
JP1/IT Desktop Management 2 - Asset Console
Creating an Access Definition File Guide
3021-3-E17-10(E)

JP1 Version 12

Notices

■ Relevant program products
For details about the supported operating systems and the service packs or patches that are required by JP1/IT Desktop
Management 2, see the Release Notes.
JP1/IT Desktop Management 2 - Manager
P-2A42-78CL JP1/IT Desktop Management 2 - Manager version 12-10

The above product includes the following:
P-CC2A42-7ACL JP1/IT Desktop Management 2 - Manager version 12-10 (for Windows Server 2019, Windows
Server 2016, and Windows Server 2012)
P-CC2A42-7BCL JP1/IT Desktop Management 2 - Agent version 12-10 (for Windows Server 2019, Windows Server
2016, Windows 10, Windows 8.1, Windows 8, Windows Server 2012, Windows 7, and Windows Server 2008 R2)
P-CC2A42-7CCL JP1/IT Desktop Management 2 - Network Monitor version 12-00 (for Windows Server 2019,
Windows Server 2016, Windows 10, Windows 8.1 Enterprise, Windows 8.1 Pro, Windows 8 Enterprise, Windows 8
Pro, Windows Server 2012, Windows 7 Enterprise, Windows 7 Professional, and Windows 7 Ultimate)
P-CC2A42-7DCL JP1/IT Desktop Management 2 - Asset Console version 12-10 (for Windows Server 2019, Windows
Server 2016, and Windows Server 2012)
P-CC2A42-7PCL JP1/IT Desktop Management 2 - Internet Gateway version 12-00 (for Windows Server 2019,
Windows Server 2016, and Windows Server 2012)

■ Trademarks
HITACHI, JP1 are either trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
RSA and BSAFE are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by Ben Laurie for use in the Apache-SSL HTTP server project.
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 2

This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).
This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).
This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project
(http://java.apache.org/).
This product includes software developed by Andy Clark.

This product includes RSA BSAFE(R) Cryptographic software of EMC Corporation.

1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)
2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com)
4. This product includes the OpenSSL Toolkit software used under OpenSSL License and Original SSLeay License.
OpenSSL License and Original SSLeay License are as follow:
LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.
OpenSSL License

/* ==
* Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 3

*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 4

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given
attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 5

* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Issued
Jan. 2020: 3021-3-E17-10(E)

■ Copyright
Copyright (C) 2019, 2020, Hitachi, Ltd.
Copyright (C) 2019, 2020, Hitachi Solutions, Ltd.
Copyright, patent, trademark, and other intellectual property rights related to the "TMEng.dll" file are owned
exclusively by Trend Micro Incorporated.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 6

Summary of amendments

The following table lists changes in this manual (3021-3-E17-10(E)) and product changes related
to this manual.

Changes Location

Windows Server 2019 was added as an applicable operating system for the following products:
• JP1/IT Desktop Management 2 - Manager
• JP1/IT Desktop Management 2 - Agent
• JP1/IT Desktop Management 2 - Network Monitor
• JP1/IT Desktop Management 2 - Asset Console
• JP1/IT Desktop Management 2 - Internet Gateway
• Remote Install Manager

--

Legend:
--: Not applicable

In addition to the above changes, minor editorial corrections were made.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 7

Preface

This manual describes how to use scripts of JP1/IT Desktop Management 2 - Asset Console (abbreviated hereafter to
Asset Console) to add your own original processes.

■ Intended readers
This manual is intended for the following users:

• System administrators who create an asset management system that uses Asset Console

• Asset administrators who manage asset information

• Those who have basic knowledge of object-oriented techniques

■ Organization of this manual
This manual is organized into the following chapters and an appendix:

1. Overview
Chapter 1 explains the aims of creating an access definition file and the work flow for doing so.

2. Creating Access Definition Files
Chapter 2 explains how to create access definition files and provides two examples of access definition
files.

3. Executing Access Definition Files
Chapter 3 explains how to execute an access definition file.

4. Tags Used in Access Definition Files
Chapter 4 provides detailed explanations of the tags that can be used in access definition files.

5. Embedded Functions Used in Access Definition Files
Chapter 5 explains the embedded functions that can be used in an access definition file.

A. Version Changes
Appendix A describes changes in each version.

B. Reference Material for This Manual
Appendix B provides reference material for readers of this manual.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 8

Contents

Notices 2
Summary of amendments 7
Preface 8

1 Overview 13
1.1 Purpose of creating an access definition file 14
1.1.1 Ability to input and output data in any format 14
1.1.2 Ability to use asset information for a variety of jobs 14
1.1.3 Ability to access directory service information 14
1.2 What is an access definition file? 15
1.3 Creating an access definition file to extend functionality 16

2 Creating Access Definition Files 17
2.1 Basic format of access definition files 18
2.2 Coding method 19
2.2.1 Coding rules 19
2.2.2 Specifying a script header 19
2.2.3 Coding rules for variables 19
2.2.4 Operators 21
2.2.5 Coding rules for embedded variables 22
2.2.6 Manipulating directory information 22
2.3 Access definition file examples 26
2.3.1 Example for updating and deleting asset information conditioned on asset status 26
2.3.2 Example for listing software assets of installed programs that are not authorized 28

3 Executing Access Definition Files 32
3.1 Executing from a command line 33
3.1.1 Before executing 33
3.1.2 jamscript (execute access definition file) command 34
3.2 Executing using a task 36

4 Tags Used in Access Definition Files 37
List of tags used in access definition files 38
Detailed explanation of tags used in access definition files 40
[APPEND] (Create object class) 41
[APPEND_ASSOC] (add association class) 43
[ARRAY] (declare array variable) 45
[ASSET_ITEM_LOOP] (class search loop) 46

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 9

[ASSOC_FIND] (find association class) 48
[BEGIN] (process block) 50
[CLASS_FIND] (find object class) 51
[CSV_FILE_LOOP] (get CSV file data) 53
[DELETE] (delete object class) 55
[DELETE_ASSOC] (delete association class) 56
[DO] (loop block) 57
[EVALUATE] (re-evaluate) 58
[IF] (conditionally execute a group of statements) 60
[JOIN_FIND] (find joined class) 62
[SET_VALUE] (substitute value) 65
[SUB] (subroutine) 66
[SWITCH] (conditionally execute a group of statements) 67
[TRANSACTION] (define transaction) 69
[UPDATE] (update object class) 71
[VAR] (declare variable) 72

5 Embedded Functions Used in Access Definition Files 73
List of embedded functions 74
Detailed explanations of embedded functions 76
$ADD (Addition) 77
$BREAK (interrupt process block) 79
$CALCDATE (date calculation function) 80
$CLEARARRAY (initialize array) 82
$DATACOUNT (get result lines) 83
$DATETIME (get date/time) 85
$DIV (division) 87
$DLLEXEC2 (execute DLL) 89
$DLLFREE (free DLL) 100
$DLLLOAD (load DLL) 101
$DLLMSG (DLL get message) 108
$ECHO (output stdconsol) 109
$ENVIRONMENT (get environment information) 110
$EXIT (exit) 111
$FILEARRAY (output to the array data CSV file) 112
$FILECLOSE (close file) 113
$FILECOPY (copy file) 114
$FILEDEL (delete file) 115
$FILEOPEN (open file) 116
$FILEPUT (output data to file) 118
$FILEPUTLN (output CRLF to file) 119
$FINDFILE (find files) 120
$FORMATMSG (set a message format) 121
$GETARRAY (get value of array data) 122
$GETARRAYBYKEY (get value from array with key) 123
$GETKEYFROMARRAY (get key information from array) 124
$GETPROFILEDATA (get Windows initialization file data) 126

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 10

$GETREGVALUE (get a registry value) 128
$GETROLE (get role of user) 129
$GETSESSION (get session information) 130
$GETSTATUS (get status) 131
$GETTEMPNAME (get temporary file name) 133
$GOSUB (execute subroutine) 134
$ISNULL (check NULL) 135
$LDAPACS (access directory) 137
$LENGTH (get string length) 146
$LOGMSG (output to the log file) 147
$LOWER (convert string) 148
$MATCH (check string) 149
$MOD (divide and return only the remainder) 152
$MUL (multiplication) 154
$NUMBER (numbering) 156
$SETARRAY (set value to array) 158
$SETARRAYBYKEY (set value to array with key) 159
$SETOPTION (set run options) 161
$SETSESSION (set session information) 162
$SETSTATUS (set status) 163
$STRCMP (compare strings) 164
$SUB (subtraction) 166
$SUBSTR (get substrings) 168
$TOKEN (get token) 170
$UPDARRAY (update array data) 172
$UPDARRAYBYKEY (update value of array with key) 173
$UPPER (convert string) 174

Appendix 175
A Version Changes 176
A.1 Changes in version 12-10 176
A.2 Changes in version 12-00 176
A.3 Changes in version 11-50 176
A.4 Changes in version 11-10 176
A.5 Changes in version 11-01 176
A.6 Changes in version 11-00 177
B Reference Material for This Manual 178
B.1 Related publications 178
B.2 Conventions: Abbreviations for product names 178
B.3 Conventions: Acronyms 179
B.4 Format used in this manual 180
B.5 Conventions: Version numbers 181
B.6 About online help 181
B.7 Conventions: KB, MB, GB, and TB 182

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 11

Index 183

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 12

1 Overview

This chapter explains the purpose of creating an access definition file and the flow of operations to
do so.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 13

1.1 Purpose of creating an access definition file

This section explains the purpose of creating an access definition file on an asset management system that uses Asset
Console.

1.1.1 Ability to input and output data in any format
An asset management system built with Asset Console uses an asset management database to provide integrated
management of hardware asset information, including information on network devices, software asset information, and
maintenance contract information. Using a database to provide integrated management of asset information helps
rationalize and reduce management costs of IT asset management activities that accompany jobs such as stocktaking
and adding or transferring equipment.

To import and export information registered to the asset management database of an asset management system, normally
you use commands provided by Asset Console (jamimport and jamexport), or Asset Console's job menu (Import
and Export). Use of the commands results in batch import and export processing with a fixed format, while use of the
job menu results in batch import and export processing with items specified.

However, by using a special script (called an access definition file) provided by Asset Console to define processing,
you can specify detailed conditions and import and export asset management database information without having to
know the format.

1.1.2 Ability to use asset information for a variety of jobs
You can use without change a set of execution results produced by the access definition file. In addition, you can combine
such execution results with, for example, email transmission processing created in Windows Script, so that you can
create a task that sends an email to the asset manager whenever an asset information item exceeds a predetermined
criterion.

You can also register in Windows Task Scheduler a task for executing a process designed to monitor asset information
on a regular basis, significantly reducing the asset manager's workload.

1.1.3 Ability to access directory service information
You can use Asset Console's special scripts to define access to directory information managed by any directory service
that uses LDAP (lightweight directory assistance protocol), which provides an open DAP based on the X.500 data model
running over TCP/IP. This enables operations to acquire user and organizational information from directory information.

1. Overview

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 14

1.2 What is an access definition file?

An access definition file is used to define methods of importing and updating data in an asset management database.

Access definition files are text format files, which means that you do not need any special application to create one.
Neither are there special limitations to file naming.

Special tags and embedded functions provided by Asset Console, along with variables and operators, can be combined
in access definition files to define various processes.

The process defined in an access definition file is executed using the jamscript command or by means of a task
defined using Task Scheduler.

1. Overview

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 15

1.3 Creating an access definition file to extend functionality

This section explains the operation flow of creating an access definition file to add your own process.

Figure 1‒1: Operation flow of creating an access definition file to add your own process

1. Examine the data registered in the asset management database, a list of the asset management database information
you wish to output and create, and other details pertaining to the process you wish to add. For details about the
classes and properties of information managed by an asset management database, see the JP1/IT Desktop
Management 2 - Asset Console Configuration and Administration Guide.
At this time, you must also prepare the data needed for processing. Access definition files can import and export
CSV format files.

2. In the access definition file, code the procedure for registering and updating the information in the asset management
database, and for importing or exporting the required information from or to a CSV format file.
For details about how to create an access definition file, see 2. Creating Access Definition Files.

3. Execute the jamscript command (execute access definition file). Processing is executed under the conditions
specified in the access definition file.
Note also that the process coded in the access definition file can be registered in Windows Task Scheduler for
execution on a regular basis. Differentiate which way to execute by the type of job each process is performing.
For details about how to execute the jamscript command, see 3.1 Executing from a command line. For details
about registering tasks, see 3.2 Executing using a task.

1. Overview

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 16

2 Creating Access Definition Files

This chapter explains how to create access definition files and provides two examples of access
definition files.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 17

2.1 Basic format of access definition files

Access definition files are created using tags, variables, operators, and embedded functions.

The following figure shows the basic format of an access definition file. Always make sure to code any subroutines
before the main process.

Figure 2‒1: Format of access definition files

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 18

2.2 Coding method

This section explains the coding rules for access definition files and describes directory information operations as
processes that can be described in an access definition file.

2.2.1 Coding rules
The following lists the coding rules for access definition files:

• Do not create an access definition file that contains more than 2,097,152 bytes (2 megabytes).

• Use the ASCII code to enter text in an access definition file.

• Use CRLF (\r\n) as the carriage return code.

• The first line must contain the script header and cannot have a space or tab character at the beginning or end.

• On the second and subsequent lines, you can use a space or a tab at the beginning or end of the line. You can also
enter a comment following a hash mark (#).

• Enclose constants in single quotation marks (').

• Use two single quotation marks ('') to enclose a character constant.

• You can include the contents of a file by specifying its file name following #%include on the second and
subsequent lines. However, only access definition files can be included.

Remarks
Data integrity may be lost if the jamscript command is executed for the same database from more than one
computer. Take this into account in your access definition file code.

2.2.2 Specifying a script header
A script header is specified on the first line of the access definition file. You must always specify a script header. If you
do not, the jamscript command does not recognize the file as an access definition file, and no processing is performed.

Enter the script header beginning from the first column as follows:

#AssetInformationManagerΔHTMLΔ0005

The four-digit numeric in the script header (0005) indicates the version of the script.

2.2.3 Coding rules for variables
This subsection explains the variables used in access definition files. You can use the following types of variables in
access definition files:

• Variables

• Array variables

If not otherwise required, these variables may both be referred to collectively as variables.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 19

(1) Characters that can be used in variable names
Alphanumeric characters and the underscore (_) can be used in variable names, with the exception that a variable name
cannot begin with a number. In addition, note that case is treated as significant in variable names.

(2) Character strings that cannot be used as variable names
The following reserved character strings cannot be used as variable names:

NORMAL, ERROR, NODATA, MULTI, FLUSH, RENEW, NEW, ADD, CRLF

(3) Declaring variables
Before you use a variable or an array variable in an access definition file, you must first declare it. Use a [VAR] tag to
declare a variable, and an [ARRAY] tag to declare an array variable. For details about how to use the [VAR] and
[ARRAY] tags, see [VAR] (declare variable) and [ARRAY] (declare array variable), respectively, in 4. Tags Used in
Access Definition Files.

(4) Assigning a value to a variable
Use the assignment operator (=) to assign a value to a variable.

(a) Variables
You can assign the following types of values to a variable:

• Character strings

• Variable values

• Class.property values

You can code assignment statements in either of the following tags, except that assignment statements for class.property
values can only be coded in the [GET_VALUE] tag.

• [SET_VALUE] tag

• [GET_VALUE] tag in the [CLASS_FIND], [ASSOC_FIND] and [JOIN_FIND] tags

(b) Array variables
For array variables, use the embedded function $SETARRAY to code an assignment statement.

(5) Referencing variables
Use the following format to reference array variables:

DATA=$GETARRAY(array-variable-1,array-variable-2)

(6) Valid range of variables
Variables and array variables are valid when coded between their corresponding [BEGIN] and [END] tags.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 20

2.2.4 Operators
This subsection lists and explains the operators that are available for use. It also explains how to specify class.property
values to perform fuzzy searches.

(1) Available operators
There are three types of operators that you can use. A character string concatenation operator, which is a binary operator
that joins two character strings; an assignment operator, which assigns the operation result on its right side to the value
on its left side; and relational operators, which compare a class.property value or variable on the operator's right side
to the one on its left side. The following table lists and describes the operators that are available.

Table 2‒1: Available operators

Operator Description

Binary operator + Joins the character string immediately following it to the character string immediately preceding it.
You can specify a constant, a variable, or an embedded function as the character string. If you specify
an embedded function, the join operation is performed on the character string that the embedded
function returns. You can also join several character strings by using more than one + operator, as in
A+B+C.

Assignment
operator

= Assigns the constant or operation result on its right side to the value on its left side. If you specify an
embedded function, this operator assigns the value returned by the embedded function.

Relational
operators

= Compares the value on its right side to the value on its left side, and returns a logical true if the values
match.

!= Compares the value on its right side to the value on its left side, and returns a logical true if the values
do not match.

> Compares the value on its right side to the value on its left side, and returns a logical true if the value
on its left side is greater than the value on its right side.

>= Compares the value on its right side to the value on its left side, and returns a logical true if the value
on its left side is greater than or equal to the value on its right side.

< Compares the value on its right side to the value on its left side, and returns a logical true if the value
on its left side is less than the value on its right side.

<= Compares the value on its right side to the value on its left side, and returns a logical true if the value
on its left side is less than or equal to the value on its right side.

<> This operator produces the same results as the != operator. It compares the value on its right side to
the value on its left side, and returns a logical true if they differ.

LIKE# This operator is used to specify condition expressions for performing fuzzy searches. It compares a
character string on its right side that contains one or more wildcard characters to a class.property
value on its left side, and returns a logical true if they match. For details about the wildcard characters
that can be specified, see (2) Wildcard characters that can be specified in a condition expression of a
fuzzy search, below.

NOT_LIKE# This operator is used to specify condition expressions for performing fuzzy searches. It compares a
character string on its right side that contains one or more wildcard characters to a class.property
value on its left side, and returns a logical true if they do not match. For details about the wildcard
characters that can be specified, see (2) Wildcard characters that can be specified in a condition
expression of a fuzzy search, below.

#
Cannot be used in an [IF] tag.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 21

(2) Wildcard characters that can be specified in a condition expression of
a fuzzy search

Using the relational operators LIKE and NOT_LIKE, you can perform fuzzy searches on class.property values by
specifying the % (percent) and _ (underscore) wildcard characters in the character string on the right side of the operator.

The following bullets explain how to use these wildcard characters.

• % (percent)
Finds character strings that contain zero or more instances of any character at the position specified. A few
specification examples are given below:

• To find character strings in class.property values that begin with ABC (leading match search), specify ABC%.

• To find character strings in class.property values that end with ABC (trailing match search), specify %ABC.

• To find character strings in class.property values that include ABC, specify %ABC%. This search condition finds
character strings that include ABC anywhere in the character string.

• _ (underscore)
Finds character strings that contain a single instance of any character at the specified position. For example, to find
five characters that contain ABC beginning from the third character, such as AAABC, specify two contiguous
underscores, as in __ABC. This specification also finds character strings such as BBABC and CCABC.

If you do not use either wildcard character % (percent) or _ (underscore) following LIKE or NOT_LIKE, the system
searches for perfect matches. In this case, LIKE is equivalent to =, and NOT_LIKE is equivalent to !=.

Note
To find character strings that contain a percent (%) or underscore (_) character, specify a forward slash (/)
immediately preceding the character, such as /% or /_. To indicate a forward slash (/), specify two
contiguous forward slashes, such as //.

2.2.5 Coding rules for embedded variables
The following shows the format of arguments that can be specified in embedded variables.

• Variables
For variables and array variables, specify names that have been defined in an access definition file.

• Constants
For constants, specify a character string enclosed in single quotation marks ('').

• Numeric characters
For numeric characters, specify a character string consisting of numeric characters between 0 and 9 inclusive.

2.2.6 Manipulating directory information
Using the $LDAPACS embedded function, you can perform operations such as authenticating connections to a directory
service, searching directory information, and acquiring entries and attributes.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 22

This subsection lists the functions that can be used by the $LDAPACS embedded function and explains the rules for
manipulating objects.

(1) Functions that can be used by the $LDAPACS embedded function
The following table lists the functions that can be used by the $LDAPACS function, with their descriptions.

Table 2‒2: List of functions that can be used by the $LDAPACS embedded function

Function name Description

CONNECT Authenticates a connection to a directory service.

CONVERT Converts a character string to one that can be used for searching
directory information.

DISCONNECT Releases a connection to directory services.

FIRSTENTRY Acquires the first entry found.

FREEENTRY Releases an entry.

FREERESULT Releases the search results.

GETDN Acquires the DN of an entry.

NEXTENTRY Acquires the second and subsequent entries found.

SEARCH Searches a directory service.

SELECTVALUE Acquires an attribute value.

For details about the descriptions, formats, parameters, and return values of these functions, see $LDAPACS (access
directory) in 5. Embedded Functions Used in Access Definition Files.

(2) Rules for manipulating objects
Acquiring entries

• You cannot acquire the second and subsequent found entries without first acquiring the first found entry.

• You cannot acquire a particular entry more than once.

• You cannot modify, delete, or add an entry using a script.

Acquiring attribute values
• You can acquire the value of an attribute by specifying the name of the attribute.

• You cannot modify, delete, or add attribute values using a script.

• In cases for which more than one value with the same attribute name is assigned, you can use multiple instances
of SELECTVALUE to sequentially specify the values.

Using and referencing object parameters
• Once an object parameter has been released, it cannot be used or referenced again.

(3) Memory management structure of objects
The following figure shows the memory management structure of objects.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 23

Figure 2‒2: Memory management structure of objects

LDAPOBJ, LDAPRST, LDAPENT, and LDAPATR manage all the objects below themselves. Accordingly, releasing
LDAPOBJ, LDAPRST, LDAPENT, and LDAPATR releases all the objects below them. Note, however, that KEYNAME,
LDAPVAL, DN, SELVAL, and the other lowermost character strings cannot be released as objects.

(4) Example
An example using the $LDAPACS embedded function:

[VAR]
 STATUS
 MSG
 HOST
 PORT
 FILTER
 BASE
 SCOPE
 FIRST
 LDOBJ
 LDRST
 LDENT
 DN
 NAME

[SET_VALUE]
 HOST = 'localhost'
 PORT = '389'
 BASE = 'ou=people,o=xxxxxxx.co.us'
 SCOPE= 'LDAP_SCOPE_ONELEVEL'

[SET_VALUE]
 $LDAPACS('CONNECT',LDOBJ,HOST,PORT,'','') # CONNECT
 STATUS = $GETSTATUS()

 [SET_VALUE]
 FILTER = '(&(objectclass=*)(title;lang-ja='
 FILTER = FILTER+$LDAPACS('CONVERT','Supervisor') # CONVERT
 FILTER = FILTER+'))'
 # FILTER=(&(objectclass=*)(title;lang-ja=\E4\B8\BB\E4\BB\BB))

 $LDAPACS('SEARCH',LDRST,LDOBJ,BASE,FILTER,SCOPE) # SEARCH
 FIRST = 1

 [DO]
 [IF]
 FIRST = 1

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 24

 [THEN]
 [SET_VALUE]
 $LDAPACS('FIRSTENTRY',LDENT,LDRST) # GET FIRST ENTRY
 STATUS = $GETSTATUS()
 FIRST = 0
 [ELSE]
 [SET_VALUE]
 $LDAPACS('NEXTENTRY',LDENT,LDRST) # GET NEXT ENTRY
 STATUS = $GETSTATUS()
 [IF_END]

 [IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]
 $LDAPACS('GETDN',DN,LDENT) # GET DN
 $LDAPACS('SELECTVALUE',NAME,LDENT,'cn') # GET VALUE OF CN
 MSG='DN ['+DN+'] is '+NAME
 $ECHO(MSG)
 $LDAPACS('FREEENTRY',LDENT) # FREE ENTRY OBJECT
 [ELSE]
 [SET_VALUE]
 $BREAK()
 [IF_END]
 [DO_END]

 [SET_VALUE]
 $LDAPACS('FREERESULT',LDRST) # FREE SEARCH OBJECT

[SET_VALUE]
 $LDAPACS('DISCONNECT',LDOBJ) # FREE LDAP OBJECT

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 25

2.3 Access definition file examples

This subsection provides examples of access definition files for the following two cases:

• For updating and deleting asset information conditioned on asset status

• For listing software assets of installed programs that are not authorized

2.3.1 Example for updating and deleting asset information conditioned on
asset status

This subsection provides an example of updating and deleting asset information based on various statuses by evaluating
the status of an asset.

• Remove a hardware asset whose status is erase, along with all related information.

• Perform the following updates and deletions on assets whose status is scrap (code range 500 to 719):

• Clear network information IP addresses.

• Delete installed software information.

#AssetInformationManager HTML 0005

#===
======
Variable definitions
#===
======
[VAR]
 STATUS
 DUMMY
 ECHOMSG
 MSG
 ASSET_ID
 ASSET_NO
 ASSET_ST
 NETWORK_ID
 IPADDR
 IPKIND
 WORK

#===
======
Output message routine
#===
======
[SUB]
 ECHO

 [IF]
 MSG = '1'
 [THEN]
 [SET_VALUE]
 $ECHO(ECHOMSG)
 [IF_END]

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 26

[SUB_END]

#===
======
Deletion of hardware information (main)
#===
======
[BEGIN]

 [SET_VALUE]
 MSG = $GETSESSION('MSG') # Determine if message must be ou
tput.

 [TRANSACTION]
 [ASSET_ITEM_LOOP]
 [CLASS_FIND]
 AssetInfo
 [FIND_DATA]
 (AssetInfo.AssetKind = '001') and # Hardware asset
 (AssetInfo.AssetStatus >= '500') # Assets whose hardware s
tatus is not active.
 [GET_VALUE]
 ASSET_ID = AssetInfo.AssetID
 ASSET_NO = AssetInfo.AssetNo
 ASSET_ST = AssetInfo.AssetStatus

 [IF]
 (ASSET_ST = '999')
 [THEN] # Delete asset information whose asset
 status is erase.
 [DELETE]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = ASSET_ID

 [SET_VALUE]
 ECHOMSG = 'asset number ['+ASSET_NO+' (ID:'+ASSET_ID+')] delet
ed.'
 $GOSUB(ECHO)

 [ELSE] # If asset status is neither erase nor
 active.

 [ASSET_ITEM_LOOP] # Clear network information IP address
.
 [CLASS_FIND]
 NetworkInfo
 [FIND_DATA]
 (NetworkInfo.AssetID = ASSET_ID)
 [GET_VALUE]
 NETWORK_ID = NetworkInfo.NetworkID
 IPADDR = NetworkInfo.IPAddress
 IPKIND = NetworkInfo.IPAddressKind

 [UPDATE]
 NetworkInfo
 [DATA]

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 27

 NetworkInfo.AssetID = ASSET_ID
 NetworkInfo.NetworkID = NETWORK_ID
 NetworkInfo.IPAddressKind = '002'
 NetworkInfo.IPAddress = ''
 [SET_VALUE]
 ECHOMSG = '['+ASSET_ID+'] network information
 ['+NETWORK_ID+' '+IPADDR+'] cleared.'
 $GOSUB(ECHO)

 $SETSTATUS('NORMAL')
 [ASSET_ITEM_LOOP_END]

 [ASSET_ITEM_LOOP] # Delete all installed software inform
ation.
 [CLASS_FIND]
 InstalledInfo
 [FIND_DATA]
 (InstalledInfo.AssetID = ASSET_ID)
 [GET_VALUE]
 WORK = InstalledInfo.InstalledID
 [DELETE]
 InstalledInfo
 [DATA]
 InstalledInfo.AssetID = ASSET_ID
 InstalledInfo.InstalledID = WORK
 InstalledInfo.CreationClassName = 'InstalledInfo'
 [SET_VALUE]
 ECHOMSG = '['+ASSET_ID+'] installation information ['+WORK+'
] deleted'
 $GOSUB(ECHO)

 $SETSTATUS('NORMAL')
 [ASSET_ITEM_LOOP_END]

 [IF_END]

 [SET_VALUE]
 $SETSTATUS('NORMAL')
 [ASSET_ITEM_LOOP_END]

 [SET_VALUE]
 $SETSTATUS('NORMAL')
 [TRANSACTION_END]

[END]
#===
======

2.3.2 Example for listing software assets of installed programs that are
not authorized

This subsection provides an example of listing the assets of software not authorized to be installed, along with the
unauthorized programs, and outputting the list to a file. To create the list, this example performs a search that uses the
[JOIN_FIND] tag to join multiple classes.

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 28

• Sample output file
The following are the contents output to file by the example in this subsection:

"Software name","Version","Asset No.","Group information","User"
"SoftwareA","0100","0000000001","Head Office/Sales Dept./Section 1","user1"
"SoftwareA","0101","0000000001","Head Office/Sales Dept./Section 1","user1"
"SoftwareB","0100","0000000001","Head Office/Sales Dept./Section 1","user1"
"SoftwareA","0100","0000000002","Head Office/Sales Dept./Section 2","user2"

#AssetInformationManager HTML 0005

#===
====
Variable definitions
#===
====
[VAR]
 STATUS
 DUMMY
 WORK
 ECHOMSG
 MSG
 FILENAME

[SET_VALUE]
 MSG = $GETSESSION('MSG')

#===
====
Output of information on unauthorized software to CSV file (main)
#===
====
[BEGIN]

 [VAR]
 ASSET_NO
 GROUP
 USER
 SOFTNAME
 SOFTVR
 FH
 LINE
 [ARRAY]
 OUTLINE

 [SET_VALUE]
 FILENAME = $GETSESSION('CSV')
 FH = $FILEOPEN(FILENAME, RENEW)

 $SETARRAY(OUTLINE,'Software name')
 $SETARRAY(OUTLINE,'Version')
 $SETARRAY(OUTLINE,'Asset No.')
 $SETARRAY(OUTLINE,'Group name')
 $SETARRAY(OUTLINE,'User')

 $FILEARRAY(FH, OUTLINE)
 $CLEARARRAY(OUTLINE)

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 29

 LINE = 0

 [TRANSACTION]
 [ASSET_ITEM_LOOP]
 [JOIN_FIND]
 [JOIN]
 joinassoc;InstalledListLink;
 joinfrom;InstalledList,InstalledInfo;
 jointype;INNER;
 [JOIN]
 joinassoc;InstalledLink;
 joinfrom;InstalledInfo,AssetInfo;
 jointype;INNER;
 [JOIN]
 joinfrom;AssetInfo,GroupInfo;
 jointype;OUTER;
 joinkey;AssetInfo.GroupID,GroupInfo.GroupID;
 [FIND_DATA]
 (InstalledList.InstalledPermit = '2')
 [GET_VALUE]
 SOFTNAME = InstalledList.InstalledName
 SOFTVR = InstalledList.InstalledVersion
 ASSET_NO = AssetInfo.AssetNo
 GROUP = GroupInfo.FullPathName
 USER = AssetInfo.UserName

 [SET_VALUE]
 $SETARRAY(OUTLINE,SOFTNAME)
 $SETARRAY(OUTLINE,SOFTVR)
 $SETARRAY(OUTLINE,ASSET_NO)
 $SETARRAY(OUTLINE,GROUP)
 $SETARRAY(OUTLINE,USER)

 $FILEARRAY(FH, OUTLINE)
 $CLEARARRAY(OUTLINE)

 LINE = $ADD(LINE, 1)
 [ASSET_ITEM_LOOP_END]

 [SET_VALUE]
 $SETSTATUS('NORMAL')
 [TRANSACTION_END]

 [SET_VALUE]
 $FILECLOSE(FH)

 [IF]
 (LINE = 0)
 [THEN]
 [SET_VALUE]
 ECHOMSG = 'No data found.'
 $ECHO(ECHOMSG)
 $EXIT(1)
 [ELSE]
 [SET_VALUE]
 ECHOMSG = LINE+' items of data output'
 $ECHO(ECHOMSG)

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 30

 [IF_END]

[END]

2. Creating Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 31

3 Executing Access Definition Files

This chapter explains how to execute an access definition file that you have created.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 32

3.1 Executing from a command line

This section explains how to execute the processing defined in an access definition file from a command line.

3.1.1 Before executing
This subsection explains what you need to know before using operation commands on an asset management server.

(1) Command execution procedure
To execute a command:

1. Log on as a user with administrator permissions.

2. Open a Command Prompt window, enter a command, and press Enter.
The command executes.

(2) Notes on executing commands
If you specify a character string that includes a space in a command option argument, you must enclose the character
string in double quotation marks (").

Example:

jamscript -f "c:\example\accessdef.txt" -s "CSV =c:\temp\data.csv"

(3) Location of command execution files
Command execution files are located in the following folder:

Asset-Console-installation-folder\exe

(4) If processing stops
If one of the following errors occurs, processing of the access definition file stops.

• An error exists in the syntax of the access definition file coding.

• When a class was newly registered or deleted, a key property was not set in the assignment statement.

• When a class was newly registered or deleted, a property# that must be specified in the assignment statement when
registering a new class was not specified.

• A value specified in an assignment statement is outside the range of the property's attributes.

• No [TRANSACTION] tag was specified for a tag that accesses an asset management database.

• A syntax error exists in an argument of an embedded function.

• A variable type that cannot be specified exists in an argument of an embedded function, or a character or numeric
value outside the specifiable range exists in an argument of an embedded function.

• There was insufficient memory when an embedded function was executed.

• An asset management database access error other than the above occurred.

3. Executing Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 33

#
For details about properties that must be specified when registering a new class, see the JP1/IT Desktop Management
2 - Asset Console Configuration and Administration Guide.

3.1.2 jamscript (execute access definition file) command

(1) Function
The jamscript command registers, updates, and deletes asset information in batch mode according to the definitions
in the access definition file. As defined in the access definition file, this command can import and process information
from a CSV file into an asset management database, and find information in an asset management database to export
into a CSV file.

(2) Syntax
jamscript -f access-definition-file
 (-s variable-name=value (-s variable-name=value))
 (-bp basepath-name)
 (-c)

(3) Options
-f access-definition-file

Specifies the path to the desired access definition file. You can specify either its full path or a relative path. When
specifying a relative path, reference the specification to the folder specified by the base path name. This option
cannot be omitted.

-s variable-name=value
Specifies the variable name and value to be used as session information. You can also use this option to specify a
value when you wish to modify the processing conditions (search conditions, for example) defined in the access
definition file. You can also assign a value to this variable when the $GETSESSION embedded function is used in
the access definition file.
For details on the $GETSESSION embedded function, see $GETSESSION (get session information) in 5. Embedded
Functions Used in Access Definition Files.

-bp basepath-name
Specifies the reference path name of the access definition file. You must specify a full path name for basepath-
name. This option can be omitted. If omitted, Asset-Console-installation-folder\scriptwork is assumed.

-c
Use to analyze the syntax of the jamscript command, without executing it.

(4) Return values
This command has the following return values:

Return value Description

0 Normal end.

11 An error was found in the syntax of a command option.

3. Executing Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 34

Return value Description

21 The specified access definition file does not exist.

31 Memory is insufficient.

32 The environment needed to execute the access definition file is not configured properly.

34 An error was found in the access definition file.

52 The user cancelled execution.

101 or greater The command ended in an error other than the above.

(5) Execution example
jamscript -f "c:\example\accessdef.txt" -s "CSV =c:\temp\data.csv"

(6) Notes
If you use the -bp option to specify a base path name, make sure that you create the CSV file in the first level of the
specified folder. If no CSV file exists in the specified folder, an error occurs when the command is executed.

3. Executing Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 35

3.2 Executing using a task

This section explains how to execute the processing defined in an access definition file using a task defined in Windows
Task Scheduler.

To register a task in Windows Server 2008 R2:

1. In the Windows task scheduler, double-click Create Basic Task.

2. Specify the settings as instructed by the task wizard that appears.
Specify the jamscript command execution file (jamscript.exe) for the program to be executed.
The jamscript command execution file is located in the following folder:
Asset-Console-installation-folder\exe
For the user name, specify a user that has Administrators privileges.

3. Select the Open the Properties dialog for this task when I click Finish check box, and then click the Finish
button.

4. Click the Task tab in the dialog box that appears.

5. Under Run, enter the location of the access definition file as specified by the -f option.
For details about the other options, see 3.1.2 jamscript (execute access definition file) command.

6. Click the OK button.
The dialog box closes, registering the task for executing the specified access definition file.

3. Executing Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 36

4 Tags Used in Access Definition Files

This chapter provides detailed explanations of the tags that can be used in an access definition file.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 37

List of tags used in access definition files

The following table lists and describes the tags that can be used in access definition files.

Table 4‒1: List of tags

Type Description Tags

Processing flow control Begin or end CSV file information
acquisition.

[CSV_FILE_LOOP]
[CSV_COLUMN_NAME]
[CSV_FILE_LOOP_END]

Process block. [BEGIN]
[END]

Conditionally execute a group of
statements (IF).

[IF][THEN]([ELSEIF][THEN])([ELSE])[IF_END]

Conditionally execute a group of
statements (SWITCH).

[SWITCH][CASE]([DEFAULT])[SWITCH_END]

Class search loop. [ASSET_ITEM_LOOP]
[ASSET_ITEM_LOOP_END]

Define loop block. [DO][DO_END]

Define subroutine. [SUB][SUB_END]

Re-evaluate (dynamic generation). [EVALUATE][EVALUATE_END]

Defining transactions Define transaction. [TRANSACTION]
[TRANSACTION_END]

Variables and counters Declare variable. [VAR]

Declare array variable. [ARRAY]

Substitute value. [SET_VALUE]

Searching of classes and
acquisition of values set to
properties

Find object class. [CLASS_FIND]
[FIND_DATA][GET_VALUE]
([ORDER_ASC][ORDER_DESC])

Find association class. [ASSOC_FIND]
[CLASS1]
[CLASS2]
[FIND_DATA][GET_VALUE]
([ORDER_ASC][ORDER_DESC])

Find joined class. [JOIN_FIND]
[JOIN][FIND_DATA][GET_VALUE]
([ORDER_ASC][ORDER_DESC])
([DUPLICATE])

Data creation processing on search
results from referenced class

Create object class. [APPEND]
[DATA]

Update object class. [UPDATE]
[DATA]

Delete object class. [DELETE]
[DATA]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 38

Type Description Tags

Data creation processing on search
results from referenced class

Add association class. [APPEND_ASSOC]
[CLASS1][DATA]
[CLASS2][DATA]

Delete association class. [DELETE_ASSOC]
[CLASS1][DATA]
[CLASS2][DATA]

Legend:
Tags in parenthesis () can be omitted.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 39

Detailed explanation of tags used in access definition files

This section provides detailed explanations of the tags that can be used in access definition files, generally in the
following format. The tag explanations appear in alphabetical order by tag name.

Tag
This subsection provides the name and a short description of the tag.

Syntax
This subsection provides the tag's syntax.

Values
This subsection explains the values that can be specified in the tag.

Status
This subsection explains the status of the processing coded in the tag and explains what each status means.

Example
This subsection provides a coding example using the tag.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 40

[APPEND] (Create object class)

[APPEND] creates a new object class.

Syntax

[APPEND]
 object-class-name
 [DATA]
 assignment-statements

Values
• object-class-name

Codes the name of the new class object to be created.

• assignment-statements
Codes the values to be assigned to the properties.
Always specify the properties and key properties that must be specified when registering a new object class. Note,
however, that CreationClassName can be omitted.
For details about the properties that must be specified when a new object class is registered, see the JP1/IT Desktop
Management 2 - Asset Console Configuration and Administration Guide.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA —

ERROR The key has already been registered.

MULTI —

Legend:
—: Not applicable

Example
The following example creates a new object class named AssetInfo:

[APPEND]
 AssetInfo
[DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = 'R11111'
 AssetInfo.AssetWorkKind = '001'
 AssetInfo.AssetStatus = '002'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = '0'

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 (STATUS != NORMAL)

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 41

 [THEN]
 [SET_VALUE]
 MSG = 'APPEND (' + STATUS + ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 42

[APPEND_ASSOC] (add association class)

[APPEND_ASSOC] uses an association class to link two object classes.

Syntax

[APPEND_ASSOC]
 association-class-name
 [CLASS1]
 object-class-name
 [DATA]
 assignment-statements
 [CLASS2]
 another-object-class-name
 [DATA]
 assignment-statements

Values
• association-class-name

Codes the name of an association class to be created.

• object-class-name
Codes the name of an object class to be linked by the newly created association class.

• assignment-statements
Codes the information for linking the object classes by assigning values to the desired properties.

• another-object-class-name
Codes the name of another object class to be linked by the association class.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA —

ERROR Indicates one of the following:
• The key has already been registered.
• No data exists for an object class to be linked.

MULTI —

Legend:
—: Not applicable

Remarks
To set up an association, the object classes to be linked must already be registered.

Example
The following example uses the association class MemberLink to link object classes UserInfo and GroupInfo,
and to add a user to a group:

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 43

[APPEND_ASSOC]
 MemberLink
[CLASS1]
 UserInfo
[DATA]
 UserInfo.UserID = 'user1'
[CLASS2]
 GroupInfo
[DATA]
 GroupInfo.GroupID = '11000000'

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'APPEND_ASSOC(' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 44

[ARRAY] (declare array variable)

[ARRAY] declares the variable name of an array.

Syntax

[ARRAY]
 variable-name

Values
• variable-name

Specifies the variable name of an array that is being declared.

Example
The following example declares the array variable ARY:

[ARRAY]
 ARY

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 45

[ASSET_ITEM_LOOP] (class search loop)

[ASSET_ITEM_LOOP] specifies a class search loop. One class search loop is specified for each information item to
be searched. The class search loops iterate the number of times that the specified conditions are matched.

A combination of the [CLASS_FIND], [ASSOC_FIND], and [JOIN_FIND] tags can be used for the class search
conditions. For details about these tags, see [CLASS_FIND] (find object class), [ASSOC_FIND] (find association
class), and [JOIN_FIND] (find joined class).

Syntax

[ASSET_ITEM_LOOP]
 [CLASS_FIND]
 search-conditions-for-class
 . . .
 [BEGIN]
 processing-on-search-results
 . . .
 [END]
[ASSET_ITEM_LOOP_END]

Values
• search-conditions-for-class

Codes the conditions for searching a class.

• processing-on-search-results
Codes the processing performed on classes that match the search conditions.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL —

NODATA End of data.

ERROR —

MULTI —

Legend:
—: Not applicable

Remarks
Whether or not processing in an [ASSET_ITEM_LOOP] is terminated is determined according to the status referenced
by the [ASSET_ITEM_LOOP_END] loop end tag. If the status is NORMAL, processing continues. If the status is
other than NORMAL, processing terminates. This last fact is useful when an error that occurs during processing interrupts
processing at the point the error occurred.

When processing continues until no data remains, before determining whether or not to end processing according to the
[ASSET_ITEM_LOOP_END] tag, we recommend that you use the $SETSTATUS embedded function to explicitly
specify NORMAL as the status.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 46

The status of the access definition file is updated on an ongoing basis by execution of tags and embedded functions. If
processing that updates the status is specified more than once in an [ASSET_ITEM_LOOP] tag, you must determine
whether or not to terminate processing based on the status that was last specified.

Example
The following example outputs a list of installed software names for asset ID 10000:

[ASSET_ITEM_LOOP]
 [ASSOC_FIND]
 InstalledListLink
 [FIND_DATA]
 InstalledInfo.AssetID = '10000'
 [CLASS1]
 InstalledInfo
 [CLASS2]
 InstalledList
 [GET_VALUE]
 INSTNAME = InstalledList.InstalledName
 [SET_VALUE]
 MSG = 'Installed Software Name :' +INSTNAME
 $ECHO(MSG)
 $SETSTATUS('NORMAL')
[ASSET_ITEM_LOOP_END]

Execution result:
Installed Software Name : InstalledSoftware A
Installed Software Name : InstalledSoftware B

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 47

[ASSOC_FIND] (find association class)

[ASSOC_FIND] uses an association class to search classes.

If the class being searched matches the specified conditions, its property values are substituted into the declared variables.
You can specify the [ASSOC_FIND] tag the number of times of required to find the base object class.

Syntax

[ASSOC_FIND]
 association-class-name
 ([FIND_DATA])
 condition-expression
 [CLASS1]
 object-class-name
 [CLASS2]
 another-object-class-name
 [GET_VALUE]
 assignment-statement
 ([ORDER_ASC] or [ORDER_DESC])
 sort-key

Values
• association-class-name

Codes the name of the association class to be searched.

• object-class-name
Codes the name of an object class that is linked by the association class.

• another-object-class-name
Codes the name of another object class that is linked by the association class.

• condition-expression
Codes the condition expression. To specify multiple search conditions, join them with an operator. For details about
the operators that can be used in condition expressions, see 2.2.4 Operators.
You can omit the [FIND_DATA] tag if you do not use a condition expression.

• assignment-statement
Codes an assignment statement into which property information from found classes is substituted. To acquire a
display name, add the at mark (@) to the end of class.property.

• sort-key
To sort the results, specify a sort key, in the format class.property. The [ORDER_ASC] tag sorts results in ascending
order, and the [ORDER_DESC] tag sorts results in descending order. If the tag is omitted, the results are sorted in
the order of properties specified by the [GET_VALUE] tag.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA No data satisfies the search conditions.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 48

Status Description

ERROR —

MULTI —

Legend:
—: Not applicable

Example
The following example acquires the group to which user ID user1 belongs:

[ASSOC_FIND]
 MemberLink
[FIND_DATA]
 UserInfo.UserID = 'user1'
[CLASS1]
 UserInfo
[CLASS2]
 GroupInfo
[GET_VALUE]
 FULLPATH = GroupInfo.FullPathName

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'FullPathName :' +FULLPATH
 $ECHO(MSG)
[ELSE]
 [SET_VALUE]
 MSG = 'ASSOC_FIND (' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 49

[BEGIN] (process block)

[BEGIN] specifies a process block.

Syntax

[BEGIN]
 processing
[END]

Values
• processing

Defines the processing performed by the process block.

Example
The following example shows a process block:

[BEGIN]
 [SET_VALUE]
 $ECHO('Hello world')
[END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 50

[CLASS_FIND] (find object class)

[CLASS_FIND] searches an object class.

If the class being searched matches the specified conditions, its property values are substituted into the declared variables.
You can specify the [CLASS_FIND] tag the number of times required to find the base object class.

Syntax

[CLASS_FIND]
 name-of-object-class-to-search
 ([FIND_DATA])
 condition-expression
 [GET_VALUE]
 assignment-statement
 ([ORDER_ASC] or [ORDER_DESC])
 sort-key

Values
• name-of-object-class-to-search

Codes the name of the object class to be searched.

• condition-expression
Codes the condition expression. To specify multiple search conditions, join them with an operator. For details about
the operators that can be used in condition expressions, see 2.2.4 Operators.
You can omit the [FIND_DATA] tag if you do not use a condition expression.

• assignment-statement
Codes an assignment statement. To acquire a display name, add the at mark (@) to the end of class.property.

• sort-key
To sort the results, specify a sort key, in the format class.property. The [ORDER_ASC] tag sorts results in ascending
order, and the [ORDER_DESC] tag sorts results in descending order. If the tag is omitted, the results are sorted in
the order of properties specified by the [GET_VALUE] tag.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA No data satisfies the search conditions.

ERROR —

MULTI —

Legend:
—: Not applicable

Example
The following example outputs the asset number of asset ID 10000:

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 51

[CLASS_FIND]
 AssetInfo
[FIND_DATA]
 (AssetInfo.AssetID = '10000')
[GET_VALUE]
 ASSETNO = AssetInfo.AssetNo
 ASSETSTATUS = AssetInfo.AssetStatus@

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]
 MSG = 'ASSETNO = '+ASSETNO+'('+ASSETSTATUS+')'
 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 MSG = 'CLASS_FIND ('+STATUS+')'
 $ECHO(MSG)
[IF_END]

Execution result:
ASSETNO = R11111(active)

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 52

[CSV_FILE_LOOP] (get CSV file data)

[CSV_FILE_LOOP] specifies the beginning and end of processing to acquire data from a CSV file.

Syntax

[CSV_FILE_LOOP]
 CSV-file-name
 [CSV_COLUMN_NAME]
 column-name=column-number
 [BEGIN]
 processing-on-acquired-data
 [END]
[CSV_FILE_LOOP_END]

Values
• CSV-file-name

Specifies the name of the CSV file from which data is to be acquired in the form of a variable. Specify using a
relative path name referenced to the base path specified with the -bp option of the jamscript command. If the
-bp option was omitted, Asset-Console-installation-folder\scriptwork is assumed to be the reference folder.

• column-name=column-number
Maps the name for referencing the data to the column number in the CSV file. Specify a column number assuming
1 as the first column.

• processing-on-acquired-data
Specifies the processing to perform on the data acquired from the CSV file.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL —

NODATA End of data.

ERROR There is a row that contains more than 32 kilobytes of data in a single column.

MULTI —

Legend:
—: Not applicable

Remarks
Processing stops if the specified CSV file does not exist.

Whether or not importing of data from the CSV file is terminated is determined according to the status referenced by
the [CSV_FILE_LOOP_END] loop end tag. If the status is NORMAL, processing continues. If the status is other than
NORMAL, processing terminates. This last fact is useful when an error that occurs during processing interrupts processing
at the point the error occurred.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 53

When processing continues until no data remains, before determining whether or not to end processing according to the
[CSV_FILE_LOOP_END] tag, we recommend that you use the $SETSTATUS embedded function to explicitly specify
NORMAL as the status.

The status of the access definition file is updated on an ongoing basis by execution of tags and embedded functions. If
processing that updates the status is specified more than once in a [CSV_FILE_LOOP] tag, you must determine
whether or not to terminate processing based on the status that was last specified.

Example
The following example acquires data from rows in the CSV file input.csv, and outputs the acquired data by row
number:

[SET_VALUE]
 FILENAME = 'input.csv'
 CNT = 1
[CSV_FILE_LOOP]
 FILENAME
 [CSV_COLUMN_NAME]
 COLUMN1 = 1
 COLUMN2 = 2
 COLUMN3 = 3
 [SET_VALUE]
 MSG = ' LINE('+CNT+') ['+COLUMN1+']['+COLUMN2+']['+COLUMN3+']'
 $ECHO(MSG)
 CNT = $ADD(CNT,1)

 [SET_VALUE]
 $SETSTATUS('NORMAL')
[CSV_FILE_LOOP_END]

Execution result:
LINE(1) [0000000001][R11111][active]
LINE(2) [0000000002][R22222][restore]
LINE(3) [0000000003][R33333][scrap]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 54

[DELETE] (delete object class)

[DELETE] deletes an object class. If multiple searches for information are being performed in the applicable classes,
this tag deletes all classes.

Syntax

[DELETE]
 object-class-name
 [DATA]
 assignment-statement-for-property

Values
• object-class-name

Codes the name of the object class to be deleted.

• assignment-statement-for-property
Codes the assignment statement for the key property.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA —

ERROR No applicable data exists in the object class.

MULTI —

Legend:
—: Not applicable

Example
The following example deletes asset information from asset ID 10000:

[DELETE]
 AssetInfo
[DATA]
 AssetInfo.AssetID = '10000'

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'DELETE (' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 55

[DELETE_ASSOC] (delete association class)

[DELETE_ASSOC] deletes the association between two object classes.

Syntax

[DELETE_ASSOC]
 association-class-name
 [CLASS1]
 object-class-name
 [DATA]
 assignment-statement-for-property
 [CLASS2]
 another-object-class-name
 [DATA]
 assignment-statement-for-property

Values
• association-class-name

Codes the name of the association class to be deleted.

• object-class-name
Codes the name of an object class that is linked by the association class to be deleted.

• assignment-statement-for-property
Codes all the assignment statement for the properties that are linked as keys by the association.

• another-object-class-name
Codes the name of another object class that is linked by the association class to be deleted.

Example
The following example deletes the association between user ID user1 and group ID 11000000:

[DELETE_ASSOC]
 MemberLink
[CLASS1]
 UserInfo
[DATA]
 UserInfo.UserID = 'user1'
[CLASS2]
 GroupInfo
[DATA]
 GroupInfo.GroupID = '11000000'

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'DELETE_ASSOC (' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 56

[DO] (loop block)

[DO] repeats processing that is not dependent on specific information. To terminate the loop, specify the $BREAK
embedded function.

Syntax

[DO]
 data-processing
 $BREAK()
[DO_END]

Values
• data-processing

Codes the processing to be performed on various data. Processing is performed based on this code.

Example
The following example shows a loop block. This example ends the loop block once COUNT has been output ten times
within the loop block:

[SET_VALUE]
 CNT = 1
[DO]
 [IF]
 CNT > 10
 [THEN]
 [SET_VALUE]
 $BREAK()
 [IF_END]

 [SET_VALUE]
 MSG = ' COUNT = ' + CNT
 $ECHO(MSG)
 CNT = $ADD(CNT,1)
[DO_END]

Execution result:
COUNT = 1
COUNT = 2
COUNT = 3
COUNT = 4
COUNT = 5
COUNT = 6
COUNT = 7
COUNT = 8
COUNT = 9
COUNT = 10

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 57

[EVALUATE] (re-evaluate)

[EVALUATE] defines a process block. This process block analyzes the syntax of code during execution. By enclosing
a variable in percent signs (%), you can resolve the value held by the variable during execution. This tag is used when
you are dynamically generating search conditions.

Syntax

[EVALUATE]
 process-block
[EVALUATE_END]

Values
• process-block

Codes the process block by which data is to be processed. The syntax of the tags in the process block must be
complete. You can also specify a syntax that includes tags within variables enclosed by percent signs (%).

Examples

Example 1
This example determines the search conditions during execution by changing the search condition section to
variables. This example indicates an asset number R11111 and an asset ID with an asset status of 002:

[SET_VALUE]
 STATEMENT = '(AssetInfo.AssetNo = ''R11111'') and' + CRLF
 STATEMENT = STATEMENT + '(AssetInfo.AssetStatus = ''002'')'

[EVALUATE]
 [CLASS_FIND]
 AssetInfo
 [FIND_DATA]
 %STATEMENT%
 [GET_VALUE]
 ASSETID = AssetInfo.AssetID

 [SET_VALUE]
 STATUS = $GETSTATUS()
[EVALUATE_END]
 [IF]
 (STATUS = NORMAL)
 [THEN]
 [SET_VALUE]
 MSG = ' ASSETID = ' + ASSETID
 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 MSG = 'CLASS_FIND (' + STATUS + ')'
 $ECHO(MSG)
 [IF_END]

Execution result:
ASSETID = 10000

Example 2
This example stores the processing used to acquire a user name from a user ID into variables and searches the results:

[SET_VALUE]
 STATEMENT = '[CLASS_FIND]' + CRLF

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 58

 STATEMENT = STATEMENT + 'UserEntry' + CRLF
 STATEMENT = STATEMENT + '[FIND_DATA]' + CRLF
 STATEMENT = STATEMENT + 'UserID = ' + USERID + CRLF
 STATEMENT = STATEMENT + '[GET_VALUE]' + CRLF
 STATEMENT = STATEMENT + 'USERNAME = UserEntry.UserName' + CRLF
[EVALUATE]
 %STATEMENT%
[EVALUATE_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 59

[IF] (conditionally execute a group of statements)

[IF] conditionally executes a group of statements based on specified conditions.

If the first condition is true, the processing beginning with [THEN] is executed. If the first condition is false,
the[ELSEIF] tag can be used to conditionally execute another group of statements. If neither of the conditions is true,
processing beginning with [ELSE] is executed; if [ELSE] is not defined, no processing is executed.

Although you can specify any number of [ELSEIF] tags, it is better to use the [SWITCH] tag to specify constants
when you need to compare a condition value to a large number of constants, because you do not need to nest the condition
branches so deeply, thus producing code that is easier to read. For a coding example of the [SWITCH] tag, see [SWITCH]
(conditionally execute a group of statements).

Syntax

[IF]
 condition-1
 [THEN]
 processing-if-condition-1-is-true
([ELSEIF])
 condition-2
 ([THEN])
 processing-if-condition-1-is-false-and-condition-2-is-true
 ([ELSE])
 processing-if-all-conditions-are-false
[IF_END]

Values
• condition-1, condition-2

Specifies the conditions used to determine whether to branch.

• processing-if-condition-1-is-true
Specifies the processing to be executed when condition-1 is true.

• processing-if-condition-1-is-false-and-condition-2-is-true
Specifies the processing to be executed when condition-1 is false and condition-2 is true. This coding is optional.
If you omit this coding, do not specify a condition for it.

• processing-if-all-conditions-are-false
Specifies the processing to be executed when all the conditions are false. This specification is optional.

Example

Example 1
The following example searches for the asset information for asset number 10000. If data is found ([THEN]), that
data is deleted; if no data is found ([ELSE]), the termination status is displayed.

[CLASS_FIND]
 AssetInfo
[FIND_DATA]
 (AssetInfo.AssetNo = '10000')
[GET_VALUE]
 AssetID = AssetInfo.AssetID

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 60

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
 [THEN]
 [DELETE]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = AssetID
 [SET_VALUE]
 MSG = 'CLASS_FIND (' + STATUS + ')'
 $ECHO(MSG)

 [ELSE]
 [SET_VALUE]
 MSG = 'CLASS_FIND (' + STATUS + ')'
 $ECHO(MSG)
[IF_END]

Example 2
The example below performs the following processing:

• If the data is updated normally ([THEN]), the termination status is displayed.

• If the data has already been updated by another control process ([ELSEIF], [THEN]), a message is output.

• If no data exists ([ELSE]), data is added.

[UPDATE]
 AssetInfo
[DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = '10000'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = 0
 AssetInfo.UpdateTime = _UpdateTime
[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]
 MSG = 'UPDATE (' +STATUS+ ')'
 $ECHO(MSG)
 [ELSEIF]
 STATUS = MULTI
 [THEN]
 [SET_VALUE]
 MSG = 'Asset number [10000] is updated already.'
 $ECHO(MSG)
 [ELSE]
 [APPEND]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = '10000'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = 0
 [SET_VALUE]
 MSG = 'UPDATE (' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 61

[JOIN_FIND] (find joined class)

[JOIN_FIND] joins multiple object classes and searches them.

Syntax
• Joining through use of an association class

[JOIN_FIND]
 [JOIN]
 joinassoc;association-class-name;
 joinfrom;object-class-name,another-object-class-name;
 jointype;(OUTER|INNER)
 ([FIND_DATA])
 condition-expression
[GET_VALUE]
 assignment-statement
([ORDER_ASC] or [ORDER_DESC])
 sort-key
([DUPLICATE]#)

• Joining by keying on a property

[JOIN_FIND]
 [JOIN]
 joinfrom;object-class-name,another-object-class-name;
 jointype;(OUTER|INNER);
 joinkey;join-key-class-property-names
 ([FIND_DATA])
 condition-expression
[GET_VALUE]
 assignment-statement
 ([ORDER_ASC] or [ORDER_DESC])
 sort-key
 ([DUPLICATE]#)

#
Specify the [DUPLICATE] tag to suppress output of the second and subsequent result when the values of all
properties of the search results are identical.

Values
• Join information

Codes the classes to be joined, by using either an association class or key properties.

• condition-expression
Codes the condition expression. To specify multiple search conditions, join them with an operator. For details about
the operators that can be used in condition expressions, see 2.2.4 Operators.
You can omit the [FIND_DATA] tag if you do not use a condition expression.

• assignment-statement
Codes an assignment statement into which property information from found classes is substituted. When acquiring
a property defined in a code table, you can acquire the code table value or the display name. To acquire a display
name, add the at mark (@) to the end of class.property.

• sort-key

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 62

To sort the results, specify a sort key, in the format class.property. The [ORDER_ASC] tag sorts results in ascending
order, and the [ORDER_DESC] tag sorts results in descending order. If the tag is omitted, the results are sorted in
the order of properties specified by the [GET_VALUE] tag.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA No data satisfies the search conditions.

ERROR —

MULTI —

Legend:
—: Not applicable

Example
The following examples search multiple classes.

Example 1
The following example joins asset information, installed software information, and a list of installed software, and
outputs a list of installed software information for asset number 1000:

[ASSET_ITEM_LOOP]
 [JOIN_FIND]
 [JOIN]
 joinassoc;InstalledLink;
 joinfrom;AssetInfo,InstalledInfo;
 jointype;INNER;
 [JOIN]
 joinassoc;InstalledListLink;
 joinfrom;InstalledInfo,InstalledList;
 jointype;INNER;
 [FIND_DATA]
 (AssetInfo.AssetNo = '1000')
 [GET_VALUE]
 INSTALLNAME = InstalledList.InstalledName
 VERSION = InstalledList.InstalledVersion
 PERMIT = InstalledList.InstalledPermit@

 [SET_VALUE]
 MSG = INSTALLNAME+'['+VERSION+'] ('+PERMIT+')'
 $ECHO(MSG)

 [SET_VALUE]
 $SETSTATUS('NORMAL')
[ASSET_ITEM_LOOP_END]

Execution result:
SoftwareA[0100] (authorized)
SoftwareA[0101] (authorized)
SoftwareB[0000] (authorized)
SoftwareC[0000] (unauthorized)

Example 2
The following example joins asset information and group information, then outputs the group name of asset ID
10000. This example specifies an outer join ([OUTER]) so, if no group ID has been specified, " " is output.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 63

[JOIN_FIND]
[JOIN]
 joinfrom;AssetInfo,GroupInfo;
 jointype;OUTER;
 joinkey;AssetInfo.GroupID,GroupInfo.GroupID;
[FIND_DATA]
 (AssetInfo.AssetID = '10000')
[GET_VALUE]
 GROUP_NAME = GroupInfo.FullPathName

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]
 MSG = 'GROUP = ' + GROUP_NAME
 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 MSG = 'JOIN (' + STATUS + ')'
 $ECHO(MSG)
[IF_END]

Execution result:
GROUP = Head Office/Sales Dept./Section 1

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 64

[SET_VALUE] (substitute value)

[SET_VALUE] enumerates assignment statements for variables. You can then use an embedded function to call the
variables.

Syntax

[SET_VALUE]
 assignment-statement-for-variable-1
 assignment-statement-for-variable-2 . . .

Values
• assignment-statement-for-variable

Codes an assignment statement for a variable that has been declared using the [VAR] tag.

Example
The following example assigns Hello world to the variable MSG, and outputs the result:

[SET_VALUE]
 MSG = 'Hello world'
 $ECHO(MSG)

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 65

[SUB] (subroutine)

[SUB] defines processing that is reused as a single process block. Subroutines are not executed, even if they go through
the processing path; subroutines are executed using the $GOSUB embedded function. This means that the subroutine
must be defined before the $GOSUB embedded function is specified.

Syntax

[SUB]
 subroutine-name
 . . .
[SUB_END]
[BEGIN]
 . . .
 [SET_VALUE]
 $GOSUB(subroutine-name)
[END]

Values
• subroutine-name

Specifies the subroutine name. For the subroutine name, you can use alphanumeric characters and the underscore
(_). However, a numeric character cannot be used as the first character of the subroutine name. Note also that case
is considered significant in subroutine names.

Example
The following example defines a subroutine that outputs data to a Command Prompt window.

In this example, by specifying -s MSG=1 as an option in the jamscript command, the text set for ECHOMSG is
output to a Command Prompt window:

[SUB]
 ECHO
 [IF]
 MSG = '1'
 [THEN]
 [SET_VALUE]
 $ECHO(ECHOMSG)
 [IF_END]
[SUB_END]

[BEGIN]
 [SET_VALUE]
 MSG = $GETSESSION('MSG')

 ECHOMSG = 'Hello world'
 $GOSUB(ECHO)
[END]

Executed command:
jamscript -f Example.txt -s MSG=1

Execution result:
Hello world

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 66

[SWITCH] (conditionally execute a group of statements)

[SWITCH] executes processing when a condition value matches a specified constant.

The [SWITCH] tag is more convenient to use than the [IF] tag when you wish to compare a condition to a large
number of constants, because the statements are nested less deeply. When the condition value matches a constant, the
processing following the associated [CASE] tag is executed. When the condition value does not match any of the
specified constants, the processing following [DEFAULT] is executed; if [DEFAULT] is not defined, no processing
is executed.

If the same constant is specified under more than one [CASE] tag, processing is executed beginning with the [CASE]
tag in which the constant was first specified (beginning from the left if all of the relevant coding is specified on one
line), and continues until all processing specified for the condition value matching those constants has executed.

Syntax

[SWITCH]
 condition-value
 [CASE]
 constant
 processing-if-condition-value-matches-the-constant
([CASE])
 constant[,constant[,constant...]]
 processing-if-condition-value-matches-any-of-the-constants
([DEFAULT])
 processing-if-no-constant-is-matched
[SWITCH_END]

Values
• condition-value

Specifies a condition value.

• constant
Specifies a constant; when this constant matches the condition value, the associated processing is executed. Multiple
constants can be specified by separating them with commas.

• processing-if-condition-value-matches-the-constant
Specifies the processing to be executed when the condition value matches the associated constant. If you want to
execute only the processing specified for the first constant that the condition value matches, specify $BREAK() at
the end of the [CASE] tag block.

• processing-if-condition-value-matches-any-of-the-constants
Specifies the processing to be executed when the condition value matches any one of the constants. If you want to
execute only the processing specified for the first constant that the condition value matches, specify $BREAK() at
the end of the [CASE] tag block. This specification is optional.

• processing-if-no-constant-is-matched
Specifies the processing to be executed when the condition value does not match any of the constants. You can
specify the [DEFAULT] tag before the [CASE] tags if you wish. This specification is optional.

Example
The example below executes the following processing:

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 67

• If the data is updated normally (STATUS = 'NORMAL'), the termination status is displayed.

• If the data has already been updated by another control process (STATUS = 'MULTI'), a message is output.

• If no data exists ([DEFAULT]), data is added.

[UPDATE]
 AssetInfo
[DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = '10000'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = '0'
 AssetInfo.UpdateTime = _UpdateTime
[SET_VALUE]
 STATUS = $GETSTATUS()
[SWITCH]
 STATUS
 [CASE]
 'NORMAL'
 [SET_VALUE]
 MSG = 'UPDATE (' +STATUS+ ')'
 $ECHO(MSG)
 $BREAK()
 [CASE]
 'MULTI'
 [SET_VALUE]
 MSG = 'Asset number [10000] is updated already.'
 $ECHO(MSG)
 $BREAK()
 [DEFAULT]
 [APPEND]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = '10000'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = '0'
 [SET_VALUE]
 MSG = 'UPDATE (' +STATUS+ ')'
 $ECHO(MSG)
 $BREAK()
[SWITCH_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 68

[TRANSACTION] (define transaction)

[TRANSACTION] specifies the range to be handled as a transaction when an access definition file is being used to
customize an operation window.

If the processing status is NORMAL when the processing defined in the transaction ends, the transaction is committed;
if the processing status is not NORMAL, the transaction is rolled back.

Syntax

[TRANSACTION]
 . . .
 [BEGIN]
 . . .
 [END]
[TRANSACTION_END]

Values
Codes the transaction processing.

Remarks
Whether or not transaction processing is complete is determined according to the status referenced by the transaction
processing end tag [TRANSACTION_END] or by the embedded function $BREAK, which breaks out of the transaction
processing. If the status is NORMAL, the transaction is committed; if the status is not NORMAL, it is not committed (it is
rolled back).

The status of the access definition file is updated on an ongoing basis by execution of tags and embedded functions. If
processing that updates the status is specified more than once in a transaction, whether to commit or roll back is based
on the status that was last specified.

This means that if a transaction is committed immediately before a [TRANSACTION_END] tag or a $BREAK embedded
function, we recommend that you use the $SETSTATUS embedded function to explicitly specify NORMAL as the status.

Note that transaction processing cannot be nested.

Example
The following shows an example of transaction processing:

[TRANSACTION]
 [APPEND]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetNo = '10000'
 AssetInfo.AssetWorkKind = '001'
 AssetInfo.AssetKind = '001'
 AssetInfo.AssetBranchNo = '0'
 [SET_VALUE]
 STATUS = $GETSTATUS()
 [IF]
 STATUS = NORMAL
 [THEN]
 ##Process 1
 [APPEND]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 69

 InstalledInfo
 [DATA]
 InstalledInfo.InstalledID = '10000'
 InstalledInfo.AssetID = '10000'
 [SET_VALUE]
 STATUS = $GETSTATUS()
 [IF]
 STATUS = NORMAL
 [THEN]
 ##Process 2
 [SET_VALUE]
 MSG = 'TRANSACTION : COMMIT'
 $ECHO(MSG)
 [ELSE]
 ##Process 3
 [SET_VALUE]
 MSG = 'TRANSACTION : ROLLBACK'
 $ECHO(MSG)
 [IF_END]
 [ELSE]
 ##Process 4
 [SET_VALUE]
 MSG = 'TRANSACTION : ROLLBACK'
 $ECHO(MSG)
 [IF_END]
[TRANSACTION_END]

In this processing, the following exception processing is performed.

• If addition of asset ID 10000 fails:
Control is transferred to the processing indicated by comment ##Process 4. Because the termination status of
[APPEND] is not NORMAL, the transaction processing between [TRANSACTION] and [TRANSACTION_END]
is rolled back and processing terminates. This means that all requests to the database are invalidated.

• If addition of asset ID 10000 is successful:
Control is transferred to the processing indicated by comment ##Process 1. Asset ID 10000 and installed
software ID 10000 are registered in the installed software information.

• If addition of asset ID 10000 succeeds, and addition of installed software ID 10000 fails:
Control is transferred to the processing indicated by comment ##Process 3.
Because the termination status of [APPEND] is not NORMAL, the transaction processing between
[TRANSACTION] and [TRANSACTION_END] is rolled back and processing terminates. This means that all
requests to the database are invalidated.

• If addition of asset ID 10000 and of installed software ID 10000 is successful:
Control is transferred to the processing indicated by comment ##Process 2. Because the termination status of
[APPEND] is NORMAL, all requests to the database are validated.

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 70

[UPDATE] (update object class)

[UPDATE] finds and updates an object class. If multiple object classes are found, only the object class found first is
updated. If the specified object class is not found, no processing is performed.

Syntax

[UPDATE]
 object-class-name
 [DATA]
 assignment-statement-for-property

Values
• object-class-name

Codes the name of the object class to be updated.

• assignment-statement-for-property
Specifies all key properties to be updated as assignment statements.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end.

NODATA —

ERROR The data of the object class to be updated does not exist.

MULTI Updating has already been performed by another control.

Legend:
—: Not applicable

Example
The following example updates the asset status of asset ID 10000 to 301:

[UPDATE]
 AssetInfo
[DATA]
 AssetInfo.AssetID = '10000'
 AssetInfo.AssetStatus = '301'

[SET_VALUE]
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL
 [THEN]
 [SET_VALUE]
 MSG = 'UPDATE (' + STATUS + ')'
 $ECHO(MSG)
[IF_END]

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 71

[VAR] (declare variable)

[VAR] declares a variable.

Syntax

[VAR]
 variable-name

Values
• variable-name

Codes the variable name being declared.

Example
The following example declares the STATUS and MSG variables:

[VAR]
 STATUS
 MSG

4. Tags Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 72

5 Embedded Functions Used in Access Definition
Files

This chapter explains the embedded functions that can be used in access definition file tags.

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 73

List of embedded functions

This section explains the embedded functions that can be defined in assignment statements.

The following table lists, in order of purpose, the embedded functions that can be used in access definition files.

Table 5‒1: List of embedded functions

Embedded function Description

Purpose Name of embedded function

Array operations $GETARRAY Reads data from an array.

$CLEARARRAY Initializes an array.

$SETARRAY Sets data into an array.

$SETARRAYBYKEY Sets keyed data into an array.

$GETARRAYBYKEY Reads keyed data from an array.

$GETKEYFROMARRAY Reads the corresponding key from an array.

$UPDARRAY Updates array data.

$UPDARRAYBYKEY Updates keyed array data.

Block processing operations $BREAK Interrupts processing in a process block.

$GETSTATUS Acquires the status of a process block.

$SETSTATUS Sets the status of a process block.

Session information
operations

$GETSESSION Reads session information.

$GETTEMPNAME Specifies the name of the work file for downloading that is
created for a session.

$SETSESSION Sets session information.

File operations $FILEARRAY Outputs information stored in an array to a CSV file.

$FILECLOSE Ends editing of a file.

$FILECOPY Copies a file (always overwrites any existing file).

$FILEDEL Deletes a file.

$FILEOPEN Begins editing of a file.

$FILEPUT Outputs data to a file.

$FILEPUTLN When data is being output to a file, adds a CRLF at the end.

$FINDFILE Finds files.

Directory information
operations

$LDAPACS Performs confirmation of connections to directory service,
searching, entry acquisition, attribute acquisition, and other
directory service operations.

$GETROLE Stores user roles in an array.

Subroutine $GOSUB Executes a subroutine.

Arithmetic operations $ADD Acquires the result of an add operation.

$CALCDATE Calculates the date and time.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 74

Embedded function Description

Purpose Name of embedded function

Arithmetic operations $DIV Acquires the result of a division operation.

$MOD Acquires the remainder of a division operation.

$MUL Acquires the result of a multiplication operation.

$SUB Acquires the result of a subtraction operation.

Information extraction $SUBSTR Extracts a substring.

$TOKEN Extracts a token.

Information acquisition $DATACOUNT Acquires the result lines of the previous search.

$DATETIME Acquires the current date and time.

Numbering $NUMBER Acquires sequential numbers from a database.

Acquisition of server
environmental settings

$ENVIRONMENT Acquires the environmental setting information of a server.

$GETREGVALUE Acquires registry information for the server environment.

Process end $EXIT Ends processing of an access definition file.

$SETOPTION Sets end options to handle errors.

Message output $ECHO Outputs a message to standard output.

$FORMATMSG Formats a message text.

$LOGMSG Outputs a message to a log file.

Conversion $LOWER Converts an alphabetic character string to lowercase.

$UPPER Converts an alphabetic character string to uppercase.

Windows initialization file
operations

$GETPROFILEDATA Reads the keys and values of a Windows initialization file.

NULL value evaluation $ISNULL Determines whether or not a value is NULL.

Character string operations $LENGTH Acquires the length of a character string.

$MATCH Evaluates a character string.

$STRCMP Compares character strings.

DLL operations# $DLLLOAD Loads a DLL.

$DLLEXEC2 Executes a user function installed on a user-provided DLL.

$DLLFREE Frees a DLL.

$DLLMSG Acquires DLL messages.

#
In embedded functions that perform DLL operations, always use DLLs that have been created as 32-bit applications. Even if the OS you are
using is Server 2008 R2, you must not use a DLL created as a 64-bit application.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 75

Detailed explanations of embedded functions

This section provides detailed explanations of the embedded functions, generally in the following format. The embedded
function explanations appear in alphabetical order by embedded function name.

Embedded function
This subsection provides the name and a short description of the embedded function.

Syntax
This subsection provides the embedded function's syntax.

Values
This subsection explains the values that can be specified in the embedded function.

DLL interface to be used
This subsection explains the interface with the DLL required to specify an embedded function that uses the DLL.

Status
This subsection explains the status of the processing coded by the embedded function and explains what each status
means.

Example
This subsection provides a coding example using the embedded function.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 76

$ADD (Addition)

$ADD performs addition, treating character strings as numeric values, and returns the arithmetic result.

Syntax
return-value=$ADD(character-string,numeric-character)

Values
• return-value

Specifies the name of the variable into which the arithmetic result is set. Valid results range from 0.0001 to
999,999,999,999,999 (15 digits).

• character-string
Specifies a numeric value to be added, either as a constant or a variable. A constant must be enclosed in single
quotation marks (''). Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

• numeric-character
Specifies a numeric value to be added, either as a constant or a variable. A numeric value specified as a constant
that includes a decimal point must be enclosed in single quotation marks (''). Specified values can range from
0.0001 to 999,999,999,999,999 (15 digits).

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• An invalid value was specified in a character string or numeric value.
• The arithmetic result is a value outside the range of representable values.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If a value that cannot be specified in character-string or numeric-character is encountered, or if the arithmetic result is
a value outside the representable range, 0 is returned to return-value.

Example
The following example calculates 10 + 5 and outputs the result:

[SET_VALUE]
 VAL1 = 10
 VAL2 = $ADD(VAL1, 5)

 MSG = 'ADD: ' +VAL1+ '+ 5 =' +VAL2
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 77

Execution result:
ADD: 10 + 5 = 15

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 78

$BREAK (interrupt process block)

$BREAK interrupts a process block or exits it during processing.

While a class is being created, exception processing uses evaluation statements to evaluate the statuses of various
requests, and then uses the $BREAK embedded function to interrupt the process and to perform post-processing when
an error occurs.

Syntax
$BREAK()

Values
There are no values to specify.

Example
For an example, see [TRANSACTION] (define transaction) in 4. Tags Used in Access Definition Files.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 79

$CALCDATE (date calculation function)

$CALCDATE adds a specified number of days or hours to a date or time, then returns the arithmetic result. You can
acquire relative dates and times, such as two days before or three hours after a specified date or time, without having
to mentally calculate the carryover of months, days, or hours.

Syntax
return-value=$CALCDATE(date/time,unit,value-to-add,output-format)

Values
• return-value

Specifies the name of the variable into which the acquired date or time is to be set.

• date/time
Specifies a constant or a variable. A constant must be enclosed in single quotation marks (').
date/time can be specified in either of the following formats:

• yyyy/mm/dd hh:mm:ss or yyyy-mm-dd hh:mm:ss
These formats specify both a date and a time; however, the hh:mm:ss part can be omitted.

• No specification
The date and time the embedded function is executed is assumed.

• unit
Specifies a constant or a variable. A constant must be enclosed in single quotation marks (').
The following lists the variables that can be specified:

• d
Specifies that a number of days is to be calculated.

• h
Specifies that a number of hours is to be calculated.

• n
Specifies that a number of minutes is to be calculated.

• s
Specifies that a number of seconds is to be calculated.

• value-to-add
Specifies a constant or a variable. A constant must be enclosed in single quotation marks (').
An integer must be specified as the value.

• output-format
Specifies the output format of the date and time, either as a constant or a variable. For details about the output
format, see $DATETIME (get date/time).

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 80

Status Description

Script execution interrupted Indicates one of the following:
• An invalid value was specified for value-to-add, such as a non-numeric value.
• An invalid argument was specified, or an error other than the above occurred.

Example
The following example outputs the date that is 10 days before 2005/04/11:

DATE = $CALCDATE('2005/04/11','d','-10','%Y/%m/%d')
$ECHO(DATE)

Execution result:
2005/04/01

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 81

$CLEARARRAY (initialize array)

$CLEARARRAY deletes all information stored in an array and reinitializes the array.

Syntax
$CLEARARRAY(array-name)

Values
• array-name

Specifies the name of the array to be initialized.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example for $SETARRAY (set value to array).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 82

$DATACOUNT (get result lines)

$DATACOUNT acquires the number of data items that were found by the most recent search that was executed.

When a search is defined within the [ASSET_ITEM_LOOP] and [ASSET_ITEM_LOOP_END] tags, the status
following the [ASSET_ITEM_LOOP_END] tag is always NODATA. To determine whether or not applicable data exists,
you must use the $DATACOUNT embedded function to acquire and evaluate the number of data items resulting from
the search.

Syntax
return-value=$DATACOUNT()

Values
• return-value

Specifies the name of the variable into which the search results lines are set.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example outputs the number of asset information data items (100) whose status is active (002):

[CLASS_FIND]
 AssetInfo
[FIND_DATA]
 (AssetInfo.AssetStatus = '002')AND
 (AssetInfo.AssetKind = '001')
[GET_VALUE]
 WORK = AssetInfo.AssetNo

[SET_VALUE]
 STATUS = $GETSTATUS()
 TOTAL = $DATACOUNT()
[IF]
 STATUS = NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'DataCount :' +TOTAL
 $ECHO(MSG)
[ELSE]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 83

 [SET_VALUE]
 MSG = 'CLASS_FIND (' +STATUS+ ')'
 $ECHO(MSG)
[IF_END]

Execution result:
DataCount : 100

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 84

$DATETIME (get date/time)

$DATETIME acquires the current date and time according to the specified output format.

Syntax
return-value=$DATETIME(output-format)

Values
• return-value

Specifies the name of the variable into which the acquired date and time are set.

• output-format
Specifies an output format for the date and time, either as a constant or a variable. A constant must be enclosed in
single quotation marks ('').
output-format is specified as combinations of format specifiers and character constants.
Format specifiers are symbols indicating the information to be acquired. These specifiers are expressed as a percent
sign (%) paired with a single alphabetic character. Lower and upper case alphabetic characters in format specifiers
are significant, with different information acquired by each. Note that, if an alphabetic character other than one
defined as a format specifier character follows the percent sign (%), the specified alphabetic character is acquired.
To use a double quotation mark (") as a character constant, specify \".
The following lists the format specifiers that can be specified.

• %a
Acquires the abbreviated day of the current date as follows:
Sun, Mon, Tue, Wed, Thu, Fri, Sat

• %A
Acquires the conventionally written day of the current date as follows:
Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday

• %b
Acquires the abbreviated month of the current date as follows:
Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

• %B
Acquires the conventionally written month of the current date as follows:
January, February, March, April, May, June,
July, August, September, October, November, December

• %d
Acquires the date as a numeric value from 01 to 31.

• %H
Acquires the hour on the 24-hour clock as a numeric value from 00 to 23

• %I
Acquires the hour on the 12-hour clock as a numeric value from 01 to 12.

• %j

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 85

Acquires the number of days that have elapsed since January 1 of the current year as a numeric value from 001
to 366.

• %m
Acquires the month as a numeric value from 01 to 12.

• %M
Acquires the minute as a numeric value from 00 to 59.

• %p
Acquires AM (morning) or PM (afternoon) as a character string.

• %S
Acquires the second as a numeric value from 00 to 59.

• %w
Acquires a one-digit number corresponding to the day of the week as a numeric value from 0 to 6, beginning
with Sunday as 0, as follows:
Sunday: 0, Monday: 1, Tuesday: 2, Wednesday: 3,
Thursday: 4, Friday: 5, Saturday: 6

• %Y
Acquires the four-digit calendar year.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires the date and time (01:05:36 on 2015/04/01) in the format year/month/date
hour:minutes:seconds:

[SET_VALUE]
 DATE = $DATETIME('%Y/%m/%d %H:%M:%S')
 MSG = 'DATE = ' + DATE
 $ECHO(MSG)

Execution result:
DATE = 2015/04/01 01:05:36

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 86

$DIV (division)

$DIV performs division, treating character strings as numeric values, and returns the arithmetic result.

For example, the Asset Console standard memory and disk sizes are managed in megabyte units. To register information
managed in gigabyte units in the asset management database, you need to change the units to megabytes. To do so, you
can use the $DIV embedded function to convert from gigabytes to megabytes.

Syntax
return-value=$DIV(character-string,numeric-character)

Values
• return-value

Specifies the name of the variable into which the arithmetic result is set. Valid results range from 0.0001 to
999,999,999,999,999 (15 digits).

• character-string
Specifies a dividend, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

• numeric-character
Specifies a divisor, either as a constant or a variable. A numeric value specified as a constant that includes a decimal
point must be enclosed in single quotation marks (''). Specified values can range from 0.0001 to
999,999,999,999,999 (15 digits).

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• An invalid value was specified in a character string or numeric.
• The arithmetic result is a value outside the range of representable values.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If a value that cannot be specified in character-string or numeric-character is encountered, or if the arithmetic result is
a value outside the representable range, 0 is returned to return-value.

Example
The following example calculates 10 ÷ 5 and outputs the results:

[SET_VALUE]
 VAL1 = 10

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 87

 VAL2 = $DIV(VAL1, 5)

 MSG = 'DIV: ' +VAL1+ ' / 5 = ' +VAL2
 $ECHO(MSG)

Execution result:
DIV: 10 / 5 = 2

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 88

$DLLEXEC2 (execute DLL)

$DLLEXEC2 executes a user-created user function. An array variable is used to transfer data between the user function
executed by DLLEXEC2 and the access definition file. To access an array variable within the user function, use the
macros provided by Asset Console.

Syntax
$DLLEXEC2(DLL-object,function-name,array-name-1(,array-name-2(,...)))

Values
• DLL-object

Specifies the variable name of the DLL object that was acquired by $DLLLOAD.

• function-name
Specifies the name of the function to be executed, as either a constant or a variable. A constant must be enclosed in
single quotation marks ('').

• array-name
Specifies the name of the array variable containing the information to be passed to the function, or the name of the
array variable for acquiring the execution result of the function.

DLL interface to be used
The following shows the format of the function that is called by $DLLEXEC2:

int function-name(int argc //number of array variables
 //specified in the script
 ,void** argv //start address of the group of array
 // variables specified in the script
)

The array variables specified in the script are stored sequentially (from left to right) beginning at array 0 of argv.
Therefore, the array name 1 and array name 2 are processed internally as argv[0] and argv[1], respectively, by
the function.

If the function returns a negative value, the function executes the aim_getmessage function (provided in the same
DLL by the user). If a message has been specified, the function writes that message in the Asset Console log, and then
cancels the script execution.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end (when the function returns 0)

NODATA Termination with warning (when the function returns 1)

ERROR Abnormal termination (when the function returns a positive value)

Script execution interrupted Indicates one of the following:
• Abnormal termination (when the function returns a negative value)#

• An invalid argument was specified, or an error other than the above occurred.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 89

#
Indicates that the variable name of the specified DLL object is not the DLL object acquired by the $DLLLOAD embedded function.

Note
The user must have previously provided the DLL containing the user functions that are called by the $DLLEXEC2
embedded function.

Example
This example loads sample.dll and executes the summing function FunctionSum. It sets arguments 10, 20, and
30 in the loaded sample.dll, executes FunctionSum, and then outputs the result.

[SET_VALUE]
 DLLOBJ = $DLLLOAD('sample.dll')
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL
 [THEN]
 [SET_VALUE]
 $ECHO('DLL LOAD ERROR')
 $EXIT(3)
[IF_END]

[SET_VALUE]
 $SETARRAY(INPUT, '10')
 $SETARRAY(INPUT, '20')
 $SETARRAY(INPUT, '30')
 $DLLEXEC2(DLLOBJ,'FunctionSum',INPUT,OUTPUT)
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]
 VAL = $GETARRAY(OUTPUT, 1)
 MSG = 'OUTPUT = ' + VAL
 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 VAL = $DLLMSG(DLLOBJ)
 MSG ='DLLEXEC FunctionSum ERROR (' + VAL + ')'
 $ECHO(MSG)
[IF_END]

[SET_VALUE]
 $DLLFREE(DLLOBJ)

Creating a user function to be executed by $DLLEXEC2
If the user function to be executed by $DLLEXEC2 does not need to transfer data with the script, you can create a DLL
with the general procedure.

In some cases, it might be desirable to let user function receive information from the script, or to set the processing
result of the user function in an array of the script. To do this, you must use a special function provided by Asset Console
to access the script's array variables. Asset Console provides a function for accessing such array variables as a macro.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 90

The macros are defined in the header file for C and C++ language jamScriptAPI.h. By including this header file,
you can manipulate arrays with the same interface you use for the functions in the access definition file.

Note that from $DLLEXEC2 you can execute only those functions that use array manipulation macros that are included
in the DLL.

jamScriptAPI.h is stored in the following folder:

Asset-Console-installation-folder\sdk\include

The following table lists and describes the macros defined in jamScriptAPI.h:

Table 5‒2: List of macros available to DLL

Macro Function

Purpose Macro name

Manipulation of arrays $GETARRAY Gets value of array data

$CLEARARRAY Initializes an array

$SETARRAY Sets value to an array

$SETARRAYBYKEY Sets value to an array with a key

$GETARRAYBYKEY Gets value from an array with a key

$GETKEYFROMARRAY Reads the corresponding key from an array

$GETARRAYLENGTH Gets the number of array elements

$GETARRAYNAME Gets the name of an array

$UPDARRAY Updates array data

$UPDARRAYBYKEY Updates value of an array with a key

Acquisition of instances $GETINITAREA Gets the return value of the aim_init function

Acquisition of status $GETSTATUS Gets details of macro termination status

The following subsections describe each macro available during DLL creation.

■ $CLEARARRAY (initialize array)
$CLEARARRAY deletes all information stored in the specified array and initializes the array.

Format (equivalent function format)

int $CREARARRAY(void** argv,void* array);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

Return values

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 91

Return value Description

0 Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example initializes array 1 specified in the script:

int DllFunc8(int argc,void** argv){
 int rc;
 rc = $CLEARARRAY(argv,argv[0]);
 if(rc)return-1;
 return 0;
}

■ $GETARRAY (get value of array data)
$GETARRAY acquires information from the array at the specified location.

Syntax

char* $GETARRAY(void** argv,void* array,int pos);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

• pos
Specifies the position in the array from which information is to be acquired (begins at 1).

Return values

Return value Description

Specified array information (character string) Normal end

NULL Error# or there is no information with the specified location number.

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example acquires information 1 in array 1 specified in the script:

int DllFunc3(int argc,void** argv){
 void *data;
 data = $GETARRAY(argv,argv[0],1);
 if(!data) if($GETSTATUS(argv) != JAM_SCRIPTAPI_NORMAL &&
 $GETSTATUS(argv) != JAM_SCRIPTAPI_NODATA) return -1;
 return 0;
}

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 92

■ $GETARRAYBYKEY (get value from array with key)
$GETARRAYBYKEY uses a specified key to acquire information from an array created using the $SETARRAYBYKEY
embedded function in the script, or from an array created using the $SETARRAYBYKEY macro in the user function. If
there is more than one element with the same key, specify the array number in the key to identify the location of the
applicable element.

Syntax

char* $GETARRAYBYKEY(void** argv,void* array,char* key,int pos);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

• key
Specifies the key.

• pos
Specifies the array number in the key (begins at 1).

Return values

Return value Description

Array information specified by key (character string) Normal end

NULL Error# or there is no information about the specified array number in
the key.

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
From array 1 specified in the script, this example acquires information about array 1 in the key stored by the key1
key:

int DllFunc4(int argc,void** argv){
 void *data;
 data = $GETARRAYBYKEY(argv,argv[0],"key1",1);
 if(!data) if($GETSTATUS(argv) != JAM_SCRIPTAPI_NORMAL &&
 $GETSTATUS(argv) != JAM_SCRIPTAPI_NODATA) return -1;
 return 0;
}

■ $GETARRAYLENGTH (get number of array elements)
$GETARRAYLENGTH acquires the number of elements in the specified array.

Syntax

int $GETARRAYLENGTH(void** argv,void* array);

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 93

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

Return values

Return value Description

Number of arrays (0 or a greater numeric value) Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example acquires the number of elements in array 1 specified in the script:

int DllFunc10(void* obj,void* functbl,int argc,void** argv){
 int len;
 len = $GETARRAYLENGTH(argv,argv[0]);
 if (len<0) return -1;
 return 0;
}

■ $GETARRAYNAME (get name of array)
$GETARRAYNAME acquires the array name of a specified array.

Syntax

char* $GETARRAYNAME(void** argv,void* array);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

Return values

Return value Description

Array name (character string) Normal end

NULL Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example acquires the array name of array 1 specified in the script:

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 94

int DllFunc9(int argc,void** argv){
 char* name;
 name = $GETARRAYNAME(argv,argv[0]);
 if(!name) return -1;
 return 0;
}

■ $GETINITAREA (get return value of aim_init function)
$GETINITAREA acquires an instance, which is the return value of the aim_init function.

Syntax

void * $GETINITAREA(void** argv);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

Return value
Return value of the aim_init function (instance)

Coding example
This example acquires the return value of the aim_init function:

int DllFunc(int argc, void** argv){
 USER_HANDLE* obj;
 obj = $GETINITAREA(argv);
 return 0;
}

■ $GETKEYFROMARRAY (read corresponding key from array)
$GETKEYFROMARRAY acquires the key information having the specified array number from the information stored in
the array with the key.

Syntax

char* $GETKEYFROMARRAY(void** argv,void* array,int pos);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the group of array variables (argument of the user function).

• pos
Array number of the array element for which information is to be acquired (begins at 1).

Return values

Return value Description

Key information (character string) Normal end#1

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 95

Return value Description

NULL Error#2 or there is no value having the specified array number.

#1
If the specified array element has no key, the macro returns a character string of 0 bytes.

#2
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example acquires key information stored in array element 1 of array 3 specified in the script:

int DllFunc7(void* obj,void* functbl,int argc,void** argv){
 void *key;
 key = $GETKEYFROMARRAY(argv,argv[2],1);
 if(!key) if($GETSTATUS(argv) != JAM_SCRIPTAPI_NORMAL &&
 $GETSTATUS(argv) != JAM_SCRIPTAPI_NODATA) return -1;
 return 0;
}

■ $GETSTATUS (get details of macro termination status)
$GETSTATUS acquires the termination status of the processing.

Syntax

int $GETSTATUS(void** argv);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

Return value

Return value Description

JAM_SCRIPTAPI_NORMAL Normal end

JAM_SCRIPTAPI_DUPLICATE Duplicate key value

JAM_SCRIPTAPI_NODATA No corresponding array data

JAM_SCRIPTAPI_INSUFFICIENTMEMORY Insufficient memory for processing

JAM_SCRIPTAPI_ILLEGAL Illegal call interface

JAM_SCRIPTAPI_ERROR Other internal error

Coding example
See the coding example in $GETARRAY (get value of array data).

■ $SETARRAY (set value to array)
$SETARRAY adds information to an array.

Syntax

int $SETARRAY(void** argv,void* array,char* value);

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 96

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the array variable group (argument of the user function to which information
is to be added).

• value
Specifies the information to be added (character string).

Return values

Return value Description

0 Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example adds an array element using information data1 to array 2 specified in the script:

int DllFunc1(int argc, void** argv){
 int rc;
 rc = $SETARRAY(argv,argv[1],"data1");
 if(rc) return -1;
 return 0;
}

■ $SETARRAYBYKEY (set value to array with key)
$SETARRAYBYKEY adds information to an array with a key.

Syntax

int $SETARRAYBYKEY(void** argv,void* array,char* key,char* value);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the array variable group (argument of the user function to which information
is to be added).

• key
Specifies the key.

• value
Specifies the information to be added (character string).

Return values

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 97

Return value Description

0 Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example adds an array element using the key value key1 and the information data1 to array 2 specified in
the script:

int DllFunc2(int argc,void** argv){
 int rc;
 rc = $SETARRAYBYKEY(argv,argv[1],"key1","data1");
 if(rc) return -1;
 return 0;
}

■ $UPDARRAY (update array data)
$UPDARRAY updates the value of an array element of an array variable. The array element is specified by its array
number.

Syntax

int $UPDARRAY(void** argv,void* array,int pos,char* value);

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the array variable group (argument of the user function whose array element is
to be updated).

• pos
Specifies the array number of the array element whose Array information is to be updated (begins at 1).

• value
Specifies the new data to be used (character string).

Return values

Return value Description

0 Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example updates the value of array element 2 of array 2 specified in the script to data2:

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 98

int DllFunc5(int argc,void** argv){
 int rc;
 rc = $UPDARRAY(argv,argv[1],2,"data2");
 if(rc) if($GETSTATUS(argv) != JAM_SCRIPTAPI_NORMAL &&
 $GETSTATUS(argv) != JAM_SCRIPTAPI_NODATA) return -1;
 return 0;
}

■ $UPDARRAYBYKEY (update value of array with key)
$UPDARRAYBYKEY updates the value of an array element of an array variable. The array element is expressed as a key
and array number in the key.

Syntax

int $UPDARRAYBYKEY(void ** argv,void* array,char* key,int pos,char* value)
;

Arguments
• argv

Specifies the start address of the group of array variables that were specified in the script.

• array
Specifies one of the elements of the array variable group (argument of the user function whose array element is
to be updated).

• key
Specifies the key.

• pos
Specifies the array number in the key (begins at 1).

• value
Specifies the new data to be used (character string).

Return values

Return value Description

0 Normal end

-1 Error#

#
You can acquire detailed error information using $GETSTATUS (get details of macro termination status).

Coding example
This example updates the value of array element 1 stored by the key key1 in array 2 specified in the script to data1:

int DllFunc6(int argc,void** argv){
 int rc;
 rc = $UPDARRAYBYKEY(argv,argv[1],"key1",1,"data1");
 if(rc) if($GETSTATUS(argv) != JAM_SCRIPTAPI_NORMAL &&
 $GETSTATUS(argv) != JAM_SCRIPTAPI_NODATA) return -1;
 return 0;
}

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 99

$DLLFREE (free DLL)

$DLLFREE terminates the use of DLL (frees DLL) that was loaded by the $DLLLOAD embedded function.

Syntax
$DLLFREE(DLL-object)

Values
• DLL-object

Specifies the variable name of the DLL object that was acquired by the $DLLLOAD embedded function.

DLL interface to be used
The following shows the format of the function that is called by $DLLFREE:

void aim_free(void* object)

The $DLLFREE embedded function executes the aim_free function using the DLL object as its argument, and unloads
the DLL upon completion of the execution. The aim_free function frees the shared memory and other resources that
were used by the functions called by the aim_init function and the $DLLEXEC2 embedded function.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• The variable name of the specified DLL object is not the DLL object acquired by
$DLLLOAD.

• Argument error or other error

Legend:
—: Not applicable

Example
See the coding example in $DLLEXEC2 (execute DLL).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 100

$DLLLOAD (load DLL)

$DLLLOAD loads a DLL in which user functions are included, and acquires an object.

When loading is successful, this function returns the acquired DLL object. When loading fails, the function returns a
character string of 0 bytes.

Syntax
DLL-object=$DLLLOAD(DLL-name)

Values
• DLL-object

Specifies the name of the variable in which the DLL object is to be set.

• DLL-name
Specifies the name of DLL to be loaded, as either a constant or a variable. A constant must be enclosed in single
quotation marks ('').
Express the DLL name as a path relative to the base path specified in the -bp option of the jamscript command.
If the -bp option was omitted, Asset-Console-installation-folder\scriptwork is assumed to be the reference
folder.

DLL interface to be used
The following three execution control functions must have been exported previously to the DLL to be called:

• aim_init function for initializing instances

• aim_getmessage function for sending error message responses

• aim_free function for freeing instances

The following shows the format of each execution control function:

void* aim_init()
void aim_free(void* dllobj)
int aim_getmessage(void* dllobj, char** msg)

When loading of DLL is successful, this function calls the aim_init function to create an instance. The aim_init
function returns no error. In the event of an error, to output detailed error information to a log file, use information such
as the error message address as the return value of the aim_init function. To output an error message to Asset
Console's log file, set the message by using the aim_getmessage function that is called after the aim_init function.

In the script, when an error is detected by the $GETSTATUS embedded function, execute the $DLLFREE embedded
function and free the DLL. Because the aim_free function is called when $DLLFREE is executed, free the area for
the return value of the aim_init function.

If the aim_init function has terminated normally, make sure that the aim_getmessage function returns 0. This
makes the $DLLEXEC2 function executable.

Status
The following table lists and describes the possible statuses:

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 101

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• The specified DLL does not exist.
• Loading of DLL failed.
• DLL does not contain the required function entry.

Script execution interrupted Indicates one of the following:
• The specified DLL does not exist.
• Loading of DLL failed.
• Argument error or other error

Legend:
—: Not applicable

Note
The user must have provided previously the DLL that is to be loaded by the $DLLLOAD embedded function. Store the
header files provided by Asset Console together with the source files in the compilation environment, and then compile
them. During the compilation, specify the /MT option.

The header files are stored at the following location:

Asset-Console-installation-folder\sdk\include

Example
See the coding example in $DLLEXEC2 (execute DLL).

Creation of execution control functions
To call a DLL user function from the Asset Console script, the following three execution control functions are required:

• aim_init
• aim_free
• aim_getmessage

■ aim_init

Function
aim_init creates an instance and sets its address in the return value. This enables other functions thereafter to
acquire the address created by the aim_init function. By holding values in instances, you can avoid possible
conflict between threads.

Syntax
void* aim_init()

Return value
• If the processing is successful, the function returns the address of the handle used by this DLL. The address may

be NULL. Make sure that a value of 0 is returned, because the aim_getmessage function is called immediately
after control is returned.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 102

• To output a resumable error and details about the error to Asset Console's log file, return the address of the handle
with the error information set so that the message can be acquired by the aim_getmessage function. At the
same time, return the code that determines the termination status of the script. For details about the return
code, see Return value of aim_getmessage function.

■ aim_free

Function
aim_free frees the instance created by the aim_init function.

Syntax
void aim_free(void* dllobj)

Arguments
• dllobj(input-information)

Specifies the instance created by the aim_init function.

■ aim_getmessage

Function
aim_getmessage enables you to output the messages in the created DLL to Asset Console's log file, and easily
acquire them by using a script. The aim_getmessage function is called at the following times:

• After execution of the aim_init function
The aim_getmessage function outputs the contents of msg to Asset Console's log file.

• After execution of the created function
If a function returns a negative value (in the event of a script execution interrupted error), the
aim_getmessage function is executed and sets the address in msg as required. When a message is set, the
contents of msg are output to Asset Console's log file.

• During execution of the $DLLMSG embedded function
Executed by the $DLLMSG function, the aim_getmessage function acquires the message using variables.

Syntax
int aim_getmessage(void* dllobj, char** msg)

Arguments
• dllobj(input-information)

Specifies the instance created by the aim_init function.

• msg(output-information)
Specifies the address where the message is stored.

Return value
The following table lists and describes the return value and the processing that is executed:

Return value Description Executable processing

0 Normal end Changes the script status to NORMAL.

1 Warning Changes the script status to NODATA.

Positive value Error Changes the script status to ERROR.

Negative value Forced termination Forcibly terminates the script.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 103

Coding example
This example presents coding of a DLL source file and its association with a call from the access definition file.

• Source file of DLL (C++)

#include <stdio.h>
#include <windows.h>

#include "jamScriptAPI.h"
extern "C" __declspec(dllexport) void* aim_init();
extern "C" __declspec(dllexport) void aim_free(void*);
extern "C" __declspec(dllexport) int aim_getmessage(void*, char**);
extern "C" __declspec(dllexport) int DllFunc1(int, void**);
extern "C" __declspec(dllexport) int DllFunc2(int, void**);

typedef struct aimsample{
 int status;
 int datalen;
 char** data;
 char message[256];
}AIMSAMPLE;
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 return TRUE;
}
void* aim_init()
{
 AIMSAMPLE* dllobj = NULL;
 dllobj = (AIMSAMPLE*)LocalAlloc(LMEM_FIXED, sizeof(AIMSAMPLE));
 if(!dllobj) {
 /* error handling processing */
 return NULL;
 }
 dllobj->status = 0;
 dllobj->datalen = 0;
 dllobj->data = NULL;
 *(dllobj->message) = '\0';
 return dllobj;
}
void aim_free(void* dllobj)
{
 int i;
 if(dllobj){
 if(dllobj->data){
 for(i=0;i<dllobj->datalen;i++){
 if(*(dllobj->data+i)){
 LocalFree(*(dllobj->data+i));
 *(dllobj->data+i) = NULL;
 }
 }
 LocalFree(dllobj->data);
 dllobj->data = NULL;
 }
 LocalFree(dllobj);
 }

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 104

}
int aim_getmessage(void* dllobj, char** message)
{
 if(dllobj){
 message = ((AIMSAMPLE)dllobj)->message;
 }
 return 0;
}
int DllFunc1(int argc, void** argv)
{
 AIMSAMPLE* dllobj = NULL;
 int i,status,length;
 char* data;
 if(argc != 1){
 /* error handling processing */
 return -1;
 }
 /* acquire the area returned by aim_init*/
 dllobj = (AIMSAMPLE*)$GETINITAREA(argv);
 if(!dllobj){
 /* error handling processing */
 strcpy(dllobj->message, "Specified argument is invalid.");
 return -1;
 }
 if(dllobj->status != 0){
 strcpy(dllobj->message, "Call sequence is invalid.");
 return -1;
 }
 length = $GETARRAYLENGTH(argv, argv[0]);
 status = $GETSTATUS(argv);
 if(status != JAM_SCRIPTAPI_NORMAL){
 /* error handling processing */
 strcpy(dllobj->message, "Error was detected by $GETARRAYLENGTH fun
ction.");
 return -1;
 }
 dllobj->datalen = length;
 dllobj->data = (char**)LocalAlloc(LMEM_FIXED, sizeof(char*)*length);
 if(!dllobj->data){
 /* error handling processing */
 strcpy(dllobj->message, "Memory allocation failed.");
 return -1;
 }
 ZeroMemory(dllobj->data, sizeof(char*)*length);
 for(i=0;i<length;i++){
 data = (char*)$GETARRAY(argv, argv[0], i+1);
 status = $GETSTATUS(argv);
 if(status != JAM_SCRIPTAPI_NORMAL){
 /* error handling processing */
 strcpy(dllobj->message, "Error was detected by $GETARRAY funct
ion.");
 return -1;
 }
 (dllobj->data+length-(i+1)) = (char)LocalAlloc(LMEM_FIXED, strle
n(data)+1);
 if(!*(dllobj->data+length-(i+1))){
 /* error handling processing */
 strcpy(dllobj->message, "Memory allocation failed.");

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 105

 return -1;
 }
 strcpy(*(dllobj->data+length-(i+1)), data);
 }
 /* specific processing */
 dllobj->status = 1;
 *(dllobj->message) = '\0';
 return 0;
}
int DllFunc2(int argc, void** argv)
{
 AIMSAMPLE* dllobj = NULL;
 int i;
 if(argc != 1){
 /* error handling processing */
 return -1;
 }
 /* acquire the area returned by aim_init*/
 dllobj = (AIMSAMPLE*)$GETINITAREA(argv);
 if(!dllobj){
 /* error handling processing */
 return -1;
 }
 if(dllobj->status != 1){
 strcpy(dllobj->message, "Call sequence is invalid.");
 return -1;
 }
 if(dllobj->data){
 for(i=0;i<dllobj->datalen;i++){
 if(*(dllobj->data+i)){
 $SETARRAY(argv, argv[0], *(dllobj->data+i));
 }
 }
 }
 dllobj->status = 2;
 *(dllobj->message) = '\0';
 return 0;
}

• Association with a call from the access definition file
This example outputs the array data acquired by DllFunc1 to DllFunc2 in reverse order. If DllFunc1 and
DllFunc2 are not executed in this order, the script will be interrupted.

#AssetInformationManager HTML 0005

[VAR]
 DLLOBJ
 DATA
 STATUS
[ARRAY]
 ARY1
 ARY2
[SET_VALUE]
 DLLOBJ = $DLLLOAD('jamsample.dll')
 STATUS = $GETSTATUS()
[IF]
 STATUS != NORMAL

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 106

[THEN]
 [SET_VALUE]
 #error handling processing
 $EXIT(1)
[IF_END]
[SET_VALUE]
 $SETARRAY(ARY1, 1)
 $SETARRAY(ARY1, 2)
 $SETARRAY(ARY1, 3)
 $DLLEXEC2(DLLOBJ,'DllFunc1',ARY1)
 $DLLEXEC2(DLLOBJ,'DllFunc2',ARY2)
 DATA = $GETARRAY(ARY2,1)
 $ECHO(DATA)
 DATA = $GETARRAY(ARY2,2)
 $ECHO(DATA)
 DATA = $GETARRAY(ARY2,3)
 $ECHO(DATA)
 $DLLFREE(DLLOBJ)

Output result:
3
2
1

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 107

$DLLMSG (DLL get message)

$DLLMSG acquires a message from the $DLLEXEC2 and $DLLLOAD embedded functions that executed immediately
beforehand. To acquire a message from the $DLLMSG embedded function, set the message address in the
aim_getmessage function contained in the DLL that is being called.

Syntax
variable-name=$DLLMSG(DLL-object)

Values
• DLL-object

Specifies the variable name of the DLL object that was acquired by the $DLLLOAD embedded function.

DLL interface to be used
The following shows the format of the function called by the $DLLMSG embedded function:

int aim_getmessage(void* object //Return value of the aim_init func
tion
 ,char** message //Reference pointer for the message
)

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end (when the function returns 0)

NODATA Termination with warning (when the function returns 1)

ERROR Abnormal termination (when the function returns a positive value)

Script execution interrupted Indicates one of the following:
• Abnormal termination (when the function returns a negative value)#

• An invalid argument was specified, or an error other than the above occurred.

#
Indicates that the variable name of the specified DLL object is not the DLL object acquired by the $DLLLOAD embedded function.

Example
See the example for $DLLEXEC2 (execute DLL).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 108

$ECHO (output stdconsol)

$ECHO outputs a message to the Command Prompt.

Syntax
$ECHO(message)

Values
• message

Specifies a message, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').

Example
The following examples output the message Hello world:

[SET_VALUE]
 $ECHO('Hello world')

[SET_VALUE]
 MSG = 'Hello world'
 $ECHO(MSG)

Execution result:
Hello world
Hello world

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 109

$ENVIRONMENT (get environment information)

$ENVIRONMENT acquires the environment settings information of the asset management server.

Syntax
return-value=$ENVIRONMENT(section-name,key-name)

Values
• return-value

Specifies the name of the variable into which the acquired environment information is set.

• section-name
Specifies a section name that corresponds to an environment settings category on the asset management server. A
constant must be enclosed in single quotation marks ('').

• key-name
Specifies the name of the key that corresponds to the value of an environment setting, either as a constant or a
variable. A constant must be enclosed in single quotation marks ('').

For details about section name and key names, see the JP1/IT Desktop Management 2 - Asset Console Configuration
and Administration Guide.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA The specified section name or key name does not exist.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires the contract history acquisition setting specified in the environment settings:

[SET_VALUE]
 VAL= $ENVIRONMENT('BASE','CONTRACT_HISTORY')

 MSG = 'BASE CONTRACT_HISTORY = ' +VAL
 $ECHO(MSG)

Execution result:
BASE CONTRACT_HISTORY = YES

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 110

$EXIT (exit)

$EXIT ends processing on an access definition file.

Syntax
$EXIT(return-code)

Values
• return-code

Specifies a value for the access definition file return code, either as a constant or a variable. The range that can be
specified is from 0 to 9.

Remarks
Processing is interrupted if the specified value is out of the range that can be specified for return-code.

Example
The following example outputs the number of asset information data items whose status is active (002) or, if none are
found, terminates processing with return code 3:

[CLASS_FIND]
 AssetInfo
[FIND_DATA]
 (AssetInfo.AssetStatus = '002')AND
 (AssetInfo.AssetKind = '001')
[GET_VALUE]
 WORK = AssetInfo.AssetNo

[SET_VALUE]
 STATUS = $GETSTATUS()
 TOTAL = $DATACOUNT()
[IF]
 STATUS = NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'DataCount : ' +TOTAL
 $ECHO(MSG)
[ELSE]
 [SET_VALUE]
 MSG = 'EXIT : 3'
 $ECHO(MSG)
 $EXIT(3)
[IF_END]

Execution result:
EXIT : 3

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 111

$FILEARRAY (output to the array data CSV file)

$FILEARRAY outputs the data stored in an array as a single row in a CSV file.

Syntax
$FILEARRAY(file-object,array-name)

Values
• file-object

Specifies the variable name of the file object requested by the $FILEOPEN embedded function.

• array-name
Specifies the name of the array that you wish to output as a record to the CSV file.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• The value returned does not match the file object requested by $FILEOPEN.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example in $FILEOPEN (open file).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 112

$FILECLOSE (close file)

$FILECLOSE declares an end to editing on the file to which data was output.

Syntax
$FILECLOSE(file-object)

Values
• file-object

Specifies the file object of the file for which editing is to be ended. Specify the variable name of the file object
requested by the $FILEOPEN embedded function.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• The value returned does not match the file object requested by $FILEOPEN.
• An error occurred when an attempt was made to close the file.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example in $FILEOPEN (open file).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 113

$FILECOPY (copy file)

$FILECOPY copies a file.

Syntax
$FILECOPY(source-file-name,destination-file-name)

Values
• source-file-name, destination-file-name

Specifies a file name, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specify the file name using a relative path referenced to the base path specified with the -bp option of the
jamscript command. If the -bp option was omitted, Asset-Console-installation-folder\scriptwork is
assumed to be the reference folder.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• No source file exists.
• The output destination path does not exist.
• The file name specification is invalid.

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example copies the file input.csv to the file output.csv:

[SET_VALUE]
 SRCFILE = 'input.csv'
 OUTFILE = 'output.csv'
 $FILECOPY(SRCFILE, OUTFILE)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 114

$FILEDEL (delete file)

$FILEDEL deletes a file.

Syntax
$FILEDEL(file-name)

Values
• file-name

Specifies the name of a file to be deleted, either as a constant or a variable. A constant must be enclosed in single
quotation marks ('').
Specify the file name with a relative path referenced to the base path specified with the -bp option of the
jamscript command. If the -bp option was omitted, Asset-Console-installation-folder\scriptwork is
assumed to be the reference folder.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• The file specified by file-name does not exist.
• An error occurred when an attempt was made to delete the file (for example, the file is

locked).
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example copies the file input.csv to the file output.csv, and deletes the source file input.csv:

[SET_VALUE]
 SRCFILE = 'input.csv'
 OUTFILE = 'output.csv'
 $FILECOPY(SRCFILE, OUTFILE)
 $FILEDEL(SRCFILE)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 115

$FILEOPEN (open file)

$FILEOPEN declares the start of editing of a file to which data is to be output.

Syntax
file-object=$FILEOPEN(file-name,mode)

Values
• file-object

Specifies the name of the variable into which the acquired file on which editing is to begin is set.

• file-name
Specifies a file name, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specify the file name with a relative path referenced to the base path specified with the -bp option of the
jamscript command. If the -bp option was omitted, Asset-Console-installation-folder\scriptwork is
assumed to be the reference folder.

• mode
Specifies one of the following modes as the editing method:

• NEW: Create as a new file. Do not specify this mode for existing files.

• RENEW: Overwrite an existing file. A new file is created if there is no existing file.

• ADD: Append to an existing file. Do not specify this mode for new files.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• The file specified by file-object does not exist.
• An invalid mode was specified.
• An error occurred when an attempt was made to open the file (for example, the file is

locked).
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example creates the file output.csv, and outputs to that file "Asset ID","Asset No","Asset
status","Asset type":

[SET_VALUE]
 FH = $FILEOPEN('output.csv', RENEW)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 116

 $SETARRAY(OUTLINE,'Asset ID')
 $SETARRAY(OUTLINE,'Asset No')
 $SETARRAY(OUTLINE,'Asset status')
 $SETARRAY(OUTLINE,'Asset type')

 $FILEARRAY(FH, OUTLINE)
 $CLEARARRAY(OUTLINE)

 $FILECLOSE(FH)

Execution result:
The following is output to output.csv:
"Asset ID","Asset No.","Asset status","Asset type"

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 117

$FILEPUT (output data to file)

$FILEPUT outputs data to a file.

Syntax
$FILEPUT(file-object,character-string)

Values
• file-object

Specifies the file object of the file into which the data is to be output. Specify the variable name of the file object
requested by the $FILEOPEN embedded function.

• character-string
Specifies a character string to be output to a file, either as a constant or a variable. A constant must be enclosed in
single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• file-object does not match the file object requested by $FILEOPEN.
• A file write error occurred.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example creates the file output.csv, and outputs ABCDEFGHI as a single row:

[SET_VALUE]
 FH = $FILEOPEN('output.csv', RENEW)

 $FILEPUT(FH, 'ABC')
 $FILEPUT(FH, 'DEF')
 $FILEPUT(FH, 'GHI')

 $FILECLOSE(FH)

Execution result:
The following is output to output.csv:
ABCDEFGHI

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 118

$FILEPUTLN (output CRLF to file)

$FILEPUTLN outputs a character string to a file, and adds a CRLF at the end.

Syntax
$FILEPUTLN(file-object,character-string)

Values
• file-object

Specifies the file object of the file into which the CRLF is to be output. Specify the variable name of the file object
requested by the $FILEOPEN embedded function.

• character-string
Specifies a character string to be output to a file, either as a constant or a variable. A constant must be enclosed in
single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• file-object does not match the file object requested by $FILEOPEN.
• An error occurred when an attempt was made to close the file.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example creates the file output.csv, and outputs ABC, DEF, and GHI on three separate lines:

[SET_VALUE]
 FH = $FILEOPEN('output.csv', RENEW)

 $FILEPUTLN(FH, 'ABC')
 $FILEPUTLN(FH, 'DEF')
 $FILEPUTLN(FH, 'GHI')
 $FILECLOSE(FH)

Execution result:
The following is output to output.csv:
ABC
DEF
GHI

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 119

$FINDFILE (find files)

$FINDFILE searches files in the specified folder.

Syntax
$FINDFILE(folder-name,array-name)

Values
• folder-name

Specifies a path relative to the base path, as either a constant or a variable. A constant must be enclosed in single
quotation marks ('').

• array-name
Specifies the name of the array that stores the name of the folder and the names of files in the folder, expressed as
a variable.
For this array, File and Directory are specified by the key value for file and folder, respectively.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

ERROR The specified folder is invalid.

Script execution interrupted Indicates one of the following
• A wildcard or a character string such as .. or . was included in folder-name.
• An invalid argument was specified, or an error other than the above occurred.

Example
This example searches files in Asset-Console-installation-folder\wwwroot\bin and outputs the name of the first file:

$FINDFILE('bin', FileData)
FILE=$GETARRAY(FileData, 1)
$ECHO(FILE)

Execution result:
bin\default.htm

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 120

$FORMATMSG (set a message format)

$FORMATMSG sets the format of a character string that is output to a message.

Syntax
message=$FORMATMSG(message-text,character-string-1(,character-string-2(,...)))

Values
• message

Specifies a message, expressed as a variable.

• message-text
Specifies the character string whose format is to be set, as either a constant or a variable. A constant must be enclosed
in single quotation marks ('').

• character-string
Specifies the character string to be inserted in the message text, as either a constant or a variable. A constant must
be enclosed in single quotation marks ('').
A maximum of 99 character strings can be specified.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

ERROR —

Script execution interrupted Indicates one of the following:
• More than 99 arguments were specified.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
This example outputs a message with the asset number and the processing inserted:

MSG = $FORMATMSG('Device %2 on asset number %1 failed','1001','deletion')
$ECHO(MSG)

Execution result:
Device deletion on asset number 1001 failed.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 121

$GETARRAY (get value of array data)

$GETARRAY acquires information of a specified array number from information stored in an array.

Syntax
return-value=$GETARRAY(array-name,array-number)

Values
• return-value

Specifies the name of the variable into which the acquired information is set.

• array-name
Specifies the variable name of the array from which to read information.

• array-number
Specifies the array number of the array element from which information is to be read, either as a constant or a
variable. A constant must be enclosed in single quotation marks (''). Specified values can range from 1 to
2,147,483,647.
If no array element of the specified array number exists, a 0-byte character string is returned.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No information exists for the specified array number.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example for $SETARRAY (set value to array).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 122

$GETARRAYBYKEY (get value from array with key)

$GETARRAYBYKEY acquires information corresponding to a specified key from keyed information stored in an array.

Syntax
return-value=$GETARRAYBYKEY(array-name,key-value(,array-number-in-key))

Values
• return-value

Specifies the name of the variable into which the acquired value is set.

• array-name
Specifies the name of the array from which to read information.

• key-value
Specifies the key to the information to be acquired. If no array element exists in the specified key, a 0-byte character
string is returned.

• array-number-in-key
Specifies the array number in the key when there are multiple data values that correspond to the specified key, either
as a constant or a variable. A constant must be enclosed in single quotation marks (''). Specified values can range
from 1 to 2,147,483,647.
If no array element of the array number specified in the key exists, a 0-byte character string is returned.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• The specified key does not exist.
• No information exists for array-number in the specified key.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example in $SETARRAYBYKEY (set value to array with key).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 123

$GETKEYFROMARRAY (get key information from array)

$GETKEYFROMARRAY acquires the key of a specified array number from keyed information stored in an array.

Syntax
return-value=$GETKEYFROMARRAY(array-name,array-number)

Values
• return-value

Specifies the name of the variable into which the acquired key is set.

• array-name
Specifies the variable name of the array variable from which key information is read.

• array-number
Specifies a numeric character, either as a constant or a variable. A constant must be enclosed in single quotation
marks (''). Specified values can range from 1 to 2,147,483,647.
If no array element exists for the specified array number, a 0-byte character string is returned.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No information exists for the specified array number.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires the key information and value of the fifth element of the array variable ARY:

[SET_VALUE]
 $CLEARARRAY(ARY)

 $SETARRAYBYKEY(ARY,'CPU','100') # ARY[1] CPU[1]
 $SETARRAYBYKEY(ARY,'CPU','200') # ARY[2] CPU[2]
 $SETARRAYBYKEY(ARY,'HD' ,'40') # ARY[3] HD[1]
 $SETARRAYBYKEY(ARY,'HD' ,'20') # ARY[4] HD[2]
 $SETARRAYBYKEY(ARY,'MEM','128') # ARY[5] MEM[1]
 $SETARRAYBYKEY(ARY,'MEM','256') # ARY[6] MEM[2]

 KEY = $GETKEYFROMARRAY(ARY,5)
 VAL = $GETARRAY(ARY, 5)
 MSG = 'ARY[5]: KEY=' + KEY + ' VAL=' + VAL
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 124

Execution result:
ARY[5]: KEY=MEM VAL=128

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 125

$GETPROFILEDATA (get Windows initialization file data)

$GETPROFILEDATA reads all keys and values in the specified section of the specified Windows initialization file
name into an array variable. The keys in the section are stored as array key values.

Syntax
$GETPROFILEDATA(Windows-initialization-file-name,section-name,array-name)

Values
• Windows-initialization-file-name

Specifies the name of the Windows initialization file to be read. Specify the file name as either a constant or a
variable. A constant must be enclosed in single quotation marks ('').
The Windows initialization file is stored in Asset-Console-installation-folder\env.

• section-name
Specifies the name of the section to be acquired. Specify the section name as either a constant or a variable. A
constant must be enclosed in single quotation marks ('').
If section-name is a 0-byte character string, this function stores all section names of the Windows initialization file
in a key array. When this happens, the key values are not stored in the array.

• array-name
Specifies the variable name of the array into which information from the Windows initialization file is read.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• The Windows initialization file does not exist.
• The specified section does not exist.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires values from the section TITLE and the key name HardwareInfo from the Windows
initialization file Sample.ini:

[SET_VALUE]
 FILENAME = 'Sample.ini'
 SECTION = 'TITLE'

 $GETPROFILEDATA(FILENAME, SECTION, ARY)
 VAL=$GETARRAYBYKEY(ARY, 'HardwareInfo')

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 126

 MSG = 'HardwareInfo = ' + VAL
 $ECHO(MSG)

Sample.ini file

[TITLE]
 AssetInfo = Asset Information
 HardwareInfo = Hardware Information
 SoftwareInfo = Software Information

Execution result:
HardwareInfo = Hardware Information

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 127

$GETREGVALUE (get a registry value)

$GETREGVALUE acquires the specified registry value.

Syntax
$GETREGVALUE('registry-name')

Values
• registry-name

Specifies a registry name expressed as a character string.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

ERROR Registry acquisition failed.

Script execution interrupted Indicates one of the following:
• The attribute of the specified registry is not a character string or DWORD.
• An invalid argument was specified, or an error other than the above occurred.

Example
The following example acquires the value of KEYVERSION (1050):

[SET_VALUE]
 AIMVERSION = $GETREGVALUE('KEYVERSION')
 STATUS = $GETSTATUS()
[IF]
 STATUS = NORMAL
[THEN]
 [SET_VALUE]
 MSG = 'AIMVERSION = ' + AIMVERSION
 $ECHO(MSG)
[ELSE]
 [SET_VALUE]
 MSG = '$GETREGVALUE (' + STATUS + ')'
 $ECHO(MSG)
[IF_END]

Execution result:
AIMVERSION = 1050

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 128

$GETROLE (get role of user)

$GETROLE reads a list of user roles currently executing asset management jobs in operation windows into the
specified array.

Syntax
$GETROLE(array-name)

Values
• array-name

Specifies the variable name of an array.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• Database access error
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If no roles have been set for users, the process ends normally, but no information is set into the array variable.

Example
The following example acquires user roles, then outputs the role (administrator) in array number 1:

[SET_VALUE]
 $GETROLE(ARY)
 VAL = $GETARRAY(ARY, 1)
 MSG = 'ROLE = ' + VAL
 $ECHO(MSG)

Execution result:
ROLE = administrator

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 129

$GETSESSION (get session information)

$GETSESSION acquires the value specified with the -s option of the jamscript command. The syntax of the -s
option is -s session-variable-name=value.

Syntax
return-value=$GETSESSION(session-variable-name)

Values
• return-value

Specifies the name of the variable into which the acquired session information is set.

• session-variable-name
Specifies the variable name of the session to be acquired, either as a constant or a variable. A constant must be
enclosed in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA The specified session variable does not exist.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If no information exists for the specified session variable name, a 0-byte character string is returned.

Example
The following example specifies the -s option of the jamscript command to acquire information (aaaa):

[SET_VALUE]
 VAL = $GETSESSION('OPTION')
 MSG = 'OPTION = ' + VAL
 $ECHO(MSG)

Execution command:
jamscript -f C:\Test.txt -s OPTION=aaaa

Execution result:
OPTION = aaaa

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 130

$GETSTATUS (get status)

$GETSTATUS acquires the status of a process. Four statuses exist: NORMAL (normal end), NODATA (no data exists),
ERROR (an error occurred), and MULTI (another user is currently updating).

Syntax
return-value=$GETSTATUS()

Values
• return-value

Specifies the name of the variable into which the acquired status is set.

Example
The following example searches for information of asset number R11111, and updates the status of the asset to
STOCK. In this example, an error occurs if the information of R11111 is updated by another agent after the search has
finished.

[TRANSACTION]
 [CLASS_FIND]
 AssetInfo
 [FIND_DATA]
 (AssetInfo.AssetNo = 'R11111')
 [GET_VALUE]
 ASSETID = AssetInfo.AssetID
 ASSETSTATUS = AssetInfo.AssetStatus
 ASSETNO = AssetInfo.AssetNo
 UPDCK = AssetInfo.UpdateTime

 [SET_VALUE]
 STATUS = $GETSTATUS()
 [IF]
 STATUS = NORMAL
 [THEN]
 [UPDATE]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = ASSETID
 AssetInfo.AssetStatus = '301'
 AssetInfo.UpdateTime = UPDCK

 [SET_VALUE]
 STATUS = $GETSTATUS()
 [IF]
 (STATUS = NORMAL)
 [THEN]
 [SET_VALUE]
 MSG = 'ASSETNO('+ASSETNO+') status updated.'
 $ECHO(MSG)
 [IF_END]
 [IF]
 (STATUS = MULTI)
 [THEN]
 [SET_VALUE]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 131

 MSG = 'ASSETNO(' + ASSETNO + ') already updated by other agent.'
 $ECHO(MSG)
 [IF_END]
 [IF]
 (STATUS != NORMAL) and (STATUS != MULTI)
 [THEN]
 [SET_VALUE]
 MSG = 'ASSETNO(' + ASSETNO + ') status cannot be updated.'
 $ECHO(MSG)
 [IF_END]

 [ELSE]
 [SET_VALUE]
 MSG = 'ASSETNO(' + ASSETNO + ') was not registered.'
 $ECHO(MSG)
 [IF_END]
[TRANSACTION_END]

To suppress concurrent updating as shown in this example, acquire the search time with class-name.UpdateTime,
and specify the acquired value as is in an [UPDATE] tag. Suppression of concurrent updating is valid only when
updating; it cannot be performed when adding or deleting information.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 132

$GETTEMPNAME (get temporary file name)

$GETTEMPNAME specifies the name of a temporary file that is managed by session.

The file with the file name specified with the $GETTEMPNAME embedded function is deleted when a logout, forcible
logout, or a session-ending timeout occurs. When downloading a CSV file, by using a name specified by the
$GETTEMPNAME embedded function, you can automatically delete the created file. When $GETTEMPNAME is used
with the jamscript command, the file is deleted when the command ends.

If you wish to open the file being downloaded with a browser helper application, specify the file name extension assigned
to the helper application.

Syntax
return-value=$GETTEMPNAME(unique-character-string)

Values
• return-value

Specifies the name of the variable into which the acquired temporary file name is set.

• unique-character-string
Specifies a character string that is unique within the session, either as a constant or a variable. A constant must be
enclosed in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example uses the $GETTEMPNAME embedded function to acquire the name of a temporary file. As
indicated under Execution result, the temporary file name is set automatically by Asset Console.

[SET_VALUE]
 FILENAME = $GETTEMPNAME('Sample.csv')
 MSG = 'FILENAME = ' + FILENAME
 $ECHO(MSG)

Execution result:
FILENAME = csv/$$3FAE0F01000004EC0001$4$Sample.csv

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 133

$GOSUB (execute subroutine)

$GOSUB executes a subroutine defined by the [SUB] tag. The subroutine to be executed must be defined before the
$GOSUB function appears.

Syntax
$GOSUB(subroutine-name)

Values
• subroutine-name

For the subroutine name, you can use alphanumeric characters and the underscore (_). However, a numeric character
cannot be used as the first character of the subroutine name. Note also that case is considered significant in subroutine
names.

Example
The following example creates a subroutine to perform the processing for outputting a message according to the value
in the session information MSG:

[SUB]
 ECHO
 [IF]
 MSG = '1'
 [THEN]
 [SET_VALUE]
 $ECHO(ECHOMSG)
 [IF_END]
[SUB_END]

[BEGIN]
 [SET_VALUE]
 MSG = $GETSESSION('MSG')

 ECHOMSG = 'Hello world'
 $GOSUB(ECHO)
[END]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 134

$ISNULL (check NULL)

$ISNULL determines whether data acquired with the [CSV_COLUMN_NAME] tag is NULL or a 0-byte character.

Syntax
return-value=$ISNULL(column-name)

Values
• return-value

Specifies the name of the variable into which the evaluated results are set. If the value of the column specified by
column-name is NULL, 1 is returned; if it is a 0-byte character, 0 is returned.

• column-name
Specifies the variable name of the column that is defined by the [CSV_COLUMN_NAME] tag.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires data from the file input.csv; it then outputs COLUMN1 IS NULL if COLUMN1
is the NULL character, or outputs COLUMN1 LENGTH IS 0 if COLUMN1 is a 0-byte character:

[SET_VALUE]
 FILENAME = 'input.csv'
 CNT = 1
[CSV_FILE_LOOP]
 FILENAME
 [CSV_COLUMN_NAME]
 COLUMN1 = 1
 [BEGIN]
 [SET_VALUE]
 LEN = $LENGTH(COLUMN1)
 [IF]
 LEN = 0
 [THEN]
 [SET_VALUE]
 VAL=$ISNULL(COLUMN1)
 [IF]
 VAL = 1
 [THEN]
 [SET_VALUE]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 135

 MSG = 'LINE('+CNT+') COLUMN1 IS NULL'
 [ELSE]
 [SET_VALUE]
 MSG = 'LINE('+CNT+') COLUMN1 LENGTH IS 0'
 [IF_END]

 [ELSE]
 [SET_VALUE]
 MSG = 'LINE('+CNT+') COLUMN1 LENGTH IS '+LEN
 [IF_END]
 [SET_VALUE]
 $ECHO(MSG)
 CNT = $ADD(CNT,1)
 [END]

 [SET_VALUE]
 $SETSTATUS('NORMAL')
[CSV_FILE_LOOP_END]

Contents of input.csv

,bbb,ccc
"",bbb,ccc
aaa,bbb,ccc
"aaa",bbb,ccc

Execution result:
LINE(1) COLUMN1 IS NULL
LINE(2) COLUMN1 LENGTH IS 0
LINE(3) COLUMN1 LENGTH IS 3
LINE(4) COLUMN1 LENGTH IS 3

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 136

$LDAPACS (access directory)

$LDAPACS provides authentication of connections to directory services, searching, entry acquisition, attribute
acquisition, and other services that enable access to directory information. To use this embedded function for
manipulating directory information, you must learn the methods and functions for accessing directory information.

Syntax
$LDAPACS(function-name,argument-1(,argument-2(,...)))

Values
• function-name

Specifies the name of a function, either as a constant or a variable. A constant must be enclosed in single quotation
marks ('').

• argument
Specifies an argument for the function, either as a constant or a variable. A constant must be enclosed in single
quotation marks ('').

Remarks
If information acquisition fails, a 0-byte character string is returned.

Detailed descriptions of functions that can be used to access directory information
The following table lists and describes the functions that can be used by the $LDAPACS embedded function.

Table 5‒3: List of functions that can be used by the $LDAPACS embedded function

Function name Description

CONNECT Authenticates connection to directory service.

CONVERT Converts data to a character string used in searching directory
information.

DISCONNECT Releases a connection to directory service.

FIRSTENTRY Acquires the first entry that was found.

FREEENTRY Releases an entry.

FREERESULT Releases a search result.

GETDN Acquires an entry DN.

NEXTENTRY Acquires the second and subsequent entries that were found.

SEARCH Searches directory service.

SELECTVALUE Acquires an attribute value.

The following subsections provide a description of each of these functions, along with their syntax, arguments, and
statuses. Status differs depending on the status acquired with the $GETSTATUS embedded function.

■ CONNECT
CONNECT authenticates connection to directory service, and returns a directory object.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 137

Syntax

$LDAPACS('CONNECT',LDAPOBJ,HOST,PORT,USERDN,PASSWD)

Arguments

Argument Type Description

LDAPOBJ Directory object Specifies the name of the variable into which
the directory object is set.

HOST Variable or constant Specifies the host name or IP address of the
directory server.

PORT Variable or constant Specifies the port number of the directory
server.

USERDN Variable or constant Specifies the user DN for authenticating a
connection.

PASSWD Variable or constant Specifies the password for authenticating a
connection.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Invalid argument.

Script execution interrupted Indicates one of the following:
• An error occurred when an attempt was made to connect to the directory.
• An authentication error occurred.
• An error other than the above occurred.

Legend:
—: Not applicable

■ CONVERT
CONVERT converts data to a character string for use in searching the directory service.

Syntax

return-value=$LDAPACS('CONVERT',SOURCE)

• return-value
Specifies the name of the variable into which the converted character string is set.

Arguments

Argument Type Description

SOURCE Variable or constant Specifies the character string to be converted.

Status
The following table lists and describes the possible statuses:

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 138

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• Conversion failure.
• Invalid argument.

Script execution interrupted Indicates one of the following:
• A variable is not defined.
• An error other than the above occurred.

Legend:
—: Not applicable

■ DISCONNECT
DISCONNECT releases the directory service connection and all objects under it.

Syntax

$LDAPACS('DISCONNECT',LDAPOBJ)

Argument

Argument Type Description

LDAPOBJ Directory object Specifies the directory object requested by
CONNECT.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR LDAPOBJ does not match the directory object requested by CONNECT.

Script execution interrupted Indicates one of the following:
• A variable is not defined.
• An error other than the above occurred.

Legend:
—: Not applicable

■ FIRSTENTRY
FIRSTENTRY acquires the first entry object found from the search object. To release an acquired object, you must call
FREEENTRY.

Syntax

$LDAPACS('FIRSTENTRY',LDAPENT,LDAPRST)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 139

Arguments

Argument Type Description

LDAPENT Entry object Specifies the name of the variable into which
the entry object is set.

LDAPRST Result object Specifies the result object.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No entry exists.

ERROR Indicates one of the following:
• LDAPRST does not match the search object requested by SEARCH.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

■ FREEENTRY
FREEENTRY releases the specified entry object and all objects under it.

Syntax

$LDAPACS('FREEENTRY',LDAPENT)

Argument

Argument Type Description

LDAPENT Entry object Specifies an entry object.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• LDAPENT does not match the entry object requested by FIRSTENTRY or NEXTENTRY.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

Legend:
—: Not applicable

■ FREERESULT
FREERESULT releases the specified result object and all objects under it.

Syntax

$LDAPACS('FREERESULT',LDAPRST)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 140

Argument

Argument Type Description

LDAPRST Result object Specifies a result object.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• LDAPRST does not match the search object requested by SEARCH.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

Legend:
—: Not applicable

■ GETDN
GETDN acquires the indicator (character string) from the entry object. The acquired character string cannot be released.
You must use FREEENTRY to release its higher object.

Syntax

$LDAPACS('GETDN',LDAPDN,LDAPENT)

Arguments

Argument Type Description

LDAPDN DN Specifies the name of the variable into which
the DN is set.

LDAPENT Entry object Specifies the entry object.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• LDAPENT does not match the entry object requested by FIRSTENTRY or NEXTENTRY.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

Legend:
—: Not applicable

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 141

■ NEXTENTRY
NEXTENTRY acquires the second and subsequent entry objects found in the result object. This function cannot be called
without first calling FIRSTENTRY. To release the acquired object, you must call FREEENTRY.

Syntax

$LDAPACS('NEXTENTRY',LDAPENT,LDAPRST)

Arguments

Argument Type Description

LDAPENT Entry object Specifies the name of the variable into which
the entry object is set.

LDAPRST Result object Specifies the result object.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR Indicates one of the following:
• LDAPRST does not match the result object requested by SEARCH.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

Legend:
—: Not applicable

■ SEARCH
SEARCH performs a synchronous search on the LDAP server.

To release the result object, you must call FREERESULT to release its higher object.

Syntax

$LDAPACS('SEARCH',LDAPRST,LDAPOBJ,BASE,FILTER,SCOPE)

Arguments

Argument Type Description

LDAPRST Result object Specifies the variable name into which the
result object is set.

LDAPOBJ Directory object Specifies the directory object acquired by
CONNECT.

BASE Variable or constant Specifies the base object from which the
search starts.

FILTER Variable or constant Specifies the search filter.

SCOPE Variable or constant Referenced to the base object, specifies to
search one of the following directory
information levels:

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 142

Argument Type Description

SCOPE Variable or constant • LDAP_SCOPE_SUBTREE (Search all
objects under the base object)

• LDAP_SCOPE_ONELEVEL (Search
objects directly below the base object)

• LDAP_SCOPE_BASE (Search the base
object)

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No matching data exists.

ERROR Invalid argument.

Script execution interrupted An error other than the above occurred.

■ SELECTVALUE
SELECTVALUE specifies an attribute name from an entry object, and acquires the value of the first attribute (character
string).

The acquired character string cannot be released. You must use FREEENTRY to release its higher object.

Syntax

$LDAPACS('SELECTVALUE',LDAPSEL,LDAPENT,KEYNAME)

Arguments

Argument Type Description

LDAPSEL Attribute value Specifies the name of the variable into which
the attribute value (character string) is set.

LDAPENT Entry object Specifies the entry object.

KEYNAME Variable or constant Specifies the name of the attribute you wish
to acquire.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No value exists for the specified attribute.

ERROR Indicates one of the following:
• LDAPENT does not match the entry object requested by FIRSTENTRY or NEXTENTRY.
• Invalid argument.

Script execution interrupted An error other than the above occurred.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 143

Example
The following example outputs the DN and name of the user whose attribute title;lang-ja is Supervisor,
from users who are registered to the directory ou=people,o=xxxxxxx.co.us:

[VAR]
 STATUS
 MSG
 HOST
 PORT
 FILTER
 BASE
 SCOPE
 FIRST
 LDOBJ
 LDRST
 LDENT
 DN
 NAME

[SET_VALUE]
 HOST = 'localhost'
 PORT = '389'
 BASE = 'ou=people,o=xxxxxxx.co.us'
 SCOPE= 'LDAP_SCOPE_ONELEVEL'

[SET_VALUE]
 $LDAPACS('CONNECT',LDOBJ,HOST,PORT,'','') # CONNECT
 STATUS = $GETSTATUS()

 [SET_VALUE]
 FILTER = '(&(objectclass=*)(title;lang-ja='
 FILTER = FILTER+$LDAPACS('CONVERT','Supervisor') # CONVERT
 FILTER = FILTER+'))'
 # FILTER=(&(objectclass=*)(title;lang-ja=\E4\B8\BB\E4\BB\BB))

 $LDAPACS('SEARCH',LDRST,LDOBJ,BASE,FILTER,SCOPE) # SEARCH
 FIRST = 1

 [DO]
 [IF]
 FIRST = 1
 [THEN]
 [SET_VALUE]
 $LDAPACS('FIRSTENTRY',LDENT,LDRST) # GET FIRST ENTRY
 STATUS = $GETSTATUS()
 FIRST = 0
 [ELSE]
 [SET_VALUE]
 $LDAPACS('NEXTENTRY',LDENT,LDRST) # GET NEXT ENTRY
 STATUS = $GETSTATUS()
 [IF_END]

 [IF]
 STATUS = NORMAL
 [THEN]
 [SET_VALUE]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 144

 $LDAPACS('GETDN',DN,LDENT) # GET DN
 $LDAPACS('SELECTVALUE',NAME,LDENT,'cn') # GET VALUE OF CN
 MSG='DN ['+DN+'] is '+NAME
 $ECHO(MSG)
 $LDAPACS('FREEENTRY',LDENT) # FREE ENTRY OBJECT
 [ELSE]
 [SET_VALUE]
 $BREAK()
 [IF_END]
 [DO_END]

 [SET_VALUE]
 $LDAPACS('FREERESULT',LDRST) # FREE SEARCH OBJECT

[SET_VALUE]
 $LDAPACS('DISCONNECT',LDOBJ) # FREE LDAP OBJECT

Execution result:
DN [uid=user1, ou=people, o=xxxxxxx.co.us] is Smith
DN [uid=user3, ou=people, o=xxxxxxx.co.us] is Brown

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 145

$LENGTH (get string length)

$LENGTH acquires the length in bytes of the specified character string.

Syntax
return-value=$LENGTH(character-string)

Values
• return-value

Specifies the name of the variable into which the acquired character string length is set.

• character-string
Specifies the character string whose length is to be acquired, either as a constant or an array variable. A constant
must be enclosed in single quotation marks ('').
If an array variable is specified, the number of elements set in the array is returned.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example acquires and outputs the length of character string string length:

[SET_VALUE]
 DATA = 'string length'
 VAL = $LENGTH(DATA)
 MSG = 'LENGTH = ' + VAL
 $ECHO(MSG)

Execution result:
LENGTH = 13

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 146

$LOGMSG (output to the log file)

$LOGMSG outputs a specified message to the log file ASTMESn.LOG.

Syntax
$LOGMSG(message-type,message)

Values
• message-type

Specifies one of the following message types:

• E (Error)
Indicates that a severe problem occurred, and the program must be stopped.

• EW (Warning)
Indicates that a problem occurred and, for example, some functionality cannot be used but the program does not
need to be stopped. W is output to the log file as the message type.

• EI (Information)
Indicates information. I is output to the log file as the message type.

• message
Specifies a constant or variable for the message. If you specify a constant, enclose it in single quotation marks (').

Note
If a message type other than E, EW, or EI is specified, the script will be interrupted.

Example
The following example shows the settings and the execution result when the message type E (error) is specified. As
indicated under Execution result, text preceding the message is set automatically by Asset Console. For details about
how to read the execution results, see the JP1/IT Desktop Management 2 - Asset Console Configuration and
Administration Guide.

[SET_VALUE]
 MSG = 'Destination E-mail address is not specified.'
 $LOGMSG ('E', MSG)

Execution result:
0040519212834.673 00000594(00000664) KDAM2G14-E E-mail address is not
specified.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 147

$LOWER (convert string)

$LOWER converts the alphabetic characters specified in the argument character string to lower case.

Syntax
return-value=$LOWER(character-string)

Values
• return-value

Specifies the name of the variable into which the character string that has been converted to lower case is set.

• character-string
Specifies the character string to be converted, either as a constant or a variable. A constant must be enclosed in
single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example converts the host name acquired from system inventory information to lower case, and outputs
the result:

[SET_VALUE]
 NAME = 'HOSTNAME'
 VAL = $LOWER(NAME)
 MSG = 'LOWER = ' + VAL
 $ECHO(MSG)

Execution result:
LOWER = hostname

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 148

$MATCH (check string)

$MATCH evaluates the characters used in a character string, and returns the number of characters up to but not including
the first character that does not match.

Syntax
return-value=$MATCH(character-string,evaluation-format)

Values
• return-value

Specifies the name of the variable into which the number of characters that matched evaluation-format is set. If no
characters match, a 0-byte character string is returned.

• character-string
Specifies the character string to be evaluated, either as a constant or a variable. A constant must be enclosed in single
quotation marks ('').

• evaluation-format
Specifies, as a constant, the format for evaluating character-string. If you are specifying a range of allowed
characters, specify the range in a [a-b] format.
In addition to simple character strings, the following regular expressions can be used in evaluation-format.

• . (period)
Finds any one character.

• [] (square brackets)
Finds any single character enclosed in the brackets, or any single character within the range indicated by the
characters surrounding a hyphen (-). For example, R[OAI]M finds ROM, RAM, and RIM.
Similarly, S[AE]+D finds SAD, SED, SEED, and SAAD, but does not find SAED or SEAD.
C[0-9] finds C0, C1, C2, and so on.
Specifying a circumflex (^) as the first character in the square brackets negates the meaning, and finds all
characters other than the character that follows the circumflex.

• [^]
Finds any one character that is not the character following the circumflex (^), or is not in the range of characters
indicated with the hyphen following the circumflex.
For example, x[^0-9] finds xa, xb, xc, and so on, but does not find x0, x1, x2, or other x-number pairs.

• ^
Finds the beginning of a character string.

• $ (dollar sign)
Finds the end of a character string.

• * (asterisk)
Finds zero or more repetitions of the character or regular expression that appears immediately before the asterisk.
For example, ba*c finds bc, bac, baac, baaac, and so on.

• + (addition sign)
Finds one or more repetitions of the character or regular expression that appears immediately before the addition
sign.
For example, ba+c finds bac, baac, baaac, and so on.

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 149

• \ (backslash)
Finds the single character that directly follows this escape character specification. It disables the meaning of
characters that have special meaning in regular expression character strings, such as asterisk (*) and dollar sign
($). In addition, note that the backslash followed by a t finds a tab character.

• \t
Matches a tab character.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No character that matches evaluation-format was found.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example

Example 1
The following example checks for characters other than alphanumeric characters:

[SET_VALUE]
 DATA = 'user$1'
 VAL = $MATCH(DATA,'[^a-zA-Z0-9]')
[IF]
 VAL = ''
 [THEN]
 [SET_VALUE]
 MSG = 'MATCH OK'
 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 MSG = 'MATCH NG ('+VAL+')'
 $ECHO(MSG)
[IF_END]

Execution result:
MATCH NG (4)

Example 2
The following example checks date formats:

[SET_VALUE]
 DATA = '2015/04/01'
 VAL = $MATCH(DATA,'^[1-2][0-9][0-9][0-9]/[0-1][0-9]/[0-3][0-9]$')
[IF]
 VAL != ''
 [THEN]
 [SET_VALUE]
 MSG = 'MATCH OK'

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 150

 $ECHO(MSG)
 [ELSE]
 [SET_VALUE]
 MSG = 'MATCH NG'
 $ECHO(MSG)
[IF_END]

Execution result:
MATCH OK

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 151

$MOD (divide and return only the remainder)

$MOD performs division, treating character strings as numeric values, and returns the remainder of the arithmetic result.

Syntax
return-value=$MOD(character-string,numeric-character)

Values
• return-value

Specifies the name of the variable into which the arithmetic result is set. Valid results range from 0.0001 to
999,999,999,999,999 (15 digits). If the result is outside the valid range, 0 is assumed.

• character-string
Specifies a dividend, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

• numeric-character
Specifies a divisor, either as a constant or a variable. A numeric value specified as a constant that includes a decimal
point must be enclosed in single quotation marks (''). Specified values can range from 0.0001 to
999,999,999,999,999 (15 digits). If 0 is specified, 0 is returned to return-value.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• An invalid value was specified in a character string or numeric value.
• The arithmetic result is a value outside the range of representable values.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If a value that cannot be specified in character-string or numeric-character is encountered, or if the arithmetic result is
a value outside the representable range, 0 is returned to return-value.

Example
The following example calculates 10 ÷ 3 and outputs the remainder:

[SET_VALUE]
 VAL1 = 10
 VAL2 = $MOD(VAL1, 3)

 MSG = 'MOD: ' +VAL1+ ' MOD 3 = ' +VAL2
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 152

Execution result:
MOD: 10 MOD 3 = 1

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 153

$MUL (multiplication)

$MUL performs multiplication, treating character strings as numeric values, and returns the arithmetic result.

Syntax
return-value=$MUL(character-string,numeric-character)

Values
• return-value

Specifies the name of the variable into which the arithmetic result is set. Valid results range from 0.0001 to
999,999,999,999,999 (15 digits).

• character-string
Specifies a multiplicand, either as a constant or a variable. A constant must be enclosed in single quotation marks
(''). Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

• numeric-character
Specifies a multiplier, either as a constant or a variable. A numeric value specified as a constant that includes a
decimal point must be enclosed in single quotation marks (''). Specified values can range from 0.0001 to
999,999,999,999,999 (15 digits).

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• An invalid value was specified in a character string or numeric value.
• The arithmetic result is a value outside the range of representable values.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If a value that cannot be specified in character-string or numeric-character is encountered, or if the arithmetic result is
a value outside the representable range, 0 is returned to return-value.

Example
The following example calculates 10 × 5 and outputs the results:

[SET_VALUE]
 VAL1 = 10
 VAL2 = $MUL(VAL1, 5)

 MSG = 'MUL:' +VAL1+ ' * 5 = ' +VAL2
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 154

Execution result:
MUL: 10 * 5 = 50

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 155

$NUMBER (numbering)

$NUMBER uses the object class FunctionInfo to acquire a unique number used by the asset management system
database. You can retrieve numbers by specified function ID and extend ID ranging from 1 to 4,294,967,295 (10 digits).

If 4,294,967,295 is exceeded, the function returns to 1. If the number is less than ten digits, zeros are inserted into the
unfilled digit places.

Syntax
return-value=$NUMBER(function-ID,extend-ID)

Values
• return-value

Specifies the name of the variable into which the acquired sequential number is set.

• function-ID
Specifies the value of a feature specified by the object class FunctionInfo, either as a constant or a variable. A
constant must be enclosed in single quotation marks ('').

• extend-ID
Specifies any character string of 1 to 251 bytes to further classify the feature specified by the object class
FunctionInfo. The extend ID must be specified either as a constant or a variable. A constant must be enclosed
in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted Indicates one of the following:
• Database access error.
• An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
You must also register to the object class FunctionInfo the exclusion control lock record that corresponds to the
function ID.

The following shows an example of the data file that is imported into FunctionInfo, with a function ID of USER
and an extend ID of Number.

OP,CreationClassName,FunctionID,ExtendID,UpdateDate,SequenceNo
a,FunctionInfo,USER,Number,2003/1/1,0
a,FunctionInfo,USER,NumberLock,2003/1/1,0

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 156

Example
The following example uses the function ID USER and the extend ID Number to acquire a number (0000000001):

[SET_VALUE]
 VAL = $NUMBER('USER' , 'Number')
 MSG = 'NUMBER = ' + VAL
 $ECHO(MSG)

Execution result:
NUMBER = 0000000001

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 157

$SETARRAY (set value to array)

$SETARRAY adds information to an array.

Syntax
$SETARRAY(array-name,character-string)

Values
• array-name

Specifies the name of the array into which a value is to be added.

• character-string
Specifies the value to be added to the array variable, either as a constant or a variable. A constant must be enclosed
in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example initializes the array ARY and sets to it array data ARY[1] aaa, ARY[2] bbb, and ARY[3]
ccc. In this example, the value in array number 2 of the created array variable is then updated to ddd, which is then
acquired and output.

[SET_VALUE]
 $CLEARARRAY(ARY)

 $SETARRAY(ARY,'aaa')
 $SETARRAY(ARY,'bbb')
 $SETARRAY(ARY,'ccc')

 $UPDARRAY(ARY,2,'ddd')

 VAL = $GETARRAY(ARY, 2)
 MSG = 'ARY = ' + VAL
 $ECHO(MSG)

Execution result:
ARY = ddd

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 158

$SETARRAYBYKEY (set value to array with key)

$SETARRAYBYKEY adds keyed information to an array.

Syntax
$SETARRAYBYKEY(array-name,key-value,character-string)

Values
• array-name

Specifies the variable name of the array variable into to which a value is to be added.

• key-value
Specifies the key of the value that is to be added to the array variable.

• character-string
Specifies the value to be added to the array variable, either as a constant or a variable. A constant must be enclosed
in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example updates the value of array number 1 in the key MEM from 128 to 1024, and acquires the updated
value by specifying its key:

[SET_VALUE]
 $CLEARARRAY(ARY)

 $SETARRAYBYKEY(ARY,'CPU','100') # ARY[1] CPU[1]
 $SETARRAYBYKEY(ARY,'CPU','200') # ARY[2] CPU[2]
 $SETARRAYBYKEY(ARY,'HD' ,'40') # ARY[3] HD[1]
 $SETARRAYBYKEY(ARY,'HD' ,'20') # ARY[4] HD[2]
 $SETARRAYBYKEY(ARY,'MEM','128') # ARY[5] MEM[1]
 $SETARRAYBYKEY(ARY,'MEM','256') # ARY[6] MEM[2]

 $UPDARRAYBYKEY(ARY,'MEM',1,'1024')

 VAL = $GETARRAYBYKEY(ARY,'MEM',1)
 MSG = 'ARY MEM[1] = '+VAL
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 159

Execution result:
ARY MEM[1] = 1024

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 160

$SETOPTION (set run options)

$SETOPTION sets options so that script processing will not be interrupted even if an error occurs on the script.

Syntax
$SETOPTION('option-name',parameter)

Values
• option-name

Specifies the following option (you can specify one option per function):

• ErrorFlush
Specifies whether or not script processing is to be interrupted when an error occurs in a script.

• parameter
The following parameters can be specified with the ErrorFlush option:

• 0
Terminates script processing if an error occurs.

• 1
Continues script processing even if an error occurs.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

ERROR An invalid value was specified for parameter.

FLUSH Error occurred, but processing continued (when 1 is specified in parameter).

Script execution interrupted Indicates one of the following:
• An invalid option was specified.
• An invalid argument was specified, or an error other than the above occurred.

Example
If asset number 1000000001 is already in use, this example outputs the contents of MSG to the log file without
terminating the script:

[SET_VALUE]
 $SETOPTION('ErrorFlush', 1)
[APPEND]
 AssetInfo
[DATA]
 AssetInfo.AssetID = 1000000001
 AssetInfo.AssetNo = 1000000001
[SET_VALUE]
 $LOGMSG('E', MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 161

$SETSESSION (set session information)

$SETSESSION sets a character string as session information.

Syntax
$SETSESSION(session-variable-name,character-string)

Values
• session-variable-name

Specifies a constant or a variable. A constant must be enclosed in single quotation marks (''). Note, however, that
any session name that begins with an ampersand (&) cannot be registered or updated.

• character-string
Specifies a constant or a variable. A constant must be enclosed in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example sets the value 123456789 into the session variable SID:

[SET_VALUE]
 $SETSESSION('SID','123456789')

 VAL = $GETSESSION('SID')
 MSG = 'SID = ' + VAL
 $ECHO(MSG)

Execution result:
SID = 123456789

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 162

$SETSTATUS (set status)

$SETSTATUS changes the status of a process.

Syntax
$SETSTATUS(status-constant)

Values
• status-constant

Specifies NORMAL (normal end), NODATA (no data exists), ERROR (an error occurred), or MULTI (another user is
currently updating), either as a constant or a reserved string. A constant (NORMAL, ERROR, NODATA, or MULTI)
must be enclosed in single quotation marks ('').

Status
status-constant becomes the specified status. If an invalid status constant is specified, the script processing is interrupted.

Example
The following example searches all asset information items whose status is stock (301), updates their status to active
(002), and terminates processing:

[ASSET_ITEM_LOOP]
 [CLASS_FIND]
 AssetInfo
 [FIND_DATA]
 (AssetInfo.AssetStatus = '301')AND
 (AssetInfo.AssetKind = '001')
 [GET_VALUE]
 ASSETID = AssetInfo.AssetID
 [UPDATE]
 AssetInfo
 [DATA]
 AssetInfo.AssetID = ASSETID
 AssetInfo.AssetStatus = '002'
 [SET_VALUE]
 $SETSTATUS('NORMAL')
[ASSET_ITEM_LOOP_END]

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 163

$STRCMP (compare strings)

$STRCMP compares two character strings.

Syntax
return-value=$STRCMP(character-string-1,character-string-2)

Values
• return-value

Specifies the name of the variable into which the comparison results are set.

• If character-string-1 is smaller than character-string-2, 0 is returned to return-value.

• If character-string-1 is equal to character-string-2, 1 is returned to return-value.

• If character-string-1 is greater than character-string-2, 2 is returned to return-value.

• character-string-1
Specifies a comparison character string, either as a constant or a variable. A constant must be enclosed in single
quotation marks ('').

• character-string-2
Specifies a character string to compare, either as a constant or a variable. A constant must be enclosed in single
quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example compares the characters strings of DATA1 and DATA2, and outputs STRCMP IDENTICAL if
the strings are identical, and STRCMP DIFFERENT ($STRCMP-return-value) if they are not identical:

[SET_VALUE]
 DATA1 = 'Asset Console1'
 DATA2 = 'Asset Console2'
 VAL = $STRCMP(DATA1,DATA2)
[IF]
 VAL = 1
 [THEN]
 [SET_VALUE]
 MSG = 'STRCMP IDENTICAL'
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 164

 [ELSE]
 [SET_VALUE]
 MSG = 'STRCMP DIFFERENT ('+VAL+')'
 $ECHO(MSG)
[IF_END]

Execution result:
STRCMP DIFFERENT (0)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 165

$SUB (subtraction)

$SUB performs subtraction, treating character strings as numeric values, and returns the arithmetic result.

Syntax
return-value=$SUB(character-string,numeric-character)

Values
• return-value

Specifies the name of the variable into which the arithmetic result is set. Valid results range from 0.0001 to
999,999,999,999,999 (15 digits).

• character-string
Specifies a minuend, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

• numeric-character
Specifies a subtrahend, either as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specified values can range from 0.0001 to 999,999,999,999,999 (15 digits).

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• An invalid value was specified in a character string or numeric value.
• The arithmetic result is a value outside the range of representable values.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Remarks
If a value that cannot be specified in character-string or numeric-character is encountered, or if the arithmetic result is
a value outside the representable range, 0 is returned to return-value.

Example
The following example calculates 10 - 5 and outputs the result:

[SET_VALUE]
 VAL1 = 10
 VAL2 = $SUB(VAL1, 5)

 MSG = 'SUB:' +VAL1+ ' - 5 = ' +VAL2
 $ECHO(MSG)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 166

Execution result:
SUB: 10 - 5 = 5

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 167

$SUBSTR (get substrings)

$SUBSTR extracts a portion of a character string from a specified character string as defined by the extraction start
position and the length of the character substring being extracted.

Syntax
return-value=$SUBSTR(base-character-string,extraction-start-position,length-of-extracted-string)

Values
• return-value

Specifies the name of the variable into which the extracted substring is set.

• base-character-string
Specifies the character string from which data is to be extracted, either as a constant or a variable. A constant must
be enclosed in single quotation marks ('').

• extraction-start-position
Specifies the position at which extraction starts, assuming the first character in the base character string is 0, either
as a constant or a variable. A constant must be enclosed in single quotation marks ('').
Specify an extraction start position value of 0 or greater. If a extraction start position that does not exist is specified,
a 0-byte character string is returned.

• length-of-extracted-string
Specifies the length of a character string to be extracted (in bytes), as either a constant or a variable. If you specify
a length that exceeds the end point of the base character string, only the number of characters to the end of the base
character string are extracted. To unconditionally extract the entire character string from the extraction beginning
position to the final character, specify a negative value.

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No character string existed at the specified extraction start position.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example sets the character string ABCDEFG into NAME, and then extracts ABC from NAME and sets it
into VALUE:

[SET_VALUE]
 NAME = 'ABCDEFG'
 VALUE=$SUBSTR(NAME,0,3)
 $ECHO(VALUE)

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 168

Execution result:
ABC

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 169

$TOKEN (get token)

$TOKEN extracts a token from a specified character string as defined by the position of the token to be extracted and a
separator character.

Syntax

return-value=$TOKEN(base-character-string,extraction-token-position,separato
r-character)

Values
• return-value

Specifies the name of the variable into which the extracted token is set.

• base-character-string
Specifies the character string from which the token is extracted, either as a constant or a variable. A constant must
be enclosed in single quotation marks ('').

• extraction-token-position
Specifies the position of the token to be extracted, either as a constant or a variable. A constant must be enclosed in
single quotation marks (''). Specify the sequential number of the token to be extracted, assuming that the first token
indicated by the separator character is 0. For example, with respect to the character string aaa,bbb,ccc,ddd,
the characters extracted (aaa) as delimited by the separator character become the token. In this example, 0 to 3
correspond to the positions of the following token.
0: aaa
1: bbb
2: ccc
3: ddd
If an invalid token position or an out-of-range extraction is specified, a 0-byte character string is returned.

• separator-character
Specifies the character to be used to separate tokens, either as a constant or a variable. Usable characters are
alphanumeric characters and symbols. A constant must be enclosed in single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA The value specified by base-character-string was not found at the position specified by
extraction-token-position.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 170

Example
The following example sets the character string ABC/DEF/GHI into NAME, and then extracts DEF from NAME and sets
it into VALUE:

[SET_VALUE]
 DATA = 'ABC/DEF/GHI'
 VAL = $TOKEN(DATA,1,'/')
 MSG = 'TOKEN = ' + VAL
 $ECHO(MSG)

Execution result:
TOKEN = DEF

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 171

$UPDARRAY (update array data)

$UPDARRAY updates a value in an array element of an array variable. The array element is specified with an array
number.

Syntax
$UPDARRAY(array-name,array-number,character-string)

Values
• array-name

Specifies the name of an array in which data is to be updated.

• array-number
Specifies the array number of the array element to be updated, either as a constant or a variable. A constant must be
enclosed in single quotation marks (''). Specified values can range from 1 to 2,147,483,647.

• character-string
Specifies the value to be updated, either as a constant or a variable. A constant must be enclosed in single quotation
marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA No information exists for the specified array number.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example for $SETARRAY (set value to array).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 172

$UPDARRAYBYKEY (update value of array with key)

$UPDARRAYBYKEY updates the value of an array element of an array variable. The array element is specified using a
key and the array number in the key.

Syntax
$UPDARRAYBYKEY(array-name,key-value(,array-number-in-key),character-string)

Values
• array-name

Specifies the name of the array in which a value is to be updated.

• key-value
Specifies the key value of the array element to be updated, either as a constant or a variable. A constant must be
enclosed in single quotation marks ('').

• array-number-in-key
Specifies the array number in the key when there are multiple data values that correspond to the key to be updated,
as a numeric character, a constant, or a variable. A constant must be enclosed in single quotation marks ('').
Specified values can range from 1 to 2,147,483,647.
You can omit this value. If it is omitted, the default is 1.

• character-string
Specifies the value to be updated, either as a constant or a variable. A constant must be enclosed in single quotation
marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA Indicates one of the following:
• The specified key does not exist.
• The specified array number in the key does not exist.

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
See the example in $SETARRAYBYKEY (set value to array with key).

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 173

$UPPER (convert string)

$UPPER converts the alphabetic characters specified in the argument character string to upper case.

Syntax
return-value=$UPPER(character-string)

Values
• return-value

Specifies the name of the variable into which the character string that has been converted to upper case is set.

• character-string
Specifies the character string to be converted, either as a constant or a variable. A constant must be enclosed in
single quotation marks ('').

Status
The following table lists and describes the possible statuses:

Status Description

NORMAL Normal end

NODATA —

ERROR —

Script execution interrupted An invalid argument was specified, or an error other than the above occurred.

Legend:
—: Not applicable

Example
The following example converts the contents of the variable NAME to upper case, and outputs the result:

[SET_VALUE]
 NAME = 'computer name'
 VAL = $UPPER(NAME)
 MSG = 'UPPER = ' + VAL
 $ECHO(MSG)

Execution result:
UPPER = COMPUTER NAME

5. Embedded Functions Used in Access Definition Files

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 174

Appendix

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 175

A. Version Changes

A.1 Changes in version 12-10
• Windows Server 2019 was added as an applicable operating system for the following products:

• JP1/IT Desktop Management 2 - Manager

• JP1/IT Desktop Management 2 - Agent

• JP1/IT Desktop Management 2 - Network Monitor

• JP1/IT Desktop Management 2 - Asset Console

• JP1/IT Desktop Management 2 - Internet Gateway

• Remote Install Manager

A.2 Changes in version 12-00
• Windows Server 2008 R2 is no longer supported by the following products:

• JP1/IT Desktop Management 2 - Manager

• JP1/IT Desktop Management 2 - Network Monitor

• JP1/IT Desktop Management 2 - Asset Console

• Remote Install Manager

A.3 Changes in version 11-50
• None.

A.4 Changes in version 11-10
• Windows Server 2016 was added as an applicable operating system for the following products:

• JP1/IT Desktop Management 2 - Manager

• JP1/IT Desktop Management 2 - Agent

• JP1/IT Desktop Management 2 - Network Monitor

• JP1/IT Desktop Management 2 - Asset Console

• Remote Install Manager

A.5 Changes in version 11-01
• Windows 10 was added as an applicable operating system for JP1/IT Desktop Management 2 - Network Monitor.

A. Version Changes

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 176

A.6 Changes in version 11-00
• Windows 10 was added as a supported operating system for the following products:

• JP1/IT Desktop Management 2 - Agent

• JP1/IT Desktop Management 2 - RC Manager

• Remote Install Manager

• Windows Server 2003 and Windows Server 2008 (excluding Windows Server 2008 R2) are no longer supported by
the following products:

• JP1/IT Desktop Management 2 - Manager

• JP1/IT Desktop Management 2 - Agent

• JP1/IT Desktop Management 2 - Network Monitor

• JP1/IT Desktop Management 2 - RC Manager

A. Version Changes

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 177

B. Reference Material for This Manual

B.1 Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

• JP1 Version 12 Asset and Distribution Management: Getting Started (3021-3-E11(E))

• JP1 Version 12 JP1/IT Desktop Management 2 Overview and System Design Guide (3021-3-E12(E))

• JP1 Version 12 JP1/IT Desktop Management 2 Configuration Guide (3021-3-E13(E))

• JP1 Version 12 JP1/IT Desktop Management 2 Administration Guide (3021-3-E14(E))

• JP1 Version 12 JP1/IT Desktop Management 2 Distribution Function Administration Guide (3021-3-E15(E))

• JP1 Version 12 JP1/IT Desktop Management 2 - Asset Console Configuration and Administration Guide (3021-3-
E16(E))

• JP1 Version 12 JP1/IT Desktop Management 2 Messages (3021-3-E18(E))

B.2 Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

Asset Console JP1/IT Desktop Management 2 - Asset Console

Windows 7#1 Windows 7 Enterprise Microsoft(R) Windows(R) 7 Enterprise

Windows 7 Home Premium Microsoft(R) Windows(R) 7 Home Premium

Windows 7 Professional Microsoft(R) Windows(R) 7 Professional

Windows 7 Starter Microsoft(R) Windows(R) 7 Starter

Windows 7 Ultimate Microsoft(R) Windows(R) 7 Ultimate

Windows 8#1 Windows 8 Windows(R) 8

Windows 8 Enterprise Windows(R) 8 Enterprise

Windows 8 Pro Windows(R) 8 Pro

Windows 8.1#1 Windows 8.1 Windows(R) 8.1

Windows 8.1 Enterprise Windows(R) 8.1 Enterprise

Windows 8.1 Pro Windows(R) 8.1 Pro

Windows 10#1 Windows 10 Enterprise Windows(R) 10 Enterprise

Windows 10 Pro Windows(R) 10 Pro

Windows Server 2008 R2#1, #2 Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Standard

Windows Server
2012#1, #3

Windows Server
2012#3

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

B. Reference Material for This Manual

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 178

Abbreviation Full name or meaning

Windows Server
2012#1, #3

Windows Server
2012#3

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Windows Server
2016#1

Windows Server 2016 Datacenter Microsoft(R) Windows Server(R) 2016 Datacenter

Windows Server 2016 Standard Microsoft(R) Windows Server(R) 2016 Standard

Windows Server
2019#1

Windows Server 2019 Datacenter Microsoft(R) Windows Server(R) 2019 Datacenter

Windows Server 2019 Standard Microsoft(R) Windows Server(R) 2019 Standard

#1
If there are no functional differences among OSs, Windows is used generically when referring to Windows 7, Windows 8, Windows 8.1,
Windows 10, Windows Server 2008 R2, Windows Server 2012, Windows Server 2016, or Windows Server 2019.

#2
Does not include Server Core installation.

#3
If Windows Server 2012 R2 is noted alongside Windows Server 2012, the description for Windows Server 2012 does not apply to Windows
Server 2012 R2.

B.3 Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

CPU Central Processing Unit

CSV Comma Separated Value

DLL Dynamic Linking Library

GUI Graphical User Interface

HTML Hyper Text Markup Language

ID IDentifier

IP Internet Protocol

IT Information Technology

JIS Japanese Industrial Standards

LDAP Lightweight Directory Access Protocol

OS Operating System

PC Personal Computer

RDB Relational Database

TCP/IP Transmission Control Protocol/Internet Protocol

URL Uniform Resource Locator

WS Work Station

WWW World Wide Web

B. Reference Material for This Manual

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 179

B.4 Format used in this manual

(1) Conventions: Fonts and symbols
The following table lists the general font conventions:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus, menu options, buttons,
radio box options, or explanatory labels. For example, bold is used in sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system. Italics are also used for
emphasis. For example:
• Write the command as follows:
copy source-file target-file

• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output by the system. For
example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

Examples of coding and messages appear as follows (although there may be some exceptions, such as when coding is
included in a diagram):

MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not shown for purposes of brevity.

(2) Conventions in syntax explanations for commands and scripts
Syntax definitions appear as follows:

StoreDatabase [temp|perm] (database-name ...)

The following table lists the conventions used in syntax explanations:

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are to be entered in an actual
command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

B. Reference Material for This Manual

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 180

Example font or symbol Convention

| Only one of the options separated by a vertical bar can be specified at the same time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately preceding the ellipsis may be
specified as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...) is applicable.

(3) Conventions for permitted characters
The following table lists characters that are permitted as syntax elements (values that can be specified by users):

Type Definition

Alphabetic characters A to Z, a to z

Upper-case alphabetic characters A to Z

Lower-case alphabetic characters a to z

Numeric characters 0 to 9

Alphanumeric characters A to Z, a to z, 0 to 9

Symbols ! " # $ % & ' () + , - . / :
; < = > @ [] ^ _ { } ~ ?
space

B.5 Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be written
in the program as 02-00.

B.6 About online help
JP1/IT Desktop Management 2 provides online help in relation to the following subjects:

Window descriptions
This help describes how to use the screen that is currently displayed. You can view these help topics by clicking the
Help button in the user interface.

B. Reference Material for This Manual

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 181

B.7 Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

B. Reference Material for This Manual

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 182

Index

Symbols
$ADD 77
$BREAK 79
$CALCDATE 80
$CLEARARRAY 82, 91
$DATACOUNT 83
$DATETIME 85
$DIV 87
$DLLEXEC2 89
$DLLFREE 100
$DLLLOAD 101
$DLLMSG 108
$ECHO 109
$ENVIRONMENT 110
$EXIT 111
$FILEARRAY 112
$FILECLOSE 113
$FILECOPY 114
$FILEDEL 115
$FILEOPEN 116
$FILEPUT 118
$FILEPUTLN 119
$FINDFILE 120
$FORMATMSG 121
$GETARRAY 92, 122
$GETARRAYBYKEY 93, 123
$GETARRAYLENGTH 93
$GETARRAYNAME 94
$GETINITAREA 95
$GETKEYFROMARRAY 95, 124
$GETPROFILEDATA 126
$GETREGVALUE 128
$GETROLE 129
$GETSESSION 130
$GETSTATUS 96, 131
$GETTEMPNAME 133
$GOSUB 134
$ISNULL 135
$LDAPACS 137

functions available to 23
$LENGTH 146
$LOGMSG 147
$LOWER 148
$MATCH 149

$MOD 152
$MUL 154
$NUMBER 156
$SETARRAY 96, 158
$SETARRAYBYKEY 97, 159
$SETOPTION 161
$SETSESSION 162
$SETSTATUS 163
$STRCMP 164
$SUB 166
$SUBSTR 168
$TOKEN 170
$UPDARRAY 98, 172
$UPDARRAYBYKEY 99, 173
$UPPER 174

A
abbreviations for products 178
access definition file 13, 15

basic format of 18
before executing 33
creating 16, 17
errors stopping processing of 33
examples of 26
executing 32, 34
executing, from command line 33
purpose of creating 14

acronyms 179
addition 77
aim_init function, acquiring return value of 95
APPEND 41
APPEND_ASSOC 43
array

acquiring name of 94
initializing 82, 91
setting value to 96, 158

ARRAY 45
array data

acquiring value of 92, 122
outputting to CSV file 112
updating 98, 172

array elements, acquiring number of 93
array variable, declaring 45
array with key

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 183

acquiring value from 93, 123
setting value to 97, 159
updating value of 99, 173

ASSET_ITEM_LOOP 46
asset information

example of deleting 26
example of updating 26

ASSOC_FIND 48
association class

adding 43
deleting 56
searching 48

attribute values, acquiring 23

B
basic format, access definition file 18
BEGIN 46, 50, 53

C
CASE 67
CLASS_FIND 46, 51
CLASS1 43, 48, 56
CLASS2 43, 48, 56
class search loop 46
coding

method 19
rules 19

command execution
files, location of 33
notes on 33
procedure for 33

CONNECT 137
conventions

abbreviations for products 178
acronyms 179
fonts and symbols 180
KB, MB, GB and TB 182
permitted characters 181
version numbers 181

CONVERT 138
corresponding key, reading from array 95
CRLF, outputting to file 119
CSV_COLUMN_NAME 53
CSV_FILE_LOOP 53
CSV file data, acquiring 53

D
DATA 41, 43, 55, 56, 71
data, outputting to file 118
date/time, acquiring 85
date calculation function 80
DEFAULT 67
DELETE 55
DELETE_ASSOC 56
directory, accessing 137
directory information 14

descriptions of functions used to access 137
manipulating 22

DISCONNECT 139
division 87
DLL

acquiring message from 108
executing 89
freeing 100
list of macros available to 91
loading 101

DO 57
DUPLICATE 62

E
ELSE 60
ELSEIF 60
embedded functions

detailed explanation of 76
list of 74
used in access definition file 73

embedded variables, coding rules for 22
END 46, 50, 53
entry, acquiring 23
environment information, acquiring 110
EVALUATE 58
evaluation-format 149
exit 111

F
file

closing 113
copying 114
deleting 115
opening 116
searching 120

FIND_DATA 48, 51, 62

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 184

FIRSTENTRY 139
font conventions 180
format specifiers 85
FREEENTRY 140
FREERESULT 140

G
GB meaning 182
GET_VALUE 48, 51
GETDN 141

H
header file 91

I
IF 60

J
jamscript.exe 36
jamScriptAPI.h 91
jamscript command 34
JOIN 62
JOIN_FIND 62
joined class, searching 62

K
KB meaning 182
key information, acquiring from array 124

L
log file, outputting to 147
loop block 57

M
macros, list of 91
macro termination status, acquiring details of 96
MB meaning 182
memory management structure 23
message format, setting 121
multiplication 154

N
NEXTENTRY 142
NULL, checking 135

numbering 156

O
object

memory management structure of 23
rules for manipulating 23

object class
creating 41
deleting 55
searching 51
updating 71

object parameter
referencing 23
using 23

operators 21
ORDER_ASC 48, 51, 62
ORDER_DESC 48, 51, 62

P
permitted character conventions 181
process block 50

interrupting 79
re-evaluating 58

R
registering

task 36
registry value, acquiring 128
remainder, dividing and returning 152
result lines, acquiring 83
run options, setting 161

S
script header, specifying 19
SEARCH 142
SELECTVALUE 143
session information

acquiring 130
setting 162

SET_VALUE 65
software assets of installed programs that are not
authorized, example for listing 28
statements, conditionally executing group of 60, 67
status

acquiring 131
setting 163

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 185

stdconsol, outputting 109
string length, acquiring 146
strings

checking 149
comparing 164
converting 148, 174

SUB 66
subroutine 66

executing 134
substitute value 65
substrings, acquiring 168
subtraction 166
SWITCH 67
symbol conventions 180

T
tags

detailed explanation of 40
list of 38
used in access definition files 37

task
registering 36

task-based execution 36
TB meaning 182
temporary file name, specifying 133
THEN 60
token, extracting 170
TRANSACTION 69
transaction, defining 69

U
UPDATE 71
user function executed by $DLLEXEC2, creating 90
user roles, acquiring 129

V
VAR 72
variable, declaring 72
variable names

character strings that cannot be used as 20
characters used in 20

variables
assigning value to 20
coding rules for 19
declaring 20
referencing 20

valid range of 20
version number conventions 181

W
Windows initialization file data, acquiring 126

JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide 186

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100‒8280 Japan

	JP1/IT Desktop Management 2 - Asset Console Creating an Access Definition File Guide
	Notices
	Summary of amendments
	Preface
	Contents
	1. Overview
	1.1 Purpose of creating an access definition file
	1.1.1 Ability to input and output data in any format
	1.1.2 Ability to use asset information for a variety of jobs
	1.1.3 Ability to access directory service information

	1.2 What is an access definition file?
	1.3 Creating an access definition file to extend functionality

	2. Creating Access Definition Files
	2.1 Basic format of access definition files
	2.2 Coding method
	2.2.1 Coding rules
	2.2.2 Specifying a script header
	2.2.3 Coding rules for variables
	2.2.4 Operators
	2.2.5 Coding rules for embedded variables
	2.2.6 Manipulating directory information

	2.3 Access definition file examples
	2.3.1 Example for updating and deleting asset information conditioned on asset status
	2.3.2 Example for listing software assets of installed programs that are not authorized

	3. Executing Access Definition Files
	3.1 Executing from a command line
	3.1.1 Before executing
	3.1.2 jamscript (execute access definition file) command

	3.2 Executing using a task

	4. Tags Used in Access Definition Files
	List of tags used in access definition files
	Detailed explanation of tags used in access definition files
	[APPEND] (Create object class)
	[APPEND_ASSOC] (add association class)
	[ARRAY] (declare array variable)
	[ASSET_ITEM_LOOP] (class search loop)
	[ASSOC_FIND] (find association class)
	[BEGIN] (process block)
	[CLASS_FIND] (find object class)
	[CSV_FILE_LOOP] (get CSV file data)
	[DELETE] (delete object class)
	[DELETE_ASSOC] (delete association class)
	[DO] (loop block)
	[EVALUATE] (re-evaluate)
	[IF] (conditionally execute a group of statements)
	[JOIN_FIND] (find joined class)
	[SET_VALUE] (substitute value)
	[SUB] (subroutine)
	[SWITCH] (conditionally execute a group of statements)
	[TRANSACTION] (define transaction)
	[UPDATE] (update object class)
	[VAR] (declare variable)

	5. Embedded Functions Used in Access Definition Files
	List of embedded functions
	Detailed explanations of embedded functions
	$ADD (Addition)
	$BREAK (interrupt process block)
	$CALCDATE (date calculation function)
	$CLEARARRAY (initialize array)
	$DATACOUNT (get result lines)
	$DATETIME (get date/time)
	$DIV (division)
	$DLLEXEC2 (execute DLL)
	$DLLFREE (free DLL)
	$DLLLOAD (load DLL)
	$DLLMSG (DLL get message)
	$ECHO (output stdconsol)
	$ENVIRONMENT (get environment information)
	$EXIT (exit)
	$FILEARRAY (output to the array data CSV file)
	$FILECLOSE (close file)
	$FILECOPY (copy file)
	$FILEDEL (delete file)
	$FILEOPEN (open file)
	$FILEPUT (output data to file)
	$FILEPUTLN (output CRLF to file)
	$FINDFILE (find files)
	$FORMATMSG (set a message format)
	$GETARRAY (get value of array data)
	$GETARRAYBYKEY (get value from array with key)
	$GETKEYFROMARRAY (get key information from array)
	$GETPROFILEDATA (get Windows initialization file data)
	$GETREGVALUE (get a registry value)
	$GETROLE (get role of user)
	$GETSESSION (get session information)
	$GETSTATUS (get status)
	$GETTEMPNAME (get temporary file name)
	$GOSUB (execute subroutine)
	$ISNULL (check NULL)
	$LDAPACS (access directory)
	$LENGTH (get string length)
	$LOGMSG (output to the log file)
	$LOWER (convert string)
	$MATCH (check string)
	$MOD (divide and return only the remainder)
	$MUL (multiplication)
	$NUMBER (numbering)
	$SETARRAY (set value to array)
	$SETARRAYBYKEY (set value to array with key)
	$SETOPTION (set run options)
	$SETSESSION (set session information)
	$SETSTATUS (set status)
	$STRCMP (compare strings)
	$SUB (subtraction)
	$SUBSTR (get substrings)
	$TOKEN (get token)
	$UPDARRAY (update array data)
	$UPDARRAYBYKEY (update value of array with key)
	$UPPER (convert string)

	Appendix
	A. Version Changes
	A.1 Changes in version 12-10
	A.2 Changes in version 12-00
	A.3 Changes in version 11-50
	A.4 Changes in version 11-10
	A.5 Changes in version 11-01
	A.6 Changes in version 11-00

	B. Reference Material for This Manual
	B.1 Related publications
	B.2 Conventions: Abbreviations for product names
	B.3 Conventions: Acronyms
	B.4 Format used in this manual
	B.5 Conventions: Version numbers
	B.6 About online help
	B.7 Conventions: KB, MB, GB, and TB

	Index

