

(1) SQL trace file
This is a trace file that outputs the SQL trace information of an executed UAP. This trace file is output when the execution
of an SQL terminates.

If an SQL error occurs while you are executing a UAP, you can identify the SQL responsible for the error by referencing
the SQL trace file.

Conditions for output of a connection ID
If the below-mentioned condition is fulfilled, the connection ID is output to the SQL trace file:

• A value is specified in the client environment definitions PDCLTPATH and PDSQLTRACE.

For details about how to set client environment definitions, see the HIRDB UAP Development Guide.

(a) How to acquire
The SQL trace file is stored in the directory specified in the client environment definition PDCLTPATH.

(b) Output format
The server name, connect serial number, and server process ID are output in the format are as follows:

(Omitted)
 ...
CONNECTION STATUS:
 CURHOST(connection-destination-host-name) CURPORT(connect-port-number) SRVN
AME(server-name)
 CNCTNO(connect-serial-number) SVRPID(server-process-ID) CLTPID(UAP-process-
ID) CLTTID(UAP-thread-serial-number)
 ...
(Omitted)

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 804

The SQL statement, SQL execution time, and values set in the variables within the SQL statement are also output to the
SQL trace file. For details about the output format, see the HIRDB UAP Development Guide.

(2) Error log file
This is a log file that outputs the error information when an error occurs during the communication between a client and
HiRDB server, or in the XA interface defined in X/Open. This log file is output when an error occurs during the execution
of an SQL, communication processing, or execution of XA interface functions defined in X/Open.

Conditions for output of a connection ID
If the below-mentioned condition is fulfilled, the connection ID is output to the error log file:

• A value is specified in the client environment definitions PDCLTPATH and PDUAPERLOG.

For details about how to set, see the HIRDB UAP Development Guide.

(a) How to acquire
The SQL trace file is stored in the directory specified in the client environment definition PDCLTPATH.

(b) Output format
The server process ID is output to the SQL trace in the format described below:

Error-log-identifier (>> or >) UAP-process-ID UAP-thread-serial-number Serve
r-process-ID Error-log-counter (Rest omitted)

For details about the output format, see the HIRDB UAP Development Guide.

In addition to the connection information, the time of acquiring the error, SQLCODE, and SQL operation code where
an error occurred is output to the error log information.

(3) Reconnection trace file
When you reconnect with the automatic reconnection function of HiRDB client, then this trace file outputs the value
of the connection handle, connection information before reconnection, connection information after reconnection, and
the time of reconnection that HiRDB manages internally. This trace file is output when a connection is executed
automatically with the automatic reconnection function.

Conditions for output of a connection ID
If the below-mentioned conditions are fulfilled, the connection ID is output to the reconnection trace file:

• A value is specified in the client environment definitions PDCLTPATH and PDSQLTRACE.

• The automatic reconnection function of HiRDB is used.

For details about how to set up, see the HIRDB UAP Development Guide.

(a) How to acquire
The reconnection trace file is stored in the directory specified in the client environment definition PDCLTPATH. The
stored file names are pdrcnct1.trc and pdrcnct2.trc.

(b) Output format
The reconnection trace is output in the format described below:

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 805

Connection-handle-value Reconnection-result(S or F) Reconnection-start-date
-and-time -
Reconnection-end-date-and-time Connection-information-before-reconnection =
> Connection-information-after-reconnection

The connection ID is output as the connection information after reconnection.

For details about the output format, see the HIRDB UAP Development Guide.

An output example of the reconnection trace file is described below. The bold, highlighted part is the connection ID.

40004250 S 2004/04/12 11:10:36.766 - 2004/04/12 11:10:41.846 sds:9:23763 =>
sds:10:23750
40004250 S 2004/04/12 11:11:07.491 - 2004/04/12 11:11:12.547 sds:10:23750 =
> sds:11:23765
40004850 F 2004/04/12 11:17:58.285 - 2004/04/12 11:18:23.395 sds:14:23751
=>
40005050 S 2004/04/12 11:27:35.098 - 2004/04/12 11:27:40.152 sds:1:24414 =>
sds:2:24418

B.4 HiRDB Server
In HiRDB server, check the server status by referencing the results of executing the pdls command.

Check the status of the connected HiRDB server by comparing the server name and server process ID displayed in the
pdls command execution results with the information included in the connection ID.

The execution format of pdls command and the output format of the execution results are described below:

(1) Execution results of the pdls command
This is a command that enables the display of exclusive control status, process status, and communication control
information of a HiRDB server.

(a) Execution format
Execute the following pdls commands, and check the server status.

• To display the exclusive control status of the server

pdls -d lck

• To display the server process status

pdls -d prc

• To display the server communication control information

pdls -d rpc

For details about the pdls command, see the HiRDB Command Reference.

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 806

(b) Output format
The server name is output to the SVID column, while the server process ID is output to the PID column of the
execution results.

For details about the output format, see the HiRDB Command Reference.

B.5 Oracle Client
In Oracle client, the details of the executed network events are output to the Net client trace file. The OS client process
ID of the client is included in the file name of the Net client trace file.

A Net client trace file is output to the following locations:

• In Windows
location-specified-by-sqlnet.ora-file#\CLI_OS-client-process-ID.trc

• In UNIX
location-specified-by-sqlnet.ora-file#/CLI_OS-client-process-ID.trc

The output destination of the Net client trace file is set with the Oracle sqlnet.ora file. The coding format of the sqlnet.ora
file is described below. For details about the sqlnet.ora file, see the documentation on Oracle.

TRACE_LEVEL_CLIENT=16
TRACE_DIRECTORY_CLIENT=directory-name
TRACE_UNIQUE_CLIENT=ON
TRACE_TIMESTAMP_CLIENT=ON

To reference a Net client trace file, you need to specify the desired Net client trace file from the output Net client trace
files. To specify the desired Net client trace file:

1. Execute the following SQL, and acquire the OS client process ID.

SELECT PROCESS FROM V$SESSION WHERE (SID = session-ID) AND (SERIAL# = sess
ion-serial-number);

2. Compare the acquired OS client process ID and the OS client process ID included in the file name of the Net client
trace file, and specify the desired Net client trace file.

For details about the output contents of the Net client trace file, see the documentation on Oracle.

Important note

The Net client trace consumes a large amount of disk space, as a result, it may lead to a decline in the system
performance. Reference the Net client trace only when required.

B.6 Oracle Server
How to output the error information of the Oracle server, and the server status, in an Oracle server are described below:

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 807

• Acquiring alert files

• Acquiring user traces

• Acquiring Net server trace files

• Using dynamic performance view

(1) Alert file
In an alert file, you can confirm the following information with an instance name of a trace based performance analysis
as the key.

• All internal errors, block corruption errors, and dead lock errors that have occurred

• Management and operation of CREATE, ALTER, or DROP statements, STARTUP or SHUTDOWN statements, and
ARCHIVELOG statement

• Messages and errors related to the shared server and dispatcher process functionality

• Errors that occurred during automatic refresh of the dataized view

• Values of all initialization parameters during invocation of a database and instances

Alert files are output to the following locations:

• In Windows
location-specified-with-BACKGROUND_DUMP_DEST#\ALERT_instance-name.LOG

• In UNIX
location-specified-with-BACKGROUND_DUMP_DEST#/ALERT_instance-name.LOG

Set with the initialization parameter USER_DUMP_DEST of Oracle. For details about USER_DUMP_DEST, see the
documentation on Oracle.

Of the output alert files, specify the desired alert file by comparing the instance name output to a trace based performance
analysis, and the instance name included in the alert file name.

(2) User trace
In the user trace, you can check the following information with an instance name of a trace based performance analysis,
OS process ID, session ID, and session serial number as the key:

• Information of error that occurred in a server process

• Execution plan and the statistics of an SQL

(3) Net server trace file
In Oracle server, the details of the executed network events are output to a Net server trace file. The OS process ID of
the server is included in the file name of the Net server trace file.

Net server trace files are output to the following locations:

• In Windows
location-specified-by-sqlnet.ora-file#\CLI_OS-process-ID.TRC

• In UNIX

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 808

location-specified-by-sqlnet.ora-file#/CLI_OS-process-ID.TRC

The output destination of the Net server trace file is set with the Oracle sqlnet.ora file. The coding format of the
sqlnet.ora file is described below. For details about the sqlnet.ora file, see the documentation on Oracle.

TRACE_LEVEL_CLIENT=16
TRACE_DIRECTORY_CLIENT=directory-name
TRACE_UNIQUE_CLIENT=ON
TRACE_TIMESTAMP_CLIENT=ON

Of the output Net server trace files, specify the desired Net server trace file by comparing the OS process ID of a trace
based performance analysis and the OS process ID name included in the Net server trace file name.

For details about the output contents of the Net server trace file, see the documentation on Oracle.

Important note

The Net server trace file consumes a large amount of disk space, as a result, it may lead to a decline in the system
performance. Reference the Net client trace only when required.

(4) Dynamic performance view
You can reference the details of a process by studying the dynamic performance view or identifying a session. Study the
dynamic performance view by comparing it with the connection IDs output to trace based performance analysis files.

The following table describes the relationship between the connection IDs of the dynamic performance view and trace
based performance analysis.

Table B‒4: Relationship between the connection IDs of dynamic performance view and trace based
performance analysis

Item No. Item displayed in the dynamic performance view Connection ID item of trace based performance analysis

1 V$INSTANCE INSTANCE_NAME instance-name

2 V$SESSION SID session-ID

3 V$SESSION SERIAL# session-serial-number

4 V$PROCESS SPID OS-process-ID

For details about the dynamic performance view, see the documentation on Oracle.

B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database

Maintenance and Migration Guide 809

C. Recovering Tables for a CMR When an Error Occurs

This section describes how to recover tables for a CMR that you were using before the occurrence of a failure in
a J2EE server, after you deploy an application containing a CMR. For details about the table for CMR, see 9.6.3
Mapping CMP2.x and the database in the uCosminexus Application Server Application Setup Guide. When you deploy
an application containing CMR, and a failure occurs while you start or terminate a J2EE server in a running state for the
purpose of maintenance, the application containing the CMR does not start in the state in which you deployed it. If you
resolve the error and make an attempt to deploy the application containing a CMR, you cannot deploy if a table with the
same name that you want to create already exists in the database (to prevent sharing of tables between applications).

Here, if you regenerate the SQL, an SQL using new table names for a CMR will be generated, and you can deploy the
application to enable the use of tables for a new CMR. If, however, you want to use the same relationship that you were
using before terminating the J2EE server, you need to deploy in such a way so as to enable the use of tables remaining
in the database.

You can specify the table in ejbserver.ejb.cmp20.cmr.use.existing_table parameter in
<configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file.
ejbserver.ejb.cmp20.cmr.use.existing_table is an option to recover the related information used
till an error occurred when starting the application. If you specify true, you can deploy such that the existing table in
the data base can be used. Use this option to use the existing tables:

1. Use an SQL to confirm that the tables for CMR that you were using before the failure occurred are remaining in
the database.

2. Terminate the J2EE server (take an action against the cause of failure to start the application in the deployed state).

3. Specify the following in ejbserver.ejb.cmp20.cmr.use.existing_table parameter in
<configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file.

<param-name> tag
ejbserver.ejb.cmp20.cmr.use.existing_table

<param-value> tag
true

4. Start the J2EE server.

5. Re-deploy the application containing a CMR that failed to start in the deployed state.

Important note

Here, do not regenerate the SQL. If you regenerate, an SQL with new table names will be generated, and you
will not be able to use the previous tables.

6. Stop the J2EE server.

7. Whether to specify false in the ejbserver.ejb.cmp20.cmr.use.existing_table parameter in
<configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file or return to the
state where this option is not set.

8. Re-start the J2EE server.

C. Recovering Tables for a CMR When an Error Occurs

Maintenance and Migration Guide 810

D. Main Functionality Changes in Each Version

This section describes the main functionality changes in Application Server versions prior to version 11-00 and the
purpose of each change. For details on the main functionality changes in version 11-00, see 1.4 Main functionality
changes in Application Server 11-00.

The contents described in this section are as follows:

• This section gives an overview and describes the main changes in the functionality of various Application Server
versions. For details on the functionality, see the description in the Section column of the Reference column.
The main locations where the functionality is described in the 11-00 manual are described in the Reference and
Section columns.

uCosminexus Application Server is omitted from the manual names mentioned in the Reference column.

D.1 Main functionality changes in 09-87

(1) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒1: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Support for Java SE 11 The Java SE 11 functionality can be now used. This manual Chapter 9

D.2 Main functionality changes in 09-80

(1) Supporting standard and existing functionality
he following table describes the items that are changed to support the standard and existing functionality.

Table D‒2: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Use of lambda expressions for
the JAX-RS functionality

The classes included in the packages and their sub packages
specified for the servlet initialization parameter in web.xml
can now use lambda expressions.

Web Service
Development Guide

11.2

Support for Java SE 9 The Java SE 9 functionality can be now used. This manual Chapter 9

(2) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 811

Table D‒3: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Support for Apache 2.4 by the
Web server

Apache 2.4 is now supported as the base version of the
Web server.

HTTP Server User Guide Chapter 6,
Appendix
G

Use of elliptic
curve cryptography for
SSL communication

SSL communication that uses elliptic curve cryptography can
be now used.

HTTP Server User Guide Chapter 5,
Appendix
G

Change of the SSL library The SSL library that provides the SSL functionality was
changed to OpenSSL.

HTTP Server User Guide Chapter 5,
Appendix
G

D.3 Main functionality changes in 09-70

(1) Supporting standard and existing functionality
he following table describes the items that are changed to support the standard and existing functionality.

Table D‒4: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Addition of JSP
compilation versions to the
management portal

Compilation methods compliant with JDK 1.7 specifications
and those compliant with JDK 7 specifications are now
supported as compilation methods for servlets generated from
JSP files on the J2EE server.

Management Portal
User Guide

10.8.4

Definition
Reference Guide

4.11.2

Support for Metaspace by JDK 8 The option for the Permanent area used to start JavaVM is
changed to the option for the Metaspace area.

System Setup and
Operation Guide

Appendix
A.2

Management Portal
User Guide

10.8.7

Definition
Reference Guide

5.2.1,
5.2.2,
Appendix
A.2

Support for SHA-2 for user
authentication by integrated
user management

SHA-224, SHA-256, SHA-384, and SHA-512 were added
as the hash algorithms for user authentication by integrated
user management.

Security
Management Guide

5.3.1,
5.3.9,
5.10.7,
12.4.3,
12.5.3,
13.2,
14.2.2

Addition of automatic start,
automatic restart, and automatic
stop procedures in Red Hat
Enterprise Linux Server 7

The procedures for automatically starting, restarting, and
stopping Management Server and Administration Agent in
Red Hat Enterprise Linux Server 7 were added.

Operation, Monitoring,
and Linkage Guide

2.6.3,
2.6.4, 2.6.5

Command
Reference Guide

7.2

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 812

(2) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒5: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Support for upgrading to V9.7 The procedure for changing the option for the Permanent area
used to start JavaVM during a version upgrade to the option for
the Metaspace area was added.

This manual 10.3.1,
10.3.2,
10.3.4

Operations using WAR files The WAR applications configured only with WAR files can
now be deployed on the J2EE servers.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

15.9

Command
Reference Guide

cjimportw
ar (Import
a WAR
applicatio
n)

Forced release of the
Explicit memory block
of the Explicit Memory
Management functionality

The processing to release the Explicit memory block can now
be executed by using the javagc command at any timing.

Expansion Guide 7.6.1, 7.9

Command
Reference Guide

javagc
(forced
execution
of garbage
collection)

(3) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒6: Changes due to other purposes

Item Overview of changes Reference manual Referenc
e

Snapshot log data to be collected JavaVM event log data and Management Server thread dump
were added as snapshot log data to be collected.

This manual Appendix
A.2

Output of the cjenvsetup
command log data

Information about the execution of Component Container
Administrator setup (cjenvsetup command) is now output
to the message log.

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

Command
Reference Guide

cjenvsetup
(set up
Componen
t
Container
Administra
tor)

Output of the CPU time to the
event log of the Explicit Memory
Management functionality

The CPU time taken to perform processing to release the
Explicit memory block is now output to the event log of the
Explicit Memory Management functionality.

This manual 5.11.3

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 813

Item Overview of changes Reference manual Referenc
e

Enhancement of the user-
extended trace based
performance analysis

The following functions were added to the user-extended trace
based performance analysis:
• Trace targets can now be specified in units of packages or

classes in addition to being specified in units of methods,
which is the usual specification method.

• The range of available event IDs was expanded.
• The restrictions on the number of lines that can be specified

in the user-extended trace based performance analysis
configuration file were relaxed.

• The trace collection level can now be specified in
the user-extended trace based performance analysis
configuration file.

This manual 7.5.2,
7.5.3,
8.23.1

Improvement of the analysis
of information when the
asynchronous Session Bean
invocation is used

The root application information of the PRF trace can now be
used to compare the requests of the invocation source and the
invocation destination.

EJB Container
Functionality Guide

2.17.3

D.4 Main functionality changes in 09-60

(1) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒7: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Support for G1 GC G1 GC can now be selected. System Design Guide 7.15

Definition
Reference Guide

14.5

Support for the object-pointer
compression function

The object-pointer compression function can now be used. This manual 9.18

(2) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒8: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Addition of the finalize-retention
resolution function

The retention of the finalization processing can now be
resolved and the occurrence of delays in the release of OS
resources can now be suppressed.

This manual 9.16

(3) Other purposes
The following table describes the items that are changed for other purposes.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 814

Table D‒9: Changes due to other purposes

Item Overview of changes Reference manual Referenc
e

Addition of the asynchronous
output function for log files

Log data can now be asynchronously output to files. Definition
Reference Guide

14.2

D.5 Main functionality changes in 09-50

(1) Improvement of development productivity
The following table describes the items changed with the purpose of improving the development productivity.

Table D‒10: Changes made with the purpose of improving the development productivity

Item Overview of changes Reference manual Referenc
e

Simplification of Eclipse setup The GUI can now be used to set up the Eclipse environment. Application
Development Guide

1.1.5, 2.4

Support for debugging by using
the user-extended trace based
performance analysis

The user-extended trace based performance analysis
configuration file can now be created in the
development environment.

Application
Development Guide

1.1.3, 6.4

(2) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

Table D‒11: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Referenc
e

Expansion of the system
configuration patterns in a
virtual environment

The number of tier types that can be used in a virtual
environment (http-tier, j2ee-tier, and ctm-tier)
increased. This makes it possible to set up the following system
configuration patterns:
• Pattern that allocates the Web server and the J2EE server to

different hosts
• Pattern that separately allocates the front end (servlets or

JSPs) and the back end (EJBs)
• Pattern that uses the CTM

Virtual System Setup and
Operation Guide

1.1.2

(3) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒12: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Referenc
e

Support for the JDBC
4.0 specifications

DB Connector now supports HiRDB Type4 JDBC Driver
and SQL Server JDBC drivers complying with the JDBC
4.0 specifications.

Common Container
Functionality Guide

3.6.3

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 815

Item Overview of changes Reference manual Referenc
e

Relaxation of the naming
rules for the Portable Global
JNDI names

Characters that can be used for Portable Global JNDI names
were added.

Common Container
Functionality Guide

2.4.3

Support for the Servlet
3.0 specifications

The names of HTTP cookies and URL path parameters for
Servlet 3.0 can now be changed in Servlet 2.5 or earlier.

Web Container
Functionality Guide

2.7

Extended use of applications
that can be integrated with
Bean Validation

Bean Validation can now be used for validation in the CDI and
user applications as well.

Common Container
Functionality Guide

Chapter 9

Support for JavaMail The email sending and receiving functionality that uses APIs
compliant with JavaMail 1.4 can now be used.

Common Container
Functionality Guide

Chapter 7

Expanded scope of OSs that can
use the javacore command

The javacore command can now be used to obtain the
Windows thread dump.

Command
Reference Guide

javacore
(Acquiring
the thread
dump/in
Windows)

(4) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒13: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Referenc
e

Avoidance of the depletion of the
code cache area

The size of the code cache area used in the system can now be
checked, and before the area is depleted, the threshold value
can be changed to avoid the depletion of the area.

System Design Guide 7.2.6

This manual 5.7.2, 5.7.3

Definition
Reference Guide

14.1, 14.2,
14.4

Support for the
efficient application of
the Explicit Memory
Management functionality

Functionality that can control the objects transferred to the
explicit heap was added as functionality for reducing the
automatic release processing time and for efficiently applying
the Explicit Memory Management functionality.
• Functionality that controls the transfer of objects to the

Explicit memory block
• Functionality that specifies the classes to be excluded

from those for which the Explicit Memory Management
functionality is applied

• Output of the information about the object release rate to
the explicit heap information

System Design Guide 7.14.6

Expansion Guide 7.2.2,
7.6.5, 7.10,
7.13.1,
7.13.3

This manual 5.5

Expansion of the output range
of statistical information for
each class

The static field-based reference relationship can now be
output to the extended thread dump that includes statistical
information for each class.

This manual 9.6

(5) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 816

Table D‒14: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Referenc
e

Support for the EADs session
failover functionality

The EADs session failover functionality that implements the
session failover functionality by integrating with the EADs is
now supported.

Expansion Guide Chapter 5

Operations by using WAR files A WAR application configured by using only WAR files can
now be deployed to a J2EE server.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

15.9

Command
Reference Guide

cjimportw
ar (Import
a WAR
applicatio
n)

Start or stop of the
management functionality by
using synchronous execution

A synchronous execution option for starting or stopping
the management functionality (Management Server and
Administration Agent) was added.

Operation, Monitoring,
and Linkage Guide

2.6.1,
2.6.2,
2.6.3, 2.6.4

Command
Reference Guide

adminagen
tctl (start
or stop
Administra
tion
Agent),
mngautoru
n (Set up/
canceling
the set up
of
autostart
and
autorestart
),
mngsvrctl
(start,
stop, or
setup
Manageme
nt Server)

Forced release of the
Explicit memory block
of the Explicit Memory
Management functionality

The processing to release the Explicit memory block can now
be executed by using the javagc command at any timing.

Expansion Guide 7.6.1, 7.9

Command
Reference Guide

javagc
(forced
execution
of garbage
collection)

(6) Other purposes
The following table describes the items that are changed for other purposes.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 817

Table D‒15: Changes due to other purposes

Item Overview of changes Reference manual Referenc
e

Acquisition of
definition information

The snapshotlog (collect snapshot logs) command can
now be used to collect only the definition files.

This manual 2.3

Command
Reference Guide

snapshotlo
g (collect
snapshot
logs)

Output of the cjenvsetup
command log data

Information about the execution of Component Container
Administrator setup (cjenvsetup command) is not output
to the message log.

System Setup and
Operation Guide

4.1.4

This manual 4.20

Command
Reference Guide

cjenvsetup
(set up
Componen
t
Container
Administra
tor)

Support for BIG-IP v11 BIG-IP v11 was added to the available load balancer types. System Setup and
Operation Guide

4.7.2

Virtual System Setup and
Operation Guide

2.1

Output of the CPU time to the
event log of the Explicit Memory
Management functionality

The CPU time taken to perform the processing to release the
Explicit memory block is now output to the event log of the
Explicit Memory Management functionality.

This manual 5.11.3

Enhancement of the user-
extended trace based
performance analysis

The following functions were added to the user-extended trace
based performance analysis:
• Trace targets can now be specified in units of packages or

classes in addition to being specified in units of methods,
which is the usual specification method.

• The range of available event IDs was expanded.
• The restrictions on the number of lines that can be specified

in the user-extended trace based performance analysis
configuration file were relaxed.

• The trace collection level can now be specified in
the user-extended trace based performance analysis
configuration file.

This manual 7.5.2,
7.5.3,
8.23.1

Improvement of the analysis
of information when the
asynchronous Session Bean
invocation is used

The root application information of the PRF trace can now be
used to compare the requests of the invocation source and the
invocation destination.

EJB Container
Functionality Guide

2.17.3

D.6 Main functionality changes in 09-00

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 818

Table D‒16: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Changing the units to be
set up and operated in the
virtual environment

The units to be operated when you set up and operate the virtual
environment have been changed from the virtual server to the
virtual server group. You can now use the file in which the
virtual server group is defined, and register multiple virtual
servers to a management unit in a batch.

Virtual System Setup
and Operation Guide

1.1.2

Cancelling the restrictions on
the environment setup by using
Setup Wizard

The restrictions on the environments that can be set up with
Setup Wizard have been removed. Even if an environment has
been set up with another functionality, you can now unset up the
environment and use Setup Wizard for setup.

System Setup and
Operation Guide

2.2.7

Simplifying the procedure for
deleting the setup environment

The deletion procedure has now been simplified by adding
the functionality to delete a system environment setup with
Management Server (mngunsetup command).

System Setup and
Operation Guide

4.1.37

Management Portal
User Guide

3.6, 5.4

Command
Reference Guide

mngunsetup
(Deleting the
Management
Server
configuration
environment
)

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒17: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Supporting Servlet 3.0 Servlet 3.0 is now supported. Web Container
Functionality Guide

Chapter 7

Supporting EJB 3.1 EJB 3.1 is now supported. EJB Container
Functionality Guide

Chapter 2

Supporting JSF 2.1 JSF 2.1 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting JSTL 1.2 JSTL 1.2 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting CDI 1.0 CDI 1.0 is now supported. Common Container
Functionality Guide

Chapter 8

Using Portable Global
JNDI names

You can now look up objects for which Portable Global JNDI
names are used.

Common Container
Functionality Guide

2.4

Supporting JAX-WS 2.2 JAX-WS 2.2 is now supported. Web Service
Development Guide

1.1, 16.1.5,
16.1.7,
16.2.1,
16.2.6,
16.2.10,
16.2.12,
16.2.13,
16.2.14,
16.2.16,
16.2.17,

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 819

Item Overview of changes Reference manual Reference

16.2.18,
16.2.20,
16.2.22, 19.1,
19.2.3, 37.2,
37.6.1,
37.6.2, 37.6.3

Supporting JAX-RS 1.1 JAX-RS 1.1 is now supported. Web Service
Development Guide

1.1, 1.2.2,
1.3.2, 1.4.2,
1.5.1, 1.6,
2.3, Chapter
11, Chapter
12, Chapter
13, Chapter
17, Chapter
24, Chapter
39

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒18: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Using TLSv 1.2 for
SSL/TLS communication

You can now use RSA BSAFE SSL-J to execute the SSL/TLS
communication with a security protocol containing TLSv 1.2.

Security
Management Guide

7.3

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒19: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Reference

Monitoring the total pending
queues of the entire
Web container

You can now output the total pending queues of the entire Web
container in the operation information and monitor the number
of queues.

Operation,
Monitoring, and
Linkage Guide

Chapter 3

Output of trace based
performance analysis
for applications (user-
extended trace)

The trace based performance analysis used for analyzing the
processing performance of user-developed applications can
now be output without changing the applications.

This manual Chapter 7

Operations performed by
using the user script in a
virtual environment

The user-created script (user script) can now be executed on a
virtual server at any time.

Virtual System Setup
and Operation Guide

7.8

Improving the
management portal

Changes have been made so that the messages describing the
procedure are now displayed on the following management
portal windows:
• Deploy Preference Information window
• Start windows for the Web server, J2EE server, and

SFO server
• Batch start, batch restart, and start windows for Web server

cluster and J2EE server cluster

Management Portal
User Guide

10.10.1,
11.9.2,
11.10.2,
11.10.4,
11.10.6,
11.11.2,
11.12.2,
11.12.4,
11.2.6

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 820

Item Overview of changes Reference manual Reference

Adding the restart functionality
in the management functionality

You can now specify automatic restart for the management
functionality (Management Server and Administration Agent),
and continue operations even when an error occurs in the
management functionality. The procedure for automatic start
settings has also been changed.

Operation,
Monitoring, and
Linkage Guide

2.4.1, 2.4.2,
2.6.3, 2.6.4

Command
Reference Guide

mngautorun
(Set up/
canceling the
setup of
autostart and
autorestart)

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒20: Changes due to other purposes

Item Overview of changes Reference manual Reference

Changing the file switching units
when log is output

The output destination files are now switched by date when the
log is output.

This manual 3.2.1

Changing the Web server name The name of the Web server included in Application Server is
changed to Cosminexus HTTP Server.

HTTP Server
User Guide

--

Supporting direct connection
by using the BIG-IP APIs
(SOAP architecture)

Direct connection is now supported by using APIs (SOAP
architecture) in BIG-IP (load balancer).
Also, the procedure for setting up the connection environment
of the load balancer has been changed for using a direct
connection through APIs.

System Setup and
Operation Guide

4.7.3,
Appendix J

Virtual System Setup
and Operation Guide

2.1, Appendix
C

Security
Management Guide

8.2, 8.4, 8.5,
8.6, 18.2.1,
18.2.2, 18.2.3

Legend:
--: Reference the entire manual.

D.7 Main functionality changes in 08-70

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

Table D‒21: Changes made for simplifying implementation and setup

Item Overview of changes Reference Section

Improving the
Management portal

Changes have been made to enable the user to set the property
(settings of the Connector property file) for defining the
resource adapter attributes and perform the connection test in
the management portal window. Also, J2EE applications (ear
file and zip file) can now be uploaded on Management Server
using the Management portal window.

First Step Guide 3.5

Management Portal
User Guide

--

Adding functionality for
implicitly importing the

The functionality for implicitly importing the import property
of the page/tag directive can now be used.

Web Container
Functionality Guide

2.3.7

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 821

Item Overview of changes Reference Section

import property for the
page/tag directive

Support for automating
the environment settings
corresponding to JP1 products in
a virtual environment

Changes have been made so that when Application Server is set
up on a virtual server, the environment settings of JP1 products
can be automatically set for the virtual server by using the
hook script.

Virtual System Setup and
Operation Guide

7.7.2

Improving the Integrated user
management functionality

When using a database in a user information repository,
you can now connect to the database by using the JDBC
driver of database products. The database connection through
the JDBC driver of Cosminexus DABroker Library is not
supported anymore.
You can now set the integrated user management functionality
using the Easy Setup definition file and the management
portal windows.
Active Directory now supports double byte characters such as
Japanese language in DN.

Security
Management Guide

Chapter 5,
14.2.2

Management Portal
User Guide

3.5, 10.8.1

Enhancing HTTP Server settings You can now directly set the directive (settings of
httpsd.conf) that defines the operation environment of
HTTP Server using the Easy Setup definition file and the
management portal windows.

System Setup and
Operation Guide

4.1.21

Management Portal
User Guide

10.9.1

Definition
Reference Guide

4.10

Legend:
--: Reference the entire manual.

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality.

Table D‒22: Changes made for supporting standard and existing functionality

Item Overview of changes Reference Section

Adding items to be specified
in ejb-jar.xml

A class level interceptor and a method level interceptor can
now be specified in ejb-jar.xml.

EJB Container
Functionality Guide

2.15

Supporting the parallel copy
garbage collection

The parallel copy garbage collection can now be selected. Definition
Reference Guide

14.5

Supporting the global transaction
of the Inbound resource
adapter conforming to Connector
1.5 specifications

Transacted Delivery can now be used in the resource
adapters conforming to Connector 1.5 specifications. This
enables participation of EIS invoking the Message-driven
Bean in the global transaction.

Common Container
Functionality Guide

3.16.3

Supporting MHP of a TP1
inbound adapter

MHP can now be used as the OpenTP1client that invokes
Application Server by using the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

Supporting the FTP
inbound adapter of the
cjrarupdate command

An FTP inbound adapter has been added to the
resource adapters that can be upgraded by using the
cjrarupdate command.

Command
Reference Guide

2.2

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 822

Table D‒23: Changes for maintaining and improving reliability

Item Overview of changes Reference Section

Improving the database session
failover functionality

The user can now select a mode that does not obtain the lock of
the database in which the global session information is stored
in a performance-centric system. Also, exclusive requests for
references can now be defined without updating the database.

Expansion Guide Chapter 6

Expansion of a process for the
OutOfMemory
handling functionality

A process for the OutOfMemory handling functionality has
been added.

This manual 2.5.4

Definition
Reference Guide

14.2

Adding the memory saving
functionality for the Explicit
heap used in an HTTP session

A functionality to minimize the amount of the Explicit heap
memory used in the HTTP session has been added.

Expansion Guide 7.11

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒24: Changes with the purpose of maintaining and improving operability

Item Overview of changes Reference Section

Supporting user authentication
using JP1 products in the
virtual environment (handling
cloud operations)

The administration and authentication of users using a
virtual server manager can now be performed by using the
authentication server of JP1 products when integrating JP1.

Virtual System Setup and
Operation Guide

1.2.2,
Chapter 3,
Chapter 4,
Chapter 5,
Chapter 6,
7.9

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒25: Changes due to other purposes

Item Overview of changes Reference Section

Supporting the direct
connection using APIs (REST
Architecture) to the load
balancing functionality

Direct connection using APIs (REST architecture) is
now supported as a method to connect to the Load
balancing functionality.
ACOS (AX2500) is added in the types of available load
balancing functions.

System Setup and
Operation Guide

4.7.2, 4.7.3

Virtual System Setup and
Operation Guide

2.1

Definition
Reference Guide

4.2.4

Improving response timeout
when collecting snapshot logs
and collection targets

You can now stop snapshot log collection (timeout) at a
specified time. The contents collected as primary delivery data
have been changed.

This manual Appendix
A

D.8 Main functionality changes in 08-53

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 823

Table D‒26: Changes made for simplifying implementation and setup

Item Overview of changes Reference Section

Setting up a virtual environment
supporting various hypervisors

Application Server can now be set up on a virtual server
implemented by using various hypervisors.
An environment in which multiple hypervisors co-exist is also
supported now.

Virtual System Setup and
Operation Guide

Chapter 2,
Chapter 3,
Chapter 5

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality.

Table D‒27: Changes made for supporting standard and existing functionality

Item Overview of changes Reference Section

Invocation from
OpenTP1 supporting
transaction integration

Transactions can now be integrated when the Message-driven
Bean running on Application Server is invoked from OpenTP1

Common Container
Functionality Guide

Chapter 4

JavaMail The mail receiving functionality, which uses the APIs
conforming to JavaMail 1.3 by integrating with the mail server
conforming to POP3, is now available.

Common Container
Functionality Guide

Chapter 7

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒28: Changes made for maintaining and improving reliability

Item Overview of changes Reference Section

Enhancing the JavaVM
troubleshooting functionality

The following functionality can now be used as the JavaVM
troubleshooting functionality:
• The operations when OutOfMemoryError occurs can now

be changed.
• You can now set up an upper limit for the amount of C heap

allocated during JIT compilation.
• You can now set up the maximum thread count.
• The output items of the extended verbosegc information

have been extended.

This manual Chapter 4,
Chapter 5,
Chapter 9

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒29: Changes made for maintaining and improving operability

Item Overview of changes Reference Section

Supporting JP1/ITRM JP1/ITRM, a product that uniformly manages the IT resources,
is now supported.

Virtual System Setup and
Operation Guide

1.3, 2.1

(5) Other purposes
The following table describes the items that are changed for other purposes.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 824

Table D‒30: Changes due to other purposes

Item Overview of changes Reference Section

Supporting Microsoft IIS 7.0 and
Microsoft IIS 7.5

Microsoft IIS 7.0 and Microsoft IIS 7.5 are now supported as
Web servers.

-- --

Supporting HiRDB Version 9
and SQL Server 2008

The following products are now supported as the database:
• HiRDB Server Version 9
• HiRDB/Developer's Kit Version 9
• HiRDB/Run Time Version 9
• SQL Server 2008

Also, SQL Server JDBC Driver is now supported as the JDBC
driver corresponding to SQL Server 2008.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Not applicable.

D.9 Main functionality changes in 08-50

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

Table D‒31: Changes made for simplifying implementation and setup

Item Overview of changes Reference Section

Changing the mandatory tag for
specifying web.xml in the Web
service provider

The specification of the listener tag, servlet tag, and servlet-
mapping tag was changed from mandatory to optional in
web.xml in the Web service provider.

Definition
Reference Guide

2.2.3

Using the network resources of
the logical server

The functionality for accessing the network resources and
network drive existing on another host from the J2EE
applications was added.

Operation, Monitoring,
and Linkage Guide

1.2.3, 5.2,
5.7

Simplifying the execution
procedure of the sample program

The procedure of executing the sample program was simplified
by providing a part of the sample program in the EAR format.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix
L

Improving the operations in the
management portal window

The default update interval of the window was changed from
"Do not update" to "3 seconds".

Management Portal
User Guide

7.4.1

Improving the Setup Wizard
completion window

The Easy Setup definition file and Connector property file
used for setup are now displayed on the window for Setup
Wizard completion.

System Setup and
Operation Guide

2.2.6

Setting up the
virtual environment

The procedure of setting up Application Server on the virtual
server, implemented by using a hypervisor, has been added.#

Virtual System Setup and
Operation Guide

Chapter 3,
Chapter 5

#
To set up in the 08-50 mode, see Appendix D Settings to use the virtual server manager in the 08-50 mode in the manual uCosminexus
Application Server Virtual System Setup and Operation Guide.

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 825

Table D‒32: Changes made for supporting standard and existing functionality

Item Overview of changes Reference Section

Supporting invocation
from OpenTP1

The Message-driven Bean running on Application Server can
now be invoked from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Supporting JMS The Cosminexus JMS Provider functionality conforming to the
JMS 1.1 specifications can now be used.

Common Container
Functionality Guide

Chapter 6

Supporting Java SE 6 The Java SE 6 functionality can now be used. This manual 5.5, 5.8.1

Supporting the use of generics Generics can now be used with EJB. EJB Container
Functionality Guide

4.2.18

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒33: Changes made for maintaining and improving reliability

Item Overview of changes Reference Section

Improving the usability
of the Explicit Memory
Management functionality

The Explicit Memory Management functionality can now be
used easily by using the automatic allocation configuration file.

System Design Guide 7.2, 7.7.3,
7.11.4,
7.12.1

Expansion Guide Chapter 7

Controlling the database session
failover functionality for URIs

When using the database session failover functionality, you can
now specify the requests that will be outside the scope of the
functionality for URIs.

Expansion Guide 5.6.1

Monitoring errors in the
virtual environment

In a virtual system, the virtual server is now monitored and the
occurrence of errors can be detected.

Virtual System Setup and
Operation Guide

Appendix
D

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒34: Changes made for maintaining and improving operability

Item Overview of changes Reference Section

Omitting the management
user account

The login ID and password of the user can
now be omitted in the management portal,
Management Server commands, or Smart
Composer functionality commands.

System Setup and
Operation Guide

4.1.15

Management Portal
User Guide

2.2, 7.1.1, 7.1.2, 7.1.3,
8.1, 8.2.1, Appendix F.2

Command
Reference Guide

1.4, mngsvrctl (Starting/
stopping/ setting
up Management
Server), mngsvrutil
(Management Server
management commands),
8.3, cmx_admin_passwd
(Setting up
the management
user account of
Management Server)

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 826

Item Overview of changes Reference Section

Virtual environment operations The procedure of executing batch start, batch
stop, scale in, and scale out for multiple virtual
servers has been added in the virtual system. #

Virtual System Setup and
Operation Guide

Chapter 4, Chapter 6

#
To operate in the 08-50 mode, see Appendix D Settings to use the virtual server manager in the 08-50 mode in the manual uCosminexus
Application Server Virtual System Setup and Operation Guide.

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒35: Changes due to other purposes

Item Overview of changes Reference Section

Unused objects statistical
functionality in the Tenured area

Only the unused objects can now be identified in the
Tenured area.

This manual 9.8

Base object list output
functionality for Tenured
augmentation factors

The information of the objects that form the base of unused
objects, identified by using the unused objects statistical
functionality in the Tenured area, can now be output.

9.9

Class-wise statistical
information
analysis functionality

The class-wise statistical information can now be output in the
CSV format.

9.10

Cluster node switching based on
the detection of the exceeding of
the auto-restart frequency of the
logical server

Node switching can now be executed when the logical
server is in an abnormally stopped state (state in which the
auto-restart count is exceeded, or state in which an error is
detected when the auto-restart count is set to 0) in a cluster
configuration wherein Management Server is to be monitored
for node switching.

Operation, Monitoring,
and Linkage Guide

16.2.2,
16.3.3,
16.3.4,
18.4.3,
18.5.3

Node switching system for the
host unit management model

Node switching can now be executed for the host unit
management model in the system operations integrated with
the cluster software.

Chapter 16

Supporting ACOS
(AX2000, BS320)

ACOS (AX2000, BS320) was added to the types of load
balancers that are available.

System Setup and
Operation Guide

4.7.2,
4.7.3,
4.7.5,
4.7.6,
Appendix
J,
Appendix
J.2

Definition
Reference Guide

4.2.4,
4.3.2,
4.3.4,
4.3.5,
4.3.6, 4.7.1

Transaction attributes that can be
specified in the Stateful Session
Bean (SessionSynchronization)
when transactions are managed
with CMT, have been added

Supports, NotSupported, and Never can now be
specified as the transaction attributes in the Stateful
Session Bean (SessionSynchronization), when transactions are
managed with CMT.

EJB Container
Functionality Guide

2.7.3

Forcibly terminating
Administration Agent when
OutOfMemoryError occurs

Administration Agent is now forcibly terminated when
OutOfMemoryError occurs in JavaVM.

This manual 2.5.5

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 827

Item Overview of changes Reference Section

Asynchronous parallel
processing of threads

Asynchronous timer processing and asynchronous
thread processing can now be implemented by using
TimerManager and WorkManager.

Expansion Guide --

D.10 Main functionality changes in 08-00

(1) Improvement of development productivity
The following table describes the items changed with the purpose of improving the development productivity.

Table D‒36: Changes made with the purpose of improving the development productivity

Item Overview of changes Reference Section

Simplification of migration from
other Application Server products

Enabled the use of the following functionality
for smooth migration from other Application
Server products:
• Enabled the judgment of upper limit of the

HTTP sessions through an exception.
• Enabled the inhibition of occurrence of a

translation error when the ID of JavaBeans is
duplicate, and when the upper-case characters
and lower-case characters are different in the
attribute name of the custom tag and in the
TLD definition.

Web Container
Functionality Guide

2.3, 2.7.5

Provision
of cosminexus.xml

Enabled the start of J2EE applications without
setting the properties after importing them into
the J2EE server by describing the properties
unique to the Cosminexus Application Server
in cosminexus.xml.

Common Container
Functionality Guide

13.3

(2) Support to standard functionality
The following table describes the items changed with the purpose of supporting the standard functionality.

Table D‒37: Changes made with the purpose of supporting the standard functionality

Item Overview of changes Reference Section

Servlet 2.5 support Supported Servlet 2.5. Web Container
Functionality Guide

2.2, 2.5.4,
2.6,
Chapter 7

JSP 2.1 support Supported JSP 2.1. Web Container
Functionality Guide

2.3.1,
2.3.3, 2.5,
2.6,
Chapter 7

JSP debug Enabled the execution of JSP debugging in the development
environment using MyEclipse. #

Web Container
Functionality Guide

2.4

Storage of the tag library in the
library JAR, and TLD mapping

Enabled the search of TLD files within the library JAR by
the Web container during the start of the Web application, and
their subsequent automatic mapping, when the tag libraries are
stored in the library JAR.

Web Container
Functionality Guide

2.3.4

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 828

Item Overview of changes Reference Section

Omission
of application.xml

Enabled the omission of application.xml in a
J2EE application.

Common Container
Functionality Guide

13.4

Combined use of annotations
and DDs

Enabled the combined use of annotations and DDs, and also
enabled the update of annotation contents in the DD.

Common Container
Functionality Guide

14.5

Conformance of annotations
to Java EE 5 standard
(default interceptor)

Enabled the storage of the default interceptor in the
library JAR. Also enabled the execution of DI from the
default interceptor.

Common Container
Functionality Guide

13.4

Reference resolution
of @Resource

Enabled the reference resolution of resources
with @Resource.

Common Container
Functionality Guide

14.4

JPA support Supported JPA specifications. Common Container
Functionality Guide

Chapter 5

#
In 09-00 and later versions, you can use the JSP debug functionality in the development environment using WTP.

(3) Maintenance and improvement of reliability
The following table describes the items changed with the purpose of maintaining or improving reliability.

Table D‒38: Changes made with the purpose of maintaining or improving reliability

Item Overview of changes Reference Section

Persistence of
session information

Enabled the inheritance of session information of an HTTP
session by saving the information in the database.

Expansion Guide Chapter 5,
Chapter 6

Inhibition of a Full GC Enabled the inhibition of occurrence of a Full GC by deploying
the objects responsible for the Full GC outside the Java heap.

Expansion Guide Chapter 7

Client performance monitor The time required for client processing can now be checked
and analyzed.

-- --

Legend:
--: This functionality has been deleted in 09-00.

(4) Maintenance and improvement of operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒39: Changes made with the purpose of maintaining and improving operability

Item Overview of changes Reference Section

Improving the operability
of applications on the
management portal

The server management commands and management
portal can now be interoperated for application and
resource operations.

Management Portal
User Guide

1.1.3

(5) Other purposes
The following table describes the items changed with some other purpose.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 829

Table D‒40: Changes made with other purposes

Item Overview of changes Reference Section

Deletion if disabled
HTTP Cookies

Enabled the deletion of disabled HTTP Cookies. Web Container
Functionality Guide

2.7.4

Failure detection in the
Naming Service

Enabled prompt detection of the error by the EJB client, when
a failure occurs in the Naming Service.

Common Container
Functionality Guide

2.9

Connection failure
detection timeout

Enabled the specification of the timeout period for a connection
failure detection timeout.

Common Container
Functionality Guide

3.15.1

Oracle11g support Enabled the use of Oracle11g as a database. Common Container
Functionality Guide

Chapter 3

Scheduling of batch processing Enabled the scheduling of execution of batch applications
by CTM.

Expansion Guide Chapter 4

Batch processing log The retry frequency and retry interval can now be specified
for the size and number of log files of the batch execution
command and the failure of exclusive processing of the log.

Definition
Reference Guide

3.2.5

snapshot log Changed the collection contents of the snapshot log. This manual Appendix
A.1,
Appendix
A.2

Publication of protected area of
method cancellation

Published the contents of protected area list that is outside the
scope of method cancellation.

Operation, Monitoring,
and Linkage Guide

Appendix
C

Pre-statistical GC
selection functionality

Enabled the selection of whether or not to execute a GC before
the output of class-wise statistical information.

This manual 9.7

Tenuring distribution
information output functionality
of the Survivor area.

Enabled the output of tenuring distribution information of Java
objects of the Survivor area to the JavaVM log file.

This manual 9.11

Finalize retention
cancellation functionality

Enabled the cancellation of retention of the finalize processing
of JavaVM after monitoring its status.

-- --

Change of the maximum
heap size of server
management commands

Changed the maximum heap size used by server
management commands.

Definition
Reference Guide

5.2.1, 5.2.2

Action for cases when un-
recommended display names
are specified

Provided the output of messages when un-recommended
display names are specified in J2EE applications.

Messages KDJE4237
4-W

Legend:
--: This functionality has been deleted in 09-00.

D. Main Functionality Changes in Each Version

Maintenance and Migration Guide 830

E. Glossary

Terminology used in this manual
For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform
Terminology Guide.

E. Glossary

Maintenance and Migration Guide 831

Index

Symbols
-XX:+HitachiJavaClassLibTrace 218
-XX:+HitachiOutOfMemoryStackTrace 218
-XX:+HitachiVerboseGC 218
-XX:+JITCompilerContinuation 218

A
access log 118
acquiring

Administration agent, Management agent, and
Management Server 129, 155
application user log 143, 155
automatically when problem occurs 37
by executing command 40
by executing command created by user 41
CORBA naming service thread dump 163
Cosminexus Component Transaction Monitor log

141
Cosminexus Performance Tracer log 140
data 37
EJB client application user log 143
extended verbosegc information 218
integrated user management log 138
J2EE server, server management command logs117
J2EE server memory dump 169
J2EE server thread dump 162
OS log 179
snapshot log 42
user dump 169

acquiring logs of internal setup tool of virtual server
manager and Server Communication Agent 137
action for problem in system linked with JP1/IM 59
Administration agent, Management agent, and
Management Server log 194
advanced level 361
analyzing

processing performance 340
response time of Web server 341

analyzing processing performance of Application
Server using trace based performance analysis file 340
Application Server

resource setting information 184
Application Server log 191
asynchronous log file output function 664

automatic allocation error in explicit memory
management 261
automatic release processing of explicit memory block

254

B
base object list output functionality for tenured
augmentation factors 643
batch server log 147

C
changing log output destination 89
classifications of functionality and corresponding
manuals describing functionality 21
class-wise statistical functionality 610
class-wise statistical information 610
class-wise statistical information analysis functionality

647
class-wise statistical information output by instance
statistical functionality 617
class-wise statistical information output by reference-
related information output functionality 626
class-wise statistical information output by STATIC
member statistical functionality 621
class-wise statistical information output by unused
objects statistical functionality in tenured area 638
client application information 312
collecting material using command 38
collecting snapshot logs using management
commands 46
collecting trace information of trace based
performance analysis 309
collecting trace information of user-extended trace
based performance analysis 314
com.cosminexus.manager.cmdtracelog.fnum 97
com.cosminexus.manager.cmdtracelog.size 97
com.cosminexus.manager.log.compatible 97
com.cosminexus.manager.log.dir 96
com.cosminexus.manager.messagelog.fnum 97
com.cosminexus.manager.messagelog.size 96
com.cosminexus.manager.messagelog.style 97
com.cosminexus.manager.messagelog.time 97
com.cosminexus.manager.tracelog.fnum 97
com.cosminexus.manager.tracelog.size 97
com.cosminexus.manager.tracelog.style 97
com.cosminexus.manager.tracelog.time 97

Maintenance and Migration Guide 832

com.cosminexus.mngsvr.log.level 88
com.cosminexus.mngsvr.log.rotate 88
com.cosminexus.mngsvr.log.size 88
com.cosminexus.mngsvr.trace 325
configuration file for user-extended trace based
performance analysis 316
configuration of user-extended trace based
performance analysis 316
confirmation method of event log of Explicit Memory
Management functionality 247
confirming

validity period of session 344
connection ID 795
connection-related trace collection points 449
console log 136
contents of code cache area-related log 221
contents of J2EE server or batch server working
directory 183
contents output when output level is debug 275
contents output when output level is normal 249
contents output when output level is verbose 264
Cosminexus Component Transaction Monitor log 196
Cosminexus Performance Tracer log 196

output destination 141
type 140

D
data acquisition settings using failure detection time
commands (systems for executing batch applications)

83
data acquisition settings using failure detection time
commands (systems for executing J2EE applications)

79
definition sending data 43, 48
differences with earlier versions of multi-process trace
common library 199

E
ejb.server.log.directory 89, 93, 99
EJB client application log 208
EJB client application system log 156

output destination 157
type 156

ejbserver.connector.logwriter.filenum 98
ejbserver.connector.logwriter.filesize 98
ejbserver.logger.access_log.nio_http.format 96
ejbserver.logger.access_log.websocket.enabled 113
ejbserver.logger.access_log.websocket.format 113

ejbserver.logger.channels.define.channel-
name.filenum (batch server) 93
ejbserver.logger.channels.define.channel-
name.filenum (J2EE server) 89
ejbserver.logger.channels.define.channel-
name.filesize (batch server) 93
ejbserver.logger.channels.define.channel-
name.filesize (J2EE server) 89
ejbserver.logger.channels.define.NIOHTTPAccessLo
gFile.filenum 96
ejbserver.logger.channels.define.NIOHTTPAccessLo
gFile.filesize 96
ejbserver.logger.channels.define.WebSocketAccessL
ogFile.filenum 113
ejbserver.logger.channels.define.WebSocketAccessL
ogFile.filesize 113
ejbserver.logger.enabled.* 89, 93
ejbserver.logger.rotationStyle 89
ejbserver.logger.rotationTime 89
error in opening automatic allocation configuration file
for explicit memory management 259
error in opening configuration file of functionality for
specifying classes to be excluded from Explicit Memory
Management functionality 262
error in parsing automatic allocation configuration file
for explicit memory management 260
error in parsing configuration file of functionality for
specifying classes to be excluded from Explicit Memory
Management functionality 263
error report file 176
event log 118, 146

output format 206
output item 206

event log of Explicit Memory Management functionality
111, 187, 245

example of the filtered trace based performance
analysis file collected in Application Server 343
example of the trace based performance analysis file
collected in the Web server 342
example of the trace based performance analysis file
where the session trace information is output (request
part where the session is created) 344
example of Web client configuration 341
example output

simple output format 238
standard format 238
when actual type name of class or array type variable
is to be output 242
when class or array type variable is output as
character string 240

examples of troubleshooting during operations 296

Maintenance and Migration Guide 833

exception log 118, 146
extended thread dump 109, 162

F
failure detection command 38
failure detection command created by user 39
failure detection command provided by system 39
finalize-retention resolution function 661
flow for handling of data when trouble occurs 33
flow of snapshot log collection 45
functionality that requires class-wise statistical
functionality 611
function layer 310

G
guidelines for selecting GC 634

H
Hitachi Trace Common Library format 197
Hitachi Trace Common Library format log

output format and output item 197
hndlwrap functionality 655
HttpsdCustomLogFileDir 94
HttpsdCustomlogFormat 94
HttpsdCustomMethod 94
HttpsdErrorLogFileDir 94
HttpsdErrorMethod 94
HttpsdRequestLogFileDir 94
HttpsdRequestMethod 94
HWSLogTimeVerbose 94
HWSRequestLogLevel 94

I
identifying

connection in which error occurred 347
request in which timeout occurred 345
transaction for which timeout occurred 344

identifying connection
occurring error 795

if administration agent is terminated forcibly when
OutOfMemoryError occurs 59
if a problem occurs in N-to-1 recovery systems 61
if problem occurs in node switching system for host unit
management model 62
If trouble occurs in 1-to-1 node switching systems 60

implementation for collection of root application
information of trace based performance analysis 323
information on execution of Component Container
Administrator setup command (in UNIX) 188
instance statistical functionality 615
integrated log 96, 129
internal setup tool of virtual server manager and server
communication agent logs 195
investigating

life cycle of session 343
log using root application information 346
processing status of request in application server342

investigation about the location of the problem
associated to the trace based performance analysis file
and thread dump 347

J
J2EE application

acquiring user log 143
J2EE server log 191
javagc command 168
Java heap overflow in automatic release processing of
explicit memory block 256
JavaVM GC log 168, 217
JavaVM log (JavaVM log file) 218
JavaVM log file 110, 175
JavaVM message log

abnormal termination location and signal type 224
command and VM parameter 230
command line of javatrace start command 232
current thread information 225
environment variable 230
information saved from top of stack 226
insufficient C heap 232
internal error 234
Java heap usage status 228
library 230
machine information 231
memory information 227
registered signal handler 230
register information 226
save destination address of signal information 225
siginfo information 226
signal information 225
stack trace 227
System name, CPU, actual memory, and VM
information 231
thread creation failure 235

Maintenance and Migration Guide 834

thread information 227
time information 231
VM status 227

JavaVM stack trace information 186, 237
JavaVM thread dump 161, 210
JIT compiler 656

K
key information 312

L
list of change files for multi-process trace common
library format 200
list of data to be acquired for each type of problem 49
list of required data to be acquired 50
local variable 237
local variable information 237
LogLevel 94
log level

changing 92
log output destination 119, 143, 147

J2EE server log 119
migration command (cjenvupdate) log 127, 152, 193
resource adapter version-up command
(cjrarupdate) log 126, 152, 193
resource depletion monitoring log 127, 153, 194
server management command log 124, 150, 193

log output to audit log 196
logs for application rewriting 338
logs for reading of configuration file for user-extended
trace based performance analysis 337
log size

changing 91
logs output when user-extended trace based
performance analysis is executed 337

M
main functionality changes in 09-00 818
main functionality changes in 09-70 812
main functionality changes in 09-80 811
main functionality changes in 09-87 811
main functionality changes in Application Server 11-00

28
main problems occurring during application startup 284
main problems occurring during installation 283
main problems occurring during operations 285

main problems occurring during server/application
maintenance 286
main problems occurring during server setup 283
main problems occurring during server startup 284
maintenance level 340, 361
maintenance log 118, 146
maintenance personnel 48
management event published log 131, 134
memory dump 169
message log 118, 146
message log output by JavaVM 223
message log output by JavaVM (standard output and
error report file) 223
migrating from Application Server of earlier versions (in
J2EE server mode) 670
migrating from version 9 to version 11 675
migrating to the Recommended Functionality 672

N
notes for executing unused objects statistical
functionality in tenured area 638
notes on creating configuration file for user-extended
trace based performance analysis 335
notes on migration to database connection using
HiRDB Type4 JDBC Driver 673
notes on using user-extended trace based
performance analysis 350

O
object-pointer compression function 666
options to output JavaVM log file 218
option to be specified for acquiring extended
verbosegc information 219
option to output local variable information to stack trace

237
OS commands executed by executing the
cjgetsysinfo command 178
OS log 177
OS statistical information 180
OS status information 177
OS status information and OS log 236
output contents of message indicating core dump
generation 234
output contents of message log indicating insufficient
C heap 232
output contents of message showing memory
insufficiency 234
output destination of a batch application user log 155
output destination of error report file 176

Maintenance and Migration Guide 835

output destination of server management command
log (Compatibility mode) 125, 151
output destinations and output methods of data
required for troubleshooting 114
output format and output example of tenuring
distribution information of Survivor area 652
output format and output items of access log of NIO
HTTP Server 201
output information of trace based performance
analysis file 319
output information of trace based performance analysis
file (for user-extended trace based performance
analysis) 322
output item of message log when C heap is insufficient

234
output items of Hitachi Trace Common Library format
log 198
output trigger of event log of Explicit Memory
Management functionality 245
overview of pre-statistical GC selection functionality

633
overview of product JavaVM functionality 609
overview of tenuring distribution information output
functionality of Survivor area 651
overview of trace based performance analysis 308
overview of trace based performance analysis of
applications 313
overview of trace based performance analysis of
Application Server 309
overview of troubleshooting 289
overview of unused objects statistical functionality in
tenured area 635

P
performance tracer 310
precaution

when referencing the Hitachi Trace Common Library
format log 198

precaution when using tenuring distribution information
output functionality of Survivor area 654
preparing for troubleshooting 67
pre-statistical GC selection functionality 633
prevention level 361
PRF daemon 310, 313, 316
PrfTraceBufferSize 325
PRF trace collection level 310, 361
PRF trace collection levels (CMT and
TransactionManager) 440
PRF trace collection levels (DB Connector for
Cosminexus RM) 464

PRF trace collection levels (filter trace (when an
exception occurs)) 383
PRF trace collection levels (filter trace (when the
processing terminates normally)) 378
PRF trace collection levels (Message-driven Bean
(EJB2.0)) 406
PRF trace collection levels (Message-driven Bean
(EJB2.1 and later)) 407
PRF trace collection levels (Session Bean or Entity
Bean) 403
PRF trace collection levels (TP1 inbound integrated
function) 494
PRF trace collection levels (UserTransaction) 442
PrfTraceCount 325
PRF trace file 310
PrfTraceFileSize 325
PRF trace get level 355
PRF trace get level (Web container) 367, 372
PRF trace get level (connection association) 461
PRF trace get level (DB connector) 449, 459
PRF trace get level (DI) 489
PRF trace get level (execution functionality of batch
application) 491
PRF trace get level (J2EE server) 556
PRF trace get level (JNDI) 436
PRF trace get level (OTS) 476
PRF trace get level (RMI) 474
PRF trace get level (transaction timeout) 443
PRF trace get level (when connection automatically
close) 462
PRF trace get level (work management) 469
PrfTraceLevel 325
PRF trace output library 313
primary delivery data 42, 48
problem

error message output 49
hang-up (no response) 49
slow down 49
system down 49

problem analysis 189
processes that output logs 287
product JavaVM Functionality 607

R
recovering table for CMR

occurring error 810
reference destination of methods for acquiring and
investigating required data to be acquired 52

Maintenance and Migration Guide 836

reference-related information output functionality 624
required information to be acquired other than log
140, 155
resource depletion monitoring log 118, 146
resource setting information

Application Server 184
root application information 312

S
secondary delivery data 43, 48
session trace 343
setting

acquiring batch server log 93
acquiring core dump 106
acquiring Cosminexus Manager log 96
acquiring Cosminexus TPBroker log 98
acquiring J2EE server log 89
acquiring JavaVM material 108
acquiring resource adapter log 97
acquiring thread dump of JavaVM 109
acquiring Web server log 94
collecting OS statistical information 104
collecting user dump 105

setting contents of system monitor 104
settings for acquiring JavaVM log 110
settings for acquiring the event log of Explicit Memory
Management functionality 111
settings for acquiring the NIO HTTP server log 95
settings for collecting Cosminexus JMS provider logs

101
settings for collecting snapshot log (systems for
executing batch applications) 87
settings for collecting snapshot logs (systems for
executing J2EE applications) 84
settings for methods to be traced by user-extended
trace based performance analysis 328
settings for using trace based performance analysis

324
settings for using user-extended trace based
performance analysis 325
Shift mode 72
snapshot log 32, 37, 41

collecting 41
snapshotlog.2.conf 43
snapshotlog.conf 43
snapshotlog.param.conf 43
snapshot log list 710
stack trace

-XX:+HitachiLocalsInThrowable option 238
standard level 361
startup dependency 53
STATIC member statistical functionality 620
statistic information for each class

output 611
structure of thread dump information 210
syslog 118, 146

output format 206
output item 206

system log of EJB client application
precaution 64

system monitor setting 180

T
tenuring distribution information output functionality of
Survivor area 651
timing for collecting snapshot log 41
trace application information 323
trace based performance analysis 160, 209

configuration 313
that is output when timeout occurs in transaction 345
trace get point 355
working 310

trace based performance analysis file 318
collecting 340
how to collect 318
output destination 319

trace based performance analysis file name 319
trace collection point 355
trace collection points (CMT and TransactionManager)

440
trace collection points (DB Connector for Cosminexus
RM) 464
trace collection points (filter trace (when an exception
occurs)) 383
trace collection points (filter trace (when the processing
terminates normally)) 378
trace collection points (Message-driven Bean
(EJB2.0)) 406
trace collection points (Message-driven Bean (EJB2.1
and later)) 407
trace collection points (Session Bean or Entity Bean)

403
trace collection points (TP1 inbound integrated
function) 494
trace collection points (UserTransaction) 442

Maintenance and Migration Guide 837

trace collection points and PRF trace collection levels
(database session failover functionality) 388, 392,
397, 401
trace collection points and trace information that can
be collected during request processing for creating
HTTP session (trace of database session failover
functionality) 388
trace collection points of application 557
trace collection points of batch application execution
functionality 491
trace collection points of CDI 552
trace collection points of Concurrency Utilities 598
trace collection points of CTM 362
trace collection points of DB Connector and JCA
container 449
trace collection points of DI 489
trace collection points of EJB container 403
trace collection points of Java batch 566
trace collection points of JavaMail 529
trace collection points of JAX-RS 563
trace collection points of JNDI 436
trace collection points of JSF 2.2 546
trace collection points of JTA 440
trace collection points of OTS 476
trace collection points of RMI 474
trace collection points of standard output, standard
error output, and user log 486
trace collection points of TP1 inbound integrated
function 494
trace collection points of Web container (filter trace)378
trace collection points of Web container (session trace)

372
trace collection points of Web container (trace of
request processing) 367
trace collection points of Web container (trace of the
database session failover functionality) 388
trace collection points of WebSocket 579
trace collection points when a J2EE server is started
or terminated 556
trace common library format (multi-process) 191
trace common library format (single process) 191
trace get point 310
trace get point (DI) 489
trace get point (Web container) 367, 372
trace get point (connection association) 461
trace get point (DB connector) 449, 459
trace get point (execution functionality of batch
application) 491
trace get point (J2EE server) 556
trace get point (JNDI) 436

trace get point (OTS) 476
trace get point (RMI) 474
trace get point (transaction timeout) 443
trace get point (when connection automatically close)

462
trace get point (work management) 469
trace information that can be collected (batch
application execution functionality) 492
trace information that can be collected (CMT and
TransactionManager) 441
trace information that can be collected (connection
association) 461
trace information that can be collected (database
session failover functionality) 390, 394, 398, 402
trace information that can be collected (DB Connector)

456, 460
trace information that can be collected (DB Connector
for RM) 466
trace information that can be collected (DI) 489
trace information that can be collected (filter trace
(when an exception occurs)) 384
trace information that can be collected (filter trace
(when the processing terminates normally)) 380
trace information that can be collected (J2EE server)

556
trace information that can be collected (JNDI) 438
trace information that can be collected (Message-
driven Bean (EJB2.0)) 406
trace information that can be collected (Message-
driven Bean (EJB2.1 and later)) 409
trace information that can be collected (OTS) 479
trace information that can be collected (RMI) 474
trace information that can be collected (Session Bean
or Entity Bean) 404
trace information that can be collected (TP1 inbound
integrated function) 504
trace information that can be collected (transaction
timeout) 444
trace information that can be collected
(UserTransaction) 442
trace information that can be collected (Web container)

368, 375
trace information that can be collected (when the
connection closes automatically) 463
trace information that can be collected (work
management) 472
troubleshooting 30

acquiring trace information 313
precaution 64

troubleshooting and recovery 53

Maintenance and Migration Guide 838

if configuration software process terminates
abnormally 53
if JavaVM terminates abnormally 56
if problem occurs in EJB client 63
if problem occurs in the system linked with JP1 59
if problem occurs when using database session
failover function 56

troubleshooting during operations 293
troubleshooting during setup 289
troubleshooting procedure 281
troubleshooting server management commands 294
troubleshooting when process is down 296
troubleshooting when response is delayed 299
type of required data 48
types of data used for troubleshooting 116

U
unused objects statistical functionality in tenured area

635
user definition file to set output destination of log 128,
154
user log 118, 146
USRCONF_JVM_ARGS 99

V
vbroker.orb.htc.comt.entryCount 100
vbroker.orb.htc.comt.fileCount 100
vbroker.orb.htc.tracePath 99

W
Web server log 185
when using asynchronous concurrent processing for
threads 444
work directory 183
working of user-extended trace based performance
analysis 315
Wraparound mode 71

Maintenance and Migration Guide 839

	Maintenance and Migration Guide
	Notices
	Preface
	Contents
	1. Application Server Functionality
	1.1 Classifications of functionality
	1.1.1 Functionality as an application execution platform
	1.1.2 Functionality for operating and maintaining the application execution platform
	1.1.3 Functionality and corresponding manuals

	1.2 Functionality corresponding to the purpose of the system
	1.2.1 Functionality for system maintenance
	1.2.2 JavaVM functionality of the product
	1.2.3 Functionality for migrating from products of earlier versions

	1.3 Description of the functionality described in this manual
	1.3.1 Meaning of classifications
	1.3.2 Example of tables describing classifications

	1.4 Main functionality changes in Application Server 11-00
	1.4.1 Simplifying implementation and setup
	1.4.2 Supporting standard and existing functionality
	1.4.3 Maintaining and improving reliability
	1.4.4 Other purposes

	2. Troubleshooting
	2.1 Organization of this chapter
	2.2 Overview of troubleshooting
	2.2.1 Overview of Troubleshooting
	2.2.2 Flow of data acquisition when a trouble occurs

	2.3 Acquiring the Data
	2.3.1 Data That Can Be Acquired Automatically When a Problem Occurs
	2.3.2 Collecting the Material Using Commands during Error Detection
	2.3.3 Collecting the Snapshot Log
	2.3.4 Location to store the acquired information

	2.4 Types of Required Data
	2.4.1 Trouble types and the required data
	2.4.2 List of Required Data to Be Acquired
	2.4.3 Correspondence Between Acquisition Methods and Investigation Methods

	2.5 Troubleshooting and Recovery
	2.5.1 If the Configuration Software Process (Logical Server) Terminates Abnormally
	2.5.2 If forced termination of a J2EE application fails
	2.5.3 If a Problem Occurs When Using the Database Session Failover Function
	2.5.4 If JavaVM Terminates abnormally
	2.5.5 If Administration Agent is terminated forcibly when OutOfMemoryError occurs
	2.5.6 If a Problem Occurs in the System Linked with JP1
	2.5.7 If a problem occurs in 1-to-1 node switching systems
	2.5.8 If a problem occurs in N-to-1 recovery systems
	2.5.9 If a problem occurs in the node switching system for the host unit management model
	2.5.10 If a Problem Occurs in the EJB Client

	2.6 Precautions Related to Troubleshooting
	2.6.1 Precautions Related to the System Log of an EJB Client Application
	2.6.2 Precautions When Using CTM
	2.6.3 Precautions when using PRF
	2.6.4 JavaVM data-related considerations

	3. Preparing for Troubleshooting
	3.1 Organization of this chapter
	3.2 Overview of data acquisition settings
	3.2.1 Specifiable contents
	3.2.2 Overview of data acquisition settings (Systems that execute J2EE applications)
	3.2.3 Overview of data acquisition settings (Systems executing batch applications)

	3.3 Execution environment settings
	3.3.1 Data acquisition settings using failure detection time commands (Systems for executing J2EE applications)
	3.3.2 Data acquisition settings using failure detection time commands (Systems for executing batch applications)
	3.3.3 Settings for collecting snapshot logs (Systems for executing J2EE applications)
	3.3.4 Settings for collecting snapshot log (Systems for executing batch applications)
	3.3.5 Settings for acquiring the Management Server log
	3.3.6 Settings for Acquiring the J2EE Server Log
	3.3.7 Settings for Acquiring the Batch Server Log
	3.3.8 Settings for Acquiring the Web Server Log
	3.3.9 Settings for acquiring the NIO HTTP server log
	3.3.10 Settings for Acquiring the Cosminexus Manager Log
	3.3.11 Settings for Acquiring the Resource Adapter Logs
	3.3.12 Settings for Acquiring the Cosminexus TPBroker Log
	3.3.13 Settings for collecting Cosminexus JMS Provider logs
	3.3.14 Settings for Collecting the OS Statistical Information
	3.3.15 Settings for Collecting a User Dump
	3.3.16 Settings for Acquiring a Core Dump
	3.3.17 Settings for Acquiring the JavaVM Material
	3.3.18 Settings for acquiring the WebSocket container log

	4. Output Destinations and Output Methods of Data Required for Troubleshooting
	4.1 Organization of this chapter
	4.2 Types of data used for troubleshooting (When snapshot log is not used)
	4.3 Application Server log (Systems for executing J2EE applications)
	4.3.1 Acquiring the Cosminexus Component Container Logs
	4.3.2 Acquiring the Cosminexus Performance Tracer Log
	4.3.3 Acquiring the Cosminexus Component Transaction Monitor Log
	4.3.4 Acquiring the log output in audit log
	4.3.5 Acquiring the Application User Log

	4.4 Application Server log (Systems for executing batch applications)
	4.4.1 Acquiring the Cosminexus Component Container Logs (systems executing batch applications)
	4.4.2 Acquiring the Application User Log (systems executing batch applications)

	4.5 EJB Client Application System Log
	4.5.1 Types of EJB Client Application System Logs
	4.5.2 Output Destination of the EJB Client Application System Log

	4.6 Trace based performance analysis
	4.7 JavaVM thread dump
	4.7.1 When using the management command
	4.7.2 When using separate commands
	4.7.3 When using JavaVM commands
	4.7.4 Precautions to be taken when class-wise statistical information is output in the thread dump

	4.8 JavaVM GC Log
	4.9 Memory Dump
	4.9.1 Acquiring a User Dump (In Windows)
	4.9.2 Acquiring J2EE Server Memory Dump
	4.9.3 Acquiring the CORBA Naming Service Memory Dump
	4.9.4 Acquiring the Management Server Memory Dump
	4.9.5 Acquiring the Administration Agent Memory Dump
	4.9.6 Notes on obtaining the memory dump

	4.10 JavaVM log (JavaVM log file)
	4.11 JavaVM Output Message Logs (Standard Output or Error Report File)
	4.11.1 In Windows
	4.11.2 In UNIX

	4.12 OS Status Information and OS Logs
	4.12.1 Acquiring the OS Status Information
	4.12.2 Acquiring OS Logs

	4.13 OS Statistical Information
	4.13.1 In Windows
	4.13.2 In UNIX

	4.14 Application Server definition information
	4.15 Contents of J2EE server or batch server working directory
	4.16 Application Server Resource Setting Information
	4.17 Web Server Logs
	4.18 JavaVM stack trace information
	4.19 Event log of the Explicit Memory Management functionality
	4.20 Information on the execution of the Component Container Administrator setup command (In UNIX)

	5. Problem Analysis
	5.1 Organization of this chapter
	5.2 Application Server Log
	5.2.1 Output Format and Output Items of the Hitachi Trace Common Library Format Log
	5.2.2 Precautions to Be Taken When Referencing the Hitachi Trace Common Library Format Log
	5.2.3 Output format and output items of access log of NIO HTTP Server
	5.2.4 Output Format and Output Items of the Event Log (In Windows)
	5.2.5 Output Format and Output Items of syslog (In UNIX)

	5.3 EJB Client Application Log
	5.4 Trace based performance analysis
	5.5 JavaVM Thread Dump
	5.5.1 Structure of thread dump information
	5.5.2 Mapping between thread dump and trace based performance analysis file
	5.5.3 Output contents of Explicit heap details information

	5.6 JavaVM GC Log
	5.7 JavaVM log (JavaVM log file)
	5.7.1 Options to output the JavaVM log file
	5.7.2 Acquiring the extended verbosegc information
	5.7.3 Contents of the code cache area-related log

	5.8 Message log output by JavaVM (Standard output and error report file)
	5.8.1 When a Signal Occurs
	5.8.2 When C Heap Is Insufficient
	5.8.3 When an Internal Error Occurs
	5.8.4 When Thread Creation Fails

	5.9 OS status information and OS log
	5.10 JavaVM stack trace information
	5.10.1 When the -XX:+HitachiLocalsInThrowable Option Is Specified
	5.10.2 When the -XX:+HitachiLocalsInStackTrace Option Is Specified

	5.11 Event log of Explicit Memory Management functionality
	5.11.1 Output trigger of event log of the Explicit Memory Management functionality
	5.11.2 Confirmation method of event log of Explicit Memory Management functionality
	5.11.3 Contents output when output level is normal
	5.11.4 Contents output when output level is verbose
	5.11.5 Contents Output when Output Level is Debug

	6. Troubleshooting Procedure
	6.1 Organization of this chapter
	6.2 List of main problems
	6.2.1 Main problems occurring during installation
	6.2.2 Main problems occurring during server setup
	6.2.3 Main problems occurring during server startup
	6.2.4 Main problems occurring during application startup
	6.2.5 Main problems occurring during operations
	6.2.6 Main problems occurring during server/application maintenance

	6.3 Processes that output logs
	6.4 Overview of troubleshooting
	6.4.1 Troubleshooting during setup
	6.4.2 Troubleshooting during operations
	6.4.3 Troubleshooting the server management commands

	6.5 Examples of troubleshooting during operations
	6.5.1 Troubleshooting when a process is down
	6.5.2 Troubleshooting when a response is delayed

	7. Performance Analysis by Using Trace Based Performance Analysis
	7.1 Organization of this chapter
	7.2 Overview of the trace based performance analysis
	7.2.1 Overview of the trace based performance analysis of Application Server
	7.2.2 Overview of the trace based performance analysis of applications

	7.3 Collecting the trace based performance analysis file by using Management Server
	7.3.1 How to collect a trace based performance analysis file
	7.3.2 Output destination of trace based performance analysis files
	7.3.3 Output information of the trace based performance analysis file (for the trace based performance analysis)
	7.3.4 Output information of the trace based performance analysis file (for the user-extended trace based performance analysis)

	7.4 Implementation for collection of root application information of trace based performance analysis
	7.5 Settings of execution environment
	7.5.1 Settings for using the trace based performance analysis
	7.5.2 Settings for using the user-extended trace based performance analysis
	7.5.3 Settings for the methods to be traced by the user-extended trace based performance analysis

	7.6 Logs output when the user-extended trace based performance analysis is executed
	7.6.1 Logs for the reading of the configuration file for the user-extended trace based performance analysis
	7.6.2 Logs for application rewriting

	7.7 Analysis operation of the processing performance by using the trace based performance analysis file
	7.7.1 Overview of the Operation for Analyzing the Processing Performance
	7.7.2 Analyzing the Response Time of a Web Server
	7.7.3 Investigating the Processing Status of a Request in an Application Server
	7.7.4 Investigating the Life Cycle of a Session
	7.7.5 Identifying the Transaction in Which a Timeout Occurred
	7.7.6 Identifying the Request for Which Timeout Occurred
	7.7.7 Investigating the Log Using the Root Application Information
	7.7.8 Identifying the Connection in Which an Error Occurred
	7.7.9 Investigation about the location of the problem associated to the trace based performance analysis file and thread dump

	7.8 Notes on using the user-extended trace based performance analysis

	8. Trace Collection Points and PRF Trace Collection Levels of the Trace Based Performance Analysis
	8.1 Organization of this chapter
	8.2 Trace Get Point of trace based performance analysis and the PRF Trace Get Level
	8.2.1 Trace collection point
	8.2.2 PRF trace collection level

	8.3 Trace collection points of a CTM
	8.3.1 Trace collection points and PRF trace collection levels
	8.3.2 Trace information that can be collected

	8.4 Trace collection points of a Web container (trace of request processing)
	8.4.1 Trace Get Point and the PRF Trace Get Level
	8.4.2 Trace information that can be collected

	8.5 Trace collection points of a Web container (session trace)
	8.5.1 Trace Get Point and the PRF Trace Get Level (Session Trace)
	8.5.2 Trace information that can be collected

	8.6 Trace collection points of a Web container (filter trace)
	8.6.1 Trace collection points of a Web container when the processing terminates normally (filter trace)
	8.6.2 Trace collection points of a Web container when an exception occurs (filter trace)

	8.7 Trace collection points of a Web container (trace of the database session failover functionality)
	8.7.1 Trace collection points and trace information that can be collected during request processing for creating an HTTP session (Trace of the database session failover functionality)
	8.7.2 Trace collection points and trace information that can be collected during request processing for updating an HTTP session (Trace of database session failover functionality)
	8.7.3 Trace collection points and trace information that can be collected during request processing for disabling an HTTP session (Trace of database session failover functionality)
	8.7.4 Trace collection points and trace information that can be collected during request processing for disabling an HTTP session through valid period monitoring (Trace of database session failover functionality)

	8.8 Trace collection points of an EJB container
	8.8.1 In the case of a Session Bean or Entity Bean
	8.8.2 In the Case of Message-driven Bean (EJB2.0)
	8.8.3 In the case of a Message-driven Bean (EJB2.1 and later)
	8.8.4 For Timer Service
	8.8.5 When the Session Bean is invoked asynchronously
	8.8.6 When method cancellation occurs

	8.9 Trace collection points of a JNDI
	8.9.1 Trace Get Point and the PRF Trace Get Level
	8.9.2 Trace information that can be collected

	8.10 Trace collection points of a JTA
	8.10.1 When a CMT and TransactionManager are used
	8.10.2 When UserTransaction is used
	8.10.3 In the case of a transaction timeout
	8.10.4 When using the asynchronous concurrent processing for threads

	8.11 Trace collection points of a DB Connector and JCA container
	8.11.1 Connection-related trace collection points and trace information that can be collected
	8.11.2 Trace collection points and trace information that can be collected when a local transaction is used
	8.11.3 Trace collection points and trace information that can be collected when a connection association is used
	8.11.4 Trace collection points and trace information that can be collected when the automatic connection close functionality is used
	8.11.5 Trace collection points and trace information that can be collected in the case of linkage with the DB Connector for Cosminexus RM
	8.11.6 Trace collection points and trace information that can be collected when work management is used

	8.12 Trace collection points of an RMI
	8.12.1 Trace get point and the PRF trace get level
	8.12.2 Trace information that can be collected

	8.13 Trace collection points of an OTS
	8.13.1 Trace Get Point and the PRF Trace Get Level
	8.13.2 Trace information that can be collected

	8.14 Trace collection points of standard output, standard error output, and user log
	8.14.1 Trace collection points of standard output or standard error output
	8.14.2 Trace collection points of the user log

	8.15 Trace collection points of a DI
	8.15.1 Trace Get Point and the PRF Trace Get Level
	8.15.2 Trace information that can be collected

	8.16 Trace collection points of the batch application execution functionality
	8.16.1 Trace Get Point and the PRF Trace Get Level
	8.16.2 Trace information that can be collected

	8.17 Trace collection points of the TP1 inbound integrated function
	8.17.1 Trace collection points and PRF trace collection levels
	8.17.2 Trace information that can be collected

	8.18 Trace collection points of Cosminexus JMS Provider
	8.18.1 Trace collection points of the JMS ConnectionFactory interface and the trace information that can be collected
	8.18.2 Trace collection points of the JMS Connection interface and the trace information that can be collected
	8.18.3 Trace collection points of the JMS session interface and the trace information that can be collected
	8.18.4 Trace collection points of the JMS messages, producer, consumer, and queue browser and the trace information that can be collected
	8.18.5 Trace collection points of CJMSP Broker when connecting to the CJMSP resource adapter and the trace information that can be collected
	8.18.6 Trace collection points of the transaction management in the CJMSP resource adapter and trace information that can be collected
	8.18.7 Trace collection points when Message-driven Bean is deployed from the CJMSP resource adapter and the trace information that can be collected

	8.19 Trace collection points of JavaMail
	8.19.1 Trace collection points of JavaMail transmission and the trace information that you can collect
	8.19.2 Trace collection points on JavaMail receipt and the trace information that you can collect

	8.20 Trace collection points of JSF 2.2
	8.20.1 Trace collection points and the trace information that can be collected
	8.20.2 Trace information that can be collected
	8.20.3 Data output to the exception log

	8.21 Trace collection points of CDI
	8.21.1 Trace collection points of CDI and the trace information that can be collected

	8.22 Trace collection points when a J2EE server is started or terminated
	8.22.1 Trace Get Point and the PRF Trace Get Level
	8.22.2 Trace information that can be collected

	8.23 Trace collection points of an application
	8.23.1 Trace collection points and PRF trace collection levels
	8.23.2 Trace information that can be collected

	8.24 Trace collection points of JAX-RS
	8.24.1 Trace collection points and trace information that can be collected
	8.24.2 Trace information that can be collected
	8.24.3 Data output to the exception log

	8.25 Trace collection points of a Java batch
	8.25.1 Trace collection points and trace information that can be collected
	8.25.2 Trace information that can be collected
	8.25.3 Data output to the exception log

	8.26 Trace collection points of WebSocket
	8.26.1 When an opening handshake request is received
	8.26.2 When a message is received
	8.26.3 When data is sent
	8.26.4 When a Ping is received
	8.26.5 When a Pong is received
	8.26.6 When a closing handshake request is received
	8.26.7 When a closing handshake request is sent

	8.27 Trace collection points of Concurrency Utilities
	8.27.1 Trace collection points and trace information that can be collected
	8.27.2 Trace information that can be collected

	9. Product JavaVM Functionality
	9.1 Organization of this chapter
	9.2 Overview of the product JavaVM functionality
	9.3 Class-wise statistical functionality
	9.3.1 Overview of the class-wise statistical functionality
	9.3.2 Functionality that requires the class-wise statistical functionality
	9.3.3 Outputting Statistic Information for Each Class
	9.3.4 Precautions to output the class-wise statistical information

	9.4 Instance statistical functionality
	9.4.1 Overview of the instance statistical functionality
	9.4.2 Class-wise statistical information output by the instance statistical functionality

	9.5 STATIC member statistical functionality
	9.5.1 Overview of the STATIC member statistical functionality
	9.5.2 Class-wise statistical information output by the STATIC member statistical functionality

	9.6 Reference-related information output functionality
	9.6.1 Overview of the reference-related information output functionality
	9.6.2 Class-wise statistical information output by the reference-related information output functionality
	9.6.3 Class-wise statistical information output by the static field-based reference relationship output functionality
	9.6.4 Notes for the output of the static field-based reference relationships

	9.7 Pre-statistical GC selection functionality
	9.7.1 Overview of the pre-statistical GC selection functionality
	9.7.2 Guidelines for selecting the GC

	9.8 Unused objects statistical functionality in the Tenured area
	9.8.1 Overview of the unused objects statistical functionality in the Tenured area
	9.8.2 Class-wise statistical information output by the unused objects statistical functionality in the Tenured area
	9.8.3 Notes for executing the unused objects statistical functionality in the Tenured area

	9.9 Base object list output functionality for Tenured augmentation factors
	9.9.1 Overview of the base object list output functionality for Tenured augmentation factors
	9.9.2 Class-wise statistical information output by the base object list output functionality for Tenured augmentation factors

	9.10 Class-wise statistical information analysis functionality
	9.10.1 Overview of the class-wise statistical information analysis functionality
	9.10.2 Output example of the class-wise statistical information analysis functionality
	9.10.3 Notes for the class-wise statistical information analysis functionality

	9.11 Tenuring distribution information output functionality of the Survivor area
	9.11.1 Overview of the tenuring distribution information output functionality of the Survivor area
	9.11.2 Output format and output example of the tenuring distribution information of the Survivor area
	9.11.3 Settings for execution environment
	9.11.4 Precautions when using tenuring distribution information output functionality of the Survivor area

	9.12 hndlwrap functionality
	9.12.1 Overview of the hndlwrap functionality
	9.12.2 Notes for using the hndlwrap functionality

	9.13 Functionality to set the upper limit of allocation size of C heap during JIT compilation
	9.14 Functionality to set the upper limit of the number of threads
	9.15 Notes on using the product JavaVM functionality (in UNIX)
	9.15.1 Common in UNIX
	9.15.2 In AIX
	9.15.3 In Linux

	9.16 Finalize-retention resolution function
	9.16.1 Overview
	9.16.2 Output information
	9.16.3 Settings for execution environment
	9.16.4 Notes

	9.17 Asynchronous log file output function
	9.17.1 Overview
	9.17.2 Target log files
	9.17.3 Error cases
	9.17.4 Notes
	9.17.5 Memory requirements

	9.18 Object-pointer compression function
	9.18.1 Overview
	9.18.2 Prerequisites
	9.18.3 Notes

	9.19 Incompatibility between Oracle JDK and the JDK provided by the Application Server
	9.19.1 Memory management method selected by default
	9.19.2 Runtime image
	9.19.3 Module-related options

	10. Migrating from Application Server of Earlier Versions (In the J2EE Server Mode) (INTENTIONALLY DELETED)
	10.1 (INTENTIONALLY DELETED)

	11. Migrating to the Recommended Functionality
	11.1 Notes on migration to a database connection using HiRDB Type4 JDBC Driver
	11.2 Migration to a database connection using Oracle JDBC Thin Driver from DABroker Library

	12. Migrating from Version 9 to Version 11
	12.1 Overview
	12.2 New functionality of version 11 and changes from version 9
	12.2.1 NIO HTTP server functionality
	12.2.2 Support for new Java EE 7 specifications
	12.2.3 V9 compatibility mode
	12.2.4 Functions not supported in version 11

	12.3 Application migration guide
	12.3.1 Migration to alternative functionality
	12.3.2 Changes in servlets
	12.3.3 Changes in CDI
	12.3.4 Changes in JAX-RS
	12.3.5 Changes in JPA
	12.3.6 Changes in JSF

	12.4 Migration guide for system design
	12.4.1 Performance tuning
	12.4.2 Estimating the resources to be used

	12.5 Migration guide for system maintenance information
	12.5.1 Changes of the output destination log files
	12.5.2 Changes in the access log
	12.5.3 Changes in the trace collection points of the trace based performance analysis
	12.5.4 Changes in messages

	12.6 Parameter replacement reference
	12.6.1 User property definitions for J2EE servers
	12.6.2 Definitions of the redirector

	12.7 Abolished parameter reference
	12.7.1 Files used by the J2EE server
	12.7.2 Files used by Web server integration
	12.7.3 Files used by JPA
	12.7.4 Parameters specified for the Smart Composer functionality

	Appendixes
	A. List of Snapshot Logs to Be Collected
	A.1 Overview of the list of the snapshot log to be collected
	A.2 Cosminexus Component Container
	A.3 Cosminexus Component Transaction Monitor
	A.4 Cosminexus DABroker Library
	A.5 Cosminexus Developer's Kit for Java
	A.6 Cosminexus Performance Tracer
	A.7 Cosminexus Web Services - Security
	A.8 Cosminexus HTTP Server
	A.9 Microsoft Internet Information Service
	A.10 HCSC server
	A.11 HCSC server (FTP receipt)
	A.12 HCSC server (TP1 adapter)
	A.13 HCSC server (File adapter)
	A.14 HCSC server (Object Access adapter)
	A.15 HCSC server (Message Queue adapter)
	A.16 HCSC server (FTP adapter)
	A.17 HCSC server (SFTP adapter)
	A.18 HCSC server (file operation adapter)
	A.19 HCSC server (FTP inbound adapter)
	A.20 HCSC server (mail adapter)
	A.21 HCSC server (HTTP adapter)
	A.22 HCSC server (command adapter)
	A.23 HCSC server (file event reception)
	A.24 Audit log
	A.25 Other information

	B. Identifying the Connection in Which an Error Has Occurred When Connecting to a Database
	B.1 Cosminexus Component Container
	B.2 Cosminexus DABroker Library
	B.3 HiRDB Client
	B.4 HiRDB Server
	B.5 Oracle Client
	B.6 Oracle Server

	C. Recovering Tables for a CMR When an Error Occurs
	D. Main Functionality Changes in Each Version
	D.1 Main functionality changes in 09-87
	D.2 Main functionality changes in 09-80
	D.3 Main functionality changes in 09-70
	D.4 Main functionality changes in 09-60
	D.5 Main functionality changes in 09-50
	D.6 Main functionality changes in 09-00
	D.7 Main functionality changes in 08-70
	D.8 Main functionality changes in 08-53
	D.9 Main functionality changes in 08-50
	D.10 Main functionality changes in 08-00

	E. Glossary

	Index

