
Security Management Guide

3021-3-J09-10(E)

uCosminexus Application Server

Notices

■ Relevant program products
See the Release Notes.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law,
and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI, Cosminexus, DABroker, HiRDB, JP1, Keymate, OpenTP1, TPBroker, uCosminexus are either trademarks
or registered trademarks of Hitachi, Ltd. in Japan and other countries.
IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
Microsoft, Active Directory are trademarks of the Microsoft group of companies.
Microsoft, SQL Server are trademarks of the Microsoft group of companies.
Microsoft, Windows are trademarks of the Microsoft group of companies.
Microsoft, Windows Server are trademarks of the Microsoft group of companies.
Microsoft is a trademark of the Microsoft group of companies.
Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
Tivoli is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
UNIX is a trademark of The Open Group.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source
community for development tool providers.
Eclipse Ready logo is a trademark of Eclipse Foundation, Inc.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research,
Inc (Bellcore).
Regular expression support is provided by the PCRE library package, which is open source software, written by
Philip Hazel, and copyright by the University of Cambridge, England. The original software is available from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).

Security Management Guide 2

■ Issued
Aug 2022: 3021-3-J09-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2022, Hitachi, Ltd.

Security Management Guide 3

Preface

For details on the prerequisites before reading this manual, see the Release Notes.

■ Non-supported functionality
Some functionality described in this manual is not supported. Non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management Server management portal

• Remote installation functionality for the UNIX edition

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

Security Management Guide 4

Contents

Notices 2
Preface 4

Part 1: Overview

1 Application Server Functionality 17
1.1 Classifications of functionality 18
1.1.1 Functionality for an application execution infrastructure 20
1.1.2 Functionality for operating and maintaining the execution infrastructure for applications 21
1.1.3 Functionality and associated manuals 22
1.2 Functionality and associated system purposes 25
1.2.1 Authentication functionality 25
1.2.2 Encryption functionality 26
1.2.3 Invalid processing prevention functionality 26
1.2.4 Other functionality 27
1.3 Format of functional descriptions in this manual 28
1.3.1 Parts of the descriptions 28
1.3.2 Parts of the functional descriptions - example table 28
1.4 Major functional changes in Application Server 11-10 30
1.4.1 Facilitating system implementation and creation 30
1.4.2 Implementing standard and existing functionality 30
1.4.3 Maintaining and enhancing reliability 31
1.4.4 Other purposes 31

2 Security Management with the Application Server 32
2.1 Organization of this chapter 33
2.2 Measures for ensuring security 34
2.2.1 Realizing a system configuration that will ensure security 34
2.2.2 Operating the system securely 34
2.2.3 Preventing unauthorized users from accessing the system (authentication functionality) 34
2.2.4 Ensuring communication path security (encryption functionality) 35
2.2.5 Preventing invalid processing 35
2.2.6 Taking other actions 36
2.3 Details about the methods and functionality for ensuring security 37
2.4 Notes about using the methods and functionality for ensuring security 38
2.4.1 About certificates 38

Security Management Guide 5

Part 2: System Design

3 System Configurations for Ensuring Security 39
3.1 Organization of this chapter 40
3.2 System configurations using a firewall 41
3.2.1 Deployment of a firewall for servlets and JSPs 41
3.2.2 Deployment of a firewall for Session and Entity Bean 42
3.2.3 Firewall deployment with Resource Manager 43
3.3 Deployment of reverse proxies in a DMZ 44
3.3.1 Deployment of reverse proxies 44

4 Considerations in the Design of a Secure System 47
4.1 Organization of this chapter 48
4.2 Overview of considerations in the design of a secure system 49
4.3 Considering the configuration of a secure system 51
4.4 Considering the users of the system 53
4.5 Considering the resources handled by the system 54
4.6 Checking the preconditions for a secure system 55
4.6.1 Physical preconditions 55
4.6.2 Operational preconditions 55
4.7 Analyzing expected threats 56
4.8 Considering countermeasures 57
4.8.1 Countermeasures to be implemented against preconditions 57
4.8.2 Countermeasures to be implemented against expected threats 58
4.8.3 Secure system behavior with the countermeasures implemented 59
4.9 Considering work procedures 62
4.9.1 Overview of work procedure documents to be prepared 62
4.9.2 Considering the system setup procedures 62
4.9.3 Considering the system re-setup procedures 69
4.9.4 Considering system operating procedures 71
4.10 Checking how to audit the system 73
4.10.1 Obtaining audit logs 73
4.10.2 Examining audit logs 73
4.11 Considering the security of systems that use external networks 74
4.11.1 Security threats that can be expected with respect to systems that use external networks 74
4.11.2 Deploying a firewall and intrusion detection system 75
4.11.3 Using an SSL accelerator to process encrypted communication 86
4.11.4 Authenticating users from within applications 86

Security Management Guide 6

Part 3: Description of Functions

5 Integrated User Management-based Authentication 89
5.1 Organization of this chapter 90
5.2 Overview of integrated user management 91
5.2.1 Purpose of integrated user management 91
5.2.2 User management and user mapping using realms 91
5.2.3 Overview of Java Authentication and Authorization Service (JAAS)-based user authentication 93
5.2.4 Management method of user information used for integrated user management 95
5.2.5 Validity period of user authentication and the inheritance of authentication states 99
5.2.6 Integrated user management process flow 100
5.3 User authentication mechanism based on Cosminexus standard login modules 102
5.3.1 Types and functions of Cosminexus standard login modules 102
5.3.2 WebPasswordLoginModule 103
5.3.3 WebCertificateLoginModule 104
5.3.4 WebPasswordLDAPLoginModule 105
5.3.5 WebPasswordJDBCLoginModule 106
5.3.6 DelegationLoginModule 109
5.3.7 WebSSOLoginModule 109
5.3.8 Repository access by Cosminexus standard login modules 111
5.3.9 Enhanced support of authentication password encryption 112
5.3.10 Configuration file parameters used by login modules 113
5.4 Sessions managed in integrated user management 116
5.4.1 Types of sessions 116
5.4.2 Registration of login user IDs 116
5.4.3 Deletion of user IDs registered in the integrated user management session 117
5.4.4 Examples of JAAS configuration file definition 117
5.5 Use of single sign-on 119
5.5.1 Necessary procedures for single sign-on 119
5.5.2 Application of single sign-on to existing application user management 119
5.6 Use of custom login modules 121
5.6.1 Overview of custom login modules 121
5.6.2 Invocation of custom login modules 122
5.7 Management of user information 123
5.7.1 Registration of user information to the LDAP directory server 123
5.7.2 Connection failover by multiplexing the LDAP directory server 123
5.8 API provided by the integrated user management framework 125
5.8.1 JSP tag library 125
5.8.2 Integrated user management framework libraries 125
5.9 Implementation of user authentication based on the integrated user management framework 127
5.10 Implementation of API-based user authentication 128

Security Management Guide 7

5.10.1 Implementation of the API-based login session 128
5.10.2 Implementation of the API-based session to obtain user IDs 128
5.10.3 Implementation of the API-based session to obtain user attributes 129
5.10.4 Implementation of the session to register the successfully authenticated subject to HttpSession 130
5.10.5 Implementation of the API-based logout session 130
5.10.6 Checking the login state (if the API is used) 131
5.10.7 Implementation of enhanced support of authentication password encryption 131
5.10.8 Notes on API-based implementation 132
5.11 Implementation of tag library-based user authentication 134
5.11.1 Implementation of tag library-based login session 134
5.11.2 Implementation of the tag library-based session to obtain user ID 136
5.11.3 Implementation of the tag library-based session to obtain user attributes 136
5.11.4 Implementation of tag library-based logout session 137
5.11.5 Copying uatags.jar and uatags.tld and defining DD 137
5.12 Implementation of custom login module-based user authentication 138
5.12.1 Implementation for integration with Cosminexus standard login modules 138
5.12.2 Points to remember when implementing custom login modules 139
5.12.3 Examples of implementing custom login modules 139
5.13 Procedures to set up the integrated user management function 145
5.14 Determination of realm names 147
5.15 LDAP directory server setup 148
5.15.1 Installation of the LDAP directory server 148
5.15.2 User registration and access permission setup 148
5.15.3 Extension of object class and user definition attributes 149
5.16 Registration of user information 151
5.16.1 Registration by using commands 151
5.16.2 Registration by using the integrated user management framework library 151
5.16.3 Formatting used to register the user information 152
5.16.4 Settings when using Active Directory 152
5.17 Creation of encryption key files (When using single sign-on) 157
5.17.1 Creating encryption key files 157
5.17.2 Changing encryption key files 157
5.18 Registration of user information (When using single sign-on) 158
5.18.1 Registration by using commands 158
5.18.2 Registration by using the integrated user management framework library 158
5.18.3 Formatting used to register the user information 158
5.19 Creating configuration files 160
5.19.1 Creating jaas.conf 160
5.19.2 Creating ua.conf 161
5.19.3 Example of setting the configuration file 162
5.20 Java VM property setup 170

Security Management Guide 8

5.21 Deployment of files 172

6 Authentication by Application Setup 173
6.1 Organization of this chapter 174
6.2 Web container-based authentication using DD settings 175
6.2.1 Web container-based authentication functionality using DD settings 175
6.2.2 Definitions in DD files 176
6.2.3 Setup in an execution environment (J2EE application setup) 177
6.2.4 Precautions for using authentication functionalities 177
6.3 Authentication with security identities 179
6.3.1 Security identity functionality 179
6.3.2 Security implementation in EJB client applications 180
6.3.3 Authentication setup with security identities 182

7 SSL/TLS Encryption of Authentication Information and Data 183
7.1 Organization of this chapter 184
7.2 SSL encryption of authentication information and data 185
7.2.1 The authentication functionality of the Web server 185
7.2.2 SSL setup with Cosminexus HTTP Server 185

8 Directly Accessing Load Balancers Through the API and Controlling
Them via the Operation Management Functionality 187

8.1 Organization of this chapter 188
8.2 Directly accessing a load balancer through the API 189
8.3 Load balancer APIs executed using the operation management functionality 190
8.3.1 Load balancer APIs executed using Management Server (Smart Composer functionality) 190
8.3.2 Load balancer API executed using Virtual Server Manager 191
8.4 Load balancer access environment setup 192
8.4.1 Access list (ACL) settings (ACOS) 192
8.4.2 Creating a cookie persistence template 192
8.4.3 Configuring a trust store 192
8.4.4 hosts file settings (BIG-IP) 193
8.5 Load balancer connection information setup with Management Server (Smart Composer

functionality) 194
8.6 Load balancer connection information setup with Virtual Server Manager 195
8.6.1 Configuring load balancer connection information with Virtual Server Manager 195
8.6.2 Configuring load balancer connection information with the management unit 196

Part 4: Setup

9 Server Management Command-based Security Role and
Application Setup 197

9.1 Organization of this chapter 198

Security Management Guide 9

9.2 Security role setup 199
9.2.1 Setting users 199
9.2.2 Setting roles 199
9.3 Definition of security role references 203
9.3.1 Defining Enterprise Bean security role references 203
9.3.2 Defining servlet and JSP security role references 204
9.4 Security definition (Method permission) 206
9.4.1 Enterprise Bean method permissions 206
9.5 Security definition (Security identities) 208
9.5.1 Enterprise Bean security identities 208
9.5.2 Servlet and JSP security identities 209

10 Management Portal-based Integrated User Management Operation
(INTENTIONALLY DELETED) 211

10.1 INTENTIONALLY DELETED 212

11 Management Portal-based Repository Management (Integrated User
Management) (INTENTIONALLY DELETED) 213

11.1 INTENTIONALLY DELETED 214

12 Resource Monitoring (Integrated User Management)
(INTENTIONALLY DELETED) 215

12.1 INTENTIONALLY DELETED 216

Part 5: Reference

13 Commands Used in Integrated User Management 217
13.1 List of commands used in integrated user management 218
13.2 Details of commands used in integrated user management 219

convpw (Password encryption) 219
ssoexport (Referencing the single sign-on information repository) 220
ssogenkey (Creating encryption key files) 222
ssoimport (Registering the single sign-on information repository) 222
uachpw (Password change) 225

14 Files Used by Integrated User Management 227
14.1 List of files used by integrated user management 228
14.2 Details of files used for integrated user management 229
14.2.1 jaas.conf (JAAS configuration file) 229
14.2.2 ua.conf (integrated user management configuration file) 235
14.3 CSV files containing single sign-on authentication information 244
14.3.1 Basic CSV file specifications 244
14.3.2 Definition file for acquiring user information 244

Security Management Guide 10

14.3.3 Definition file for adding or modifying user information 245
14.3.4 Definition file for user mapping and authentication information 246
14.3.5 CSV file specification example 247
14.3.6 Line operation 247

15 APIs Used with the Integrated User Management Framework 249
15.1 List of APIs for the integrated user management framework 250
15.2 The AttributeEntry class 252

The AttributeEntry constructor 252
The getAlias method 253
The getAttributeName method 254
The getSubcontext method 254
The setAlias method 255
The setAttributeName method 255
The setSubcontext method 256

15.3 The ChangeDataFailedException class 257
The ChangeDataFailedException constructor 257

15.4 The DelegationLoginModule class 258
15.5 The LdapSSODataManager class 259

The LdapSSODataManager constructor 260
The addSSOData method 260
The addSSODataListener method 261
The getSSOData method 262
The getSSODataListeners method 262
The listUsers method (syntax 1) 263
The listUsers method (syntax 2) 263
The modifySSOData method 264
The removeSSOData method 265
The removeSSODataListener method 266

15.6 The LdapUserDataManager class 268
The LdapUserDataManager constructor 269
The addUserData method (syntax 1) 271
The addUserData method (syntax 2) 272
The getUserData method 273
The listUsers method (syntax 1) 274
The listUsers method (syntax 2) 274
The modifyUserData method 275
The removeUserData method 276

15.7 The LdapUserEnumeration interface 278
The close method 278
The hasMore method 279
The hasMoreElements method 279
The next method 280
The nextElement method 280

15.8 The LoginUtil class 282

Security Management Guide 11

The check method (syntax 1) 282
The check method (syntax 2) 283

15.9 The ObjectClassEntry class 285
The ObjectClassEntry constructor 285
The getObjectClasses method 286
The getSubcontext method 286
The setObjectClasses method 287
The setSubcontext method 287

15.10 The PasswordCryptography interface 289
The encrypt method 289

15.11 The PasswordUtil class 290
The changePassword method 290

15.12 The Principal interface 292
15.13 The SSOData class 293

The SSOData constructor 293
The getMapping method 294
The getMappingRealms method 294
The getPublicData method 295
The removeMapping method 295
The setMapping method 296
The setPublicData method 296
The setSecretData method 297

15.14 The SSODataEvent class 298
The SSODataEvent constructor 298
The getOldPublicData method 299
The getOldSecretData method 299
The getPublicData method 300
The getSecretData method 300
The getUserId method 301

15.15 The SSODataListener interface 302
The ssoDataAdded method 303
The ssoDataModified method 303
The ssoDataRemoved method 304

15.16 The SSODataListenerException class 305
The SSODataListenerException constructor 305
The getException method 306
The getListeners method 306
The setException method 307

15.17 The UserAttributes interface 308
The addAttribute method 308
The getAttribute method 309
The getAttributeNames method 310
The getAttributes method 311
The removeAttribute method 311
The size method 312

15.18 The UserData class 313

Security Management Guide 12

The UserData constructor 313
The addAttribute method 314
The getAttribute method 314
The getAttributeNames method 315
The getAttributes method 315
The removeAttribute method 316
The setPassword method 316
The size method 317

15.19 The WebCertificateCallback class 318
The WebCertificateCallback constructor 319
The getAttributeEntries method 319
The getRequest method 320
The getResponse method 320
The getSubjectID method 320
The getTagEntry method 321
The getTagID method 321
The setAttributeEntries method 322
The setRequest method 322
The setResponse method 323
The setSubjectID method 323
The setTagEntry method 324
The setTagID method 324

15.20 The WebCertificateHandler class 325
The WebCertificateHandler constructor 325
The handle method 326

15.21 The WebCertificateLoginModule class 328
15.22 The WebLogoutCallback class 329

The WebLogoutCallback constructor 329
The getSession method 330
The getUserID method 330
The setSession method 330
The setUserID method 331

15.23 The WebLogoutHandler class 332
The WebLogoutHandler constructor 332
The handle method 333

15.24 The WebPasswordCallback class 334
The WebPasswordCallback constructor 335
The getAttributeEntries method 336
The getName method 336
The getOption method 337
The getPassword method 337
The getRequest method 337
The getResponse method 338
The getTagEntry method 338
The getTagID method 339
The setAttributeEntries method 339

Security Management Guide 13

The setName method 340
The setOption method 340
The setPassword method 341
The setRequest method 341
The setResponse method 342
The setTagEntry method 342
The setTagID method 343

15.25 The WebPasswordHandler class 344
The WebPasswordHandler constructor 344
The handle method 346

15.26 The WebPasswordJDBCLoginModule class 348
15.27 The WebPasswordLDAPLoginModule class 349
15.28 The WebPasswordLoginModule class 350
15.29 The WebSSOCallback class 351

The WebSSOCallback constructor 351
The getRequest method 352
The getResponse method 352
The getTagEntry method 353
The getTagID method 353
The setRequest method 354
The setResponse method 354
The setTagEntry method 355
The setTagID method 355

15.30 The WebSSOHandler class 356
The WebSSOHandler constructor 356
The handle method 357

15.31 The WebSSOLoginModule class 358
15.32 Exception classes 359
15.32.1 Exception classes for JAAS login modules 359
15.32.2 Exception classes for APIs offered by Hitachi 361

16 Tag Library Used with the Integrated User Management Framework 362
16.1 List of the tags contained in the tag library 363
16.2 Details of the tags contained in the tag library 364
16.2.1 The <ua:attributeEntries>Entries</ua:attributeEntries> tag 364
16.2.2 The <ua:attributeEntry/> tag 364
16.2.3 The <ua:chpw/> tag 365
16.2.4 The <ua:exception>Body</ua:exception> tag 366
16.2.5 The <ua:getPrincipalName/> tag 367
16.2.6 The <ua:getAttribute/> tag 367
16.2.7 The <ua:getAttributes/> tag 368
16.2.8 The <ua:getAttributeNames/> tag 369
16.2.9 The <ua:login/> tag 370
16.2.10 The <ua:logout/> tag 371

Security Management Guide 14

16.2.11 The <ua:notLogin>Body</ua:notLogin> tag 371

17 APIs for Implementation of EJB Client Applications 373
17.1 The LoginInfoManager class 374

The getLoginInfoManager method 375
The login method 375
The logout method 376

18 Files Used to Control Load Balancers That Employ API-Based
Direct Connections 377

18.1 List of files used to control load balancers that employ API-based direct connections 378
18.2 Details of files used to control load balancers that employ API-based direct connections 379
18.2.1 lb.properties (load balancer definition property file) 379
18.2.2 LB-information-distinguished-name.properties (virtual server manager-side load balancer

connection configuration property file) 381
18.2.3 tierlb.properties (tier-side load balancer connection configuration property file) 383

19 Messages Output by the Security Management Functionality 385
19.1 Message description format 386
19.2 Messages starting with KDCGF 388
19.3 Messages starting with KDCGK 394
19.4 Messages starting with KDCGS 397
19.5 Messages starting with KDCGW 400
19.6 Messages from KEOS02000 to KEOS09999 402
19.7 Messages starting with KEXS 406
19.8 SSL-related messages 414
19.8.1 Message description format 414
19.8.2 Notes 414
19.8.3 Messages starting with AH 415
19.8.4 Messages starting with KH 423

Appendixes 427
A Major Functional Changes in Application Server Versions 428
A.1 Major functional changes in 09-87 428
A.2 Major functional changes in 09-80 428
A.3 Major functional changes in 09-70 429
A.4 Major functional changes in 09-60 431
A.5 Major functional changes in 09-50 432
A.6 Major functional changes in 09-00 435
A.7 Major functional changes in 08-70 437
A.8 Major functional changes in 08-53 439
A.9 Major functional changes in 08-50 440
A.10 Major functional changes in 08-00 442

Security Management Guide 15

B Registration of Exception Lists (Windows) 446
C Glossary 450

Index 451

Security Management Guide 16

Part 1: Overview

1 Application Server Functionality

This chapter describes the types and purposes of the application server's functions. It shows the
associations between the functions and the manuals, and explains the modifications to the functions
in this server version.

Security Management Guide 17

1.1 Classifications of functionality

Application Server is a product for building an application execution environment based on a J2EE server that supports
Java EE 7 and for developing applications that can operate in the execution environment. It offers various types of
functionality including Java EE functionality and extended functionality specific to application servers. By selecting and
using functions that are appropriate to your purposes, you can build and operate a highly reliable and capable system.

The application server has two major types of functionality:

• Functionality as an execution infrastructure for applications

• Functionality for operating and maintaining the execution infrastructure for applications

These two types of functionality can be further subdivided according to their positioning and uses. The application server
manuals are classified according to the types of functionality they cover.

The following figure shows the types of functionality provided by the application server and the associated manuals.

1. Application Server Functionality

Security Management Guide 18

Figure 1‒1: Types of functionality provided by the application server and the associated manuals

#1
The words uCosminexus Application Server are omitted from the manual titles.

#2
The application server enables you to run SOAP Web Service and RESTful Web Service. In addition to the
uCosminexus Application Server Web Service Development Guide, also see the following manual if necessary:

For details about XML processing:

• XML Processor User Guide

The following section describes the types of functionality covered by the manuals.

1. Application Server Functionality

Security Management Guide 19

1.1.1 Functionality for an application execution infrastructure
Functionality for an application execution infrastructure refers to the basic functionality for executing online and batch
jobs implemented as applications. Select the appropriate functions to meet the purpose and requirements of the system.

Before building a system or developing an application, determine the basic functionality to be used.

Such functionality includes the following:

(1) Basic functionality for running applications (basic development
functionality)

This functionality provides the capability to run applications (J2EE applications). It mainly comprises J2EE
server functionality.

Application Server provides a J2EE server that supports Java EE 7. The J2EE server offers functionality that complies
with not only the standard specifications but also the unique functionality of the application server.

The basic development functionality can be further divided into three types according to the way the J2EE application
uses this functionality. The functional description manuals for the application server are associated with these three types
of functionality.

These three types of functionality are outlined below.

• Functionality (Web container) for running Web applications
This functionality includes Web container functionality to provide an execution infrastructure for Web applications.
It also includes functionality implemented by linking the Web container to a Web server.

• Functionality (EJB container) for running an enterprise bean
This functionality includes EJB container functionality to provide an execution infrastructure for enterprise beans.
It also includes EJB client functionality for calling an enterprise bean.

• Functionality (container common functionality) for both Web applications and enterprise beans
This is functionality that can be used by both a Web application running in a Web container and an enterprise bean
running in an EJB container.

(2) Functionality for developing Web Services
This functionality provides environments for running and developing Web Services.

The application server provides the following engines:

• JAX-WS engine that binds JAX-WS-compliant SOAP messages

• JAX-RS engine that binds JAX-RS-compliant RESTful HTTP messages

(3) Extended functionality unique to the application server for enhancing
reliability and performance (extended functionality)

This functionality refers to extended functionality that is unique to the application server. It includes functionality
implemented through the use of non-J2EE server processes such as batch server, CTM, and database processes.

The application server has various types of extended functionality for enhancing the reliability of the system and ensuring
its stable operation. For example, it has an extended functionality for running non-J2EE applications (batch applications)
on the Java platform.

1. Application Server Functionality

Security Management Guide 20

(4) Functionality for ensuring system security (security management
functionality)

The intention of this functionality is to ensure the security of a system built around the application server. It
includes authentication for preventing unauthorized user access and encryption for preventing information leakage on
communication paths.

1.1.2 Functionality for operating and maintaining the execution
infrastructure for applications

The application server provides functionality to facilitate the efficient operation and maintenance of the execution
infrastructure for applications. Use the provided functions as necessary after the start of system operation. Note that
certain functionality requires configuration of settings or implementation of applications prior to system operation.

This functionality includes the following:

(1) Functionality for daily operations such as starting and stopping a
system (operation functionality)

This is functionality for daily operations such as starting and stopping a system and starting, stopping, and
replacing applications.

(2) Functionality for monitoring system usage (monitoring functionality)
This functionality includes monitoring of system operation and resource shortages. It also includes the output of system
operation history and any other information necessary for audit activities.

(3) Functionality for linkage with other products (linkage functionality)
This is functionality that enables the application server to be linked with other products such as JP1 and cluster software.

(4) Functionality for dealing with problems (maintenance functionality)
This functionality is for troubleshooting, and includes the output of reference information that is necessary
for troubleshooting.

(5) Functionality for migrating from earlier versions of the product
(migration functionality)

This functionality is designed to facilitate migration from earlier versions of the application server to the latest version.

(6) Functionality for achieving compatibility with earlier versions of the
product (compatibility functionality)

This is functionality designed to provide compatibility with earlier versions of the application server. For this purpose,
we recommend you migrate to a version of the application server that supports the recommended functionality.

1. Application Server Functionality

Security Management Guide 21

1.1.3 Functionality and associated manuals
The functional description manuals for the application server are divided according to the types of functionality.

The table below lists the types of functionality provided by the application server, and the associated manuals.

Table 1‒1: Types of functionality and associated manuals

Classification Functionality Manual#1

Basic development functionality Web container Web Container
Functionality Guide

Use of JSF and JSTL

Use of JAX-RS 2.0

WebSocket

NIO HTTP server

Servlet and JSP implementation

EJB container EJB Container
Functionality Guide

EJB client

Notes on enterprise bean implementation

Naming management Common Container
Functionality Guide

Resource connection and transaction management

Application server call from OpenTP1 (TP1 inbound
integrated function)

Use of JPA 2.1

Cosminexus JMS provider

Use of JavaMail

Use of CDI on an application server

Use of Bean Validation on an application server

Java Batch

JSON-P

Concurrency Utilities

Application attribute management

Use of annotations

Format and deployment of J2EE applications

Container extension library

Extended functionality Application execution with a batch server Expansion Guide

Request scheduling and load balancing with CTM

Batch application scheduling

Session information transfer between J2EE servers (session
failover functionality)

Database session failover functionality

1. Application Server Functionality

Security Management Guide 22

Classification Functionality Manual#1

Suppression of Full GC by using the Explicit Memory
Management functionality

Application user log output

Security
management functionality

Authentication through integrated user management Security Management Guide#2

Authentication through application setup

Use of TLSv1.2 for SSL/TLS communication

Use of an API for direct access to load balancers, and control of load
balancers using operation management functionality

Operation functionality System start and stop Operation, Monitoring, and
Linkage Guide

J2EE application operation

Monitoring functionality Monitoring of operation information (collection of
operation information)

Resource shortage monitoring

Audit log output functionality

Database audit trail linkage functionality

Output of operation information via operation management commands

Automatic process execution through management event notification
and management actions

CTM operation statistics collection

Console log output

Linkage functionality Operation of systems linked using JP1

System configuration definition and system management (linkage
with JP1/IM-CM)

Centralized monitoring of the system (linkage with JP1/IM)

Automatic operation of the system by job (linkage with JP1/AJS)

Audit log collection and centralized management (linkage with JP1/
NETM/Audit)

Linkage with cluster software

1-to-1 node switching system (linkage with cluster software)

Mutual node switching system (linkage with cluster software)

N-to-1 recovery system (linkage with cluster software)

Node switching system for per-host management models (linkage with
cluster software)

Maintenance functionality Troubleshooting functionality Maintenance and
Migration Guide

Performance analysis with performance analysis traces

The product's Java VM functionality (abbreviated hereafter to
Java VM)

Migration functionality Migration from earlier versions of the application server

1. Application Server Functionality

Security Management Guide 23

Classification Functionality Manual#1

Migration to versions of the application server with the
recommended functionality

#1: The phrase uCosminexus Application Server is omitted from the manual titles.
#2: Security Management Guide refers to this manual.

1. Application Server Functionality

Security Management Guide 24

1.2 Functionality and associated system purposes

You should select the functionality of the application server in accordance with the purpose of the system that you wish
to build and operate.

This section describes the system purposes for which the application server's security functions should be used. Different
types of functionality are available for different systems, as shown below.

• Reliability
This functionality is available for systems that require a high level of reliability.
It includes functions aimed at increasing availability and fault tolerance and enhancing security through
user authentication.

• Performance
This functionality is available for performance-focused systems.
It includes functions designed to provide system performance tuning.

• Operation and maintenance
This functionality is aimed at facilitating efficient operation and maintenance.

• Expandability
This functionality is designed to facilitate expanding or shrinking the system size and to flexibly accommodate
configuration changes.

• Other
This functionality is included to accommodate other needs.

The application server's security functionality includes Java EE functionality and extended functionality unique to the
application server. When selecting functions, check their compliance with the Java EE standard as necessary.

1.2.1 Authentication functionality
The table below shows the types of authentication functionality. Select the functionality that best suits the purpose of
your system. For functional details, see the relevant information.

Table 1‒2: Authentication functionality and associated system purposes

Functionality System purpose Compliance with
Java EE standard

Relevant
information

Rel. Per. Op. and
maint.

Expand. Other Std. Extd.

Integrated
user management

S -- S -- -- S S Chapter 5

Authentication by
application setup

S -- -- -- -- S S Chapter 6

Legend:
Rel.: Reliability
Per.: Performance
Op. and maint.: Operation and maintenance
Expand.: Expandability
Std.: Standard
Extd.: Extended

1. Application Server Functionality

Security Management Guide 25

S: Supported
--: Not supported

Note: An S entered (in the same row) in both the Standard and Extended columns below Compliance with Java EE standard indicates cases where
Java EE functionality has been extended to create functionality that is unique to the application server. An S entered in the Extended column next to a
blank Standard column indicates cases where another functionality has been extended to create functionality that is unique to the application server.

1.2.2 Encryption functionality
The table below shows the application server's encryption functionality. Select the functionality that best suits the
purpose of your system. For functional details, see the relevant information.

Table 1‒3: Encryption functionality and associated system purposes

Functionality System purpose Compliance with
Java EE standard

Relevant
information

Rel. Per. Op. and
maint.

Expand. Other Std. Extd.

SSL/TLS encryption
of authentication
information and data

S -- -- -- -- S S Manual HTTP
Server User
Guide,
Chapter 7

Legend:
Rel.: Reliability
Per.: Performance
Op. and maint.: Operation and maintenance
Expand.: Expandability
Std.: Standard
Extd.: Extended
S: Supported
--: Not supported

Note 1: An S entered (in the same row) in the same row in both the Standard and Extended columns below Compliance with Java EE standard
indicates cases where Java EE functionality has been extended to create functionality that is unique to the application server. An S entered in the
Extended column next to a blank Standard column indicates cases where another functionality has been extended to create functionality that is
unique to the application server.
Note 2: The phrase uCosminexus V9 Application Server is omitted from the manual title.

1.2.3 Invalid processing prevention functionality
The table below shows the application server's invalid processing prevention functionality. Select the functionality that
best suits the purpose of your system. For functional details, see the relevant information.

Table 1‒4: Invalid processing prevention functionality and associated system purposes

Functionality System purpose Compliance with
Java EE standard

Relevant
information

Rel. Per. Op. and
maint.

Expand. Other Std. Extd.

Web container
execution-time
protection with
Security Manager

S -- -- -- -- S S 2.2.5

1. Application Server Functionality

Security Management Guide 26

Legend:
Rel.: Reliability
Per.: Performance
Op. and maint.: Operation and maintenance
Expand.: Expandability
Std.: Standard
Extd.: Extended
S: Supported
--: Not supported

Note: An S entered (in the same row) in both the Standard and Extended columns below Compliance with Java EE standard indicates cases where
Java EE functionality has been extended to create functionality that is unique to the application server. An S entered in the Extended column next to a
blank Standard column indicates cases where another functionality has been extended to create functionality that is unique to the application server.

1.2.4 Other functionality
The table below shows the application server's functionality for complying with requests for secure communication with
other programs via linkage. Select the functionality that best suits the purpose of your system. For functional details, see
the relevant information.

Table 1‒5: Functionality for complying with requests for secure communication with other programs
via linkage and associated system purposes

Functionality System purpose Compliance with
Java EE standard

Relevant
information

Rel. Per. Op. and
maint.

Expand. Other Std. Extd.

Use of an API for direct
access to load
balancers, and control
of load balancers using
the operation
management
functionality

-- -- -- -- S -- -- Chapter 8

Legend:
Rel.: Reliability
Per.: Performance
Op. and maint.: Operation and maintenance
Expand.: Expandability
Std.: Standard
Extd.: Extended
S: Supported
--: Not supported

1. Application Server Functionality

Security Management Guide 27

1.3 Format of functional descriptions in this manual

This section describes the format of functional descriptions in this manual. It also gives an example table showing the
parts of that format.

1.3.1 Parts of the descriptions
The functional descriptions in this manual are divided into the five parts described below. You can select and read any
of these parts according to your purpose in referencing this manual.

• Description
Functional description. Describes the purpose, features, and mechanism of the functionality. Read this part if you
want to obtain an overview of the functionality.

• Implementation
Describes how to code the program and how to create DD. Read this part if you want to develop an application.

• Setup
Describes how to configure the properties necessary for system creation. Read this part if you want to create a system.

• Operation
Operation method description. Describes the operation procedure and gives an example of executing the commands
to be used. Read this part if you want to operate the system.

• Precautions
Provides general precautions that should be observed when using the functionality. Read this part without fail.

1.3.2 Parts of the functional descriptions - example table
The following chapters contain tables showing the parts of the functional description. The title of each table is either
Organization of this chapter or Organization of this section.

Below is an example table showing the parts of the functional description.

Example table showing the parts of the functional description
Table X-1 Organization of this chapter (XX functionality)

Part Title Relevant information

Description What is the XX functionality? X.1

Implementation Application implementation X.2

Definitions in DD and cosminexus.xml# X.3

Setup Setup in execution environment X.4

Operation Operation using the XX functionality X.5

Precautions Precautions for using the XX functionality X.6

#: For details about cosminexus.xml, see 13. Application Attribute Management in the uCosminexus Application Server Common
Container Functionality Guide.

1. Application Server Functionality

Security Management Guide 28

Tip

Configuring the properties of an application that does not contain cosminexus.xml
If an application does not contain cosminexus.xml, configure or change its properties after
importing it into the execution environment. After configuration, you can change the properties in the
execution environment.
To set up the application in the execution environment, use server management commands and the attributes
file. For details about their use, see 3.5.2 Procedure for setting the properties of a J2EE application in the
uCosminexus Application Server Application Setup Guide.
The tags specified in the attributes file correspond to the DD file or cosminexus.xml. For details about
their correspondence, see 2. Cosminexus Application Property File (cosminexus.xml) in the uCosminexus
Application Server Application and Resource Definition Reference Guide.
Note that the properties to be configured in each attributes file can also be configured in the HITACHI
Application Integrated Property File.

1. Application Server Functionality

Security Management Guide 29

1.4 Major functional changes in Application Server 11-10

This section describes the major functional changes in Application Server 11-10, organized by the purpose for
each modification.

• This section outlines the major functional changes in Application Server 11-10. For functional details, see the
relevant information. The columns Reference manual and Relevant information indicate where to find relevant
information about functionality.

• The words uCosminexus Application Server are omitted from the manual titles listed in the Reference
manual column.

1.4.1 Facilitating system implementation and creation
The following table outlines the changes made to facilitate system implementation and creation.

Table 1‒6: Changes made to facilitate system implementation and creation

Item Overview of changes Reference manual Relevant
information

Windows Server support in the
development environment

uCosminexus Developer now supports the Windows
Server OS so that an application development
environment can be built on the cloud.

-- --

1.4.2 Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table 1‒7: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant
information

Support for Servlet 3.0/3.1 Asynchronous servlets in Servlet 3.0 and the Async I/O
API in Servlet 3.1 are now supported.

Web Container
Functionality Guide

7.1

Support for EL 3.0 EL 3.0 is now supported. Web Container
Functionality Guide

2.3.3

Support for JSF 2.2 JSF 2.2 is now supported. Web Container
Functionality Guide

Chapter 3

Support for JAX-RS 2.0 JAX-RS 2.0 is now supported. Web Container
Functionality Guide

Chapter 4

Support for WebSocket 1.0 WebSocket 1.0 is now supported. Web Container
Functionality Guide

Chapter 5

Addition of the NIO HTTP
server functionality

The NIO HTTP server functionality was added as an
in-process HTTP server that supports asynchronous
servlets and non-blocking I/O processing such as
WebSocket, instead of the conventional redirector and
in-process HTTP server functionality.

Web Container
Functionality Guide

Chapter 6

Support for JPA 2.1 JPA 2.1 is now supported so that a JPA provider
supporting JPA 2.1 can be used.

Common Container
Functionality Guide

Chapter 5

1. Application Server Functionality

Security Management Guide 30

Item Overview of changes Reference manual Relevant
information

Support for CDI 1.2 CDI 1.2 is now supported. Common Container
Functionality Guide

Chapter 8

Support for BV 1.1 Bean Validation 1.1 is now supported. Common Container
Functionality Guide

Chapter 9

Support for Java Batch 1.0 Batch Applications for the Java Platform (Java Batch)
1.0 is now supported.

Common Container
Functionality Guide

Chapter 10

Support for JSON-P 1.0 Java API for JSON Processing (JSON-P) 1.0 is
now supported.

Common Container
Functionality Guide

Chapter 11

Support for Concurrency
Utilities 1.0

Concurrency Utilities for Java EE 1.0 is now supported. Common Container
Functionality Guide

Chapter 12

WebSocket
communication support

A function that relays WebSocket communication from
an HTTP server to a J2EE server was added.

HTTP Server User Guide 4.15

1.4.3 Maintaining and enhancing reliability
The following table outlines the changes made to maintain and enhance reliability.

Table 1‒8: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant
information

Change of the encrypted-
communication module

The mod_ssl module was adopted as an encrypted-
communication module for an HTTP server.

HTTP Server User Guide Chapter 5

1.4.4 Other purposes
The following table outlines the changes made for other purposes.

Table 1‒9: Changes made for other purposes

Item Overview of changes Reference manual Relevant
information

Addition of V9
compatibility mode

V9 compatibility mode was added to maintain the
compatibility with version 9 of Application Server for
users of Application Server in which the J2EE server has
been upgraded from version 9 or earlier.

Maintenance and
Migration Guide

10.3.3

1. Application Server Functionality

Security Management Guide 31

2 Security Management with the Application Server

This chapter describes the functionality and methods for managing security with the application
server. Based on the contents of this chapter, determine which functionality or method to use in order
to establish the desired grade or level of security.

Security Management Guide 32

2.1 Organization of this chapter

The application server offers the functionality to manage system security. By using this functionality appropriately for
your purpose, you can build and operate a system that meets your security needs.

The table below shows how the chapter is organized.

Table 2‒1: Organization of this chapter (Security Management with the Application Server)

Part Title Relevant
information

Description Measures for ensuring security 2.2

Details about the methods and functionality for ensuring security 2.3

Notes Notes about using the methods and functionality for ensuring security 2.4

Note: This chapter does not include information on implementation, setup, or operation.

2. Security Management with the Application Server

Security Management Guide 33

2.2 Measures for ensuring security

To ensure security with the application server, you should take the measures outlined in the following sections:

• Realizing a system configuration that will ensure security

• Operating the system securely

• Preventing unauthorized users from accessing the system

• Ensuring communication path security

• Preventing invalid processing

• Taking other actions

2.2.1 Realizing a system configuration that will ensure security
Properly install security hardware or software on the system to prevent unauthorized access to the system from
the outside.

By using a firewall, you can control access between the external and internal networks. You can prevent unauthorized
access from the external network by pre-specifying the clients to be granted access to the system and then enabling or
disabling communication according to the established rules. In addition, by using intrusion detection system (IDS), you
can monitor the communication lines and, based on the communication pattern, detect and prevent unauthorized access.

If you deploy reverse proxy server, you can prevent malicious clients from directly accessing a Web server that contains
important content. The reverse proxy server can receive requests from clients and access the Web server.

If communication path security is ensured through the use of encryption, SSL accelerator can handle the encryption and
decryption processes, avoiding placing any load on the Web server and application server.

2.2.2 Operating the system securely
You can ensure security by operating properly the system after you build it.

Before the system operates, determine which users should be able to operate it, what information should be managed,
and how the system should be physically arranged.

To operate the system properly in accordance with your wishes, prepare procedure manuals as necessary and then check
whether the system runs correctly.

2.2.3 Preventing unauthorized users from accessing the system
(authentication functionality)

To safely manage information handled by the system and ensure security, you should prevent unauthorized users from
accessing the system. Authentication functionality is effective for this purpose.

The application server offers the following authentication functionality:

• User login authentication through the integrated user management framework

2. Security Management with the Application Server

Security Management Guide 34

This functionality uses integrated management of information about users who log into the system to enable multiple
applications to be accessed with a single login.

• Web container-based authentication by <security-constraint> element setup
This functionality uses a Web container to allow only authorized users to access a given application. Information for
authentication is defined by using the <security-constraint> element in the DD file (web.xml).

• EJB container-based authentication by <security-identity> element setup
This functionality uses an EJB container to allow only authorized users to access a given application. Information
for authentication is defined by using the <security-identity> element in the DD file (ejb-jar.xml)
or cosminexus.xml.
The method of execution, specified using the <method-permission> element, can be controlled depending on
the role assigned to each user.
If you implement an EJB client application by using the application server's API, you can authenticate access from
the EJB client application.

2.2.4 Ensuring communication path security (encryption functionality)
Information encryption is an effective way to prevent information leakage on the communication path between the clients
and the application server.

The application server offers the following encryption functionality:

• Encryption with SSL
Using a Web server and J2EE server, this functionality encrypts information passed along the communication path.

• SOAP message encryption with the Web Services Security functionality
Web Services Security allows you to encrypt SOAP messages sent and received via the Web service and assign an
XML signature to SOAP messages.

2.2.5 Preventing invalid processing
To prevent invalid processing from being executed on the J2EE server, you can use J2EE server runtime protection
provided by the SecurityManager functionality of Java SE.

J2EE server runtime protection enables prevention of the following phenomena:

• The entire J2EE server terminates abnormally due to an invalid servlet or EJB that internally
issues System.exit().

• The J2EE server executes abnormally due to an invalid servlet or EJB that rewrites system properties
without permission.

Note that J2EE server runtime protection is enabled by default. If you do not wish to use it, specify the -nosecurity
option in the cjstartsv command that starts the J2EE server.

If you disable J2EE server runtime protection, the setSecurityManager method of java.lang.System cannot
be used. If an attempt is made to use this method, J2EE server operations might be affected adversely. Note also that
dynamic class loading cannot be used when EJB is called from a corresponding J2EE server process.

2. Security Management with the Application Server

Security Management Guide 35

2.2.6 Taking other actions
If secure communication is requested for linkage with other programs, configure the settings to meet the requirements
of the programs.

2. Security Management with the Application Server

Security Management Guide 36

2.3 Details about the methods and functionality for ensuring security

The information listed in the table below provides relevant details about the methods and functionality for the security
measures described in this chapter.

Table 2‒2: Details about the methods and functionality for ensuring security

Measure Functionality Relevant information

Realizing a system configuration that will
ensure security

-- Chapter 3, Chapter 4

Operating the system securely -- Chapter 4

Preventing unauthorized users from accessing the
system (authentication functionality)

User login authentication through the
integrated user management framework

Chapter 5

Web container-based authentication
with DD settings

6.2

Authentication with security identities 6.3

Ensuring communication path security
(encryption functionality)

SSL encryption (on the Web server) Manual HTTP Server User Guide

SSL/TLS encryption of authentication
information and data

Chapter 7

Preventing invalid processing Web container runtime protection
provided by SecurityManager

2.2.5

Taking other actions Use of an API for direct access
to load balancers, and control of
load balancers using the operation
management functionality

Chapter 8

--: Not available

2. Security Management with the Application Server

Security Management Guide 37

2.4 Notes about using the methods and functionality for ensuring security

2.4.1 About certificates
The cacerts certificates file that is provided in Application Server does not include the certificates. If you need
certificates, obtain them and then import them. For details about importing certificates, see the following sites:

Windows:
http://docs.oracle.com/javase/jp/8/docs/technotes/tools/windows/keytool.html

UNIX:
http://docs.oracle.com/javase/jp/8/docs/technotes/tools/unix/keytool.html

2. Security Management with the Application Server

Security Management Guide 38

Part 2: System Design

3 System Configurations for Ensuring Security

This chapter describes various system configurations that can be used to ensure security in
J2EE application execution infrastructures. Using examples of system configurations, this chapter
provides information about deploying firewalls to suit different types of components and deploying
reverse proxies in a DMZ.

Security Management Guide 39

3.1 Organization of this chapter

This chapter describes various system configurations for ensuring security. The table below shows how the chapter
is organized.

Table 3‒1: Organization of this chapter (System Configurations for Ensuring Security)

Part Title Relevant
information

Description System configurations using a firewall 3.2

Deployment of reverse proxies in a DMZ 3.3

Note: This chapter does not include information on implementation, setup, operation, or precautions.

3. System Configurations for Ensuring Security

Security Management Guide 40

3.2 System configurations using a firewall

This section describes system configurations that employ a firewall to ensure security.

It shows the positions of firewalls to suit different types of components that serve as access points. For information about
other security concepts, see 4. Considerations in the Design of a Secure System.

3.2.1 Deployment of a firewall for servlets and JSPs
The following is an example of a system configuration that provides access to a servlet and JSP via a firewall.

(1) System configuration features
In this configuration, the firewall is installed before the servlet and JSP as seen from the Web clients.

The figure below shows this configuration. Note that this configuration is for Web server integration.

Figure 3‒1: Example configuration providing access to a servlet and JSP via a firewall

For other examples, see 3.2 Description of the system configuration in the uCosminexus Application Server System
Design Guide.

Features
Because access to the servlet and JSP goes through the firewall, this system prevents unauthorized third party access
to the system, leakage of information handled by applications, and illegal operation by third parties.

Access from the clients
Access to the servlet and JSP from all the clients goes through the firewall.

3. System Configurations for Ensuring Security

Security Management Guide 41

(2) Machine software required and processes to be activated
When using the firewall, the necessary software and processes to be activated on the application server machine and client
machine are the same as those for system configurations that use servlets and JSPs as access points.

For details about a configuration that uses servlets and JSPs as access points, see the following sections:

• 3.4.1 Configuration with servlets and JSPs as access points (for Web server integration), in the uCosminexus
Application Server System Design Guide

• 3.4.2 Configuration where servlets and JSPs are used as access points (when accessing the NIO HTTP server
directly) in the uCosminexus Application Server System Design Guide

3.2.2 Deployment of a firewall for Session and Entity Bean
The following is an example of a system configuration that provides access to Session and Entity Bean via a firewall.

(1) System configuration features
In this configuration, the firewall is installed before the Session and Entity Bean as seen from the EJB clients.

The figure below shows this configuration.

Figure 3‒2: Example configuration providing access to Session and Entity Bean via a firewall

For other examples, see 3.2 Description of the system configuration in the uCosminexus Application Server System
Design Guide.

Features
Because access to the Session and Entity Bean goes through the firewall, this system prevents unauthorized third
party access to the system, leakage of information handled by applications, and illegal operation by third parties.

Access from the clients
Access to the Session and Entity Bean from all EJB clients goes through the firewall.

3. System Configurations for Ensuring Security

Security Management Guide 42

(2) Machine software required and processes to be activated
When using the firewall, the necessary software and processes to be activated on the application server machine and
client machine are the same as those for system configurations that use Session and Entity Bean as access points. See
3.4.3 Configuration with Session Beans and Entity Beans as access points in the uCosminexus Application Server System
Design Guide.

3.2.3 Firewall deployment with Resource Manager
The following is an example of a system configuration that provides access to Resource Manager via a firewall.

(1) System configuration features
In this configuration, the firewall is installed before Resource Manager as seen from the application.

The figure below shows this configuration.

Figure 3‒3: Example configuration providing access to Resource Manager via a firewall

For other examples, see 3.2 Description of the system configuration in the uCosminexus Application Server System
Design Guide.

Features
Because access to Resource Manager goes through the firewall, this system prevents unauthorized third party access
to the system, leakage of information handled by Resource Manager, and illegal operation by third parties.

Access from the clients
Requests from Web browsers on client machines are sent via the Web server to the servlet and JSP. The servlet and
JSP call the Session Bean locally. Access to the database from the Session Bean goes through the firewall.

(2) Machine software required and processes to be activated
Activate the software and processes that are appropriate for transaction usage. For details, see 3.6 Determining the
transaction type in the uCosminexus Application Server System Design Guide.

3. System Configurations for Ensuring Security

Security Management Guide 43

3.3 Deployment of reverse proxies in a DMZ

This section describes system configurations that involve a reverse proxy deployed in a DMZ to ensure security.

If your system is connected to the Internet, refer to the system configuration details provided here to deploy a
reverse proxy.

Note that this section provides information about deploying reverse proxies that are suitable for various types of Web
servers that may be used. For information about other security concepts, see 4. Considerations in the Design of a
Secure System.

3.3.1 Deployment of reverse proxies
This section describes a configuration that uses a NIO HTTP server and a reverse proxy.

To use a NIO HTTP server in a system that connects to the internet, always prepare a demilitarized zone (DMZ) in which
a reverse proxy is deployed. Standard configuration examples are shown later.

(1) System configuration features
In this configuration, the reverse proxy server is deployed in a DMZ between the Web browsers and the application server.

The following figure shows an example of a configuration that uses a NIO HTTP server with a reverse proxy deployed
in a DMZ.

Figure 3‒4: Example of a configuration that uses a NIO HTTP server with a reverse proxy deployed
in a DMZ

For other examples, see 3.2 Description of the system configuration in the uCosminexus Application Server System
Design Guide.

3. System Configurations for Ensuring Security

Security Management Guide 44

Features
• Only the reverse proxy server accesses the application server, preventing direct access to it from Web browsers.

• Usually, the reverse proxy does not store static content such as HTML.

Flow of requests
Access to the servlet and JSP from the clients goes through the Web server containing the reverse proxy module.

A load balance cluster can be used for load balancing by using a load balancer (layer 5 switch) for the reverse proxy server
and the application server.

The next figure shows an example load balance cluster configuration with reverse proxies deployed in a DMZ.

Figure 3‒5: Example of a configuration that uses NIO HTTP servers with reverse proxies deployed
in a DMZ (in the case of a load-balancing cluster configuration)

For other examples, see 3.2 Description of the system configuration in the uCosminexus Application Server System
Design Guide.

3. System Configurations for Ensuring Security

Security Management Guide 45

Features
• Only the reverse proxy servers access the application servers, preventing direct access to them from

Web browsers.

• Usually, the reverse proxies do not store static content such as HTML.

• Scalability and availability can be ensured by distributing the load between the reverse proxy server and the
application server.

Flow of requests
Access to servlets and JSPs from the client goes through the first load balancer, the Web servers containing the reverse
proxy modules, and then the second load balancer.
For access from Web browsers, the first load balancer distributes the load between the two reverse proxy servers. For
access from the reverse proxy servers, the second one distributes the load between the two application servers. The
second load balancer also manages HTTP session such as affinity or sticky.

Note that when using HTTPS, you need to install an SSL accelerator in front of the first load balancer.

(2) Machine software required and processes to be activated
The following section describes the software and processes required for the machines.

(a) Reverse proxy server machines
Install Cosminexus HTTP Server on the reverse proxy server machines.

The process shown below should always be activated.

• Web servers

Each Web server should incorporate a reverse proxy module.

(b) Application server machines, management server machine, and client machine
The necessary software and processes to be activated on the application server machines, the management server
machine, and the client machine are the same as those for system configurations that use a servlet and JSP as access
points. For details, see 3.4.2 Configuration where servlets and JSPs are used as access points (when accessing the NIO
HTTP server directly) in the uCosminexus Application Server System Design Guide.

3. System Configurations for Ensuring Security

Security Management Guide 46

4 Considerations in the Design of a Secure System

In order to ensure that a business system is running safely and that the data it handles is protected, it
is necessary to consider security thoroughly during the system design phase. This chapter describes
how to approach the design of the system and what procedures and audit methods are necessary
and appropriate in order to configure and operate a secure system.

It also describes how to clarify the security threats to be expected when the system uses an external
network and how to use hardware and software to protect against such threats.

Refer to this chapter when the system is executing J2EE applications. This chapter does not apply
to systems that execute batch applications.

Security Management Guide 47

4.1 Organization of this chapter

This chapter describes how to approach the design of the system and what procedures and audit methods are necessary
and appropriate in order to configure and operate a secure system. The table below shows how the chapter is organized.

Table 4‒1: Organization of this chapter (Considerations in the Design of a Secure System)

Part Title Relevant
information

Description Overview of considerations in the design of a secure system 4.2

Considering the configuration of a secure system 4.3

Considering the users of the system 4.4

Considering the resources handled by the system 4.5

Checking the preconditions for a secure system 4.6

Analyzing expected threats 4.7

Considering countermeasures 4.8

Considering work procedures 4.9

Checking how to audit the system 4.10

Considering the security of systems that use external networks 4.11

Note: This chapter does not include information on implementation, setup, operation, or precautions.

4. Considerations in the Design of a Secure System

Security Management Guide 48

4.2 Overview of considerations in the design of a secure system

A system is expected to encounter various security threats. Such threats might come in the course of its configuration and
operation in the hands of the users who manage or operate it. They might also come in the course of end-users' use of the
services the system provides. To protect the system against such threats, it is necessary to implement countermeasures
such as designing a physically secure system and establishing operation rules for workers.

Recent years have seen an increase in the importance of internal control within organizations, from the perspectives of
ensuring healthy organizational operations and safely configuring and operating increasingly complicated and diverse
IT systems. Internal control requires an organization to prove to Auditors that it maintains the security of its systems. To
achieve this, it is necessary to log the operations performed on the system, including who performed the operations and
when, and to provide an auditing mechanism to verify that the operations were properly performed by employees who
are duly authorized to use the system.

To implement such a secure system, it is necessary to clarify expected threats during system design and consider a system
in which appropriate countermeasures against the threats can be implemented.

This chapter describes the points that must be considered during system design. It clarifies expected system threats and
then describes how to approach the design of the system and what procedures are necessary in order to configure and
operate a secure system.

Considering the design of a secure system involves the steps shown in the following flowchart.

Figure 4‒1: Flow of considerations in the design of a secure system

4. Considerations in the Design of a Secure System

Security Management Guide 49

This figure shows a work flow for ensuring the security of a system that is used within a company. For details about
countermeasures against external threats, see 4.11 Considering the security of systems that use external networks.

4. Considerations in the Design of a Secure System

Security Management Guide 50

4.3 Considering the configuration of a secure system

This section describes the configuration for a secure system. In its consideration of a secure system, this manual makes
the following assumptions:

• The system is running continuously and is used within a large company.

• All system components are deployed on an internal LAN.

• A user uses a Web browser from an internal client terminal to use services provided by the system.

• To use services from such a client terminal, the user is required to log in. A user who is not registered in the system
cannot use a service.

The figure below shows the configuration of the system.

Figure 4‒2: Secure system configuration

These system components are described below. For the definitions of System administrator, System operator, Auditor,
and end-user that appear in the following description, see 4.4 Considering the users of the system.

Server area
This area is a physically isolated space used to manage hardware. The hardware within the server area is managed
by the System administrator. Only the System administrator, the System operators, and the Auditor are allowed to
enter the server area.

Application (AP) servers
An application server is a machine running a Web server, a service-providing J2EE application, and a server program
necessary to run the J2EE application. Multiple application servers are installed in the server area, and the load
between the servers is balanced by a load balancer.

Database
This is a database machine that stores user information and information processed by services. It is installed in the
server area.

Audit log server
The audit log server collects audit logs for auditing. Only the Auditor can use this server. It is installed in the
server area.

4. Considerations in the Design of a Secure System

Security Management Guide 51

Management server
The management server is a machine running a management program that manages the application servers. It is used
by the System administrator to configure the system and by System operators to operate the system. It is installed in
the server area.

Load balancer
The load balancer is a machine that is used to balance load if multiple application servers are installed. It is installed
in the server area.

Firewall
Firewalls are installed between the server area, the internal LAN, and the external Internet.

Client terminal
A client terminal is used to access the services provided by the system. An end-user uses a Web browser on a client
terminal to access an application server via an internal LAN.

4. Considerations in the Design of a Secure System

Security Management Guide 52

4.4 Considering the users of the system

To consider a secure system, define the system users first. Clarify which users are expected to access the system and
clearly define the purpose and scope of work for each user. This will provide a base for verifying whether a given
operation is performed by an authorized user who is permitted to carry out that operation -- one of the objectives of
system auditing.

The work procedures of each user must be defined by preparing work procedure documents. Such work procedure
documents might include System Setup Procedure, System Operating Procedure, End-User Operating Procedure, and
Entry and Exit Procedure documents. For a description of considerations for work procedure documentation, see 4.9
Considering work procedures.

For this example system, the following users are defined:

System administrator
The System administrator is responsible for configuring and managing the system according to a System Setup
Procedure document. Specifically, the System administrator mainly performs the following types of work:

• Installing and configuring hardware, software, and networks within the server area

• Updating software

• Starting and stopping the system

A user selected from the Information Systems department of the company serves as the System administrator.

System operator
System operators are responsible for operational work within the server area, including registration and deletion
of end-users, according to a System Operating Procedure document. Users entrusted by the Information Systems
department of the company serve as System operators.

End-user
End-users access system-provided services according to an End-User Operating Procedure document. End-users
access services via a Web browser on a client terminal connected to an internal LAN.

Auditor
The Auditor is responsible for entering and exiting the server area to collect audit logs according to an Entry
and Exit Procedure document. The Auditor examines the collected audit logs and verifies whether the system has
been configured in the appropriate manner by a trusted System administrator in accordance with the System Setup
Procedure document. The Auditor also verifies whether the system is operated and used in the appropriate manner
in accordance with the System Operating Procedure and End-User Operating Procedure documents. A user selected
from the Compliance department of the company responsible for internal auditing serves as the Auditor.

4. Considerations in the Design of a Secure System

Security Management Guide 53

4.5 Considering the resources handled by the system

When approaching the design of a secure system, it is necessary to clearly determine what types of resources or data
handled by the system need to be protected.

For the example system given in this section, it is determined that, among the types of resources or data handled by the
system, the following need to be protected:

• User information of system administrators

• User information of end-users

• Configuration files used for system configuration

• J2EE applications

• Information sent by end-users and processed by J2EE applications during service use

• Audit logs

For those resources determined to require protection, it is necessary to take some measures including access permission
control. For details about such measures, see 4.8 Considering countermeasures.

4. Considerations in the Design of a Secure System

Security Management Guide 54

4.6 Checking the preconditions for a secure system

This section describes the preconditions for a secure system.

To build a secure system, it is necessary to check the preconditions regarding hardware installation methods and workers.
After getting a grasp of such preconditions, use the functions provided by the application server and the OS to implement
countermeasures against expected threats.

This section assumes the following two types of preconditions:

• Physical preconditions

• Operational preconditions

4.6.1 Physical preconditions
The physical preconditions to be met in configuring a secure system are described below.

• The hardware running the system, the firewall, the servers, and the internal network should be installed within a server
area that is physically isolated from the outside.

• Appropriate controls such as entry and exit management should be applied to prevent non-authorized users from
entering the server area.

• No hardware or software that is not necessary for running the system should be allowed to be brought into the
server area.

4.6.2 Operational preconditions
The operational preconditions to be met in configuring a secure system are described below.

Operational preconditions include those for work procedure document, system management, system operation, and
system auditing. These preconditions are described below.

Preconditions for work procedure documents
Procedures for the configuration, management, and operation of the system should be described in the System Setup
Procedure, System Operating Procedure, and End-User Operating Procedure documents respectively.

Preconditions for system management
The hardware, software, and J2EE applications that are necessary within the server area to run the system should be
configured and set up by the System administrator in accordance with the System Setup Procedure document. The
System administrator should be selected from among trusted staff.

Preconditions for system operation
The hardware, software, and J2EE applications that are necessary within the server area to run the system should be
operated by the System operators.

Preconditions for system auditing
The Auditor who audits the system should be selected from among trusted staff.

4. Considerations in the Design of a Secure System

Security Management Guide 55

4.7 Analyzing expected threats

This section analyzes the threats that can be expected for the system, based on the information examined in 4.4
Considering the users of the system and 4.5 Considering the resources handled by the system, and checked in 4.6
Checking the preconditions for a secure system.

Threats expected for the system are as follows.

• Service use by an unauthorized user
An end-user who is not registered in the system is able to use a service.

• Service use by a user who does not follow the procedure document
An end-user who obtains a user ID and password registered in the system might not follow the End-User Operating
Procedure document, and exploit a vulnerability in the system in order to use a service.
Also, a user registered in the system might use a service that he or she is not authorized to use.

• System configuration by an unauthorized System administrator
A user who is not a System administrator might enter the server area and configure the system illegally and without
following the Entry and Exit Procedure document.

• System operation by an unauthorized System operator
A user who is not a System operator might enter the server area and operate the system illegally and without following
the Entry and Exit Procedure document.

• System operation by a System operator who does not follow the procedure document
A user might use the Management Server management user account of a System operator and operate the system in
a manner that does not comply with the System Operating Procedure document.

To protect the system against these threats, implement the countermeasures described in 4.8
Considering countermeasures.

For details about the Entry and Exit Procedure, System Setup Procedure, System Operating Procedure, and End-User
Operating Procedure documents, see 4.9 Considering work procedures.

4. Considerations in the Design of a Secure System

Security Management Guide 56

4.8 Considering countermeasures

This section describes the countermeasures that should be implemented and the behavior of the system when these
countermeasures are implemented.

Countermeasures to be implemented are classified into the following two types:

• Countermeasures to be implemented against preconditions
This type of measure is for dealing with the preconditions checked in 4.6 Checking the preconditions for a
secure system.

• Countermeasures to be implemented against expected threats
This type of measure is for dealing with the expected threats described in 4.7 Analyzing expected threats.

The following subsection describes these types of measures.

4.8.1 Countermeasures to be implemented against preconditions
This subsection describes countermeasures to be implemented against the preconditions checked in 4.6 Checking the
preconditions for a secure system.

The table below shows the preconditions checked in 4.6 Checking the preconditions for a secure system and the
countermeasures to be implemented.

Table 4‒2: Preconditions and countermeasures to be implemented

Precondition type Countermeasure

Physical preconditions • Physical countermeasures

Operational preconditions • Measures for the System administrator
• Measures for System operators
• Measures for the System auditor

These countermeasures are outlined below.

(1) Countermeasures for physical preconditions
The countermeasures for physical preconditions are as follows.

• Physical countermeasures

• The System administrator should install the hardware running the system, the firewall, the servers, and the
internal network within a server area that is physically isolated from the outside.

• The System administrator should not bring into the server area any hardware or software that is not necessary for
running the system.

• The System administrator, System operator, and Auditor should enter and exit the server area in accordance with
the Entry and Exit Procedure document.

For details about the Entry and Exit Procedure document, see 4.9 Considering work procedures.

4. Considerations in the Design of a Secure System

Security Management Guide 57

(2) Countermeasures for operational preconditions
The countermeasures for operational preconditions are described below.

• Measures for the System administrator

• For the position of System administrator, a trusted user who will be responsible for the entire system and will not
conduct malicious acts should be selected.

• The System administrator should be trained about system configuration and management and should be familiar
with system configuration and management methods. The System administrator also should be familiar with
methods for configuring and managing the hardware that will be used in the system.

• The System administrator should configure and manage the system, taking security precautions
into consideration.

• The System administrator should set difficult-to-guess, highly secure OS and Management Server management
passwords for him or herself and for the System operators.

For details about the System Setup Procedure document, see 4.9 Considering work procedures.

• Measures for System operators

• The System operators should be trained in system operation and be familiar with system operation methods.

• The System operators should take security precautions into consideration when operating the system.

• The System operator should set difficult-to-guess, highly secure passwords for end-users.

For details about the System Operating Procedure document, see 4.9 Considering work procedures.

• Measures for the System auditor

• For the position of Auditor, a trusted user who will be responsible for the entire system and will not conduct
malicious acts should be selected.

• The Auditor should be a user who is not a System administrator.

• The Auditor should verify the validity of the system setup procedures. The Auditor also audits the validity of the
operating procedures.

4.8.2 Countermeasures to be implemented against expected threats
This subsection describes countermeasures to be implemented against the expected threats described in 4.7 Analyzing
expected threats.

The table below shows the threats expected for the system, and countermeasures against them for each target user type.
For details about these threats, see 4.7 Analyzing expected threats.

Table 4‒3: Expected threats and countermeasures to be implemented

Target user Threat Countermeasure

System administrator System configuration by an unauthorized
System administrator

• OS-based user identification and authentication

System operator System operation by an unauthorized
System operator

• OS-based user identification and authentication
• User identification and authentication for

System operators

System operation by the System operator, not in
compliance with the procedure document

• System audit log output
• J2EE application audit log output

4. Considerations in the Design of a Secure System

Security Management Guide 58

Target user Threat Countermeasure

End-user Service use by an unauthorized user • J2EE application audit log output
• J2EE application-based user identification

and authentication

Service use by a user who does not follow the
procedure document

• J2EE application audit log output
• J2EE application-based access control

These countermeasures are outlined below.

Measures for the System administrator
• OS-based user identification and authentication

Configure user identification and authentication on the OS running the system to control command execution
permissions so that the system can only be managed by the System administrator.

Measures for System operators
• OS-based user identification and authentication

Configure user identification and authentication on the OS running the system to control command execution
permissions so that the system can be operated by a System operator.

• User identification and authentication of System operators
Configure user identification and authentication on the system so that the system can be operated by the
System operator.

• System audit log output
In order to audit whether the system has been operated in accordance with the relevant procedure documents,
output system audit logs.

• J2EE application audit log output
In order to audit whether end-users have been managed in accordance with the relevant procedure documents,
use the audit log output API provided by the application server to implement J2EE applications and output J2EE
application audit logs. For details about how to implement a J2EE application using the audit log output API, see
Chapter 6 in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

Measures for end-users
• J2EE application audit log output

In order to audit whether authorized end-users have used services in accordance with the relevant procedure
documents, use the audit log output API provided by the application server to implement J2EE applications and
output J2EE application audit logs. For details about how to implement a J2EE application using the audit log
output API, see Chapter 6 in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

• J2EE application-based user identification and authentication
Implement user identification and authentication for J2EE applications so that services can only be used by
authorized end-users.

• J2EE application-based access control
Implement access control for J2EE applications so that protected data can only be accessed by end-users who
have access permission.

4.8.3 Secure system behavior with the countermeasures implemented
This subsection describes the behavior of a secure system with the countermeasures implemented.

4. Considerations in the Design of a Secure System

Security Management Guide 59

The figure below outlines the behavior of the system when the countermeasures are implemented. Each countermeasure
shown in this figure corresponds to one described in 4.8.2 Countermeasures to be implemented against expected threats.

Figure 4‒3: System administrator operations and system behavior

The behavior of a system in which the countermeasures shown in this figure are implemented is described below for each
user type.

(1) System administrator and System operator operations, and system
behavior

The operations of the System administrator and System operator and the system behavior are outlined below.

System administrator's operations
• Uses Smart Composer functionality commands to configure the application server. However, for setup work for

J2EE applications, resources, etc., server management commands are used.

• Deploys and starts the application in which the user identification and authentication functions, the access control
function, and the audit log function are implemented.

4. Considerations in the Design of a Secure System

Security Management Guide 60

System operator's operations
Uses Smart Composer functionality commands to operate the system. However, for log collection in the case of an
error, the snapshotlog command is used.

System behavior
Creates an audit log entry for each operation performed by the execution of a command.

Tip

Some commands do not create an audit log entry. Before using a command, check whether it creates an audit
log entry. For details about the commands that create audit log entries, see Chapter 6 in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide.

(2) End-user operations and system behavior
System (J2EE application) behavior and end-user operations for using system-provided services are outlined below.

End-users' operations
Uses a Web browser on a client terminal to send an HTTP request to the application server.

System (J2EE application) behavior
• Identifies the user information included in the HTTP request to authenticate the user.

• Uses the Access Control function to check whether the authenticated user has permissions.

• Executes the J2EE application service in accordance with the requests permitted by the Access Control function.

• Compiles an audit log during processing.

4. Considerations in the Design of a Secure System

Security Management Guide 61

4.9 Considering work procedures

This section describes the work procedures to be considered for each system in order to configure and operate a
secure system.

To configure and operate a secure system, it is necessary to clarify the work procedures to be performed by each
type of worker. In system auditing, audit logs are compared with the relevant work procedure documents to check for
consistency. A work procedure document is a written document that describes the authorized procedures and methods
for work such as configuring or operating the system or for service use by end-users. A work procedure document needs
to be prepared for each system. Checking audit logs, which are records of workers and operations, against the relevant
work procedure documents helps to clarify whether authorized workers have performed operations in accordance with
the authorized methods and procedures. This helps to maintain the security of the system.

To prepare each work procedure document, it is necessary to consider what work needs to be included in the document,
as well as the work procedure and method. From the point of view of auditing, clarify what work needs to be specified
so that the work is done by an authorized user in accordance with an authorized procedure and method. Also, specify in
each work procedure that a command that creates an audit log entry must be used to perform the work.

4.9.1 Overview of work procedure documents to be prepared
This subsection outlines the work procedure documents that need to be prepared.

The work procedure documents to be prepared depend on the system. For this system the following work procedure
documents are prepared.

• Entry and Exit Procedure document
This document specifies the entry and exit management procedures for entering and exiting the server area.

• System Setup Procedure document
This document specifies the procedures for configuring the system. Procedures to be written should be based on those
described in 4.9.2 Considering the system setup procedures and 4.9.3 Considering the system re-setup procedures.
To perform the operations in the procedures described in 4.9.2 Considering the system setup procedures and
4.9.3 Considering the system re-setup procedures, the System administrator uses Smart Composer functionality
commands and server management commands. In addition, commands that create an audit log entry should be used
for all operations.

• System Operating Procedure document
This document specifies the procedures for operating the system. Procedures to be written should be based on those
described in 4.9.4 Considering system operating procedures.
To perform the operations in the procedures described in 4.9.4 Considering system operating procedures, the System
operator uses Smart Composer functionality commands and the snapshotlog command.

• End-user Operating Procedure document
This document specifies the procedure for using services provided by the system.

4.9.2 Considering the system setup procedures
This subsection gives examples of the system setup procedures to be written in the System Setup Procedure document.
When preparing a System Setup Procedure document, refer to these sample procedures.

4. Considerations in the Design of a Secure System

Security Management Guide 62

To set up a secure system, Smart Composer functionality commands and server management commands are used. In
addition, commands that create an audit log entry should be used for all operations. When adding an operation other
than those described here to the work procedure document, use commands that create audit log entries. For details about
commands that create audit log entries, see Chapter 6 in the uCosminexus Application Server Operation, Monitoring,
and Linkage Guide.

Note that all procedures described in this section are to be performed by the System administrator.

(1) Installing hardware
Hardware should be installed by the System administrator. The procedure for installing hardware is as follows:

1. Enter the server area, which is physically isolated from the outside, in accordance with the Entry and Exit
Procedure document.

2. Install the hardware for running the system and a firewall within the server area.

In the System Setup Procedure document, include detailed procedures for installing the hardware and the firewall.

(2) Installing the OS
The OS to be used on the system should be installed by the System administrator. The procedure for installing the OS
is as follows:

1. Install the OS and configure the settings necessary for network connection, including the IP address and host
name settings.

2. Apply the necessary security patches to the system.

3. Install the software necessary for the system and set the environment variables.

4. Create an OS account for the System administrator and assign administrator privileges to the account.

5. Create an OS account for the Auditor and use a secure means to notify the Auditor of the account.

(3) Starting system management
The System administrator logs into the OS using the System administrator account created in step (2) Installing the OS.

(4) Configuring settings for audit log output
On the management server and application server terminals, the System administrator configures the audit log output
settings. The procedure for configuring the audit log output settings is as follows:

1. Decide the size of the audit log file, based on the system configuration.

2. Assign the System administrator and System operator permission to read and write to the audit log file. Also, assign
the Auditor permission to read the audit log file.

3. Update the audit log definition file (auditlog.properties) using the information determined or set in steps 1
and 2.

4. Create the audit log output directory specified in the audit log definition file.

4. Considerations in the Design of a Secure System

Security Management Guide 63

5. Assign the System administrator and System operator permission to read and write to the audit log output directory
created in step 4. Also, assign the Auditor permission to read the audit log output directory created in step 4.

6. Execute the setup command (auditsetup command).

(5) Configuring the load balancer and database
The System administrator should install the load balancer and database within the server area and configure the machines.

In the System Setup Procedure document, include detailed procedures for configuring the load balancer and database.

(6) Configuring the management server
The System administrator should initialize the management server. The procedure for configuring the management
server is as follows:

1. In the mngsvrctl command, specify the argument setup to set up Management Server, and then configure the
management user account for Management Server.

2. In the mngautorun command, specify the argument server and the -sync option to configure Management
Server to start automatically.

(7) Defining the configuration of the Web system
The System administrator should define the configuration of the Web system. The procedure for defining the
configuration of the Web system is as follows:

1. In the mngsvrctl command, specify the argument start and the -sync option to start Management Server.

2. Edit and save the Easy Setup definition file.

3. In the adminagentctl command, specify the -sync option to start Administration Agent on each
application server.

4. On the management server, use the cmx_build_system command to set up the Web system.

(8) Preparing the Web system
The System administrator should use the appropriate Smart Composer functionality commands on the administrator
terminal of the management server to prepare the Web system. The procedure for preparing the Web system is as follows:

1. Use the cmx_start_target command to set the Web system to the standby state.

2. Use the cmx_list_status command to confirm that the service unit in the Web system is in the standby state.

(9) Configuring the resource adapter
The System administrator should use server management commands on the administrator terminal of the management
server to configure the resource adapter that is necessary for applications to link with the database. The procedure for
configuring a resource adapter is as follows:

1. From the following directory, copy a Connector property file template for the resource adapter to be used.

4. Considerations in the Design of a Secure System

Security Management Guide 64

In Windows
Cosminexus-installation-directory\CC\admin\templates\

In UNIX
/opt/Cosminexus/CC/admin/templates/

2. Edit the Connector property file template copied in step 1.

3. Use the cjimportres command to import the resource adapter.

4. Use the cjsetresprop command to incorporate the edited contents of the Connector property file into the
resource adapter.

5. Use the cjdeployrar command to deploy the resource adapter.

6. Use the cjtestres command to test the resource adapter connection.

(10) Verifying the J2EE application
The System administrator should verify that the countermeasures described in 4.8.2 Countermeasures to be implemented
against expected threats are implemented in the J2EE application. The countermeasures to be verified are as follows:

• J2EE application audit log output

• J2EE application-based user identification and authentication

• J2EE application-based access control

Specifically, confirm that the J2EE application meets the following specifications:

• Provides the capability for the System operator to register and delete the user IDs and passwords of end-users.

• Provides the capability to identify and authenticate user IDs and passwords.

• Provides the capability to control access to the services it provides.

• Provides the capability to create entries in the audit log when a user is using its services.

(11) Configuring the J2EE application
The System administrator should use server management commands on the administrator terminal of the management
server to configure the J2EE application. The procedure for configuring the J2EE application is as follows:

1. Use the cjimportapp command to import the J2EE application.

2. Use the cjgetappprop command to obtain the application integrated property file.

3. Edit the application integrated property file obtained in step 2.

4. Use the cjsetappprop command to incorporate the edited contents of the application integrated property file into
the J2EE application.

Important note

This describes how to configure a J2EE application without runtime information. To configure a J2EE
application that contains runtime information, after importing the J2EE application in step 1, use the
cjstopapp command to stop the J2EE application, and then proceed to step 2.

4. Considerations in the Design of a Secure System

Security Management Guide 65

(12) Starting the Web system
The System administrator should use the appropriate Smart Composer functionality commands and server management
commands on the administrator terminal of the management server to start the Web system. The procedure for starting
the Web system is as follows:

1. Use the cjstartrar command to start the resource adapter.

2. Use the cjstartapp command to start the J2EE application.

3. Use the cmx_start_target command to set the service unit within the Web system to a running state.

(13) Disabling unnecessary functions
To prevent unauthorized users from using an unnecessary function, disable it. Specifically, the System administrator
should change the command execution permissions or delete the files that are necessary to execute the command. The
table below shows the functions that need to be disabled for Windows and UNIX respectively.

Table 4‒4: Functions that need to be disabled (for Windows)

Function name Target directory Target file Action

Cosminexus HTTP Server
function for GUI
server management

Cosminexus-installation-
directory\httpsd

adm-httpsd.exe Deny execution permission to any user
other than the System administrator.

Cosminexus HTTP Server
command for editing
password files

Cosminexus-installation-
directory\httpsd\bin

htpasswd.exe Deny execution permission to any user
other than the System administrator.

CTM function for changing
the number of concurrent
schedule queues

Cosminexus-installation-
directory\CTM\bin

ctmchpara.exe Deny execution permission to any user
other than the System administrator.

CTM function for displaying
and deleting CTM
domain information

Cosminexus-installation-
directory\CTM\bin

ctmdminfo.exe Deny execution permission to any user
other than the System administrator.

CTM function for blocking
schedule queues

Cosminexus-installation-
directory\CTM\bin

ctmholdque.exe Deny execution permission to any user
other than the System administrator.

CTM function for outputting
version information on
executable files and libraries

Cosminexus-installation-
directory\CTM\bin

ctmjver.exe Deny execution permission to any user
other than the System administrator.

CTM function for editing
and outputting messages

Cosminexus-installation-
directory\CTM\bin

ctmlogcat.exe Deny execution permission to any user
other than the System administrator.

CTM function for outputting
schedule queue information

Cosminexus-installation-
directory\CTM\bin

ctmlsque.exe Deny execution permission to any user
other than the System administrator.

CTM function for
unblocking schedule queues

Cosminexus-installation-
directory\CTM\bin

ctmrlesque.exe Deny execution permission to any user
other than the System administrator.

CTM function for
editing and outputting
operating statistics

Cosminexus-installation-
directory\CTM\bin

ctmstsed.exe Deny execution permission to any user
other than the System administrator.

CTM function for forced
output of buffer contents to
a file

Cosminexus-installation-
directory\CTM\bin

ctmstsflush.exe Deny execution permission to any user
other than the System administrator.

4. Considerations in the Design of a Secure System

Security Management Guide 66

Function name Target directory Target file Action

CTM function for outputting
version information on
executable files and libraries

Cosminexus-installation-
directory\CTM\bin

ctmver.exe Deny execution permission to any user
other than the System administrator.

PRF function for editing
and outputting performance
analysis trace information

Cosminexus-installation-
directory\PRF\bin

cprfed.exe Deny execution permission to any user
other than the System administrator.

PRF function for forced
output of buffer contents to
a file

Cosminexus-installation-
directory\PRF\bin

cprfflush.exe Deny execution permission to any user
other than the System administrator.

PRF function for displaying
and changing trace
acquisition levels

Cosminexus-installation-
directory\PRF\bin

cprflevel.exe Deny execution permission to any user
other than the System administrator.

Commands used by
Management Server

Cosminexus-installation-
directory\manager\bin

mngsvrutil.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

mstrexport.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

mstrimport.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

ssoexport.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

ssogenkey.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

ssoimport.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

uachpw.exe Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\bin

mngsvr_adapter_se
tup.exe

Avoid use of the command.

Cosminexus-installation-
directory\manager\bin

Adapter_HITACHI_C
OSMINEXUS_MANAGER
.exe

Deny execution permission to any user
other than the System administrator.

Cosminexus-installation-
directory\manager\externals\
jp1\mngsvrmonitor

mngsvr_monitor_se
tup.exe

Avoid use of the command.

Management portal Cosminexus-installation-
directory\manager\containers
\m\webapps\mngsvr

index.jsp Delete the file.

Cosminexus-installation-
directory\manager\containers
\m\webapps\mngsvr

login.jsp Delete the file.

Table 4‒5: Functions that need to be disabled (for UNIX)

Function name Target directory Target file Action

Cosminexus HTTP Server
function for GUI
server management

/opt/hitachi/httpsd/sbin adminctl Deny execution permission to any user
other than the System administrator.

/opt/hitachi/httpsd/sbin adm-httpsd Deny execution permission to any user
other than the System administrator.

4. Considerations in the Design of a Secure System

Security Management Guide 67

Function name Target directory Target file Action

Cosminexus HTTP Server
command for editing
password files

/opt/hitachi/httpsd/bin htpasswd Deny execution permission to any user
other than the System administrator.

CTM function for changing
the number of concurrent
schedule queues

/opt/Cosminexus/CTM/bin ctmchpara Deny execution permission to any user
other than the System administrator.

CTM function for displaying
and deleting CTM
domain information

/opt/Cosminexus/CTM/bin ctmdminfo Deny execution permission to any user
other than the System administrator.

CTM function for blocking
schedule queues

/opt/Cosminexus/CTM/bin ctmholdque Deny execution permission to any user
other than the System administrator.

CTM function for outputting
version information on
executable files and libraries

/opt/Cosminexus/CTM/bin ctmjver Deny execution permission to any user
other than the System administrator.

CTM function for editing
and outputting messages

/opt/Cosminexus/CTM/bin ctmlogcat Deny execution permission to any user
other than the System administrator.

CTM function for outputting
schedule queue information

/opt/Cosminexus/CTM/bin ctmlsque Deny execution permission to any user
other than the System administrator.

CTM function for
unblocking schedule queues

/opt/Cosminexus/CTM/bin ctmrlesque Deny execution permission to any user
other than the System administrator.

CTM function for
editing and outputting
operating statistics

/opt/Cosminexus/CTM/bin ctmstsed Deny execution permission to any user
other than the System administrator.

CTM function for forced
output of buffer contents to
a file

/opt/Cosminexus/CTM/bin ctmstsflush Deny execution permission to any user
other than the System administrator.

CTM function for outputting
version information on
executable files and libraries

/opt/Cosminexus/CTM/bin ctmver Deny execution permission to any user
other than the System administrator.

PRF function for editing
and outputting performance
analysis trace information

/opt/Cosminexus/PRF/bin cprfed Deny execution permission to any user
other than the System administrator.

PRF function for forced
output of buffer contents to
a file

/opt/Cosminexus/PRF/bin cprfflush Deny execution permission to any user
other than the System administrator.

PRF function for displaying
and changing trace
acquisition levels

/opt/Cosminexus/PRF/bin cprflevel Deny execution permission to any user
other than the System administrator.

Commands used by
Management Server

/opt/Cosminexus/
manager/bin

mngsvrutil Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

mstrexport Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

mstrimport Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

ssoexport Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

ssogenkey Deny execution permission to any user
other than the System administrator.

4. Considerations in the Design of a Secure System

Security Management Guide 68

Function name Target directory Target file Action

/opt/Cosminexus/
manager/bin

ssoimport Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

uachpw Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

mngsvr_adapter_se
tup

Deny execution permission to any user
other than the System administrator.

/opt/Cosminexus/
manager/bin

Adapter_HITACHI_C
OSMINEXUS_MANAGER

Deny execution permission to any user
other than the System administrator.

Management portal /opt/Cosminexus/
manager/containers/m/
webapps/mngsvr

index.jsp Delete the file.

/opt/Cosminexus/
manager/containers/m/
webapps/mngsvr

login.jsp Delete the file.

(14) Registering the System operator
The System administrator should use OS functions and Smart Composer functionality commands on the administrator
terminal of the management server to set the user ID and password for the System operators. The System administrator
should notify the System operators of user IDs and passwords set for them. The procedure for registering System
operators is as follows:

1. Use the appropriate OS function to set the OS user ID and password for the System operator.

2. Use the appropriate OS function to deny administrator privileges to the System operator.

3. Use the cmx_admin_passwd command to replace the management user ID and password of the System
administrator on Management Server with those of the System operator.

4. Use a safe means to notify the System operator of the user ID and password set in steps 1 and 3.

4.9.3 Considering the system re-setup procedures
This subsection gives examples of the system re-setup procedures to be written in the System Setup Procedure document.
When preparing a System Setup Procedure document, refer to these sample procedures.

To perform a re-setup of a secure system, Smart Composer functionality commands and server management commands
are used. In addition, commands that create an audit log entry should be used for all operations. When adding an operation
other than those described here to the work procedure document, use commands that create audit log entries. For
details about commands that create audit log entries, see Chapter 6 in the uCosminexus Application Server Operation,
Monitoring, and Linkage Guide.

Note that all procedures described in this subsection are to be performed by the System administrator.

(1) Replacing a J2EE application
If maintenance of a J2EE application becomes necessary, the System administrator should replace the application. The
procedure for replacing a J2EE application is as follows:

1. Use the cmx_stop_target command to set the service unit within the Web system to a ready state.

4. Considerations in the Design of a Secure System

Security Management Guide 69

2. Use the cjstopapp command to stop the J2EE application to be replaced.

3. Use the cjdeleteapp command to delete the J2EE application to be replaced.

4. Use the cjimportapp command to import the replacement J2EE application.

5. Use the cjgetappprop command to obtain the integrated property file for the replacement J2EE application.

6. Edit the integrated property file obtained in step 5 and configure the settings necessary for the J2EE application.
Customize the J2EE application if necessary.

7. Use the cjsetappprop command to incorporate the integrated property file edited in step 6 into the replaced
J2EE application.

8. Use the cjstartapp command to start the replacement J2EE application.

9. Use the cmx_start_target command to set the service unit within the Web system to a running state.

In addition to this method, a J2EE application can also be replaced by using the cjreplaceapp command or the
Redeploy function, or by using the cjreloadapp command or the Reload function.

(2) Tuning the system
The System administrator should tune the system if necessary. The procedure for tuning the system is as follows:

1. Edit the Easy Setup definition file.

2. Use the cmx_stop_target command to stop the service unit within the Web system.

3. Use the cmx_build_system command to reconfigure the Web system settings.

4. Use the cmx_start_target command to start the service unit within the Web system.

(3) Reconfiguring the system (by adding a service unit)
If necessary, the System administrator should reconfigure the system by adding a service unit. The procedure for
reconfiguring the system by adding a service unit is as follows:

1. Create and edit a reconfiguration definition file.

2. Use the cmx_change_model command to change the information model of the Web system on
Management Server.

3. Use the cmx_build_system command to apply the changed information model of the Web system.

4. Use the cmx_start_target command to set the added service unit within the Web system to a ready state.

5. Use the cjstartrar command to start the resource adapter.

6. Use the cjstartapp command to start the J2EE application.

7. Use the cmx_start_target command to set the added service unit within the Web system to a running state.

4. Considerations in the Design of a Secure System

Security Management Guide 70

(4) Reconfiguring the system (by removing a service unit)
If necessary, the System administrator should reconfigure the system by deleting a service unit. The procedure for
reconfiguring the system by removing a service unit is as follows:

1. Use the cmx_stop_target command to stop the service unit within the Web system to be removed.

2. Use the cmx_delete_system command to remove the service unit within the Web system specified in step 1.

4.9.4 Considering system operating procedures
This subsection gives examples of the system operating procedures to be written in the System Operating Procedure
document. When preparing a System Operating Procedure document, refer to these sample procedures.

To operate a secure system, Smart Composer functionality commands and the snapshotlog command are used. When
adding an operation other than those described here to the work procedure document, use commands that create audit log
entries. For details about commands that create audit log entries, see Chapter 6 in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide.

Among the tasks described here, certain tasks involving starting the Web system and non-Web system maintenance work
should be performed by a System operator. Web system maintenance should be performed by the System administrator
when so requested by a System operator.

(1) Starting the Web system
The Web system on the administrator terminal of the management server should be started by a System operator.
However, the resource adapters and J2EE applications should be started by the System administrator, using server
management commands. The procedure for starting the Web system is as follows:

1. The System operator uses the cmx_start_target command to set the service unit within the Web system to a
ready state.

2. The System operator requests the System administrator to start services.

3. The System administrator uses the cjstartrar command to start the resource adapters.

4. The System administrator uses the cjstartapp command to start the J2EE application.

5. The System operator uses the cmx_start_target command to set the service unit within the Web system to a
running state.

(2) Stopping the Web system
The System operator should use the appropriate Smart Composer functionality commands on the administrator terminal
of the management server to stop the Web system. The procedure for stopping the Web system is as follows:

1. Use the cmx_stop_target command to set the service unit within the Web system to a stopped state.

(3) Managing end-users
The System operator should manage end-user access permissions and user IDs according to the System Operating
Procedure document. The following tasks are performed by a System operator:

4. Considerations in the Design of a Secure System

Security Management Guide 71

• Registering and deleting end-users

• Changing end-user permissions

• Changing end-user passwords

In the System Operating Procedure document, include detailed procedures for these tasks.

(4) Notifying end-users
The System operator should notify each end-user registered in (3) Managing end-users of his or her user ID and
password. The procedure for notifying an end-user of his or her user ID and password is as follows:

1. Use the user ID and password registered for the end-user in accordance with the System Operating Procedures
document to ensure the end-user can use the services.

2. Make sure that an audit log is output during service use.

3. After completing the checks in steps 1 and 2, use a safe means to notify the end-user of his or her user ID
and password.

(5) Maintaining the Web system
The Web system should be maintained as necessary. Web system maintenance should be performed by the System
administrator when so requested by the System operator. The procedure for maintaining the Web system is as follows:

1. The System operator uses the cmx_stop_target command to block or stop the service unit to be maintained.

2. To apply a fix patch to the application server, the System operator stops the application server-related programs. If
no fix patch is applied, proceed to step 3.

3. The System operator requests the System administrator to maintain the system.

4. The System administrator uses the System administrator user ID to log into the OS.

5. The System administrator applies service packs and security patches to the OS and applies fix patches to the
application server. A System operator must be in attendance while the System administrator is performing this step.

6. If a fix patch is applied to the application server, the System operator restarts the application server-related programs.

7. The System operator uses the cmx_start_target command to restart the service unit.

(6) Troubleshooting the system
If an error occurs, it should be handled by the System operator. The procedure for troubleshooting a system error is
as follows:

1. Use the snapshotlog command to collect application server logs.

2. If necessary, separately collect any logs that cannot be collected with the snapshotlog command.

3. Send the collected logs to maintenance personnel for examination.

4. Conduct system maintenance based on the examination results.

4. Considerations in the Design of a Secure System

Security Management Guide 72

4.10 Checking how to audit the system

This section describes how to audit the system.

In system auditing, the Auditor should check operation records output to audit logs against the relevant respective work
procedure documents to examine whether operations have been performed by authorized workers in accordance with the
authorized procedures.

4.10.1 Obtaining audit logs
The procedure for obtaining audit logs is as follows:

1. The Auditor enters the server area physically isolated from the outside in accordance with the Entry and Exit
Procedure document.

2. The Auditor logs into the audit log server and obtains audit logs from the machines running a variety of servers.

4.10.2 Examining audit logs
In examining the audit logs, ensure that the following points are observed:

1. A trusted System administrator has set up the system in the proper way.
Make sure that none of the times, operators, events, or results recorded in the audit logs contradicts the System Setup
Procedure document.

2. The system is set up in the proper way and is operated and used properly.
Make sure that none of the times, operators, events, or results recorded in the audit logs contradicts the System
Operating Procedure or End-User Operating Procedure documents.

For details about how to examine audit logs and messages output to audit logs, see the following manuals:

• How to examine audit logs
See Chapter 6 in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

4. Considerations in the Design of a Secure System

Security Management Guide 73

4.11 Considering the security of systems that use external networks

This section describes the security threats that can be expected with respect to systems that use external networks, and
their countermeasures.

4.11.1 Security threats that can be expected with respect to systems that
use external networks

This subsection describes the security threats that can be expected with respect to systems that use external networks.

(1) Expected security threats
If appropriate security measures are not implemented for a system that uses a network, an application might be executed
without authorization, or communications or data managed by the backend database might be leaked or altered. To
prevent such issues, ascertain the security threats and implement countermeasures against them.

In this subsection, the following security threats are assumed:

• Unauthorized third-party intrusion into the system from the outside

• Leakage of data handled by applications to a third party

• Leakage of application communications to a third party

• Third-party alteration of application communications

• Operation or information acquisition by a system user beyond the scope of permission granted to that user

This subsection discusses countermeasures against these threats from outside the system. It does not discuss threats
emanating from within the system.

(2) Possible countermeasures
The countermeasures as shown in the table below can be employed against expected security threats. For more concrete
description of each countermeasure, see the indicated reference.

Table 4‒6: Possible countermeasures against security threats

Threat Countermeasure Relevant
information

Unauthorized third-party intrusion into the system from the outside Deploy a firewall and intrusion
detection system.

4.11.2

Leakage of data handled by applications to a third party

Leakage of application communications to a third party Encrypt communication. 4.11.3#

Third-party alteration of application communications

Operation or information acquisition by a system user beyond the scope
of permission granted to that user

Authenticate users from
within applications.

4.11.4

#: To encrypt communication, HTTPS is used. The relevant information describes how to use an SSL accelerator to handle encrypted
communications in the case that HTTPS is used.

4. Considerations in the Design of a Secure System

Security Management Guide 74

4.11.2 Deploying a firewall and intrusion detection system
This subsection describes how to properly deploy and configure a firewall and intrusion detection system in order to
improve system security.

(1) Purposes of deploying a firewall and intrusion detection system
A firewall controls access between the external and internal networks. To prevent unauthorized access from an external
network, it blocks communication other than that which is permitted for predetermined clients or communications, in
accordance with predetermined rules. To use a firewall, it is therefore necessary to clarify and specify the ports or IP
addresses for which communication is permitted.

An intrusion detection system (IDS) monitors the communication line and uses communication patterns to determine
whether access is authorized.

Deploying a firewall and intrusion detection system at appropriate points and configuring them helps to protect the
system from the following security threats:

• Unauthorized third-party intrusion into the system from the outside

• Leakage of data handled by applications to a third party

This subsection describes where to deploy a firewall and intrusion detection system for each system configuration listed
in the following table and the points that need to be considered when configuring them.

Table 4‒7: Considerations for deploying a firewall and intrusion detection system for different
system configurations

System configuration Description

Basic Web client configuration This is a system configuration with a single application server. A Web browser is
a client.

Basic EJB client configuration This is a system configuration with a single application server. An EJB client
application is a client.

Configuration separating each server layer by a
firewall (application-centralized)

This is a system configuration with multiple application servers, each server layer
separated by a firewall. All applications run on the same application server layer.

Configuration separating each server layer by a
firewall (application-distributed)

This is a system configuration with multiple application servers, each server layer
separated by a firewall. Applications run on different application server layers.

When connecting the system to the Internet, we recommend you consider a configuration that uses a reserved DMZ and
a reverse proxy so that no application server on the internal network can be directly accessed from external networks.

(2) Basic Web client configuration
This section describes where to deploy a firewall and intrusion detection system for a basic Web client configuration with
a single application server.

When viewed from the network, the firewall should be deployed in front of the application server. In this configuration,
a Web client on the network can only access the application server via the firewall.

The figure below shows an example of a firewall and intrusion detection system deployment for a basic Web
client configuration.

4. Considerations in the Design of a Secure System

Security Management Guide 75

Figure 4‒4: Example firewall and intrusion detection system deployment for a basic Web client
configuration

(a) Configuring the application server
For the application server, configure the following settings:

• Specifying the address of the communication port for J2EE server management
Specify the address at which the J2EE server management communication port can be accessed.

• Specifying the addresses of Management Server and Administration Agent
Specify the addresses at which Management Server and Administration Agent can be accessed.

(b) Configuring the firewall
To control access between external networks and the Web server (Cosminexus HTTP Server) within the application
server, configure the following settings:

• Permitting access from external networks to the Web server
For communication between networks external to the firewall and the application server, only permit access to a
public port such as HTTP/80 or HTTPS/443. Depending on the system configuration, permit access to a different
communication port such as for DNS as necessary.

• Limiting access based on the IP addresses of Web clients (optional)
System users can be identified by specifying the IP addresses of Web clients for which firewall function-based access
is permitted. In this case, specify the IP addresses for which communication through the firewall is permitted.

• Specifying the communication ports of Management Server and Administration Agent
Block communication to the communication ports for Management Server and Administration Agent so that they
cannot be accessed from the outside the firewall. If these ports can be accessed, an external non-administrator user
might perform an unauthorized operation on the application server.

(c) Configuring the intrusion detection system
To monitor communication between external networks and a public port on the Web server (Cosminexus HTTP Server)
within the application server, configure the following settings:

• Communication monitoring
Configure communication monitoring to issue an alert to an administrator or equivalent if communication contains
a known or suspected attack pattern. The linkage function between the intrusion detection system and the firewall
can be configured to automatically block suspect communications.

4. Considerations in the Design of a Secure System

Security Management Guide 76

• Monitoring for attacks against established SSL connections
Basically, HTTPS-based communication cannot be monitored because it is encrypted. In this case, monitor for
attacks against an established SSL connection that follow known HTTPS attack patterns.

• Monitoring of communication to non-public ports
If communication is sent from external networks to a non-public port on the application server, it might be that the
firewall has been broken into, for example, due to a configuration error. We recommend you configure the system
to issue an alert if such an event occurs.

(3) Basic EJB client configuration
This section describes where to deploy a firewall and intrusion detection system for a basic EJB client configuration with
a single application server.

When viewed from the network, the firewall should be deployed in front of the application server. In this configuration,
an EJB client on the network can only access the application server via the firewall.

The figure below shows an example of a firewall and intrusion detection system deployment for a basic EJB
client configuration.

Figure 4‒5: Example firewall and intrusion detection system deployment for a basic EJB client
configuration

(a) Configuring the application server
For the application server, configure the following settings:

• Specifying the address of the communication port for J2EE server management
Specify the address at which the J2EE server management communication port can be accessed.

• Specifying the addresses of Management Server and Administration Agent
Specify the addresses at which Management Server and Administration Agent can be accessed.

• Fixing the port numbers for access from the EJB client
Configure the following port numbers so that the EJB client can communicate with the ports to use the
application server:

• CORBA naming service
The port number is usually fixed. (The default port is 900.)

• EJB container

4. Considerations in the Design of a Secure System

Security Management Guide 77

Because the port number used by EJB containers is not fixed, it is necessary to explicitly specify and fix the port
number to be used by EJB containers. For details about port numbers that can be specified, see 3.15 TCP/UDP
port numbers used by Application Server processes in the uCosminexus Application Server System Design Guide.

• Specifying the communication ports of Management Server and Administration Agent
When specifying the communication ports for Management Server and Administration Agent, we recommend you
do not use public ports so that they cannot be accessed from the outside of the firewall. If these ports can be accessed,
an external non-administrator user might perform an unauthorized operation on the application server.

(b) Configuring the firewall
To control access between external networks and the application server, configure the following settings:

• Permitting access from external networks to the application server
For communication between networks external to the firewall and the application server, only permit access to public
ports such as those fixed for CORBA naming services or EJB containers. Depending on the system configuration,
permit DNS or other communication as necessary.

• Limiting access based on the IP addresses of clients (optional)
System users can be identified by specifying the IP addresses of clients for which firewall function-based access is
permitted. In this case, specify the IP addresses for which communication through the firewall is permitted.

• Specifying the communication ports of Management Server and Administration Agent
Block communication to the communication ports for Management Server and Administration Agent so that they
cannot be accessed from the outside the firewall. If these ports can be accessed, an external non-administrator user
might perform an unauthorized operation to the application server.

(c) Configuring the intrusion detection system
To monitor communication between external networks and a public port on the application server, configure the
following settings:

• Communication monitoring
Configure communication monitoring to issue an alert to an administrator or equivalent if communication contains
a known or suspected attack pattern. The linkage function between the intrusion detection system and the firewall
can be configured to automatically block suspect communications.

• Monitoring for attacks against established SSL connections
Basically, HTTPS-based communication cannot be monitored because it is encrypted. In this case, monitor for
attacks against an established SSL connection that follow known HTTPS attack patterns.

• Monitoring of communication to a non-public port
If communication is sent from external networks to a non-public port on the application server, it might be that the
firewall has been broken into, for example, due to a configuration error. We recommend you configure the system
to issue an alert if such an event occurs.

(4) Configuration separating each server layer by a firewall (application-
centralized)

Depending on the scale of the system, a single system might consist of multiple application servers and other servers. In
such a configuration, it is necessary to ensure security at each layer.

This section describes a configuration in which Web, application, and database servers are arranged into different
layers, with all applications running on the same application server layer. This type of configuration is called an
application-centralized configuration.

4. Considerations in the Design of a Secure System

Security Management Guide 78

The figure below shows an example of a firewall and intrusion detection system deployment for an application-
centralized configuration. In this configuration, a total of three firewalls are deployed, one for each server layer. In the
DMZ, a Web server with a built-in reverse proxy module (reverse proxy server) is deployed.

Figure 4‒6: Firewall and intrusion detection system deployment in an application-centralized
configuration

To reduce the number of firewalls, for example, to cut costs, a configuration as shown in the figure below is possible.
In this example, firewall 2 is removed by consolidating the access controls to be performed by firewalls 1 and 2 into
firewall 1.

4. Considerations in the Design of a Secure System

Security Management Guide 79

Figure 4‒7: Configuration with reduced firewalls

In this configuration, include the settings for firewall 2 into those for firewall 1.

(a) Configuring the application server
For the application server, configure the following settings:

• Specifying the address of the communication port for J2EE server management
Specify the address at which the J2EE server management communication port can be accessed.

• Specifying the addresses of Management Server and Administration Agent
Specify the addresses at which Management Server and Administration Agent can be accessed.

(b) Configuring each firewall
This configuration uses the following three firewalls:

• Firewall 1
This firewall controls access between external networks and the Web server (reverse proxy server) in the DMZ.

• Firewall 2
This firewall controls access between the Web server (reverse proxy server) in the DMZ and the application server
on the internal network.

• Firewall 3
This firewall controls access between the application server and the database server.

Settings to be configured for each firewall are as follows.

• Configuring firewall 1
Firewall 1 is used to control access between external networks and the Web server (reverse proxy server) in the DMZ.
Configure the following settings:

4. Considerations in the Design of a Secure System

Security Management Guide 80

• Permitting access from external networks to the Web server (reverse proxy server)
For communication from networks external to firewall 1 to the Web server that is inside the application server,
only permit access to public ports, such as HTTP/80 or HTTPS/443. Depending on the system configuration,
permit DNS or other communication as necessary.

• Limiting access by the IP addresses of Web clients (optional)
System users can be identified by specifying the IP addresses of Web clients for which firewall function-based
access is permitted. In this case, specify the IP addresses for which communication to firewall 1 is permitted.

• Configuring firewall 2
Firewall 2 is used to control access between the Web server and the application server. Configure the
following settings:

• Permitting access from the Web server (reverse proxy server) in the DMZ to the Web server that is inside the
application server on the internal network
For communication from networks external to firewall 2 (DMZ) to the Web server that is inside the application
server, only permit access to public ports, such as HTTP/80 or HTTPS/443. Depending on the system
configuration, permit DNS or other communication as necessary.

• Limiting access based on the IP addresses of Web clients (optional)
System users can be identified by specifying the IP addresses of Web clients for which firewall function-based
access is permitted. In this case, specify the IP address of the reverse proxy server.

For other communication settings, permit access as appropriate according to the particular system configuration. It
might be necessary to permit DNS communication, etc.

Reference note

If a firewall is deployed between the Web server and the application server running the J2EE server, it is
necessary to configure the following settings:

• Permitting access from the Web server to the application server
This setting permits communication with the web server communication port on the J2EE server. This
port is used to receive requests from the NIO HTTP server. The default port number is 8008.

• Configuring firewall 3
Firewall 3 is used to control access between the application server and the database. This firewall serves as the last
line of defense to protect the most important information in the system.
Configure the following settings:

• Permitting access from the application server to the database server
For communication from the application server to the database server, only permit access to a communication
port for the database server. The communication port for the database server should be set up in accordance with
the relevant settings for the database to be used. Note that it might be necessary to establish a connection from
the database server to the application server.

For other communication settings, permit access as appropriate according to the particular system configuration. It
might be necessary to permit DNS communication, etc.

(c) Configuring the intrusion detection system
To monitor communication between external networks and the public port for the Web server that is inside the application
server, configure the following settings:

• Communication monitoring

4. Considerations in the Design of a Secure System

Security Management Guide 81

Configure communication monitoring to issue an alert to an administrator or equivalent if communication contains
a known or suspected attack pattern. The linkage function between the intrusion detection system and the firewall
can be used to automatically block suspect communications.

• Monitoring for attacks against established SSL connections
Basically, HTTPS-based communication cannot be monitored because it is encrypted. In this case, monitor for
attacks against an established SSL connection that follow known HTTPS attack patterns.

• Monitoring of communication to non-public ports
If communication is sent from external networks to a non-public port on the application server, it might be that the
firewall has been broken into, for example, due to a configuration error. We recommend you configure the system
to issue an alert if such an event occurs.

(5) Configuration separating each server layer by a firewall (application-
distributed)

This section describes a configuration in which Web, application, and database servers are arranged into different
layers and all applications are run on different application server layers. This type of configuration is called an
application-distributed configuration.

The figure below shows an example of a firewall and intrusion detection system deployment for an application-
distributed configuration. In this example, the Web applications run on the same layer as the Web server because the
machine serving as the Web server also serves as an application server. Enterprise Bean runs on the application server
that is set up on a separate machine from the Web server.

Administration is performed by instances of Management Server deployed on each host. Therefore, a management host
is deployed to each layer.

In this configuration, a total of four firewalls are deployed: one in front of the DMZ and one for each server layer. In the
DMZ, a Web server with a built-in reverse proxy module (reverse proxy server) is deployed.

4. Considerations in the Design of a Secure System

Security Management Guide 82

Figure 4‒8: Firewall and intrusion detection system deployment in an application-distributed
configuration

(a) Configuring the Web/application server
For the application server machine that also serves as a Web server (Web/application server), configure the settings as
shown below. Note that this application server machine also runs Web applications.

• Specifying the address of the communication port for J2EE server management
Specify the address at which the J2EE server management communication port can be accessed.

• Specifying the addresses of Management Server and Administration Agent
Specify the addresses at which Management Server and Administration Agent can be accessed.

(b) Configuring the application server
For the application server running Enterprise Bean, configure the following settings:

• Specifying the address of the communication port for J2EE server management
Specify the address at which the J2EE server management communication port can be accessed.

• Specifying the addresses of Management Server and Administration Agent
Specify the addresses at which Management Server and Administration Agent can be accessed.

4. Considerations in the Design of a Secure System

Security Management Guide 83

• Fixing the port number to be used by EJB containers
It is necessary to explicitly specify and fix the port number to be used by EJB containers.
For details about port numbers that can be specified, see 3.15 TCP/UDP port numbers used by Application Server
processes in the uCosminexus Application Server System Design Guide.

(c) Configuring each firewall
This configuration uses a total of four firewalls:

• Firewall 1
This firewall controls access between external networks and the Web server (reverse proxy server) in the DMZ.

• Firewall 2
This firewall controls access between the Web server (reverse proxy server) in the DMZ and the Web/application
server on the internal network.

• Firewall 3
This firewall controls access between the Web/application server and the application server.

• Firewall 4
This firewall controls access between the application server and the database server.

Settings to be configured for each firewall are as follows.

• Configuring firewall 1
Firewall 1 is used to control access between external networks and the Web server (reverse proxy server) in the DMZ.
Configure the following settings:

• Permitting access from external networks to the Web server (reverse proxy server)
For communication from networks external to firewall 1 to the Web server that is inside the application server,
only permit access to public ports, such as HTTP/80 or HTTPS/443. Depending on the system configuration,
permit DNS or other communication as necessary.

• Limiting access based on the IP addresses of Web clients (optional)
System users can be identified by specifying the IP addresses of Web clients for which firewall function-based
access is permitted. In this case, specify the IP addresses for which communication to firewall 1 is permitted.

• Configuring firewall 2
Firewall 2 is used to control access between external networks and the Web/application server on the internal
network. Configure the following settings:

• Permitting access from the Web server (reverse proxy server) in the DMZ to the Web server that is inside the
application server
For communication from networks external to firewall 1 to the Web server that is inside the application server,
only permit access to public ports, such as HTTP/80 or HTTPS/443. Depending on the system configuration,
permit DNS or other communication as necessary.

• Limiting access based on the IP addresses of Web clients (optional)
System users can be identified by specifying the IP addresses of Web clients for which firewall function-based
access is permitted. In this case, specify the IP address of the reverse proxy server.

• Configuring firewall 3
Firewall 3 is used to control access between the Web/application server and the application server. Configure the
following settings:

• Permitting access from the Web/application server to the application server

4. Considerations in the Design of a Secure System

Security Management Guide 84

So that the Web/application server can use the J2EE server in the application server, permit communication to
the following port numbers:

CORBA naming service
The port number is usually fixed. (The default port is 900.)

EJB container
Because the port number used by EJB containers is not fixed, it is necessary to explicitly specify and fix the port
number to be used by EJB containers.
For details about port numbers that can be specified, see 3.15 TCP/UDP port numbers used by Application Server
processes in the uCosminexus Application Server System Design Guide.

• Permitting bidirectional access for transaction-related communication (if a global transaction is using
transaction-context propagation)
If a global transaction is using transaction-context propagation between the Web/application server and
the application server, configure the following ports for bidirectional communication for both of the
application servers:

Communication port for J2EE server transaction recovery (The default port is 20302.)
Smart agent communication port (The default port is 14000.)

• Other settings (optional)
Depending on the system configuration, permit DNS and other communication as necessary.

• Configuring firewall 4
Firewall 4 is used to control access between the application server and the database. This firewall serves as the last
line of defense to protect the most important information in the system.
Configure the following settings:

• Permitting access from the application server to the database server
For communication from the application server to the database server, only permit access to a communication
port for the database server. The communication port for the database server should be set up in accordance
with the relevant settings for the database to be used. Note that it might be necessary to establish a connection
from the database server to the application server. Depending on the system configuration, permit DNS or other
communication as necessary.

(d) Configuring the intrusion detection system
To monitor communication between external networks and the public port for the Web server within the application
server, configure the following settings:

• Communication monitoring
Configure communication monitoring to issue an alert to an administrator or equivalent if communication contains
a known or suspected attack pattern. The linkage function between the intrusion detection system and the firewall
can be used to automatically block suspect communications.

• Monitoring for attacks against established SSL connections
Basically, HTTPS-based communication cannot be monitored because it is encrypted. In this case, monitor for
attacks against an established SSL connection that follow known HTTPS attack patterns.

• Monitoring of communication to non-public ports
If communication is sent from external networks to a non-public port on the Web/application server, it might be that
the firewall has been broken into, for example, due to a configuration error. We recommend you configure the system
to issue an alert if such an event occurs.

4. Considerations in the Design of a Secure System

Security Management Guide 85

4.11.3 Using an SSL accelerator to process encrypted communication
This subsection describes how to use an SSL accelerator to process encrypted communication.

(1) The purpose of using an SSL accelerator
When considering security threats, one way to prevent leakage of application communication to third parties and
alteration of such communication is the use of communication encryption. Using HTTPS for communication is one
method of encryption. However, TLS/SSL-based communication, on which HTTPS is based, incurs a very high load.

An SSL accelerator is a piece of hardware dedicated to implementing HTTPS-encrypted communication processing
without placing a load on the Web or application server. The correct deployment of an SSL accelerator will help
accelerate encrypted communication without placing a load the Web or application server.

(2) Deploying an SSL accelerator
The following figure shows a configuration example using an SSL accelerator.

Figure 4‒9: Configuration using an SSL accelerator

Communications sent by the Web client over HTTPS are decrypted by the SSL accelerator, and then passed on to the
Web or application server over HTTP. Communications sent by the Web or application server over HTTP are encrypted
by the SSL accelerator, and then passed on to the Web client.

When deploying an SSL accelerator, consider the following points:

• An SSL accelerator can be used as a firewall. In such a case, treat the SSL accelerator as part of your Web or
application server.

4.11.4 Authenticating users from within applications
This subsection describes the authentication functionality available for applications to ensure security in Web
client configurations.

(1) The purpose of authenticating users from within applications
When considering security threats, authenticating users when they execute applications helps to prevent system users
from carrying out operations or acquiring information beyond the scope of the permission granted to them.

Application servers allow the use of the following three different protocols to ensure security via user authentication:

• HTTPS (Client authentication)

• HTTP (Basic authentication)

4. Considerations in the Design of a Secure System

Security Management Guide 86

• HTTP (Form authentication)

Ensure security by using one of these protocols according to your particular purpose.

(2) Comparison between application-based user authentication methods
The table below shows where user authentication is carried out for each communication protocol, as well as the
authentication engines used.

Table 4‒8: Location of user authentication for each communication protocol and authentication
engines used

Protocol used Location of authentication Authentication engine

HTTPS (Client authentication) Cosminexus HTTP Server or Microsoft IIS SSL

SSL accelerator SSL

HTTP (Basic authentication) Cosminexus HTTP Server HWS password file

LDAP repository

J2EE server (Web container) Password file

HTTP (Form authentication) J2EE server (Web container) Password file

J2EE server (integrated user management) Integrated user management password file

Database

LDAP repository

Each protocol and authentication engine has certain features. Consider these features to select a suitable authentication
method for the purpose of your system.

(a) Features of the protocols
The table below shows the features of the protocols that can be used for authentication on an application server system.

Table 4‒9: Features of the protocols

Protocol used Authentication
interface flexibility

Ease of management
from client

Network safety

HTTPS
(Client authentication)

Available functions are limited to
those provided by a Web browser.

Client certificates are required. Due to encryption, authentication
information is safe even if
eavesdropping occurs.

HTTP
(Basic authentication)

Available functions are limited to
those provided by a Web browser.

Common user name/password-
based authentication is possible.

Passwords will be leaked in plain
text or equivalent format.
Therefore, this authentication is
usually used along with the
HTTPS encryption function (for
server authentication only).

HTTP
(Form authentication)

Different functions can be
designed for each application.

Common user name/password-
based authentication is possible.

Passwords will be leaked in plain
text or equivalent format.
Therefore, this authentication is
usually used along with the
HTTPS encryption function (for
server authentication only).

4. Considerations in the Design of a Secure System

Security Management Guide 87

(b) Features of the authentication engines
The table below shows the features of the authentication engines.

Table 4‒10: Features of the authentication engines

Engine type Versatility Maintainability Effect on
system configuration

Effect on performance

Password file The format varies with the
function used.

Each server or
host has its own
user information.

No special
process is required
for authentication.

Faster because no process
or host communication
occurs for authentication.

Database Depending on the
format, an existing user
information database can
be used.

User information
management can
be centralized.

A database server
is required to store
user information.

It takes additional time
to access the database
for authentication.

LDAP repository Depending on the
format, an existing user
information repository can
be used.

User information
management can
be centralized,
including distributed
user information.

An LDAP-compliant
directory server is
required to store
user information.

It takes additional
time to access the
LDAP directory server
for authentication.

4. Considerations in the Design of a Secure System

Security Management Guide 88

Part 3: Description of Functions

5 Integrated User Management-
based Authentication

This chapter describes authentication using the integrated user management framework for the
integrated user management of the system on the application server.

Security Management Guide 89

5.1 Organization of this chapter

The integrated user management framework is a framework that enables application user management based on Java
Authentication and Authorization Service (JAAS) and single sign-on to multiple applications. This chapter describes
integrated user management using the integrated user management framework.

The table below shows how the chapter is organized.

Table 5‒1: Organization of this chapter (Integrated user management)

Part Title Relevant information

Description Overview of integrated user management 5.2

User authentication mechanism based on Cosminexus standard login modules 5.3

Sessions managed in integrated user management 5.4

Use of single sign-on 5.5

Use of custom login modules 5.6

Management of user information 5.7

API provided by the integrated user management framework 5.8

Implementation Implementation of user authentication based on the integrated user
management framework

5.9

Implementation of API-based user authentication 5.10

Implementation of tag library-based user authentication 5.11

Implementation of custom login module-based user authentication 5.12

Setup Procedures to set up the integrated user management function 5.13

Determination of realm names 5.14

LDAP directory server setup 5.15

Registration of user information 5.16

Creation of encryption key files (When using single sign-on) 5.17

Registration of user information (When using single sign-on) 5.18

Creating configuration files 5.19

Java VM property setup 5.20

Deployment of files 5.21

Note: This chapter does not include information on operation or precautions.

5. Integrated User Management-based Authentication

Security Management Guide 90

5.2 Overview of integrated user management

Integrated user management is the function that enables the integrated management of users who try to log into the
Cosminexus system.

To enable integrated user management, Cosminexus provides the following function.

• Integrated user management framework
This is the framework that enables integrated user management-based authentication. It provides the application
program interface based on the Java standard specification (JAAS).

5.2.1 Purpose of integrated user management
Traditionally, business systems deployed at a company manage their users in their own unique ways in order to meet the
business requirements. For example, the working hour management system identifies the employees registered in the
employee database as the system users, and the material ordering system identifies the cost management departments
as the system users. Recently, the advancement of Intranet technology eliminates the need to install system-specific
client programs, and enables users to use these business services through a Web browser. However, operation for user
authentication in accordance with the system-specific user management procedures is still necessary. For example, email
IDs, employee numbers, and department codes must be used to log into the internal email system, for working hour
management, and for material ordering services, respectively. It is difficult to provide a new service that integrates these
system services and simplifies access to them.

The integrated user management framework is a user management framework that uses JavaEE technologies to integrate
these services. The following figure shows an example of the integrated user management framework.

Figure 5‒1: Example of the integrated user management framework

5.2.2 User management and user mapping using realms
This section describes the concepts used for integrated user management: Realms and user mapping.

(1) Realms
A realm is the extent to which the same authentication policies are applied. The business service application identifies
the service users based on the service requirements. The process to identify users is generally called the authentication
process. The authentication process is categorized by the authentication mechanism to identify service users and the user

5. Integrated User Management-based Authentication

Security Management Guide 91

authentication database for the purpose intended (user authentication repository). System administrators are responsible
to determine the authentication policies, such as which authentication mechanism(s) should be used and which users
should registered in the user authentication database.

Unlike establishing the system providing a single service, it is essential to examine what authentication policies should
applied to which extent to operate the system when establishing a system providing a number of services. In the Web
system, the extent to which the same authentication policies are applied is called a realm, and the name used to identify
a realm is called the realm name. The user authenticated in a realm has an identifier (user ID) that uniquely identifies
him/her in that realm.

The applications that have the same user management requirements can be administered in a single realm. Ideally, all
the newly established services should be integrated into a single realm so that they can be easily controlled based on
the security attributes of the authenticated users. In reality, however, such systems are rare. There are many realms in
the enterprise system, such as email IDs for the internal email, employee numbers for the human resources system, and
department codes for the material ordering system, and they are separately managed.

When using Cosminexus to integrate these services, the administrators must consider the consolidation of realms by
analyzing why they are necessary. Reducing the number of realms to as few as possible can simplify management. The
following figure shows an example of realm management.

Figure 5‒2: Example of realm management

(2) User mapping between realms
The business service application asks the end user to enter the user ID and password that are used for authentication. The
authentication is kept until the user logs out. The user is then asked to enter the user ID and password each time he or
she tries to log into the application, which uses different user IDs and passwords for authentication. In short, users are
required to be authenticated to access the application that is managed in a different realm from the application that has
already authenticated them.

If all J2EE applications know how the user who has logged into a realm is handled by other realms, the user does not
need to repeatedly enter the user ID and password. To address this matter, the integrated user management framework
uses user mapping, which maps users who have logged into a realm to other realm users.

User mapping automatically authenticates the user who has been authenticated in a realm when the successful
authentication status is shared with other realms. To use user mapping, the Cosminexus system administrators should
map users to realms and store the mapping information in the system in advance.

In the following example of user mapping, the user who has been authenticated as USER3 in the working hour
management service is pre-mapped to the dev_3 user of the material ordering service. As a result, the user who has been
authenticated as USER3 in the working hour management service is automatically authenticated as dev_3 in the material
ordering service without login operation.

5. Integrated User Management-based Authentication

Security Management Guide 92

Figure 5‒3: Example of user mapping

5.2.3 Overview of Java Authentication and Authorization Service (JAAS)-
based user authentication

Traditionally, unique interfaces have been designed to invoke the user authentication mechanism of business systems
through the Web. The Web business services built from scratch by using JavaEE technologies have also used unique
authentication mechanisms provided by application servers. These interface differences have been a major hurdle in
integrating services. To address the hurdle, JAAS (Java Authentication and Authorization Service) 1.0 was finalized
as the Java standard user authentication specifications. It is now used as the user authentication standards for the Web
business services developed using JavaEE technologies.

(1) Association between the integrated user management framework and
individual user management

JAAS specifies the interface regarding which application sends authentication requests (API: Application Programming
Interface) and the interface that receives and processes authentication requests (SPI: Service Provider Interface). The
module that processes authentication is called the login module. The following figure shows the association between API
and SPI.

Figure 5‒4: Association between API and SPI

Cosminexus provides Cosminexus standard login modules, which perform password authentication by default. The
Cosminexus standard login modules are used to manage users of the J2EE application created with the JSP/servlet, which
uses the JAAS API.

Application developers no longer need to develop authentication modules by themselves if they use the Cosminexus
standard login modules. As modules are stackable, it is easy to add an enhanced authentication module that works
together with the Cosminexus standard login modules. If the application requires a completely unique authentication
function, the Cosminexus standard login module can be easily replaced by a custom authentication module. As a result,
application programs that use JAAS for user authentication can be effortlessly integrated by using Cosminexus.

This is called JAAS-based user management. The following figure shows an overview of JAAS-based user management.
Note that the user information repository in the figure is the repository that stores the user information needed for the
authentication process.

5. Integrated User Management-based Authentication

Security Management Guide 93

Figure 5‒5: Overview of JAAS-based user management

When the JAAS-based user management is used in accordance with the integrated user management framework, the user
mapping function can be used, which maps the user authenticated by one business service to the user of another business
service and requests authentication. When a unique user information repository is used for a business service, creating
a custom login module can implement single sign-on including that business service. The following figure shows an
overview of single sign-on with user mapping. Note that the single sign-on repository in the figure is the repository that
stores the mapping information needed for single sign-on.

Figure 5‒6: Overview of the user mapping function

(2) Overview of Cosminexus standard login modules
The Cosminexus standard login module is the LoginModule interface implementation-class contained in
the javax.security.auth.spi package. It can be used differently depending on the implemented
authentication method.

The Cosminexus standard login module has the following features.

User authentication can be done by using the existing user information (LDAP information or
database information).

The Cosminexus standard login module allows the LDAP directory server or database (RDB) to be used as the
repository that stores the user information used for user authentication.
When the LDAP directory server is used, Cosminexus specifies the DIT (Directory Information Tree) structure of the
standard user management repository. If LDAP has already been deployed, the information can be available through
simple customization. DIT is the LDAP mechanism used to manage the user and organization information in the tree
structure. For details, see 5.2.4 Management method of user information used for integrated user management.

5. Integrated User Management-based Authentication

Security Management Guide 94

Certificates or passwords can be used for authentication depending on the type of the Cosminexus standard
login module.

The user information can be referenced.
When the user authentication is successful, the information about the login user can be referenced.
JAAS specifies that Credentials must be assigned to the Subject when the user is successfully
authenticated. It also specifies the general methods used by the requesting application to reference the
authenticated user information through the java.util.set interface (getPublicCredentials and
getPrivateCredentials methods).
The Cosminexus standard login module provides the interface used to reference the user information. The user
information is specified in the form of a Credential as the object that the UserAttributes interface, provided by
Cosminexus, handles in accordance with the configuration. The application fetches this object by using the standard
interface, and obtains the user information by specifying the attribute name in the getAttribute method of the
object. Otherwise, specifying the alias can obtain the information.

Single sign-ons can be implemented.
The Cosminexus standard login module supports single sign-on.
To implement single sign-on, the LDAP directory server is needed regardless of the type of repository that manages
the user information.

5.2.4 Management method of user information used for integrated user
management

This section describes the management method of user information used for integrated user management.

Integrated user management uses LDAP or database as the repository that stores user information. In the LDAP directory
server, DIT is used to manage the user and organization information. The users and realms are managed as the DIT
entries in the LDAP directory server used in the integrated user management framework. The entry is the information
that constitutes DIT and is the node of DIT. Each entry is identified by a DN (Distinguished Name).

Cosminexus specifies the DIT structure of the standard user management repository stored in the LDAP directory server
used in the integrated user management framework. There are two types of repositories used in the integrated user
management framework:

• User information repository
This stores the user information.

• Single sign-on information repository
This stores the authentication and mapping information used by the systems to authenticate single sign-on users by
performing user mapping in the integrated user management framework.

These repositories have the directory structures as shown in the following figure.

5. Integrated User Management-based Authentication

Security Management Guide 95

Figure 5‒7: Repository DIT structure in the integrated user management framework

A description of these repositories follows:

(1) User information repository (in the LDAP directory server)
The user information used for user authentication is stored in the user information repository. The integrated user
management framework authenticates the user based on the user information stored in the user information repository of
the LDAP directory server, and then passes the authenticated user information to the application. The user authentication
library is used to reference the user information in the user information repository. The following figure shows the DIT
structure of the user information repository.

Figure 5‒8: DIT structure of the user information repository

Create a user information repository for each managed realm.

(a) Realms
Specify a JAAS-based user management realm name. The realm name must conform to the guidelines specified in the
following table:

Table 5‒2: Realm name guidelines

Type of information Meaning Grammar

Realm name The identifier that indicates the scope of user management A string of alphanumeric characters
Not case sensitive
Specify the name that can be used in the DN.

Note: A string of alphanumeric characters means a sequence of alphabetical characters (A to Z and a to z) and numbers
(0 to 9). Use ASCII characters in realm names. (The program does not check the grammar.)

5. Integrated User Management-based Authentication

Security Management Guide 96

(b) Application-specific Information
Use this repository to store the information that is specific to the application using the realm, when necessary. This does
not contain information necessary for the integrated user management framework.

(c) User authentication library base DN
This is an upper entry of the user entry belonging to the realm. Each user entry belonging to
the realm must be below this level. If the user entry is not immediately below this entry, the
com.cosminexus.admin.auth.ldap.search.scope option in ua.conf (the integrated user management
configuration file) must be changed. The information specified in this entry must also be specified in jaas.conf (the
JAAS configuration file). For details about the configuration files, see 14.2.1 jaas.conf (JAAS configuration file).

(d) User entry
This defines the user information. In the user authentication library, the attributes listed in the following table must be
contained in the user information.

Table 5‒3: Necessary attributes in user information

Attribute name Description Necessity

User ID Stores the user ID; the attribute must be a character string (such as cis). By default, the
uid attribute name is used.

Required

Password Stores the password; the attribute is binary. The values are either stored in plain text or
encrypted. If no values are specified for this attribute, the account will be invalid. By
default, the userPassword attribute name is used.

Optional

Other attributes Defined by each application Follow the application
specifications.

The user ID and password attribute names can be changed in jaas.conf (the JAAS configuration file).

(e) Notes
The directory structure of the user information repository conforms to the DIT structure recommended in the
JAAS-based user management. When a different structure is used for management, the user entry that meets the
following conditions must be created under the "user authentication library base DN".

• The user ID and password must be in the same object class.

• The password must be binary. In addition, it is recommended that the password values be encrypted. When the
values are stored in plain text, export them to an .ldif file format, encrypt the file with the convpw command,
and then register the encrypted values as the password. For details about the convpw command, see convpw
(Password encryption).

• Although the user ID and password can have the same attribute name in the multi-value format, the Cosminexus
system allows only one attribute name in one object class. If there is more than one attribute name, the one detected
first is used.

• The user ID attribute used as the user ID must be unique in the realm (at all the levels below the user information
repository base DN).

The user information repository base DN and the attribute names of the user ID and password are specified in ua.conf
(the integrated user management configuration file). To learn more about ua.conf, see 14.2.2 ua.conf (integrated user
management configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 97

(2) User information repository (in the database)
The integrated user management framework authenticates users based on the user information stored in the database. In
the database, ensure that the passwords can be retrieved based on the user IDs.

(3) Single sign-on information repository
The single sign-on information repository stores the system authentication and mapping information used to authenticate
single sign-on users. The integrated user management framework implements single sign-on by mapping users based
on the user information stored in the single sign-on information repository of the LDAP directory server. The user
information in the single sign-on information repository can be referenced by using the single sign-on library. The
following figure shows the DIT structure of the single sign-on information repository.

Figure 5‒9: DIT structure of the single sign-on information repository

(a) Single sign-on information repository base DN
This is the uppermost entry of the DIT, which manages the necessary information for single sign-on. This entry is
specified in ua.conf (the integrated user management configuration file). To learn more about ua.conf, see 14.2.2
ua.conf (integrated user management configuration file). The file is not case sensitive. The specified values are set to
the ou attribute of the standard object class, organizationalUnit.

(b) Realms
The user information is managed per realm. The realm name in the single sign-on information repository is not case
sensitive. The specified values are set to the ou attribute of the standard object class, organizationalUnit.

(c) User entry
This is the entry used to store the user authentication information and destination used for user management and the
applications that can be accessed via single sign-on. The following figure shows the user entry structure.

Figure 5‒10: User entry structure

Administration identifier
This is the identifier that is automatically set when a user entry is registered in the single sign-on library.

5. Integrated User Management-based Authentication

Security Management Guide 98

User ID
A unique user ID is specified for each realm by using a character string. The user ID is case sensitive.

Encrypted data
This stores the data that needs to be encrypted at the time of registration. For example, the password is encrypted
when stored in this attribute.

Non-encrypted data
This stores the necessary information for authentication other than the user ID and the encrypted data that does not
need to be encrypted. For example, the user group ID is stored here.

DN of the user entry of the application with user management
This stores the destination (DN) of the user authentication information of the application with user management,
which the user can access via single sign-on. It can have more than one value.

5.2.5 Validity period of user authentication and the inheritance of
authentication states

The validity period of JAAS user authentication is from when the login method succeeds to when the logout method
is invoked.

The J2EE Web application uses the HttpSession object to control virtual sessions with the users. To handle a number
of HTTP protocol communications as a series of sessions, it is necessary to associate the HttpSession object with the
requesting user by modifying the cookie or the URL in the Web application.

In the integrated user management framework, the successful user authentication status is stored in the HttpSession
object. If a request uses the same HttpSession object and is made in the same realm, the end user can skip entering the
user authentication information (user ID and password), as the authentication information entered at the first login and
the authentication state are automatically inherited.

However, this will not work when the login modules are used in the order listed in the following table. For the functional
details of each login module, see 5.3 User authentication mechanism based on Cosminexus standard login modules.

Table 5‒4: Order of use that does not allow end users to skip entering authentication information

Order of use Used login module

First login • DelegationLoginModule (when a custom login module or WebCertificateLoginModule is invoked)
• WebCertificateLoginModule
• WebSSOLoginModule (when a custom login module or WebCertificateLoginModule is invoked)

Second and subsequent logins • WebPasswordLDAPLoginModule

When the login modules are used in the order listed in the following table, the password must be stored in the
integrated user management session by the login module used at the first login so that the end user can skip entering
the authentication information at the second and subsequent logins using WebPasswordLDAPLoginModule. In addition,
the password for the second and subsequent logins using WebPasswordLDAPLoginModule must be the same as the
first login. The administrators can use jaas.conf (the JAAS configuration file) and ua.conf (the integrated user
management configuration file) to specify whether to store passwords and whether to encrypt the stored passwords. For
details about the specification method in jaas.conf, see 14.2.1 jaas.conf (JAAS configuration file). For details about
the specification method in ua.conf, see 14.2.2 ua.conf (integrated user management configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 99

Table 5‒5: Order of use that allows end users to skip entering authentication information at the
second and subsequent logins

Order of use Used login module

First login • WebPasswordLoginModule
• WebPasswordJDBCLoginModule
• WebPasswordLDAPLoginModule

Second and subsequent logins • WebPasswordLDAPLoginModule

When the stored passwords are not encrypted, they may be leaked if the memory contents used by the J2EE server are
referenced by illegal means. If the session failover functionality is active, the session information including passwords
flows throughout the network, so passwords can be intercepted. While encryption reduces the risk of password leakage,
it affects the performance. Determine whether to encrypt passwords by taking into account the security and performance
requirements. Note that the Triple DES encryption algorithm is used to encrypt passwords.

5.2.6 Integrated user management process flow
The following figure illustrates the process flow when using integrated user management.

Figure 5‒11: Process flow when using integrated user management

A description of this process is as follows:

1. A login request is sent through the Web browser.

2. The login module is invoked by the Web application to perform authentication process.

3. The Cosminexus standard login module is used to authenticate the user. The login module used for authentication
and its configuration are defined in jaas.conf (the JAAS configuration file) or ua.conf (the integrated user
management configuration file). The necessary information for authentication is retrieved from the user information
repository in the LDAP directory server or the database.

4. The authentication result is returned to the Web application.

Implementing the authentication process requires the users who set up the system and the application developers to
configure the system and develop the application.

5. Integrated User Management-based Authentication

Security Management Guide 100

What the users who set up the system must do
• Define the used login modules, repositories, and their configuration information in jaas.conf (the JAAS

configuration file) and ua.conf (the integrated user management configuration file). To implement single
sign-on, define the single sign-on parameters in ua.conf as well.

• Create the encryption key file when implementing single sign-on.

• Register the user information in the user information repository.

• If the Component Container administrators and the users in the integrated user management group use
jaas.conf (the JAAS configuration file) and ua.conf (the integrated user management configuration
file) stored under Cosminexus installation directory/manager/config in the UNIX environment, set the
appropriate access permissions in these configuration files in advance.

Use a text editor, etc., to edit jaas.conf and ua.conf.
To learn more about the integrated user management configurations, see 5.19 Creating configuration files.

What the application developers must do
• Use the JAAS API and the integrated user management API and JSP tag library provided by Cosminexus to create

the authentication process program that invokes the login modules.

• Create a custom login module to authenticate users in a specific way to the application.

• When necessary, create an implementation class to enhance passwords at the time of password authentication.

For details about implementing user authentication based on the integrated user management framework, see 5.9
Implementation of user authentication based on the integrated user management framework.

5. Integrated User Management-based Authentication

Security Management Guide 101

5.3 User authentication mechanism based on Cosminexus standard login
modules

The integrated user management framework provides the JAAS-based Cosminexus standard login modules. The
Cosminexus standard login modules allow for the integrated user management of the Cosminexus system without
creating custom authentication modules.

5.3.1 Types and functions of Cosminexus standard login modules
The Cosminexus standard login modules provided by the integrated user management framework are grouped into the
following two types:

• Login modules used to authenticate users
The following four login modules belong to this type.

• WebPasswordLoginModule
This login module uses passwords to authenticate users.

• WebCertificateLoginModule
This login module uses client certificates to authenticate users.

• WebPasswordLDAPLoginModule
This login module uses the LDAP directory server's authentication function to authenticate users.

• WebPasswordJDBCLoginModule
This login module is used when the database is already used as the user information repository.

• Login modules used to invoke custom application login modules
The following two login modules belong to this type.

• DelegationLoginModule
This login module is used to invoke custom login modules. It does not support single sign-on.

• WebSSOLoginModule
This login module is used for single sign-on. It invokes other login modules such as Cosminexus standard login
modules and custom login modules.

DelegationLoginModul is used to invoke custom login modules when single sign-on is not used.
WebSSOLoginModule is used to invoke other Cosminexus standard login modules or custom login modules
when single sign-on is used. For example, to provide single sign-on access to the application that requires password
authentication, invoke WebSSOLoginModule and then WebPasswordLoginModule from that module.

The following table lists the function of each login module.

Table 5‒6: Login module function list

Function Type

P C L J D S

Used repository LDAP directory server A A A -- -- A

Database (JDBC) -- -- -- A -- --

Authentication method X509 certificate -- A -- -- -- --

5. Integrated User Management-based Authentication

Security Management Guide 102

Function Type

P C L J D S

Password authentication A -- A#1 A -- --

Type that can
store passwords

Binary (byte []) A -- -- A#2 -- --

Character string -- -- -- A#3 -- --

Encryption algorithm
used to compare/
store passwords

Plain text A -- -- A -- --

SHA-1 A -- -- A -- --

SHA-224 A -- -- A -- --

SHA-256 A -- -- A -- --

SHA-384 A -- -- A -- --

SHA-512 A -- -- A -- --

MD5 A -- -- A -- --

Encryption
enhancement

A -- -- A -- --

Triple DES -- -- -- -- -- A

Miscellaneous Setting Principal objects A A A A -- --

Obtaining user attributes A A A -- -- --

Registering the user ID and realm name of the user logging
in the integrated user management session at the time of
login (which are removed at the time of logout)

A A A A A#4 A#4

Invoking custom login modules -- -- -- -- A A

Legend:
P: WebPasswordLoginModule
C: WebCertificateLoginModule
L: WebPasswordLDAPLoginModule
J: WebPasswordJDBCLoginModule
D: DelegationLoginModule
S: WebSSOLoginModule
A: Available
-: Not available

#1: The type that can store passwords and the encryption algorithm depend on the LDAP directory server.
#2: The mappable SQL data type can be specified in the byte [] type (VARBINARY/LONGVARBINARY).
#3: The mappable SQL data type can be specified in the String [] type (CHAR/VARCHAR/LONGVARCHAR).
#4: Registration is performed when the conditions are met.

5.3.2 WebPasswordLoginModule
WebPasswordLoginModule is the login module that performs password authentication when there is a user information
repository in the LDAP directory server.

It uses the entered user ID and password to retrieve the password from the user information stored in the LDAP
directory server.

5. Integrated User Management-based Authentication

Security Management Guide 103

To use this module, pre-specify the definition to connect to the LDAP directory server and the attribute names used to
retrieve entries (uid and userPassword) in ua.conf (the integrated user management configuration file).

WebPasswordLoginModule reads this file, obtains the user ID from HttpServletRequest to search for the password in
the LDAP directory server, and then uses the password to perform password authentication. When authentication is
successful, it returns the user attributes. The following figure shows an overview of WebPasswordLoginModule.

Figure 5‒12: Overview of WebPasswordLoginModule

5.3.3 WebCertificateLoginModule
WebCertificateLoginModule is the login module that uses the client certifications authenticated by the Web server to
authenticate users.

Important note

A Web server with SSL functionality is required to use WebCertificateLoginModule in the integrated
user management framework.

It maps the distinguished name of the user requesting authentication in the client certificate that the Web server requests
from the browser during SSL authentication to the user information repository.

5. Integrated User Management-based Authentication

Security Management Guide 104

To use this module, pre-specify the attribute names that are the user IDs in the requesting users' distinguished names in the
client certificates (cn) and the attribute names used to search the LDAP directory server (uid) in ua.conf (the integrated
user management configuration file).

WebCertificateLoginModule reads this file and uses the client certificate to perform the authentication process. It then
obtains the user ID from the client certificate and accesses the LDAP directory server. If authentication is successful, it
returns the user attributes when they are found. If no user ID in the certificate is found, FailedLoginException is returned.

The following figure shows an overview of WebCertificateLoginModule.

Figure 5‒13: Overview of WebCertificateLoginModule

5.3.4 WebPasswordLDAPLoginModule
WebPasswordLDAPLoginModule is the login module that uses the LDAP directory server's authentication function.

It tries to bind to the LDAP directory server by using the entered user ID and password. When the attempt succeeds,
authentication is successful. The following figure shows an overview of WebPasswordLDAPLoginModule.

5. Integrated User Management-based Authentication

Security Management Guide 105

Figure 5‒14: Overview of WebPasswordLDAPLoginModule

To use this module, specify the definition to connect to the LDAP directory server and the attribute names used to retrieve
entries in ua.conf (the integrated user management configuration file).

WebPasswordLDAPLoginModule reads this file and obtains the user ID from HttpServletRequest to find the user
entry DN. It then tries to bind to the LDAP directory server by using this DN and the password obtained from
HttpServletRequest. When the attempt succeeds, it returns the user attributes.

User entry search and the user ID and password used to obtain user attributes
When searching for the user entry to authenticate the user, the module uses the bind DN and password specified in
ua.conf (the integrated user management configuration file). To obtain user attributes, it uses the user entry DN
and password as the bind DN and password. To learn more about user entry search, see 5.3.8 (1) User entry search.

Notes on using the LDAP connection pool
The LDAP connection pool is used for the user entry search process only. It is not used to authenticate users or obtain
user attributes. When not searching for user entries, disable the LDAP connection pool. To learn more about the
LDAP connection pool, see 5.3.8 (2) Connection pool.

5.3.5 WebPasswordJDBCLoginModule
WebPasswordJDBCLoginModule is the login module used when the database is already used for user management.

It uses the entered user ID and password to retrieve the password from the user information stored in the database.

To use this module, specify the definition to connect to the database and the SQL used to retrieve entries (SELECT
statement) in ua.conf (the integrated user management configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 106

WebPasswordJDBCLoginModule reads this file, obtains the user ID from HttpServletRequest, uses JDBC to access to
the database and search for the password, and then uses the password to perform password authentication. The following
figure shows an overview of WebPasswordJDBCLoginModule.

Figure 5‒15: Overview of WebPasswordJDBCLoginModule

In addition, WebPasswordJDBCLoginModule references the JDBC driver classes in the login module. The available
JDBC drivers and the procedures to set up the JDBC driver are as follows.

(1) Available JDBC drivers
The following table lists the databases and JDBC drivers used by WebPasswordJDBCLoginModule.

Table 5‒7: Databases and JDBC drivers used by WebPasswordJDBCLoginModule

Database JDBC driver

HiRDB# HiRDB Type4 JDBC Driver

Oracle Oracle 11g Oracle JDBC Thin Driver

SQL Server SQL Server JDBC Driver

#: Includes HiRDB Run Time

5. Integrated User Management-based Authentication

Security Management Guide 107

(2) Procedures to set up the JDBC driver
Set the JDBC driver class in ua.conf (the integrated user management configuration file). Store the JDBC driver in
any directory, and then add that directory to the J2EE server class path. The setup procedures are as follows:

1. Enter the following items in ua.conf (the integrated user management configuration file).

• The JDBC driver class name that corresponds to the used JDBC driver

• The database and the URL to connect to that database

• Delegate database users and their passwords

The setup examples for databases are as follows: Replace the bold letters with the appropriate ones depending on the
database environment.

HiRDB:
com.cosminexus.admin.auth.jdbc.driver.0=JP.co.Hitachi.soft.HiRDB.JDBC.HiR
DBDriver
com.cosminexus.admin.auth.jdbc.conn.url.0=jdbc:hitachi:hirdb://
DBID=22200,DBHOST=hostA
com.cosminexus.admin.auth.jdbc.conn.user.0=system
com.cosminexus.admin.auth.jdbc.conn.password.0=userpass

Oracle:
com.cosminexus.admin.auth.jdbc.driver.0=oracle.jdbc.OracleDriver
com.cosminexus.admin.auth.jdbc.conn.url.0=jdbc:oracle:thin:@localhost:152
1:orcl
com.cosminexus.admin.auth.jdbc.conn.user.0=system
com.cosminexus.admin.auth.jdbc.conn.password.0=userpass

SQL Server:
com.cosminexus.admin.auth.jdbc.driver.0=com.microsoft.sqlserver.jdbc.SQLS
erverDriver
com.cosminexus.admin.auth.jdbc.conn.url.0=jdbc:sqlserver://
localhost:1433;DatabaseName=sqlserver
com.cosminexus.admin.auth.jdbc.conn.user.0=system
com.cosminexus.admin.auth.jdbc.conn.password.0=userpass

2. Store the JDBC driver JAR file in any directory of the machine running the J2EE server.

3. Enter the path of the JAR file stored in Step 2 in usrconf.cfg (the option definition file) of the J2EE server.
The setup example is as follows:
add.class.path=directory stored in Step 2/JAR file name
Note that the JAR file name depends on the database to be connected.

(3) Notes
• When using the Oracle database, specify a variable-length character string such as VARCHAR2 in the column

(USERID, etc.) of the user information table created in the database. If a fixed-length character string such as CHAR
is specified, password authentication may fail.

• The Windows authentication is not supported as the SQL Server authentication mode.

5. Integrated User Management-based Authentication

Security Management Guide 108

5.3.6 DelegationLoginModule
This login module is used to invoke custom login modules.

It delegates the authentication process to a specified custom login module. The following figure shows an overview
of DelegationLoginModule.

Figure 5‒16: Overview of DelegationLoginModule

To use this module, specify the class name of the used custom login module in jaas.conf (the JAAS configuration
file). DelegationLoginModule reads this file and instantiates the custom login module. The argument given to the
initialize method of DelegationLoginModule is passed to the custom login module.

The authentication process is delegated to the custom login module.

5.3.7 WebSSOLoginModule
This is the login module used to implement single sign-on. It invokes Cosminexus standard login modules or custom
login modules.

When a user has logged in one session, the information used for authentication in other realms (user ID, SecretData, and
PublicData) is given to the custom login module. The following figure shows an overview of WebSSOLoginModule.

5. Integrated User Management-based Authentication

Security Management Guide 109

Figure 5‒17: Overview of WebSSOLoginModule

WebSSOLoginModule reads ua.conf (the integrated user management configuration file) to obtain the custom
login module class name that corresponds to the login module identifier specified in jaas.conf (the JAAS
configuration file), and it then instantiates the custom login module. The argument given to the initialize method
of WebSSOLoginModule is passed to the custom login module.

When a user has logged into the session, the custom login module obtains the single sign-on information of the user
who logged in from the LDAP directory server specified in ua.conf. If the single sign-on information contains the
user mapping information of the destination realm, it obtains the single sign-on information of the destination user.
SecretData in the single sign-on information is decrypted by the method specified in ua.conf. WebSSOLoginModule
then enters the destination user ID, decrypted SecretData, and PublicData in sharedState (the Map object that is passed
by the initialize method to the custom login module). The parameter name used for setup is specified in ua.conf.

When no user has logged into the session, WebSSOLoginModule does not change sharedState.

The authentication process is delegated to the custom login module.

5. Integrated User Management-based Authentication

Security Management Guide 110

5.3.8 Repository access by Cosminexus standard login modules
This section describes how the Cosminexus standard login modules access the user information repository.

(1) User entry search
The following login modules use the LDAP directory server as the user information repository and can search for user
entries during authentication.

• WebPasswordLoginModule

• WebCertificateLoginModule

• WebPasswordLDAPLoginModule

ua.conf (the integrated user management configuration file) is used to specify whether to search for user entries and
the search scope. The necessity of the search depends on the DIT structure of the LDAP directory server.

Cases in which a search is not needed
To obtain the user attributes and authenticate the user, it is necessary to locate the user entry on the LDAP directory
server based on the user ID entered by the user.
If the user entry is immediately below the base DN and if the user ID is included in the user entry RDN (Relative
Distinguished Name) as shown in the following figure, the user entry DN can be composed of the base DN, the
attribute name representing the user ID and the user ID. Thus, a search is not needed. When implementing integrated
user management, it is recommended to construct a DIT structure that does not require search.

Figure 5‒18: User entry immediately below the base DN

Cases in which a search is needed
If the user ID is not included in the user entry RDN or if the user entry is not immediately below the base DN, it is
necessary to search for the user entry. When the user entry is at two or more levels below the base DN as shown in
the figure, the search scope must include all the subtrees (all the levels below the base DN).

Figure 5‒19: User entry at two or more levels below the base DN

(2) Connection pool
The Cosminexus standard login modules can use the connection pool to accelerate access to the user
information repository.

The connection pool is specified in ua.conf (the integrated user management configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 111

The following login modules can use the LDAP connection pool.

• WebPasswordLoginModule

• WebCertificateLoginModule

• WebPasswordLDAPLoginModule

• WebSSOLoginModule

The following login module can use the JDBC connection pool.

• WebPasswordJDBCLoginModule

5.3.9 Enhanced support of authentication password encryption
WebPasswordLoginModule and WebPasswordJDBCLoginModule allow password authentication even if the passwords
stored in the repository are not encrypted in SHA-2 or SHA-1 or MD5 or in plain text.

Thanks to the enhanced support of authentication password encryption, it is possible to perform password authentication
even if the passwords stored in the repository are encrypted in any non-default format. To use the enhanced support, the
application developer must create the implementation class in advance.

The login module converts the entered password in HttpServletRequest to compare it to the password obtained from
the database.

When com.cosminexus.admin.auth.jdbc.password.encrypt.ex is set in ua.conf (the integrated user management
configuration file), the module instantiates the class implementation to convert the entered password
in HttpServletRequest.

When the byte characters of the converted password completely match the password in the database, authentication is
successful. The following figure shows an overview of the enhanced support of authentication password encryption.

5. Integrated User Management-based Authentication

Security Management Guide 112

Figure 5‒20: Overview of the enhanced support of authentication password encryption

To learn more about creating the implementation class, see 5.10 Implementation of API-based user authentication.

5.3.10 Configuration file parameters used by login modules
The parameters that must be set in ua.conf (the integrated user management configuration file) depend on the used
Cosminexus standard login modules.

(1) Login modules that use the LDAP directory server
The following table lists the parameters used by the login modules that use the LDAP directory server. To learn the
meanings of the parameters, see 14.2.2 ua.conf (integrated user management configuration file).

Table 5‒8: List of parameters used by login modules that use the LDAP directory server

Parameter Module

P C S L

java.naming.provider.url A A A A

java.naming.security.principal A A A A#1

java.naming.security.credentials A A A A#1

com.cosminexus.admin.auth.ldap.basedn A A A A

com.cosminexus.admin.auth.ldap.attr.userid A A X A

com.cosminexus.admin.auth.ldap.search.userrdn A A X A#2

5. Integrated User Management-based Authentication

Security Management Guide 113

Parameter Module

P C S L

com.cosminexus.admin.auth.ldap.search.scope A A X A#3

com.cosminexus.admin.auth.ldap.attr.password A X X A#4

com.cosminexus.admin.auth.ldap.pool.enable A A A A#5

com.cosminexus.admin.auth.ldap.pool.max A A A A

com.cosminexus.admin.auth.ldap.pool.max_spare A A A A

com.cosminexus.admin.auth.ldap.pool.min_spare A A A A

com.cosminexus.admin.auth.ldap.pool.gc_interval A A A A

com.cosminexus.admin.auth.ldap.conn.retry.count A A A A

com.cosminexus.admin.auth.ldap.conn.retry.wait A A A A

com.cosminexus.admin.auth.ldap.certificate.attr.userid X A X X

com.cosminexus.admin.auth.ldap.password.encrypt A X X X

com.cosminexus.admin.auth.ldap.password.encrypt.ex A X X X

com.cosminexus.admin.auth.ldap.directory.kind X X X A

Legend:
P: WebPasswordLoginModule
C: WebCertificateLoginModule
S: WebSSOLoginModule
L: WebPasswordLDAPLoginModule
A: Available; X: Not available

#1: This parameter is necessary only when user entries are searched for. User entry search uses the bind DN and password.

#2: Set this parameter to true when user entries are searched for (they are not immediately below the base DN).

#3: Specify the subtrees that must be included in the search scope when user entries are searched for.

#4: This parameter is necessary only when user passwords are changed. Specify unicodePwd if Active Directory is used
as the LDAP directory server. Otherwise, specify userPassword.

#5: The LDAP connection pool is used only when user entries are searched for. Otherwise, set this parameter to false.
Whether or not user entries are searched for, the LDAP connection pool is not used when the LDAP directory server is
accessed for user authentication.

(2) Login modules that use a database
The following table lists the parameters used by the login module that uses the database. To learn the meanings of the
parameters, see 14.2.2 ua.conf (integrated user management configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 114

Table 5‒9: List of parameters used by the login module that uses database

Parameter Module

J

com.cosminexus.admin.auth.jdbc.driver A

com.cosminexus.admin.auth.jdbc.conn.url A

com.cosminexus.admin.auth.jdbc.conn.user A

com.cosminexus.admin.auth.jdbc.conn.password A

com.cosminexus.admin.auth.jdbc.pool.enable A

com.cosminexus.admin.auth.jdbc.pool.max A

com.cosminexus.admin.auth.jdbc.pool.max_spare A

com.cosminexus.admin.auth.jdbc.pool.min_spare A

com.cosminexus.admin.auth.jdbc.pool.gc_interval A

com.cosminexus.admin.auth.jdbc.conn.retry.count A

com.cosminexus.admin.auth.jdbc.conn.retry.wait A

com.cosminexus.admin.auth.jdbc.sql A

com.cosminexus.admin.auth.jdbc.password.type A

com.cosminexus.admin.auth.jdbc.password.encrypt A

com.cosminexus.admin.auth.jdbc.password.encrypt.ex A

Legend:
J: WebPasswordJDBCLoginModule
A: Available

5. Integrated User Management-based Authentication

Security Management Guide 115

5.4 Sessions managed in integrated user management

This section explains the sessions managed in integrated user management.

5.4.1 Types of sessions
There are the following types of sessions that relate to the integrated user management function.

• Web container-managed session (HttpSession)
Represents the HttpSession object.

• Integrated user management session
This represents the period from login to logout using the Cosminexus standard login module.
As multiple users can log into one session, the session will not become invalid unless all login users log out.
As it synchronizes with HttpSession, which is the Web container-managed session, it will become invalid when
HttpSession becomes invalid even if users are logging in.
The following two functions are used to control the integrated user management session.

• The Cosminexus standard login modules can automatically register or delete the login user IDs and realm names
during or from the session.

• Integrated user management supports the session failover functionality. When the session failover functionality
is enabled, the session failover cluster can inherit the login state. The administrators can select whether to inherit
the login state when the session failover functionality is enabled.

• Custom login module session
This represents the login user session that each application has. The concept of this session depends on the custom
login module specifications. (Generally, it represents the period from login to logout.)
The custom login modules can automatically register or delete the login user IDs and realm names to or from
the session.

5.4.2 Registration of login user IDs
This section explains the registering of the user IDs of users who log into the integrated user management session.

(1) Purpose of registering login user IDs
The purpose of registering the user IDs of users who log into the integrated user management session is as follows:

• It enables the login modules to determine if users log into the integrated user management session by checking the
<ua:notLogin> tag in the JSP tag library. In addition, specifying a realm name enables them to determine if users
log into that realm.

(2) Conditions in which to register login user IDs
The Cosminexus standard login modules that have the authentication mechanism automatically register the user IDs of
users who log into the integrated user management session.

The custom login modules register the user IDs of users in the integrated user management session if they satisfy the
following both conditions:

5. Integrated User Management-based Authentication

Security Management Guide 116

• If, in the custom login module implementation, the Principal object is associated with the Subject by the
commit method.

• If WebSSOHandler provided by the integrated user management framework is set to the LoginContext class
constructor argument.

When multiple login modules are invoked in one call, the user IDs are not registered until a user logs in by using
the Cosminexus standard login module that has the authentication mechanism or the login module that satisfies the
above conditions. When no users use such modules for log in, the user IDs are not registered in the integrated user
management session.

(3) Contents registered in the integrated user management session
Registered in the integrated user management session are realm names, user IDs, and login times.

• Realm name
This is set to the value specified by com.cosminexus.admin.auth.realm in jaas.conf
(the JAAS configuration file). A null character is assigned when this option is omitted.
com.cosminexus.admin.auth.realm must be always specified unless DelegationLoginModule is used.

• User ID
This is set to the user ID in the Principal object initially requested by the Subject after each login module's commit
method is invoked (the result returned by the getName method).

• Login time
This is set to the time when a user logs in and the user ID is registered in the integrated user management session.
The login time is registered per user.

5.4.3 Deletion of user IDs registered in the integrated user management
session

When the logout method of the LoginContext class that has the authenticated Subject is invoked, the user IDs and
realm names are automatically deleted from the integrated user management session.

5.4.4 Examples of JAAS configuration file definition
The following are examples of jaas.conf (the JAAS configuration file) definition.

(1) Example of definition using Cosminexus standard login modules
When the following definition is made in the JAAS configuration file, the user ID used when the first-executed
WebPasswordLoginModule authenticates the user is registered together with the realm name RealmA in the integrated
user management session.

Example03 {
 com.cosminexus.admin.auth.login.WebPasswordLoginModule required
 // This is to join the session
 com.cosminexus.admin.auth.realm="RealmA"
 com.cosminexus.admin.auth.ldap.r="0"
 com.cosminexus.admin.auth.ldap.w="1"
 ;

5. Integrated User Management-based Authentication

Security Management Guide 117

 com.cosminexus.admin.auth.login.DelegationLoginModule required
 com.cosminexus.admin.auth.custom.lm="my.login.MyLoginModule"
 my.login.useracctterm="acctTerm"
 ;
};

(2) Example of definition using custom login modules only
When the following definition is made in the JAAS configuration file, the user ID that is in the Principal object set by
the first executed MyLoginModule1 commit method (the getName method value) is registered in the integrated user
management session. (DelegationLoginModule registers the user ID.)

As com.cosminexus.admin.auth.realm is not specified, a null character (" ") is assigned as the realm name.

Example99 {
 com.cosminexus.admin.auth.login.DelegationLoginModule required
 // This is to join the session
 com.cosminexus.admin.auth.custom.lm="my.login.MyLoginModule1"
 ;
 com.cosminexus.admin.auth.login.DelegationLoginModule required
 com.cosminexus.admin.auth.custom.lm="my.login.MyLoginModule2"
 ;
};

If MyLoginModule1 does not set the Principal object in the Subject, the user ID in the object set by MyLoginModule2
is registered in the integrated user management session. If MyLoginModule2 also does not set the Principal object, no
user ID is registered in the integrated user management session.

For details about jaas.conf, see 14.2.1 jaas.conf (JAAS configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 118

5.5 Use of single sign-on

This section describes the use of single sign-on. Single sign-on is the function that allows users to seamlessly use multiple
systems having different user IDs once they log in.

5.5.1 Necessary procedures for single sign-on
To use single sign-on, WebSSOLoginModule is required to invoke all the custom login modules that use single sign-on
and the Cosminexus standard login modules (login modules that authenticate users).

jaas.conf (the JAAS configuration file) is used to enable single sign-on.

In the following example, WebPasswordLoginModule is used to authentication users.

AP1 {
 com.cosminexus.admin.auth.login.WebPasswordLoginModule Requisite
 com.cosminexus.admin.auth.ldap.r="3"
 com.cosminexus.admin.auth.ldap.w="2"
 com.cosminexus.admin.auth.realm=XXXcompany;
};

To use single sign-on, change the code shown in the preceding example as that is indicated in bold type and has a
background color in the following example:

AP1 {
 com.cosminexus.admin.auth.sso.login.WebSSOLoginModule Requisite
 com.cosminexus.admin.auth.ldap.r="3"
 com.cosminexus.admin.auth.ldap.w="2"
 com.cosminexus.admin.auth.realm=XXXcompany;
};

The definition of all login modules for single sign-on is active after the above modification is made and after the J2EE
server is started.

5.5.2 Application of single sign-on to existing application user
management

The conditions listed in the following table must be met to apply integrated user management single sign-on when the
existing application has already performed user management.

Table 5‒10: Necessary conditions to apply integrated user management single sign-on

Presence
of LoginModule

Condition 1 Condition 2 Applicability Method

Yes Can be modified. n/a O Use sharedState to pass
authentication information.

Cannot be modified. Authentication
information can be passed
by using sharedState.

O Modify jaas.conf (the JAAS
configuration file) for the single sign-
on library.

5. Integrated User Management-based Authentication

Security Management Guide 119

Presence
of LoginModule

Condition 1 Condition 2 Applicability Method

Authentication
information cannot
be passed by
using sharedState.

X n/a

No The login API
is available.

n/a O Create a login module.

The login API is
not available.

n/a X n/a

Legend:
O: Can be applied
X: Cannot be applied
n/a: Not applicable

Among the Cosminexus standard login modules, WebPasswordLoginModule, WebCertificateLoginModule,
WebPasswordLDAPLoginModule, and WebPasswordJDBCLoginModule (login modules that authenticate users)
support single sign-on.

5. Integrated User Management-based Authentication

Security Management Guide 120

5.6 Use of custom login modules

To perform application user authentication by using modules other than the Cosminexus standard login modules, create
custom login modules and use them with the Cosminexus standard login modules.

The custom login modules should be implemented by application developers.

5.6.1 Overview of custom login modules
Custom login modules are a class that is created to perform application user authentication by using modules other
than the Cosminexus standard login modules. This class is created by inheriting the LoginModule interface that is the
JAAS SPI.

Custom login modules should be stored in the following directories.

• Windows:
Cosminexus installation directory\manager\modules

• UNIX:
/opt/Cosminexus/manager/modules

The custom login module directories can be changed by com.cosminexus.admin.auth.custom.modules in
ua.conf (the integrated user management configuration file).

The following are notes to be aware of when storing custom login modules.

• The class in the directory that stores custom login modules is invoked by the custom login module class loader.
Thus, it cannot be directly used by the application. To enable the application to directly use this class, specify the
directory that stores custom login directories in the add.class.path key in usrconf.cfg (J2EE server option
definition file).

• Always store custom login modules in the form of .class file. Do not store all custom login modules in a JAR file.
If a class hierarchy is present, the custom login module directory must have the same class hierarchy structure.
An example is as follows.

Example: The custom login module class is my.login.MyLoginModule.

Cosminexus-installation-directory

 manager

 modules

 my

 login

 MyLoginModule.class

• To use custom login modules in the integrated user management framework, you must set the custom login modules
and the classes associated with the custom login modules in the execution environment beforehand. The JAR file
format is not supported. Set the bytecode class files.

5. Integrated User Management-based Authentication

Security Management Guide 121

5.6.2 Invocation of custom login modules
Custom login modules can be invoked by either of the following Cosminexus standard login modules:
DelegationLoginModule or WebSSOLoginModule.

• DelegationLoginModule
This is used when single sign-on is not used.

• WebSSOLoginModule
This is used when single sign-on is used.

By invoking the custom login module from the Cosminexus standard login module, the user can join the login session
managed in integrated user management. This session is different from the Web container-managed session. To learn
more about the integrated user management sessions, see 5.4 Sessions managed in integrated user management.

Custom login modules are invoked by either DelegationLoginModule or WebSSOLoginModule. When the user is
successfully authenticated by the custom login module invoked by either of these login modules, he or she automatically
joins the integrated user management session. The user ID needed to register the integrated user management session is
obtained from the Principal object associated to Subject.

To use single sign-on, WebSSOLoginModule is used when the custom login module is invoked for the second time, the
user ID that is obtained during the first join to the integrated user management session is used to obtain the necessary
authentication information from the single sign-on information repository, and the information is passed to the custom
login module. When the information stored in the repository is encrypted, it is decrypted before being passed to the
custom login module.

To learn more about implementing custom login modules, see 5.12 Implementation of custom login module-based
user authentication.

5. Integrated User Management-based Authentication

Security Management Guide 122

5.7 Management of user information

Integrated user management uses the LDAP directory server or database as the repository that manages user information.
This section describes how user information is managed in the LDAP directory server.

5.7.1 Registration of user information to the LDAP directory server
When the LDAP directory server is used, user information can be registered in the following methods.

• Use the command provided by the LDAP directory server.
Use the command provided by the LDAP directory server to register user information. Depending on the command,
bulk user registration can be done based on the definition in the ldif file.

• Use the application developed by using the integrated user management API.
Develop the application that uses user authentication and single sign-on libraries to perform user authentication.
For details about implementing user authentication based on the integrated user management framework, see 5.9
Implementation of user authentication based on the integrated user management framework.

5.7.2 Connection failover by multiplexing the LDAP directory server
Replicating and multiplexing the LDAP directory server enables the standard login modules provided in integrated
user management to automatically switch from the failed LDAP directory server to the different pre-specified LDAP
directory server, in order to reference the user and single sign-on information.

In the following example configuration, J2EE server 1 usually uses the LDAP directory server, slave1, to perform the
authentication process. When slave1 goes down, J2EE server 1 automatically switches to slave2. (It switches to slave3
if slave2 goes down.)

Figure 5‒21: Example configuration of LDAP directory server multiplexing

The J2EE server tries to access to the LDAP directory servers in the specified order. If all access attempts fail,
authentication fails.

The procedures used to determine if the LDAP directory server goes down are as follows:

5. Integrated User Management-based Authentication

Security Management Guide 123

1. The javax.naming.CommunicationException exception occurs.
This may be because the destination host denied access. For details, see the JDK documentation.

2. Execute the retry.
The retry is repeated a preset number of times.

3. When the retry fails, the LDAP directory server is deemed to go down.

If all the LDAP directory servers go down, authentication fails and the LoginException exception occurs in the caller of
the login method of the LoginContext class.

Store the LDAP directory server access settings in ua.conf (the integrated user management configuration file) and
specify at least one LDAP setting for each JAAS application in jaas.conf (the JAAS configuration file). For details
about ua.conf and the configuration file contents, see 14.2.2 ua.conf (integrated user management configuration file).

The connection failover also supports password change by using the PasswordUtil class. Password changes can be made
to the master servers in a multi-master configuration as shown in the following figure.

Figure 5‒22: Example configuration of LDAP directory server multiplexing (multi-master
configuration)

To use the connection failover, ensure that all LDAP directory servers have the same entry tree structure and
entry contents.

5. Integrated User Management-based Authentication

Security Management Guide 124

5.8 API provided by the integrated user management framework

The integrated user management framework provides JSP tag and integrated user management framework libraries.
They can be used to develop the application that invokes the authentication process. Use them when needed.

For details about the API used in the integrated user management framework, see 15. APIs Used with the Integrated User
Management Framework.

5.8.1 JSP tag library
The integrated user management framework provides the JSP tag library that enables the JSP to easily use the functions
of the integrated user management framework. Application developers (or Web designers) can develop the JSP without
worrying about the Java program-based authentication process.

When the Cosminexus standard login modules are used as the integrated user management framework login modules,
the JSP tag library is used to reference the user information.

5.8.2 Integrated user management framework libraries
The integrated user management framework is composed of the following two types of libraries:

• User authentication library
This is the JAAS-supported user management library that is used to authenticate users based on the information in
the user information repository built in the LDAP directory server, and it provides the authenticated user information
to the application.

• Single sign-on library
This is the library that is used to map users based on the user mapping information in the single sign-on information
repository to implement single sign-on.

The following figure shows the positioning of the user authentication and single sign-on libraries.

The user authentication library can alone be used for application authentication. It also can work with the single sign-on
library to authenticate mapped users.

5. Integrated User Management-based Authentication

Security Management Guide 125

Figure 5‒23: Positioning of user authentication and single sign-on libraries

5. Integrated User Management-based Authentication

Security Management Guide 126

5.9 Implementation of user authentication based on the integrated user
management framework

The integrated user management framework is the framework that implements user authentication in integrated
user management. It provides JAAS-based user authentication as the Cosminexus standard login modules. The
integrated user management framework facilitates implementation of user authentication without specially developed
authentication modules.

The integrated user management framework uses API to implement user authentication. It can also use the tag library
that facilitates the implementation of user authentication. When API or the tag library is used to implement user
authentication, a servlet or JSP is used to call the login module to perform user authentication. The invoked login module
performs authentication and then logs out.

When authentication modules other than the Cosminexus standard login modules are used, they should be created as
custom login modules. To learn more about the types of login modules and the login process flow, see 5.2.3 Overview of
Java Authentication and Authorization Service (JAAS)-based user authentication and 5.2.6 Integrated user management
process flow.

The following sections describe how API and the tag library are used to implement user authentication and the method
used to create custom login modules.

Reference note

Cosminexus provides the sample program used to check the operations of the integrated user management
framework. Follow the operation procedures stored in the following file.

Cosminexus installation directory\manager\examples\ua\index.html

5. Integrated User Management-based Authentication

Security Management Guide 127

5.10 Implementation of API-based user authentication

This section describes how API is used to implement sessions from login to logout. The following description is also
included here.

• Checking the login state

• Implementation for enhanced support of authentication password encryption

To learn more about the functionality and grammar of API provided by the integrated user management framework, see
the uCosminexus Application Server API Reference Guide.

5.10.1 Implementation of the API-based login session
When the integrated user management framework is used to authenticate users, the process must be implemented that
uses a servlet or JSP to invoke the login module at the time of login. The settings must be stored in the JAAS configuration
file to use login modules. For details about the settings in the JAAS configuration file, see 14.2.1 jaas.conf (JAAS
configuration file).

The following is an example of API-based login implementation.

<%@ page import="com.cosminexus.admin.auth.callback.WebPasswordHandler" %>
<%@ page import="javax.security.auth.login.LoginContext" %>
...
<%LoginContext lc = new LoginContext("Portal",
 new WebPasswordHandler(request, response, null, "login.html", true));
 try { lc.login(); } catch (LoginException e) { ... }
%>
...

The above example specifies to create an instance from the LoginContext class and to use the authentication module
specified in the Portal entry of the JAAS configuration file as the argument. If com.cosminexus.admin.auth.name and
com.cosminexus.admin.auth.password parameters are set in request, these parameters are used to authentication
users. Otherwise, login.html is invoked to obtain authentication information (user ID and password) based on
the user.

5.10.2 Implementation of the API-based session to obtain user IDs
After authentication is completed, the authenticated user ID is stored in the Subject as the Principal object
(java.security.Principal). The following is an example of implementing the session to obtain the user ID.

<%@ page import="javax.security.auth.Subject" %>
<%@ page import="java.security.Principal" %>
...
<%
 ...
 Subject subject = lc.getSubject();
 Principal principal = (Principal)subject.getPrincipals().iterator().next(
);
 String userid = principal.getName();

5. Integrated User Management-based Authentication

Security Management Guide 128

%>
...

The above example fetches the iterator, which stores the Principal from the Subject, converts the first value in the
iterator to the Principal object, and then uses the getName method of the Principal object to obtain the user ID.

5.10.3 Implementation of the API-based session to obtain user attributes
To obtain user attributes, it is required to specify the list of attributes that should be obtained at the time of login. The
following is an example of implementing the login process that specifies the list of user attributes.

<%@ page import="com.cosminexus.admin.auth.callback.WebPasswordHandler" %>
<%@ page import="com.cosminexus.admin.auth.AttributeEntry" %>
<%@ page import="javax.security.auth.login.LoginContext" %>
...
<%
 AttributeEntry[] attributes = new AttributeEntry[2];
 attributes[0] = new AttributeEntry("cn", "full name", null);
 attributes[1] = new AttributeEntry("employeeNumber", "employee ID", null);
 LoginContext lc = new LoginContext("Portal",
 new WebPasswordHandler(request, response, attributes, "login.html", true
));
 try { lc.login(); } catch (LoginException e) { ... }
%>
...

The above example obtains the specified attributes from the repository and assigns them to the UserAttributes object.
These objects are managed as the java.lang.Object type. The following is an example of implementation in which
the attributes obtained from the repository are assigned to the UserAttributes object.

LoginContext lc = new ... // This is to instantiate the Logi
nContext class
...
Subject subject = lc.getSubject();
Iterator it = subject.getPublicCredentials().iterator();
UserAttributes ua= (UserAttributes)it.next(); // This is to sto
re the
... // UserAttributes referen
ce in ua.

As shown below, the getAttribute method is used to obtain the attribute value in String from the
UserAttributes object.

String role = (String)ua.getAttribute("Portal Role");

The following is an example of implementing the session to obtain the user attribute by using the
getAttribute method.

<%@ page import="com.cosminexus.admin.auth.UserAttributes" %>
<%@ page import="javax.security.auth.Subject" %>
...

5. Integrated User Management-based Authentication

Security Management Guide 129

<%
 ...
 Subject subject = lc.getSubject();
 UserAttributes attrs = (UserAttributes)subject.getPublicCredentials().iter
ator().next();
 String fullname = (String)attrs.getAttribute("full name");
 String eid = (String)attrs.getAttribute("employee ID");
%>
...

5.10.4 Implementation of the session to register the successfully
authenticated subject to HttpSession

The object that inherits the java.io.Serializable interface must be assigned to HttpSession. Store the Subject
that inherits the java.io.Serializable interface in HttpSession instead of the LoginContext instance, which
was created at the time of login. The stored Subject is necessary for logout implementation. The following shows an
implementation example in which the Subject is stored in HttpSession (see the portion that is indicated in bold type and
has a background color).

<%
 LoginContext lc = new LoginContext("Portal",
 new WebPasswordHandler(request, response, null, "login.html", true));
 try {
 lc.login();
 session.setAttribute("ExampleSubject", lc.getSubject());
 } catch (LoginException e) { ... }
%>
...

To inherit the user attributes that have been associated with the Subject after login (UserAttributes) by using the
session failover functionality, the Subject and the user attributes must be stored in HttpSession. The following shows an
implementation example in which Subject and user attributes are stored in HttpSession (see the portion that is indicated
in bold type and has a background color).

<%
 LoginContext lc = new LoginContext("Portal",
 new WebPasswordHandler(request, response, null, "login.html", true));
 try {
 lc.login();
 session.setAttribute("ExampleSubject", lc.getSubject());
 session.setAttribute("ExampleCredential", lc.getSubject().getPublicCred
entials().iterator().next());
 } catch (LoginException e) { ... }
%>
...

5.10.5 Implementation of the API-based logout session
To perform the logout process, the logout session uses the Subject registered in HttpSession, as described in
5.10.4 Implementation of the session to register the successfully authenticated subject to HttpSession, to re-create

5. Integrated User Management-based Authentication

Security Management Guide 130

LoginContext. It then deletes the Subject registered in HttpSession. It also deletes the user attributes if they are registered
in HttpSession. The following is an example of logout implementation if the user attributes are registered in HttpSession.

<%
 try {
 Subject subject = (Subject)session.getAttribute("ExampleSubject");
 LoginContext lc = new LoginContext("Example", subject);
 session.removeAttribute("ExampleCredential");
 session.removeAttribute("ExampleSubject");
 lc.logout();
 } catch (LoginException e) { ... }
%>
...

When the session times out, HttpSession is disabled. Therefore, Subject and user attributes registered in HttpSession
become ineffective, accordingly.

The sessions of integrated user management also become ineffective because they are synchronized with HttpSession.

5.10.6 Checking the login state (if the API is used)
The login state (whether users are logged in) can be determined by checking whether a Subject object is registered in
HttpSession and whether there are users who are logged in the sessions of integrated user management.

<%
 Subject subject = (Subject)session.getAttribute("mySubject");
 if(subject != null && LoginUtil.check(request, response, realm)){
 // Processing performed if users are logged in
 } else {
 // Processing performed if no users are logged in
 }
%>

5.10.7 Implementation of enhanced support of authentication password
encryption

Password authentication is possible even if passwords are not encrypted in the default encryption methods (SHA-2,
SHA-1 or MD5) or in plain text. To provide enhanced encryption support, implementation classes must be created
in advance.

This section describes the login modules that provide enhanced encryption support and the method used to implement
classes for enhanced encryption support. To get an overview of enhanced encryption support, see 5.3.9 Enhanced support
of authentication password encryption.

(1) Login modules that provide enhanced encryption support
WebPasswordLoginModule and WebPasswordJDBCLoginModule provide enhanced support of authentication
password encryption.

5. Integrated User Management-based Authentication

Security Management Guide 131

(2) Method used to implement classes for enhanced encryption support
To achieve enhanced encryption support, the
com.cosminexus.admin.auth.security.PasswordCryptography class must be inherited. The created
class should be stored in the following directories as a class file.

• Windows:
Cosminexus installation directory\manager\modules

• UNIX:
/opt/Cosminexus/manager/modules

The directories can be changed by the com.cosminexus.admin.auth.custom.modules option in the
integrated user management configuration file (ua.conf).

The following is an example of implementation in which the byte arrays are compared in the SHA-1 format.

package my;

import com.cosminexus.admin.auth.security.PasswordCryptography;
import java.security.*;

public class CustomCryptography implements PasswordCryptography
{
 public byte[] encrypt (byte[] plain) {
 byte[] encryptedPassword = null;
 try{
 MessageDigest md = MessageDigest.getInstance("SHA");
 md.update(plain);
 encryptedPassword = md.digest();
 } catch (NoSuchAlgorithmException e) {
 encryptedPassword = plain;
 }
 return encryptedPassword;
 }
}

5.10.8 Notes on API-based implementation
This section contains the notes on the implementation of API-based user authentication.

(1) Notes on implementing login and logout sessions
When logins and logouts are implemented without using the Subject and when the LoginContext instance created at the
time of login is used at the time of logout, logout may fail depending on the login module settings.

Use the Subject when implementing login and logout. The following is an example of the implementation that should
be avoided.

• Login and logout implementation that should be avoided

<%
 LoginContext lc = new LoginContext("Portal",
 new WebPasswordHandler(request, response, null, "login.html", true));

5. Integrated User Management-based Authentication

Security Management Guide 132

 try { lc.login(); } catch (LoginException e) { ... }
 session.setAttribute("loginContext", lc);
%>
...
<%
 LoginContext lc = (LoginContext)session.getSession().getAttribute("login
Context");
 try { lc.logout(); } catch (LoginException e) { ... }
%>
...

Note: The portions that are indicated in bold type and have a background color are implementations that must not
be made.

(2) Notes on implementing the sessions to reference and obtain user
information

When implementing the sessions to reference and obtain user information, please note that:

• Changes in the UserAttributes object values are not applied to the repository. The obtained attributes are not modified
in the user authentication library.

• The attributes registered in the UserAttributes object is in the String type only.

• If no attributes are specified in the attribute list, a null character is assigned.

5. Integrated User Management-based Authentication

Security Management Guide 133

5.11 Implementation of tag library-based user authentication

This section describes how the tag library is used to implement sessions from login to logout. The description on copying
necessary files and defining DD is also included here. To learn more about the tag library and the tag attributes, see 16.
Tag Library Used with the Integrated User Management Framework.

5.11.1 Implementation of tag library-based login session
When the integrated user management framework is used to perform user authentication, the process must be
implemented that uses a servlet or JSP to invoke the login module at the time of login. The settings must be stored in the
JAAS configuration file to use login modules. For details about the JAAS configuration file settings, see 14.2.1 jaas.conf
(JAAS configuration file).

To use the JSP <ua:login/> tag for login, the com.cosminexus.admin.auth.name and
com.cosminexus.admin.auth.password parameters must be set in the HTTP request object. First, prepare the
following login form so that the parameters can be set up.

<html>
<body>
<form action="auth.jsp" method="post">
<table>
<tr>
 <td>username</td>
 <td><input type="text" name="com.cosminexus.admin.auth.name" /></td>
</tr>
<tr>
 <td>password</td>
 <td><input type="password" name="com.cosminexus.admin.auth.password" />
</td>
</tr>
</table>

<input type="submit" value="Login" />
<input type="reset" value="Reset" />
</form>
</body>
</html>

Next use the <ua:login/> tag and the authentication module specified in the "Portal" entry of the JAAS configuration
file to log in.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>
<%@ page errorPage="error.jsp" %>

<ua:login id="lc" entry="Portal" />
...

Due to the tag library specification, all exceptions that occurred during the tag process are regarded as JspException.
To more minutely detect exceptions that occurred during the processing of the <ua:login/> tag, use the
<ua:exception>Body </ua:exception> tag. In the following example, the exception is transferred to
the exception detection JSP (loginError.jsp).

5. Integrated User Management-based Authentication

Security Management Guide 134

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

<ua:login id="lc" entry="Portal" excepId="ex" excepScope="session" />
<ua:exception name="ex" ><jsp:forward page="loginError.jsp" /></ua:exceptio
n>
...

Based on the exception, the exception detection JSP (loginError.jsp) selects the message to be returned.

<%@ page contentType="text/html; charset=Shift_JIS" %>
<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

<html>
<body>
<ua:exception name="ex" type="javax.security.auth.login.FailedLoginException
">
The user ID or password is incorrect.

</ua:exception>
<ua:exception name="ex" type="javax.security.auth.login.AccountExpiredExcept
ion">
The account has expired.

</ua:exception>
<ua:exception name="ex" type="javax.security.auth.login.CredentialExpiredExc
eption">
The password has expired.

</ua:exception>
<ua:exception name="ex" >
An exception occurred.

<%= ex.toString() %>

</ua:exception>
</body>
</html>

Tip

How to check the login state

By adding the <ua:notLogin>Body</ua:notLogin> tag at the top of each JSP page, you can check the
login status before processing the JSP page.

<%@ page contentType="text/html; charset=Shift_JIS" %>
<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>
...
<ua:notLogin>
Please log in.
</ua:notLogin>
...

5. Integrated User Management-based Authentication

Security Management Guide 135

5.11.2 Implementation of the tag library-based session to obtain user ID
After authentication is completed, the authenticated user ID can be displayed or obtained by using the
<ua:getPrincipalName> tag. The following is an example of displaying the user ID.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>
...
User ID: <ua:getPrincipalName name="lc" />
...

The above example specifies the LoginContext identifier (lc) that was specified at the time of login as the name attribute
of the <ua:getPrincipalName> tag.

The following is an example of obtaining the user ID.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>
...
<ua:getPrincipalName name="lc" id="userid" />User ID: <%= userid %>
...

The above example specifies the id attribute in addition to the name attribute of the <ua:getPrincipalName> tag.
The identifier that identifies the instance referencing the user ID is specified as the id attribute.

5.11.3 Implementation of the tag library-based session to obtain user
attributes

To obtain user attributes, it is required to specify the list of attributes that should be obtained by using the
<ua:attributeEntries> tag. The following is an example of implementing the session to specify the list
of user attributes.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

<ua:attributeEntries id="ae">
 <ua:attributeEntry attrName="cn" alias="full name" />
 ...
</ua:attributeEntries>
<ua:login id="lc" entry="Portal" attrEntName="ae" />
...
Full Name: <ua:getAttribute name="lc" attrName="full name" />
...

Then, the specified user attributes are obtained by using the <ua:getAttribute> tag.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

<ua:login id="lc" entry="Portal" attrFile="MyAttrs.csv" />
...
<ua:getAttribute name="lc" attrName="full name" id="fullname" />
Full Name: <%= fullname %>
...

5. Integrated User Management-based Authentication

Security Management Guide 136

Notes on referencing or obtaining user information

• The UserAttributes values are for reference only. Changes in these values are not applied to the repository. The
obtained attributes are not modified in the user authentication library.

• The registered attributes are in the String type only.

• If no attributes are specified in the attribute list, a null character is assigned.

5.11.4 Implementation of tag library-based logout session
The following is an example of logout implementation.

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

<ua:logout name="lc" />
...

When a <ua:logout/> tag that corresponds to the <ua:login/> tag is not explicitly specified, logout is implicitly
performed when the session is disconnected.

5.11.5 Copying uatags.jar and uatags.tld and defining DD
The files must be copied and edited to use the JSP tag library.

Copy the JAR file (uatags.jar) and the tag library descriptor file (uatags.tld) for the JSP tag library, and edit
the Web application DD (web.xml). The procedure is as follows:

1. Copy uatags.jar to either WEB-INF\lib (Windows) or WEB-INF/lib (UNIX) of the Web application to
be created.

2. Copy uatags.tld to WEB-INF of the Web application to be created.

3. Add the following description to the appropriate location in web.xml.

<taglib>
 <taglib-uri>http://cosminexus.com/admin/auth/uatags</taglib-uri>
 <taglib-location>/WEB-INF/uatags.tld</taglib-location>
</taglib>

5. Integrated User Management-based Authentication

Security Management Guide 137

5.12 Implementation of custom login module-based user authentication

To authenticate users by using modules other than the Cosminexus standard login modules, create custom login modules
and integrate them with the Cosminexus standard login modules.

5.12.1 Implementation for integration with Cosminexus standard login
modules

JAAS allows you to invoke multiple authentication modules sequentially in a single authentication. These authentication
modules use the Map object (sharedState) passed to the third parameter of the LoginModule interface initialize method to
pass information. This section provides the information that is added by each of the Cosminexus standard login modules.
Note that DelegationLoginModule and WebPasswordJDBCLoginModule do not add information.

(1) WebPasswordLoginModule, WebCertificateLoginModule, and
WebPasswordLDAPLoginModule

WebPasswordLoginModule, WebCertificateLoginModule, and WebPasswordLDAPLoginModule add the following
information to sharedState before invoking the next LoginModule.

Key: com.cosminexus.admin.auth.userattributes
Value type: UserAttributes
Description: References the UserAttributes object, which stores the user attributes associated with the Subject.
Setup timing: Just before the end of the commit method

(2) WebSSOLoginModule
If the user has been already authenticated in one session, WebSSOLoginModule obtains the information used for
authentication in other realms from the user mapping and adds the following information to sharedState before invoking
custom login modules. No information is added when the user has not been authenticated in the session or when there
is no authentication information in the user mapping.

Key: com.cosminexus.admin.auth.sso.userid
Value type: String
Description: The value defined in USERID of the user mapping
Setup timing: Just before invoking the login method of the custom login module

Key: com.cosminexus.admin.auth.sso.secdat
Value type: String
Description: The value defined in SECRETDATA of the user mapping; the value is decrypted before being stored
in sharedState.
Setup timing: Just before invoking the login method of the custom login module

Key: com.cosminexus.admin.auth.sso.pubdat
Value type: String
Description: The value defined in PUBLICDATA of the user mapping
Setup timing: Just before invoking the login method of the custom login module

5. Integrated User Management-based Authentication

Security Management Guide 138

The above keys can be changed in the configuration file of the integrated user management framework. If a custom login
module exists and can obtain authentication information from sharedState, the keys can be tailored to the custom login
module specifications. For details about the configuration file settings, see 14.2.1 jaas.conf (JAAS configuration file).

5.12.2 Points to remember when implementing custom login modules
When creating custom login modules, the LoginModule interface that is the JAAS SPI should be inherited to implement
the necessary process. This section provides the points to remember when implementing custom login modules and the
LoginModule interface, as well as when implementing the Principal object, which manages user IDs.

(1) Points to remember when implementing the LoginModule interface
• login method

To support single sign-on, first determine if the user ID and password are not specified in sharedState. The name used
to obtain the user ID and password from sharedState can be specified in the configuration file of the integrated user
management framework.

• commit method
Set the Principal object to Subject. When there are multiple Principal objects, WebSSOLoginModule and
DelegationLoginModule use the first found Principal object to register the user ID in the integrated user management
session. For single sign-on, it is used to recognize the first logged-in user ID.

• logout method
The logout method deletes the Principal object and Credentials (such as user attributes) that are associated with
the Subject by using the commit method. It also releases the resources secured by login.
When the logout method is used, the following phenomena may occur.

• No Credentials are assigned to the Subject when the logout method is invoked.

• At the time of logout, the member attribute values that are set by the commit or login method of the custom
login modules cannot be referenced.

The phenomenon that no Credentials are assigned may be caused by the fact that no Credentials are contained in the
serializable Subject object.
On the other hand, the phenomenon such that the member attribute values cannot be referenced at the time of logout
may be caused by the fact that the JAAS LoginContext (including LoginModule) is not a serialized object. As
LoginContext stores the Subject object in HttpSession and generates a new login module instance from the Subject
object to log out, the member attribute values set by the commit or login method cannot be referenced.

(2) Points to remember when implementing the Principal object
Implement the Principal object by inheriting the java.security.Principal and java.io.Serializable interfaces.

5.12.3 Examples of implementing custom login modules
The following are examples of implementing custom login modules and the Principal object.

The first example of implementing a custom login module does not use the session failover functionality. The example
of using the session failover functionality includes the portion that is different from the example of not using the session
failover functionality.

5. Integrated User Management-based Authentication

Security Management Guide 139

(1) Example of implementation not using the session failover functionality
The following is an example of implementing a custom login module without the session failover functionality.

/**
* The LoginModule implementation class is created by inheriting the LoginMod
ule interface.
*
*/
public class ExampleLoginModule implements LoginModule
{
 // The following are used to reference the parameter values passed to th
e initialize() method.
 private Subject subject;
 private CallbackHandler callbackHandler;
 private Map sharedState;
 private Map options;

 // The following define the name used to obtain the user ID and passwor
d values from sharedState.
 // "simple.login.username" and "simple.login.password" can be specified
in
 // the integrated user management configuration file.
 private static final String USERNAME = "simple.login.username";
 private static final String PASSWORD = "simple.login.password";
 // The following stores the user ID used for authentication. The value i
s set by login() and referenced by commit().
 private String username;

 // The following stores success or failure of login(). "True" means logi
n() succeeded while "false" means login() failed.
 // The value is set by login() and referenced by commit().
 private boolean succeeded;

 // The following stores success or failure of commit(). True means commi
t() succeeded while false means commit() failed.
 // The value is set by commit() and referenced by abort().
 private boolean commitSucceeded;

 /**
 * The initialize() method stores the parameters passed to the arguments
in the member variables.
 * It also performs initialization when needed.
 * (It is called once when this class is instantiated.)
 *
 */
 public void initialize(Subject subject, CallbackHandler callbackHandler
, Map sharedState, Map options)
 {
 this.subject = subject;
 this.callbackHandler = callbackHandler;
 this.sharedState = sharedState;
 this.options = options;
 }

 /**
 * The login() method obtains the user ID needed for authentication and p

5. Integrated User Management-based Authentication

Security Management Guide 140

erforms authentication.
 * In this example, "succeeded" is set to true when authentication succee
ds. The authenticated user ID is
 * stored in "username".
 *
 */
 public boolean login()
 throws LoginException
 {
 // To support single sign-on, the user ID and password are obtained
to be stored in sharedState.
 this.username = (String)this.sharedState.get(USERNAME);
 String password = (String)this.sharedState.get(PASSWORD);

 // When no user ID is in sharedState, CallbackHandler is used to obt
ain
 // the user ID and password. (This example assumes that WebPasswordH
andler assign the values to
 // WebPasswordCallback.)
 if (this.username == null || this.username.length() == 0) {
 WebPasswordCallback webpc = new WebPasswordCallback();
 webpc.setOption(WebPasswordCallback.GETPW);
 Callback callbacks[] = new Callback[] { webpc };
 try {
 this.callbackHandler.handle(callbacks);
 }
 catch (Exception ex) {
 // Exception handling is performed.
 }
 // The user ID and password are obtained from Callback.
 this.username = webpc.getName();
 password = webpc.getPassword();
 }
 // The following checks if the user ID used for authentication is pr
esent. If no user ID is present, exception is returned.
 if (this.username == null || this.username.length() == 0) {
 throw new FailedLoginException();
 }

 // The application authentication process is performed.
 // When authentication is successful, "succeeded" is set to "true".

 /* Enter the authentication process here. */

 if (!succeeded) {
 throw new FailedLoginException();
 }
 return succeeded;
 }
 /**
 * The commit () method associates the Principal object to the Subject t
o indicate that authentication is completed.
 * (SimplePrincipal is a class which is created by inheriting the Princip
al and Serializable interfaces.)
 *
 */
 public boolean commit()
 throws LoginException

5. Integrated User Management-based Authentication

Security Management Guide 141

 {
 // The following associates the Principal object to the Subject to a
llow join the login session managed by integrated user management
 // and support of the single sign-on function.
 this.subject.getPrincipals().add(new SimplePrincipal(this.username
));

 /* Enter the process which associates the user attributes to the Sub
ject. */

 return this.commitSucceeded = true;
 }
 /**
 * The abort() method is invoked when the login() or commit() method
 * failed.
 *
 */
 public boolean abort()
 throws LoginException
 {
 if (this.commitSucceeded) {
 // This releases the Principal and user attributes associated t
o the Subject.
 // In this example, the logout() method is invoked.
 logout();
 }
 return true;
 }
 /**
 * The logout () method is invoked to log out.
 * This method is used to release the Principal and user attributes assoc
iated to the Subject.
 *
 *
 */
 public boolean logout()
 throws LoginException
 {
 // Enter the process which deletes the Principal and user attribute
s from the Subject.
 // Add the process which releases the resources secured by the login
() method.
 return true;
 }
}

(2) Example of Implementation using the session failover functionality
The login and commitment methods are the same as the example not using the session failover functionality. The
following shows the difference in the logout method implementation.

/**
 * The LoginModule implementation class is created by inheriting the LoginMo
dule interface.
 */
public class ExampleLoginModule implements LoginModule

5. Integrated User Management-based Authentication

Security Management Guide 142

{
 /**
 * The logout () method is invoked to log out.
 * This method is used to release the resources secured at the time of log
in.
 */
 public boolean logout() throws LoginException
 {
 if (callbackHandler != null) {
 WebLogoutCallback callback = new WebLogoutCallback();
 try {
 callbackHandler.handle(new Callback[]{callback});
 } catch (Exception e) { ... }
 String uid = callback.getUserID();
 HttpSession session = callback.getSession();
 // Add the process which releases the resources secured by the login
() method.
 // to delete the information registered in the global session, etc.
 }
 return true;
 }
}

The logout method release the resources secured at the time of login. Note that the session failover functionality does
not fail over the Subject and Principal.

(3) Example of implementing the Principal object
Create the Principal object by inheriting the java.security.Principal and java.io.Serializable interfaces. The following is
an example of implementing the Principal object.

import java.security.Principal;
import java.io.Serializable;

/**
* The Principal implementation class is created by inheriting the Principal
and Serializable interfaces.
*
*/
public class SimplePrincipal implements Principal, Serializable
{
 private String name;

 public SimplePrincipal(String name) {
 if (name == null) throw new NullPointerException();
 this.name = name;
 }
 public String getName() { return name; }
 public String toString() { return getName(); }
 public boolean equals(Object o) {
 if (o == null) return false;
 if (this == o) return true;
 if (!(o instanceof SimplePrincipal)) return false;
 SimplePrincipal rhs = (SimplePrincipal)o;
 if (getName().equals(rhs.getName())) return true;
 return false;

5. Integrated User Management-based Authentication

Security Management Guide 143

 }
 public int hashCode() { return getName().hashCode(); }
}

5. Integrated User Management-based Authentication

Security Management Guide 144

5.13 Procedures to set up the integrated user management function

This section describes the procedures used to set up the integrated user management function.

Cosminexus can perform the integrated management of users who log into the Cosminexus-based systems. Integrated
user management associates the user information managed by each of the J2EE applications so that the user who logs into
one J2EE application can log into other J2EE applications. To use the integrated user management function, it is required
to set up the LDAP directory server, which stores user authentication information, and the integrated user management
configuration file.

It is also necessary to create the authentication process program that uses the JAAS API, the integrated user management
API provided by Cosminexus, and the JSP tag library to invoke standard login modules. Custom login modules must be
created to authenticate users in a specific way to the application. To learn more about creating custom login modules,
see 5.12 Implementation of custom login module-based user authentication.

The following figure shows the procedures used to set up the integrated user management function.

Figure 5‒24: Procedures used to setup the integrated user management function

The details of steps 1 to 9 in the figure are as follows.

1. Examine how to manage users and determine the range (realm) to which the same authentication is applied.
Examine the unit used to manage users and determine the realm name. To learn more about determining the realm
name, see 5.14 Determination of realm names.

2. Set up the LDAP directory server.
The LDAP directory server is needed to use single sign-on, as it is used to manage the single sign-on user information.
To learn more about setting up the LDAP directory server, see 5.15 LDAP directory server setup.

5. Integrated User Management-based Authentication

Security Management Guide 145

Skip this step when only the default user authentication provided by RDB (HiRDB, Oracle, etc.) is used.

3. Register the user information used for user authentication in the LDAP directory server or RDB.
To learn more about registering the user information to the LDAP directory server, see 5.16 Registration of user
information. Cosminexus specifies the standard DIT structure of the user management repository stored in the LDAP
directory server. To learn more about the repository structure, see 5.2.4 Management method of user information used
for integrated user management.
For details about registering the user information to RDB, see the RDB documentation.

4. When single sign-on is used and the single sign-on user information should be encrypted, create the encryption key
file used to encrypt and decrypt the user information.
To learn more about creating the encryption key file, see 5.17 Creation of encryption key files (When using
single sign-on).
Skip this step when single sign-on is not used or the user information is not needed to be encrypted.

5. When single sign-on is used, register the single sign-on user information to the LDAP directory server.
To learn more about registering the single sign-on user information to the LDAP directory server, see 5.18
Registration of user information (When using single sign-on). Cosminexus specifies the standard DIT structure of the
single sign-on user management repository stored in the LDAP directory server. To learn more about the repository
structure, see 5.2.4 Management method of user information used for integrated user management.
Skip this step when single sign-on is not used.

6. Create configuration files.
The following two files should be created.

• jaas.conf (the JAAS configuration file)

• ua.conf (the integrated user management configuration file)

For details about creating the configuration files, see 5.19 Creating configuration files.

7. Set up the Java VM properties.
For details about setting up the Java VM properties, see 5.20 Java VM property setup.

8. Deploy the EAR file used in integrated user management.
To learn more about deploying the file, see 5.21 Deployment of files.

9. Create a backup of the information used in integrated user management when needed.
Use the commands provided by the LDAP directory service or the directory gateway to backup and restore the LDAP
directory server repository. For details, see the LDAP directory server documentation.
Make sure to backup jaas.conf, ua.conf, and the encryption key files.

5. Integrated User Management-based Authentication

Security Management Guide 146

5.14 Determination of realm names

Examine the unit used to manage users and determine the realm name. The name is used to authenticate users in the
JAAS-based user management. Specify the name as a corresponding login module option in jaas.conf (the JAAS
configuration file). Generally, it is recommended to use easy-to-understand names indicating a group of applications that
share user management such as Soumu System.

5. Integrated User Management-based Authentication

Security Management Guide 147

5.15 LDAP directory server setup

This section describes how to set up the LDAP directory server.

The following are the procedures used to set up the LDAP directory server.

1. Install the LDAP directory server.
For details, see 5.15.1 Installation of the LDAP directory server.

2. Register users to the LDAP directory server and set access permissions.
For details, see 5.15.2 User registration and access permission setup.

3. When single sign-on is used, register the object class and user definition attributes that are specific to the single
sign-on library to the LDAP directory server, in order to extend the object class and user attribute definitions.
For details, see 5.15.3 Extension of object class and user definition attributes.

5.15.1 Installation of the LDAP directory server
Cosminexus uses the LDAP directory server as the repository that manages user information. Install and initialize the
LDAP directory server. To learn more about installation and initialization, see the LDAP directory server documentation.

The following are examples of usable LDAP directory servers. For details, see the Release Notes.

Examples of usable LDAP directory servers
• Sun Java System Directory Server

• IBM SecureWay Directory (or IBM Directory Server)

• Active Directory

If the LDAP directory server has already been used, check the schemas being used in the LDAP directory server to make
sure that the schemas that are specific to single sign-on are not used. For details, see 5.15.3 Extension of object class and
user definition attributes.

5.15.2 User registration and access permission setup
To connect (bind) to the LDAP directory in integrated user management, register the management & reference users and
set access permissions.

The management user DN is referred to as the management bind DN, while the reference user DN is referred to as the
reference bind DN.

The management bind DN is the bind DN that has all access permissions (Read, Write, Add, Delete, Search, Compare,
and Selfwrite) to all the entries below the base entry used in the integrated user management framework and all
the attributes assigned to these entries. This is used to register, reference, modify, and delete the user management
information in the LDAP directory server.

The reference bind DN is the bind DN that has the Read and Search access permissions to all the entries below the base
entry used in the integrated user management framework and all the attributes assigned to these entries. This is used to
obtain the user information from the LDAP directory server.

5. Integrated User Management-based Authentication

Security Management Guide 148

5.15.3 Extension of object class and user definition attributes
When single sign-on is used, register the object class and user definition attributes that are specific to the single sign-on
library to the LDAP directory server, in order to extend the object class and user attribute definitions.

The extended object class and user definition attributes are the schemas that are specific to single sign-on library and
cannot be shared with other systems. If the LDAP directory server has already been used, check the schemas being used
in the LDAP directory server to make sure that the schemas that are specific to single sign-on are not used.

(1) Object Class to be extended in the single sign-on library
The following table shows the object class that is specific to the single sign-on library.

Table 5‒11: Object class that is specific to the single sign-on library

Object class OID Required attribute Optional attribute

CosminexusSSOEntry 1.2.392.200010
.7.6.21

objectClass,
CosminexusSSOEntryID,
CosminexusSSOUID

CosminexusSSOSecretd
ata,
CosminexusSSOPublicd
ata,
CosminexusSSOMapping

(2) User definition attributes to be extended in the single sign-on library
The following table shows the attributes that are specific to the single sign-on library.

Table 5‒12: Attributes that are specific to the single sign-on library

Attribute OID Syntax Multi-value/single value

CosminexusSSOEntryID 1.2.392.200010.7.4.71 cis Single value

CosminexusSSOUID 1.2.392.200010.7.4.72 ces Single value

CosminexusSSOSecretdata 1.2.392.200010.7.4.73 bin Single value

CosminexusSSOPublicdata 1.2.392.200010.7.4.74 ces Single value

CosminexusSSOMapping 1.2.392.200010.7.4.75 dn Multi-value

(3) Procedures used to add the object class and user definition attributes
to be extended

This section explains the procedures used to add the object class and user definition attributes to be extended with respect
to the types of LDAP directory servers.

Sun Java System Directory Server or Oracle Directory Server Enterprise Edition:
Make sure that the LDAP directory server is started and register uaschema.slapd.ldif to the LDAP directory
server by using the following command:

ldapmodify -h host name -p port number -D management bind DN -w password
-c -f uaschema.slapd.ldif

IBM SecureWay Directory or IBM Directory Server:
Make sure that the LDAP directory server is started and register uaschema.ldif to the LDAP directory server
by using the following command:

5. Integrated User Management-based Authentication

Security Management Guide 149

ldapmodify -h host name -p port number -D bind DN -w password -c -f uasche
ma.ldif

Specify the bind DN that has administrative rights.

Active Directory:
1. Change the settings so that the schemas can be changed in Active Directory. Start Microsoft Management Consol

(mmc.exe) and click Add or Remove Snap-ins to add Active Directory schemas. Right-click Active Directory
Schema, select Operations Master, select the The Schema may be modified on this Domain Controller check
box, and then click the OK button.

2. Use the following command to register uaschema.ad.ldif to Active Directory (when you want to connect
to the domain controller to which you log on as the current logged on user).

 ldifde -i -c "dc=domain" "ToDN" -f uaschema.ad.ldif

Enter the appropriate DN in ToDN, which depends on the domain. For example, if the domain is hitachi.co.jp,
ToDN will be dc=hitachi,dc=co,dc=jp.

5. Integrated User Management-based Authentication

Security Management Guide 150

5.16 Registration of user information

This section describes how to register user information in the LDAP directory server and the formatting used to
register the user information. For details about the method used to register the user information to RDB, see the
RDB documentation.

Cosminexus specifies the standard DIT structure of the user management repository stored in the LDAP directory server.
To learn more about the repository structure, see 5.2.4 Management method of user information used for integrated
user management.

There are the following two methods used to register the user information in the user information repository:

• Registration by using commands

• Registration by using the integrated user management framework library

The following subsections explain these methods respectively as well as the formatting used to register the user
information and the settings when Active Directory is used.

5.16.1 Registration by using commands
To use the commands provided by Application Server and the LDAP directory server to register user information:

1. Put the user information in the LDIF file.

2. Use the convpw command to encrypt the passwords in the LDIF file.
The passwords specified in the LDIF will be encrypted. For details about the convpw command, see convpw
(Password encryption).

3. Use the ldapmodify command provided by the LDAP directory server to register the encrypted LDIF file in the
user information repository.

The LDAP directory server may provide the GUI used to register the user information. For details, see the LDAP
directory server documentation.

When you use IBM Tivoli Directory Server as the LDAP server for integrated user management, users cannot be
registered just by registering suffix DNs. You must add coding as shown in the example below at the beginning of the
LDIF file used for user registration, and then execute the ldapmodify command.

Example: Adding o=apsm.com to the suffix DN

dn: o=apsm.com
objectclass: top
objectclass: organization
o: apsm.com

5.16.2 Registration by using the integrated user management framework
library

Use the API provided by the user authentication library to create an application and register the user information by using
that application.

5. Integrated User Management-based Authentication

Security Management Guide 151

The application that uses the API generates the LdapUserDataManager object first. Assign the LDAP directory server
definition identifier to this class constructor. This definition identifier is specified in ua.conf (the integrated user
management configuration file). It is associated with the LDAP directory server URL, bind DN, bind DN password, and
base DN. Generate one LdapUserDataManager object per definition.

To learn more about how to register users, update the user information and change the repository information passwords
when Active Directory is used as the LDAP directory server, see 5.16.4 Settings when using Active Directory.

To learn more about implementing user authentication, see 5.10 Implementation of API-based user authentication. For
details about the API used in the integrated user management framework, 15. APIs Used with the Integrated User
Management Framework.

5.16.3 Formatting used to register the user information
The user information must conform to the formatting specified in the following table.

Table 5‒13: Formatting of user information

Type of information Meaning Formatting

User ID User identifier A string of alphanumeric characters; the length is 1 to
512 characters.

Password User-specific password A string of alphanumeric and special characters; the length
is 0 to 512 characters.

Note 1: A string of alphanumeric characters means a sequence of alphabetical characters (A to Z and a to z) and numbers (0 to 9).
Note 2: Special characters indicate the following symbols.
(white space) ! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ (underscore) ` { } | (vertical bar) ~
Note 3: Unless otherwise stated, characters are case-sensitive.
Note 4: Use ASCII characters. (The program does not check grammar.)
Note 5: When passwords are stored in the repository in plain text, do not use null characters (" ") for passwords. The users who use null character
passwords may not be able to log in. If null characters are to be used as passwords, encrypt them by using SHA-1, etc.

5.16.4 Settings when using Active Directory
This section describes the settings when Active Directory is used as the LDAP directory server.

When the integrated user management framework library is used to register users to the user information repository
and update the user information (including user passwords), it is necessary to set the Active Directory environment and
register the certificate that enables connections over SSL.

The following table shows the settings when Active Directory is used as the LDAP directory server. The settings depend
on the user authentication method being used.

Table 5‒14: List of settings when using Active Directory

Setting Password
authentication

Change password and
add/change user

Client authentication
(X509 certificate)

jaas.conf Specify the necessary
login module/

R R R

Specify the login module option/ O R --

5. Integrated User Management-based Authentication

Security Management Guide 152

Setting Password
authentication

Change password and
add/change user

Client authentication
(X509 certificate)

ua.conf Specify the user
identifying attribute/

R R R

Specify the attribute name used
as the user ID in the DN/

-- -- R

Specify the password attribute/ R R --

Specify the type of LDAP
directory server/

R R --

Convert the DN containing 2-
byte characters such as Japanese/

O O O

Change the URL protocol/ O R O

Connections over SSL O R O

Legend:
R: Required
O: Optional
-: Not required (The settings are ignored.)

The methods used to set the Active Directory environment and register the certificate that enables connections over SSL
are as follows.

Tip

The object class and attributes of the users managed in Active Directory are different from those managed
in other LDAP directory servers. When the integrated user management framework library is used, use the
user object class and specify the cn, unicodePwd, sAMAccountName, and userAccountControl
attributes to create that user.

Assign the security account manager (SAM) account name to sAMAccountName. Generally, the account
name is the same value as the user ID.

Assign the user account property flag to userAccountControl. To create the general user entry, assign
512. Note that users cannot be created when the minimum password length is set to one character in the security
policy of the server on which Active Directory is installed. Take either of the following measures so that user
entries can be created.

• Change the minimum password length to zero or more characters in the security policy and then assign 512
to userAccountControl.

• Assign 544 to userAccountControl without changing the minimum password length in the
security policy.

(1) Setting jaas.conf
The settings in jaas.conf are as follows.

(a) Designating the login module
Specify WebPasswordLDAPLoginModule when password authentication is used. To use client certificates,
specify WebCertificateLoginModule.

5. Integrated User Management-based Authentication

Security Management Guide 153

(b) Specifying the login module option (when using password authentication)
Assign ldap.w to the WebPasswordLDAPLoginModule option. Or, assign sso.ldap.w when single sign-on
is used.

(2) Setting ua.conf
The settings in ua.conf are as follows.

(a) Specifying the user identifying attribute
Assign cn (full user name) or sAMAccountName to the user identifying attribute.

The setup examples are as follows:

Example 1: cn is used as the user identifying attribute.

com.cosminexus.admin.auth.ldap.attr.userid.0=cn

Example 2: sAMAccountName is used as the user identifying attribute.

com.cosminexus.admin.auth.ldap.attr.userid.0=sAMAccountName

When the user identifying attribute is set to sAMAccountName, it is necessary to search repository user entries (RDN).
The following is the setting example of properties needed for the search.

Example:

java.naming.security.principal.0=cn=Administrator,cn=Users,dc=cosminexus,d
c=com
java.naming.security.credentials.0=adminpassword
com.cosminexus.admin.auth.ldap.search.userrdn.0=true
com.cosminexus.admin.auth.ldap.search.scope.0=onelevel

When the user identifying attribute is set to sAMAccountName, it is not possible to use the addUserData (String
uid, UserData userData) method of the LdapUserDataManager class. To add users, use the addUserData
(String uid, UserData userData, String name, String value) method and assign cn to the attribute
name argument (String name).

(b) Specifying the attribute name used as the user ID in the DN (when using client
certificates)

When client certificates are used, disassemble the DNs stored in the client certificates (requesting user's distinguished
names in the client certificates) and set the attribute names used as the user IDs. The setup example is as follows:

Example:

com.cosminexus.admin.auth.ldap.certificate.attr.userid.0=cn

The above attribute name is different from the user identifying attribute specified in (a) Specifying the user
identifying attribute.

(c) Specifying the password attribute (when using password authentication)
Assign unicodePwd to the password attribute. The setup example is as follows:

5. Integrated User Management-based Authentication

Security Management Guide 154

Example:

com.cosminexus.admin.auth.ldap.attr.password.0=unicodePwd

(d) Specifying the type of LDAP directory server (when using password
authentication)

Add a line that specifies AD as the type of destination LDAP directory server. The following is an example of when the
LDAP number is 0.

Example:

com.cosminexus.admin.auth.ldap.directory.kind.0=AD

(e) Changing the URL protocol
Specify ldaps as the URL protocol of the destination LDAP directory server. The setup example is as follows. Note
that the port number can be omitted.

Example:
Before: java.naming.provider.url.0=ldap://localhost:389
After: java.naming.provider.url.0=ldaps://localhost:636

(3) Setting connections over SSL
Register the certificate to establish SSL communication between the J2EE server and Active Directory. The following
describes how to register the certificate.

1. Create and register the digital certificate to the server on which Active Directory is installed (LDAP server).
For details about how to create and register digital certificates, see the Active Directory documentation.

2. Register the certificate authority (CA) certificate to the J2EE server.
The CA certificate can be registered to the J2EE server by using keytool, which comes with Cosminexus Developer's
Kit for Java. For details about keytool, see the Java 2 SDK Standard Edition documentation. The following is an
example of executing keytool. Although the example is composed of multiple lines, the actual statement is in one line.
Windows:

keytool -import -alias cakey -file C:\temp\cacer.cer -trustcacerts -keysto
re
"Cosminexus installation directory\jdk\lib\security\cacerts"

UNIX:

/opt/Cosminexus/jdk/bin/keytool -import -alias cakey -file /tmp/cacer.cer
-trustcacerts -keystore /opt/Cosminexus/jdk/lib/security/cacerts

If the J2EE server is running when registering the certificate by using keytool, restart the J2EE server.

(4) Notes
Please note:

• When unicodePwd is specified as the attribute value representing the user password in ua.conf, the
password.encrypt and password.encrypt.ex password format option settings are disabled.

5. Integrated User Management-based Authentication

Security Management Guide 155

• Active Directory does not support changes to the existing user entry object class. When
com.cosminexus.admin.auth.ldap.directory.kind.0=AD is specified in ua.conf, the object
class at the time of creating the user entry will be applied even if the existing user entry is updated after a new object
is added in the LdapUserDataManager class constructor.

5. Integrated User Management-based Authentication

Security Management Guide 156

5.17 Creation of encryption key files (When using single sign-on)

This section describes creating and changing encryption key files used to encrypt or decrypt the single sign-on user
information. When the user information is not encrypted, it is not necessary to create encryption key files.

Use the encryption key file to encrypt the single sign-on user information, and store the encrypted information in the
LDAP directory server. The encryption key file is also used to decrypt and reference the user information. To encrypt
the user information, create the encryption key file before registering it in the LDAP directory server.

5.17.1 Creating encryption key files
Use the ssogenkey command to create the encryption key file used to encrypt or decrypt the single sign-on user
information. The system administrators are responsible for storing the encryption key files in a safe place.

In addition, specify JCE as the encryption engine to encrypt or decrypt the single sign-on user information in ua.conf
(the integrated user management configuration file).

For details about the ssogenkey command, see ssogenkey (Creating encryption key files). For details about ua.conf,
see 14.2.2 ua.conf (integrated user management configuration file).

5.17.2 Changing encryption key files
When the single sign-on user information has already been registered, perform the following procedures to change the
encryption key file.

1. Execute the ssoexport command to fetch all the contents in the single sign-on information repository.

2. Run ssogenkey to create the encryption key file.

3. Execute the ssoimport command to register the contents fetched in Step 1.

For details about the ssoexport command, see ssoexport (Referencing the single sign-on information repository).
For details about the ssogenkey command, see ssogenkey (Creating encryption key files). For details about the
ssoimport command, see ssoimport (Registering the single sign-on information repository).

5. Integrated User Management-based Authentication

Security Management Guide 157

5.18 Registration of user information (When using single sign-on)

This section describes how to register the single sign-on user information in the LDAP directory server and the formatting
used to register the user information.

Cosminexus specifies the standard DIT structure of the single sign-on user management repository stored in the LDAP
directory server. To learn more about the repository structure, see 5.2.4 Management method of user information used
for integrated user management.

There are the following two methods used to register the single sign-on user information in the single sign-on user
information repository:

• Registration by using commands

• Registration by using the integrated user management framework library

The following subsections explain these methods respectively as well as the formatting used to register the
user information.

5.18.1 Registration by using commands
Create the single sign-on user information in a CSV format file, and use the ssoimport command provided by
Cosminexus to register it in the single sign-on information repository.

For details about the ssoimport command, see ssoimport (Registering the single sign-on information repository). For
details about CSV format files, see 14.3 CSV files containing single sign-on authentication information.

5.18.2 Registration by using the integrated user management framework
library

Use the API provided by the single sign-on library to create an application, and register the user information by using
that application.

The application that uses the API generates the LdapSSODataManager object first. Assign the realm name to this class
constructor. Generate one LdapSSODataManager object per definition.

Implementing the single sign-on authentication information listener class that notifies when the API updates the single
sign-on information repository contents can update the destination system repository in synchronization with the single
sign-on information repository update.

To learn more about implementing user authentication, see 5.10 Implementation of API-based user authentication. For
details about the API used in the integrated user management framework, see 15. APIs Used with the Integrated User
Management Framework.

5.18.3 Formatting used to register the user information
The single sign-on user information must conform to the formatting specified in the following table:

5. Integrated User Management-based Authentication

Security Management Guide 158

Table 5‒15: Formatting of single sign-on user information

Type of information Meaning Grammar

Realm name The identifier that indicates the scope of user management A string of alphanumeric characters; not case sensitive;
specify the name that can be used in the DN.

User ID The identifier that indicates the user of the application with
the user management function

A string of alphanumeric characters; the length is 1 to
512 characters.

SecretData The authentication information that needs to be encrypted
such as the user ID-specific password of the application with
the user management function; specify the value used to
authenticate the user. The value specified here is saved in the
encrypted form.

A string of alphanumeric and special characters; the
length is 0 to 512 characters.

PublicData The authentication information that the application with the
user management function requires authenticating the user
excluding the user ID and SecretData; the value specified
here is not encrypted.

A string of alphanumeric and special characters; the
length is 0 to 512 characters.

Note 1: A string of alphanumeric characters means a sequence of alphabetical characters (A to Z and a to z) and numbers (0 to 9).
Note 2: Special characters indicate the following symbols.
(white space) ! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ (underscore) ` { } | (vertical bar) ~
Note 3: Unless otherwise stated, characters are case-sensitive.
Note 4: Use ASCII characters. The program does not check grammar.

5. Integrated User Management-based Authentication

Security Management Guide 159

5.19 Creating configuration files

This section describes creating the following two configuration files and provides examples of configuration file settings.

• jaas.conf (the JAAS configuration file)

• ua.conf (the integrated user management configuration file)

5.19.1 Creating jaas.conf
jaas.conf stores the login module names used by each application, the repository number specified in ua.conf (the
LDAP directory server or RDB), and other information used by the user authentication or single sign-on library.

(1) Location
The jaas.conf location is as follows.

• Windows:
Cosminexus installation directory\manager\config\jaas.conf

• UNIX:
/opt/Cosminexus/manager/config/jaas.conf

Overwrite this jaas.conf file or copy it to a new location. Specify the jaas.conf location in the Java VM
properties at the time of startup. For details about setting the Java VM properties at the time of startup, see 5.20 Java VM
property setup.

Change the jaas.conf access permission so that the Component Container administrators can reference the file. To
learn more about setting the Component Container administrators, see 4.1.4 Notes on setting Component Container
administrator (For UNIX) in the uCosminexus Application Server System Setup and Operation Guide.

(2) Specification
Specify the following information per application.

When the user authentication library is used to authenticate users:
Define WebPasswordLoginModule as the login module. Assign the LDAP number and realm name defined by the
repository defined in ua.conf to the WebPasswordLoginModule options.
To integrate WebPasswordLoginModule with custom login modules, define DelegationLoginModule as
the login module, and assign the custom login module name to invoke custom login modules to the
DelegationLoginModule option.

When the single sign-on library is used to authenticate users:
Define WebSSOLoginModule as the login module. Assign the custom login module identifier and realm name
defined in ua.conf to the WebSSOLoginModule options.

To learn more about the jaas.conf settings when using Active Directory as the LDAP directory server, see 5.16.4
Settings when using Active Directory.

For details about jaas.conf, see 14.2.1 jaas.conf (JAAS configuration file).

5. Integrated User Management-based Authentication

Security Management Guide 160

(3) Reloading jaas.conf
jaas.conf can be reloaded without restarting the J2EE server by using the mngsvrutil command. This
Management Server management command can be used to change the LDAP number used by the login module without
restarting the J2EE server.

To use the mngsvrutil command, it is required that Management Server has started and been
configured appropriately.

The following figure shows the flow of reloading jaas.conf.

Figure 5‒25: Flow of reloading jaas.conf

For details about the mngsvrutil command, see mngsvrutil (Management Server management command) in the
uCosminexus Application Server Command Reference Guide.

5.19.2 Creating ua.conf
ua.conf stores the repository access information (the LDAP directory server or RDB), the path to the encryption key
file used to encrypt or decrypt the single sign-on user information, and other information used by the user authentication
or single sign-on library.

(1) Location
The ua.conf location is as follows.

• Windows:
Cosminexus installation directory\manager\config\ua.conf

• UNIX:
/opt/Cosminexus/manager/config/ua.conf

Overwrite this ua.conf file or copy it to a new location. Specify the ua.conf location in the Java VM properties at the
time of startup. For details about setting the Java VM properties at the time of startup, see 5.20 Java VM property setup.

Change the ua.conf access permission so that the Component Container administrators can reference the file. To
learn more about setting the Component Container administrators, see 4.1.4 Notes on setting Component Container
administrator (For UNIX) in the uCosminexus Application Server System Setup and Operation Guide.

5. Integrated User Management-based Authentication

Security Management Guide 161

(2) Specification
To enable user authentication by using the user authentication library and single sign-on by using the single sign-on
library, configure the LDAP directory server URL, base DN, and access permissions.

When the single sign-on library function is used to implement single sign-on, select the encryption product and specify
the encryption key file name. When the single sign-on function invokes a custom login module, specify the custom login
module name and the directory that stores the class file associated with the custom login module.

To learn more about the ua.conf settings when using Active Directory as the LDAP directory server, see 5.16.4
Settings when using Active Directory.

To learn more about ua.conf, see 14.2.2 ua.conf (integrated user management configuration file).

(3) Changing and scrambling passwords
The uachpw command can be used not only to edit ua.conf but also to change the password specified in ua.conf
used to access the LDAP directory server or RDB. Specifying the -scramble option when using the uachpw
command to change the password used to access to the LDAP directory server or RDB can scramble the password.

When using the uachpw command to scramble the password, be sure to set the
com.cosminexus.admin.auth.passwordScramble.enable key within the <configuration> tag of the logical J2EE
server (j2ee-server) in the Easy Setup definition file.

5.19.3 Example of setting the configuration file
This section gives an example of setting the user information that has the directory configuration as shown in the
following figure.

5. Integrated User Management-based Authentication

Security Management Guide 162

Figure 5‒26: Example of user information directory configuration

(1) Example of the jaas.conf settings
jaas.conf stores the user authentication information. Specify the login module name and the repository number
specified in ua.conf (the LDAP directory server or RDB) in jaas.conf. The following figure shows an example
of the jaas.conf settings.

Figure 5‒27: Example of the jaas.conf settings

(2) Example of the attribute list settings
The attribute list contains the user information that is obtained when the user is successfully authenticated (attribute
name) and the alias is used to reference it. The following figure shows an example of the attribute list settings
(c:\RealmA\config\AliasFile.csv (in Windows) or /tmp/RealmA/config/AliasFile.csv (in UNIX)).

5. Integrated User Management-based Authentication

Security Management Guide 163

Figure 5‒28: Example of setting the attribute list settings

Note that the attribute list can be directly specified within the program by using the AttributeEntry class without creating
the file.

(3) Example of the ua.conf settings
ua.conf stores the repository access information (the LDAP directory server or RDB). The following figure shows an
example of the ua.conf settings.

5. Integrated User Management-based Authentication

Security Management Guide 164

Figure 5‒29: Example of the ua.conf settings (in Windows)

5. Integrated User Management-based Authentication

Security Management Guide 165

Figure 5‒30: Example of the ua.conf settings (in UNIX)

The following figure shows an example of the authentication program coding.

5. Integrated User Management-based Authentication

Security Management Guide 166

Figure 5‒31: Example of the authentication program coding (in Windows)

5. Integrated User Management-based Authentication

Security Management Guide 167

Figure 5‒32: Example of the authentication program coding (in UNIX)

(4) Example of supporting single sign-on (when using the standard login
module)

jaas.conf needs to be edited so that the user authentication library login module supports single sign-on. The
following figure shows an example of supporting single sign-on (when using the standard login module).

Figure 5‒33: Example of supporting single sign-on (when using the standard login module)

(5) Example of supporting single sign-on (when using the custom login
module)

jaas.conf and the authentication program coding must be edited so that the custom login module supports single
sign-on. In addition, the custom login module definition item must be specified in ua.conf, which corresponds to the

5. Integrated User Management-based Authentication

Security Management Guide 168

login module identifier ("Krb5" in the example). The following figure shows an example of supporting single sign-on
(when using the custom login module).

Figure 5‒34: Example of supporting single sign-on (when using the custom login module)

5. Integrated User Management-based Authentication

Security Management Guide 169

5.20 Java VM property setup

When the integrated user management is used, it is necessary to set the Java VM properties when Java VM starts. The
Easy Setup definition file or the management portal should be used for this purpose. This section describes how to set
the properties in the Easy Setup definition file when the SmartComposer function is used to establish the Web system.

Enter the Java VM properties within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file.

The following table lists the Java VM properties.

Table 5‒16: Java VM properties in the easy setup definition file

Parameter Setting

jaas.ua.enabled Enables the Java VM JAAS.

java.security.auth.login.config Specifies the jaas.conf file path.

com.cosminexus.admin.auth.config Specifies the ua.conf file path.

com.cosminexus.admin.auth.passwordScramble.enable Enables or disables the function to encrypt passwords
scrambled by the uachpw command; for details, see
5.19.2(3) Changing and scrambling passwords.

jaas.config.load_exclusively Specifies whether to ignore login configurations other
than jaas.conf specified by the
java.security.auth.login.config
parameter.

For details about the Easy Setup definition file, see 4.3 Easy Setup definition file in the uCosminexus Application Server
Definition Reference Guide.

The following is an example of Java VM properties.

In the example, password scrambling is enabled and login configurations other than jaas.conf are ignored.

Example of the Easy Setup definition file

:
<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
 <param>
 <param-name>jaas.ua.enabled</param-name>
 <param-value>true</param-value>
 </param>
 <param>
 <param-name>java.security.auth.login.config</param-name>
 <param-value><Cosminexus installation directory>/manager/config/jaas
.conf</param-value>
 </param>
 <param>
 <param-name>com.cosminexus.admin.auth.config</param-name>
 <param-value><Cosminexus installation directory>/manager/config/ua.c
onf</param-value>
 </param>
 <param>
 <param-name>com.cosminexus.admin.auth.passwordScramble.enable</param
-name>

5. Integrated User Management-based Authentication

Security Management Guide 170

 <param-value>true</param-value>
 </param>
 <param>
 <param-name>jaas.config.load_exclusively</param-name>
 <param-value>true</param-value>
 </param>
:
</configuration>

Reference note

To change the access permission so that the Web application can carry out operations on the LoginContext
class, change the server.policy settings.

For details about server.policy, see 2.2.4 server.policy (Security policy file for J2EE servers) in the
uCosminexus Application Server Definition Reference Guide.

5. Integrated User Management-based Authentication

Security Management Guide 171

5.21 Deployment of files

This section describes how to deploy the EAR file used in integrated user management. Import uastartup.ear
into the J2EE server used in integrated user management, and start it up. uastartup.ear is located in the
following directory:

• Windows:
Cosminexus installation directory\manager\config

• UNIX:
/opt/Cosminexus/manager/config

Register uastartup.ear in Management Server and then import it into the J2EE server. For details about importing
J2EE applications, see 15.5 Deployment and undeployment of J2EE applications in the uCosminexus Application Server
Common Container Functionality Guide.

When the integrated user management framework function is used, make sure to run uastartup.ear. Otherwise, the
Management Server resource watch functionality and the reload userAdmin subcommand of the mngsvrutil
command are unavailable.

5. Integrated User Management-based Authentication

Security Management Guide 172

6 Authentication by Application Setup

This chapter describes authentication methods that involve the use of Web applications offered by
EJB and Web containers.

Security Management Guide 173

6.1 Organization of this chapter

This chapter describes authentication methods that involve the use of Web applications offered by EJB and
Web containers.

The table below shows the organization of this chapter.

Table 6‒1: Organization of this chapter (Authentication by Application Setup)

Title Relevant information

Web container-based authentication using DD settings 6.2

Authentication with security identities 6.3

6. Authentication by Application Setup

Security Management Guide 174

6.2 Web container-based authentication using DD settings

Role-based authentication processes are handled by a Web container. Each user is given one or more roles for user
management. The roles are configured using the <security-constraint> tag within the DD file (WEB-INF/
web.xml) included in a J2EE application. For details about how to configure the J2EE application, see 6.2.2 Definitions
in DD files.

Using a Web application, you can define the roles necessary for access to each particular URL within the context. When
a Web client requests access to a restricted URL, the authentication process involves two steps:

• Determining whether the access request to be authenticated is from a valid user

• Determining whether the roles given to the user match those required for access

Only a user who is recognized as valid in both steps can access the restricted URL.

The table below shows the organization of this section.

Table 6‒2: Organization of this section (Web container-based authentication using DD settings)

Part Title Relevant information

Description Web container-based authentication functionality using
DD settings

6.2.1

Implementation Definitions in DD files 6.2.2

Setup Setup in an execution environment (J2EE application setup) 6.2.3

Precautions Precautions for using authentication functionalities 6.2.4

Note: This section does not include information on operation.

6.2.1 Web container-based authentication functionality using DD settings
The following subsection describes the functionality that can be implemented for Web container-based authentication
using the DD file (WEB-INF/web.xml) settings.

(1) User information management
The Web container defines, holds, and maintains the user names, passwords, and roles of users according to the user
management functionality of the J2EE server.

(2) Container security and access permission management
The Web container can restrict Web clients from accessing particular URLs.

To do this, it is necessary to define the following in the DD file (WEB-INF/web.xml):

• URL pattern for access restriction

• Security definitions necessary for access, such as role definitions

• Authentication method for obtaining roles defined for users

6. Authentication by Application Setup

Security Management Guide 175

If the Web client fails to authenticate or if the user does not have the role necessary for access, any attempt to access a
URL pattern for which access is restricted results in an error. Note that once authenticated, a client is not authenticated
again during the valid session period.

The security definitions and authentication methods should be defined according to the DD file (WEB-INF/web.xml)
specifications stipulated by Servlet API 2.3.

The Web container offers two types of authentication method: basic and form-based authentication. Both types of
authentication can be defined by adding the <login-config> tag to the DD file (WEB-INF/web.xml) included in
the J2EE application. For details about how to configure the J2EE application, see 6.2.2 Definitions in DD files.

Important note

When using HTTP Server or Microsoft IIS with the Web server
When using either Cosminexus HTTP Server or Microsoft IIS with the Web server, the Web server
authentication functionality must be canceled in order to correctly provide basic authentication from the
Web container.
For details, see 6.2.4 Precautions for using authentication functionalities.

Configuring Basic authentication in web.xml
Specify a realm name in the <realm-name> tag. If no realm name is specified, Authentication
required is used as the realm name. Specifying a null character or only a space in the <realm-name>
tag is treated in the same manner as when the <realm-name> tag is omitted.

(3) Program security
If access to a servlet or JSP is restricted by basic or form-based authentication configured using the DD file
(WEB-INF/web.xml), that servlet or JSP can perform fine-grained security processes at the program level by using
the HttpServletRequest APIs listed below. These processes include changing the operation according to the user
name and role name for the logged-in user.

• getRemoteUser()
• isUserInRole()
• getUserPrincipal()

For details about these APIs, see Java Servlet Specification v2.3.

6.2.2 Definitions in DD files
In web.xml, specify the settings for Web container-based authentication. The table below shows the definitions used
in DD files.

Table 6‒3: Definitions used in DD files for Web container-based authentication

Specified tag Setting

<security-constraint> tag Specifies the security restrictions.

<login-config>-<auth-method> tag Specifies the method for Web container-based authentication.

6. Authentication by Application Setup

Security Management Guide 176

You can use web.xml to configure the settings for a Web application before deploying the application on the J2EE
server. You can use an attributes file to configure the same settings for a Web application already deployed on the
J2EE server. For details about the settings in attributes files, see 6.2.3 Setup in an execution environment (J2EE
application setup).

6.2.3 Setup in an execution environment (J2EE application setup)
To configure Web container-based authentication in an execution environment, use the attributes file and server
management commands. To configure Web container-based authentication using DD settings, use the WAR attributes
file. The table below shows the definitions used in the WAR attributes file.

Table 6‒4: Web container-based authentication using DD settings (WAR attributes file)

Specified tag Setting

<security-constraint> tag Specifies the security restrictions.

<login-config>-<auth-method> tag Specifies the method for Web container-based authentication.

You can use the WAR attributes file to configure the settings for a Web application already deployed on the J2EE server.
You can use web.xml to configure the same settings for a Web application before deploying the application on the J2EE
server. For details about the settings in web.xml, see 6.2.2 Definitions in DD files.

6.2.4 Precautions for using authentication functionalities
The following subsection describes the precautions for using the authentication functionalities of both Web containers
and Web servers.

(1) Order of authentication
When the authentication functionalities of both a Web container and a Web server are used in combination, they are
performed in the following order:

1. Authentication functionality of the Web server

2. Authentication functionality of the Web container

The authentication functionality of a Web server includes one or more authentication processes. These processes are:
Web server-based basic authentication, server authentication with SSL, and client authentication with SSL. When Web
container and Web server authentication functionalities are both used, one or more of these processes is used together
with the authentication functionality of the Web container.

For details about the authentication functionality and access control functionality of Cosminexus HTTP Server, see the
HTTP Server User Guide.

(2) Precautions for using both Web server-based and Web container-
based basic authentication

When you use both Web server-based and Web container-based basic authentication, the user name and password
authenticated by the Web server are passed to the Web container. Thus, it is necessary to define common user information
for the Web server and Web container.

6. Authentication by Application Setup

Security Management Guide 177

Note that after Web server-based authentication, the Web container operation varies depending on how the Web container
performs authentication. The Web container operates as follows:

• When the user is authenticated by the Web server but not by the Web container:
The Web container displays a dialog box for entering a user name and password. This dialog box requires the common
user name and password for the Web server and Web container.

• When a user authenticated by the Web server does not have a role that allows access to the Web container:
An attempt to access a URL pattern for which access is restricted results in an error.

• When a user authenticated by the Web server has a role that allows access to the Web container:
The dialog box for entering a user name and password does not appear. The user can access the URL pattern for which
access is restricted.

(3) Precautions for using Microsoft IIS with a Web server
When using Web container-based authentication, you cannot use the following authentication functionality of
Microsoft IIS:

• Digest authentication
You cannot use digest authentication regardless of whether you use the Web container's authentication functionality.
Make sure you cancel the digest authentication settings in Microsoft IIS.

• Integrated Windows authentication
You cannot use integrated Windows authentication when using Web container-based basic authentication. Make sure
you cancel the integrated Windows authentication settings in Microsoft IIS.

6. Authentication by Application Setup

Security Management Guide 178

6.3 Authentication with security identities

This section describes authentication methods that use security identities.

The table below shows the organization of this section.

Table 6‒5: Organization of this section (Authentication with security identities)

Part Title Relevant information

Description Security identity functionality 6.3.1

Implementation Security implementation in EJB client applications 6.3.2

Setup Authentication setup with security identities 6.3.3

Note: This section does not include information on operation or precautions.

6.3.1 Security identity functionality
By using the security management functionality, you can authenticate users who want to access the Web container or EJB
container. Such users are authenticated using their user names and passwords.

On successful authentication when using the security management functionality, authentication information called a
security identity is created and sent to the Web container or EJB container. If this authentication fails, an exception occurs.

The figure below shows the flow when using a security identity for authentication.

Figure 6‒1: Flow when using a security identity for authentication

For security management, you can use the Run As functionality to send the security identity specified with the
intermediate component.

If a security identity that differs from the one used to log into the client is specified with the intermediate component that
calls the Enterprise Bean, the Run As functionality allows the specified security identity to be used to call the Enterprise
Bean. The figure below shows the Run As functionality.

6. Authentication by Application Setup

Security Management Guide 179

Figure 6‒2: Run As functionality

Note that the application server does not support the following types of security management functionality:

• Encryption of messages for accessing components

• Assignment of signatures to messages

• Authentication with certificates

6.3.2 Security implementation in EJB client applications
EJB client applications can authenticate users by using their user names and passwords as defined in the J2EE server.
After a user authenticated by the EJB client application logs in, he or she can call the Enterprise Bean method for which
his or her security role is configured.

(1) Implementation procedure
Cosminexus offers APIs to implement security in EJB client applications. The prerequisites and procedure for
implementing this security are shown below. For details about the functionality and syntax of the APIs, see 4. APIs
Available for EJB Client Applications, in the uCosminexus Application Server API Reference Guide.

Before implementing security, make sure that the following prerequisites are satisfied:

• The user should be registered on the J2EE server.

• The registered user should be assigned a security role.

To implement security in an EJB client application, follow these steps:

1. Import a security API package.
To use the security APIs, import the package shown below.

import com.hitachi.software.ejb.security.base.authentication.*

2. Obtain the LoginInfoManager object.
Use a program that calls Enterprise Bean methods to obtain the LoginInfoManager object. To obtain the object,
use the getLoginInfoManager method, which is a static method for the LogInfoManager object.

LoginInfoManager lm = LoginInfoManager.getLoginInfoManager();

3. Log in with the user name and password.
After obtaining the LoginInfoManager object, call the login method.

6. Authentication by Application Setup

Security Management Guide 180

lm.login(username, password);

4. Call the Enterprise Bean method.
After the login method succeeds, call the Enterprise Bean method.

5. Log out.
After calling the Enterprise Bean method, log out from the J2EE server by using the logout method.

lm.logout();

Important note

To implement security in an EJB client application, you need to add HiEJBClientStatic.jar to the class
path and compile the file.

(2) Sample program
Below is a sample program for calling the getAccountID method, where the Enterprise Bean is named account.

import com.hitachi.software.ejb.security.base.authentication.*;
 :
 try {
 LoginInfoManager lm = LoginInfoManager.getLoginInfoManager();
 String userName = System.getProperty("username");
 String password = System.getProperty("password");
 if(lm.login(userName , password)) {
 try {
 System.out.println("user:" + userName + "login success");
 Context ctx = new InitialContext();
 java.lang.Object obj = ctx.lookup(appUnitPath + "Account");
 AccountHome aHome =
 (AccountHome)PortableRemoteObject.narrow(obj,AccountHome.class);
 Account account = aHome.create();
 account.getAccountID();
 } finally {
 lm.logout();
 }
 }
 } catch(NotFoundServerException e) {
 System.out.println("not found server");
 } catch(InvalidUserNameException e) {
 System.out.println("invalid user name");
 } catch(InvalidPasswordException e) {
 System.out.println("invalid password");
 } catch(Exception e) {
 e.printStackTrace();
 }

6. Authentication by Application Setup

Security Management Guide 181

6.3.3 Authentication setup with security identities
To manage security by using security identities, user and role information must be registered using a server management
command. The table below shows how to set up J2EE applications for authentication with security identities and for
utilization of the Run As functionality.

Table 6‒6: J2EE application setup for authentication with security identities and for utilization of the
Run As functionality

Functionality Item Target to be set Setting

Authentication with
security identities

Specifying whether
to perform
authentication that uses
security identities

Session bean,
entity bean, or message-
driven bean

Using the <security-identity> tag in
the session bean, entity bean, or message-
driven bean attributes file, specify whether to
perform authentication.

Run As functionality Specifying whether to use
Run As functionality

Using the <run-as> tag in the session bean, entity
bean, or message-driven bean attributes file, specify
whether to use the Run As functionality.

Specifying the security
role name for Run
As functionality

Using the <role-name> tag in the session bean,
entity bean, or message-driven bean attributes file,
specify the security role name.

Specifying the principal
name for Run
As functionality

Using the <user-name> tag in the session bean,
entity bean, or message-driven bean attributes file,
specify the principal name.

To set up security identities, see 9.5 Security definition (Security identities).

6. Authentication by Application Setup

Security Management Guide 182

7 SSL/TLS Encryption of Authentication
Information and Data

This chapter describes SSL/TLS encryption of communications between the Web server and Web
clients. It also describes SSL/TLS authentication.

Security Management Guide 183

7.1 Organization of this chapter

This chapter describes data encryption and authentication using SSL/TLS. It also describes the setup method.

The table below shows the organization of this chapter.

Table 7‒1: Organization of this chapter (SSL/TLS Encryption of Authentication Information and
Data)

Functionality Relevant information

SSL encryption of authentication information and data 7.2

7. SSL/TLS Encryption of Authentication Information and Data

Security Management Guide 184

7.2 SSL encryption of authentication information and data

SSL encryption of communications between the Web server and Web clients is effective when used with a Web server
that supports SSL.

The table below shows the organization of this section.

Table 7‒2: Organization of this section (SSL encryption of authentication information and data)

Part Title Relevant information

Description The authentication functionality of the Web server 7.2.1

Setup SSL setup with Cosminexus HTTP Server 7.2.2

Note: This section does not include information on operation or precautions.

7.2.1 The authentication functionality of the Web server
The Web server provides server authentication and client authentication functionality.

Server authentication
Server authentication involves encrypting random number data and sending it from the browser to the server, which
uses a key exchange certificate to decrypt the data.
Only a server with the correct key exchange certificate knows the secret key for decryption. Thus, a handshake is
established only if the server is recognized as legal by the client. In this case, the server does not assign an electronic
signature; however, it is possible to reconfirm whether the server is legal after handshake establishment.

Client authentication
Client authentication involves the server sending random number data to the browser, which then assigns an
electronic signature to the data and returns it to the server, along with the electronic signature certificate installed on
the browser.
The browser assigns an electronic signature to the random number data, thereby indicating to the server that the
browser has a secret key. As a result, the server can confirm that the client has the secret key associated with
the certificate.

Note that before using the SSL-related functionality described here, you should configure SSL on the web server,
which must be either Cosminexus HTTP Server or Microsoft IIS. For details about how to do this, follow the relevant
subsections below.

• When using Cosminexus HTTP Server:
See 7.2.2 SSL setup with Cosminexus HTTP Server.

7.2.2 SSL setup with Cosminexus HTTP Server
For SSL authentication or data encryption with Cosminexus HTTP Server, create a secret key, obtain a certificate from
the Certification Authority (CA), and configure the Cosminexus HTTP Server definition file (httpsd.conf).

For client authentication, obtain a client certificate and CA certificate and configure the Cosminexus HTTP Server
definition file (httpsd.conf).

7. SSL/TLS Encryption of Authentication Information and Data

Security Management Guide 185

The following describes how to configure SSL authentication, SSL encryption, and client authentication with
Cosminexus HTTP Server. For details, see 5. Authentication and Encryption by Using SSL in the manual HTTP Server
User Guide.

7. SSL/TLS Encryption of Authentication Information and Data

Security Management Guide 186

8 Directly Accessing Load Balancers Through the
API and Controlling Them via the Operation
Management Functionality

You can control load balancers by using the application server's operation management
functionality. This chapter describes how to configure a load balancer so that it can be directly
accessed via the API. This chapter also describes the settings for using the operation management
functionality to control a load balancer.

Security Management Guide 187

8.1 Organization of this chapter

By using a load balancer, you can use its functionality to manage multiple servers with a single virtual IP address for
efficient traffic distribution and improved performance. You can control load balancers by using the application server's
operation management functionality.

This chapter describes the settings required to control the load balancers, directly through the API, using the operation
management functionality.

The table below shows the organization of this chapter.

Table 8‒1: Organization of this chapter (Directly Accessing Load Balancers Through the API and
Controlling Them via the Operation Management Functionality)

Part Title Relevant
information

Description Directly accessing a load balancer through the API 8.2

Load balancer APIs executed using the operation management functionality 8.3

Setup Load balancer access environment setup 8.4

Load balancer connection information setup with Management Server (Smart
Composer functionality)

8.5

Load balancer connection information setup with Virtual Server Manager 8.6

Note: This chapter does not include information on implementation, operation, or precautions.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 188

8.2 Directly accessing a load balancer through the API

A load balancer available to the application server should be directly accessed through the API (SOAP or REST
architecture). Before accessing the load balancer, you need to configure the settings. The following load balancers are
compatible with the available access methods:

Direct access through API (SOAP architecture)
• BIG-IP v9

• BIG-IP v10.1

• BIG-IP v10.2

• BIG-IP v11

Direct access through API (REST architecture)
• AX2500

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 189

8.3 Load balancer APIs executed using the operation management
functionality

This section describes the load balancer APIs that are executed with the operation management functionality.

8.3.1 Load balancer APIs executed using Management Server (Smart
Composer functionality)

The following section describes load balancer APIs that are executed by using Smart Composer functionality.

Below is an example sequence diagram of a load balancer API. In this example, cmx_build_system uses cookie
switching (for building a Web system).

Figure 8‒1: Example load balancer API sequence diagram (cmx_build_system for building a Web
system)

The VirtualServer object represents the load balancer's virtual server, which accepts requests. One
VirtualServer object is created for each management unit. The ServiceGroup object provides service
management for requests accepted by the load balancer's VirtualServer. One ServiceGroup object is created
for each VirtualServer object. The RealServer object represents a real server to which requests accepted by
the load balancer's VirtualServer are transferred. The number of RealServer objects is equal to that of virtual
servers belonging to the management unit.

Before accessing the load balancer through an API that uses persistent cookies for ACOS, you need to create
CookiePersistence (cookie persistence). Using CookiePersistence, specify the hold period for each
cookie-based session. Delete any used instances of CookiePersistence as necessary. For details about how to
create and delete CookiePersistence, see the documentation for the load balancer used.

Reference note

The names VirtualServer, ServiceGroup, RealServer, and CookiePersistence, vary
depending on the load balancer product.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 190

8.3.2 Load balancer API executed using Virtual Server Manager
The following section describes load balancer APIs executed using Virtual Server Manager.

Below is an example sequence diagram of a load balancer API. In this example, vmiunit update uses cookie
switching (for building a new system).

Figure 8‒2: Example load balancer API sequence diagram (vmiunit update for building a new
system)

The VirtualServer object represents the load balancer's virtual server, which accepts requests. One
VirtualServer object is created for each management unit. The ServiceGroup object provides service
management for requests accepted by the load balancer's VirtualServer. One ServiceGroup object is created
for each VirtualServer object. The RealServer object represents a real server to which requests accepted by
the load balancer's VirtualServer are transferred. The number of RealServer objects is equal to that of virtual
servers belonging to the management unit.

Before accessing the load balancer through an API that uses persistent cookies for ACOS, you need to create
CookiePersistence (cookie persistence). Using CookiePersistence, specify the hold period for each
cookie-based session. Delete any used instances of CookiePersistence as necessary. For details about how to
create and delete CookiePersistence, see the documentation for the load balancer used.

Reference note

The names VirtualServer, ServiceGroup, RealServer, and CookiePersistence, vary
depending on the load balancer product.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 191

8.4 Load balancer access environment setup

To directly access a load balancer through an API, the load balancer access environment must be configured on the host
that provides the operation management functionality.

8.4.1 Access list (ACL) settings (ACOS)
If you are using a version of ACOS that is earlier than 2.4.3-P7, create the access list on a server machine that runs either
Management Server or Virtual Server Manager. The necessary settings are given below. For details about how to create
an access list, see the ACOS document.

• ID: 1
• Action: Permission#

• Source address: Multiple#

#
To restrict access to the load balancer, specify arbitrary values for the Action and Source address attributes.

Important note

If you specify a number other than 1 for the ID attribute when creating the ACL, the load balancer will not be
directly accessible via an API (REST architecture).

8.4.2 Creating a cookie persistence template
To maintain a session through cookies, create a cookie persistence template on the host that provides the operation
management functionality. The necessary settings are given below. For details about how to create a cookie persistence
template, see the load balancer document.

• Cookie name: arbitrary value

• Expire: 0
If you specify 0 for the Expire attribute, only the current session is maintained.

8.4.3 Configuring a trust store
By direct access through API, you communicate with the load balancer via HTTP or HTTPS. HTTPS communication
requires a trust store that contains a reliable certificate. If you use HTTPS, specify or omit https in one of the following
properties files.

For controlling the load balancer with Management Server:

• lb.API.protocol.load-balancer-management-IP-address in lb.properties
For controlling the load balancer with Virtual Server Manager:

• lb.API.protocol in LB-connection-distinguished-name.properties

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 192

• lb.API.protocol in tierlb.properties

Before communicating via HTTPS, follow the steps below to configure the trust store.

1. Obtain an SSL server certificate from the load balancer.
For details about how to obtain an SSL certificate, see the load balancer document.

2. Execute JDK's keytool command on the host that provides the operation management functionality. The SSL
server certificate obtained in step 1 will be registered in the trust store.
Below is an example of executing JDK's keytool command.

Cosminexus-installation-directory/jdk/bin/keytool -import -file loadbalanc
er.cer -alias loadbalancer -keystore C:\work\loadbalancer.keystore -storep
ass keystore_pass

For details about this command, see the JDK document.

Important note

If you register the certificate in a non-default trust store (other than cacerts) for JDK, use the
javax.net.ssl.trustStore parameter in lb.properties to specify the SSL server certificate's
absolute path. If you register the certificate in the default trust store (cacerts), the absolute path does not need
to be specified.

For BIG-IP, the default trust store (cacerts) must always be used.

This default trust store for JDK (cacerts) is located under Cosminexus-installation-
directory/jdk/jre/lib/security. The initial password is changeit.

8.4.4 hosts file settings (BIG-IP)
If you will be controlling BIG-IP from Management Server or Virtual Server Manager, register the host name and IP
address of BIG-IP in the hosts file. However, there is no need to register this information in the hosts file when you
have selected direct connection using ssh protocol to connect to BIG-IP.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 193

8.5 Load balancer connection information setup with Management Server
(Smart Composer functionality)

To configure load balancer access with the Smart Composer functionality, set the connection information in the load
balancer definition property file (lb.properties) on the host that runs Management Server.

This section shows examples of configuring the connection information for the load balancers BIG-IP and AX2500 for
direct access through an API.

BIG-IP (BIG-IP v9, BIG-IP v10.1, BIG-IP v10.2, or BIG-IP v11)

lb.list=192.168.100.10

lb.connect_type.192.168.100.10=API
#lb.API.port.192.168.100.10=443
lb.API.user.192.168.100.10=user01
lb.API.passwd.192.168.100.10=user01pw
#lb.API.API.timeout.192.168.100.10=10

AX2500

lb.list=192.168.10.100
lb.enable_passwd.192.168.10.100=adminpw

lb.connect_type.192.168.10.100=API
lb.API.user.192.168.10.100=user01
lb.API.passwd.192.168.10.100=user01pw
#lb.API.port.192.168.10.100=443
#lb.API.cookie_persistence_template.MyWebSystem.192.168.10.100=SC_COOKIE_T
EMPNAME
#lb.API.API.timeout.192.168.10.100=10
javax.net.ssl.trustStore=C:\\work\\ACOS.keystore
javax.net.ssl.trustStorePassword=keystore_pass

For details about lb.properties (load balancer definition property file), see 4.2.4 lb.properties (load balancer
definition properties file) in the uCosminexus Application Server Definition Reference Guide.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 194

8.6 Load balancer connection information setup with Virtual Server
Manager

If you are operating a load balancer in combination with the management unit, you can use Virtual Server Manager or the
management unit to define load balancer connection information such as the type of load balancer used and the method
of access.

8.6.1 Configuring load balancer connection information with Virtual
Server Manager

To configure load balancer access with Virtual Server Manager, set the connection information in the load balancer
access setup property file (LB-connection-distinguished-name.properties) on the server machine that is used for
virtual-system management. The file name represented by LB-connection-distinguished-name should be a string of 31
or fewer characters starting with a single-byte alphabetic character. It can include alphanumeric characters, underscores
(_), and hyphens (-).

Below are examples of configuring the connection information for the load balancers BIG-IP v9 (lb_BIG-
IPv9.properties) and AX2500 (lb_AX2500.properties) for direct access through an API.

BIG-IP v9 (lb_BIG-IPv9.properties)

lb.type=BIG-IPv9
lb.host=192.168.2.14
lb.protocol=API
lb.port=443
lb.user=user01
lb.password=user01pw
lb.timeout=10

AX2500 (lb_AX2500.properties)

lb.type=ACOS
lb.host=192.168.2.13
lb.protocol=API
lb.port=443
lb.user=user01
lb.password=user01pw
lb.persistence.cookie-insert.templatename=VMI_COOKIE_TEMPNAME
lb.timeout=10
javax.net.ssl.trustStore=C:\\work\\ACOS.keystore
javax.net.ssl.trustStorePassword=keystore_pass

To use the load balancer connection information above, specify LB-connection-distinguished-name for the lb.use key
in the property file (tier.properties) for each tier. For the configuration examples above, enter lb_BIG-IPv9
to use BIG-IP v9 and lb_AX2500 to use AX2500.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 195

8.6.2 Configuring load balancer connection information with the
management unit

To configure load balancer connection information with the management unit, the system creator should set the
connection information in the load balancer access setup property file (tierlb.properties) for each tier that is
managed with the management unit.

Below is an example of configuring the connection information for the load balancer BIG-IP v9 for direct access through
an API.

lb.type=BIG-IPv9
lb.host=192.168.2.14
lb.protocol=API
lb.port=443
lb.user=user01
lb.password=user01pw
lb.timeout=10

To use the load balancer connection information above, specify :unit: for the lb.use key in the property file
(tier.properties) for each tier.

8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality

Security Management Guide 196

Part 4: Setup

9 Server Management Command-based Security
Role and Application Setup

This chapter describes how to set security roles and J2EE application security by using the server
management commands.

Security Management Guide 197

9.1 Organization of this chapter

This chapter describes how to set security roles and J2EE application security by using the server
management commands.

The table below shows how the chapter is organized

Table 9‒1: Organization of this chapter (Server management command-based security role and
application setup)

Part Title Relevant
information

Setup Security role setup 9.2

Definition of security role references 9.3

Security definition (method permission) 9.4

Security definition (security identities) 9.5

Note: This chapter does not include information on description, implementation, operation, or precautions.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 198

9.2 Security role setup

The following settings are required to manage users based on security roles.

The user and role settings are managed per J2EE server.

9.2.1 Setting users
Set up the users.

Execute the following command to register a user to the J2EE server.

Execute form

cjaddsec [server name] [-nameserver provider URL] -type user -name user na
me -password password

Example

cjaddsec MyServer -type user -name aps_m -password tiger

For details about the cjaddsec command, see cjaddsec (add user or role) in the uCosminexus Application Server
Command Reference Guide.

9.2.2 Setting roles
Set up and associate roles with users. In addition, add reference security roles to the Enterprise Beans, servlets, and JSP.

(1) Registering roles
Execute the following command to register a role to the J2EE server.

Execute form

cjaddsec [server name] [-nameserver provider URL] -type role -name role na
me

Example

cjaddsec MyServer -type role -name manage

For details about the cjaddsec command, see cjaddsec (add user or role) in the uCosminexus Application Server
Command Reference Guide.

(2) Registering roles to users
Execute the following command to add a user to a role.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 199

Execute form

cjmapsec [server name] [-nameserver provider URL] -role role name -user us
er name [-user user name]

Example

cjmapsec MyServer -role manager -user aps_m

For details about the cjmapsec command, see cjmapsec (map user to role) in the uCosminexus Application Server
Command Reference Guide.

(3) Adding security roles to Enterprise Beans
Define the Enterprise Bean security role settings.

(a) Attribute file to be edited
EJB-JAR attribute file

(b) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the EJB-JAR attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name -c EJB-JAR attribut
e file path

Example

cjgetappprop MyServer -name adder -type ejb -resname adder -c C:\home\a
dder_ejb.xml

• Setting up attributes
Execute the following command to reflect the EJB-JAR attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name -c EJB-JAR attribut
e file path

Example

cjsetappprop MyServer -name adder -type ejb -resname adder -c C:\home\a
dder_ejb.xml

(c) Attribute settings to be edited
The following table lists the Enterprise Bean security role (<security-role>) settings.

Item Required Tag name

Description O <description>

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 200

Item Required Tag name

Role name R <role-name>

Security role name O <linked-to>

Legend:
R: Required, O: Optional

For details about the property settings, see subsection 3.3.1 Specifications of the HITACHI EJB-JAR Property file in the
uCosminexus Application Server Application and Resource Definition Reference Guide.

(4) Adding security roles to servlets and JSP
Define the servlets and JSP security role settings.

(a) Attribute file to be edited
WAR attribute file

(b) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the WAR attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name -c WAR attribute file pa
th

Example

cjgetappprop MyServer -name adder -type war -resname adder -c C:\home\a
dder_war.xml

• Setting up attributes
Execute the following command to reflect the WAR attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name -c WAR attribute file pa
th

Example

cjsetappprop MyServer -name adder -type war -resname adder -c C:\home\a
dder_war.xml

(c) Attribute settings to be edited
The following table lists the Web application (servlets and JSP) security role reference (<security-role>) settings.

Item Required Tag name

Description O <description>

Role name R <role-name>

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 201

Item Required Tag name

Security role name O <linked-to>

Legend:
R: Required, O: Optional

For details about the property settings, see subsection 3.7.1 Specifications of the HITACHI WAR Property file in the
uCosminexus Application Server Application and Resource Definition Reference Guide.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 202

9.3 Definition of security role references

Define a security role check reference to one or more methods of the Enterprise Bean and WAR, which are part of the
J2EE application. This security check is different from the security services provided by containers.

9.3.1 Defining Enterprise Bean security role references
Define Enterprise Bean security role references.

(1) Attribute files to be edited
Edit the attributes files for each type of Enterprise Bean.

• Session Bean attribute file

• Entity Bean attribute file

(2) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the Enterprise Bean attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

Example

cjgetappprop MyServer -name adder -type ejb -resname adder/adder_eb -c
C:\home\adder_ejb.xml

• Setting up attributes
Execute the following command to reflect the Enterprise Bean attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

Example

cjsetappprop MyServer -name adder -type ejb -resname adder/adder_eb -c
C:\home\adder_ejb.xml

(3) Attribute settings to be edited
The following table lists the Enterprise Bean security role reference (<security-role-ref>) settings.

Item Required Tag name

Description O <description>

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 203

Item Required Tag name

Security role reference name R <role-name>

Linked security role name# O <role-link>

Legend:
R: Required, O: Optional

#: Specify a set role name. To learn more about setting role names, see 9.2.2 Setting roles. When setting up the EJB-JAR
attribute file after setting <role-link>, the <role-link> value is cleared. Define the security role reference again.

For details about property settings, see:

• Subsection 3.4.1 Specifications of the HITACHI Session Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

• Subsection 3.5.1 Specifications of the HITACHI Entity Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

9.3.2 Defining servlet and JSP security role references
Define the Web application (servlets and JSP) security role references.

(1) Attribute files to be edited
Servlet attribute file

(2) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the servlet attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name/servlet and JSP display
name -c servlet attribute file path

Example

cjgetappprop MyServer -name adder -type war -resname adder/adder_sv -c
C:\home\adder_war.xml

• Setting up attributes
Execute the following command to reflect the WAR attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name/servlet and JSP display
name -c servlet attribute file path

Example

cjsetappprop MyServer -name adder -type war -resname adder/adder_sv -c
C:\home\adder_war.xml

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 204

(3) Attribute settings to be edited
The following table lists the Web application (servlets and JSP) security role reference (<security-role-ref>) settings.

Item Required Tag name

Description O <description>

Security role reference name R <role-name>

Linked security role name# O <role-link>

Legend:
R: Required, O: Optional
#: Specify a set role name. To learn more about setting role names, see 9.2.2 Setting roles.

For details about the property settings, see subsection 3.9.1 Specifications of the HITACHI Servlet Property file in the
uCosminexus Application Server Application and Resource Definition Reference Guide.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 205

9.4 Security definition (Method permission)

9.4.1 Enterprise Bean method permissions
This section explains how to set method permissions. The method permission definition defines access control based on
security roles. You can allow or deny access permissions for all users.

The method permissions can be set on the following methods:

• Session Bean

• Home interface create method

• Component interface business and remove methods

• Entity Bean

• Home interface create, finder, and home methods

• Component interface business and remove methods

Note that permissions are invalid for the following methods. The method permission defined by the component interface
remove method is used to check the access permissions of these methods.

• javax.ejb.EJBHome remove(javax.ejb.Handle handle) method

• javax.ejb.EJBHome remove(Object primaryKey) method

• javax.ejb.EJBLocalHome remove(Object primaryKey) method

Important note

When the <Enable Scheduling> property is specified for a Stateless Session Bean of the CTM application,
do not set security role-based access permissions on the home interface create method. The deployment
will fail.

(1) Attribute files to be edited
Edit the following attributes files for each type of Enterprise Beans.

• Session Bean attribute file

• Entity Bean attribute file

(2) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the Enterprise Bean attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 206

Example

cjgetappprop MyServer -name adder -type ejb -resname adder/adder-eb -c
C:\home\adder_ejb.xml

• Setting up attributes
Execute the following command to reflect the Enterprise Bean attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

Example

cjsetappprop MyServer -name adder -type ejb -resname adder/adder-eb -c
C:\home\adder_ejb.xml

(3) Attribute settings to be edited
The following table lists the security definition (method permission) settings (<method_permission>).

Item Required Tag name

Description O <description>

Role name O# <role-name>

With method authentication O# <unchecked>

Method description O <method> - <description>

Interface type O <method> - <intf>

Method name O <method> - <name>

Legend: O: Optional
Note: When the security definition (method permission) settings (<method-permission>) are set as annotations, they cannot be changed.
#: To enable security management, specify either a role name or method authentication as shown below:

• To allow or deny access permissions based on security roles:
Specify a role name (<role-name>).

• To grant access permissions to all users:
Specify whether method authentication is enabled (<unchecked>).

To deny access permissions for all users, add information regarding the method with no access permission to <method> under <exclude-list> instead
of <method-permission>.

For details about property settings, see:

• Subsection 3.4.1 Specifications of the HITACHI Session Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

• Subsection 3.5.1 Specifications of the HITACHI Entity Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 207

9.5 Security definition (Security identities)

There are the following two types of security identity settings.

• Runtime identity information used by Enterprise Beans

• Runtime identity information used by servlets

9.5.1 Enterprise Bean security identities
Define the Enterprise Bean security identities.

The two types of security identities, "UseCallerIdentity" and "RunAs", can be set.

• UseCallerIdentity
The caller's security identity is used when a method is executed.
Specify a security identity to be associated with an execution thread when an Enterprise Bean home or component
interface method is executed.

• RunAs
Operations were performed in accordance with the role identity specified by role name.

(1) Attribute files to be edited
Edit the following attributes files for each type of Enterprise Beans.

• Session Bean attribute file

• Entity Bean attribute file

• Message-driven Bean attribute file

(2) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the Enterprise Bean attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

Example

cjgetappprop MyServer -name adder -type ejb -resname addr/adder_eb -c C
:\home\adder_ejb.xml

• Setting up attributes
Execute the following command to reflect the Enterprise Bean attribute file values.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 208

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type ejb -resname EJB-JAR display name/enterprise bean disp
lay name -c enterprise bean attribute file path

Example

cjsetappprop MyServer -name adder -type ejb -resname adder/adder_eb -c
C:\home\adder_ejb.xml

(3) Attribute settings to be edited
The following table lists the Enterprise Bean security definition (security identity) settings (<security-identity>).

Item Required Tag name

Description O <description>

With security identity setting O# <use-caller-identity>

Description on role identity O <run-as> - <description>

Security role name O# <run-as> - <role-name>

Name specified in security role O <run-as> - <user-name>

Legend: O: Optional
#: Set either of the following items depending on whether the caller's security identity is used when a method is executed.

• The caller's security identity is used when a method is executed:
Specify whether the security identity is set (<use-caller-identity>).

• The caller's security identity is not used when a method is executed:
Set role identity information (<run-as>).

• Only set role identity (<run-as>) information for message-driven beans.

For details about property settings, see:

• Subsection 3.4.1 Specifications of the HITACHI Session Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

• Subsection 3.5.1 Specifications of the HITACHI Entity Bean Property file in the uCosminexus Application Server
Application and Resource Definition Reference Guide

• Subsection 3.6.1 Specifications of the HITACHI MessageDrivenBean Property file in the uCosminexus Application
Server Application and Resource Definition Reference Guide

9.5.2 Servlet and JSP security identities
Define the servlet and JSP security identities.

Specify the runtime identity information that is used by a servlet when EJB is invoked.

(1) Attribute files to be edited
Servlet attribute file

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 209

(2) Obtaining the attribute file to be edited and setting up attributes
• Obtaining the attribute file

Execute the following command to obtain the servlet attribute file.

Execute form

cjgetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name/servlet and JSP display
name -c servlet attribute file path

Example

cjgetappprop MyServer -name adder -type war -resname adder/adder_sv -c
C:\home\adder_war.xml

• Setting up attributes
Execute the following command to reflect the servlet attribute file values.

Execute form

cjsetappprop [server name] [-nameserver provider URL] -name J2EE applic
ation name -type war -resname WAR display name/servlet and JSP display
name -c servlet attribute file path

Example

cjsetappprop MyServer -name adder -type war -resname adder/adder_sv -c
C:\home\adder_war.xml

(3) Attribute settings to be edited
The following table lists the Web application (servlets and JSP) security role definition (security identity) settings.

Item Required Tag name

Description on role identity O <run-as> - <description>

Security role name R <run-as> - <role-name>

Name specified in security role R <run-as> - <user-name>

Legend:
R: Required, O: Optional

For details about the property settings, see subsection 3.9.1 Specifications of the HITACHI Servlet Property file in the
uCosminexus Application Server Application and Resource Definition Reference Guide.

9. Server Management Command-based Security Role and Application Setup

Security Management Guide 210

10 Management Portal-based Integrated
User Management Operation
(INTENTIONALLY DELETED)

INTENTIONALLY DELETED

Security Management Guide 211

10.1 INTENTIONALLY DELETED

INTENTIONALLY DELETED

10. Management Portal-based Integrated User Management Operation (INTENTIONALLY DELETED)

Security Management Guide 212

11 Management Portal-based Repository
Management (Integrated User Management)
(INTENTIONALLY DELETED)

INTENTIONALLY DELETED

Security Management Guide 213

11.1 INTENTIONALLY DELETED

INTENTIONALLY DELETED

11. Management Portal-based Repository Management (Integrated User Management) (INTENTIONALLY DELETED)

Security Management Guide 214

12 Resource Monitoring (Integrated User
Management) (INTENTIONALLY DELETED)

INTENTIONALLY DELETED

Security Management Guide 215

12.1 INTENTIONALLY DELETED

INTENTIONALLY DELETED

12. Resource Monitoring (Integrated User Management) (INTENTIONALLY DELETED)

Security Management Guide 216

Part 5: Reference

13 Commands Used in Integrated User Management

This chapter describes the input formats and functions, etc., used in integrated user management.

Security Management Guide 217

13.1 List of commands used in integrated user management

The following table lists the commands used in integrated user management.

Table 13‒1: List of commands used in integrated user management

Command name Category Overview

convpw Password encryption Encrypts the password field content in the ldif file and outputs the
results in the standard output

ssoexport Referencing the single sign-on
information repository

Places the content in the single sign-on information repository and
outputs it in the standard output in the CSV format

ssogenkey Creating encryption key files Creates the encryption key file to be registered or referenced in the
single sign-on information repository

ssoimport Registering the single sign-on
information repository

Reads the CSV file storing the single sign-on authentication
information and registers the file content to the single sign-on
information repository

uachpw Password change Changes the passwords used to access to the LDAP directory and
DB servers in the integrated user management configuration file

13. Commands Used in Integrated User Management

Security Management Guide 218

13.2 Details of commands used in integrated user management

The following are the input formats and functions, etc., of the commands used in integrated user management.

Command directory
The commands used in integrated user management are stored in either of the following directories.

• Windows:
Cosminexus installation directory\manager\bin\

• UNIX:
/opt/Cosminexus/manager/bin/

Common specifications
Exit code

The following table lists the exit code of commands used in integrated user management.

Table 13‒2: Exit code of commands used in integrated user management

Exit code Meaning

0 The command succeeded.

1 An error occurred during command execution.

2 Either the command or argument at the time of server startup is incorrect.

convpw (Password encryption)

Format

convpw [-f {md5|sha1|sha224|sha256|sha384|sha512}] ldif_file_name password_a
ttribute

Function
This command encrypts the ldif file when registering it in the user information repository. The command reads the
specified ldif file, encrypts the contents specified by <password_attribute>, and then outputs the result in the standard
output. Excluding the attribute name value specified by <password_attribute>, the ldif file content is output in the
standard output as is.

When the attribute name specified by <password_attribute> is not found, the file content is output in the standard output
as is.

This command can be executed by users with root privilege or permissions to execute the command. To learn more about
how to grant permissions to execute the command to specific users, see mngenvsetup (setup management group) in the
uCosminexus Application Server Command Reference Guide.

Arguments

-f {md5|sha1|sha224|sha256|sha384|sha512}
This specifies the format used to encrypt the value specified by "password" in the file specified by <ldif_file_name>.
When omitted, the default "sha1" is used. This argument is not case sensitive.

13. Commands Used in Integrated User Management

Security Management Guide 219

• md5
The value is encrypted in the MD5 format.

• sha1
The value is encrypted in the SHA-1 format.

• sha224
The value is encrypted in the SHA-224 format.

• sha256
The value is encrypted in the SHA-256 format.

• sha384
The value is encrypted in the SHA-384 format.

• sha512
The value is encrypted in the SHA-512 format.

<ldif_file_name>
This specifies the name of the ldif file storing the user information in which the password is to be converted.

<password_attribute>
This specifies the attribute name used when the password field content is converted.

Note
When Japanese is included in the ldif file to be converted, convert it to UTF-8 and then encode it in base64. For details
about LDIF, see RFC 2849 "The LDAP Data Interchange Format (LDIF) - Technical Specification".

ssoexport (Referencing the single sign-on information repository)

Format

ssoexport [-n realm name] [-u user ID] [-scramble] useradmin_configfile

Function
This outputs the user information stored in the single sign-on information repository in the standard output in the
CSV format.

When the user information is changed in the single sign-on information repository, the information output by the
ssoexport command is placed and edited in the CSV file, and then it is re-registered with the ssoimport command.

When the user information is fetched by using the ssoexport command, the actual data in "SECRETDATA"
is decrypted.

The realm and user ID must be contained in the user information so that the ssoexport command converts and outputs
the user information in the CSV format. Otherwise, the command does not output the user information.

This command can be executed by the users with root privilege or permissions to execute the command. To learn more
about how to grant permissions to execute the command to specific users, see mngenvsetup (setup management group)
in the uCosminexus Application Server Command Reference Guide.

13. Commands Used in Integrated User Management

Security Management Guide 220

Arguments

-n <realm name>
This specifies the realm name to be searched for. When omitted, all the realm names are searched.

-u <user ID>
This specifies the user ID to be searched for. Wildcards (*) can be used in the user ID. Enclose a wildcard (*) with
double quotation marks (").

Examples:

• -u "*"
All users are fetched.

• -u "Ta*"
The users whose user ID starts with "Ta" are fetched.

• -u "*no"
The users whose user ID ends with "no" are fetched.

When omitted, all the user IDs are searched.

-scramble
Use this argument when passwords are scrambled by using the password change command (uachpw).

<useradmin_configfile>
This specifies the integrated user management configuration file (ua.conf).

Examples of input and output
The following are the examples of input and output when the realm name is "RealmA" and when the users starting with
"s9" are to be fetched.

Input

Windows:

C:\>ssoexport -n RealmA -u "s9*" "C:\Program Files\Hitachi\Cosminexus\m
anager\config\ua.conf"

UNIX:

% ssoexport -n RealmA -u "s9*" /opt/Cosminexus/manager/config/ua.conf

Output

SecurityDomain,USERID,SECRETDATA,PUBLICDATA,LINK_J2EE,LINK_REALMA
RealmA,s981234,abfdef,,
RealmA,s991234,ghijkl,,

Notes
• When no information is stored in the single sign-on information repository or the user information that corresponds

to the specified realm name or user ID cannot be obtained, this command exits with the header only.

• Do not stop the LDAP directory server when the ssoexport command is executed. The command may exit without
error messages.

• Do not execute the ssoexport and ssoimport commands simultaneously.

13. Commands Used in Integrated User Management

Security Management Guide 221

• Integrity is not ensured for the application that manages users at the destination registered by the ssoimport
command. In other words, no error occurs even when the corresponding realm entry (or user entry) is not present in
the single sign-on information repository. Be aware that no information is output when the ssoexport command
is executed to reference the information. For the application that manages users at the destination, the ssoexport
command outputs the value that corresponds to the realm entry immediately below the base DN.

ssogenkey (Creating encryption key files)

Format

ssogenkey useradmin_configfile

Function
The single sign-on authentication information is encrypted and saved, and it is decrypted when referenced. This
command creates the encryption key used to encrypt and decrypt the information.

This command can be executed by the users with root privilege or permissions to execute the command. To learn more
about how to grant permissions to execute the command to specific users, see mngenvsetup (setup management group)
in the uCosminexus Application Server Command Reference Guide.

Arguments

<useradmin_configfile>
This specifies the integrated user management configuration file (ua.conf).

Notes
• When the specified file is already present, create the backup in the same directory as the specified file by adding ".n"

to the name.

• This command does not access the single sign-on information repository content. When the single sign-on
authentication information has been already registered in the single sign-on information repository, execute the
ssoexport command to fetch all the information, and then register it with the ssoimport command.

ssoimport (Registering the single sign-on information repository)

Format

ssoimport {-a|-m|-d|-x} [-p] [-scramble] csvfile_name useradmin_configfile

Function
This registers the CSV file obtained from the application that manages users (or the CSV file that is obtained from the
application and then edited) in the single sign-on information repository. The actual data in the item ID "SECRETDATA"
is encrypted when it is registered in the single sign-on information repository.

13. Commands Used in Integrated User Management

Security Management Guide 222

This command can be executed by the users with root privilege or permissions to execute the command. To learn more
about how to grant permissions to execute the command to specific users, see mngenvsetup (setup management group)
in the uCosminexus Application Server Command Reference Guide.

Arguments

-a
This adds the file content specified by <csvfile_name> to the single sign-on information repository. When the user
entry already exists in the single sign-on information repository, it outputs a warning message without adding the user
entry, and then it continues the next process.

-m
This overwrites the single sign-on information repository with the file content specified by <csvfile_name>. When
the user entry is not present in the single sign-on information repository, it adds the user entry.

-d
This deletes the file content specified by <csvfile_name> from the single sign-on information repository. When the
user entry is not present in the single sign-on information repository, it outputs a warning message and continues the
next process.

-x
This updates the single sign-on information repository according to the line operation instruction. For details about
the line operation of CSV single sign-on authentication information files, see 14.3 CSV files containing single sign-on
authentication information.

-p
This outputs the list of realm and user names that are added, changed, or updated in the standard output.

-scramble
Use this argument when passwords are scrambled by using the password change command (uachpw).

<csvfile_name>
This specifies the CSV file to be registered in the single sign-on information repository.

<useradmin_configfile>
This specifies the integrated user management configuration file (ua.conf).

Input
In the following example, userdata.csv is the CSV file to be registered, and ua.conf is the single sign-on
configuration file.

To add the CSV file content to the single sign-on information repository:

ssoimport -a userdata.csv ua.conf

To delete the CSV file content from the single sign-on information repository:

ssoimport -d userdata.csv ua.conf

To register the CSV file content in the single sign-on information repository in accordance with the operation specified
in the actual data under OPERATION:

ssoimport -x userdata.csv ua.conf

13. Commands Used in Integrated User Management

Security Management Guide 223

Output messages
The ssoimport command reads each line of the CSV file specified by the option and registers (changes or deletes) it in
the single sign-on information repository. When the command is executed with the -p option, it outputs the information
regarding the execution in the standard output. Note that warning and error messages occurred at the execution are output
in the standard error output.

When the command is executed without the -p option, it outputs "results" only.

The following figure shows an example of output.

Figure 13‒1: Example of the "ssoimport" command output (in Windows)

Figure 13‒2: Example of the "ssoimport" command output (in UNIX)

The information about the execution is shown under OPERATION, REALMNAME, and USERID.

Information about the execution
The corresponding information under the OPERATION, REALMNAME, and USERID headers are displayed together
with the warning and error messages generated during the execution.

OPERATION
One of the operation types listed in the following table is displayed.

Table 13‒3: ssoimport command operation types

Item Description

add The information has been added.

modify The information has been changed (overwritten).

delete The information has been deleted.

13. Commands Used in Integrated User Management

Security Management Guide 224

REALMNAME
The target realm name is displayed. The value is specified in "REALMNAME" of the CSV file.

USERID
The target user ID is displayed. The value is specified in "USERID" of the CSV file.

Execution results
The following table lists the execution results to be displayed.

Table 13‒4: ssoimport command execution results

Item Description

Total This indicates the number of target lines.

ADD This indicates the number of entries added to the single sign-on information repository.

MODIFY This indicates the number of entries changed in the single sign-on information repository.

DELETE This indicates the number of entries deleted from the single sign-on information repository.

WARNING This indicates the number of warning messages generated during the execution.

Notes
• When deleting the user information of the JAAS user management application, execute ssoexport to obtain the

user information, delete the users of the application that manages users, and then update the information with the
-m option.

• Do not execute the ssoexport and ssoimport commands simultaneously.

• Integrity is not ensured for the application that manages users at the destination registered by the ssoimport
command. In other words, no error occurs even when the corresponding realm entry (or user entry) is not present in
the single sign-on information repository. Be aware that no information is output when the ssoexport command
is executed to reference the information. For the application that manages users at the destination, the ssoexport
command outputs the value that corresponds to the realm entry immediately below the base DN.

uachpw (Password change)

Format

uachpw [-scramble] [-ldap.n password] [-db.n password] useradmin_configfile

Function
This changes the passwords used to access to the LDAP directory and DB servers in the integrated user management
configuration file (ua.conf). It can also scramble passwords.

This command can be executed by the users with root privilege or permissions to execute the command. To learn more
about granting permissions to execute the command to specific users, see mngenvsetup (setup management group) in the
uCosminexus Application Server Command Reference Guide.

Arguments

-scramble
Use this argument when scrambling the password to be changed.

13. Commands Used in Integrated User Management

Security Management Guide 225

-ldap.<n> <password>
This changes the password used to access the LDAP directory server specified by <n>. <n> contains the LDAP
number defined in the integrated user management configuration file. <password> contains a new password.

-db.<n> <password>
This changes the password used to access to the DB server specified by <n>. <n> contains the JDBC number defined
in the integrated user management configuration file. <password> contains a new password.

<useradmin_configfile>
This specifies the integrated user management configuration file (ua.conf). This argument is not optional.

Input
In the following example, the password defined in the integrated user management configuration file (ua.conf) is
changed and scrambled by using the -scramble option.

• The LDAP access information 0 password is changed to "diradmin".

• The LDAP access information 1 password is changed to "administrator".

• The DB access information 0 password is changed to "tiger".

% uachpw -scramble -ldap.0 diradmin -ldap.1 administrator -db.0 tiger ua.co
nf

Notes
• When scrambling the password with the -scramble option, set

com.cosminexus.admin.auth.passwordScramble.enable of usrconf.properties to true. Otherwise, the LDAP
directory and DB servers will not be accessible, as the password is not decrypted.

• The maximum number of characters in the password is 30.

• The options are not case sensitive.

• Do not execute commands concurrently.

• Do not include files other than the integrated user management configuration file (ua.conf) in the arguments.

13. Commands Used in Integrated User Management

Security Management Guide 226

14 Files Used by Integrated User Management

This chapter describes the format, location, functionality, specifiable options, etc. of the files used by
Integrated User Management.

Security Management Guide 227

14.1 List of files used by integrated user management

The table below lists the files used by integrated user management.

Table 14‒1: List of files used by integrated user management

File name Classification Description Relevant
information

jaas.conf JAAS configuration file Configures the settings necessary for using the
user authentication library and single sign-on
library functionality.

14.2.1

ua.conf Integrated user management
configuration file

Configuration file for using the JAAS-compatible
user management and single sign-on functionality.

14.2.2

(optional) CSV file for single sign-on
authentication information

Configures authentication information for
single sign-on.

14.3

14. Files Used by Integrated User Management

Security Management Guide 228

14.2 Details of files used for integrated user management

14.2.1 jaas.conf (JAAS configuration file)

(1) Format
This is a JAAS configuration file that is necessary in order to use the user authentication library and single sign-on
library functionality.

Options can be specified as follows:

Application {
 login-module-name Flag ModuleOptions;
};

(2) File location
• In Windows

Cosminexus-installation-directory\manager\config\
• In UNIX
/opt/Cosminexus/manager/config/

(3) Functionality
This file is used to configure settings that are necessary in order to use the user authentication library and single sign-on
library functionality. Before using these features, a JAAS configuration file must be created and distributed to each host.
Before distributing the file, take necessary precautions against possible eavesdropping.

(4) Options to be specified
Following table describes the options, along with their names.

Option name Description

Application Specify an application name. We recommend using a name that can uniquely identify the application.
The specified name is used to instantiate the LoginContext class.
Names starting with the character strings shown below are used by Cosminexus. Therefore, do not
specify an application name starting with any of the following characters:
• jp.co.hitachi.soft
• com.hitachi.software
• com.cosminexus

Login module name Specify the authentication engine to be used.
Specify one of the following login modules:
• WebPasswordLoginModule

Specify this to use a password for user authentication.
• WebCertificateLoginModule

Specify this to use a client certificate for user authentication.
• WebPasswordLDAPLoginModule

14. Files Used by Integrated User Management

Security Management Guide 229

Option name Description

Specify this to use the authentication functionality of an LDAP directory server for
user authentication.

• WebPasswordJDBCLoginModule
Specify this to use a database as the user information repository.

• DelegationLoginModule
Specify this to call a custom login module.

• WebSSOLoginModule
Specify this to use the single sign-on functionality.

Flag Specify a flag to be used to change the behavior according to whether the correct login module
was called by LoginContext. For details about the flag to be specified, see the appropriate
JAAS documentation.

ModuleOptions Specify the options necessary to run the login module. For details about the options to be specified,
see the sections from (5) Options to be specified for WebPasswordLoginModule to (10) Options to be
specified for WebPasswordLDAPLoginModule.

(5) Options to be specified for WebPasswordLoginModule
The table below shows the options to be specified for WebPasswordLoginModule, along with their default values.

Option Description Default value

com.cosminexus.adm
in.auth.ldap.r

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can reference the user information repository. The value must
be enclosed by "". To specify more than one LDAP configuration number, separate
the numbers by a comma (,). If more than one LDAP configuration number is
specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server. The specified value is
used by any functionality that needs to reference the repository, for example, when
using WebPasswordLoginModule for login.

0

com.cosminexus.adm
in.auth.ldap.w

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can update the user information repository. The value must be
enclosed by "". To specify more than one LDAP configuration number, separate the
numbers by a comma (,). If more than one LDAP configuration number is specified
and the first LDAP directory server specified goes down, the system automatically
switches to a different LDAP directory server. The specified value is used by any
functionality that manages the contents of the repository, such as the password
change functionality.

0

com.cosminexus.adm
in.auth.sso.ldap.w

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. Specify this option when you are using the PasswordUtil
class to change both the password and single sign-on authentication information,
or when you are using the LDAP connection failover to change single sign-on
authentication information. The specified value must be a number that identifies a
configuration that can update the single sign-on in information repository. The value
must be enclosed by "". To specify more than one LDAP configuration number,
separate the numbers by a comma (,). If more than one LDAP configuration number
is specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.sso.ldap.w within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

14. Files Used by Integrated User Management

Security Management Guide 230

Option Description Default value

com.cosminexus.adm
in.auth.keep_passw
ord

Specify true or false to control whether to hold the password of a user who has
logged into the realm in an integrated user management session. The specification is
not case-sensitive.
If you specify true, the password is to be held. If you specify false, the password
is not to be held. If a user is already logged into the realm, the already-held password
is not overwritten even if true is specified. If false is specified for this option and
a user uses WebPasswordLDAPLoginModule to log into the same realm in the
same session, he or she is required to enter his or her user ID and password for each
subsequent login.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.keep_passw
ord.encrypt

If true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false to control whether to encrypt a password that is held. The
specification is not case-sensitive.
If you specify true, the password is to be encrypted.
If you specify false, the password is not to be encrypted.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password.encrypt within the
integrated user management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.gsession.k
eep_password

If the session failover functionality of integrated user management is enabled
and true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false in this option to control whether to manage a password held
in an integrated user management session with the session failover functionality.

If true is specified:
The password is held in the global session.

If false is specified:
The password is not held in the global session.

If a session failover occurs and a user uses WebPasswordLDAPLoginModule to
log into the same realm in the same session, he or she is required to enter his or her
user ID and password for each subsequent login.
Specification example:
com.cosminexus.admin.auth.gsession.keep_password=true

value-specified-
in-the-integrated-
user-management-
configuration-file

(6) Options to be specified for WebSSOLoginModule
The table below shows the options to be specified for WebSSOLoginModule, along with their default values.

Option Description Default value

com.cosminexus.adm
in.auth.sso

Specify the identifier of the login module to be called from WebSSOLoginModule.
The specified identifier is used to read necessary information from the JAAS-
compatible user management configuration file.
If this is omitted, the Cosminexus standard login module
(WebPasswordLoginModule) is assumed.

WebPasswordLog
inModule

com.cosminexus.adm
in.auth.sso.ldap.r

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can reference the single sign-on information repository. The value
must be enclosed by "". To specify more than one LDAP configuration number,
separate the numbers by a comma (,). If more than one LDAP configuration number
is specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server. The specified value is
used by any functionality that needs to reference the repository, for example, when
using WebSSOLoginModule to perform single sign-on.

value-specified-
in-the-integrated-
user-management-
configuration-file

14. Files Used by Integrated User Management

Security Management Guide 231

Option Description Default value

The specified value supersedes any value specified in
com.cosminexus.admin.auth.sso.ldap.r within the integrated user
management configuration file.

com.cosminexus.adm
in.auth.sso.ldap.w

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can update the single sign-on information repository. The value
must be enclosed by "". To specify more than one LDAP configuration number,
separate the numbers by a comma (,). If more than one LDAP configuration number
is specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server. The specified value is
used by any functionality that needs to update the repository, such as the password
change functionality.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.sso.ldap.w within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

(7) Options to be specified for DelegationLoginModule
The table below shows the options to be specified for DelegationLoginModule, along with their default values.

Option Description Default value

com.cosminexus.adm
in.auth.custom.lm

Specify the name of a custom login module (or class name) to be called by
DelegationLoginModule, as a character string. The specified name must be a
fully qualified name.

None

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

(8) Options to be specified for WebCertificateLoginModule
The table below shows the options to be specified for WebCertificateLoginModule, along with their
default values.

Option Description Default value

com.cosminexus.adm
in.auth.ldap.r

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can reference the user information repository. The value must
be enclosed by "". To specify more than one LDAP configuration number, separate
the numbers by a comma (,). If more than one LDAP configuration number is
specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server. The specified value is
used by any functionality that needs to reference the repository, for example, when
using WebCertificateLoginModule for login.

0

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

(9) Options to be specified for WebPasswordJDBCLoginModule
The table below shows the options to be specified for WebPasswordJDBCLoginModule, along with their
default values.

14. Files Used by Integrated User Management

Security Management Guide 232

Option Description Default value

com.cosminexus.adm
in.auth.jdbc.r

Specify a JDBC configuration number defined in 14.2.2(3) Repository access-related
parameters. The specified value must be a number that identifies a configuration that
can reference the user information repository. The value must be enclosed by "". The
specified value is used by any functionality that needs to reference the repository, for
example, when using WebPasswordJDBCLoginModule for login.

0

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

com.cosminexus.adm
in.auth.keep_passw
ord

Specify true or false to control whether to hold the password of a user who has
logged into the realm in an integrated user management session. The specification is
not case-sensitive.
If you specify true, the password is to be held. If you specify false, the password
is not to be held. If a user is already logged into the realm, the already-held password
is not overwritten even if true is specified. If false is specified for this option and
a user uses WebPasswordLDAPLoginModule to log into the same realm in the
same session, he or she is required to enter his or her user ID and password for each
subsequent login.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.keep_passw
ord.encrypt

If true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false to control whether to encrypt a password that is held. The
specification is not case-sensitive.
If you specify true, the password is to be encrypted.
If you specify false, the password is not to be encrypted.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password.encrypt within the
integrated user management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.gsession.k
eep_password

If the session failover functionality of integrated user management is enabled
and true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false in this option to control whether to manage a password held
in an integrated user management session with the session failover functionality.

If true is specified:
The password is held in the global session.

If false is specified:
The password is not held in the global session.

If a session failover occurs and a user uses WebPasswordLDAPLoginModule to
log into the same realm in the same session, he or she is required to enter his or her
user ID and password for each subsequent login.
Specification example:
com.cosminexus.admin.auth.gsession.keep_password=true

value-specified-
in-the-integrated-
user-management-
configuration-file

(10) Options to be specified for WebPasswordLDAPLoginModule
The table below shows the options to be specified for WebPasswordLDAPLoginModule, along with their
default values.

Option Description Default value

com.cosminexus.adm
in.auth.ldap.r

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can reference the user information repository. The value must
be enclosed by "". To specify more than one LDAP configuration number, separate
the numbers by a comma (,). If more than one LDAP configuration number is

0

14. Files Used by Integrated User Management

Security Management Guide 233

Option Description Default value

specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server. The specified value is
used by any functionality that needs to reference the repository, for example, when
using WebPasswordLDAPLoginModule for login.

com.cosminexus.adm
in.auth.ldap.w

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. The specified value must be a number that identifies a
configuration that can update the user information repository. The value must be
enclosed by "". To specify more than one LDAP configuration number, separate the
numbers by a comma (,). If more than one LDAP configuration number is specified
and the first LDAP directory server specified goes down, the system automatically
switches to a different LDAP directory server. The specified value is used by any
functionality that manages the contents of the repository, such as the password
change functionality.

0

com.cosminexus.adm
in.auth.sso.ldap.w

Specify an LDAP configuration number defined in 14.2.2(3) Repository access-
related parameters. Specify this option when you are using the PasswordUtil
class to change both the password and single sign-on authentication information,
or when you are using the LDAP connection failover to change single sign-on
authentication information. The specified value must be a number that identifies a
configuration that can update the single sign-on information repository. The value
must be enclosed by "". To specify more than one LDAP configuration number,
separate the numbers by a comma (,). If more than one LDAP configuration number
is specified and the first LDAP directory server specified goes down, the system
automatically switches to a different LDAP directory server.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.sso.ldap.w within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.realm

Specify the realm to be authenticated as a character string. None

com.cosminexus.adm
in.auth.keep_passw
ord

Specify true or false to control whether to hold the password of a user who has
logged into the realm in an integrated user management session. The specification is
not case-sensitive.
If you specify true, the password is to be held. If you specify false, the password
is not to be held. If a user is already logged into the realm, the already-held password
is not overwritten even if true is specified. If false is specified for this option and
a user uses WebPasswordLDAPLoginModule to log into the same realm in the
same session, he or she is required to enter his or her user ID and password for each
subsequent login.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password within the integrated user
management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.keep_passw
ord.encrypt

If true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false to control whether to encrypt a password that is held. The
specification is not case-sensitive.
If you specify true, the password is to be encrypted.
If you specify false, the password is not to be encrypted.
The specified value supersedes any value specified in
com.cosminexus.admin.auth.keep_password.encrypt within the
integrated user management configuration file.

value-specified-
in-the-integrated-
user-management-
configuration-file

com.cosminexus.adm
in.auth.gsession.k
eep_password

If the session failover functionality of integrated user management is enabled
and true is specified in com.cosminexus.admin.auth.keep_password,
specify true or false in this option to control whether to manage a password held
in an integrated user management session with the session failover functionality.

If true is specified:
The password is held in the global session.

value-specified-
in-the-integrated-
user-management-
configuration-file

14. Files Used by Integrated User Management

Security Management Guide 234

Option Description Default value

If false is specified:
The password is not held in the global session.

If a session failover occurs and a user uses WebPasswordLDAPLoginModule to
log into the same realm in the same session, he or she is required to enter his or her
user ID and password for each subsequent login.
Specification example:
com.cosminexus.admin.auth.gsession.keep_password=true

14.2.2 ua.conf (integrated user management configuration file)

(1) Format
This is a configuration file for using the JAAS-compatible user management and single sign-on functionality.

(2) File location
• In Windows

Cosminexus-installation-directory\manager\config\
• In UNIX
/opt/Cosminexus/manager/config/

(3) Repository access-related parameters
Repository access-related parameters define information related to access to the JAAS-compatible user management
repository (LDAP directory server or database). These definitions are used to access the repository from relevant login
modules or various commands.

You can define an item more than once by appending a different configuration number (either LDAP or JDBC).
Configuration numbers must start with 0 and increment by 1. If a number is skipped, the current set of definitions is
terminated there. In the following example, it is assumed that 0 and 1 are defined. (The number 3 is ignored because 2
is skipped.)

Example

java.naming.provider.url.0=ldap://localhost:389
java.naming.provider.url.1=ldap://localhost:389
java.naming.provider.url.3=ldap://localhost:389
#java.naming.provider.url.3 is ignored.

JNDI and JDBC can have their own sets of definitions and each set starts with "0".

(a) JNDI parameters
JNDI parameters define information that is necessary in order to use JNDI to access the LDAP directory server. You can
specify a parameter for accessing the LDAP directory server more than once by incrementing the LDAP configuration
number from 0.

14. Files Used by Integrated User Management

Security Management Guide 235

Option Description Default value

java.naming.provide
r.url

Specify the URL of the repository (LDAP directory server) as a character string. For details,
see the appropriate Java JNDI description.

None

java.naming.securit
y.principal

Specify the identifier of the authenticator to be used to access the repository
(LDAP directory server), as a character string. For details, see the appropriate Java
JNDI description.

None

java.naming.securit
y.credentials

Specify the password corresponding to java.naming.security.principal.n,
as a character string. For details, see the appropriate Java JNDI description.

None

com.cosminexus.admi
n.auth.ldap.basedn

Specify the base DN of the repository under JAAS-compatible user management, as a
character string.

None

com.cosminexus.admi
n.auth.ldap.attr.us
erid

Specify the attribute name of a user login ID, as a character string. uid

com.cosminexus.admi
n.auth.ldap.search.
userrdn

Specify true or false to control whether to search the repository for a user entry (RDN)
under JAAS-compatible user management. If the attribute name of a user login ID differs
from the user entry (RDN), specify true. The specification is not case-sensitive.

false

com.cosminexus.admi
n.auth.ldap.search.
scope

If the repository is to be searched for a user entry (RDN) under JAAS-compatible user
management, specify a search level of onelevel (search to one level below only) or
subtree (search to all levels below). The specification is not case-sensitive.

onelevel

com.cosminexus.admi
n.auth.ldap.attr.pa
ssword

Specify the attribute name of a user password, as a character string. userPasswo
rd

com.cosminexus.admi
n.auth.ldap.pool.en
able

Specify true or false to control whether to use LDAP connection pools. The
specification is not case-sensitive.

false

com.cosminexus.admi
n.auth.ldap.pool.ma
x

Specify the maximum number of LDAP connection pools. If an incoming request causes
the maximum number to be exceeded, the system waits for a pool to become empty. Specify
an integer from 0 to 2147483647. If the specified value is equal to or less than 0, 100
is assumed.

100

com.cosminexus.admi
n.auth.ldap.pool.ma
x_spare

Specify the maximum number of empty LDAP connection pools. The specified maximum
number might be exceeded temporarily, but will be adjusted at intervals of the
time specified by com.cosminexus.admin.auth.ldap.pool.gc_interval.
Specify an integer from 0 to 2147483647.
If the specified value exceeds that specified for
com.cosminexus.admin.auth.ldap.pool.max, the value specified for
com.cosminexus.admin.auth.ldap.pool.max is assumed.
If the specified value is equal to or less than 0, half of the value specified for
com.cosminexus.admin.auth.ldap.pool.max is assumed.
If the value specified for com.cosminexus.admin.auth.ldap.pool.max is an
odd number, the value is rounded down. If the specified value is 1, 1 is assumed.

50

com.cosminexus.admi
n.auth.ldap.pool.mi
n_spare

Specify the number of new pools to be established when the number of empty LDAP
connection pools becomes 0 (including when the number is initialized). Specify an integer
from 0 to 2147483647.
If the specified value exceeds that specified for
com.cosminexus.admin.auth.ldap.pool.max_spare, the value specified for
com.cosminexus.admin.auth.ldap.pool.max_spare is assumed.
If the specified value is equal to or less than 0, half of the value specified for
com.cosminexus.admin.auth.ldap.pool.max_spare is assumed.
If the value specified for
com.cosminexus.admin.auth.ldap.pool.max_spare is an odd number, the
value is rounded down.
If the specified value is 1, 1 is assumed.

10

14. Files Used by Integrated User Management

Security Management Guide 236

Option Description Default value

com.cosminexus.admi
n.auth.ldap.pool.gc
_interval

Specify the time interval for adjusting the number of empty LDAP connection
pools as an integer from 0 to 2147483647 (in seconds). See the description
for com.cosminexus.admin.auth.ldap.pool.max_spare.
If the specified value is equal to or less than 0, this functionality
does not work. (The number of pools increases to that specified for
com.cosminexus.admin.auth.ldap.pool.max and no pool is deleted.)

60

com.cosminexus.admi
n.auth.ldap.conn.re
try.count

Specify the number of retries to be made if LDAP connection fails, as an integer from 0
to 2147483647.

1

com.cosminexus.admi
n.auth.ldap.conn.re
try.wait

Specify the time interval (in ms) for retries to be made if LDAP connection fails, as an
integer from 0 to 2147483647.

0

com.cosminexus.admi
n.auth.ldap.certifi
cate.attr.userid

Specify a character string indicating the attribute name to be used as a user ID after
decomposition of a DN stored in a certificate. The specification is not case-sensitive. If there
are two or more instances of the same attribute name when extracting a user ID, the first
value found is used.

cn

com.cosminexus.admi
n.auth.ldap.passwor
d.encrypt

Specify the format of passwords stored in the repository. WebPasswordLoginModule
uses the specified format to compare passwords.
• sha1: SHA-1 format
• sha224: SHA-224 format
• sha256: SHA-256 format
• sha384: SHA-384 format
• sha512: SHA-512 format
• none: Plain text
• md5: MD5 format

The specified character string is not case-sensitive. If the string
other than the above is specified, sha1 is assumed. If
com.cosminexus.admin.auth.ldap.password.encrypt.ex is specified,
this parameter is ignored.

sha1

com.cosminexus.admi
n.auth.ldap.passwor
d.encrypt.ex

If the password format used is not one of those provided as standard, specify the fully
qualified name of the class for password conversion.
If this parameter is omitted or if the specified value cannot be found, the format
specified in com.cosminexus.admin.auth.ldap.password.encrypt is used
to compare passwords.

None

com.cosminexus.admi
n.auth.ldap.directo
ry.kind

Specify the type of LDAP directory server to be connected.

AD:
Specify this to use Active Directory.

ETC:
Specify this to use an LDAP directory server other than Active Directory.

If the value other than the above is specified, ETC is set.

ETC

com.cosminexus.admi
n.auth.ldap.conn.re
ad_timeout

Specify the read timeout for the LDAP directory server as an integer from 0 to 3600 (in
seconds). If 0 is specified, no timeout occurs.

3

com.sun.jndi.ldap.c
onnect.timeout

Specify the connection timeout (in ms) for the LDAP directory server, as an integer equal
to or greater than 0. If the specified integer is equal to or less than 0, the timeout value used
in the network protocol, such as TCP, is used.

LDAP provider
specification

14. Files Used by Integrated User Management

Security Management Guide 237

(b) JDBC parameters
JDBC parameters define information that is necessary in order to use JDBC to access the database. You can specify a
parameter for accessing the database more than once by incrementing the JDBC configuration number from 0.

Option Description Default value

com.cosminexus.admi
n.auth.jdbc.driver

Specify the class name of a JDBC driver corresponding to the database to be used. Specify
the location of the JDBC driver in the class path of the J2EE server.

JP.co.Hita
chi.soft.D
BPSV_Drive
r.JdbcDbps
vDriver

com.cosminexus.admi
n.auth.jdbc.conn.ur
l

Specify the URL for connecting to the database, as a character string. The URL must be in
the following format:
Specification example:
jdbc:<subprotocol>:<subname>

None

com.cosminexus.admi
n.auth.jdbc.conn.us
er

Specify a character string indicating a database user connecting as a proxy. If this is omitted,
it is assumed that there is no database user connecting as a proxy.

No proxy

com.cosminexus.admi
n.auth.jdbc.conn.pa
ssword

Specify the password of a database user connecting as a proxy, as a character string.
If com.cosminexus.admin.auth.jdbc.conn.user is omitted, this parameter
is ignored.
If com.cosminexus.admin.auth.jdbc.conn.user is specified and this
parameter is omitted, a null character is assumed.

Null character

com.cosminexus.admi
n.auth.jdbc.pool.en
able

Specify true or false to control whether to use JDBC connection pools. The
specification is not case-sensitive.

false

com.cosminexus.admi
n.auth.jdbc.pool.ma
x

Specify the maximum number of JDBC connection pools. If an incoming request causes the
maximum number to be exceeded, the system waits for a pool to become empty. Specify
an integer from 0 to 2147483647. If the specified value is equal to or less than 0, 100
is assumed.

100

com.cosminexus.admi
n.auth.jdbc.pool.ma
x_spare

Specify the maximum number of empty JDBC connection pools. The specified maximum
number might be exceeded temporarily, but will be adjusted at intervals of the
time specified by com.cosminexus.admin.auth.jdbc.pool.gc_interval.
Specify an integer from 0 to 2147483647.
If the specified value exceeds that specified for
com.cosminexus.admin.auth.jdbc.pool.max, the value specified for
com.cosminexus.admin.auth.jdbc.pool.max is assumed.
If the specified value is equal to or less than 0, half of the value specified for
com.cosminexus.admin.auth.jdbc.pool.max is assumed.
If the value specified for com.cosminexus.admin.auth.jdbc.pool.max is an
odd number, the value is rounded down. If the specified value is 1, 1 is assumed.

50

com.cosminexus.admi
n.auth.jdbc.pool.mi
n_spare

Specify the number of new pools to be established when the number of empty JDBC
connection pools becomes 0 (including when the number is initialized). Specify an integer
from 0 to 2147483647.
If the specified value exceeds that specified for
com.cosminexus.admin.auth.jdbc.pool.max_spare, the value specified for
com.cosminexus.admin.auth.jdbc.pool.max_spare is assumed.
If the specified value is equal to or less than 0, half of the value specified for
com.cosminexus.admin.auth.jdbc.pool.max_spare is assumed.
If the value specified for
com.cosminexus.admin.auth.jdbc.pool.max_spare is an odd number, the
value is rounded down.
If the specified value is 1, 1 is assumed.

10

14. Files Used by Integrated User Management

Security Management Guide 238

Option Description Default value

com.cosminexus.admi
n.auth.jdbc.pool.gc
_interval

Specify the time interval for adjusting the number of empty JDBC connection
pools as an integer from 0 to 2147483647 (in seconds). See the description
for com.cosminexus.admin.auth.jdbc.pool.max_spare.
If the specified value is equal to or less than 0, this functionality
does not work. The number of pools increases to that specified for
com.cosminexus.admin.auth.jdbc.pool.max and no pool is deleted.

60

com.cosminexus.admi
n.auth.jdbc.conn.re
try.count

Specify the number of retries to be made if JDBC connection fails, as an integer from 0
to 2147483647.

1

com.cosminexus.admi
n.auth.jdbc.conn.re
try.wait

Specify the time interval (in ms) for retries to be made if JDBC connection fails, as an
integer from 0 to 2147483647.

0

com.cosminexus.admi
n.auth.jdbc.sql

Specify the SQL SELECT statement for searching for a password. The specified SELECT
statement must be in the following format:
(Specification format)
SELECT column-name FROM table-name WHERE search-condition
The search condition can only contain a "?" as an IN parameter placeholder. The value is
replaced with the user ID specified during authentication.

None

com.cosminexus.admi
n.auth.jdbc.passwor
d.type

Specify the value type of the column containing the password. Specify one of the following
values to indicate the type supported in the Java language.
• string:

A password value is taken as a String type from the database. It is equivalent to the SQL
data type CHAR/VARCHAR/LONGVARCHAR.

• byte:
A password value is taken as a byte[] type from the database. It is equivalent to the
SQL data type VARBINARY/LONGVARBINARY.

The specified keyword is not case-sensitive. If the string other than the above keywords is
specified, string is assumed.

string

com.cosminexus.admi
n.auth.jdbc.passwor
d.encrypt

Specify the format of passwords stored in the repository. WebPasswordLoginModule
uses the specified format to compare passwords.
• sha1: SHA-1 format
• sha224: SHA-224 format
• sha256: SHA-256 format
• sha384: SHA-384 format
• sha512: SHA-512 format
• none: Plain text
• md5: MD5 format

The specified keyword is not case-sensitive. If the value other than the above keywords is
specified, none is assumed.
If com.cosminexus.admin.auth.jdbc.password.encrypt.ex is specified,
this parameter is ignored.
If sha1 or md5 is specified in this parameter, specify byte in the
com.cosminexus.admin.auth.jdbc.password.type parameter.

none

com.cosminexus.admi
n.auth.jdbc.passwor
d.encrypt.ex

If the password format used is not one of those provided as standard, specify the fully
qualified name of the class for password conversion.
If this parameter is omitted or if the specified parameter cannot be found, the encryption
format specified in com.cosminexus.admin.auth.ldap.password.encrypt
is used to compare passwords.

None

14. Files Used by Integrated User Management

Security Management Guide 239

(c) API parameters
API parameters define information used by APIs when referencing or updating the user information repository on the
LDAP directory server.

Append .<name> to items. The .<name> element is an identifier that indicates use of an API to reference or update the
user information repository. The specified name is also specified in the LdapUserDataManager constructor.

name format

Application's-Java-package-name.internal-name

Internal name: Character string consisting of alphanumeric characters (A-Z, a-z, and 0-9), and period (.).

Example

com.cosminexus.admin.auth.api.repository.ldap.config.<com.cosminexus.ad
min.auth.Example>=1

The name element can be defined more than once by changing the value. To define the name element more than once,
each instance must be made unique in the configuration file. Specify the name element as a character string consisting
of alphanumeric characters (A-Z, a-z, and 0-9), and period (.). If any other character is used, the name element might
not be recognized correctly.

Option Description Default value

com.cosminexus.admi
n.auth.api.reposito
ry.ldap.config

Specify the identifier (or an LDAP configuration number specified in the appropriate JNDI
parameter) indicating the LDAP directory server used by API.

None

(d) Single sign-on parameters
Single sign-on parameters are necessary in order to use the single sign-on functionality. Two different types of
information must be specified. One is for information used by WebSSOLoginModule, and the other is for definition
information used for calling a custom login module. Append .name to definitions of the latter type (options starting from
com.cosminexus.admin.auth.sso.lm in the following table). The .name element is the identifier of a login
module called from WebSSOLoginModule.

The .name element can be defined more than once by changing the value. The specified .name is used in the
JAAS configuration.

Format
item-used-by-WebSSOLoginModule=value
definition-for-calling-the-custom-login-module.name=value

Example

com.cosminexus.admin.auth.sso.keyfile=d:/tmp/DES3key.key
com.cosminexus.admin.auth.sso.lm.krb5=com.sun.security.module.Krb5LoginMod
ule
com.cosminexus.admin.auth.sso.param.userid.Krb5=javax.security.auth.login.
name
...

14. Files Used by Integrated User Management

Security Management Guide 240

Option Description Default value

com.cosminexus.admi
n.auth.sso.keyfile

Specify the absolute path and name of the file containing key information for
encryption when registering single sign-on information. If this file is not specified, a
LoginException will occur when using the single sign-on functionality for login or
during use of the password change functionality (using the PasswordUtil class).
If com.cosminexus.admin.auth.sso.encrypt=none, the value specified in
this parameter is ignored.

None

com.cosminexus.admi
n.auth.sso.encrypt

Specify the product to be used to encrypt single sign-on authentication
information (SecretData).
• JCE: JCE is used.
• NONE: No encryption functionality is used.

The specified keyword is not case-sensitive.

NONE

com.cosminexus.admi
n.auth.sso.ldap.r

Specify the LDAP configuration number defined at the beginning of this section. The
specified value must be a number that identifies a configuration that can reference the single
sign-on information repository. The specified value is used by any functionality that needs
to reference the repository, for example, when using WebSSOLoginModule to perform
a single sign-on.

0

com.cosminexus.admi
n.auth.sso.ldap.w

Specify the LDAP configuration number defined at the beginning of this section. The
specified value must be a number that identifies a configuration that can update the single
sign-on in information repository. The specified value is used by any functionality that
manages the repository, such as the password change functionality or SSOExport and
SSOImport commands.

0

com.cosminexus.admi
n.auth.sso.lm

Specify the login module name (or class name) of each application called by
WebSSOLoginModule Specify the full package name.

None

com.cosminexus.admi
n.auth.sso.param.us
erid

Specify the name of the parameter for passing a user ID registered in the single sign-on
information repository. The specified value is set by WebSSOLoginModule before the
login() method is called. Note that this occurs only if the value is authenticated.

com.cosmin
exus.admin
.auth.sso.
userid

com.cosminexus.admi
n.auth.sso.param.se
cdat

Specify the name of the parameter for passing encrypted information registered in the single
sign-on information repository. The key with the specified parameter name and the key
value are set by WebSSOLoginModule before the login() method is called. Note that
the key and its value are set only if they are already authenticated. Decrypted data is set for
the value.

com.cosmin
exus.admin
.auth.sso.
secdat

com.cosminexus.admi
n.auth.sso.param.pu
bdat

Specify the name of the parameter for passing non-encrypted information registered
in the single sign-on information repository. The specified value is set by
WebSSOLoginModule before the login() method is called. Note that this occurs only
if the value is authenticated.
Be careful not to use a duplicate parameter name
when specifying com.cosminexus.admin.auth.sso.param.userid,
com.cosminexus.admin.auth.sso.param.secdat,
or com.cosminexus.admin.auth.sso.param.pubdat.
If a duplicate parameter name is used, the contents are not guaranteed.

com.cosmin
exus.admin
.auth.sso.
pubdat

(e) Custom login module parameters
Custom login module parameters are necessary in order to call a custom login module from
DelegationLoginModule or WebSSOLoginModule.

Option Description Default value

com.cosminexus.admi
n.auth.custom.modul
es

Specify the absolute path of the directory containing a custom login module and its related
classes (such as Principal and Credential classes).

None

14. Files Used by Integrated User Management

Security Management Guide 241

(f) Cosminexus standard login module parameters
Cosminexus standard login module parameters define general information for the Cosminexus standard login modules.

Option Description Default value

com.cosminexus.admi
n.auth.keep_passwor
d

Specify true or false to control whether to hold the password of a user who has
logged into the realm in an integrated user management session. The specification is
not case-sensitive.
If you specify true, the password is to be held. If you specify false, the password is
not to be held. If a user is already logged into the realm, the already-held password is not
overwritten even if true is specified. If false is specified for this option and a user uses
WebPasswordLDAPLoginModule to log into the same realm in the same session, he
or she is required to enter his or her user ID and password for each subsequent login.

false

com.cosminexus.admi
n.auth.keep_passwor
d.encrypt

If true is specified in com.cosminexus.admin.auth.keep_password, specify
true or false to control whether to encrypt a password that is held. The specification is
not case-sensitive.
If you specify true, the password is to be encrypted.
If you specify false, the password is not to be encrypted.

true

com.cosminexus.admi
n.auth.param_check.
enable

If true is specified for com.cosminexus.admin.auth.param_check.enable
and one of the following Cosminexus standard login modules is used to log in with a login
user name starting or ending with a space, an exception will occur:
• WebPasswordLoginModule
• WebPasswordJDBCLoginModule
• WebCertificateLoginModule
• WebPasswordLDAPLoginModule

true

com.cosminexus.admi
n.auth.gsession.kee
p_password

If the session failover functionality of integrated user management is enabled and true
is specified in com.cosminexus.admin.auth.keep_password, specify true or
false in this option to control whether to manage a password held in an integrated user
management session with the session failover functionality.

If true is specified:
The password is held in the global session.

If false is specified:
The password is not held in the global session.

If a session failover occurs and a user uses WebPasswordLDAPLoginModule to log
into the same realm in the same session, he or she is required to enter his or her user ID and
password for each subsequent login.
Specification example:
com.cosminexus.admin.auth.gsession.keep_password=true

false

(g) Other parameters
A trace file contains definition information related to the entire user management using the Cosminexus standard
login module.

Option Description Default value

com.cosminexus.admi
n.auth.trace.prefix

Specify the full path and name of the trace file (without an extension). In output, the
specified value has an extension of .n.log appended. (n indicates the number of files from
1 to the maximum number of files (up to 16).) If this specification is omitted, no trace log
is output.

None

com.cosminexus.admi
n.auth.trace.level

Specify the trace level as a number. Trace information is output for levels equal to or below
the specified level.

0

14. Files Used by Integrated User Management

Security Management Guide 242

Option Description Default value

0:
If a login or logout fails, a trace log is output.

5:
If a login or logout succeeds or times out, a trace log is output.

com.cosminexus.admi
n.auth.trace.rotate

Specify the number of trace files as a number from 1 to 16. 4

com.cosminexus.admi
n.auth.trace.size

Specify the maximum size of a trace file as a number from 4096 to 2147483647.
If a log file exceeds the specified size, subsequent logs are recorded in a new file with the
next file number. If the final log file (the file with a file number equal to the maximum
number of files) reaches the maximum file size, log file 1 is overwritten.

65536

com.cosminexus.admi
n.auth.sfo.disable

If a session failover filter is set, disable the session failover support of integrated
user management.

If true is specified:
Disables the session failover support.

If false is specified:
Enables the session failover support.

false

14. Files Used by Integrated User Management

Security Management Guide 243

14.3 CSV files containing single sign-on authentication information

To specify single sign-on authentication information, you must create a file in CSV format. The CSV file is
described below.

14.3.1 Basic CSV file specifications
A comma (,) is used to separate each item. A new line is used to separate each record.

An item that comprises a character string separated by a comma is treated as a piece of data (or data field), regardless
of whether the string is enclosed in double-quotations ("). To include a comma in an item, enclose the entire item in
double quotations.

Example: "ou=Cosminexus,o=HitachiHitachi" is specified as an RDN name.

...,"ou=Cosminexus,o=Hitachi",...

To include a double quotation in an item, specify two double quotations in succession and enclose the entire item by
double quotations.

Example: To set "pass"wd" as an Alias:

...,"pass""wd",...

A space preceding or following a comma (,) is included in the item.

14.3.2 Definition file for acquiring user information

(1) Additional CSV file specifications
In addition to the specifications shown in 14.3.1 Basic CSV file specifications, the following specifications are added for
specifying lists of attributes:

• The specification order of items is predetermined.

• If two successive commas are specified, it is assumed that the option between the commas (,) is omitted.

(2) Specification formats
End each line with a new line and specify the following items in the line, separated by commas:

Format Item

Format 1 #

Format 2 Attribute name Alias Subcontext

Format 1
This format is used to specify a comment. If a line starts with # (in the first column), any text between the # and the
end of the line is assumed to be a comment.

14. Files Used by Integrated User Management

Security Management Guide 244

Format 2
This format is used to specify the information shown below within a line.

Table 14‒2: Information to be specified (definition file for acquiring user information)

Functionality Meaning Attribut
e

Attribute name Specify a name that starts with an alphabetic character and consists of alphabetic (ASCII) and numeric
characters, and hyphens. The alphabetic characters are not case-sensitive.

Required

Alias Specify the name for referencing the program. Optional

Subcontext In order to obtain information for a non-authenticated user entry, specify the RDN relative to the user
entry for the entry to be obtained.

Optional

14.3.3 Definition file for adding or modifying user information
This file is used to specify the object classes of LDAP directory server entries.

(1) Additional CSV file specifications
In addition to the specifications shown in 14.3.1 Basic CSV file specifications, the following specifications are added for
specifying lists of attributes:

• The specification order of items is predetermined.

• If two successive commas are specified, it is assumed that the option between the commas (,) is omitted.

(2) Specification formats
End each line with a new line and specify the following items in the line, separated by commas:

Format Item

Format 1 #

Format 2 Subcontext Object class[,Object class...]

Format 1
This format is used to specify a comment. If a line starts with # (in the first column), any text between the # and the
end of the line is assumed to be a comment.

Format 2
This format is used to specify the information shown below within a line.

Table 14‒3: Information to be specified (definition file for adding or modifying user information)

Functionality Meaning Attribute

Subcontext Specify the RDN relative to the user entry used for authentication. If this is omitted, the user
entry is assumed.

Optional

Object class Specify the object class of the subcontext. To specify two or more subcontexts, separate them
by commas.

Required

14. Files Used by Integrated User Management

Security Management Guide 245

14.3.4 Definition file for user mapping and authentication information

(1) Additional CSV file specifications
In addition to the specifications shown in 14.3.1 Basic CSV file specifications, the following specifications are added for
specifying lists of attributes:

• The first line contains header information, and the second and subsequent lines contain data to be registered.

• The type of information of each item is determined by the header.

• If two successive commas are specified, it is assumed that the option between the commas (,) is omitted.

(2) Specification formats
Information to be specified in the first line

Specify the header information shown in the table below. Each item must consist of ASCII characters and be
separated by a comma (,). Item IDs can be specified in any order.

Table 14‒4: Header information to be specified (definition file for user mapping and
authentication information)

Item ID Specification Description Attribute

REALMNAME Register identification Specify the name of a realm. User entries are created under the
specified name.

Required

USERID User ID Required

SECRETDATA Authentication
information

Data is to be encrypted and saved. Optional

PUBLICDATA Data is to be saved without encryption. Optional

LINK_xxxx Destination system user Specify the name of a user of an application that has user
management functionality. (xxxx must be a REALMNAME.)

Optional

OPERATION Line operation command Specify a line operation type. A file can contain specifications of
addition, change, and deletion.

Optional

If the specified name is not an item ID, the field is ignored.
LINK_xxxx is an item ID created for each realm registered in the single sign-on repository.

Second and subsequent lines
Specify actual data to be registered, separating each item by a comma (,).

(3) User definition for applications that have JAAS-compatible user
management

The xxxx portion of a LINK_xxxx item ID indicates the name of a realm representing an application that has user
management functionality for the connection destination. To define the connection destination, specify a user ID in the
xxxx field. To add to or modify the specification, use the following operations:

Add
This adds to the given LINK_xxxx item the user ID of an application (or realm) to which you wish to assign user
management functionality for the connection destination.

14. Files Used by Integrated User Management

Security Management Guide 246

Modify
This modifies the given LINK_xxxx item to the user ID of an application (or realm) to which you wish to assign user
management functionality for the connection destination.

Delete
This deletes the user ID from the given LINK_xxxx item (or specifies nothing in it).

14.3.5 CSV file specification example
This example assumes users with the names taro, hanako, and jirou under a realm named Portal, and a user named
k010000 under a realm named RealmA. Under the realm name J2EE, the users hanako and jirou use the Admin and
DBMgr user IDs respectively. In this case, the CSV file contains the information shown below. (This example assumes
that the user ID and password of a user are the same.)

REALMNAME USERID SECRETDATA PUBLICDATA LINK_J2EE LINK_REALM
A

Portal taro taro developer -- k010000

Portal hanako hanako -- Admin k010000

Portal jirou jirou -- DBMgr k010000

RealmA k010000 k010000 -- -- --

J2EE Admin Admin -- -- --

J2EE DBMgr DBMgr -- -- --

Specification example

REALMNAME,USERID,SECRETDATA,PUBLICDATA,LINK_J2EE,LINK_REALMA
Portal,taro,taro,developer,,k010000
Portal,hanako,hanako,,Admin,k010000
Portal,jirou,jirou,,DBMgr,k010000
RealmA,k010000,k010000,,,
J2EE,Admin,Admin,,,
J2EE,DBMgr,DBMgr,,,

14.3.6 Line operation
Line operation is a type of functionality that provides line addition, modification, or deletion in the single sign-on
information repository according to a value specified in the OPERATION field within a CSV file. The administrator
can insert any number of OPERATION fields. To enable this functionality, the -x option must be specified in the
ssoimport command. The -x option is not compatible with the -a, -m, and -d options.

The types and purposes of operations that can be specified in the OPERATION field are shown in the table below.

Table 14‒5: Types and purposes of operations that can be specified in the OPERATION field

Operation Purpose

A or a Add the specified line to the single sign-on information repository. If the user entry already exists in the single
sign-on information repository, the system issues a warning message and continues the processing.

14. Files Used by Integrated User Management

Security Management Guide 247

Operation Purpose

M or m Overwrite the single sign-on information repository with the specified line. If the user entry does not exist in the
single sign-on information repository, the user entry is added.

D or d Deletes the specified line from the single sign-on information repository. If the user entry does not exist in the
single sign-on information repository, the system issues a warning message and continues the processing.

Note
Operations are not case-sensitive. Any null character preceding or succeeding an operation is ignored. The tab character is invalid.
If a character specified in the operation field is not one of A, a, M, m, D, or d, the system issues a warning and skips the line. In this case, check
to see whether the specified operation is correct and retry.

An example of a CSV file with the OPERATION field added is shown below.

OPERATION REALMNAME USERID SECRETDATA PUBLICDATA LINK_J2EE

A Portal taro taro developer --

D Portal hanako hanako -- Admin

M Portal jirou jirou -- DBMgr

-- RealmA k010000 k010000 -- --

M J2EE Admin Admin -- --

Specification example

OPERATION,REALMNAME,USERID,SECRETDATA,PUBLICDATA,LINK_J2EE
A,Portal,taro,taro,developer,
D,Portal,hanako,hanako,,Admin
M,Portal,jirou,jirou,,DBMgr
,RealmA,k010000,k010000,,
M,J2EE,Admin,Admin,,

14. Files Used by Integrated User Management

Security Management Guide 248

15 APIs Used with the Integrated User
Management Framework

This chapter describes the APIs and exception classes that are used with the integrated user
management framework.

Security Management Guide 249

15.1 List of APIs for the integrated user management framework

APIs and exception classes are used when user authentication is implemented with the libraries for the integrated user
management framework. The table below lists these APIs and exception classes.

Table 15‒1: List of APIs and exception classes for the integrated user management framework

Class/interface name Functionality API type

AttributeEntry class Manages attribute names paired with aliases. User authentication library

ChangeDataFailedException class Exception class called by the SSODataListener
interface implementation class

Single sign-on library
(exception class)

DelegationLoginModule class JAAS login module implementation class. Calls a custom
login module.

Cosminexus standard
login module

LdapSSODataManager class References or updates information in the single sign-on
information repository on the LDAP directory server.

Single sign-on library

LdapUserDataManager class References or updates information in the user
information repository on the LDAP directory server.

User authentication library

LdapUserEnumeration interface References a list of user IDs. User authentication library

LoginUtil class Checks for users who have logged into a session for
integrated user management.

User authentication library

ObjectClassEntry class Holds the object class of an entry on the LDAP
directory server.

User authentication library

PasswordCryptography interface Encrypts a password entered by a user. User authentication library

PasswordUtil class Changes a password entered by a user. User authentication library

Principal interface References the user ID authenticated
by WebPasswordLoginModule.

User authentication library

SSOData class Holds single sign-on authentication information. Single sign-on library

SSODataEvent class Holds updated single sign-on authentication information. Single sign-on library

SSODataListener interface Reports the update of single sign-on
authentication information.

Single sign-on library

SSODataListenerException class Exception class that is called when an exception occurs
in the authentication information listener class for
single sign-on.

Single sign-on library
(exception class)

UserAttributes interface References the credentials that were created when
WebPasswordLoginModule authenticated the user.

User authentication library

UserData class Holds user information. User authentication library

WebCertificateCallback class JAAS Callback implementation class.
Holds the results of SSL authentication performed by
a Web server.

User authentication library

WebCertificateHandler class JAAS CallbackHandler implementation class.
Reads necessary information that indicates the results
of SSL authentication performed by a Web server.

User authentication library

WebCertificateLoginModule class JAAS login module implementation class. Obtains user
attributes from certificates authenticated by a Web server.

Cosminexus standard
login module

15. APIs Used with the Integrated User Management Framework

Security Management Guide 250

Class/interface name Functionality API type

WebLogoutCallback class JAAS Callback implementation class.
Holds information about a user who logs out.

User authentication library

WebLogoutHandler class JAAS CallbackHandler implementation class.
Reads necessary information about a user who logs out.

User authentication library

WebPasswordCallback class JAAS Callback implementation class.
Holds authentication information such as a password.

User authentication library

WebPasswordHandler class JAAS CallbackHandler implementation
class. Reads necessary information for
password authentication.

User authentication library

WebPasswordJDBCLoginModule class JAAS login module implementation class. Accesses a
database by using JDBC, and authenticates the password.

Cosminexus standard
login module

WebPasswordLDAPLoginModule class JAAS login module implementation class. Performs
authentication according to the results of binding to the
LDAP directory server.

Cosminexus standard
login module

WebPasswordLoginModule class JAAS login module implementation class. Authenticates
passwords for Web applications.

Cosminexus standard
login module

WebSSOCallback class JAAS Callback implementation class
offered by the single sign-on library. Obtains information
required for WebSSOLoginModule.

Single sign-on library

WebSSOHandler class JAAS CallbackHandler implementation class
offered by the single sign-on library. Reads information
required for WebSSOLoginModule.

Single sign-on library

WebSSOLoginModule class JAAS login module implementation class. Calls other
login modules for single sign-on.

Cosminexus standard
login module

Exception classes API exception classes used for integrated
user management.

Exception class

15. APIs Used with the Integrated User Management Framework

Security Management Guide 251

15.2 The AttributeEntry class

Description
Represents not only the name and alias of an attribute fetched from the user management repository, but also a
tuple containing subcontexts from the user management context. After user authentication, the specified attribute is
bound to the public credential of the subject via alias. If no alias is specified, it is bound to that public credential via
attribute name.
The package name of this class is com.cosminexus.admin.auth.

Syntax

class AttributeEntry
{
public AttributeEntry(String attr,
 String alias,
 String subcontext);
public AttributeEntry(String attr,
 String alias);
public AttributeEntry(String attr);
public AttributeEntry();

public String getAlias();
public String getAttributeName();
public String getSubcontext();
public void setAlias(String alias);
public void setAttributeName(String attr);
public void setSubcontext(String subcontext);
}

Constructor and methods

Constructor/method name Functionality

AttributeEntry constructor Creates an instance of the AttributeEntry class.

getAlias method Obtains the alias specified by the setAlias method or constructor.

getAttributeName method Obtains the attribute name specified by the setAttributeName method
or constructor.

getSubcontext method Obtains the subcontext specified by the setSubcontext method or constructor.

setAlias method Stores the alias specified by the parameter into the object.

setAttributeName method Stores the attribute name specified by the parameter into the object.

setSubcontext method Stores the subcontext specified by the parameter into the object.

The AttributeEntry constructor

Description
Creates an instance of the AttributeEntry class.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 252

Syntax

public AttributeEntry(String attr,
 String alias,
 String subcontext);

public AttributeEntry(String attr,
 String alias);

public AttributeEntry(String attr);

public AttributeEntry();

Parameters

attr:
Specifies the attribute name stored in the repository.

alias:
Specifies the alias associated with the attribute name.

subcontext:
Specifies the subcontext.

Exceptions
None

The getAlias method

Description
Obtains the value specified by the setAlias method or constructor. If that value does not exist, the getAlias method
returns null when it is called.

Syntax

public String getAlias();

Parameters
None

Exceptions
None

Return value
The value stored in the object

15. APIs Used with the Integrated User Management Framework

Security Management Guide 253

The getAttributeName method

Description
Obtains the value specified by the setAttributeName method or constructor. If that value does not exist, the
getAttributeName method returns null when it is called.

Syntax

public String getAttributeName();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getSubcontext method

Description
Obtains the value specified by the setSubcontext method or constructor. If that value does not exist, the
getSucontext method returns null when it is called.

Syntax

public String getSubcontext();

Parameters
None

Exceptions
None

Return value
The value stored in the object

15. APIs Used with the Integrated User Management Framework

Security Management Guide 254

The setAlias method

Description
Stores the value specified by the parameter into the object. If a value already exists, it is overwritten when the setAlias
method is called.

Syntax

public void setAlias(String alias);

Parameter

alias:
Specifies the alias associated with the attribute name.

Exceptions
None

Return value
None

The setAttributeName method

Description
Stores the value specified by the parameter into the object. If a value already exists, it is overwritten when the
setAttributeName method is called.

Syntax

public void setAttributeName(String attr);

Parameter

attr:
Specifies the attribute name.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 255

The setSubcontext method

Description
Stores the value specified by the parameter into the object. If a value already exists, it is overwritten when the
setSubcontext method is called.

Syntax

public void setSubcontext(String subcontext);

Parameter

subcontext:
Specifies the subcontext.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 256

15.3 The ChangeDataFailedException class

Description
An exception class that is called when the SSODataListener interface implementation class fails at the time of
adding, correcting, or deleting data.
The package name of the ChangeDataFailedException class
is com.cosminexus.admin.auth.api.repository.event.

Syntax

class ChangeDataFailedException extends UAException
{
public ChangeDataFailedException();
public ChangeDataFailedException(String msg);
}

Constructor

Constructor name Functionality

ChangeDataFailedException constructor Creates an instance of the ChangeDataFailedException class.

The ChangeDataFailedException constructor

Description
Uses the error message specified by the parameter to create an instance of the
ChangeDataFailedException class.

Syntax

public ChangeDataFailedException();

public ChangeDataFailedException(String msg);

Parameter

msg:
Specifies the error message.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 257

15.4 The DelegationLoginModule class

Description
A JAAS login module implementation class offered by the user authentication library. It calls a custom login module.
Its package name is com.cosminexus.admin.auth.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 258

15.5 The LdapSSODataManager class

Description
References or updates information stored in the single sign-on information repository on the LDAP directory server.
The package name of the LdapSSODataManager class
is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

class LdapSSODataManager
{
 public LdapSSODataManager(String realm);

 public LdapUserEnumeration listUsers()
 throws NamingException;
 public LdapUserEnumeration listUsers(String uid)
 throws NamingException;
 public SSOData getSSOData(String uid)
 throws NamingException;
 public void addSSOData(String uid,
 SSOData SSOData)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;
 public void removeSSOData(String uid)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;
 public void modifySSOData(String uid,
 SSOData SSOData)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;
 public SSODataListener[] getSSODataListeners();
 public void addSSODataListener(SSODataListener listener);
 public void removeSSODataListener(SSODataListener listener);
}

Constructor and methods

Constructor/method name Functionality

LdapSSODataManager constructor Creates an instance of the LdapSSODataManager class.

addSSOData method Adds single sign-on authentication information.

addSSODataListener method Registers an authentication information listener for single sign-on.

getSSOData method Obtains single sign-on authentication information.

getSSODataListeners method Obtains an array of SSODataListener objects.

listUsers method (syntax 1) Obtains a list of all user IDs.

listUsers method (syntax 2) Obtains a list of user IDs.

modifySSOData method Corrects single sign-on authentication information.

removeSSOData method Deletes single sign-on authentication information.

removeSSODataListener method Deletes the SSODataListener object.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 259

The LdapSSODataManager constructor

Description
Creates an instance of the LdapSSODataManager class.

Syntax

public LdapSSODataManager(String realm);

Parameter

realm:
Specifies the name of a realm to be accessed by the created instance.

Exceptions
None

The addSSOData method

Description
Adds single sign-on authentication information for the specified user. If this information already exists, an
exception occurs.

When authentication information listeners for single sign-on are registered in this object, the ssoDataAdded method
is called for all such listeners.

Syntax

public void addSSOData(String uid,
 SSOData SSOData)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;

Parameters

uid:
Specifies the user ID.

ssoData:
Specifies the SSOData object that holds the single sign-on authentication information.

Exceptions

com.cosminexus.admin.auth.api.repository.event.SSODataListenerException:
An attempt to update authentication information for another system has failed.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 260

com.cosminexus.admin.auth.CryptoException:
An attempt to read the encryption key file has failed or an attempt to decrypt SecretData has failed due to the use of
the wrong encryption key file.

java.lang.UnsatisfiedLinkError:
An attempt to read the single sign-on library has failed.

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameAlreadyBoundException:
Single sign-on authentication information already exists for the specified user.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

The addSSODataListener method

Description
Registers an authentication information listener for single sign-on in this object. This is done to inform other systems of
the changes made by adding, correcting, or deleting single sign-on authentication information.

Syntax

public void addSSODataListener(SSODataListener listener);

Parameter

listener:
Specifies the SSODataListener object. If null is specified, nothing happens.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 261

The getSSOData method

Description
Obtains single sign-on authentication information.

Syntax

public SSOData getSSOData(String uid)
 throws NamingException;

Parameter

uid:
Specifies the user ID.

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The SSOData object that holds single sign-on authentication information

The getSSODataListeners method

Description
Obtains an array of SSODataListener objects registered in this object. If the array is not registered, this method
returns an array of size 0.

Syntax

public SSODataListener[] getSSODataListeners();

Parameters
None

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 262

Return value
The array of SSODataListener objects registered in this object

The listUsers method (syntax 1)

Description
Obtains a list of all user IDs. If the addSSOData or removeSSOData method is called, the result might or might not
be reflected in the previously returned LdapUserEnumeration object.

Syntax

public LdapUserEnumeration listUsers()
 throws NamingException;

Parameters
None

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The LdapUserEnumeration object that holds a list of user IDs.

The listUsers method (syntax 2)

Description
Obtains a list of user IDs. If the addSSOData or removeSSOData method is called, the result might or might not be
reflected in the previously returned LdapUserEnumeration object.

Syntax

public LdapUserEnumeration listUsers(String uid)
 throws NamingException;

Parameter

uid:
Specifies the user ID. The user ID can include a wildcard (*). If this parameter is omitted or if null is specified,
the method obtains a list of all user IDs.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 263

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The LdapUserEnumeration object that holds a list of user IDs.

The modifySSOData method

Description
Corrects single sign-on authentication information. If the specified user does not exist, an exception occurs.

When authentication information listeners for single sign-on are registered in this object, the ssoDataModfied
method is called for all such listeners.

With the modifySSOData method, existing information is overwritten with only the modified authentication
information that is specified after creation of the SSOData object.

Suppose, for example, the existing single sign-on authentication information in the repository includes the elements
shown below.

Authentication
information name

SecretData PublicData Mapping

Realm User ID

Value secret public RealmA user1

RealmB admin

In the parameter of this method, the following code is used to specify the created SSOData object:

SSOData data = new SSOData();
data.setMapping("RealmA", "user2");

The repository stores the following new single sign-on authentication information:

Authentication
information name

SecretData PublicData Mapping

Realm User ID

Value secret public RealmA user2

-- -- -- --

Legend:
--: No information is stored.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 264

Syntax

public void modifySSOData(String uid,
 SSOData SSOData)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;

Parameters

uid:
Specifies the user ID.

ssoData:
Specifies the SSOData object that holds the single sign-on authentication information.

Exceptions

com.cosminexus.admin.auth.api.repository.event.SSODataListenerException:
An attempt to update authentication information for another system has failed.

com.cosminexus.admin.auth.CryptoException:
An attempt to read the encryption key file has failed or an attempt to decrypt SecretData has failed due to the use of
the wrong encryption key file.

java.lang.UnsatisfiedLinkError:
An attempt to read the single sign-on library has failed.

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

The removeSSOData method

Description
Deletes single sign-on authentication information. If the specified user does not exist, an exception occurs.

When authentication information listeners for single sign-on are registered in this object, the ssoDataRemoved
method is called for all such listeners.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 265

Syntax

public void removeSSOData(String uid)
 throws SSODataListenerException, NamingException,
 CryptoException, UnsatisfiedLinkError, SecurityException;

Parameter

uid:
Specifies the user ID.

Exceptions

com.cosminexus.admin.auth.api.repository.event.SSODataListenerException:
An attempt to update authentication information for another system has failed.

com.cosminexus.admin.auth.CryptoException:
An attempt to read the encryption key file has failed or an attempt to decrypt SecretData has failed due to the use of
the wrong encryption key file.

java.lang.UnsatisfiedLinkError:
An attempt to read the single sign-on library has failed.

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

The removeSSODataListener method

Description
Deletes the specified SSODataListener object from this object. If the specified object is not registered,
nothing happens.

Syntax

public void removeSSODataListener(SSODataListener listener);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 266

Parameter

listener:
Specifies the SSODataListener object.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 267

15.6 The LdapUserDataManager class

Description
References or updates information in the user information repository on the LDAP directory server.
Exclusive control is provided for each object of this class, allowing only one of the addUserData,
modifyUserData, removeUserData, and getUserData methods at a time to access that object.
Do not use the same repository for different objects at the same time.
The package name of the LdapUserDataManager class
is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

class LdapUserDataManager
{
 public LdapUserDataManager(String name)
 throws ConfigError;
 public LdapUserDataManager(String name,
 AttributeEntry[] aliases)
 throws ConfigError, FormatError;
 public LdapUserDataManager(String name,
 String aliasesFile)
 throws ConfigError, FormatError, IOException,
 FileNotFoundException,
 SecurityException;
 public LdapUserDataManager(String name,
 AttributeEntry[] aliases,
 ObjectClassEntry[] ocEntries)
 throws ConfigError, FormatError;
 public LdapUserDataManager(String name,
 AttributeEntry[] aliases,
 String objclassesFile)
 throws ConfigError, FormatError, IOException,
 FileNotFoundException,SecurityException;
 public LdapUserDataManager(String name,
 String aliasesFile,
 ObjectClassEntry[] ocEntries)
 throws ConfigError, FormatError, IOException,
 FileNotFoundException,SecurityException;
 public LdapUserDataManager(String name,
 String aliasesFile,
 String objclassesFile)
 throws ConfigError, FormatError, IOException,
 FileNotFoundException,SecurityException;

 public LdapUserEnumeration listUsers()
 throws NamingException;
 public LdapUserEnumeration listUsers(String uid)
 throws NamingException;
 public UserData getUserData(String uid)
 throws NamingException;
 public void addUserData(String uid,
 UserData UserData)
 throws ObjectClassError, NamingException;
 public void addUserData(String uid,
 UserData UserData,
 String name, String value)

15. APIs Used with the Integrated User Management Framework

Security Management Guide 268

 throws ObjectClassError, NamingException;
 public void removeUserData(String uid)
 throws NamingException;
 public void modifyUserData(String uid, UserData UserData)
 throws ObjectClassError, NamingException;
}

Constructor and methods

Constructor/method name Functionality

LdapUserDataManager constructor Creates an instance of the LdapUserDataManager class.

addUserData method (syntax 1) Adds a user. Uses uid as DN of a user entry.

addUserData method (syntax 2) Adds a user. Uses an arbitrary attribute as DN of a user entry.

getUserData method Obtains user information.

listUsers method (syntax 1) Obtains a list of all user IDs.

listUsers method (syntax 2) Obtains a list of user IDs.

modifyUserData method Corrects user information.

removeUserData method Deletes a user.

The LdapUserDataManager constructor

Description
Creates an instance of the LdapUserDataManager class. User attribute information and object classes can be
specified or omitted in an object or file.

Syntax

public LdapUserDataManager(String name)
 throws ConfigError;

public LdapUserDataManager(String name,
 AttributeEntry[] aliases)
 throws ConfigError, FormatError;

public LdapUserDataManager(String name,
 String aliasesFile)
 throws ConfigError, FormatError, IOException, FileNotFoundException,
 SecurityException;

public LdapUserDataManager(String name,
 AttributeEntry[] aliases,
 ObjectClassEntry[] ocEntries)
 throws ConfigError, FormatError;

public LdapUserDataManager(String name,
 AttributeEntry[] aliases,
 String objclassesFile)
 throws ConfigError, FormatError, IOException, FileNotFoundException,
 SecurityException;

15. APIs Used with the Integrated User Management Framework

Security Management Guide 269

public LdapUserDataManager(String name,
 String aliasesFile,
 ObjectClassEntry[] ocEntries)
 throws ConfigError, FormatError, IOException, FileNotFoundException,
 SecurityException;

public LdapUserDataManager(String name,
 String aliasesFile,
 String objclassesFile)
 throws ConfigError, FormatError, IOException, FileNotFoundException,
 SecurityException;

Parameters

name:
Specifies the setup name of the LDAP directory server to be accessed. This name is defined in the configuration file
for user management.

aliases:
Specifies the array of AttributeEntry objects as user attribute information to be referenced or updated. If the
specified parameter lacks necessary information, a FormatError exception occurs. If this parameter is omitted or
if null is specified, the attribute cannot be referenced or updated, but the password can be updated.

aliasesFile:
Specifies the file name as user attribute information to be referenced or updated. If the specified parameter lacks
necessary information, a FormatError exception occurs. If this parameter is omitted or if null is specified, the
attribute cannot be referenced or updated, but the password can be updated.

ocEntries:
Specifies the array of object classes to be used for creating or correcting entries on the LDAP directory server. If the
specified parameter lacks necessary information, a FormatError exception occurs. If this parameter is omitted or
if null is specified, an ObjectClassError exception occurs when user information is added or changed.

objclassesFile:
Specifies the name of the file that defines the object classes of entries on the LDAP directory server. If the specified
parameter lacks necessary information, a FormatError exception occurs. If this parameter is omitted or if null
is specified, an ObjectClassError exception occurs when user information is added or changed.

Exceptions

java.io.FileNotFoundException:
The specified file cannot be opened because it is missing or is a directory, or because of some other reason (when the
exception is thrown in the constructor of the FileInputStream class).

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

java.io.IOException:
An attempt to read the file has failed.

com.cosminexus.admin.common.ConfigError:
The setup name was not found in the configuration file for integrated user management.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 270

com.cosminexus.admin.common.FormatError:
One or more of the aliases, aliasesFile, ocEntries, and objclassesFile parameters lacks necessary
information or contains extra information.

The addUserData method (syntax 1)

Description
Adds a user. If the user already exists, an exception occurs.

The attribute (uid) and value of the user ID are used for the DN of a user entry created on the LDAP directory server.

The user entry is created immediately below the base DN. If the user attribute information specified by the constructor
includes the attributes of a subcontext, an entry for the subcontext is also created.

If an exception occurs during the subcontext update after this method is called, user information is incompletely
updated. In such case, remove the cause and use the removeUserData method to delete the user, and then call this
method again.

Syntax

public void addUserData(String uid,
 UserData UserData)
 throws ObjectClassError, NamingException;

Parameters

uid:
Specifies the user ID.

userData:
Specifies the UserData object that holds the user information.

Exceptions

com.cosminexus.admin.auth.api.repository.ldap.ObjectClassError:
An object class necessary for creating an entry on the LDAP directory server is not specified.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameAlreadyBoundException:
The specified user ID already exists.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 271

Remarks
UserData objects acquired using the getUserData method do not contain passwords. If you specify such a
UserData object in the parameters of the addUserData method, you cannot make a complete copy of the user. You
need to newly configure a password.

The addUserData method (syntax 2)

Description
Adds a user. If the user already exits, an exception occurs.

The attribute name and value specified by this method are used for the DN of a user entry created on the LDAP
directory server.

The user entry is created immediately below the base DN. If the user attribute information specified by the constructor
includes the attributes of a subcontext, an entry for the subcontext is also created.

If an exception occurs during the subcontext update after this method is called, user information is incompletely
updated. In such case, remove the cause and use the removeUserData method to delete the user, and then call this
method again.

Syntax

public void addUserData(String uid,
 UserData UserData,
 String name,
 String value)
 throws ObjectClassError, NamingException;

Parameters

uid:
Specifies the user ID.

userData:
Specifies the UserData object that holds the user information.

name:
Specifies the attribute name to be used for the DN of the user entry.

value:
Specifies the attribute value to be used for the DN of the user entry.

Exceptions

com.cosminexus.admin.auth.api.repository.ldap.ObjectClassError:
An object class necessary for creating an entry on the LDAP directory server is not specified.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 272

javax.naming.NameAlreadyBoundException:
The specified user ID already exists.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

Remarks
UserData objects acquired using the getUserData method do not contain passwords. If you specify such a
UserData object in the parameters of the addUserData method, you cannot make a complete copy of the user. You
need to newly configure a password.

The getUserData method

Description
Obtains user information. The acquired UserData object does not contain a password.

Syntax

public UserData getUserData(String uid)
 throws NamingException;

Parameter

uid:
Specifies the user ID.

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The UserData object that holds the user information

15. APIs Used with the Integrated User Management Framework

Security Management Guide 273

The listUsers method (syntax 1)

Description
Obtains a list of all user IDs. If the addUserData or removeUserData method is called, the result might or might
not be reflected in the previously returned LdapUserEnumeration object.

Syntax

public LdapUserEnumeration listUsers()
 throws NamingException;

Parameters
None

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The LdapUserEnumeration object that holds the list of user IDs

The listUsers method (syntax 2)

Description
Obtains a list of user IDs. If the addUserData or removeUserData method is called, the result might or might not
be reflected in the previously returned LdapUserEnumeration object.

Syntax

public LdapUserEnumeration listUsers(String uid)
 throws NamingException;

Parameter

uid:
Specifies the user ID. The user ID can include a wildcard (*). If this parameter is omitted or if null is specified,
this method obtains a list of all user IDs.

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 274

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
The LdapUserEnumeration object that holds the list of user IDs

The modifyUserData method

Description
Corrects user information. If the specified user does not exist, an exception occurs.

With this method, existing attributes are overwritten with only the modified attributes that are specified after creation of
the UserData object.

Suppose, for example, the existing user information in the repository includes the attributes shown below.

Attribute name Full name Tel

Value Hitachi Taro 111-1111

222-2222

In the parameter of this method, the following code is used to specify the created UserData object:

UserData data = new UserData();
data.addAttribute("tel", "111-2222");

The repository stores the following new user information:

Attribute name Full name Tel

Value Hitachi Taro 111-2222

--

Legend:
--: No information is stored.

If an exception occurs during the subcontext update after this method is called, user information is incompletely updated.
In this case, remove the cause and then call this method again.

Syntax

public void modifyUserData(String uid,
 UserData UserData)
 throws ObjectClassError, NamingException;

Parameters

uid:
Specifies the user ID.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 275

userData:
Specifies the UserData object that holds the user information.

Exceptions

com.cosminexus.admin.auth.api.repository.ldap.ObjectClassError:
The object class necessary for creating an entry on the LDAP directory server is not specified.

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

Return value
None

The removeUserData method

Description
Deletes a user. If the specified user does not exist, an exception occurs. The specified user entry and any entries below
it are deleted on the LDAP directory server.

If an exception occurs during the subcontext update after this method is called, user information is incompletely updated.
In this case, remove the cause and then call this method again.

Syntax

public void removeUserData(String uid)
 throws NamingException;

Parameter

uid:
Specifies the user ID.

Exceptions

javax.naming.CommunicationException:
An attempt to connect to the LDAP directory server has failed.

javax.naming.NameNotFoundException:
The specified user ID is missing.

Other JNDI exceptions:
Events such as a bind DN specification error

15. APIs Used with the Integrated User Management Framework

Security Management Guide 276

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 277

15.7 The LdapUserEnumeration interface

Description
References a list of user IDs.
The package name of the LdapUserEnumeration interface
is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

interface LdapUserEnumeration extends java.util.Enumeration
{
 public boolean hasMore()
 throws NamingException;
 public boolean hasMoreElements();
 public String next()
 throws NamingException;
 public Object nextElement();
 public close()
 throws NamingException;
}

Methods

Method name Functionality

close method Closes an object.

hasMore method Checks whether the list contains any more user IDs.
(NamingException: Called)

hasMoreElements method Checks whether the list contains any more user IDs.
(NamingException: Not called)

next method Obtains the next user ID from the list.
(NamingException: Called; Return value type: string)

nextElement method Obtains the next user ID from the list.
(NamingException: Not called; Return value type: object)

The close method

Description
Closes this object and releases the resources in use. If the hasMore or hasMoreElements method is repeatedly
called until the return of false, calling this method is unnecessary.

Syntax

public void close()
 throws NamingException;

Parameters
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 278

Exception

javax.naming.NamingException:
A NamingException has occurred while the object is closed.

Return value
None

The hasMore method

Description
Checks whether the list contains any more user IDs.

Syntax

public boolean hasMore()
 throws NamingException;

Parameters
None

Exception

javax.naming.NamingException:
A NamingException has occurred while the method is determing whether there are any more user IDs.

Return values

true:
Another user ID has been found.

false:
No more user IDs have been found.

The hasMoreElements method

Description
Checks whether the list contains any more user IDs. If an exception occurs, this method returns false.

Syntax

public boolean hasMoreElements();

15. APIs Used with the Integrated User Management Framework

Security Management Guide 279

Parameters
None

Exceptions
None

Return values

true:
Another user ID has been found.

false:
No more user IDs have been found.

The next method

Description
Obtains the next user ID from the list.

Syntax

public String next()
 throws NamingException;

Parameters
None

Exceptions

java.util.NoSuchElementException:
There were no more user IDs in the list when this method was called.

javax.naming.NamingException:
A NamingException occurred while the method was being executed to obtain the next user ID.

Return value
The next user ID

The nextElement method

Description
Obtains the next user ID from the list. This method differs from the next method in that it does not cause a
NamingException and that it returns an object-type value. Reference the value by casting its Object object into a
string. If NamingException occurs during the execution of this method, it returns null.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 280

Syntax

public Object nextElement();

Parameters
None

Exception

java.util.NoSuchElementException:
There were no more user IDs in the list when this method was called.

Return value
The next user ID

15. APIs Used with the Integrated User Management Framework

Security Management Guide 281

15.8 The LoginUtil class

Description
Checks for a user who has logged into a session for integrated user management.
The package name of the LoginUtil class is com.cosminexus.admin.auth.util.

Syntax

class LoginUtil
{
 public static boolean check(HttpServletRequest request,
 HttpServletResponse response);
 public static boolean check(HttpServletRequest request,
 HttpServletResponse response,
 String realmName);
}

Methods

Method name Functionality

check method (syntax 1) Checks for a user who has logged into a session.

check method (syntax 2) Checks for a user who has logged into a session. Available for checking for a user who
has logged into a particular realm.

Remarks
If you bind the subject created at login to HttpSession, then, based on whether the subject has a Principal,
you can determine whether there is a currently logged-in user without using the check method of this class. When
doing this, you should not stop the session by using the integrated user management functionality.

The check method (syntax 1)

Description
Checks for a user who has logged into a session. If at least one user is found who has logged into a realm within the
session, this method returns true.

Syntax

public static boolean check(HttpServletRequest request,
 HttpServletResponse response);

Parameters

request:
Specifies the reference to HttpServletRequest that was passed to JSP/Servlet. If null is specified, a
NullPointerException occurs.

response:
Specifies the reference to HttpServletResponse that was passed to JSP/Servlet. If null is specified, a
NullPointerException occurs.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 282

Exception

java.lang.NullPointerException:
One of the parameters for this method has been specified as null.

Return values

true:
A currently logged-in user has been found.

false:
A currently logged-in user has not been found.

The check method (syntax 2)

Description
Checks for a user who has logged into a session. To check for a user who has logged into a particular realm, realmName
is used.

Syntax

public static boolean check(HttpServletRequest request,
 HttpServletResponse response,
 String realmName);

Parameters

request:
Specifies the reference to HttpServletRequest that was passed to JSP/Servlet. If null is specified,
NullPointerException occurs.

response:
Specifies the reference to HttpServletResponse that was passed to JSP/Servlet. If null is specified,
NullPointerException occurs.

realmName:
Used to check for a user who has logged into a particular realm. If null is specified,
NullPointerException occurs.

Exception

java.lang.NullPointerException:
One of the parameters for this method has been specified as null.

Return values

true:
A currently logged-in user has been found.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 283

false:
A currently logged-in user has not been found.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 284

15.9 The ObjectClassEntry class

Description
Holds the object class of a user entry or subcontext to be created on the LDAP directory server.
The package name of the ObjectClassEntry class
is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

class ObjectClassEntry
{
public ObjectClassEntry();
public ObjectClassEntry(String[] objectClasses);
public ObjectClassEntry(String subcontext,
 String[] objectClasses);

public void setObjectClasses(String[] objectClasses);
public String[] getObjectClasses();
public void setSubcontext(String subcontext);
public String getSubcontext();
}

Constructor and methods

Constructor/method name Functionality

ObjectClassEntry constructor Creates an instance of the ObjectClassEntry class.

getObjectClasses method Obtains the object class specified by the setObjectClasses method or constructor.

getSubcontext method Obtains the subcontext specified by the setSubcontext method or constructor.

setObjectClasses method Stores an object class into an object.

setSubcontext method Stores a subcontext into an object.

The ObjectClassEntry constructor

Description
Creates an instance. If you specify an object class in the parameter, it is stored into this object as the object class of the
user entry.

Syntax

public ObjectClassEntry();

public ObjectClassEntry(String[] objectClasses);

public ObjectClassEntry(String subcontext,
 String[] objectClasses);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 285

Parameters

subcontext:
Specifies the subcontext. If this parameter is omitted or if either null or a null character ("") is specified, the user
entry is used.
Specify a character string that is the same as the subcontext specified for the AttributeEntry object.

objectClasses:
Specifies the object class of the user entry by using an array of strings. If this parameter is omitted or if null is
specified, nothing is stored.

Exceptions
None

The getObjectClasses method

Description
Obtains the value specified by the setObjectClasses method or constructor. If that value does not exist, the
getObjectClasses method returns null when it is called.

Syntax

public String[] getObjectClasses();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getSubcontext method

Description
Obtains the value specified by the setSubcontext method or constructor. If that value does not exist, the
getSubcontext method returns null when it is called.

Syntax

public String getSubcontext();

15. APIs Used with the Integrated User Management Framework

Security Management Guide 286

Parameters
None

Exceptions
None

Return value
The value stored in the object

The setObjectClasses method

Description
Stores an object class into this object. If a value already exists when the setObjectClasses method is called, it
is overwritten.

Syntax

public void setObjectClasses(String[] objectClasses);

Parameter

objectClasses:
Specifies the object class by using an array of strings.

Exceptions
None

Return value
None

The setSubcontext method

Description
Stores a subcontext into this object. If a value already exists when the setSubcontext method is called, it
is overwritten.

Syntax

public void setSubcontext(String subcontext);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 287

Parameters

subcontext:
Specifies the subcontext. If null or a null character ("") is specified, the user entry is used.
Specify a character string that is the same as the subcontext specified for the AttributeEntry object.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 288

15.10 The PasswordCryptography interface

Description
Encrypts an input password.
The package name of the PasswordCryptograpy interface
is com.cosminexus.admin.auth.security.

Syntax

interface PasswordCryptography
{
 public byte[] encrypt(byte[] plain);
}

Method

Method name Functionality

encrypt method Uses the encryption format registered in the repository to encrypt a password.

The encrypt method

Description
Uses the encryption format registered in the repository to encrypt a password.

Syntax

public byte[] encrypt(byte[] plain);

Parameter

plain:
Specifies the user-defined password (plain) that is stored when the login module calls this method.

Exceptions
None

Return value
The encrypted result

15. APIs Used with the Integrated User Management Framework

Security Management Guide 289

15.11 The PasswordUtil class

Description
Changes a user's password.
The package name of the PasswordUtil class is com.cosminexus.admin.auth.util.

Syntax

class PasswordUtil
{
 public static void changePassword(String name,
 String uid,
 String oldPassword,
 String newPassword)
 throws LoginException,
 SecurityException;
}

Method

Method name Functionality

changePassword method Changes a password.

The changePassword method

Description
Changes the password of a user who is correctly authenticated with the specified name, uid, and oldPassword
parameters. When single sign-on authentication information is registered, the contents of the single sign-on information
repository are also changed.

This method is a static method.

Syntax

public static void changePassword(String name,
 String uid,
 String oldPassword,
 String newPassword)
 throws LoginException,
 SecurityException;

Parameters:

name:
Specifies the application name (name) of the login module (LoginContext) used for authentication.

uid:
Specifies the user ID to be changed.

oldPassword:
Specifies the old password.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 290

newPassword:
Specifies the new password.

Exceptions

javax.security.auth.login.LoginException:
Information necessary for authentication is missing or the user ID or password is wrong.

java.lang.SecurityException:
Access permission is not granted.

Return value
None

Remarks
• If the realm name, encryption key file, and information for access to the single sign-on information repository are

all defined, single sign-on authentication information is changed. If not (that is, if definitions for single sign-on are
not provided), that authentication information is not changed.

• If an exception (NamingException) occurs in the repository or if encryption fails while single sign-on
authentication information is registered, then this method fails with LoginException. In this case, the password
change is rolled back. If this rollback fails, LoginException occurs. For details about the exception class, see
15.32 Exception classes.

• If an application specified by name does not use WebPasswordLoginModule or
WebPasswordLDAPLoginModule, LoginException occurs.

• If the LDAP directory server is Active Directory, specify by name applications that
use WebPasswordLDAPLoginModule.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 291

15.12 The Principal interface

Description
References the user ID authenticated by WebPasswordLoginModule. With Hitachi's implementation classes,
anything created by inheriting the java.security.Principal interface can be bound to an authenticated
subject. Therefore, when referencing a Principal, first obtain it from the subject and then use the getName
method to reference it. The package name of the Principal interface is java.security.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 292

15.13 The SSOData class

Description
Holds single sign-on authentication information.
The package name of the SSOData class is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

class SSOData
{
 public SSOData();

 public void setSecretData(String secretData)
 throws CryptoException, UnsatisfiedLinkError, SecurityException;
 public void setPublicData(String publicData);
 public String getPublicData();
 public Enumeration getMappingRealms();
 public String getMapping(String realm);
 public void setMapping(String realm,
 String uid);
 public void removeMapping(String realm);
}

Constructor and methods

Constructor/method name Functionality

SSOData constructor Creates an instance of the SSOData class.

getMapping method Obtains a user ID associated with a realm name.

getMappingRealms method Obtains a list of realms.

getPublicData method Obtains PublicData.

removeMapping method Deletes the specified realm.

setMapping method Holds the name of a destination realm and user ID.

setPublicData method Holds PublicData.

setSecretData method Holds SecretData.

The SSOData constructor

Description
Creates an instance of the SSOData class.

Syntax

public SSOData();

Parameters
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 293

Exceptions
None

The getMapping method

Description
Obtains a user ID associated with the realm name from the mapping information stored in this object. If the user ID for
the specified realm name does not exist, this method returns null.

Syntax

public String getMapping(String realm);

Parameter

realm:
Specifies the name of the destination realm.

Exceptions
None

Return value
The user ID

The getMappingRealms method

Description
Obtains a list of realm names from the mapping information stored in this object.

To reference a realm name, get the Object object by executing the nextElement method for the Enumeration
object obtained using this method. Reference the value obtained by casting the Object object into a string.

Syntax

public Enumeration getMappingRealms();

Parameters
None

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 294

Return value
The Enumeration object that holds the list of realm names

The getPublicData method

Description
Obtains PublicData stored in the object. If the value does not exist, the getPublicData method returns null when
it is called.

Syntax

public String getPublicData();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The removeMapping method

Description
Removes the specified realm from the mapping information stored in this object. If the specified realm name does not
exist, nothing happens.

Syntax

public void removeMapping(String realm);

Parameter

realm:
Specifies the destination realm name.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 295

The setMapping method

Description
Stores the destination realm name and user ID specified by the parameters into this object. If a user ID for the same realm
name already exists, the user ID is overwritten.

Syntax

public void setMapping(String realm,
 String uid);

Parameters

realm:
Specifies the destination realm name.

uid:
Specifies the user ID for the destination realm.

Exceptions
None

Return value
None

The setPublicData method

Description
Stores PublicData specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setPublicData(String publicData);

Parameter

publicData:
Specifies PublicData.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 296

The setSecretData method

Description
Encrypts SecretData and stores it into this object. If SecretData already exists, it is overwritten.

Syntax

public void setSecretData(String secretData);

Parameter

secretData:
Specifies SecretData.

Exceptions

com.cosminexus.admin.auth.CryptoException:
An attempt to encrypt SecretData has failed because the encryption key file cannot be read.

java.lang.UnsatisfiedLinkError:
An attempt to read the single sign-on library has failed.

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 297

15.14 The SSODataEvent class

Description
Stores updated single sign-on authentication information.
The package name of the SSODataEvent class
is com.cosminexus.admin.auth.api.repository.event.

Syntax

class SSODataEvent
{
 public SSODataEvent(String uid,
 String secretData,
 String publicData,
 String oldSecretData,
 String oldPublicData);

 public String getUserId();
 public String getSecretData();
 public String getPublicData();
 public String getOldSecretData();
 public String getOldPublicData();
}

Constructor and methods

Constructor/method name Functionality

SSODataEvent constructor Creates an instance of the SSODataEvent class.

getOldPublicData method Obtains old PublicData.

getOldSecretData method Obtains old SecretData.

getPublicData method Obtains PublicData.

getSecretData method Obtains SecretData.

getUserId method Obtains a user ID.

The SSODataEvent constructor

Description
Creates an instance. Stores the user ID, SecretData, PublicData, old SecretData, and old PublicData specified in
the parameters.

Syntax

public SSODataEvent(String uid,
 String secretData,
 String publicData,
 String oldSecretData,
 String oldPublicData);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 298

Parameters

uid:
Specifies the user ID.

secretData:
Specifies SecretData.

publicData:
Specifies PublicData.

oldSecretData:
Specifies old SecretData.

oldPublicData:
Specifies old PublicData.

Exceptions
None

The getOldPublicData method

Description
Obtains old PublicData stored in this object.

Syntax

public String getOldPublicData();

Parameters
None

Exceptions
None

Return value
This method returns old PublicData if it is specified. If it is not specified, it returns null.

The getOldSecretData method

Description
Obtains old SecretData stored in this object.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 299

Syntax

public String getOldSecretData();

Parameters
None

Exceptions
None

Return value
This method returns old SecretData if it is specified. If it is not specified, it returns null.

The getPublicData method

Description
Obtains PublicData stored in this object.

Syntax

public String getPublicData();

Parameters
None

Exceptions
None

Return value
This method returns PublicData if it is specified. If it is not specified, it returns null.

The getSecretData method

Description
Obtains SecretData stored in this object.

Syntax

public String getSecretData();

15. APIs Used with the Integrated User Management Framework

Security Management Guide 300

Parameters
None

Exceptions
None

Return value
This method returns SecretData if it is specified. If it is not specified, it returns null.

The getUserId method

Description
Obtains the user ID stored in this object.

Syntax

public String getUserId();

Parameters
None

Exceptions
None

Return value
The user ID

15. APIs Used with the Integrated User Management Framework

Security Management Guide 301

15.15 The SSODataListener interface

Description
This interface should be implemented in the authentication information listener class for single sign-on, which
receives notifications when single sign-on authentication information is updated.
If you want to update authentication information for other systems simultaneously by using single sign-on
authentication information, create a class that implements this interface. Also, use the addSSODataListener
method to register an instance (object) of the created class in the LdapSSODataManager object.
The package name of the SSODataListener interface
is com.cosminexus.admin.auth.api.repository.event.
The methods of the SSODataListener interface can be called by using the methods of the
LdapSSODataManager class. In such cases, SSODataEvent objects are passed as parameters.
The table below lists the calling methods of the LdapSSODataManager class and the called methods of the
SSODataListener interface. It also lists the values stored in SSODataEvent objects passed as parameters.

Table 15‒2: Values stored in SSODataEvent objects

Calling method
of the
LdapSSODataM
anager class

Called method
of the
SSODataListe
ner interface

Values stored in the SSODataEvent object

User ID SecretData PublicData Old SecretData Old PublicData

addSSOData
method

ssoDataAdd
ed method

Yes Yes Yes -- --

modifySSODat
a method

ssoDataMod
ified method

Yes Yes Yes Yes Yes

removeSSODat
a method

ssoDataRem
oved method

Yes Yes Yes -- --

Legend:
Yes: Stored.
--: Not stored.

Create a class to throw a ChangeDataFailedException that contains a message indicating the
cause of a problem with the ssoDataAdded, ssoDataModified, or ssoDataRemoved method.
An SSODataListenerException that contains the exception object occurs in the caller of the
LdapSSODataManager method.

Syntax

interface SSODataListener extends java.util.EventListener
{
 public void SSODataAdded(SSODataEvent event)
 throws ChangeDataFailedException;
 public void SSODataModified(SSODataEvent event)
 throws ChangeDataFailedException;
 public void SSODataRemoved(SSODataEvent event)
 throws ChangeDataFailedException;
}

Methods

Method name Functionality

ssoDataAdded method Called when adding single sign-on authentication information.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 302

Method name Functionality

ssoDataModified method Called when changing single sign-on authentication information.

ssoDataRemoved method Called when deleting single sign-on authentication information.

The ssoDataAdded method

Description
Called when adding single sign-on authentication information.

Syntax

public void SSODataAdded(SSODataEvent event)
 throws ChangeDataFailedException;

Parameter

event:
Stores the single sign-on authentication information.

Exception

com.cosminexus.admin.auth.api.repository.event.ChangeDataFailedException:
An attempt to update authentication information for another system has failed.

Return value
None

The ssoDataModified method

Description
Called when changing single sign-on authentication information.

Syntax

public void SSODataModified(SSODataEvent event)
 throws ChangeDataFailedException;

Parameter

event:
Stores the single sign-on authentication information.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 303

Exception

com.cosminexus.admin.auth.api.repository.event.ChangeDataFailedException:
An attempt to update authentication information for another system has failed.

Return value
None

The ssoDataRemoved method

Description
Called when deleting single sign-on authentication information.

Syntax

public void SSODataRemoved(SSODataEvent event)
 throws ChangeDataFailedException;

Parameter

event:
Stores the single sign-on authentication information.

Exception

com.cosminexus.admin.auth.api.repository.event.ChangeDataFailedException:
An attempt to update authentication information for another system has failed.

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 304

15.16 The SSODataListenerException class

Description
An exception class that is called when an exception occurs in the authentication information listener class for
single sign-on.
The package name of the SSODataListenerException class
is com.cosminexus.admin.auth.api.repository.event.

Syntax

class SSODataListenerException extends UAException
{
 public SSODataListenerException();
 public SSODataListenerException(String msg);

 public void setException(SSODataListener listener,
 ChangeDataFailedException exception);
 public SSODataListener[] getListeners();
 public ChangeDataFailedException getException(SSODataListener listener);
}

Constructor and methods

Constructor/method name Functionality

SSODataListenerException constructor Creates an instance of the SSODataListenerException class.

getException method Obtains an exception object.

getListeners method Obtains listeners stored in the exception.

setException method Holds an exception object.

The SSODataListenerException constructor

Description
Creates an instance of the SSODataListenerException class by using the error message specified by
the parameter.

Syntax

public SSODataListenerException();

public SSODataListenerException(String msg);

Parameter

msg:
Specifies the error message.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 305

The getException method

Description
Obtains an exception object stored in this object. If the specified listener does not contain an exception object, this method
returns null.

Syntax

public ChangeDataFailedException getException(SSODataListener listener);

Parameter

listener:
Specifies the listener object where an exception occurred.

Exceptions
None

Return value
The ChangeDataFailedException object

The getListeners method

Description
Obtains all of the listeners stored in this object.

Syntax

public SSODataListener[] getListeners();

Parameters
None

Exceptions
None

Return value
The array of listener objects

15. APIs Used with the Integrated User Management Framework

Security Management Guide 306

The setException method

Description
Stores the exception object that caused an exception into this object. If an exception already exists for the same listener,
it is overwritten.

Syntax

public void setException(SSODataListener listener,
 ChangeDataFailedException exception);

Parameters

listener:
Specifies the listener object where an exception occurred.

exception:
Specifies the ChangeDataFailedException object that was generated in the listener.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 307

15.17 The UserAttributes interface

Description
After user authentication, obtains attributes bound to the subject.
The package name of the UserAttributes interface is com.cosminexus.admin.auth.

Syntax

interface UserAttributes
{
 public Object getAttribute(String alias)
 throws IllegalStateException;
 public Enumeration getAttributes(String alias)
 throws IllegalStateException;
 public void addAttribute(String alias,
 Object attr)
 throws IllegalStateException;
 public Enumeration getAttributeNames()
 throws IllegalStateException;
 public void removeAttribute(String alias)
 throws IllegalStateException;
 public int size()
 throws IllegalStateException;
 public Enumeration getAliases()
 throws IllegalStateException;
}

Methods

Method name Functionality

addAttribute method Adds an attribute to the subject.

getAttribute method Obtains an attribute bound to the subject.

getAttributeNames method Obtains a list of attribute names bound to the subject.

getAttributes method Obtains all of the attributes bound to the subject.

removeAttribute method Deletes an attribute bound to the subject.

size method Obtains the total number of attributes bound to the subject.

getAliases method Not recommended. Use the getAttributeNames method.

Remarks
If this object is invalid, calling a method causes java.lang.IllegalStateException. Note that this
exception inherits from java.lang.RuntimeException and can therefore be compiled without being defined
in catch or throws.

The addAttribute method

Description
Adds an attribute to the subject. Two or more attribute values can be associated with the same attribute. Attributes added
to a subject with this method are not reflected in the user management repository.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 308

Syntax

public void addAttribute(String alias,
 Object attr)
 throws IllegalStateException;

Parameters

alias:
Specifies the attribute name to be bound to the subject.

attr:
Specifies the attribute value to be bound to the subject.

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
None

The getAttribute method

Description
Obtains an attribute bound to the subject. The requestor casts the returned object to reference the value. If the same
attribute has two or more values, this method returns the first object found.

Syntax

public Object getAttribute(String alias)
 throws IllegalStateException;

Parameter

alias:
Specifies the attribute name bound to the subject. If the alias of the attribute is specified in the AttributeEntry
class, specify that alias.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 309

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
This method returns the attribute value bound to the subject if that value is found. If the value is not found, it returns null.

The getAttributeNames method

Description
Obtains a list of attribute names bound to the subject. If the alias of the attribute is specified in the AttributeEntry class,
this method returns that alias.

Syntax

public Enumeration getAttributeNames()
 throws IllegalStateException;

Parameters
None

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
This method returns a list of attribute names bound to the subject. If the alias of the attribute is specified in the
AttributeEntry class, it returns that alias.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 310

The getAttributes method

Description
Obtains all of the attributes bound to the subject. The requestor uses the nextElement method to obtain the object for
Enumeration, and then casts the object to reference the value.

Syntax

public Enumeration getAttributes(String alias)
 throws IllegalStateException;

Parameter

alias:
Specifies the attribute name bound to the subject. If the alias of the attribute is specified in the AttributeEntry
class, specify that alias.

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
This method returns the attribute value bound to the subject if that value is found. If the value is not found, it returns null.

The removeAttribute method

Description
Deletes one or more attributes bound to the subject. The deleted attributes are not reflected in the user management
repository. If two or more attribute values are bound to the subject, all of these values are deleted.

Syntax

public void removeAttribute(String alias)
 throws IllegalStateException;

Parameter

alias:
Specifies the attribute name bound to the subject. If the alias of the attribute is specified in the AttributeEntry
class, specify that alias.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 311

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
None

The size method

Description
Obtains the total number of attributes bound to the subject.

Syntax

public int size()
 throws IllegalStateException;

Parameters
None

Exception

java.lang.IllegalStateException:
If the object is invalid, java.lang.IllegalStateException occurs. Note that this exception inherits from
java.lang.RuntimeException and can therefore be compiled without being defined in catch or throws.
This exception occurs when both of the following conditions coexist:

• The subject that has this object is read-only.

• The logout process is performed using the logout method.

Return value
The total number of attributes associated with the subject

15. APIs Used with the Integrated User Management Framework

Security Management Guide 312

15.18 The UserData class

Description
Stores user information.
The package name of the UserData class is com.cosminexus.admin.auth.api.repository.ldap.

Syntax

class UserData
{
 public UserData();

 public void setPassword(String password);
 public Enumeration getAttributeNames();
 public Object getAttribute(String name);
 public Enumeration getAttributes(String name);
 public void addAttribute(String name,
 Object attr);
 public void removeAttribute(String name);
 public int size();
}

Constructor and methods

Constructor/method name Functionality

UserData constructor Creates an instance of the UserData class.

addAttribute method Adds one attribute value to this object.

getAttribute method From the information stored in this object, obtains one attribute value associated with the
specified attribute name.

getAttributeNames method Obtains a list of attribute names stored in this object.

getAttributes method From the information stored in this object, obtains all of the attribute values associated
with the specified attribute name.

removeAttribute method Removes an attribute from this object.

setPassword method Stores a password into this object.

size method Obtains the total number of attributes stored in this object.

The UserData constructor

Description
Creates an instance.

Syntax

public UserData();

Parameters
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 313

Exceptions
None

The addAttribute method

Description
Adds one attribute value to this object. Two or more attribute values can be associated with the same attribute.

Syntax

public void addAttribute(String name,
 Object attr);

Parameters

name:
Specifies the name of the attribute. If the attribute has an alias, specify that alias.

attr:
Specifies the value of the attribute.

Exceptions
None

Return value
None

The getAttribute method

Description
From the information stored in this object, obtains one attribute value associated with the specified attribute name. If there
are two or more attribute values, this method obtains one of these values.

Syntax

public Object getAttribute(String name);

Parameter

name:
Specifies the name of the attribute. If the attribute has an alias, specify that alias.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 314

Return value
This method returns the attribute value if it is found. If it is not found, it returns null.

The getAttributeNames method

Description
Obtains a list of attribute names stored in this object.

Syntax

public Enumeration getAttributeNames();

Parameters
None

Exceptions
None

Return value
The Enumeration object that holds the list of attribute names

The getAttributes method

Description
From the information stored in this object, obtains all of the attribute values associated with the specified attribute
name. The requestor uses the nextElement method to obtain the object for Enumeration, and casts it to reference
the value.

Syntax

public Enumeration getAttributes(String name);

Parameter

name:
Specifies the name of the attribute. If the attribute has an alias, specify that alias.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 315

Return value
If an Enumeration object that holds the attribute values is found, this method returns that object. If the object is not
found, it returns null.

The removeAttribute method

Description
Deletes an attribute from this object. If two or more attribute values are associated with the specified attribute name, all
of these values are deleted.

Syntax

public void removeAttribute(String name);

Parameter

name:
Specifies the name of the attribute. If the attribute has an alias, specify that alias.

Exceptions
None

Return value
None

The setPassword method

Description
Stores a password into this object. If a value already exists, it is overwritten.

Syntax

public void setPassword(String password);

Parameter

password:
Specifies the password.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 316

Return value
None

The size method

Description
Obtains the total number of attributes stored in this object.

Syntax

public int size();

Parameters
None

Exceptions
None

Return value
The total number of attributes

15. APIs Used with the Integrated User Management Framework

Security Management Guide 317

15.19 The WebCertificateCallback class

Description
An implementation class that passes the results of Web server-based authentication from CallbackHandler to
a login module.
The package name of the WebCertificateCallback class
is com.cosminexus.admin.auth.callback.

Syntax

class WebCertificateCallback implements javax.security.auth.callback.Callb
ack
{
 public WebCertificateCallback(String attrName);

 public void setSubjectID(String name);
 public String getSubjectID();
 public void setRequest(HttpServletRequest req);
 public HttpServletRequest getRequest();
 public void setResponse(HttpServletResponse res);
 public HttpServletResponse getResponse();
 public void setAttributeEntries(AttributeEntry[] aliases);
 public AttributeEntry[] getAttributeEntries();
 public void setTagID(String tid);
 public String getTagID();
 public void setTagEntry(String entry);
 public String getTagEntry();
}

Constructor and methods

Constructor/method name Functionality

WebCertificateCallback constructor Creates an instance of the WebCertifiateCallback class.

getAttributeEntries method Obtains a reference to the object that holds the list of attributes. The reference is specified
by the setAttributeEntries method.

getRequest method Obtains a reference to HttpServletRequest. The reference is specified by the
setRequest method.

getResponse method Obtains a reference to HttpServletResponse. The reference is specified by the
setResponse method.

getSubjectID method Obtains the DN name specified by the setSubjectID method.

getTagEntry method Obtains the entry element specified by setTagEntry.

getTagID method Obtains TagID specified by setTagID.

setAttributeEntries method Stores a reference to the object that holds the list of attributes into the object. The reference
is specified by the parameter.

setRequest method Stores a reference to HttpServletRequest into the object. The reference is specified
by the parameter.

setResponse method Stores a reference to HttpServletResponse into the object. The reference is
specified by the parameter.

setSubjectID method Stores the DN name specified by the parameter into the object.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 318

Constructor/method name Functionality

setTagEntry method Holds the login tag's entry element as specified by the parameter.

setTagID method Holds the login tag's id element as specified by the parameter.

The WebCertificateCallback constructor

Description
Executes the WebCertificateLoginModule class's login method and then creates an instance of the
WebCertificateCallback class.

Syntax

public WebCertificateCallback(String attrName);

Parameters

attrName:
Specifies the attribute name to be resolved from the DN name.

Exceptions
None

The getAttributeEntries method

Description
Obtains the value specified by the setAttributeEntries method. If that value does not exist, this method
returns null.

Syntax

public AttributeEntry[] getAttributeEntries();

Parameters
None

Exceptions
None

Return value
The value stored in the object

15. APIs Used with the Integrated User Management Framework

Security Management Guide 319

The getRequest method

Description
Obtains the value specified by the setRequest method. If that value does not exist, this method returns null.

Syntax

public HttpServletRequest getRequest();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getResponse method

Description
Obtains the value specified by the setResponse method. If that value does not exist, this method returns null.

Syntax

public HttpServletResponse getResponse();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getSubjectID method

Description
Obtains the value specified by the setSubjectID method. If that value does not exist, this method returns null.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 320

Syntax

public String getSubjectID();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getTagEntry method

Description
Obtains the value specified by the setTagEntry method. If an API is used for login, this method returns null.

Syntax

public String getTagEntry();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getTagID method

Description
Obtains the value specified by the setTagID method. If an API is used for login, this method returns null.

Syntax

public String getTagID();

15. APIs Used with the Integrated User Management Framework

Security Management Guide 321

Parameters
None

Exceptions
None

Return value
The value stored in the object

The setAttributeEntries method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setAttributeEntries(AttributeEntry[] aliases);

Parameter

aliases:
Specifies the reference to the object (AttributeEntry array) that holds the list of attributes.

Exceptions
None

Return value
None

The setRequest method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setRequest(HttpServletRequest req);

Parameter

req:
Specifies the reference to HttpServletRequest.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 322

Exceptions
None

Return value
None

The setResponse method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setResponse(HttpServletResponse res);

Parameters

res:
Specifies the reference to HttpServletResponse.

Exceptions
None

Return value
None

The setSubjectID method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setSubjectID(String uid);

Parameter

uid:
Specifies the DN name.

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 323

Return value
None

The setTagEntry method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagEntry(String tid);

Parameter

tid:
Specifies the entry element of the login tag.

Exceptions
None

Return value
None

The setTagID method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagID(String tid);

Parameter

tid:
Specifies the id element of the login tag.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 324

15.20 The WebCertificateHandler class

Description
An implementation class that obtains the results of SSL authentication performed by a Web server. This is
CallbackHandler in the user authentication library.
The package name of the WebCertificateHandler class
is com.cosminexus.admin.auth.callback.

Syntax

class WebCertificateHandler
{
 public WebCertificateHandler(HttpServletRequest request,
 HttpServletResponse response,
 AttributeEntry[] aliases)
 throws ParameterError;
 public WebCertificateHandler(HttpServletRequest request,
 HttpServletResponse response,
 String aliasesFile)
 throws ParameterError, FormatError, FileNotFoundException,
 IOException, SecurityException;

 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;
}

Constructor and methods

Constructor/method name Functionality

WebCertificateHandler constructor Creates an instance of the WebCertificateHandler class.

handle method Obtains the results of SSL authentication.

The WebCertificateHandler constructor

Description
Creates an instance of the WebCertificateHandler class. The request and response parameters are
mandatory. If null is specified, a ParameterError exception is called.

Syntax

public WebCertificateHandler(HttpServletRequest request,
 HttpServletResponse response,
 AttributeEntry[] aliases)
 throws ParameterError;

public WebCertificateHandler(HttpServletRequest request,
 HttpServletResponse response,
 String aliasesFile)
 throws ParameterError, FormatError, FileNotFoundException,
 IOException, SecurityException;

15. APIs Used with the Integrated User Management Framework

Security Management Guide 325

Parameters

request:
Specifies the JSP/Servlet activation parameter with no changes.

response:
Specifies the JSP/Servlet activation parameter with no changes.

aliases:
Specifies the information to be included in the Credential (UserAttributes) that is created when authentication
succeeds. If there is no information to be obtained, specify null. In this case, no Credential is created (an empty
UserAttributes object is created). For aliases, specify an array of AttributeEntry objects. If the
specified parameter lacks necessary information, a FormatError exception occurs (because a mandatory value is
not stored or because a value that violates the format is specified).

aliasesFile:
Specifies the information to be included in the Credential (UserAttributes) that is created when authentication
succeeds. If there is no information to be obtained, specify null. In this case, no Credential is created (an empty
UserAttributes object is created). For aliasesFile, specify a file name. If the specified parameter lacks necessary
information, a FormatError exception occurs (because a mandatory value is not stored or because a value that
violates the format is specified).

Exceptions

java.io.FileNotFoundException:
The specified file cannot be opened because it is missing or is a directory, or because of some other reason (when the
exception occurs in the constructor of the FileInputStream class).

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

java.io.IOException:
An attempt to read the file has failed.

com.cosminexus.admin.common.ParameterError:
A reference to HttpServletRequest or HttpServletResponse is not specified.

com.cosminexus.admin.common.FormatError:
Either or both of the aliases or aliasesFile parameters lack necessary information or contain
extra information.

The handle method

Description
Obtains the results of SSL authentication performed by a Web server and assigns to the obtained information a reference
to the WebCertificateCallback object (Callback implementation class).

15. APIs Used with the Integrated User Management Framework

Security Management Guide 326

Syntax

public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;

Parameter

callbacks:
If this parameter specifies a reference to the WebSSOCallback object, session information is set and returned. If
it specifies a class other than this one, the handle method of CallbackHandler specified in the constructor
is called.

Exceptions

java.io.IOException:
HttpServletRequest does not contain the results of Web server-based authentication.

javax.security.auth.callback.UnsupportedCallbackException:
An unsupported callbacks reference is specified.

Return value
Set a value for callbacks so that this value can be returned. This method does not return a value.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 327

15.21 The WebCertificateLoginModule class

Description
An implementation class for a JAAS login module, which is a Cosminexus standard login module. This class obtains
user attributes from certificates authenticated by a Web server.
The package name of the WebCertificateLoginModule class
is com.cosminexus.admin.auth.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 328

15.22 The WebLogoutCallback class

Description
An implementation class that passes user information from a Web application to a login module
via CallbackHandler.
The package name of the WebLogoutCallback class is com.cosminexus.admin.auth.callback.

Syntax

class WebLogoutCallback implements javax.security.auth.callback.Callback
{
 private HttpSession session = null;
 private String userID = null;

 public WebLogoutCallback();
 public void setSession(HttpSession session);
 public String getSession();
 public void setUserID(String userID);
 public String getUserID();
}

Constructor and methods

Constructor/method name Functionality

WebLogoutCallback constructor Creates an instance of the WebLogoutCallback class.

getSession method Obtains a reference to the HttpSession object. The reference is specified by the
setSession method.

getUserID method Obtains the user ID specified by the setUserID method.

setSession method Holds a reference to the HttpSession object. The reference is specified by
the parameter.

setUserID method Holds the user ID specified by the parameter.

The WebLogoutCallback constructor

Description
Creates an instance of the WebLogoutCallback class. This is done when WebLogoutHandler is specified in the
Cosminexus standard login module and when the logout method is called.

Syntax

public WebLogoutCallback();

Parameters
None

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 329

The getSession method

Description
Obtains the value specified by the setSession method. If that value does not exist, this method returns null.

Syntax

public HttpSession getSession();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getUserID method

Description
Obtains the value specified by the setUserID method. If that value does not exist, this method returns null.

Syntax

public String getUserID();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The setSession method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 330

Syntax

public void setSession(HttpSession session);

Parameter

session:
Specifies the reference to the HttpSession object.

Exceptions
None

Return value
None

The setUserID method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setUserID(String userID);

Parameter

userID:
Specifies the user ID.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 331

15.23 The WebLogoutHandler class

Description
An implementation of the JAAS CallbackHandler class that obtains the user ID of a user who logs out.
The package name of the WebLogoutHandler class is com.cosminexus.admin.auth.callback.

Syntax

class WebLogoutHandler
{
 public WebLogoutHandler(HttpSession session , String userID) throws Para
meterError;
 public void handle(Callback[] callbacks)
 throws java.io.IOException, UnsupportedCallbackException;
}

Constructor and methods

Constructor/method name Functionality

WebLogoutHandler constructor Creates an instance of the WebLogoutHandler class.

handle method Obtains a user ID.

The WebLogoutHandler constructor

Description
Creates an instance of the WebLogoutHandler class.

The session and userID parameters are mandatory. If null is specified, a ParameterError exception occurs.

Syntax

public WebLogoutHandler(HttpSession session, String userID);

Parameters

session:
Specifies the JSP/Servlet activation parameter with no changes.

userID:
Specifies the user ID of the user who logs out.

Exception

com.cosminexus.admin.common.ParameterError:
A reference to either HttpSession or String is not specified.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 332

The handle method

Description
Obtains a user ID, assigns to it a reference to the WebLogoutCallback object (Callback implementation
class), and passes it to the login module offered by the integrated user management framework.

Syntax

public void handle(Callback[] callbacks)
 throws UnsupportedCallbackException;

Parameter

callbacks:
If this parameter specifies a reference to the WebLogoutCallback object, user information is set and returned.
If it specifies a reference to another object, UnsupportedCallbackException occurs.

Exceptions

java.io.IOException:
HttpServletRequest does not contain the results of Web server-based authentication.

javax.security.auth.callback.UnsupportedCallbackException:
An unsupported callbacks reference is specified.

Return value
Set a value for callbacks so that this value can be returned. This method does not return a value.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 333

15.24 The WebPasswordCallback class

Description
An implementation class that passes authentication information from a Web application to a login module
via CallbackHandler.
The package name of the WebPasswordCallback class is com.cosminexus.admin.auth.callback.

Syntax

class WebPasswordCallback implements javax.security.auth.callback.Callback
{
 public static final int GETPW;
 public static final int NOPW;

 public WebPasswordCallback();

 public void setName(String name);
 public String getName();
 public void setPassword(String password);
 public String getPassword();
 public void setRequest(HttpServletRequest req);
 public HttpServletRequest getRequest();
 public void setResponse(HttpServletResponse res);
 public HttpServletResponse getResponse();
 public void setAttributeEntries(AttributeEntry[] aliases);
 public AttributeEntry[] getAttributeEntries();

 public void setOption(int option);
 public int getOption();
 public void setTagID(String tid);
 public String getTagID();
 public void setTagEntry(String entry);
 public String getTagEntry();
}

Member attributes
GETPW:

Requests that all information should be set for this Callback object.

NOPW:
Requests that all information except user IDs and passwords should be set for this Callback object. (In this
case, the forward/include method is not executed for handling urls.)

Constructor and methods

Constructor/method name Functionality

WebPasswordCallback constructor Creates an instance of the WebPasswordCallback class.

getAttributeEntries method Obtains a reference to the object that stores the list of attributes. The reference is specified
by the setAttributeEntries method.

getName method Obtains the user ID specified by the setName method.

getOption method Obtains the configured option.

getPassword method Obtains the password specified by the setPassword method.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 334

Constructor/method name Functionality

getRequest method Obtains a reference to HttpServletRequest. The reference is specified by the
setRequest method.

getResponse method Obtains a reference to HttpServletResponse. The reference is specified by the
setResponse method.

getTagEntry method Obtains the entry element specified by the setTagEntry method.

getTagID method Obtains TagID specified by the setTagID method.

setAttributeEntries method Stores into this object a reference to the object that holds the list of attributes. The
reference is specified by the parameter.

setName method Stores the user ID specified by the parameter into this object.

setOption method Requests the settings configured with CallbackHandler.

setPassword method Stores the password specified by the parameter into this object.

setRequest method Stores a reference to HttpServletRequest into this object. The reference is
specified by the parameter.

setResponse method Stores a reference to HttpServletResponse into this object. The reference is
specified by the parameter.

setTagEntry method Requests the settings configured with the CallbackHandler method. Stores the login
tag's entry element as specified by the parameter.

setTagID method Requests the settings configured with the CallbackHandler method. Stores the login
tag's id element as specified by the parameter.

The WebPasswordCallback constructor

Description
Executes the WebPasswordLoginModule class's login method and then creates an instance of the
WebPasswordCallback class.

Syntax

public WebPasswordCallback();

Parameters
None

Exceptions
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 335

The getAttributeEntries method

Description
Obtains the value specified by the setAttributeEntries method. If that value does not exist, this method
returns null.

Syntax

public AttributeEntry[] getAttributeEntries();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getName method

Description
Obtains the value specified by the setName method. If that value does not exist, this method returns null.

Syntax

public String getName();

Parameters
None

Exceptions
None

Return value
The value stored in the object

15. APIs Used with the Integrated User Management Framework

Security Management Guide 336

The getOption method

Description
Obtains the configured option. If the value does not exist, this method returns GETPW (by default, this method requests
that all information should be configured).

Syntax

public int getOption();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getPassword method

Description
Obtains the value specified by the setPassword method. If that value does not exist, this method returns null.

Syntax

public String getPassword();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getRequest method

Description
Obtains the value specified by the setRequest method. If that value does not exist, this method returns null.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 337

Syntax

public HttpServletRequest getRequest();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getResponse method

Description
Obtains the value specified by the setResponse method. If that value does not exist, this method returns null.

Syntax

public HttpServletResponse getResponse();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getTagEntry method

Description
Obtains the value specified by the setTagEntry method. If an API is used for login, this method returns null.

Syntax

public String getTagEntry();

15. APIs Used with the Integrated User Management Framework

Security Management Guide 338

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getTagID method

Description
Obtains the value specified by the setTagID method. If an API is used for login, this method returns null.

Syntax

public String getTagID();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The setAttributeEntries method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setAttributeEntries(AttributeEntry[] aliases);

Parameter

aliases:
Specifies the reference to the object (AttributeEntry array) that holds the list of attributes.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 339

Exceptions
None

Return value
None

The setName method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setName(String uid);

Parameter

uid:
Specifies the user ID.

Exceptions
None

Return value
None

The setOption method

Description
Requests the settings configured with CallbackHandler. If NOPW is specified, this method requests
CallbackHandler to set all information except user IDs and passwords (the forward/include method is
not executed for handling urls). If GETPW is specified, this method requests CallbackHandler to set all information
that can be stored into this Callback object.

If a value already exists, it is overwritten.

Syntax

public void setOption(int option);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 340

Parameter

option:
Specifies GETPW or NOPW.

• GETPW
Requests that all information be set for this Callback object.

• NOPW
Requests that all information except user IDs and passwords be set for this Callback object (the forward/
include method is not executed for handling urls).

Exceptions
None

Return value
None

The setPassword method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setPassword(String password);

Parameter

password:
Specifies the password.

Exceptions
None

Return value
None

The setRequest method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 341

Syntax

public void setRequest(HttpServletRequest req);

Parameter

req:
Specifies the reference to HttpServletRequest.

Exceptions
None

Return value
None

The setResponse method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setResponse(HttpServletResponse res);

Parameter

res:
Specifies the reference to HttpServletResponse.

Exceptions
None

Return value
None

The setTagEntry method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagEntry(String tid);

15. APIs Used with the Integrated User Management Framework

Security Management Guide 342

Parameter

tid:
Specifies the entry element of the login tag.

Exceptions
None

Return value
None

The setTagID method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagID(String tid);

Parameter

tid:
Specifies the id element of the login tag.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 343

15.25 The WebPasswordHandler class

Description
An implementation of the JAAS CallbackHandler class that obtains a user ID and password from a user via a
Web browser.
Specify the user ID and password in the com.cosminexus.admin.auth.name and
com.cosminexus.admin.auth.password parameters for HTTP requests, respectively.
The package name of the WebPasswordHandler class is com.cosminexus.admin.auth.callback.

Syntax

class WebPasswordHandler
{
 public WebPasswordHandler(HttpServletRequest request,
 HttpServletResponse response,
 AttributeEntry [] aliases,
 String url,
 boolean urlforward)
 throws FormatError, ParameterError;
 public WebPasswordHandler(HttpServletRequest request,
 HttpServletResponse response,
 String aliasesFile,
 String url,
 boolean urlforward)
 throws IOException, SecurityException, FormatError,
 ParameterError;

 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;
}

Constructor and methods

Constructor/method name Functionality

WebPasswordHandler constructor Creates an instance of the WebPasswordHandler class.

handle method Obtains authentication information.

The WebPasswordHandler constructor

Description
Creates an instance of the WebPasswordHandler class.

This constructor allows you to use either memory or a file to specify user information (attributes) to be stored in the
Credential (UserAttributes). The request and response parameters are mandatory. If null is specified, a
ParameterError exception occurs.

Syntax

public WebPasswordHandler(HttpServletRequest request,
 HttpServletResponse response,
 AttributeEntry[] aliases,

15. APIs Used with the Integrated User Management Framework

Security Management Guide 344

 String url,
 boolean urlforward)
 throws FormatError, ParameterError;

public WebPasswordHandler(HttpServletRequest request,
 HttpServletResponse response,
 String aliasesFile,
 String url,
 boolean urlforward)
 throws IOException, SecurityException, FormatError,
 ParameterError;

Parameters

request:
Specifies the JSP/Servlet activation parameter with no changes.

response:
Specifies the JSP/Servlet activation parameter with no changes.

aliases:
Specifies the information to be included in the Credential (UserAttributes) that is created when authentication
succeeds. If there is no information to be obtained, specify null. In this case, no Credential is created (an empty
UserAttributes object is created). For aliases, specify an array of AttributeEntry objects. If the
specified parameter lacks necessary information, a FormatError exception occurs (because a mandatory value is
not stored or because a value that violates the format is specified).

aliasesFile:
Specifies the information to be included in the Credential (UserAttributes) that is created when authentication
succeeds. If there is no information to be obtained, specify null. In this case, no Credential is created (an empty
UserAttributes object is created). For aliasesFile, specify a file name. If the specified parameter lacks
necessary information, a FormatError exception occurs (because a mandatory value is not stored or because a
value that violates the format is specified).

url:
Specifies the URL from which the authentication information (user ID or password) is to be obtained from the
user. If the URL is specified, a Login Form is passed to the RequestDispatcher object according to the
specified urlforward parameter (when input information is obtained from the user). If there is no need to
specify the URL, specify null. In this case, the urlforward value is not referenced. If you specify null and
authentication information cannot be obtained after execution of the handle method (because this information is
not stored in HttpServletRequest), LoginException occurs after the LoginContext class's login
method is executed.

urlforward:
Specifies how to display the URL. If this parameter is set to true for the specified URL, the forward method of
the RequestDispatcher object is called. If it is set to false, the include method of that object is called.

Exceptions

java.io.FileNotFoundException:
The specified file cannot be opened because it is missing or is a directory, or because of some other reason (when the
exception occurs in the constructor of the FileInputStream class).

15. APIs Used with the Integrated User Management Framework

Security Management Guide 345

java.lang.SecurityException:
SecurityManager is present, and read access to the file using SecurityManager's checkRead method has
been rejected.

java.io.IOException:
An attempt to read the file has failed.

com.cosminexus.admin.common.ParameterError:
A reference to HttpServletRequest or HttpServletResponse is not specified.

com.cosminexus.admin.common.FormatError:
Either or both of the aliases or aliasesFile parameters lack necessary information or contain
extra information.

The handle method

Description
Obtains authentication information, assigns to it a reference to the WebPasswordCallback object (Callback
implementation class), and passes it to the login module in the user authentication library.

Syntax

public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;

Parameter

callbacks:
If this parameter specifies a reference to the WebPasswordCallback object, authentication information is set and
returned. If it specifies a reference to the WebSSOCallback object, session information is set and returned. If it
specifies a reference to another object, UnsupportedCallbackException occurs.

Exceptions

java.io.IOException:
HttpServletRequest does not contain the user ID or password. See Remarks for details about the parameters
necessary for obtaining information.

javax.security.auth.callback.UnsupportedCallbackException:
An unsupported callbacks reference is specified.

Return value
Set a value for callbacks so that this value can be returned. This method does not return a value.

Remarks
Authentication information is read in the order shown below.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 346

Figure 15‒1: Order of reading authentication information

You can obtain authentication information from HttpServletRequest by using the following parameters:

• com.cosminexus.admin.auth.name
Specifies the user ID defined by the user.

• com.cosminexus.admin.auth.password
Specifies the password defined by the user.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 347

15.26 The WebPasswordJDBCLoginModule class

Description
A JAAS login module implementation class that uses JDBC to access a database and authenticate a password.
The package name of the WebPasswordJDBCLoginModule class
is com.cosminexus.admin.auth.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 348

15.27 The WebPasswordLDAPLoginModule class

Description
A JAAS login module implementation class. Authentication is based on the results of binding to the LDAP
directory server.
The package name of the WebPasswordLDAPLoginModule class
is com.cosminexus.admin.auth.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 349

15.28 The WebPasswordLoginModule class

Description
A JAAS login module implementation class. It authenticates passwords for Web applications.
The package name of the WebPasswordLoginModule class is com.cosminexus.admin.auth.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 350

15.29 The WebSSOCallback class

Description
An implementation class that passes session information from a Web application to a login module
via CallbackHandler.
The package name of the WebSSOCallback class is com.cosminexus.admin.auth.sso.callback.

Syntax

class WebSSOCallback implements javax.security.auth.callback.Callback
{
 public WebSSOCallback();

 public void setRequest(HttpServletRequest req);
 public HttpServletRequest getRequest();
 public void setResponse(HttpServletResponse res);
 public HttpServletResponse getResponse();
 public void setTagID(String tid);
 public String getTagID();
 public void setTagEntry(String entry);
 public String getTagEntry();

}

Constructor and methods

Constructor/method name Functionality

WebSSOCallback constructor Creates an instance of the WebSSOCallback class.

getRequest method Obtains a reference to HttpServletRequest. The reference is specified by the
setRequest method.

getResponse method Obtains a reference to HttpServletResponse. The reference is specified by the
setResponse method.

getTagEntry method Obtains the entry element specified by the setTagEntry method.

getTagID method Obtains TagID specified by the setTagID method.

setRequest method Stores a reference to HttpServletRequest into the object. The reference is specified
by the parameter.

setResponse method Stores a reference to HttpServletResponse into the object. The reference is
specified by the parameter.

setTagEntry method Holds the login tag's entry element as specified by the parameter.

setTagID method Holds the login tag's id element as specified by the parameter.

The WebSSOCallback constructor

Description
Executes the WebSSOLoginModule class's login method and then creates an instance of the
WebSSOCallback class.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 351

Syntax

public WebSSOCallback();

Parameters
None

Exceptions
None

The getRequest method

Description
Obtains the value specified by the setRequest method. If that value does not exist, this method returns null.

Syntax

public HttpServletRequest getRequest();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getResponse method

Description
Obtains the value specified by the setResponse method. If that value does not exist, this method returns null.

Syntax

public HttpServletResponse getResponse();

Parameters
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 352

Exceptions
None

Return value
The value stored in the object

The getTagEntry method

Description
Obtains the value specified by the setTagEntry method. If an API is used for login, this method returns null.

Syntax

public String getTagEntry();

Parameters
None

Exceptions
None

Return value
The value stored in the object

The getTagID method

Description
Obtains the value specified by the setTagID method. If an API is used for login, this method returns null.

Syntax

public String getTagID();

Parameters
None

Exceptions
None

Return value
The value stored in the object

15. APIs Used with the Integrated User Management Framework

Security Management Guide 353

The setRequest method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setRequest(HttpServletRequest req);

Parameter

req:
Specifies the reference to HttpServletRequest.

Exceptions
None

Return value
None

The setResponse method

Description
Stores the value specified by the parameter into this object. If a value already exists, it is overwritten.

Syntax

public void setResponse(HttpServletResponse res);

Parameter

res:
Specifies the reference to HttpServletResponse.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 354

The setTagEntry method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagEntry(String tid);

Parameter

tid:
Specifies the entry element of the login tag.

Exceptions
None

Return value
None

The setTagID method

Description
Stores the value specified by the parameter into this object.

Syntax

public void setTagID(String tid);

Parameter

tid:
Specifies the id element of the login tag.

Exceptions
None

Return value
None

15. APIs Used with the Integrated User Management Framework

Security Management Guide 355

15.30 The WebSSOHandler class

Description
An implementation of the JAAS CallbackHandler class that obtains session information via a Web browser. In
the single sign-on library, this is CallbackHandler.
By using this class to specify references to CallbackHandler that are associated with the login modules for each
system, you can achieve single sign-on functionality without changing the implementation of CallbackHandler
for each system.
The package name of the WebSSOHandler class is com.cosminexus.admin.auth.sso.callback.

Syntax

class WebSSOHandler
{
 public WebSSOHandler(HttpServletRequest request,
 HttpServletResponse response,
 CallbackHandler ch)
 throws ParameterError;

 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;
}

Constructor and methods

Constructor/method name Functionality

WebSSOHandler constructor Creates an instance of the WebSSOHandler class.

handle method Obtains session information.

The WebSSOHandler constructor

Description
Creates an instance of the WebSSOHandler class. The request and response parameters are mandatory. If null
is specified, a ParameterError exception occurs.

Syntax

public WebSSOHandler(HttpServletRequest request,
 HttpServletResponse response,
 CallbackHandler ch)
 throws ParameterError;

Parameters

request:
Specifies the JSP/Servlet activation parameter with no changes.

response:
Specifies the JSP/Servlet activation parameter with no changes.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 356

ch:
Specifies the reference to CallbackHandler for each system. If this parameter is not necessary, specify null.

Exceptions

com.cosminexus.admin.common.ParameterError:
A reference to either HttpServletRequest or HttpServletResponse is not specified.

The handle method

Description
Obtains session information, assigns to it a reference to the WebSSOCallback object (Callback
implementation class), and passes it to the login module in the single sign-on library.

Syntax

public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException;

Parameters

callbacks:
If this parameter specifies a reference to the WebSSOCallback object, session information is set and returned. If
it specifies a class other than this one, the handle method of CallbackHandler specified in the constructor
is called.

Exceptions

java.io.IOException:
This exception occurs in the handle method of CallbackHandler for each system.

javax.security.auth.callback.UnsupportedCallbackException:
This exception occurs when both of the following conditions coexist:

• A reference to CallbackHandler for each system is not specified in the constructor (when null
is specified).

• This exception occurred in the handle method of CallbackHandler for each system.

Return value
Set a value for callbacks so that this value can be returned. This method does not return a value.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 357

15.31 The WebSSOLoginModule class

Description
A JAAS login module implementation class that calls another login module for single sign-on.
The package name of the WebSSOLoginModule class is com.cosminexus.admin.auth.sso.login.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 358

15.32 Exception classes

This section describes the exception classes available to APIs for integrated user management. They include the
exception classes for JAAS login modules and for APIs (non-JAAS APIs) from Hitachi.

15.32.1 Exception classes for JAAS login modules
The table below lists the exception classes for JAAS login modules.

Table 15‒3: List of exception classes for JAAS login modules

No. Exception name Description

1 javax.security.auth.login.LoginException A parent class for exception classes 2 through 4. The constructor
of this class has an msg parameter (java.lang.String).

2 javax.security.auth.login.AccountExpiredE
xception

Reports that the user account has expired.

3 javax.security.auth.login.CredentialExpir
edException

Reports that the credential has expired.

4 javax.security.auth.login.FailedLoginExce
ption

Reports that authentication has failed.

The login module in either the user authentication library or the single sign-on library assigns error message character
strings to the exceptions and sends these strings. The error message character strings are listed in the table below.

Note that if the LoginContext class is instantiated when the JAAS configuration file contains an
error,java.lang.SecurityException occurs. In this case, correct this configuration file by referring to the error
message character string shown in the next table.

Table 15‒4: Exceptions for the login module in the user authentication library or single sign-on
library

Exception name Error message
character string

Reason for occurrence

javax.security.auth.log
in.FailedLoginException

data not found Authentication information is not found in the passed parameter.
The HttpServletRequest passed to the WebPasswordHandler
class did not contain a user ID or password.

invalid data • Authentication is impossible because the user ID or password is wrong.
• The entry associated with the user ID from the certificate was not found

in the repository.

no data With user already authenticated within the session, necessary definitions
do not include single sign-on authentication information that is associated
with the realm to be called.

javax.security.auth.log
in.LoginException

invalid
parameter

The list of attribute names and attributes for creating a credential contains
errors indicating that:
• An attribute name is not specified.
• The same alias is specified more than once.

SQL exception name Access through JDBC has failed. If this exception occurs, take corrective
action by referring to the error message character string.

JNDI exception name LDAP access has failed.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 359

Exception name Error message
character string

Reason for occurrence

• The LDAP server was not found (CommunicationException).
• There is a bind DN specification

error (AuthenticationException).

not supported An unsupported CallbackHandler is being used.
• Information required for either WebSSOLoginModule

or WebPasswordLoginModule cannot be obtained
with CallbackHandler.

• An exception has occurred when executing the handle method. This
exception only occurs in CallbackHandler for user management
when the condition described above exists.

no class for xxx The class called from WebSSOLoginModule cannot
be used (xxx indicates the value specified
by com.cosminexus.admin.auth.sso.loginmodule).
• The class cannot be instantiated. The JAAS login module was not

inherited. The access permission might be missing and the class path
might not be configured.

config error • Processing cannot continue because the JAAS configuration file does
not contain necessary information.

• Processing cannot continue because the configuration file for user
management with the Cosminexus standard login module does not
contain necessary information.

invalid session When an attempt was made to bind the session to an HttpSession
object, the HttpSession object became invalid.

crypto error Encryption or decryption has failed.
• The shared single sign-on library to be called by JNI

functionality was not found (there is a problem with the
java.library.path settings).

• Decryption has failed (different keys are used for encryption
and decryption).

no sso data Information for single sign-on is not found.
• Necessary information for single sign-on is missing.

no principal Because Principal was missing, the first authenticated user could not
be identified.

class cast error There is a mismatch between the type fetched from the
repository and that specified in the configuration file for
integrated user management. Match these two types. See
com.cosminexus.admin.auth.ldap.password.encrypt in
ua.conf (which is the configuration file for integrated user
management). For details about this ua.conf file, see 14.2.2 ua.conf
(integrated user management configuration file).

not found driver JDBC is used.
• The driver was not found in WebPasswordJDBCLoginModule.

Store the driver in the correct position.

Other An error has occurred in one of the login modules for the systems.
• An error has occurred in WebSSOLoginModule, which is a login

module in a library other than the user authentication library.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 360

15.32.2 Exception classes for APIs offered by Hitachi
The figure below shows the hierarchy of the exception classes for APIs (non-JAAS APIs) offered by Hitachi.

Figure 15‒2: Hierarchy of exception classes

The following table lists these exception classes.

Table 15‒5: Exception classes for APIs offered by Hitachi

No. Exception name Description

1 com.cosminexus.admin.common.UAException A parent class for exception classes 2 through 8.

2 com.cosminexus.admin.common.ParameterError There is a parameter error in one of the APIs.

3 com.cosminexus.admin.common.FormatError There is a format error in one of the APIs.

4 com.cosminexus.admin.common.ConfigError There is a configuration file error.

5 com.cosminexus.admin.auth.api.repository.ldap.Ob
jectClassError

There is an object class error.

6 com.cosminexus.admin.auth.CryptoException Encryption or decryption has failed.

7 com.cosminexus.admin.auth.api.repository.event.C
hangeDataFailedException

The listener class is called if an attempt to update
authentication information for another system has failed.

8 com.cosminexus.admin.auth.api.repository.event.S
SODataListenerException

The LdapSSODataManager class is called if an
attempt to update authentication information for another
system has failed.

15. APIs Used with the Integrated User Management Framework

Security Management Guide 361

16 Tag Library Used with the Integrated User
Management Framework

This chapter describes the JSP tag library that is used with the integrated user
management framework.

Security Management Guide 362

16.1 List of the tags contained in the tag library

The integrated user management framework provides a JSP tag library for implementation of user authentication
functionality in JSP.

To import this library into JSP, write the following code in JSP:

<%@ taglib uri="http://cosminexus.com/admin/auth/uatags" prefix="ua" %>

The table below lists the tags contained in this library.

Table 16‒1: List of the tags in the JSP tag library

Tag name Overview

<ua:attributeEntries>Entries</
ua:attributeEntries> tag

Used together with <ua:attributeEntry/> tags to specify
a list of user attributes to be obtained at login.

<ua:attributeEntry/> tag Specifies the user attribute to be obtained at login.

<ua:chpw/> tag Changes the specified user's password.

<ua:exception>Body</ua:exception> tag Specifies the exception processing.

<ua:getPrincipalName/> tag Obtains or displays the Principal name (user ID) of a logged-
in user.

<ua:getAttribute/> tag Obtains or displays the user attribute value of a logged-in user.

<ua:getAttributes/> tag Obtains or displays the user attribute values (Multi-Value) of a
logged-in user.

<ua:getAttributeNames/> tag Obtains or displays a list of the user attribute names of a logged-
in user.

<ua:login/> tag Logs a user in.

<ua:logout/> tag Logs a user out.

<ua:notLogin>Body</ua:notLogin> tag Specifies the processing required when there is no logged-in user.
If this tag is entered at the beginning of each JSP page, you can
check for a logged-in user before processing a JSP page.

This chapter describes the attributes of each tag in tabular form. The Type column indicates the type of script variable
defined for each tag attribute. The C/E column includes C or E. C indicates that the tag attribute value is evaluated at JSP
compile time. E indicates that it is evaluated at execution time.

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 363

16.2 Details of the tags contained in the tag library

16.2.1 The <ua:attributeEntries>Entries</ua:attributeEntries> tag

(1) Description
Used together with <ua:attributeEntry/> tags to specify a list of user attributes to be obtained at login. To specify
this list, enter two or more <ua:attributeEntry/> tags for Entries.

<ua:attributeEntries id="ae">
 <ua:attributeEntry attrName="cn" />
 <ua:attributeEntry attrName="sn" />
 ...
</ua:attributeEntries>

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒2: Tag attributes (<ua:attributeEntries>Entries</ua:attributeEntries> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance (array) of the
AttributeEntry class. This tag attribute can also
be used for the name of the script variable that
references this instance. This instance has the scope
that is specified with the scope tag attribute. The
specified identifier should be unique for each scope.

AttributeEntr
y[]

R C

scope="scope" Specifies the scope of the script variable that is
specified with the id tag attribute. The scope can
be specified as page, request, session, or
application. For the meanings of these values,
see the description for the <jsp:useBean/> tag. If
the scope tag attribute is omitted, page is assumed.

n/a O C

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.

16.2.2 The <ua:attributeEntry/> tag

(1) Description
Specifies the user attribute to be obtained at login. For details, see 16.2.1 The <ua:attributeEntries>Entries</
ua:attributeEntries> tag.

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 364

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒3: Tag attributes (<ua:attributeEntry/> tag)

Tag attribute Description Type Required? C/E

attrName="attrName" Specifies the name of the user attribute to be obtained
at login.

n/a R E

alias="alias" Specifies the alias of the user attribute to be obtained. n/a O E

subCxt="subCxt" Specifies the subcontext from the user
management context.

n/a O E

Legend:
R: Required
O: Optional
n/a: Not applicable
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.3 The <ua:chpw/> tag

(1) Description
Changes the specified user's password.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒4: Tag attributes (<ua:chpw/> tag)

Tag attribute Description Type Required? C/E

entry="JAAS-entry" Specifies the entry name for the JAAS
configuration file.

n/a R E

userid="userid" Specifies the user ID for the user whose password is to
be changed.

n/a R# E

useridParam="useridPara
m"

Specifies the name of the HTTP request parameter that
holds the user ID for the user whose password is to
be changed.

n/a E

oldpw="oldpw" Specifies the current password in plain text. n/a R# E

oldpwParam="oldpwPara
m"

Specifies the name of the HTTP request parameter that
holds the current password.

n/a E

newpw="newpw" Specifies the new password in plain text. n/a R# E

newpwParam="newpwPara
m"

Specifies the name of the HTTP request parameter that
holds the new password.

n/a E

excepId="excepId" Specifies the identifier of an instance of an exception
that occurs while changing the password. This
instance has the scope that is specified with the
excepScope tag attribute. The specified identifier

n/a O C

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 365

Tag attribute Description Type Required? C/E

should be unique for each scope. If the excepId
tag attribute is omitted, exceptions that occur while
changing the password are propagated outside the
<ua:chpw/> tag as JspException.

excepScope="scope" Specifies the scope of the script variable that is
specified with the excepId tag attribute. The scope
can be specified as page, request, session, or
application. For the meanings of these values,
see the description for the <jsp:useBean/> tag.
If the excepScope tag attribute is omitted, page
is assumed.

n/a O C

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

#
Specify either of these tag attributes.

16.2.4 The <ua:exception>Body</ua:exception> tag

(1) Description
Defines the process to be performed when the specified exception occurs.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒5: Tag attributes (<ua:exception>Body</ua:exception> tag)

Tag attribute Description Type Required? C/E

name="name" Specifies the identifier (specified with the excepId
tag attribute) of an exception object specified with the
<ua:login/> or <ua:chpw/> tag. If an incorrect
identifier is specified, nothing happens.

n/a R C

type="type" Specifies the class name of the exception object to
be caught. This name should be a complete name
including the package name. If the exception object
can be cast into a class that has the specified class
name, Body is executed. If the type tag attribute is
omitted, java.lang.Throwable is assumed.

n/a O C

proceed="proceed" Specifies whether to process the remaining JSP pages
after Body processing. If true (case-insensitive) is
specified, these JSP pages are processed. If true is
not specified, they are not processed. If the proceed
tag attribute is omitted, false is assumed.

n/a O E

Legend:
R: Required

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 366

O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.5 The <ua:getPrincipalName/> tag

(1) Description
Obtains or displays the Principal name (user ID) of a logged-in user.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒6: Tag attributes (<ua:getPrincipalName/> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance that references
the Principal name (user ID) of a logged-in user. This
tag attribute can also be used for the name of the script
variable that references this instance. This instance has
a page scope, which means that it can be referenced
within the JSP page in which it is created. Therefore,
the specified identifier should be unique for each page
scope. If the id tag attribute is omitted, the obtained
Principal name is embedded into the JSP page.

String O C

name="name" Specifies the identifier (specified with the id tag
attribute) of the JAAS LoginContext object
specified with the <ua:login/> tag. If an incorrect
identifier is specified, the id script variable is set
to null.

n/a R E

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.6 The <ua:getAttribute/> tag

(1) Description
Obtains or displays the user attribute value of a logged-in user.

(2) Tag attributes
The following table lists the tag attributes.

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 367

Table 16‒7: Tag attributes (<ua:getAttribute/> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance that references
the user attribute value of a logged-in user. This tag
attribute can also be used for the name of the script
variable that references this instance. This instance has
a page scope, which means that it can be referenced
within the JSP page in which it is created. Therefore,
the specified identifier should be unique for each page
scope. If the id tag attribute is omitted, the obtained
user attribute value is embedded into a JSP page by
using the toString method.

Value of the type
tag attribute

O C

name="name" Specifies the identifier (specified with the id tag
attribute) of the JAAS LoginContext object
specified with the <ua:login/> tag. If an incorrect
identifier is specified, the id script variable is set
to null.

n/a R E

attrName="attrName" Specifies the name of the user attribute to be obtained.
If that user attribute does not exist, the id script
variable is set to null.

n/a R E

type="type" Specifies the class name of the attribute object to
be obtained. This name should be a complete name
including the package name. If the type tag attribute
is omitted, java.lang.String is assumed.

n/a O C

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.7 The <ua:getAttributes/> tag

(1) Description
Obtains or displays the user attribute values (Multi-Value) of a logged-in user.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒8: Tag attributes (<ua:getAttributes/> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance that references
the user attribute values (Multi-Value) of a logged-in
user. This tag attribute can also be used for the name
of the script variable that references this instance.
The type of this script variable is java.util.
Enumeration. This instance has a page scope,
which means that it can be referenced within the JSP
page in which it is created. Therefore, the specified

java.util.Enum
eration

O C

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 368

Tag attribute Description Type Required? C/E

identifier should be unique for each page scope. If the
id tag attribute is omitted, the obtained user attribute
values are embedded one at a time into the JSP page by
using the toString method.

name="name" Specifies the identifier (specified with the id tag
attribute) of the JAAS LoginContext object
specified with the <ua:login/> tag. If an incorrect
identifier is specified, the id script variable is set
to null.

n/a R E

attrName="attrName" Specifies the name of the user attribute to be obtained.
If that user attribute does not exist, the id script
variable is set to null.

n/a R E

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.8 The <ua:getAttributeNames/> tag

(1) Description
Obtains or displays a list of the user attribute names of a logged-in user.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒9: Tag attributes (<ua:getAttributeNames/> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance that references
the list of the user attribute names of a logged-
in user. This tag attribute can also be used for
the name of the script variable that references
this instance. The type of this script variable is
java.util.Enumeration. This instance has a
page scope, which means that it can be referenced
within the JSP page in which it is created. Therefore,
the specified identifier should be unique for each page
scope. If the id tag attribute is omitted, the obtained
user attribute values are embedded one at a time into
the JSP page by using the toString method.

java.util.Enum
eration

O C

name="name" Specifies the identifier (specified with the id tag
attribute) of the JAAS LoginContext object
specified with the <ua:login/> tag. If an incorrect
identifier is specified, the id script variable is set
to null.

n/a R E

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 369

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.9 The <ua:login/> tag

(1) Description
Uses the specified JAAS configuration entry to log a user in. When this is done, the
com.cosminexus.admin.auth.name and com.cosminexus.admin.auth.password parameters
should be specified for the HTTP request object. If the <ua:logout/> tag for the <ua:login/> tag is not
defined, the user is implicitly logged out when the session is disconnected.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒10: Tag attributes (<ua:login/> tag)

Tag attribute Description Type Required? C/E

id="id" Specifies the identifier of an instance of the JAAS
LoginContext class. This tag attribute can also be
used for the name of the script variable that references
this instance. This instance has a session scope, which
means that it can be referenced from different JSP
pages participating in the same session. The specified
identifier should be unique for each scope.

javax.security
.auth.login.Lo
ginContext

R C

entry="JAAS-entry" Specifies the entry name of the JAAS
configuration file.

n/a R E

attrFile="attrFile" Specifies the name of a file that defines the attributes
to be obtained from the user management repository.
The file should be a CSV file that contains single
sign-on authentication information. For details about
this CSV file, see 14.3 CSV files containing single
sign-on authentication information.

n/a O# E

attrEntName="attrEntNa
me"

Specifies the identifier specified with the id tag
attribute of the <ua:attributeEntries> tag.

n/a E

excepId="excepId" Specifies the identifier of an instance of an exception
that occurs during the login processing. This instance
has the scope that is specified with the excepScope
tag attribute. The specified identifier should be unique
for each scope. If the excepId tag attribute is
omitted, exceptions that occur during login processing
are propagated outside the <ua:login/> tag
as JspException.

n/a O C

excepScope="scope" Specifies the scope of the script variable that is
specified with the excepId tag attribute. The scope
can be specified as page, request, session, or
application. For the meanings of these values,

n/a O C

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 370

Tag attribute Description Type Required? C/E

see the description for the <jsp:useBean/> tag.
If the excepScope tag attribute is omitted, page
is assumed.

Legend:
R: Required
O: Optional
n/a: Not applicable
C: Indicates that the tag attribute value is evaluated at JSP compile time.
E: Indicates that the tag attribute value is evaluated at execution time.

#
Specify either of these tag attributes.

16.2.10 The <ua:logout/> tag

(1) Description
Logs a user out. If no user is logged in, nothing happens.

(2) Tag attributes
The following table lists the tag attributes.

Table 16‒11: Tag attributes (<ua:logout/> tag)

Tag attribute Description Type Required? C/E

name="name" Specifies the identifier (specified with the id tag
attribute) of the JAAS LoginContext object
specified with the <ua:login/> tag. If an incorrect
identifier is specified, nothing happens.

n/a R E

Legend:
R: Required
n/a: Not applicable
E: Indicates that the tag attribute value is evaluated at execution time.

16.2.11 The <ua:notLogin>Body</ua:notLogin> tag

(1) Description
Defines the processing to be performed if no user is logged in. By entering this tag at the beginning of a JSP page, you
can check whether a user has logged in before the JSP page is processed.

(2) Tag attributes
The following table lists the tag attributes.

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 371

Table 16‒12: Tag attributes (<ua:notLogin>Body</ua:notLogin> tag)

Tag attribute Description Type Required? C/E

realm="realm" Specifies the name of a realm. If a user has not
already logged into that realm, Body is executed. If
the realm tag attribute is omitted and a user has not
already logged into any realms, Body is executed.

n/a O E

proceed="proceed" Specifies whether to process the remaining JSP pages
after Body processing. If true (case- insensitive) is
specified, the remaining JSP pages are processed. If
true is not specified, they are not processed. If the
proceed tag attribute is omitted, false is assumed.

n/a O E

Legend:
O: Optional
n/a: Not applicable
E: Indicates that the tag attribute value is evaluated at execution time.

16. Tag Library Used with the Integrated User Management Framework

Security Management Guide 372

17 APIs for Implementation of EJB
Client Applications

Some APIs used for EJB client applications provide classes intended for security purposes. This
chapter focuses on these security-related classes.

Security Management Guide 373

17.1 The LoginInfoManager class

Description
Provides security authentication by using the user name and password specified for a J2EE server.
The following describes the J2EE servers responsible for security authentication.

• When the ejbserver.security.service.url property is specified:
J2EE servers connect to the CORBA naming service specified by the
ejbserver.security.service.url property. If one of the servers has the same name as that
specified by the ejbserver.serverName property, the J2EE server with that name is responsible for
security authentication.
Specify the ejbserver.security.service.url property when security authentication involves
using a J2EE server that is not connected to the CORBA naming service specified by the
java.naming.provider.url property.

• When the ejbserver.security.service.url property is not specified:
J2EE servers connect to the CORBA naming service specified by the java.naming.provider.url
property. If one of the servers has the same name as that specified by the ejbserver.serverName property,
the J2EE server with that name is responsible for security authentication.

In a load balancing configuration that uses JNDI round-robin search or CTM linkage functionality, there will be
two or more J2EE servers that can provide security authentication. When using this configuration, you need to
configure the same user name and the same role for all of the J2EE servers and then select one J2EE server for
security authentication.
For details about the properties, see 12. Files Used in Java Applications in the uCosminexus Application Server
Definition Reference Guide. For details about how to implement security in an EJB client application, see 3.6
Implementing security in an EJB client application, in the uCosminexus Application Server EJB Container
Functionality Guide.
The package name of the LoginInfoManager class
is com.hitachi.software.ejb.security.base.authentication.

Methods

Method name Functionality

getLoginInfoManager method Obtains the LoginInfoManager object.

login method Logs into a J2EE server.

logout method Logs out of a J2EE server.

Remarks
When using the methods of the LoginInfoManager class, observe the following precautions:

• We recommend issuing the methods of the LoginInfoManager class from an EJB client application. If you
issue them from within a JSP, servlet, or EJB, information configured with the RunAs functionality is deleted for
each request.

• Make sure that you issue the logout method after calling a J2EE server by issuing the login method.

• Do not issue the login and logout methods as nested methods. If you repeatedly issue the login method
without issuing the logout method, information specified with the first login method is overwritten by the
following login method.

17. APIs for Implementation of EJB Client Applications

Security Management Guide 374

The getLoginInfoManager method

Description
Obtains the LoginInfoManager object.

Syntax

public static LoginInfoManager getLoginInfoManager();

Parameters
None

Exceptions
None

Return value
The LoginInfoManger object

The login method

Description
Logs into a J2EE server.

Syntax

public final boolean login(String username,
 String password)
 throws NotFoundServerException,InvalidUserNameException,
 InvalidPasswordException;

Parameters

username:
Specifies the user name (plain text).

password:
Specifies the password (plain text).

Exceptions

com.hitachi.software.ejb.security.base.authentication.NotFoundServerException:
The J2EE server has not been found.

com.hitachi.software.ejb.security.base.authentication.InvalidUserNameException:
The specified user name has not been found.

17. APIs for Implementation of EJB Client Applications

Security Management Guide 375

com.hitachi.software.ejb.security.base.authentication.InvalidPasswordException:
The specified password is invalid.

Return value

true:
Login has succeeded.

false:
Login has failed.

The logout method

Description
Logs out of a J2EE server.

Syntax

public final void logout();

Parameters
None

Exceptions
None

Return value
None

17. APIs for Implementation of EJB Client Applications

Security Management Guide 376

18 Files Used to Control Load Balancers That Employ
API-Based Direct Connections

This chapter describes the format, location, functionality, and specifiable keys for files used
when using administration functionality to control load balancers that employ API-based
direct connections.

Security Management Guide 377

18.1 List of files used to control load balancers that employ API-based
direct connections

The following table shows the files used to control load balancers that employ API-based direct connections.

Table 18‒1: List of files used to control load balancers that employ API-based direct connections

File name Type Description Relevant
information

lb.properties Load balancer definition
property file

Configures connection information necessary to
access the load balancer.

18.2.1

LB-connection-
information-
distinguished-
name.properties

Virtual server manager-side
load balancer connection
configuration property file

Configures connection information necessary to
access the load balancer in a virtual server manager.

18.2.2

tierlb.properties Tier-side load balancer
connection configuration
property file

Configures connection information necessary to
access the load balancer within a tier.

18.2.3

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 378

18.2 Details of files used to control load balancers that employ API-based
direct connections

18.2.1 lb.properties (load balancer definition property file)

(1) Format
Java property format

(2) File location
• In Windows

Cosminexus-installation-directory\manager\config
• In UNIX
/opt/Cosminexus/manager/config

(3) Functionality
This file configures connection information necessary to access the load balancer. It is used to control the load balancer
from Cosminexus.

(4) Keys that can be specified
The following table shows the keys that can be specified for load balancers that employ API-based direct connections,
along with their defaults.

Key name Description Default

lb.list Specify the management IP address of the load balancer using dot notation
(xxx.xxx.xxx.xxx), where xxx is an integer from 0 to 255. If more than one load
balancer is used, separate each of the management IP addresses by a comma (,).

None

lb.connect_type.IP-
address#1#2

Specify the connection condition for the load balancer.
Specify API.
If this is omitted, jp1_nc (indicating compatibility with older VRs) is set.

jp1_nc

lb.enable_passwd.IP-
address

Specify the password necessary for the Privileged EXEC level set for the load
balancer. This setting is required for each load balancer. Specify this property if
ACOS is used.

None

lb.API.user.IP-address Specify the user name used to log into the load balancer via the API. None

lb.API.passwd.IP-address Specify the user password used to log into the load balancer via the API. None

lb.API.port.IP-address Specify the port number for the load balancer. The value that can be specified is
an integer from 1 to 65534. If the specified value is out of the range, the default
value is set.

443

lb.API.cookie_persiste
nce_template.Web-system-
name.IP-address

Specify the cookie persistence template name created on the load balancer. None

lb.API.timeout.IP-address Specify the timeout period (in seconds) for API method execution. 10

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 379

Key name Description Default

If an API method is not completed within the period specified in this key, Smart
Composer functionality commands (such as cmx_build_system) will end
abnormally due to a timeout error.
The value that can be specified is an integer from 1 and 2147483. If the
specified value is out of the range, the default value is set.

lb.API.protocol.IP-
address

Specify the protocol to be used for communication with the load balancer.
• http: Uses the HTTP communication protocol.
• https: Uses the HTTPS communication protocol.

https

javax.net.ssl.trustSto
re

If API is specified as the connection condition for the load balancer, specify the
trust store where the server certificate for the load balancer is registered. Specify
the trust store in accordance with the Java specifications.

cacerts (Default trust
store for JDK)

javax.net.ssl.trustSto
rePassword

If API is specified as the connection condition for the load balancer, specify the
password for the trust store where the server certificate for the load balancer is
registered. Specify the trust store in accordance with the Java specifications.

cacerts (The default
key store trusted by
Java is used.)

#1: Specify the management IP address of the load balancer specified in lb.list.
#2: If the specified value is invalid and a cmx_test_lb, cmx_build_system, cmx_delete_system, cmx_start_target, or
cmx_stop_target command is executed, an error will occur.

(5) Specification example
lb.list=192.168.10.100
lb.enable_passwd.192.168.10.100=adminpw

lb.connect_type.192.168.10.100=API
lb.API.user.192.168.10.100=user01
lb.API.passwd.192.168.10.100=user01pw
#lb.API.port.192.168.10.100=443
#lb.API.cookie_persistence_template.MyWebSystem.192.168.10.100=SC_COOKIE_TEM
PNAME
#lb.API.timeout.192.168.10.100=10
javax.net.ssl.trustStore=C:\\work\\ACOS.keystore
javax.net.ssl.trustStorePassword=keystore_pass

(6) Notes
• This file contains password and other information. Set appropriate access permissions for the file.

• If the configuration file is updated while Management Server is running, the updated information is incorporated the
next time Management Server is restarted.

• If the file is updated, or if the connection configuration between the Management Server machine and load balancer
is changed, use the cmx_test_lb command to check the connection to the load balancer. For details about the
cmx_test_lb command, see 8. Commands Used with the Smart Composer Functionality in the uCosminexus
Application Server Command Reference Guide. If you are unable to connect to the load balancer, use the messages
output by the cmx_test_lb command to check the configuration of the load balancer and the specified contents
of the load balancer definition (<load-balancer> tag definition) in the Easy Setup definition file. For details
about how to configure load balancers, see 8.5 Load balancer connection information setup with Management Server
(Smart Composer functionality). For details about load balancer definitions (<load-balancer> tag definitions)
in the Easy Setup definition file, see 4.7.5 Setting up environment for connecting to the load balancer in the
uCosminexus Application Server System Setup and Operation Guide.

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 380

18.2.2 LB-information-distinguished-name.properties (virtual server
manager-side load balancer connection configuration property file)

(1) Format
J2SE property file format

(2) File location
• In Windows

Cosminexus-installation-directory\manager\vmi\config\lb\
• In UNIX
/opt/Cosminexus/manager/vmi/config/lb/

(3) Functionality
This file configures connection information necessary to access the load balancer in the virtual server manager.

(4) Keys that can be specified
The keys that can be specified are shown below. The Default value column gives the value assumed if the key is omitted.
VR indicates the version of the application server on which the keys are introduced or changed.

Key name Description Specifiable value Default value VR

lb.type Specify the load balancer type. The following values
can be specified:
• BIG-IPv9
• BIG-IPv10.1
• BIG-IPv10.2
• BIG-IPv11
• ACOS

None 08-53

lb.host Specify the management IP address of the load balancer
to be connected.

IPv4 dot notation None 08-53

lb.protocol Specify the method of connecting to the load balancer.

API:
Uses the API to connect to the load balancer

The following value
can be specified:
• API

None 08-53

lb.port Specify the port number to be used by the load balancer. The following values
can be specified:
• API
1-65534

• API: 443 08-53

lb.user Specify the user name used to connect to the
load balancer.

Any character string
can be used.

None 08-53

lb.password Specify the user password used to connect to the
load balancer.

Any character string
can be used.

Null 08-53

lb.persistence
.cookie-
insert.templat
ename

Specify the cookie persistence template name created
on the load balancer.
The specified key becomes effective if the following
conditions are met:

Specify a
1-13 character
string consisting
of alphanumeric

None 08-70

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 381

Key name Description Specifiable value Default value VR

• lb.type=ACOS and lb.protocol=API
are specified in LB-connection-
information-distinguished-name.properties
or tierlb.properties

• lb.persistence.method=cookie-
insert is specified in tier.properties

characters and
underscores (_)

lb.timeout Specify the timeout period (in seconds) for login to the
loader balancer or command transmission.
If login to the load balancer or a CLI command issued
to the load balancer is not complete within the time
specified in this key, the vmiunit command will end
abnormally due to a timeout error.

1-2147483 10 08-53

lb.API.protoco
l

Specify the protocol to be used for communication with
the load balancer.

http:
Uses the HTTP communication protocol.

https:
Uses the HTTPS communication protocol.

The following values
can be specified:
• http
• https

https 09-00

lb.ACOS.privil
egedexec.passw
ord

Specify the password necessary for the Privileged
EXEC level set on ACOS.
The specified key is only valid when the load balancer
type is ACOS.

Any character string
can be used.

None 08-53

javax.net.ssl.
trustStore

Specify the trust store where the server certificate for
the load balancer is registered.
The specified key becomes effective
if all of the following values are
specified in LB-connection-information-distinguished-
name.properties or tierlb.properties:
• lb.type=ACOS
• lb.protocol=API
• lb.API.protocol=https

Follow the
Java specifications.

cacerts (Default trust
store for JDK)

08-70

javax.net.ssl.
trustStorePass
word

Specify the password for the trust store where the server
certificate for the load balancer is registered.
The specified key becomes effective
if all of the following values are
specified in LB-connection-information-distinguished-
name.properties or tierlb.properties:
• lb.type=ACOS
• lb.protocol=API
• lb.API.protocol=https

Follow the
Java specifications.

cacerts (The default
key store trusted by
Java is used.)

08-70

(5) Notes
• This file contains password and other information. Set appropriate access permissions for the file.

• If the configuration file is updated while a virtual server manager is running, the updated information is incorporated
the next time the virtual server manager is restarted.

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 382

18.2.3 tierlb.properties (tier-side load balancer connection configuration
property file)

(1) Format
J2SE property file format

(2) File location
• In Windows

definition-directory\tier-specific-definition-directory\vmi\
• In UNIX

definition-directory/tier-specific-definition-directory/vmi/

Copy and use the following template file:

• In Windows
Cosminexus-installation-directory\manager\vmi\templates\tierlb.properties

• In UNIX
/opt/Cosminexus/manager/vmi/templates/tierlb.properties

(3) Functionality
This file configures connection information necessary to access the load balancer within a tier.

(4) Keys that can be specified
The keys that can be specified are shown below. The Default value column gives the value assumed if the key is omitted.
VR indicates the version of the application server on which the keys are introduced or changed.

Key name Description Specifiable value Default value VR

lb.type Specify the load balancer type. The following values
can be specified:
• BIG-IPv9
• BIG-IPv10.1
• BIG-IPv10.2
• BIG-IPv11
• ACOS

None 08-53

lb.host Specify the management IP address of the load balancer
to be connected.

IPv4 dot notation None 08-53

lb.protocol Specify the method of connecting to the load balancer.

API:
Uses the API to connect to the load balancer

The following value
can be specified:
• API

None 08-53

lb.port Specify the port number to be used by the load balancer. The following values
can be specified:
• API
1-65534

• API: 443 08-53

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 383

Key name Description Specifiable value Default value VR

lb.user Specify the user name used to connect to the
load balancer.

Any character string
can be used.

None 08-53

lb.password Specify the user password used to connect to the
load balancer.

Any character string
can be used.

Null 08-53

lb.persistence
.cookie-
insert.templat
ename

Specify the cookie persistence template name created
on the load balancer.
The specified key becomes effective if the following
conditions are met:
• lb.type=ACOS and lb.protocol=API

are specified in LB-connection-
information-distinguished-name.properties
or tierlb.properties

• lb.persistence.method=cookie-
insert is specified in tier.properties

A 1-13 character
string consisting
of alphanumeric
characters and
underscores (_)

None 08-70

lb.timeout Specify the timeout period (in seconds) for login to the
loader balancer or command transmission.
If login to the load balancer or a CLI command issued
to the load balancer is not complete within the time
specified in this key, the vmiunit command will end
abnormally due to a timeout error.

1-2147483 10 08-53

lb.API.protoco
l

Specify the protocol to be used for communication with
the load balancer.

http:
Uses the HTTP communication protocol.

https:
Uses the HTTPS communication protocol.

The following values
can be specified:
• http
• https

https 09-00

lb.ACOS.privil
egedexec.passw
ord

Specify the password necessary for the Privileged
EXEC level set on ACOS.
The specified key is only valid when the load balancer
type is ACOS.

Any character string
can be used.

None 08-53

javax.net.ssl.
trustStore

Specify the trust store where the server certificate for
the load balancer is registered.
The specified key becomes effective
if all of the following values are
specified in LB-connection-information-distinguished-
name.properties or tierlb.properties:
• lb.type=ACOS
• lb.protocol=API
• lb.API.protocol=https

Follow the
Java specifications.

cacerts (Default trust
store for JDK)

08-70

javax.net.ssl.
trustStorePass
word

Specify the password for the trust store where the server
certificate for the load balancer is registered.
The specified key becomes effective
if all of the following values are
specified in LB-connection-information-distinguished-
name.properties or tierlb.properties:
• lb.type=ACOS
• lb.protocol=API
• lb.API.protocol=https

Follow the
Java specifications.

cacerts (The default
key store trusted by
Java is used.)

08-70

18. Files Used to Control Load Balancers That Employ API-Based Direct Connections

Security Management Guide 384

19 Messages Output by the Security
Management Functionality

This chapter describes the messages output by the security management functionality.

Security Management Guide 385

19.1 Message description format

This chapter uses the following format to describe each message:

XXXXXnnnn-Y
Message text

(Meaning)
English message meaning

(Cause)
Cause for message output

(Action)
Action to be performed by the user

Each message consists of the following components:

XXXXXnnnn
Indicates the message ID.
A message ID consists of the following elements:

XXXXX
Indicates the ID (prefix) of the functionality that output the message. The message prefixes output by the Web
service security functionality are as follows:

• KDCGF
Indicates that an error occurred during reception of a SOAP message.

• KDCGK
Indicates that processing by a secret key generation command ended normally or that an error occurred during
execution of the command.

• KDCGS
Indicates that an error occurred during reading of the Web service security functionality definition file.

• KDCGW
Indicates that an error occurred during transmission of a SOAP message.

• KEOS
Indicates that an error occurred during setup, operation, or maintenance using Cosminexus Manager.

• KEXS
Indicates that an error occurred in Cosminexus XML Security - Core.

nnnn
Indicates the message number managed by the program that output the message. Each message has a four-digit
unique number.

Y
Indicates the message type. It is represented by a single letter.
The following message types might be output:

• E

19. Messages Output by the Security Management Functionality

Security Management Guide 386

Indicates a message output when an error occurred. For details about how to handle this type of message, see
Action for each message in 19.2 and succeeding sections.

• I
Indicates a message informing that processing is complete. If this type of message is output, no action is required,
because processing has ended normally.

• W
Indicates a warning message. For details about how to handle this type of message, see Action for each message
in 19.2 and succeeding sections.

Message text
Indicates the message text of a message output by the Web service security functionality. Web service security
functionality messages are output in English.

(Meaning)
Describes the meaning of the English message.

(Cause)
Indicates the cause for the message that was output.

(Action)
Indicates an action to be taken by the user.

19. Messages Output by the Security Management Functionality

Security Management Guide 387

19.2 Messages starting with KDCGF

This section describes the messages between KDCGF0001 and KDCGF9999, which are output by the Web service
security functionality.

Messages starting with KDCGF are output in SOAPFault format. A SOAPFault format message has the following
four components:

(FaultCode)
In FaultCode, a FaultCode is output. The FaultCode consists of a name space URI and a local part. To the name space
URI part of the FaultCode of a message starting with KDCGF, {http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd} is output. To the local part, a character
string indicating the cause of the error is output.
The value of FaultCode can be obtained in the following ways:

• Server side
For SOAP 1.1, FaultCode can be obtained from the faultcode element of a SOAP Fault message.
For SOAP 1.2, FaultCode can be obtained from the soapenv12:Value element included in the
soapenv12:Subcode element (which is a child element of the soapenv12:Code element) of a
SOAP Fault message. The value of the soapenv12:Value element of the soapenv12:Code element
is soapenv12:Sender.

• Client side
FaultCode can be obtained by using the C4Fault class provided by the SOAP Communication Infrastructure or
the javax.xml.ws.soap.SOAPFaultException class provided by the JAX-WS functionality.

(FaultString)
In FaultString, a message ID or message text is output. For the meaning of message IDs, see 19.1 Message
description format.
FaultString can be obtained in the following ways:

• Server side
For SOAP 1.1, FaultString can be obtained from the faultString element of a SOAP Fault message.
For SOAP 1.2, FaultString can be obtained from the soapenv12:Text element of the soapenv12:Reason
element of a SOAP Fault message.

• Client side
FaultString can be obtained by using the C4Fault class provided by the SOAP Communication Infrastructure or
the javax.xml.ws.soap.SOAPFaultException class provided by the JAX-WS functionality.

(FaultActor)
In FaultActor, the actor that generated the Fault is output.
FaultActor can be obtained in the following ways:

• Server side
For SOAP 1.1, FaultActor can be obtained from the faultactor element of a SOAP Fault message.
For SOAP 1.2, FaultActor can be obtained from the soapenv12:Role element of a SOAP Fault message.

• Client side
FaultActor can be obtained by use of the C4Fault class provided by the SOAP Communication Infrastructure or
the javax.xml.ws.soap.SOAPFaultException class provided by the JAX-WS functionality.

(FaultDetails)
In FaultDetails, details of the Fault are output.

19. Messages Output by the Security Management Functionality

Security Management Guide 388

FaultDetails can be obtained in the following ways:

• Server side
For SOAP 1.1, FaultDetails can be obtained from the detail element of a SOAP Fault message.
For SOAP 1.2, FaultDetails can be obtained from the soapenv12:Detail element of a SOAP Fault message.

• Client side
FaultDetails can be obtained by use of the C4Fault class provided by the SOAP Communication Infrastructure
or the javax.xml.ws.soap.SOAPFaultException class provided by the JAX-WS functionality.

KDCGF0001-E
FaultCode:
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}UnsupportedSecurityToken
FaultString: KDCGF0001-E An unsupported security token was specified. (location = the-location-where-the-
event-occurred)
FaultActor: None
FaultDetails: None

(Meaning)
An unsupported security token element has been used in the-location-where-the-event-occurred. The following
information is output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
The error might be due to one of the following causes:

• The EncodingType attribute of the BinarySecurityToken element is specified, but the attribute value
is not http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary.

• The ValueType attribute of the BinarySecurityToken element is specified, but the
attribute value is not http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3.

• The EncodingType attribute is specified in the KeyIdentifier element, but the attribute value
is not http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary.

• The ValueType attribute is specified in the KeyIdentifier element, but the attribute value
is not http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509SubjectKeyIdentifier.

• The ValueType attribute is specified in the WS-Security Reference element, but the
attribute value is not http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3.

• A non-Reference or non-KeyIdentifier element is specified in a child element of the WS-Security
SecurityTokenReference element.

• An XML encryption Reference element is specified in a child element of the WS-Security
Security element.

19. Messages Output by the Security Management Functionality

Security Management Guide 389

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause.

KDCGF0002-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}UnsupportedAlgorithm
FaultString: KDCGF0002-E An unsupported signature or encryption algorithm was specified. (location = the-
location-where-the-event-occurred)
FaultActor: None
FaultDetails: None

(Meaning)
An unsupported signature or encryption algorithm has been used in the-location-where-the-event-occurred. The
following information is output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
The error might be due to one of the following causes:

• An unsupported algorithm is specified in the Algorithm attribute of the Canonicalization element.

• An unsupported algorithm is specified in the Algorithm attribute of the SignatureMethod element.

• An unsupported algorithm is specified in the Algorithm attribute of the Transform element.

• An algorithm that is not set in the Web service security policy definition file is specified in the Algorithm
attribute of the Canonicalization element.

• An algorithm that is not set in the Web service security policy definition file is specified in the Algorithm
attribute of the SignatureMethod element.

• An algorithm that is not set in the Web service security policy definition file is specified in the Algorithm
attribute of the Transform element.

• An unsupported algorithm is specified in the Algorithm attribute of the XML encryption
EncryptionMethod element.

• An algorithm that is not set in the Web service security policy definition file is specified in the Algorithm
attribute of the XML encryption EncryptionMethod element.

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause. Alternatively, check the Web service security policy definition file for incorrect settings.

KDCGF0003-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}InvalidSecurity
FaultString: KDCGF0003-E An error occurred during security header processing. (location = the-location-where-
the-event-occurred)
FaultActor: None
FaultDetails: None

19. Messages Output by the Security Management Functionality

Security Management Guide 390

(Meaning)
An error occurred in the security header of the-location-where-the-event-occurred. The following information is
output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
The error might be due to one of the following causes:

• A Created element request is specified in the Timestamp element within the Web service security policy
definition file, but the received SOAP message contains no Created element.

• An Expires element request is specified in the Timestamp element within the Web service security policy
definition file, but the received SOAP message contains no Expires element.

• The Created and Expires elements in the received SOAP message have different xsd:dateTime values in the
ValueType attribute.

• An element (Created, Expires, BinarySecurityToken, or KeyIdentifier element) that requires
a value has no value.

• A BinarySecurityToken element request is specified in the Web service security policy definition file, but
the received SOAP message contains no BinarySecurityToken element.

• The Reference element has no URI attribute.

• No value is set in the URI attribute of the Reference element.

• A SOAP body signature request is specified in the Web service security policy definition file, but the SOAP body
of the received SOAP message has no signature.

• An encrypted SOAP message has no KeyInfo element.

• A key specified in the KeyName element of an encrypted SOAP message is not defined in the Web service
security functionality definition file.

• A SOAP body element encryption request is specified in the Web service security policy definition file, but the
SOAP body of the received SOAP message has no encrypted element.

• A received SOAP message contains ID attributes that have the same attribute value.

• The Name and My_role attributes of the ReceiverPortConfig element in the Web service security policy
definition file have no corresponding setting in the Web service security functionality definition file.

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause. Alternatively, check the Web service security policy definition file for incorrect settings.

KDCGF0004-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}InvalidSecurityToken
FaultString: KDCGF0004-E An invalid security token was specified. (location = the-location-where-the-event-
occurred)
FaultActor: None
FaultDetails: None

19. Messages Output by the Security Management Functionality

Security Management Guide 391

(Meaning)
An invalid security token has been used for the-location-where-the-event-occurred. The following information is
output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
The error might be due to one of the following causes:

• The BinarySecurityToken element has no ValueType attribute.

• Verification of BinarySecurityToken elements in received SOAP messages using the certificate file
defined in the Web service security policy definition file always fails.

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause. Alternatively, check the Web service security policy definition file for incorrect settings.

KDCGF0005-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}FailedAuthentication
FaultString: KDCGF0005-E A security token could not be authenticated or authorized. (location = the-location-
where-the-event-occurred)
FaultActor: None
FaultDetails: None

(Meaning)
The security token in the-location-where-the-event-occurred cannot be authenticated or authorized. The following
information is output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
See the Cause item for KDCGJ0001-E in the manual uCosminexus Application Server Messages.

(Action)
See the Action item for KDCGJ0001-E in the manual uCosminexus Application Server Messages.

KDCGF0006-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd}FailedCheck
FaultString: KDCGF0006-E A signature or decryption was invalid. (location = the-location-where-the-event-
occurred)
FaultActor: None
FaultDetails: None

(Meaning)
A signature or encryption in the-location-where-the-event-occurred is invalid. The following information is output
to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

19. Messages Output by the Security Management Functionality

Security Management Guide 392

• Client: An error occurred in a message received on the client side.

(Cause)
The error might be due to one of the following causes:

• A received SOAP message has an invalid signature.

• A received SOAP message is incorrectly encrypted.

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause.

KDCGF0007-E
FaultCode: {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}SecurityTokenUnavailable
FaultString: KDCGF0007-E A referenced security token cannot be found. (location = the-location-where-the-
event-occurred)
FaultActor: None
FaultDetails: None

(Meaning)
The referenced security token element could not be found in a SOAP message received at the-location-where-the-
event-occurred. The following information is output to the-location-where-the-event-occurred:

• Server: An error occurred in a message received at server side.

• Client: An error occurred in a message received on the client side.

(Cause)
• A BinarySecurityToken element specified in the WS-Security Reference element was not found.

• An X.509 certificate with a subject key identifier specified in the WS-Security KeyIdentifier element was
not found in the key store file specified in the VerificationKeyStore element within the Web service
security functionality definition file.

(Action)
Check with the sender of the message to see whether the sender has sent a SOAP message containing one of the errors
indicated in Cause.

19. Messages Output by the Security Management Functionality

Security Management Guide 393

19.3 Messages starting with KDCGK

This section describes the messages between KDCGK0001 and KDCGK9999, which are output by the Web service
security functionality.

KDCGK0001-I
Generation of a secret key has finished. (file = file-name)

(Meaning)
Generation of a secret key is complete.
The generated secret key file name is output to file-name.

KDCGK0010-E
An argument is not specified. (argument = argument)

(Meaning)
An argument is not specified.
The name of the argument to be specified is output to argument.

(Cause)
An argument that needs to be specified in the secret key generation command is not specified.

(Action)
Specify the argument and then retry the secret key generation command.

KDCGK0011-E
An invalid argument is specified. (argument = argument)

(Meaning)
An invalid argument is specified.
The name of the argument deemed invalid is output to argument.

(Cause)
An invalid argument that is not allowed to be used in the secret key generation command is specified.

(Action)
Delete the argument that was deemed invalid and retry the secret key generation command.

KDCGK0012-E
An invalid argument value is specified. (argument = argument; value = value-of-the-argument)

(Meaning)
The value specified in the argument is invalid.
The following information is output to argument and value-of-the-argument respectively:

argument
The name of the argument is output.

19. Messages Output by the Security Management Functionality

Security Management Guide 394

value-of the-argument
The value specified in the argument is output.

(Cause)
An invalid value is specified in an argument for the secret key generation command.

(Action)
Check the secret key generation command to see whether the specified arguments and argument values are correct,
and retry the secret key generation command.

KDCGK0013-E
A specified file already exists. (file = file-name)

(Meaning)
The specified secret key file already exists.

(Cause)
A file with the file name specified by the -o option of the secret key generation command already exists.

(Action)
Specify a different file name that is not used for an existing file, and retry the secret key generation command.

KDCGK0100-E
An error occurred during output of the key to a file. (details = details)

(Meaning)
An error occurred during file output.
Detailed error information is output to details.

(Cause)
An error occurred when outputting to file a secret key generated by the secret key generation command.

(Action)
Solve the cause of the error indicated in details, and retry the secret key generation command. If you are not sure of
the cause of the error indicated in details, contact the system administrator.

KDCGK0101-E
An error occurred during key creation. (details = details)

(Meaning)
An error occurred during key generation.
Detailed error information is output to details.

(Cause)
An error occurred when using the secret key generation command to generate a secret key.

(Action)
Solve the cause of the error indicated in details, and retry the secret key generation command. If you are not sure of
the cause of the error indicated in details, contact the system administrator.

19. Messages Output by the Security Management Functionality

Security Management Guide 395

KDCGK9000-E
An unexpected error occurred during processing. (details = details)

(Meaning)
An unexpected error occurred during processing.
Detailed error information is output to details.

(Cause)
An error of unknown cause occurred during execution of the secret key generation command.

(Action)
Contact the system administrator.

19. Messages Output by the Security Management Functionality

Security Management Guide 396

19.4 Messages starting with KDCGS

This section describes the messages between KDCGS0001 and KDCGS9999, which are output by the Web service
security functionality.

KDCGS0005-E
A URI or TargetId attribute value must start with #. (tag name = element-name; attribute name = attribute-name)

(Meaning)
A URI or TargetId attribute must start with #.
The following information is output to element-name and attribute-name respectively:

element-name
The name of an element that has an attribute for which the specified value does not start with # is output.

attribute-name
The name of an attribute for which the specified value does not start with # is output.

(Cause)
The Web service security functionality definition file contains an attribute with a specified value that does not start
with #.

(Action)
Correct the Web service security functionality definition file and add a hash mark (#) to the beginning of the value
specified in the attribute-name attribute.

KDCGS0007-E
The specified secret key file does not match the KeyType attribute. (secret key file = secret-key-file-name; KeyType
= algorithm-identifier)

(Meaning)
The secret key file does not match the information specified in the keytype attribute.
The following information is output to secret-key-file-name and algorithm-identifier respectively:

secret-key-file-name
The secret key file name is output.

algorithm-identifier
The algorithm identifier specified by the keytype attribute is output.

(Cause)
The algorithm identifier specified by the keytype attribute of the SecretKeyFile element within the Web
service security functionality definition file does not match the contents of the secret key file.

(Action)
Correct the Web service security functionality definition file so that the information specified in the keytype
attribute of the SecretKeyFile element matches the contents of the secret key file. The keytype attribute must
contain the same algorithm identifier as that specified in the secret key generation command argument.

KDCGS0008-E
An error occurred during creation of a secret key. (details = details)

19. Messages Output by the Security Management Functionality

Security Management Guide 397

(Meaning)
An error occurred during secret key generation.
Detailed error information is output to details.

(Cause)
An error occurred during generation of a secret key from the secret key file specified by the SecretKeyFile
element within the Web service security functionality definition file. The error might be due to one of the
following causes:

• The SecretKeyFile element is specified incorrectly.

• The runtime environment is configured incorrectly.

(Action)
According to the contents of details, check the Web service security functionality definition file for incorrect settings,
or check the runtime environment.

KDCGS0009-E
The EmbedId attribute value is duplicated.

(Meaning)
A duplicate EmbedId attribute value exists.

(Cause)
A duplicate EmbedId attribute value is specified in the Web service security functionality definition file.

(Action)
Correct the Web service security functionality definition file so that there are no duplicate EmbedId attribute values.

KDCGS0014-E
An error occurred during reading of a KeyStore. (details = details)

(Meaning)
An error occurred during reading of a key store. Detailed error information is output to details.

(Cause)
An error occurred when reading the key store file specified in the File attribute of the KeyStore element within
the Web service security functionality definition file. The specified key store file might not exist, the user might not
have access permission for the file, or the file format might be incorrect.

(Action)
According to the contents of details, check the specification of the File attribute of the KeyStore element in the
Web service security functionality definition file.

KDCGS0015-E
A definition is duplicated. (tag name = element-name)

(Meaning)
A duplicate element exists. The duplicate element name is output to element-name.

19. Messages Output by the Security Management Functionality

Security Management Guide 398

(Cause)
An element-name that is allowed to be specified only once is specified more than once in the Web service security
functionality definition file.

(Action)
Correct the Web service security functionality definition file so that the element-name is specified only once.

19. Messages Output by the Security Management Functionality

Security Management Guide 399

19.5 Messages starting with KDCGW

This section describes the messages between KDCGW0001 and KDCGW9999, which are output by the Web service
security functionality.

KDCGW0002-E
FaultCode: {http://www.hitachi.co.jp/soft/xml/cosminexus/ws/security/0760/FaultCode}<Server.SigningError
or Client.SigningError>
FaultString: KDCGW0002-E An error occurred during message signature processing. (details = details)
FaultActor: None
FaultDetails: None

(Meaning)
An error occurred during message signature processing.
The following information is output to details and <Server.SigningError or Client.SigningError>:

<Server.SigningError or Client.SigningError>
This character string indicates whether the error occurred on the server side or the client side. If the error occurred
on the server side, Server.SigningError is output. If the error occurred on the client side, Client.SigningError
is output.

details
Detailed error information is output.

(Cause)
The error might be due to one of the following causes:

• The algorithm specified in the CanonicalizationMethod, SignatureMethod, or Transform
element within the Web service security functionality definition file is incorrect.

• The signature target specified in the SignatureTarget element within the Web service security functionality
definition file is incorrect.

(Action)
Solve the cause of the error indicated in details, and retry the processing. Before retrying the processing, it is
necessary to re-deploy the SOAP application and Web service.
If you are not sure of the cause of the error indicated in details, contact the system administrator.

KDCGW0003-E
FaultCode: {http://www.hitachi.co.jp/soft/xml/cosminexus/ws/security/0760/
FaultCode}<Server.EncryptingError or Client.EncryptingError>
FaultString: KDCGW0003-E An error occurred during message encryption. (details = details)
FaultActor: None
FaultDetails: None

(Meaning)
An error occurred during message encryption.
The following information is output to details and <Server.EncryptingError or Client.EncryptingError>:

19. Messages Output by the Security Management Functionality

Security Management Guide 400

<Server.EncryptingError or Client.EncryptingError>
This character string indicates whether the error occurred the server side or the client side. If the error occurred on
the server side, Server.EncryptingError is output. If the error occurred on the client side, Client.EncryptingError
is output.

details
Detailed error information is output.

(Cause)
The error might be due to one of the following causes:

• The algorithm specified in the EncryptionMethod child element of the ContentsEncryption or
KeyEncryption element within the Web service security functionality definition file is incorrect.

• The encryption target specified in the EncryptionTarget element within the Web service security
functionality definition file is incorrect.

(Action)
Solve the cause of the error indicated in details, and retry the processing. Before retrying the processing, it is
necessary to re-deploy the SOAP application and Web service.
If you are not sure of the cause of the error indicated in details, contact the system administrator.

19. Messages Output by the Security Management Functionality

Security Management Guide 401

19.6 Messages from KEOS02000 to KEOS09999

This section describes the messages between KEOS02000 and KEOS09999, which are output during setup, operation,
or maintenance when using Cosminexus Manager.

KEOS02020-E (C)
Loading of a shared library failed. Library name = aa....aa

aa....aa: Library name

(Description)
The processing will be stopped.

(Action)
Check to see the following, and then retry:

• java.library.path is specified as a Java VM start option.

• If the Java VM start option is specified correctly, Keymate/Crypto is installed.
If Keymate/Crypto is installed, available memory might be insufficient. Contact the administrator of the host that
performed the processing to solve the insufficient memory problem.

If none of the above is the cause of the error, the installation might be incomplete. (A required file is missing or
damaged.) Uninstall and then re-install User Management.

KEOS02102-E (C)
Encryption of the specified SecretData failed.

(Description)
Encryption of the specified SecretData failed or the encryption key file could not be accessed.
The processing will be stopped.

(Action)
Check the following, and then retry:

• An encryption key (com.cosminexus.admin.auth.sso.keyfile) is specified in the user
management configuration file.

• The encryption key file exists.

• The user has access permissions for the key file.

KEOS02152-E (C)
Decryption of the specified SecretData failed.

(Description)
Decryption of the specified SecretData failed or the encryption key file could not be accessed.
The processing will be stopped.

(Action)
Check to see the following, and then retry:

• An encryption key (com.cosminexus.admin.auth.sso.keyfile) is specified in the user
management configuration file.

19. Messages Output by the Security Management Functionality

Security Management Guide 402

• The encryption key file exists.

• The user has access permissions for the key file.

• The specified encryption key file is not the same as that used in registration.

KEOS02202-E (C)
An encryption key file could not be accessed.

(Description)
No encryption key file is specified in the user management configuration file or the user has no write permission for
the directory to create the encryption key file.
The processing will be stopped.

(Action)
Check com.cosminexus.admin.auth.sso.keyfile within the user management configuration file to
make sure the following is specified, and retry:

• An encryption key file name is specified.

• If a file name is specified, the user has access permissions for the directory.

KEOS02300-E (C/F)
Password decryption failed. Details = aa....aa

aa....aa: Details

(Description)
Password decryption failed. The pre-decryption character string will be used as the password.
The processing will be continued with the default settings.

(Action)
Check to see whether the password is scrambled.

KEOS13105-E (W/F)
Creation of an encryption key file failed. Details = aa....aa

aa....aa: Exception code

(Description)
The encryption key file could not be applied to the configuration information.
A Back link is displayed. Clicking the Back link will take the user to the window for configuring an encryption
key file.

(Action)
Make sure an encryption key file exists in the specified directory. Also, make sure that the user has read permission
for the encryption key file and the directory in which the key file resides.

KEOS13106-E (W/F)
Loading of a shared library failed. Details = aa....aa

aa....aa: Exception code

19. Messages Output by the Security Management Functionality

Security Management Guide 403

(Description)
Loading of a shared library failed.
A Back link is displayed.
Clicking the Back link will take the user to the Calling window.

(Action)
Check to see whether Keymate/Crypto is installed. If Keymate/Crypto is installed, available memory might
be insufficient. Contact the administrator of the host that performed the processing to solve the insufficient
memory problem.
If none of the above is the cause of the error, a file necessary for installation might be missing or damaged. Uninstall
and then re-install the product.

KEOS13107-E (W/F)
Encryption of SecretData failed. Details = aa....aa

aa....aa: Exception code

(Description)
Encryption of SecretData failed.
A Back link is displayed.
Clicking the Back link will take the user to the Calling window.

(Action)
Make sure an encryption library is installed.

KEOS13119-I (W/F)
The settings in the encryption key file were applied.

(Description)
An encryption key file was created or applied.
A Back link is displayed.

(Action)
Click the Back link. Clicking the Back link will take you to the window for configuring an encryption key file.

KEOS13125-E (W/F)
Input information contains an invalid character. Input information = aa....aa

aa....aa: Input information

(Description)
Invalid input information.
A Back link is displayed.
Clicking the Back link will take the user to the Calling window.

(Action)
Check the input information for the following:

• If the input information is a realm name, it should be a character string consisting of alphabetic characters (A to
Z and a to z) and numeric characters (0 to 9) only. The reserved character string mappings cannot be used.

19. Messages Output by the Security Management Functionality

Security Management Guide 404

• If the input information is a user ID, it should be a character string consisting of alphabetic characters (A to Z and
a to z) and numeric characters (0 to 9) only.

• If the input information is a password or SecretData, it should be a character string consisting of alphabetic
characters (A to Z and a to z), numeric characters (0 to 9), and special characters. Special characters are the
following symbols:
(space) | ! | " | # | $ | % | & | ' | (|) | * | + | , | - | . | / | : | ; | < | = | >
| ? | @ | [| \ |] | ^ | _ (underscore) | ` | { | } | | (vertical bar) | ~

KEOS13126-E (W/F)
SecretData does not match.

(Description)
The entered SecretData does not match the re-entered SecretData.
A Back link is displayed.
Clicking the Back link will take the user to the Calling window.

(Action)
Enter the SecretData again.

19. Messages Output by the Security Management Functionality

Security Management Guide 405

19.7 Messages starting with KEXS

This section describes the messages between KEXS10001 and KEXS99999, which are output by Cosminexus XML
Security - Core.

KEXS20006-E
The JCE provider was not found. Provider name = {0}

(Cause)
A Java security provider is not set correctly.
{0}: Provider name

(Processing)
An exception is issued.

(Action)
Check the java.security file for incorrect settings.

KEXS20007-E
A JCE algorithm was not found. Algorithm name = {0}; provider name = {1}

(Cause)
The Java security provider is not set correctly.
{0}: Algorithm name
{1}: Provider name

(Processing)
An exception is issued.

(Action)
Check the java.security file for incorrect settings.

KEXS20008-E
Invalid DSA ASN.1 format.

(Cause)
The DSA ASN.1 format is invalid.

(Processing)
An exception is issued.

(Action)
Check the java.security file for incorrect settings.

KEXS20009-E
The specified implementation class is invalid. Class name = {0}

(Cause)
The specified implementation class is invalid.

19. Messages Output by the Security Management Functionality

Security Management Guide 406

{0}: Class name
(Processing)

An exception is issued.

(Action)
Specify a valid implementation class.

KEXS30010-E
No parent node exists.

(Cause)
An attempt was made to replace EncryptedData that does not have a parent node in decryption mode.

(Processing)
An exception is issued.

(Action)
Specify EncryptedData that has a parent node.

KEXS30011-E
Invalid DOMFragment.

(Cause)
The DOMFragment nodes have no parent or have no siblings.

(Processing)
An exception is issued.

(Action)
Specify a DOMFragment for which the nodes have a parent and siblings.

KEXS40001-E
Invalid mode.

(Cause)
The set mode is invalid for the attempted processing.

(Processing)
An exception is issued.

(Action)
Set a valid mode.

KEXS40002-E
The algorithm was not found. Category = {0}; algorithm identifier = {1}

(Cause)
The specified algorithm is invalid.
{0}: Category
{1}: Algorithm identifier

19. Messages Output by the Security Management Functionality

Security Management Guide 407

(Processing)
An exception is issued.

(Action)
Specify a valid algorithm.

KEXS40003-E
No key resolver is set.

(Cause)
No key resolver is set.

(Processing)
An exception is issued.

(Action)
Set a key resolver.

KEXS40004-E
An invalid algorithm parameter is specified.

(Cause)
An invalid algorithm parameter is specified.

(Processing)
An exception is issued.

(Action)
Specify a valid algorithm parameter.

KEXS40009-E
Key resolution failed.

(Cause)
The key could not be obtained during key resolution.

(Processing)
An exception is issued.

(Action)
Set an appropriate key resolver so that a key can be obtained.

KEXS40010-E
An invalid object is included.

(Cause)
List or Map contains an invalid object.

(Processing)
An exception is issued.

19. Messages Output by the Security Management Functionality

Security Management Guide 408

(Action)
Do not include any invalid objects.

KEXS40011-E
The usage of the enveloped-signature transform or XPath function here() is not correct.

(Cause)
No node is bound to the enveloped-signature transform or XPath function here().

(Processing)
An exception is issued.

(Action)
Check to see whether the usage of the enveloped-signature transform or XPath function here() is correct.

KEXS40012-E
No output destination is set.

(Cause)
No output destination is set for XMLSerializer.

(Processing)
An exception is issued.

(Action)
Set an output destination.

KEXS40013-E
The result is not well-formed. Mode = {0}

(Cause)
A replacement that would produce the following results was attempted:

• Two document elements result.

• An element appears before a DocumentType node.

• The document node contains a non-comment and non-PI subnode.

{0}: Mode

(Processing)
An exception is issued.

(Action)
Correct the replacement so that the result becomes well-formed.

KEXS40014-E
The specified key has an invalid key length. Key length = {0}

(Cause)
The Key object has an invalid key length.

19. Messages Output by the Security Management Functionality

Security Management Guide 409

{0}: Key length

(Processing)
An exception is issued.

(Action)
Specify a key with a valid key length.

KEXS40015-E
The specified key agreement context is invalid.

(Cause)
The key agreement context is invalid.

(Processing)
An exception is issued.

(Action)
Specify a valid key agreement context.

KEXS40016-E
The specified node is at an invalid location. Mode = {0}

(Cause)
During encryption, an attempt was made to replace EncryptedData with an instance of DOMFragment that
is its descendant. Or, during decryption, an attempt was made to replace DOMFragment with an instance of
EncryptedData that is its descendant or that has a sibling relationship with DOMFragment.
{0}: Mode

(Processing)
An exception is issued.

(Action)
Specify instances of EncryptedData or DOMFragment that are in valid locations.

KEXS50001-E
The specified element is invalid. Requested element = {0}; specified element = {1}

(Cause)
The specified element is invalid. The name space URI or local name contains an error.
{0}: Requested element
{1}: Specified element

(Processing)
An exception is issued.

(Action)
Specify a valid element.

KEXS50002-E
No KeyInfo content can be created. Name space URI = {0}; local name = {1}

19. Messages Output by the Security Management Functionality

Security Management Guide 410

(Cause)
The specified KeyInfo content is invalid.
{0}: Name space URI
{1}: Local name

(Processing)
An exception is issued.

(Action)
Specify valid KeyInfo content.

KEXS50003-E
No algorithm parameter is set. Algorithm identifier = {0}

(Cause)
No algorithm parameter is set.
{0}: Algorithm identifier

(Processing)
An exception is issued.

(Action)
Set an algorithm parameter.

KEXS50014-E
JCE algorithm processing failed. Class name = {0}; method name = {1}; provider name = {2}

(Cause)
JCE algorithm processing failed or an invalid value might be set for the KeyInfo content.
{0}: Class name
{1}: Method name
{2}: Provider name

(Processing)
An exception is issued.

(Action)
Check the java.security file for incorrect settings.

KEXS50015-E
Integer format error. Text = {0}

(Cause)
The set text cannot be recognized as an integer.
{0}: Text

(Processing)
An exception is issued.

(Action)
Set text that is recognized as an integer.

19. Messages Output by the Security Management Functionality

Security Management Guide 411

KEXS50016-E
Invalid DSA XML signature format.

(Cause)
The SignatureValue element has an invalid DSA signature value.

(Processing)
An exception is issued.

(Action)
Set a valid DSA signature value.

KEXS50017-E
No corresponding DOM node exists.

(Cause)
An attempt was made to apply the decryptXML method to EncryptedData that was not created from an existing
Element node, or a replacement attempt was made in decryption mode.

(Processing)
An exception is issued.

(Action)
Use EncryptedData created with the newEncryptedData method (XMLSecurityContext or Element) of
the XMLEncryptionFactory class.

KEXS50018-E
An invalid value is set in the KeySize element. KeySize = {0}

(Cause)
An invalid value is set for the KeySize element.
{0}: KeySize element value

(Processing)
An exception is issued.

(Action)
Set a valid value.

KEXS50019-E
Invalid data size. Data size = {0}

(Cause)
Data input to the specified algorithm is too short or is not a multiple of the block length specified for the algorithm.
{0}: Data size

(Processing)
An exception is issued.

(Action)
Specify valid input data.

19. Messages Output by the Security Management Functionality

Security Management Guide 412

KEXS50020-E
Integrity checking failed. Algorithm identifier = {0}

(Cause)
The input data or key is invalid.
{0}: Algorithm identifier

(Processing)
An exception is issued.

(Action)
Specify valid input data or a valid key.

KEXS50021-E
A parameter necessary for key generation is not set.

(Cause)
A parameter necessary for key generation is not set.

(Processing)
An exception is issued.

(Action)
Set the necessary parameter.

KEXS50022-E
The decryption result is null.

(Cause)
The encrypted data is null. Processing with the decryptXML method is not possible.

(Processing)
An exception is issued.

(Action)
Specify EncryptedData containing valid data.

KEXS50023-E
Invalid padding. Algorithm identifier = {0}

(Cause)
The input data or key is invalid.
{0}: Algorithm identifier

(Processing)
An exception is issued.

(Action)
Specify valid input data or a valid key.

19. Messages Output by the Security Management Functionality

Security Management Guide 413

19.8 SSL-related messages

This section describes messages output by Cosminexus HTTP Server's SSL processing.

19.8.1 Message description format
This section uses the following format to describe each message:

XXnnnnn
Message text

Explanation of each variable included in the message text

Description
Supplementary explanation for the message text

Action
Action to be performed by the user

Note that the Explanation of each variable included in the message text and Action sections are not always provided for
all messages.

Each message consists of the following components:

XXnnnnn
Indicates the message ID.

nnnnn
Indicates the message number managed by the program that output the message. Each message has a five-digit
unique number.

Message text
Shows message text that is output during SSL processing.
Each variable included in message text is indicated in xx....xx format, where x is a lowercase alphabetic character. A
variable here is a value that varies depending on the context in which the message appears.

Example:
aa....aa: File name
bb....bb: Application name

Description
Provides a supplementary explanation for the message text, such as the reason why the message was output or the
behavior of configuration software that output the message.

Action
Indicates the Action to be performed by the user.

19.8.2 Notes
Notice-level messages are output regardless of the specification of the LogLevel directive.

19. Messages Output by the Security Management Functionality

Security Management Guide 414

Before analyzing the level specification, it is important to note that messages might be output regardless of the
specification of the LogLevel directive. For example, messages might be output while Cosminexus HTTP Server
is starting.

With some exceptions, the following messages are not described:

• Messages involving a config file syntax error, which are output while Cosminexus HTTP Server is starting

• Debug error level messages output after Cosminexus HTTP Server starts

• Messages without an error level that are output after Cosminexus HTTP Server starts

19.8.3 Messages starting with AH

AH01876
mod_ssl/aa....aa compiled against Server: bb....bb cc....cc, Library: dd....dd

aa....aa: Product version

bb....bb: Product name

cc....cc: Product version

dd....dd: Information about the library

Description
This message outputs the information about the OpenSSL library and the information about the SSL module.

AH01883
Init: Initialized OpenSSL library

Description
The OpenSSL library will be initialized.

AH01887
Init: Initializing (virtual) servers for SSL

Description
The SSL settings of the server will be initialized.

AH01895
Unable to configure verify locations for client authentication

Description
A CA certificate to be used for client authentication could not be set. Does not start the Web server.

Action
Check and, if necessary, revise the specifications of the SSLCACertificateFile and
SSLCACertificatePath directives.

19. Messages Output by the Security Management Functionality

Security Management Guide 415

AH01896
Unable to determine list of acceptable CA certificates for client authentication

Description
The list of CA certificates that can be used for client authentication could not be determined. Does not start the
Web server.

Action
Check and, if necessary, revise the specifications of the SSLCACertificateFile and
SSLCACertificatePath directives.

AH01897
Init: Oops, you want to request client authentication, but no CAs are known for verification!?
[Hint: SSLCACertificate*]

Description
No CA required to verify client authentication exists. Continues processing to start the Web server.

Action
Check and, if necessary, revise the specifications of the SSLCACertificateFile and
SSLCACertificatePath directives.

AH01898
Unable to configure permitted SSL ciphers

Description
The types of SSL encryption to be permitted could not be set. Does not start the Web server.

Action
Check and, if necessary, revise the specification of the SSLCipherSuite directive.

AH01899
Host aa....aa:bb....bb: CRL checking has been enabled, but neither SSLCARevocationFile nor
SSLCARevocationPath is configured

aa....aa: Host name

bb....bb: Port number

Description
Although CRL checking is enabled, the SSLCARevocationFile is not specified. Does not start the Web server.

Action
Check and, if necessary, revise the specifications of the SSLCARevocationCheck and
SSLCARevocationFile directives.

AH01901
Host aa....aa:bb....bb: unable to configure X.509 CRL storage for certificate revocation

19. Messages Output by the Security Management Functionality

Security Management Guide 416

aa....aa: Host name

bb....bb: Port number

Description
The CRL for revoking the certificate could not be set. Does not start the Web server.

Action
Check and, if necessary, revise the specification of the SSLCARevocationFile directive.

AH01902
Host aa....aa:bb....bb: X.509 CRL storage locations configured, but CRL checking (SSLCARevocationCheck) is
not enabled

aa....aa: Host name

bb....bb: Port number

Description
Although the CRL storage location is set, CRL checking is not enabled. Continues processing to start the Web server.

Action
Revise the specification of the SSLCARevocationCheck directive to enable CRL checking.

AH01909
aa....aa:bb....bb:cc....cc server certificate does NOT include an ID which matches the server name

aa....aa: Host name

bb....bb: Port number

cc....cc: Index number

Description
The server certificate does not include any ID that matches the server name. Continues processing to start the
Web server.

Action
Make sure that the server certificate matches the server name.

AH01914
Configuring server aa....aa:bb....bb for SSL protocol

aa....aa: Host name

bb....bb: Port number

Description
SSL settings will be specified for the server.

19. Messages Output by the Security Management Functionality

Security Management Guide 417

AH01915
Init: (aa....aa:bb....bb) You configured HTTPS(443) on the standard HTTP(80) port!

aa....aa: Host name

bb....bb: Port number

Description
Although SSL is enabled, the port number 80, which is the standard port number for the HTTP protocol, is set.
Continues processing to start the Web server.

Action
Revise the port number specification of the port that the server uses to receive requests.

AH01916
Init: (aa....aa:bb....bb) You configured HTTP(80) on the standard HTTPS(443) port!

aa....aa: Host name

bb....bb: Port number

Description
Although SSL is disabled, the port number 443, which is the standard port number for the HTTPS protocol, is set.
Continues processing to start the Web server.

Action
Revise the port number specification of the port that the server uses to receive requests.

AH01962
Unable to create a new SSL connection from the SSL context

Description
No SSL connection could be generated from the SSL context. Cannot connect via SSL.

Action
Take action according to the error message that is output together with this message.

AH01963
Unable to set session id context to 'aa....aa'

aa....aa: Data for identifying the server

Description
Data could not be set for the session ID context. Cannot connect via SSL.

Action
Take action according to the error message that is output together with this message.

AH01996
SSL handshake failed: HTTP spoken on HTTPS port; trying to send HTML error page

19. Messages Output by the Security Management Functionality

Security Management Guide 418

Description
An SSL handshake failed: The HTTPS port received an HTTP request.

AH01998
Connection closed to child aa....aa with abortive shutdown (server bb....bb:cc....cc)

aa....aa: Unique ID that identifies the server

bb....bb: Host name

cc....cc: Port number

Description
A connection to the server indicated by an ID was closed.

AH02011
No acceptable peer certificate available

Description
There are no client certificates that can be accessed.

AH02036
Faking HTTP Basic Auth header: "Authorization: aa....aa"

aa....aa: Header value

Description
Basic authentication using a client certificate will be performed.

AH02039
Certificate Verification: Error (aa....aa): bb....bb

aa....aa: Error number

bb....bb: Error string

Description
Client authentication failed. Stops the SSL request processing.

AH02040
Certificate Verification: Certificate Chain too long (chain has aa....aa certificates, but maximum allowed are
only bb....bb)

aa....aa: Number of chained CA certificates

bb....bb: Value of the SSLVerifyDepth directive

19. Messages Output by the Security Management Functionality

Security Management Guide 419

Description
Certificate verification failed because the received client certificate is located deeper than the depth specified in the
SSLVerifyDepth directive. Stops the SSL request processing.

Action
Check the value specified in the SSLVerifyDepth directive. If the client certificate is not accepted, no action
is required.

AH02042
rejecting client initiated renegotiation

Description
A renegotiation request from the client was rejected.
Stops the SSL request processing.

AH02219
access to aa....aa failed, reason: SSL connection required

aa....aa: Requested file

Description
The path at which the SSLRequireSSL directive is specified was accessed without using SSL. The system returns
the status code 403 Forbidden to the client and stops processing the request.

AH02231
No SSL protocols available [hint: SSLProtocol]

Description
No available protocols are specified in the SSLProtocol directive. Does not start the Web server.

Action
Check and, if necessary, revise the specification of the SSLProtocol directive.

AH02311
Fatal error initialising mod_ssl, exiting. See aa....aa for more information

aa....aa: Error log file name

Description
A fatal error occurred during initialization of mod_ssl. Does not start the Web server.

Action
In the error log file indicated in the message, find the message that has been output together with this message, and
then review the cause of the error indicated in the message found.

AH02312
Fatal error initialising mod_ssl, exiting.

19. Messages Output by the Security Management Functionality

Security Management Guide 420

Description
A fatal error occurred during initialization of mod_ssl. Does not start the Web server.

Action
Review the cause of the error indicated in the message that has been output together with this message.

AH02562
Failed to configure certificate aa....aa:bb....bb:cc....cc (with chain), check dd....dd

aa....aa: Host name

bb....bb: Port number

cc....cc: Index number

dd....dd: Certificate file name

Description
A server certificate could not be set. Does not start the Web server.

Action
Review the certificate file specified in the SSLCertificateFile directive.

AH02564
Failed to configure encrypted (?) private key aa....aa:bb....bb:cc....cc, check dd....dd

aa....aa: Host name

bb....bb: Port number

cc....cc: Index number

dd....dd: Private key file name

Description
A server private key could not be set. Does not start the Web server.

Action
Review the server private key file specified in the SSLCertificateKeyFile directive.

AH02565
Certificate and private key aa....aa:bb....bb:cc....cc from dd....dd and ee....ee do not match

aa....aa: Host name

bb....bb: Port number

cc....cc: Index number

dd....dd: Certificate file name

ee....ee: Private key file name

19. Messages Output by the Security Management Functionality

Security Management Guide 421

Description
The server certificate and server private key are not paired correctly. Does not start the Web server.

Action
Revise the specifications of the SSLCertificateFile and SSLCertificateKeyFile directives so that a
private key and certificate are set as a correct pair.

AH02568
Certificate and private key aa....aa:bb....bb:cc....cc configured from dd....dd and ee....ee

aa....aa: Host name

bb....bb: Port number

cc....cc: Index number

dd....dd: Certificate file name

ee....ee: Private key file name

Description
A server certificate and server private key were set.

AH02569
Illegal attempt to re-initialise SSL for server (SSLEngine On should go in the VirtualHost, not in global scope.)

Description
An illegal attempt was made to re-initialize the SSL settings for the server. Does not start the Web server.

Action
Check the SSL settings in the virtual host. (If SSL settings are enabled outside the virtual host, at least one SSL-related
directive must be set inside the virtual host.)

AH02572
Failed to configure at least one certificate and key for aa....aa:bb....bb

aa....aa: Host name

bb....bb: Port number

Description
No server certificate and server private key are set. Does not start the Web server.

Action
To enable SSL, set at least one server certificate and server private key.

AH02576
Attempting to load encrypted (?) private key aa....aa:bb....bb:cc....cc

aa....aa: Host name

19. Messages Output by the Security Management Functionality

Security Management Guide 422

bb....bb: Port number

cc....cc: Index number

Description
A password-protected server private key will be loaded.

AH02577
Init: SSLPassPhraseDialog builtin is not supported on Win32 (key file aa....aa)

aa....aa: Server private key file name

Description
The Windows edition does not support an interactive interface for entering a password for a password-protected
private key. Does not start the Web server.

Action
Consider canceling password protection for a server private key.

AH10104
aa....aa:bb....bb, SSLSrvConfigRec shared from cc....cc:dd....dd

aa....aa: Host name

bb....bb: Port number

cc....cc: Host name

dd....dd: Port number

Description
SSL settings are shared. Continues processing to start the Web server.

Action
Review the <VirtualHost> settings to determine whether SSL settings can be shared.

19.8.4 Messages starting with KH

KH00189
SSL handshake interrupted by system: client port aa....aa(bb....bb)(cc....cc)(dd....dd):ee....ee

aa....aa: Port number

bb....bb: SSL handshaking time

cc....cc: Error number

dd....dd: Server process ID

ee....ee: SSL handshake status

19. Messages Output by the Security Management Functionality

Security Management Guide 423

Description
SSL handshake processing did not end normally.
Stops the SSL request processing.

KH00190
SSL handshake interrupted by system: client port aa....aa

aa....aa: Port number

Description
SSL handshake processing did not end normally.
Stops the SSL request processing.

KH00435
Unsupported protocol is ignored: SSLv3

Description
The SSLv3 protocol was specified in the SSLProtocol directive, which does not support the protocol. The system
ignores the specification of the SSLProtocol directive and continues startup processing.

Action
Revise the specification of the SSLProtocol directive.

KH00436
Certificate Verification: Error (aa....aa): bb....bb [cc....cc]

aa....aa: Error number

bb....bb: Error string

cc....cc: Information about the certificate

Description
Client authentication failed. Stops the SSL request processing.

KH00439
SSL Library Error: aa....aa

aa....aa: Details

Description
An error occurred in the SSL library.
If the Web server is starting, the system stops the start processing. If an SSL request is being processed, the system
stops the SSL request processing.

Action
Review the detailed information indicated in this message.

19. Messages Output by the Security Management Functionality

Security Management Guide 424

KH00440
SSL library error aa....aa in handshake (server bb....bb:cc....cc) (dd....dd)(ee....ee)(ff....ff):gg....gg

aa....aa: Error number

bb....bb: Host name

cc....cc: Port number

dd....dd: SSL handshaking time

ee....ee: Error number

ff....ff: Server process ID

gg....gg: SSL handshake status

Description
SSL handshake processing did not end normally.
Stops the SSL request processing.

KH00441
SSL library error aa....aa in handshake (server bb....bb:cc....cc)

aa....aa: Error number

bb....bb: Host name

cc....cc: Port number

Description
SSL handshake processing did not end normally.
Stops the SSL request processing.

KH00442
access to aa....aa failed, reason: Cipher bb....bb is forbidden

aa....aa: File name

bb....bb: Cipher type

Description
The bb....bb used for access is specified in the SSLBanCipher directive.
Returns the status code "403 Forbidden" and stops processing the request.

KH00443
ap_os_proc_filepath() failed.

Description
The absolute path of the start command could not be obtained.

19. Messages Output by the Security Management Functionality

Security Management Guide 425

The web server stops starting.

KH00444
apr_filepath_merge() failed.

Description
The path to the SSL library could not be generated.
The web server stops starting.

KH00445
Could not load the ssl library aa..aa

aa....aa: file name

Description
The SSL library could not be loaded.
The web server stops starting.

19. Messages Output by the Security Management Functionality

Security Management Guide 426

Appendixes

Security Management Guide 427

A. Major Functional Changes in Application Server Versions

This appendix outlines the major functional changes that occurred between versions of Application Server prior to
version 11-10. These changes are grouped by purpose. For details about the major functional changes made in version
11-10, see 1.4 Major functional changes in Application Server 11-10.

This appendix contains the tables described below.

• The tables provided for each earlier version present an overview of the major functional changes in that version.
For details about functionality, refer to the information shown in the columns Reference manual and Relevant
information. The columns Reference manual and Relevant information indicate where to find relevant information
about the functionalities in the manuals for version 11-10.

• The phrase uCosminexus Application Server is omitted from the manual titles listed in the column Reference manual.

A.1 Major functional changes in 09-87

(1) Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table A‒1: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Support for Java SE 11 Java SE 11 functionality is now available. Maintenance and
Migration Guide

Chapter 9

A.2 Major functional changes in 09-80

(1) Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table A‒2: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Lambda expression support in the JAX-
RS function

Lambda expressions can now be used
with the package specified for the servlet
initialization parameter in the web.xml
file and with the classes included in the
subpackages of that package.

Web Service
Development Guide

11.2

Support for Java SE 9 Java SE 9 functionality is now available. Maintenance and
Migration Guide

Chapter 9

(2) Maintaining and enhancing reliability
The following table outlines the changes made to maintain and enhance reliability.

A. Major Functional Changes in Application Server Versions

Security Management Guide 428

Table A‒3: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Apache 2.4 support for the web server Apache 2.4 is supported as the base
component of the web server.

HTTP Server User Guide Chapter 6, Appendix G

Elliptic curve cryptography in
SSL communication

Elliptic curve cryptography can now be
used in SSL communication.

HTTP Server User Guide Chapter 5, Appendix G

SSL library The SSL library that provides SSL
functions was changed to OpenSSL.

HTTP Server User Guide Chapter 5, Appendix G

A.3 Major functional changes in 09-70

(1) Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table A‒4: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

JSP compilation methods in the
management portal

The compilation methods compliant
with JDK 1.7 specifications and with
JDK 7 specifications were additionally
supported for servlets generated from JSP
files on the J2EE server.

Definition Reference Guide 4.11.2

Metaspace support in JDK 8 The options for the Permanent area used
for Java VM startup were changed to the
options for the Metaspace area.

System Setup and
Operation Guide

A.2

Definition Reference Guide 5.2.1, 5.2.2, 8.2.3

SHA-2 support for user authentication
in the integrated user management

The following hash algorithms for user
authentication in the integrated user
management were additionally supported:
SHA-224, SHA-256, SHA-384, SHA-512

This manual 5.3.1, 5.3.9, 5.10.7,
11.4.3, 12.4.3, 12.5.3,
13.2, 14.2.2

Automatic start, restart, and stop in Red
Hat Enterprise Linux Server 7

Automatic start, restart, and stop were
supported by Management Server and
Administration Agent that operate on Red
Hat Enterprise Linux Server 7.

Maintenance and
Migration Guide

2.6.3, 2.6.4, 2.6.5

Command Reference Guide 7.2

(2) Maintaining and enhancing availability
The following table outlines the changes made to maintain and enhance availability.

Table A‒5: Changes made to maintain and enhance availability

Item Overview of changes Reference manual Relevant information

Upgrade to version 9.7 A procedure for changing the options for
the Permanent area used for Java VM
startup to the options for the Metaspace
area was added.

Maintenance and
Migration Guide

10.3.1, 10.3.2, 10.3.4

Operations using WAR files A WAR application that consists of only
WAR files can now be deployed on the
J2EE server.

Web Container
Functionality Guide

2.2.1

A. Major Functional Changes in Application Server Versions

Security Management Guide 429

Item Overview of changes Reference manual Relevant information

Common Container
Functionality Guide

15.9

Command Reference Guide cjimportwar (imports
WAR applications)

Synchronous start and stop of the
management functionality

An option that synchronously starts
and stops the management functionality
(Management Server and Administration
Agent) was added.

Operation, Monitoring, and
Linkage Guide

2.6.1, 2.6.2,
2.6.3, 2.6.4

Command Reference Guide adminagentctl (start
or stop Administration
Agent), mngautorun
(Set up/canceling the
set up of autostart
and autorestart),
and mngsvrctl (start,
stop, or setup
Management Server)

Forced release of Explicit memory
blocks by the Explicit Memory
Management functionality

The javagc command can now be used
to release Explicit memory blocks at
any time.

Expansion Guide 7.6.1, 7.9

Command Reference Guide javagc (forced
execution of
garbage collection)

(3) Other purposes
The following table outlines the changes made for other purposes.

Table A‒6: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Collection-target data for the
snapshot log

Java VM event log data and Management
Server thread dumps were added to the
collection targets for the snapshot log.

Maintenance and
Migration Guide

A.2

Output of log data for the
cjenvsetup command

The information about setup operations
(using the cjenvsetup command)
performed by the Component Container
administrator is now output to the
message log.

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

Command Reference Guide cjenvsetup (set up
Component Container
Administrator)

Support for BIG-IP v11 BIG-IP v11 was added as a type of load
balancer that can be used.

System Setup and
Operation Guide

4.7.2

Output of the CPU time to the
event log for the Explicit Memory
Management functionality

The CPU time required to release Explicit
memory blocks is now output to the
event log for the Explicit Memory
Management functionality.

Maintenance and
Migration Guide

5.11.3

Extension of the user-
extended performance analysis
trace functionality

The following changes were made to
the user-extended performance analysis
trace functionality:
• Although the trace target could be

specified by only method, it can now
also be specified by package or class.

• The range of applicable event IDs
was expanded.

Maintenance and
Migration Guide

7.5.2, 7.5.3, 8.23.1

A. Major Functional Changes in Application Server Versions

Security Management Guide 430

Item Overview of changes Reference manual Relevant information

• The maximum number of lines
that can be contained in the user-
extended performance analysis trace
configuration file was increased.

• The user-extended performance
analysis trace configuration file can
now be used to specify the trace
collection level.

Improvement of information analysis
in cases where asynchronous Session
Bean invocations are used

The requests of invocation source and
destination can now be matched by using
the root application information of the
PRF trace.

EJB Container
Functionality Guide

2.17.3

A.4 Major functional changes in 09-60

(1) Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table A‒7: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

G1 GC support G1 GC can now be selected. System Design Guide 7.15

Definition Reference Guide 14.5

Support for the object-pointer
compression function

The object-pointer compression function
can now be used.

Maintenance and
Migration Guide

9.16

(2) Maintaining and enhancing reliability
The following table outlines the changes made to maintain and enhance reliability.

Table A‒8: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Finalize-retention resolution function A function that resolves a problem
that delays execution of many finalize
processes was added to prevent
occurrence of a delay in releasing
OS resources.

Maintenance and
Migration Guide

9.17

(3) Other purposes
The following table outlines the changes made for other purposes.

Table A‒9: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Asynchronous output of log files Log files can now be
output asynchronously.

Definition Reference Guide 14.2

A. Major Functional Changes in Application Server Versions

Security Management Guide 431

A.5 Major functional changes in 09-50

(1) Improving development productivity
The following table outlines the changes made to improve development productivity.

Table A‒10: Changes made to improve development productivity

Item Overview of changes Reference manual Relevant information

Simplifying setup of Eclipse The GUI can now be used to set up an
Eclipse environment.

Application
Development Guide

1.1.5, 2.4

Support for debugging using user
extended performance analysis traces

User extended performance analysis trace
configuration files can now be created in
the development environment.

Application
Development Guide

1.1.3, 6.4

(2) Implementing standard and existing functionality
The following table outlines the changes made to enable implementation of standard and existing functionality.

Table A‒11: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Support for JDBC 4.0 DB Connector now supports HiRDB
Type4 JDBC Driver and SQL Server
JDBC drivers that comply with the JDBC
4.0 specifications.

Common Container
Functionality Guide

3.6.3

Easing of portable global JNDI
naming rules

Characters permitted for portable global
JNDI names have been added.

Common Container
Functionality Guide

2.4.3

Support for Servlet 3.0 Servlet 2.5 and earlier versions can now
rename HTTP cookies and URL path
parameters from Servlet 3.0.

Web Container
Functionality Guide

2.7

Addition of applications that can link
with Bean Validation

CDI and user applications can now use
Bean Validation.

Common Container
Functionality Guide

Chapter 9

Support for JavaMail Email sending and receiving functionality
that uses JavaMail 1.4-compliant API
functions is now supported.

Common Container
Functionality Guide

Chapter 7

Addition of OSs that are supported by
the javacore command

The javacore command can now be used
to obtain Windows thread dumps.

Command Reference Guide javacore (obtains
thread
dumps (Windows))

(3) Maintaining and enhancing reliability
The following table outlines the changes made to maintain and enhance reliability.

Table A‒12: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Avoiding a shortage of space in code
cache areas

A shortage of space in code cache areas
can now be avoided by checking the size
of a code cache area being used by the
system and then changing the threshold

System Design Guide 7.2.6

Maintenance and
Migration Guide

5.7.2, 5.7.3

Definition Reference Guide 14.1, 14.2, 14.4

A. Major Functional Changes in Application Server Versions

Security Management Guide 432

Item Overview of changes Reference manual Relevant information

values before a shortage of space occurs in
the area.

Support for efficient application
of the Explicit Memory
Management functionality

Functions for controlling objects that
are moved to the Explicit heap have
been added to reduce the automatic
release processing time and apply
the Explicit Memory Management
functionality efficiently:
• Function for controlling the moving of

objects to Explicit memory blocks
• Function for specifying the classes

that are not subject to the Explicit
Memory Management functionality

• Output of object release
rate information to Explicit
heap information

System Design Guide 7.14.6

Expansion Guide 7.2.2, 7.6.5, 7.10,
7.13.1, 7.13.3

Maintenance and
Migration Guide

5.5

Extension of output range for statistical
information by class

Referential relationships based on the
static field can now be output to extended
thread dumps that contain statistical
information by class.

Maintenance and
Migration Guide

9.6

(4) Maintaining and enhancing availability
The following table outlines the changes made to maintain and enhance availability.

Table A‒13: Changes made to maintain and enhancing availability

Item Overview of changes Reference manual Relevant information

Support for the EADs session
failover functionality

Functionality that links with EADs
and achieves session failover is
now supported.

Expansion Guide Chapter 5

Operations by using WAR WAR applications that consist of only
WAR files can now be deployed on
J2EE servers.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

15.9

Command Reference Guide cjimportwar (imports
WAR applications)

Synchronously starting and
stopping the operation
management functionality

An option for synchronously starting
and stopping the operation management
functionality (Management Server and
Administration Agent) has been added.

Operation, Monitoring, and
Linkage Guide

2.6.1, 2.6.2,
2.6.3, 2.6.4

Command Reference Guide adminagentctl (starts
and stops
Administration
Agent), mngautorun
(configures and
cancels the
configuration of
automatic start and
automatic restart),
mngsvrctl (starts,
stops, and sets up
Management Server)

A. Major Functional Changes in Application Server Versions

Security Management Guide 433

Item Overview of changes Reference manual Relevant information

Forced release of Explicit memory
blocks by using the Explicit Memory
Management functionality

The javagc command can now be used
to release the Explicit memory blocks at
any time.

Expansion Guide 7.6.1, 7.9

Command Reference Guide javagc (forced
execution of
garbage collection)

(5) Other purposes
The following table outlines the changes made for other purposes.

Table A‒14: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Acquiring definition information The snapshot (snapshot log collection)
command can now be used to collect only
definition files.

Maintenance and
Migration Guide

2.3

Command Reference Guide snapshotlog (collects
snapshot logs)

Output of logs by the
cjenvsetup command

Information about the execution of
Component Container Administrator
setup (cjenvsetup command) is now
output to the message logs.

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

Command Reference Guide cjenvsetup
(Component Container
Administrator setup)

Support for BIG-IP v11 BIG-IP v11, a type of load balancer, is
now supported.

System Setup and
Operation Guide

4.7.2

Output of CPU time to the
event logs of the Explicit Memory
Management functionality

The CPU time required for releasing
Explicit memory blocks is now output
to the event logs of the Explicit Memory
Management functionality.

Maintenance and
Migration Guide

5.11.3

Functional enhancement of user
extended performance analysis traces

The following functions associated with
user extended performance analysis traces
have been added:
• Trace targets can now be specified

in units of packages and classes, in
addition to units of methods.

• The available range of event IDs has
been expanded.

• The limitation on the number of lines
that can be specified in the user
extended performance analysis trace
configuration file has been eased.

• The trace collection level can
now be specified in the user
extended performance analysis trace
configuration file.

Maintenance and
Migration Guide

7.5.2, 7.5.3, 8.23.1

Improvement of information analysis
when asynchronous Session Bean calls
are used

The source and target requests can now
be matched by using the root application
information in PRF traces.

EJB Container
Functionality Guide

2.17.3

A. Major Functional Changes in Application Server Versions

Security Management Guide 434

A.6 Major functional changes in 09-00

(1) Facilitating system implementation and creation
The following table outlines the changes made to facilitate system implementation and creation.

Table A‒15: Changes made to facilitate system implementation and creation

Item Overview of changes Reference manual Relevant information

Canceling restrictions on the types of
environments that can be created when
the setup wizard is used

Restrictions on the types of environments
that can be created when the setup
wizard is used were removed. The setup
wizard can now be used even for creation
and unsetup of environments built using
other methods.

System Setup and
Operation Guide

2.2.7

Simplifying the procedure for deleting
created environments

The deletion procedure was simplified
by adding a functionality (the
mngunsetup command) that deletes
system environments created using
Management Server.

System Setup and
Operation Guide

4.1.37

Command Reference Guide mngunsetup (deletes
environments
created using
Management Server)

(2) Implementing standard and existing functionalities
The following table outlines the changes made to enable implementation of standard and existing functionalities.

Table A‒16: Changes made to enable implementation of standard and existing functionalities

Item Overview of changes Reference manual Relevant information

Support for Servlet 3.0 Servlet 3.0 is now supported. Web Container
Functionality Guide

Chapter 7

Support for EJB 3.1 EJB 3.1 is now supported. EJB Container
Functionality Guide

Chapter 2

Support for JSF 2.1 JSF 2.1 is now supported. Web Container
Functionality Guide

Chapter 3

Support for JSTL 1.2 JSTL 1.2 is now supported. Web Container
Functionality Guide

Chapter 3

Support for CDI 1.0 CDI 1.0 is now supported. Common Container
Functionality Guide

Chapter 8

Use of portable global JNDI names Objects can now be looked up by their
portable global JNDI names.

Common Container
Functionality Guide

2.4

Support for JAX-WS 2.2 JAX-WS 2.2 is now supported. Web Service
Development Guide

1.1, 16.1.5, 16.1.7,
16.2.1, 16.2.6, 16.2.10,
16.2.12, 16.2.13,
16.2.14, 16.2.16,
16.2.17, 16.2.18,
16.2.20, 16.2.22, 19.1,
19.2.3, 37.2, 37.6.1,
37.6.2, 37.6.3

Support for JAX-RS 1.1 JAX-RS 1.1 is now supported. Web Service
Development Guide

1.1, 1.2.2, 1.3.2,
1.4.2, 1.5.1, 1.6, 2.3,
Chapter 11, Chapter

A. Major Functional Changes in Application Server Versions

Security Management Guide 435

Item Overview of changes Reference manual Relevant information

12, Chapter 13,
Chapter 17, Chapter
24, Chapter 39

(3) Maintaining and enhancing reliability
The following table outlines the changes made to maintain and enhance reliability.

Table A‒17: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Use of TLSv1.2 for
SSL/TLS communication

By using RSA BSAFE SSL-J, SSL/TLS
communication can now be provided
according to TLSv1.2 or any other
security protocol.

This manual 7.3

(4) Maintaining and enhancing availability
The following table outlines the changes made to maintain and enhance availability.

Table A‒18: Changes made to maintain and enhance availability

Item Overview of changes Reference manual Relevant information

Monitoring the total number of pending
queues for the entire Web container

The total number of pending queues
for the entire Web container can now
be output as operation information
for monitoring.

Operation, Monitoring, and
Linkage Guide

Chapter 3

Output of application performance
analysis traces (user-extended traces)

Performance analysis traces for analyzing
the performance of user-developed
applications can now be output without
changing the application.

Maintenance and
Migration Guide

Chapter 7

Adding a restart feature for the
operation management functionality

Automatic restart can now be
configured for the operation management
functionality (Management Server and
Administration Agent). This capability
allows operation to continue even
if a fault occurs during operation
management. In addition, the automatic-
start configuration method was changed.

Operation, Monitoring, and
Linkage Guide

2.4.1, 2.4.2,
2.6.3, 2.6.4

Command Reference Guide mngautorun
(configures and
cancels the
configuration of
automatic start and
automatic restart)

(5) Other purposes
The following table outlines changes made for other purposes.

Table A‒19: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Switching between output log files When a log is output, it is now possible to
switch between destination files that have
different dates.

Maintenance and
Migration Guide

3.2.1

A. Major Functional Changes in Application Server Versions

Security Management Guide 436

Item Overview of changes Reference manual Relevant information

Changing the Web server name The Web server included in the
application server was renamed to
HTTP Server.

HTTP Server User Guide --

Support for direct access involving
BIG-IP API (SOAP architecture)

Direct access to BIG-IP (load balancer)
through API (SOAP architecture) is
now supported.
In addition, the method for configuring
the load balancer access environment for
direct access via an API was changed.

System Setup and
Operation Guide

4.7.3,
Appendix J

This manual 8.2, 8.4, 8.5, 8.6,
18.2.1, 18.2.2, 18.2.3

Legend: --: Entire manual

A.7 Major functional changes in 08-70

(1) Facilitating system implementation and creation
The table below outlines the changes made to facilitate system implementation and creation.

Table A‒20: Changes made to facilitate system implementation and creation

Item Overview of changes Reference manual Relevant information

Improving the management portal The management portal window now
allows you to configure the resource
adapter attribute definition property
(Connector attribute file settings). It also
now allows you to perform connection
tests and upload J2EE applications (ear
and zip files) to Management Server.

First Step Guide 3.5

Adding functionality to implicitly
import the import attribute of the
page/tag directive

Functionality to implicitly import the
import attribute of the page/tag directive is
now available.

Web Container
Functionality Guide

2.3.7

Improving the integrated user
management functionality

When a database is used as the user
information repository, you can now
connect to the database by using a JDBC
driver, which is a database product.
Using Cosminexus DABroker Library's
JDBC driver to connect to a database is
not supported.
You can now use the Easy Setup definition
file and management portal window to
configure the settings for the integrated
user management functionality.
DN for Active Directory can now include
double-byte characters such as Japanese.

This manual Chapter 5

This manual 14.2.2

Adding HTTP Server settings You can now use the Easy Setup definition
file and management portal window to
directly configure directives (settings in
httpsd.conf) for defining the HTTP
Server operation environment.

System Setup and
Operation Guide

4.1.21

Definition Reference Guide 4.10

A. Major Functional Changes in Application Server Versions

Security Management Guide 437

(2) Implementing standard and existing functionality
The table below outlines the changes made to enable implementation of standard and existing functionality.

Table A‒21: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Adding specification items to ejb-
jar.xml

Class-level and method-level interceptors
can now be specified in ejb-jar.xml.

EJB Container
Functionality Guide

2.15

Support for parallel copy
garbage collection

Parallel copy garbage collection can now
be selected.

Definition Reference Guide 14.5

Support for global transactions
through an inbound resource adapter
that complies with Connector
1.5 specifications

Transacted delivery is now possible with
resource adapters that comply with the
Connector 1.5 specifications. This allows
EISs that call message-driven beans to
participate in global transactions.

Common Container
Functionality Guide

3.16.3

Adapting the TP1 inbound adapter
to MHP

MHP is now available as an OpenTP1
client that calls the application server by
using the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

Adapting the cjrarupdate
command to the FTP inbound adapter

FTP inbound adapters are now
included among the resource adapters
that can be upgraded with the
cjrarupdate command.

Command Reference Guide 2.2

(3) Maintaining and enhancing reliability
The table below outlines the changes made to maintain and enhance reliability.

Table A‒22: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Improving the database session
failover functionality

Modes that do not obtain a lock
on databases that hold global session
information can now be selected
for performance-focused systems. In
addition, reference-only requests that
do not update the database can now
be defined.

Expansion Guide Chapter 6

Adding processing to be handled by the
OutOfMemory handling functionality

Processing that is to be handled by
the OutOfMemory handling functionality
was added.

Maintenance and
Migration Guide

2.5.4

Definition Reference Guide 14.2

Adding memory-saving functionality
for explicit heaps used in an
HTTP session

Functionality to restrict the amount of
memory allocated to explicit heaps in
HTTP sessions was added.

Expansion Guide 7.11

(4) Other purposes
The table below outlines the changes made for other purposes.

A. Major Functional Changes in Application Server Versions

Security Management Guide 438

Table A‒23: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Support for direct access to
load balancers through an API
(REST architecture)

Direct access to load balancers
through an API (REST architecture) is
now supported.
In addition, ACOS (AX2500) is
now included among the available
load balancers.

System Setup and
Operation Guide

4.7.2, 4.7.3

Definition Reference Guide 4.2.4

Adding memory-saving functionality
for explicit heaps used in an
HTTP session

Functionality to restrict the amount of
memory allocated to explicit heaps in
HTTP sessions was added.

Expansion Guide Appendix A

A.8 Major functional changes in 08-53

(1) Implementing standard and existing functionality
The table below outlines the changes made to enable implementation of standard and existing functionality.

Table A‒24: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Calls from OpenTP1 for
transaction linkage

Transaction linkage is now possible when
OpenTP1 calls a message-driven bean
running on the application server.

Common Container
Functionality Guide

Chapter 4

JavaMail The email reception functionality, which
requires a JavaMail 1.3-compliant API,
is now available through linkage with a
POP3 email server.

Common Container
Functionality Guide

Chapter 7

(2) Maintaining and enhancing reliability
The table below outlines the changes made to maintain and enhance reliability.

Table A‒25: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Enhancing the Java VM
troubleshooting functionality

To enhance the Java VM troubleshooting
functionality, the following functionality
is now available:
• Changing the operation if an
OutOfMemoryError occurs

• Setting the maximum amount of C-
heap memory at JIT compilation time

• Setting the maximum number
of threads

• Adding output items of expanded
verbosegc information

Maintenance and
Migration Guide

Chapters 4, 5, and 9

(3) Other purposes
The table below outlines the changes made for other purposes.

A. Major Functional Changes in Application Server Versions

Security Management Guide 439

Table A‒26: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Support for Microsoft IIS 7.0 and
Microsoft IIS 7.5

Microsoft IIS 7.0 and Microsoft IIS 7.5 are
now supported as Web servers.

-- --

Support for HiRDB Version 9 and SQL
Server 2008

The following products are now supported
as databases:
• HiRDB Server Version 9
• HiRDB/Developer's Kit Version 9
• HiRDB/Run Time Version 9
• SQL Server 2008

In addition, SQL Server JDBC Driver is
now supported as a JDBC driver for SQL
Server 2008.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Not applicable.

A.9 Major functional changes in 08-50

(1) Facilitating system implementation and creation
The table below outlines the changes made to facilitate system implementation and creation.

Table A‒27: Changes made to facilitate system implementation and creation

Item Overview of changes Reference manual Relevant information

Changing the tags in web.xml for
Web service providers

The listener, servlet, and servlet-mapping
tags in web.xml for Web service
providers were changed from mandatory
to optional.

Definition Reference Guide 2.2.3

Using network resources on
logical servers

Functionality was added to provide
access from J2EE applications to
network resources and network drives on
other hosts.

Operation, Monitoring, and
Linkage Guide

1.2.3, 5.2, 5.7

Simplifying the procedure for
executing sample programs

The procedure for executing some sample
programs was simplified by packaging
them into EAR files.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix L

Improving the setup wizard's
completion window

The Easy Setup definition file and
Connector attribute file used for setup can
now be displayed in the setup wizard's
completion window.

System Setup and
Operation Guide

2.2.6

(2) Implementing standard and existing functionality
The table below outlines the changes made to enable implementation of standard and existing functionality.

A. Major Functional Changes in Application Server Versions

Security Management Guide 440

Table A‒28: Changes made to enable implementation of standard and existing functionality

Item Overview of changes Reference manual Relevant information

Support for calls from OpenTP1 Message-driven beans running on
Application Server can now be called
from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Support for JMS CJMS provider functionality that
complies with the JMS 1.1 specifications
is now available.

Common Container
Functionality Guide

Chapter 6

Support for Java SE 6 Java SE 6 functionality is now available. Maintenance and
Migration Guide

5.5, 5.8.1

Support for generics Generics are now available to EJB. EJB Container
Functionality Guide

4.2.18

(3) Maintaining and enhancing reliability
The table below outlines the changes made to maintain and enhance reliability.

Table A‒29: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Facilitating the use of the Explicit
Memory Management functionality

Explicit Memory Management
functionality can now be used through the
automatic arrangement configuration file.

System Design Guide 7.2, 7.7.3,
7.11.4, 7.12.1

Expansion Guide Chapter 7

Suppressing the database session
failover functionality for each URI

When the database session failover
functionality is used, requests that are not
to be processed by this functionality can
now be specified for each URI.

Expansion Guide 5.6.1

(4) Maintaining and enhancing availability
The table below outlines the changes made to maintain and enhance availability.

Table A‒30: Changes made to maintain and enhance availability

Item Overview of changes Reference manual Relevant information

Omitting the management
user account

The user's login ID and password can now
be omitted when using the management
portal, Management Server command, or
Smart Composer functionality command.

System Setup and
Operation Guide

4.1.15

Command Reference Guide 1.4, mngsvrctl (for
Starting, Stopping, or
Setting up Management
Server) and mngsvrutil
(Management Commands
for Management Server),
8.3, cmx_admin_passwd
(Configuring the
Management User Account
for Management Server)

(5) Other purposes
The table below outlines the changes made for other purposes.

A. Major Functional Changes in Application Server Versions

Security Management Guide 441

Table A‒31: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Statistical functionality to identify
unnecessary objects in the tenured area

It is now possible to identify only
those objects in the tenured area that
are unnecessary.

Maintenance and
Migration Guide

9.8

Functionality to output a list
of reference objects to enable
identification of unnecessary objects in
the tenured area

It is now possible to output a list of objects
that can be used as reference objects
to identify unnecessary objects in the
tenured area using the abovementioned
statistical functionality.

9.9

Per-class statistics
analysis functionality

Per-class statistics can now be output in
CSV format.

9.10

Cluster node switching due to detecting
that a logical server has automatically
restarted too many times

In a cluster configuration where
Management Server is monitored for node
switching, you can now set up node
switching to take place when a logical
server is abnormally inactive (that is,
when it has automatically restarted too
many times or if a fault is detected when
the automatic restart count is 0).

Operation, Monitoring, and
Linkage Guide

18.4.3, 18.5.3, 16.2.2,
16.3.3, 16.3.4

Node switching in per-host
management models

Node switching in per-host management
models is now possible during the
operation of a system linked with
cluster software.

Chapter 16

Support for ACOS (AX2000 or BS320) ACOS (AX2000 or BS320) is now
available as a load balancer.

System Setup and
Operation Guide

4.7.2, 4.7.3, 4.7.5,
4.7.6, Appendix J, J.2

Definition Reference Guide 4.2.4, 4.3.2, 4.3.4,
4.3.5, 4.3.6, 4.7.1

Adding transaction attributes for the
stateful session bean (with session
synchronization interface) for CMT
transaction management

The transaction attributes Supports,
NotSupported, and Never can now
be specified for stateful session beans
(with session synchronization interface)
for CMT transaction management.

EJB Container
Functionality Guide

2.7.3

Forcibly terminating Administration
Agent on OutOfMemoryError

If an OutOfMemoryError occurs in
Java VM, Administration Agent is now
forced to terminate.

Maintenance and
Migration Guide

2.5.5

Asynchronous parallel processing
of threads

Asynchronous timer processing and
asynchronous thread processing are
now possible with TimerManager
and WorkManager.

Expansion Guide --

A.10 Major functional changes in 08-00

(1) Improving development productivity
The table below outlines the changes made to improve development productivity.

A. Major Functional Changes in Application Server Versions

Security Management Guide 442

Table A‒32: Changes made to improve development productivity

Item Overview of changes Reference manual Relevant information

Facilitating migration from other
application server products

To facilitate migration from other
application server products, the following
functionality was made available:
• Determining the upper limit for HTTP

sessions, based on exceptions
• Preventing translation errors when

there are duplicate JavaBeans IDs or
when custom tag attribute names and
TLD definitions are case-insensitive

Web Container
Functionality Guide

2.3, 2.7.5

Offering cosminexus.xml After a J2EE application is imported
into the J2EE server, that application
can now be started by entering the
Cosminexus application server's unique
attributes into cosminexus.xml,
without configuring the properties.

Common Container
Functionality Guide

13.3

(2) Implementing standard functionality
The table below outlines the changes made to enable implementation of standard functionality.

Table A‒33: Changes made to enable implementation of standard functionality

Item Overview of changes Reference manual Relevant information

Support for Servlet 2.5 Servlet 2.5 is now supported. Web Container
Functionality Guide

2.2, 2.5.4, 2.6,
Chapter 7

Support for JSP 2.1 JSP 2.1 is now supported. Web Container
Functionality Guide

2.3.1, 2.3.3, 2.5, 2.6,
Chapter 7

JSP debugging JSP debugging is now possible
in development environments that
use MyEclipse.#

Web Container
Functionality Guide

2.4

Storing the tag library into a library
JAR and providing TLD mappings

When the tag library is inside a library
JAR, you can now use a Web container
at Web application startup to search the
library JAR for a TLD file and provide
TLD mappings automatically.

Web Container
Functionality Guide

2.3.4

Omitting application.xml The file application.xml can now
be omitted when using J2EE applications.

Common Container
Functionality Guide

13.4

Using both annotations and DD Both annotations and DD can now
be used. This allows the information
specified in the annotation to be updated
with DD.

Common Container
Functionality Guide

14.5

Annotations complying with the Java
EE 5 standard (default interceptor)

The default interceptor can now be stored
into a library JAR. In addition, DI
processing from the default interceptor is
now possible.

Common Container
Functionality Guide

13.4

Resolving a reference with @Resource Resource reference can now be resolved
with @Resource.

Common Container
Functionality Guide

14.4

Support for JPA The JPA specifications are now supported. Common Container
Functionality Guide

Chapters 5

#: The JSP debug functionality of version 09-00 or later is available in development environment which uses WTP.

A. Major Functional Changes in Application Server Versions

Security Management Guide 443

(3) Maintaining and enhancing reliability
The table below outlines the changes made to maintain and enhance reliability.

Table A‒34: Changes made to maintain and enhance reliability

Item Overview of changes Reference manual Relevant information

Inheriting session information HTTP session information is now stored
in a database so the information can
be inherited.

Expansion Guide Chapters 5 and 6

Suppression of Full GC Occurrence of Full GC can now be
suppressed by placing objects that can
trigger Full GC outside the Java heap.

Expansion Guide Chapter 7

Monitoring client performance The time taken for client processing can
now be checked and analyzed.

-- --

Legend:
--: Functionality eliminated from version 09-00

(4) Other purposes
The table below outlines the changes made for other purposes.

Table A‒35: Changes made for other purposes

Item Overview of changes Reference manual Relevant information

Deleting invalid HTTP cookies Any invalid HTTP cookies can now
be deleted.

Web Container
Functionality Guide

2.7.4

Detecting Naming Service errors If a Naming Service error occurs, the EJB
client can now detect it earlier than before.

Common Container
Functionality Guide

2.9

Connection error detection timeout The period for connection error detection
timeouts can now be specified.

Common Container
Functionality Guide

3.15.1

Support for Oracle 11g Oracle 11g can now be used as a database. Common Container
Functionality Guide

Chapter 3

Scheduling batch processing Execution of batch applications can now
be scheduled using CTM.

Expansion Guide Chapter 4

Batch processing log The size and area count for the log file for
batch processing commands can now be
specified. In addition, the retry count and
retry interval for accessing this file when it
is exclusive-locked can now be specified.

Definition Reference Guide 3.2.5

Snapshot log The contents of the snapshot log
were changed.

Maintenance and
Migration Guide

A.1 and A.2

Disclosing the protected areas for
method cancel

A list of protected areas not subject to
method cancel was disclosed.

Operation, Monitoring, and
Linkage Guide

Appendix C

Functionality to choose whether to
perform garbage collection before
statistics output

You can now choose whether to perform
garbage collection before output of
statistics per class.

Maintenance and
Migration Guide

9.7

Functionality to output age distribution
information for the survivor area

Age distribution information about the
Java object in the survivor area can now be
output to the Java VM log file.

Maintenance and
Migration Guide

9.11

A. Major Functional Changes in Application Server Versions

Security Management Guide 444

Item Overview of changes Reference manual Relevant information

Functionality to eliminate accumulated
finalization processes

Accumulated Java VM finalization
processes can now be monitored
and eliminated.

-- --

Changing the maximum heap size for
server management commands

The maximum size of the heap available
for server management commands
was changed.

Definition Reference Guide 5.2.1, 5.2.2

Action taken when a non-
recommended display name
is specified

A message is now output when a non-
recommended display name is specified
for a J2EE application.

Messages KDJE42374-W

Legend:
--: Functionality that was dropped in 09-00.

A. Major Functional Changes in Application Server Versions

Security Management Guide 445

B. Registration of Exception Lists (Windows)

If you enable Windows Firewall, you must register the component software programs to the firewall's exception list.
Which component software programs you register to the exception list depends on which component software programs
are installed.

If you enable the firewall, execute the appropriate command at the command prompt to register to the exception list the
component software programs listed in the table below that have been installed. The table below shows the exception list
registration command to execute for each component software program. Programs created by using the application server
and BPM/ESB infrastructure products must also be added to the exception list. You can use the exception list registration
command to register these programs to the exception list as well.

Table B‒1: Exception list registration command to be executed for component software

Installed
component
software

Requirement for
registration to the
exception list

Exception list registration command to be executed

Component
Container

Required netsh firewall add allowedprogram program="Application-Server-installation-
directory\CC\server\bin\cjstartsv.exe" name="Cosminexus Component
Container" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CC\web\bin\cjstartweb.exe" name="Cosminexus Component
Container" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-
installation-directory\CC\client\bin\cjclstartap.exe" name="Cosminexus
Component Container" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\manager\bin\adminagent.exe" name="Cosminexus Component
Container" mode=ENABLE

Required if
server management
commands
are executed

netsh firewall add allowedprogram program="Application-Server-
installation-directory\TPB\bin\vbj.exe" name="Cosminexus Component
Container" mode=ENABLE#1

Required if
the scheduling
functionality is used
by batch commands

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CC\batch\bin\cjexecjob.exe" name="Cosminexus Component
Container" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CC\batch\bin\cjkilljob.exe" name="Cosminexus Component
Container" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CC\batch\bin\cjlistjob.exe" name="Cosminexus Component
Container" mode=ENABLE

Required if server
communication
agents of virtual
servers are used

netsh firewall add allowedprogram program="Application-Server-installation-
directory\sinagent\bin\sinaviagent.exe" name="uCosminexus SI
Navigation System Agent" mode=ENABLE

Component
Transaction Monitor

Required netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmchpara.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

B. Registration of Exception Lists (Windows)

Security Management Guide 446

Installed
component
software

Requirement for
registration to the
exception list

Exception list registration command to be executed

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmd.exe" name="Cosminexus Component Transaction
Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-
installation-directory\CTM\bin\ctmdmd.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmdmstart.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmdmstop.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmgetior.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmholdque.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmidl2cpp.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmidl2j.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmlsque.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmnaminfo.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmregltd.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmridinfo.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmrlesque.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmstart.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-
installation-directory\CTM\bin\ctmstop.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

B. Registration of Exception Lists (Windows)

Security Management Guide 447

Installed
component
software

Requirement for
registration to the
exception list

Exception list registration command to be executed

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmstartgw.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmstopgw.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\CTM\bin\ctmtscgwd.exe" name="Cosminexus Component
Transaction Monitor" mode=ENABLE

HTTP Server Required netsh firewall add allowedprogram program="Application-
Server-installation-directory\httpsd\httpsd.exe" name="Cosminexus
HTTP Server"mode=ENABLE

TPBroker#2 Required netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\events.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\gatekeeper.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\TPB\bin\irep.exe" name="Cosminexus TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\nameserv.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\TPB\bin\oad.exe" name="Cosminexus TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\osagent.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\osfind.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\TPB\bin\admd.exe" name="Cosminexus TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-installation-
directory\TPB\bin\otsd.exe" name="Cosminexus TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\trnctxsv.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-Server-
installation-directory\TPB\bin\tsstoptrnctxsv.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tscommit.exe" name="Cosminexus
TPBroker" mode=ENABLE

B. Registration of Exception Lists (Windows)

Security Management Guide 448

Installed
component
software

Requirement for
registration to the
exception list

Exception list registration command to be executed

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tslstrn.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tsrollback.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tsstat.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tsstop.exe" name="Cosminexus
TPBroker" mode=ENABLE

netsh firewall add allowedprogram program="Application-
Server-installation-directory\TPB\bin\tstrnsts.exe" name="Cosminexus
TPBroker" mode=ENABLE

HiRDB/Single
Server Version 10

Required if
embedded databases
are used in
Developer or
Service Architect

for %%p in (Developer-or-Service-Architect-installation-directory\DB\bin*.exe)
do netsh firewall set allowedprogram %%p
"Cosminexus Developer(DB)"

for %%p in (Developer-or-Service-Architect-installation-
directory\DB\lib\servers*.exe) do netsh firewall set allowedprogram
%%p "Cosminexus Developer(DB)"

for %%p in (Developer-or-Service-Architect-installation-
directory\DB\SAMPLE\sampleconf*.exe) do netsh firewall set
allowedprogram %%p "Cosminexus Developer(DB)"

for %%p in (Developer-or-Service-Architect-installation-
directory\DB\SAMPLE\tools*.exe) do netsh firewall set
allowedprogram %%p "Cosminexus Developer(DB)"

for %%p in (Developer-or-Service-Architect-installation-
directory\DB\PDISTUP\bin*.exe) do netsh firewall set allowedprogram
%%p "Cosminexus Developer(DB)"

#1: EJB clients that use the vbj command are also excluded from filtering for the firewall.
#2: You can also use the tssetfw command to register exception lists. For details about the tssetfw command, see the TPBroker Additional
Features manual.

B. Registration of Exception Lists (Windows)

Security Management Guide 449

C. Glossary

Terminology used in this manual
For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform
Terminology Guide.

C. Glossary

Security Management Guide 450

Index

Symbols
<ua:attributeEntries>Entries</ua:attributeEntries> tag

364
<ua:attributeEntry/> tag 364
<ua:chpw/> tag 365
<ua:exception>Body</ua:exception> tag 366
<ua:getAttribute/> tag 367
<ua:getAttributeNames/> tag 369
<ua:getAttributes/> tag 368
<ua:getPrincipalName/> tag 367
<ua:login/> tag 370
<ua:logout/> tag 371
<ua:notLogin>Body</ua:notLogin> tag 371
-nosecurity option 35

A
access permission, setting up 148
access permission management 175
Active Directory, settings when using 152
addAttribute method 308, 314
addSSODataListener method 261
addSSOData method 260
addUserData method (syntax 1) 271
addUserData method (syntax 2) 272
API

association between SPI and 93
for implementation of EJB client applications 373
provided by integrated user management framework

125
used with integrated user management framework

249
API-based implementation, notes on 132
API parameter 240
Application (option of JAAS configuration file) 229
application-centralized configuration 78
application-distributed configuration 82
application execution infrastructure

functionality for 20
functionality for operating and maintaining 21

application server, security management with 32
AttributeEntry class 252
AttributeEntry constructor 252
attribute list, example of setting 164
authentication

by application setup 173
with security identities 179

authentication functionality 34
available for applications 86
precautions for using 177

authentication information, definition file for 246
authentication password encryption, enhanced
support of 112
authentication process 91
authentication program coding

example of (in UNIX) 168
example of (in Windows) 167

authentication states, inheritance of 99

C
ChangeDataFailedException class 257
ChangeDataFailedException constructor 257
changePassword method 290
check method (syntax 1) 282
check method (syntax 2) 283
client authentication 185
close method 278
com.cosminexus.admin.auth.api.repository.event.Cha
ngeDataFailedException 361
com.cosminexus.admin.auth.api.repository.event.SS
ODataListenerException 361
com.cosminexus.admin.auth.api.repository.ldap.confi
g (API parameter) 240
com.cosminexus.admin.auth.api.repository.ldap.Obje
ctClassError 361
com.cosminexus.admin.auth.CryptoException 361
com.cosminexus.admin.auth.custom.lm (option to be
specified for DelegationLoginModule) 232
com.cosminexus.admin.auth.custom.modules
(custom login module parameter) 241
com.cosminexus.admin.auth.gsession.keep_passwor
d

Cosminexus standard login module parameter 242
option to be specified for
WebPasswordJDBCLoginModule 233
option to be specified for
WebPasswordLDAPLoginModule 234
option to be specified for
WebPasswordLoginModule 231

com.cosminexus.admin.auth.jdbc.conn.password
(JDBC parameter) 238

Security Management Guide 451

com.cosminexus.admin.auth.jdbc.conn.retry.count
(JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.conn.retry.wait
(JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.conn.url (JDBC
parameter) 238
com.cosminexus.admin.auth.jdbc.conn.user (JDBC
parameter) 238
com.cosminexus.admin.auth.jdbc.driver (JDBC
parameter) 238
com.cosminexus.admin.auth.jdbc.password.encrypt.e
x (JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.password.encrypt
(JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.password.type
(JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.pool.enable (JDBC
parameter) 238
com.cosminexus.admin.auth.jdbc.pool.gc_interval
(JDBC parameter) 239
com.cosminexus.admin.auth.jdbc.pool.max_spare
(JDBC parameter) 238
com.cosminexus.admin.auth.jdbc.pool.max (JDBC
parameter) 238
com.cosminexus.admin.auth.jdbc.pool.min_spare
(JDBC parameter) 238
com.cosminexus.admin.auth.jdbc.r (option to be
specified for WebPasswordJDBCLoginModule) 233
com.cosminexus.admin.auth.jdbc.sql (JDBC
parameter) 239
com.cosminexus.admin.auth.keep_password

Cosminexus standard login module parameter 242
option to be specified for
WebPasswordJDBCLoginModule 233
option to be specified for
WebPasswordLDAPLoginModule 234
option to be specified for
WebPasswordLoginModule 231

com.cosminexus.admin.auth.keep_password.encrypt
Cosminexus standard login module parameter 242
option to be specified for
WebPasswordJDBCLoginModule 233
option to be specified for
WebPasswordLDAPLoginModule 234
option to be specified for
WebPasswordLoginModule 231

com.cosminexus.admin.auth.ldap.attr.password (JNDI
parameter) 236
com.cosminexus.admin.auth.ldap.attr.userid (JNDI
parameter) 236
com.cosminexus.admin.auth.ldap.basedn (JNDI
parameter) 236

com.cosminexus.admin.auth.ldap.certificate.attr.useri
d (JNDI parameter) 237
com.cosminexus.admin.auth.ldap.conn.read_timeout
(JNDI parameter) 237
com.cosminexus.admin.auth.ldap.conn.retry.count
(JNDI parameter) 237
com.cosminexus.admin.auth.ldap.conn.retry.wait
(JNDI parameter) 237
com.cosminexus.admin.auth.ldap.directory.kind (JNDI
parameter) 237
com.cosminexus.admin.auth.ldap.password.encrypt.e
x (JNDI parameter) 237
com.cosminexus.admin.auth.ldap.password.encrypt
(JNDI parameter) 237
com.cosminexus.admin.auth.ldap.pool.enable (JNDI
parameter) 236
com.cosminexus.admin.auth.ldap.pool.gc_interval
(JNDI parameter) 237
com.cosminexus.admin.auth.ldap.pool.max_spare
(JNDI parameter) 236
com.cosminexus.admin.auth.ldap.pool.max (JNDI
parameter) 236
com.cosminexus.admin.auth.ldap.pool.min_spare
(JNDI parameter) 236
com.cosminexus.admin.auth.ldap.r

option to be specified for
WebCertificateLoginModule 232
option to be specified for
WebPasswordLDAPLoginModule 233
option to be specified for
WebPasswordLoginModule 230

com.cosminexus.admin.auth.ldap.search.scope (JNDI
parameter) 236
com.cosminexus.admin.auth.ldap.search.userrdn
(JNDI parameter) 236
com.cosminexus.admin.auth.ldap.w

option to be specified for
WebPasswordLDAPLoginModule 234
option to be specified for
WebPasswordLoginModule 230

com.cosminexus.admin.auth.param_check.enable
(Cosminexus standard login module parameter) 242
com.cosminexus.admin.auth.realm

option to be specified for DelegationLoginModule
232

option to be specified for
WebCertificateLoginModule 232
option to be specified for
WebPasswordJDBCLoginModule 233
option to be specified for
WebPasswordLDAPLoginModule 234

Security Management Guide 452

option to be specified for
WebPasswordLoginModule 230
option to be specified for WebSSOLoginModule 232

com.cosminexus.admin.auth.sfo.disable (trace
parameter) 243
com.cosminexus.admin.auth.sso.encrypt (single sign-
on parameter) 241
com.cosminexus.admin.auth.sso.keyfile (single sign-
on parameter) 241
com.cosminexus.admin.auth.sso.ldap.r

option to be specified for WebSSOLoginModule 231
single sign-on parameter 241

com.cosminexus.admin.auth.sso.ldap.w
option to be specified for
WebPasswordLDAPLoginModule 234
option to be specified for
WebPasswordLoginModule 230
option to be specified for WebSSOLoginModule 232
single sign-on parameter 241

com.cosminexus.admin.auth.sso.lm (single sign-on
parameter) 241
com.cosminexus.admin.auth.sso.param.pubdat
(single sign-on parameter) 241
com.cosminexus.admin.auth.sso.param.secdat
(single sign-on parameter) 241
com.cosminexus.admin.auth.sso.param.userid (single
sign-on parameter) 241
com.cosminexus.admin.auth.sso (option to be
specified for WebSSOLoginModule) 231
com.cosminexus.admin.auth.trace.level (trace
parameter) 242
com.cosminexus.admin.auth.trace.prefix (trace
parameter) 242
com.cosminexus.admin.auth.trace.rotate (trace
parameter) 243
com.cosminexus.admin.auth.trace.size (trace
parameter) 243
com.cosminexus.admin.common.ConfigError 361
com.cosminexus.admin.common.FormatError 361
com.cosminexus.admin.common.ParameterError 361
com.cosminexus.admin.common.UAException 361
com.sun.jndi.ldap.connect.timeout (JNDI parameter)

237
configuration file

creating 160
example of setting 162

configuration file parameter used by login modules 113
container security 175
convpw 219

cosminexus.xml, configuring properties of application
that does not contain 29
Cosminexus HTTP Server, SSL setup with 185
Cosminexus standard login module 93

overview of 94
user authentication mechanism based on 102

Cosminexus standard login module parameter 242
CSV file

basic specifications 244
containing single sign-on authentication information

244
specification example 247

custom login module 121, 127
examples of implementing 139
invoking 122
points to remember when implementing 139

custom login module parameter 241

D
DelegationLoginModule 109
DelegationLoginModule class 258
DIT structure

of single sign-on information repository 98
of user information repository 96

E
EJB client application

API for implementation of 373
security implementation in 180

encryption key file
changing 157
creating 157, 222
creating (when using single sign-on) 157

encrypt method 289
enhanced encryption support 131
Enterprise Bean security identities 208
Enterprise Bean security role reference, defining 203
exception classes

API used with integrated user management
framework 359
for APIs 361
for JAAS login modules 359

F
file, deploying 172
firewall 34, 75
Flag (option of JAAS configuration file) 230

Security Management Guide 453

format of functional descriptions 28
functionality

associated manuals 22
associated system purposes 25
classifications of 18
for application execution infrastructure 20
for operating and maintaining application execution
infrastructure 21
of application server 17

G
getAlias method 253
getAttributeEntries method 319, 336
getAttribute method 309, 314
getAttributeName method 254
getAttributeNames method 310, 315
getAttributes method 311, 315
getException method 306
getListeners method 306
getLoginInfoManager method 375
getMapping method 294
getMappingRealms method 294
getName method 336
getObjectClasses method 286
getOldPublicData method 299
getOldSecretData method 299
getOption method 337
getPassword method 337
getPublicData method 295, 300
getRequest method 320, 337, 352
getResponse method 320, 338, 352
getSecretData method 300
getSession method 330
getSSODataListeners method 262
getSSOData method 262
getSubcontext method 254, 286
getSubjectID method 320
getTagEntry method 321, 338, 353
getTagID method 321, 339, 353
getUserData method 273
getUserId method 301
getUserID method 330

H
handle method 326, 333, 346, 357
hasMoreElements method 279

hasMore method 279

I
IDS 75
implementing

API-based login session 128
API-based logout session 130
API-based session to obtain user IDs 128
API-based user authentication 128
custom login module-based user authentication 138
enhanced support of authentication password
encryption 131
session to register successfully authenticated
subject to HttpSession 130
tag library-based user authentication 134

individual user management, association between
integrated user management framework and 93
integrated user management

commands used in 217
details of commands used in 219
files used by 227
list of commands used in 218
list of files used by 228
management method of user information used for 95
process flow 100
process flow when using 100

integrated user management-based authentication 89
integrated user management configuration file 235
integrated user management framework 34, 91, 127

API provided by 125
API used with 249
association between individual user management
and 93
implementation of user authentication based on 127
libraries 125
repository DIT structure in 96
tag library used with 362

integrated user management function, procedures
used to setup 145
intrusion detection system 34, 75

J
J2EE server runtime protection provided by
SecurityManager functionality 35
JAAS 93
jaas.conf 229

creating 160

Security Management Guide 454

reloading 161
jaas.conf

example of setting 163
JAAS-based user management 93, 94
JAAS configuration file 229
JAAS configuration file definition, example of 117
java.naming.provider.url (JNDI parameter) 236
java.naming.security.credentials (JNDI parameter) 236
java.naming.security.principal (JNDI parameter) 236
Java Authentication and Authorization Service (JAAS)-
based user authentication, overview of 93
Java VM property, setting up 170
javax.net.ssl.trustStore (load balancer definition
property file key) 382, 384
javax.net.ssl.trustStorePassword (load balancer
definition property file key) 382, 384
javax.security.auth.login.AccountExpiredException
359
javax.security.auth.login.CredentialExpiredException

359
javax.security.auth.login.FailedLoginException 359
javax.security.auth.login.LoginException 359
JDBC parameter 238
JNDI parameter 235
JSP security role reference, defining 204
JSP tag library 125

L
lb.ACOS.privilegedexec.password (load balancer
connection configuration property file key) 382, 384
lb.API.protocol (load balancer connection
configuration property file key) 382, 384
lb.host (load balancer definition property file key) 381,
383
lb.password (load balancer definition property file key)

381, 384
lb.persistence.cookie-insert.templatename (load
balancer definition property file key) 381, 384
lb.port (load balancer definition property file key) 381,
383
lb.properties 379
lb.protocol (load balancer definition property file key)

381, 383
lb.timeout (load balancer definition property file key)

382, 384
lb.type (load balancer definition property file key) 381,
383
lb.user (load balancer definition property file key) 381,
384
LB-information-distinguished-name.properties 381

LDAP directory server
connection failover by multiplexing 123
installing 148
registering user information to 123
setting up 148

LDAP directory server multiplexing
example configuration of 123
example configuration of (multi-master
configuration) 124

LdapSSODataManager class 259
LdapSSODataManager constructor 260
LdapUserDataManager class 268
LdapUserDataManager constructor 269
LdapUserEnumeration interface 278
line operation 247
LINK_xxxx 246
listUsers method (syntax 1) 263, 274
listUsers method (syntax 2) 263, 274
load balancer

controlling via operation management functionality
187

directly accessing through API 187
that employs API-based direct connections, files
used to control 377
that employs API-based direct connections, list of
files used to control 378

load balancer definition property file 379
LoginInfoManager class 374
login method 375
LoginModule interface, points to remember when
implementing 139
login module name (option of JAAS configuration file)

229
login state

how to check 135
login user ID, registering 116
LoginUtil class 282
logout method 376

M
Major functional changes in 09-70 429
Major functional changes in 09-80 428
Major functional changes in 09-87 428
management portal-based integrated user
management operation 211
management portal-based repository management
213
method permission

Security Management Guide 455

security definition 206
setting 206

modifySSOData method 264
modifyUserData method 275
ModuleOptions (option of JAAS configuration file) 230

N
nextElement method 280
next method 280

O
object class, extending 149
ObjectClassEntry class 285
ObjectClassEntry constructor 285
OPERATION 246
options

to be specified for DelegationLoginModule 232
to be specified for WebCertificateLoginModule 232
to be specified for WebPasswordJDBCLoginModule

232
to be specified for WebPasswordLDAPLoginModule

233
to be specified for WebSSOLoginModule 231

other parameters 242

P
password

changing 225
encrypting 219

PasswordCryptography interface 289
PasswordUtil class 290
Principal interface 292
Principal object, points to remember when
implementing 139
program security 176
PUBLICDATA 246

R
realm 91
REALMNAME 246
realm name 92

determining 147
registering

login user IDs 116
users 148

removeAttribute method 311, 316

removeMapping method 295
removeSSODataListener method 266
removeSSOData method 265
removeUserData method 276
resource monitoring (integrated user management)
215
reverse proxy server 34
role

registering 199
registering to users 199
setting 199

Run As functionality 179

S
SECRETDATA 246
secure system, considerations in design of 47
security definition

method permission 206
security identity 208

security identity 179
authentication setup with 182
authentication with 179
JSP 209
security definition 208
servlet 209
settings of 208

security identity functionality 179
security role

server management command-based 197
setting up 199

security role reference, defining 203
server authentication 185
server management command

application setup by using 197
security role setup by using 197

servlet security role reference, defining 204
sessions

custom login module 116
integrated user management 116
managed in integrated user management 116
types of 116

setAlias method 255
setAttributeEntries method 322, 339
setAttributeName method 255
setException method 307
setMapping method 296
setName method 340

Security Management Guide 456

setObjectClasses method 287
setOption method 340
setPassword method 316, 341
setPublicData method 296
setRequest method 322, 341, 354
setResponse method 323, 342, 354
setSecretData method 297
setSession method 330
setSubcontext method 256, 287
setSubjectID method 323
setTagEntry method 324, 342, 355
setTagID method 324, 343, 355
setup

<security-constraint> element 35
<security-identity> element 35

setUserID method 331
single sign-on 119

example of supporting (when using custom login
module) 169
example of supporting (when using standard login
module) 168

single sign-on information repository
referencing 220
registering 222

single sign-on library 125
positioning of 126

single sign-on parameter 240
single sign-on repository 94
size method 312, 317
SPI, association between API and 93
SSL, encryption with 35
SSL/TLS encryption

of authentication information 183
of data 183

SSL accelerator 34, 86
SSL encryption

of authentication information 185
of data 185

ssoDataAdded method 303
SSOData class 293
SSOData constructor 293
SSODataEvent class 298
SSODataEvent constructor 298
SSODataListenerException class 305
SSODataListenerException constructor 305
SSODataListener interface 302
ssoDataModified method 303

ssoDataRemoved method 304
ssoexport 220
ssogenkey 222
ssoimport 222
system configurations for ensuring security 39

T
tag library

list of tags contained in 363
used with integrated user management framework

362
tierlb.properties 383
tier-side load balancer connection configuration
property file 383

U
ua.conf 235

creating 161
example of setting (in UNIX) 166
example of setting (in Windows) 165

uachpw 225
uachpw command 162
user

registering 148
registering roles to 199
setting 199

UserAttributes interface 308
user authentication, overview of Java Authentication
and Authorization Service (JAAS)-based 93
user authentication library 125

positioning of 126
user authentication repository 92
UserData class 313
UserData constructor 313
user definition attributes, extending 149
user entry structure 98
USERID 246
user IDs registered in integrated user management
sessions, deleting 117
user information

definition file for acquiring 244
definition file for adding or modifying 245
formatting used to register 152, 158
managing 123
registering 151
registering (when using single sign-on) 158
registering by using commands 151, 158

Security Management Guide 457

registering by using integrated user management
framework library 151, 158

user information repository 93
user mapping 92

definition file for 246
user mapping function 94

V
validity period

of JAAS user authentication 99
of user authentication 99

virtual server manager-side load balancer connection
configuration property file 381

W
WebCertificateCallback class 318
WebCertificateCallback constructor 319
WebCertificateHandler class 325
WebCertificateHandler constructor 325
WebCertificateLoginModule 104
WebCertificateLoginModule class 328
Web container-based authentication functionality
using DD settings 175
Web container-based authentication using DD settings

175
WebLogoutCallback class 329
WebLogoutCallback constructor 329
WebLogoutHandler class 332
WebLogoutHandler constructor 332
WebPasswordCallback class 334
WebPasswordCallback constructor 335
WebPasswordHandler class 344
WebPasswordHandler constructor 344
WebPasswordJDBCLoginModule 106
WebPasswordJDBCLoginModule class 348
WebPasswordLDAPLoginModule 105
WebPasswordLDAPLoginModule class 349
WebPasswordLoginModule 103
WebPasswordLoginModule class 350
web server, authentication functionality of 185
Web Services Security functionality, SOAP message
encryption with 35
WebSSOCallback class 351
WebSSOCallback constructor 351
WebSSOHandler class 356
WebSSOHandler constructor 356
WebSSOLoginModule 109

WebSSOLoginModule class 358
work procedure document 62

Security Management Guide 458

	Security Management Guide
	Notices
	Preface
	Contents
	Part 1: Overview
	1. Application Server Functionality
	1.1 Classifications of functionality
	1.1.1 Functionality for an application execution infrastructure
	1.1.2 Functionality for operating and maintaining the execution infrastructure for applications
	1.1.3 Functionality and associated manuals

	1.2 Functionality and associated system purposes
	1.2.1 Authentication functionality
	1.2.2 Encryption functionality
	1.2.3 Invalid processing prevention functionality
	1.2.4 Other functionality

	1.3 Format of functional descriptions in this manual
	1.3.1 Parts of the descriptions
	1.3.2 Parts of the functional descriptions - example table

	1.4 Major functional changes in Application Server 11-10
	1.4.1 Facilitating system implementation and creation
	1.4.2 Implementing standard and existing functionality
	1.4.3 Maintaining and enhancing reliability
	1.4.4 Other purposes

	2. Security Management with the Application Server
	2.1 Organization of this chapter
	2.2 Measures for ensuring security
	2.2.1 Realizing a system configuration that will ensure security
	2.2.2 Operating the system securely
	2.2.3 Preventing unauthorized users from accessing the system (authentication functionality)
	2.2.4 Ensuring communication path security (encryption functionality)
	2.2.5 Preventing invalid processing
	2.2.6 Taking other actions

	2.3 Details about the methods and functionality for ensuring security
	2.4 Notes about using the methods and functionality for ensuring security
	2.4.1 About certificates

	Part 2: System Design
	3. System Configurations for Ensuring Security
	3.1 Organization of this chapter
	3.2 System configurations using a firewall
	3.2.1 Deployment of a firewall for servlets and JSPs
	3.2.2 Deployment of a firewall for Session and Entity Bean
	3.2.3 Firewall deployment with Resource Manager

	3.3 Deployment of reverse proxies in a DMZ
	3.3.1 Deployment of reverse proxies

	4. Considerations in the Design of a Secure System
	4.1 Organization of this chapter
	4.2 Overview of considerations in the design of a secure system
	4.3 Considering the configuration of a secure system
	4.4 Considering the users of the system
	4.5 Considering the resources handled by the system
	4.6 Checking the preconditions for a secure system
	4.6.1 Physical preconditions
	4.6.2 Operational preconditions

	4.7 Analyzing expected threats
	4.8 Considering countermeasures
	4.8.1 Countermeasures to be implemented against preconditions
	4.8.2 Countermeasures to be implemented against expected threats
	4.8.3 Secure system behavior with the countermeasures implemented

	4.9 Considering work procedures
	4.9.1 Overview of work procedure documents to be prepared
	4.9.2 Considering the system setup procedures
	4.9.3 Considering the system re-setup procedures
	4.9.4 Considering system operating procedures

	4.10 Checking how to audit the system
	4.10.1 Obtaining audit logs
	4.10.2 Examining audit logs

	4.11 Considering the security of systems that use external networks
	4.11.1 Security threats that can be expected with respect to systems that use external networks
	4.11.2 Deploying a firewall and intrusion detection system
	4.11.3 Using an SSL accelerator to process encrypted communication
	4.11.4 Authenticating users from within applications

	Part 3: Description of Functions
	5. Integrated User Management-based Authentication
	5.1 Organization of this chapter
	5.2 Overview of integrated user management
	5.2.1 Purpose of integrated user management
	5.2.2 User management and user mapping using realms
	5.2.3 Overview of Java Authentication and Authorization Service (JAAS)-based user authentication
	5.2.4 Management method of user information used for integrated user management
	5.2.5 Validity period of user authentication and the inheritance of authentication states
	5.2.6 Integrated user management process flow

	5.3 User authentication mechanism based on Cosminexus standard login modules
	5.3.1 Types and functions of Cosminexus standard login modules
	5.3.2 WebPasswordLoginModule
	5.3.3 WebCertificateLoginModule
	5.3.4 WebPasswordLDAPLoginModule
	5.3.5 WebPasswordJDBCLoginModule
	5.3.6 DelegationLoginModule
	5.3.7 WebSSOLoginModule
	5.3.8 Repository access by Cosminexus standard login modules
	5.3.9 Enhanced support of authentication password encryption
	5.3.10 Configuration file parameters used by login modules

	5.4 Sessions managed in integrated user management
	5.4.1 Types of sessions
	5.4.2 Registration of login user IDs
	5.4.3 Deletion of user IDs registered in the integrated user management session
	5.4.4 Examples of JAAS configuration file definition

	5.5 Use of single sign-on
	5.5.1 Necessary procedures for single sign-on
	5.5.2 Application of single sign-on to existing application user management

	5.6 Use of custom login modules
	5.6.1 Overview of custom login modules
	5.6.2 Invocation of custom login modules

	5.7 Management of user information
	5.7.1 Registration of user information to the LDAP directory server
	5.7.2 Connection failover by multiplexing the LDAP directory server

	5.8 API provided by the integrated user management framework
	5.8.1 JSP tag library
	5.8.2 Integrated user management framework libraries

	5.9 Implementation of user authentication based on the integrated user management framework
	5.10 Implementation of API-based user authentication
	5.10.1 Implementation of the API-based login session
	5.10.2 Implementation of the API-based session to obtain user IDs
	5.10.3 Implementation of the API-based session to obtain user attributes
	5.10.4 Implementation of the session to register the successfully authenticated subject to HttpSession
	5.10.5 Implementation of the API-based logout session
	5.10.6 Checking the login state (if the API is used)
	5.10.7 Implementation of enhanced support of authentication password encryption
	5.10.8 Notes on API-based implementation

	5.11 Implementation of tag library-based user authentication
	5.11.1 Implementation of tag library-based login session
	5.11.2 Implementation of the tag library-based session to obtain user ID
	5.11.3 Implementation of the tag library-based session to obtain user attributes
	5.11.4 Implementation of tag library-based logout session
	5.11.5 Copying uatags.jar and uatags.tld and defining DD

	5.12 Implementation of custom login module-based user authentication
	5.12.1 Implementation for integration with Cosminexus standard login modules
	5.12.2 Points to remember when implementing custom login modules
	5.12.3 Examples of implementing custom login modules

	5.13 Procedures to set up the integrated user management function
	5.14 Determination of realm names
	5.15 LDAP directory server setup
	5.15.1 Installation of the LDAP directory server
	5.15.2 User registration and access permission setup
	5.15.3 Extension of object class and user definition attributes

	5.16 Registration of user information
	5.16.1 Registration by using commands
	5.16.2 Registration by using the integrated user management framework library
	5.16.3 Formatting used to register the user information
	5.16.4 Settings when using Active Directory

	5.17 Creation of encryption key files (When using single sign-on)
	5.17.1 Creating encryption key files
	5.17.2 Changing encryption key files

	5.18 Registration of user information (When using single sign-on)
	5.18.1 Registration by using commands
	5.18.2 Registration by using the integrated user management framework library
	5.18.3 Formatting used to register the user information

	5.19 Creating configuration files
	5.19.1 Creating jaas.conf
	5.19.2 Creating ua.conf
	5.19.3 Example of setting the configuration file

	5.20 Java VM property setup
	5.21 Deployment of files

	6. Authentication by Application Setup
	6.1 Organization of this chapter
	6.2 Web container-based authentication using DD settings
	6.2.1 Web container-based authentication functionality using DD settings
	6.2.2 Definitions in DD files
	6.2.3 Setup in an execution environment (J2EE application setup)
	6.2.4 Precautions for using authentication functionalities

	6.3 Authentication with security identities
	6.3.1 Security identity functionality
	6.3.2 Security implementation in EJB client applications
	6.3.3 Authentication setup with security identities

	7. SSL/TLS Encryption of Authentication Information and Data
	7.1 Organization of this chapter
	7.2 SSL encryption of authentication information and data
	7.2.1 The authentication functionality of the Web server
	7.2.2 SSL setup with Cosminexus HTTP Server

	8. Directly Accessing Load Balancers Through the API and Controlling Them via the Operation Management Functionality
	8.1 Organization of this chapter
	8.2 Directly accessing a load balancer through the API
	8.3 Load balancer APIs executed using the operation management functionality
	8.3.1 Load balancer APIs executed using Management Server (Smart Composer functionality)
	8.3.2 Load balancer API executed using Virtual Server Manager

	8.4 Load balancer access environment setup
	8.4.1 Access list (ACL) settings (ACOS)
	8.4.2 Creating a cookie persistence template
	8.4.3 Configuring a trust store
	8.4.4 hosts file settings (BIG-IP)

	8.5 Load balancer connection information setup with Management Server (Smart Composer functionality)
	8.6 Load balancer connection information setup with Virtual Server Manager
	8.6.1 Configuring load balancer connection information with Virtual Server Manager
	8.6.2 Configuring load balancer connection information with the management unit

	Part 4: Setup
	9. Server Management Command-based Security Role and Application Setup
	9.1 Organization of this chapter
	9.2 Security role setup
	9.2.1 Setting users
	9.2.2 Setting roles

	9.3 Definition of security role references
	9.3.1 Defining Enterprise Bean security role references
	9.3.2 Defining servlet and JSP security role references

	9.4 Security definition (Method permission)
	9.4.1 Enterprise Bean method permissions

	9.5 Security definition (Security identities)
	9.5.1 Enterprise Bean security identities
	9.5.2 Servlet and JSP security identities

	10. Management Portal-based Integrated User Management Operation (INTENTIONALLY DELETED)
	10.1 INTENTIONALLY DELETED

	11. Management Portal-based Repository Management (Integrated User Management) (INTENTIONALLY DELETED)
	11.1 INTENTIONALLY DELETED

	12. Resource Monitoring (Integrated User Management) (INTENTIONALLY DELETED)
	12.1 INTENTIONALLY DELETED

	Part 5: Reference
	13. Commands Used in Integrated User Management
	13.1 List of commands used in integrated user management
	13.2 Details of commands used in integrated user management
	convpw (Password encryption)
	ssoexport (Referencing the single sign-on information repository)
	ssogenkey (Creating encryption key files)
	ssoimport (Registering the single sign-on information repository)
	uachpw (Password change)

	14. Files Used by Integrated User Management
	14.1 List of files used by integrated user management
	14.2 Details of files used for integrated user management
	14.2.1 jaas.conf (JAAS configuration file)
	14.2.2 ua.conf (integrated user management configuration file)

	14.3 CSV files containing single sign-on authentication information
	14.3.1 Basic CSV file specifications
	14.3.2 Definition file for acquiring user information
	14.3.3 Definition file for adding or modifying user information
	14.3.4 Definition file for user mapping and authentication information
	14.3.5 CSV file specification example
	14.3.6 Line operation

	15. APIs Used with the Integrated User Management Framework
	15.1 List of APIs for the integrated user management framework
	15.2 The AttributeEntry class
	The AttributeEntry constructor
	The getAlias method
	The getAttributeName method
	The getSubcontext method
	The setAlias method
	The setAttributeName method
	The setSubcontext method

	15.3 The ChangeDataFailedException class
	The ChangeDataFailedException constructor

	15.4 The DelegationLoginModule class
	15.5 The LdapSSODataManager class
	The LdapSSODataManager constructor
	The addSSOData method
	The addSSODataListener method
	The getSSOData method
	The getSSODataListeners method
	The listUsers method (syntax 1)
	The listUsers method (syntax 2)
	The modifySSOData method
	The removeSSOData method
	The removeSSODataListener method

	15.6 The LdapUserDataManager class
	The LdapUserDataManager constructor
	The addUserData method (syntax 1)
	The addUserData method (syntax 2)
	The getUserData method
	The listUsers method (syntax 1)
	The listUsers method (syntax 2)
	The modifyUserData method
	The removeUserData method

	15.7 The LdapUserEnumeration interface
	The close method
	The hasMore method
	The hasMoreElements method
	The next method
	The nextElement method

	15.8 The LoginUtil class
	The check method (syntax 1)
	The check method (syntax 2)

	15.9 The ObjectClassEntry class
	The ObjectClassEntry constructor
	The getObjectClasses method
	The getSubcontext method
	The setObjectClasses method
	The setSubcontext method

	15.10 The PasswordCryptography interface
	The encrypt method

	15.11 The PasswordUtil class
	The changePassword method

	15.12 The Principal interface
	15.13 The SSOData class
	The SSOData constructor
	The getMapping method
	The getMappingRealms method
	The getPublicData method
	The removeMapping method
	The setMapping method
	The setPublicData method
	The setSecretData method

	15.14 The SSODataEvent class
	The SSODataEvent constructor
	The getOldPublicData method
	The getOldSecretData method
	The getPublicData method
	The getSecretData method
	The getUserId method

	15.15 The SSODataListener interface
	The ssoDataAdded method
	The ssoDataModified method
	The ssoDataRemoved method

	15.16 The SSODataListenerException class
	The SSODataListenerException constructor
	The getException method
	The getListeners method
	The setException method

	15.17 The UserAttributes interface
	The addAttribute method
	The getAttribute method
	The getAttributeNames method
	The getAttributes method
	The removeAttribute method
	The size method

	15.18 The UserData class
	The UserData constructor
	The addAttribute method
	The getAttribute method
	The getAttributeNames method
	The getAttributes method
	The removeAttribute method
	The setPassword method
	The size method

	15.19 The WebCertificateCallback class
	The WebCertificateCallback constructor
	The getAttributeEntries method
	The getRequest method
	The getResponse method
	The getSubjectID method
	The getTagEntry method
	The getTagID method
	The setAttributeEntries method
	The setRequest method
	The setResponse method
	The setSubjectID method
	The setTagEntry method
	The setTagID method

	15.20 The WebCertificateHandler class
	The WebCertificateHandler constructor
	The handle method

	15.21 The WebCertificateLoginModule class
	15.22 The WebLogoutCallback class
	The WebLogoutCallback constructor
	The getSession method
	The getUserID method
	The setSession method
	The setUserID method

	15.23 The WebLogoutHandler class
	The WebLogoutHandler constructor
	The handle method

	15.24 The WebPasswordCallback class
	The WebPasswordCallback constructor
	The getAttributeEntries method
	The getName method
	The getOption method
	The getPassword method
	The getRequest method
	The getResponse method
	The getTagEntry method
	The getTagID method
	The setAttributeEntries method
	The setName method
	The setOption method
	The setPassword method
	The setRequest method
	The setResponse method
	The setTagEntry method
	The setTagID method

	15.25 The WebPasswordHandler class
	The WebPasswordHandler constructor
	The handle method

	15.26 The WebPasswordJDBCLoginModule class
	15.27 The WebPasswordLDAPLoginModule class
	15.28 The WebPasswordLoginModule class
	15.29 The WebSSOCallback class
	The WebSSOCallback constructor
	The getRequest method
	The getResponse method
	The getTagEntry method
	The getTagID method
	The setRequest method
	The setResponse method
	The setTagEntry method
	The setTagID method

	15.30 The WebSSOHandler class
	The WebSSOHandler constructor
	The handle method

	15.31 The WebSSOLoginModule class
	15.32 Exception classes
	15.32.1 Exception classes for JAAS login modules
	15.32.2 Exception classes for APIs offered by Hitachi

	16. Tag Library Used with the Integrated User Management Framework
	16.1 List of the tags contained in the tag library
	16.2 Details of the tags contained in the tag library
	16.2.1 The <ua:attributeEntries>Entries</ua:attributeEntries> tag
	16.2.2 The <ua:attributeEntry/> tag
	16.2.3 The <ua:chpw/> tag
	16.2.4 The <ua:exception>Body</ua:exception> tag
	16.2.5 The <ua:getPrincipalName/> tag
	16.2.6 The <ua:getAttribute/> tag
	16.2.7 The <ua:getAttributes/> tag
	16.2.8 The <ua:getAttributeNames/> tag
	16.2.9 The <ua:login/> tag
	16.2.10 The <ua:logout/> tag
	16.2.11 The <ua:notLogin>Body</ua:notLogin> tag

	17. APIs for Implementation of EJB Client Applications
	17.1 The LoginInfoManager class
	The getLoginInfoManager method
	The login method
	The logout method

	18. Files Used to Control Load Balancers That Employ API-Based Direct Connections
	18.1 List of files used to control load balancers that employ API-based direct connections
	18.2 Details of files used to control load balancers that employ API-based direct connections
	18.2.1 lb.properties (load balancer definition property file)
	18.2.2 LB-information-distinguished-name.properties (virtual server manager-side load balancer connection configuration property file)
	18.2.3 tierlb.properties (tier-side load balancer connection configuration property file)

	19. Messages Output by the Security Management Functionality
	19.1 Message description format
	19.2 Messages starting with KDCGF
	19.3 Messages starting with KDCGK
	19.4 Messages starting with KDCGS
	19.5 Messages starting with KDCGW
	19.6 Messages from KEOS02000 to KEOS09999
	19.7 Messages starting with KEXS
	19.8 SSL-related messages
	19.8.1 Message description format
	19.8.2 Notes
	19.8.3 Messages starting with AH
	19.8.4 Messages starting with KH

	Appendixes
	A. Major Functional Changes in Application Server Versions
	A.1 Major functional changes in 09-87
	A.2 Major functional changes in 09-80
	A.3 Major functional changes in 09-70
	A.4 Major functional changes in 09-60
	A.5 Major functional changes in 09-50
	A.6 Major functional changes in 09-00
	A.7 Major functional changes in 08-70
	A.8 Major functional changes in 08-53
	A.9 Major functional changes in 08-50
	A.10 Major functional changes in 08-00

	B. Registration of Exception Lists (Windows)
	C. Glossary

	Index

