HITACHI

Inspire the Next

JP1 Version 12

JP1/Navigation Platform Development Guide
3021-3-D13-30(E)

I Notices

m Relevant program products
P-292C-4PCL JP1/Navigation Platform 12-60 (For Windows Server 2012 R2, Windows Server 2016, Windows Server
2019, Windows Server 2022)

P-292C-4VCL JP1/Navigation Platform for Developers 12-60 (For Windows 8.1 x64, Windows 10 x64, Windows 11
x64)

m Trademarks

HITACHI, HiRDB, JP1, uCosminexus are either trademarks or registered trademarks of Hitachi, Ltd. in Japan and
other countries.

BSAFE is a trademark or registered trademark of Dell Inc. in the United States and other countries.

Excel s either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Microsoft Edge is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

This product includes bundles Dell BSAFE™ software developed by Dell Inc. in the United States.

Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.

Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/

This product includes software developed by Andy Clark.

This product includes software developed by Ben Laurie for use in the Apache-SSL HTTP server project.

This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).
This product includes software developed by IAIK of Graz University of Technology.

This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project
(http://java.apache.org/).

This product includes software developed by the University of California, Berkeley and its contributors.

This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).

JP1/Navigation Platform Development Guide 2

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source
community for development tool providers.

Java is a registered trademark of Oracle and/or its affiliates.

= Java

COMPATIBLE

= l ava’
— COMPATIBLE

ENTERPRISE
EDITION

1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)

2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com)

4. This product includes the OpenSSL Toolkit software used under OpenSSL License and Original SSLeay License.
OpenSSL License and Original SSLeay License are as follow:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

* Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

JP1/Navigation Platform Development Guide 3

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the

* distribution.

* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4, The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact

* openssl-coref@openssl.org.

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "~ "AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.

* This product includes cryptographic software written by Eric Young

JP1/Navigation Platform Development Guide

* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

*

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eayl@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.

* If this package is used in a product, Eric Young should be given
attribution

* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

JP1/Navigation Platform Development Guide

*

*/

4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " “AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

m Microsoft product name abbreviations

This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning
Excel Microsoft(R) Office Excel
Windows Windows 8.1 Windows 8.1 x64 Windows(R) 8.1 Enterprise (64-bit Edition)

Windows(R) 8.1 Pro (64-bit Edition)

Windows 10 Windows 10 x64 Windows(R) 10 Enterprise (64-bit Edition)
Windows(R) 10 Pro (64-bit Edition)

Windows 11 Windows 11 x64 Windows(R) 11 Enterprise (64-bit Edition)
Windows(R) 11 Pro (64-bit Edition)

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2 Datacenter
Microsoft(R) Windows Server(R) 2012 R2 Standard

Windows Server 2016 Microsoft(R) Windows Server(R) 2016 Datacenter
Microsoft(R) Windows Server(R) 2016 Standard

Windows Server 2019 Microsoft(R) Windows Server(R) 2019 Datacenter

Microsoft(R) Windows Server(R) 2019 Standard

JP1/Navigation Platform Development Guide

Abbreviation Full name or meaning
Windows Windows Server 2022 Microsoft(R) Windows Server(R) 2022 Datacenter

Microsoft(R) Windows Server(R) 2022 Standard

m Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.

Material contained in this document may describe Hitachi products not available or features not available in your
country.

No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

m Issued
Jan. 2022: 3021-3-D13-30(E)

m Copyright
All Rights Reserved. Copyright (C) 2019, 2022, Hitachi, Ltd.

JP1/Navigation Platform Development Guide 7

I Summary of amendments

The following table lists changes in this manual (3021-3-D13-30(E)) and product changes related
to this manual.

Changes Location

The following properties were removed from the user property file (ucnp _user.properties): | 2.3.4,4.9
* ucnp.base.server.close.button.setting property

* ucnp.base.client.complete.button.window.close property

Following this change, the following information was modified:
* Discarding I/O Plugin instances

¢ Settings when logging out from a custom window

The following operating system is now supported: --
* Microsoft(R) Windows Server(R) 2022
e Windows(R) 11

HTTPS is now supported. 4.8.1
Following this change, the following information was modified:
e URLs used to access Navigation Platform windows

Transfer destination nodes can now be specified in I/O Plugins. 5.2.1(3),5.2.2(3)

Transfer destination nodes can now be specified for the return values of the following methods of
IToPluginController (server processing implementation interface):

e The inputFromNode methods
¢ The outputToNode methods

JavaScript Plugins can now be executed when returning to the previous window. 5.2.1(3),5.2.2(3)
Following this change, the following information was added:
¢ Notes regarding the return value of the input FromNode method of
IIoPluginController (server processing implementation interface)

* Notes regarding the return value of the outputToNode method of
IIoPluginController (server processing implementation interface)

In addition to the above changes, minor editorial corrections were made.

JP1/Navigation Platform Development Guide 8

I Preface

This manual describes how to develop plugins and custom windows that are used in the following products, and
describes about API references:

¢ JP1/Navigation Platform
* JP1/Navigation Platform for Developers

Note that the following products are no longer available in JP1/Navigation Platform 12-00 and later versions:

* Hitachi Navigation Platform

* Hitachi Navigation Platform for Developers
The title of this manual has been modified as follows to reflect this change:
Old title: Hitachi Navigation Platform Development Guide

New title: JP1/Navigation Platform Development Guide

m Abbreviations for product names

This manual uses the following abbreviations for the above product names:

Abbreviation Full name

Navigation Platform Navigation Platform JP1/Navigation Platform
Navigation Platform JP1/Navigation Platform for
for Developers Developers

m Intended readers

This manual is intended for users who develop plugins and custom windows by using APIs provided by Navigation
Platform

Note that readers of this manual must have:

¢ Basic knowledge of Windows operations

¢ Basic knowledge of Java program development
¢ Basic knowledge of Eclipse

* Basic knowledge of XML

m Conventions: Fonts and symbols

The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:

JP1/Navigation Platform Development Guide

Text formatting Conven

tion

Bold ¢ From the File menu, choose Open.
¢ Click the Cancel button.
* In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:

e Write the command as follows:

copy source-file target-file

¢ The following message appears:

A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:

e Don

ot delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:

* At the prompt, enter dir.

¢ Use the send command to send mail.

¢ The following message is displayed:

The

password is incorrect.

The following table explains the symbols used in this manual:

Symbol

Convention

In syntax explanations, a vertical bar separates multiple items, and has the meaning of OR. For
example:

A|B|C means A, or B, or C.

In syntax explanations, curly brackets indicate that only one of the enclosed items is to be selected.
For example:

{A|B|C} means only one of A, or B, or C.

In syntax explanations, square brackets indicate that the enclosed item or items are optional. For
example:

[A] means that you can specify A or nothing.

[B| C] means that you can specify B, or C, or nothing.

In coding, an ellipsis (...) indicates that one or more lines of coding have been omitted.

In syntax explanations, an ellipsis indicates that the immediately preceding item can be repeated as
many times as necessary. For example:

A, B, B, ... means that, after you specify 2, B, you can specify B as many times as necessary.

JP1/Navigation Platform Development Guide

10

Notices 2
Summary of amendments 8
Preface 9

Overview of Development 15
Range of development 16

Flow of plugin development 17

Plugin Overview 19
Overview of Navigation Platform plugins 20

About initialization and termination processing of plugins 20
About plugin sessions 21

Types of plugins 22

Overview of I/0O Plugins 23

I/O Plugin execution timing 23

Execution order of I/O Plugins 23

Data that can be passed by I/O Plugins 23

Lifecycle of I/O Plugin instances 24

Overview of Suspend/Resume Plugins 27
Suspend/Resume Plugin execution timing 27

Lifecycle of Suspend/Resume Plugins 27

Overview of Custom Window Plugins 28

Custom Window Plugin execution timing 28

Data that can be received by Custom Window Plugins 28
Processing if an error occurs in a Custom Window Plugin 28

Preparation of Development 29
Setting up Eclipse 30

Importing a pluginSDK project 31

Adding libraries 32

Location to place libraries 32

Creating and configuring libraries 32

Notes on adding libraries 33

Developing Plugins 34
Creating template plugins 35

Editing the plugin information property file 35

JP1/Navigation Platform Development Guide

Executing the template plugin creation command 39
Importing a template plugin project 43

Customizing template plugins 44

Customizing I/0 Plugins 44

Customizing Suspend/Resume Plugins 53

Customizing Custom Window Plugins 53

Creating the JSP file used in custom windows 54
Adding database connection processing 55

Adding a resource adapter 55

Changing resource adapter settings 56

Deleting resource adapters 57

Setting a plugin for database connection processing 57
Implementing database connection processing 58
Implementing processing to be performed during plugin initialization or termination 61
Building plugins 62

Procedure for building plugins 62

Actions to be taken if an attempt to build plugins fails 63
Deploying plugins 64

Associating 1/0 Plugins with Operational Content 66
Drawing mapping lines (connecting Guide Parts and Plugin Parts) 66
Details about values input to or output from plugins 68
Updating Plugin Parts 69

Checking configuration information for Operational Content that uses plugins 70

Configuring the user property file 71

Debugging plugins 72

Conditions for debugging plugins 72

How to debug plugins 72

Deleting plugins 73

How to delete plugins 73

Calculating memory usage for plugins 74

Procedure for creating Operational Content for measurement 74

Procedure for measuring the memory usage for plugins 74

Changing J2EE server settings 77

J2EE server setting items that can be changed during plugin development 77
Storage location of the files used for changing J2EE server setting items 77
Procedure for changing the user property file for J2EE servers (usrconf.properties) 77
Procedure for changing the option definition file for J2EE servers (usrconf.cfg) 80

Notes on using Google Chrome or Mobile Safari to develop a plug-in that displays Operational
Contents 83

Setting up access permissions to Java packages to be used by User Plugins 84

JP1/Navigation Platform Development Guide

API Reference (for 1/0 Plugin Development) 85
List of APIs (for I/O Plugin development) 86

lloPluginController (server processing implementation interface) 87
inputFromNode method 87

outputToNode method 97

Plugin processing during preview 102

IPluginlinitializer (User Plugin startup (initialization) and termination processing implementation
interface) 104

init method 104

destroy method 105

UCNPPIuginUserException (User Plugin exception class) 106
ParamConvertUtil (I/O parameter conversion utility class) 107
decodeHtmlPartParam method 107

getParamValue method 111

UCNPPIuginException (I/0O Plugin exception class) 114
getMessage method 114

getMessageld method 114

IUCNPSession (session information use interface) 116
getLoginld method 116

getJp1Token method 117

API Reference (for Suspend/Resume Plugin Development) 118
List of APIs (for Suspend/Resume Plugin development) 119

ISuspendActionController (suspend/resume action controller interface) 120
save method 120

load method 122

contains method 123

delete method 125

deleteAll method 126

ISuspendInfo (suspend information interface) 129
getContentSuspendedld method 129

getWorkld method 130

getContentName method 130

getGroupName method 131

getCurrentNodeName method 131

SupendIinfoSerializeUtil (utility class for suspend information serialization) 132
serialize method 132

deserialize method 133

UCNPPIuginException (Suspend/Resume Plugin exception class) 135
UCNPPIuginException(String message) constructor 135
UCNPPIuginException(String message, Throwable cause) constructor 136

JP1/Navigation Platform Development Guide

7
7.1

7.2
7.21
7.3
7.3.1

API Reference (for Custom Window Plugin Development)
List of APIs (for Custom Window Plugin development) 138

CustomWindowUrlUtil (utility class for custom window URL acquisition) 139
getCustomWindowUrl method 139

LogoutActionUtil (logout processing class) 141

logout method 141

Appendixes 143

A

A1
A2
A3
B

B.1
C

CA
C.2
D

D1
D.2
D.3
D.4
D.5
E

E.1
E.2
E.3
E4
F

How to Use Sample Plugins 144

How to use I/O Plugins (sample) 144

How to use Suspend/Resume Plugins (sample) 145
Notes on using sample plugins 145

Important Point for I/O Plugin Development 147

Suppressing execution of I/O Plugins depending on the presence of mapping lines

Migration from OId Versions 149

Migration from Old Versions (version 09-50 or later) 149
Migration from 12-00, 12-00-01 and 12-10 151
Version Changes 152

Changes in version 12-60 152

Changes in version 12-50 152

Changes in version 12-10 153

Changes in version 12-00 154

Changes in version 11-50 154

Reference Material for This Manual 155

Related publications 155

Conventions: Abbreviations for product names 155
Conventions: Acronyms 156

Conventions: KB, MB, GB, and TB 156

Glossary 157

Index 160

JP1/Navigation Platform Development Guide

Overview of Development

This chapter describes the range of plugins that can be used in Navigation Platform and the overview
of development operation.

JP1/Navigation Platform Development Guide 15

1.1 Range of development

By developing plugins in accordance with the contents of operation, use of Navigation Platform becomes more
convenient. The following shows an example of customizing a Navigation Platform window by using developed plugins

Figure 1-1: Example of customizing a Navigation Platform window

1. Save the values entered during
operation in the Operational
Content Execution Window.

Navigation Platform Editing Window View | Tools~ lf [Suspend [Logout
List of Operational Contents Start server after power loss
e Report software errors
= System management
Start ssrver aftar power loss Task ovenview ‘ Report the status to the administrator, and ask them to take the necessary action
4
Callthe contact number shown below, and provide the following information.
Tum on server
machine
s @ information to be provided
ofthe server)
v i ~Failedto startthe OS.
QR CEschpower Failed to startthe database.
~Failed!o startthe application server and web application.
-An error occurred during the operation check.
v v
<
© Contact number
Department Management team in the information system dept
Q" Extension: 000K~ 00K
(Check 08 startup Click [Next] to proceed to the end.
v
4 v
Server has started
v
v
Check system
operation
v v
> <
v . 2 v
Report software Report hardware
completion emors emors
v v v
End End End
Back Next)

Window other than the
Navigation Platform
window

2. Display another 3. The values entered in this window
window after login. are used for external systems.

To customize the window shown in this figure, you must first develop the following plugins:

1. Suspend/Resume Plugin
2. Custom Window Plugin
3. I/O Plugin

This manual describes how to customize Navigation Platform by using these plugins.

For details about how to customize Navigation Platform without developing plugins, see the description of customization
and user property file (ucnp user.properties) in the manual JPI/Navigation Platform Setup and Operations
Guide.

1. Overview of Development

JP1/Navigation Platform Development Guide 16

1.2 Flow of plugin development

The following figure shows an overview and flow of plugin development.

Figure 1-2: Overview of plugin development

Editing environment and
Development environment execution environment

JP1/Navigation Platform
for Developers

JP1/Navigation Platform ‘ ‘

. ——— 1
Plugin A
— U 2. Send the plugin. X
=
& l&’ *| 1. Develop a plugin.
Developer
————— 1
X
Plugin B

&glﬁrﬁ AT

Developer
=
= R
=
& [&7 E Content Manager or Content Editor
Z— 3. Create Operational Content.
Developer 4. Associate the plugins with
Operational Content.

Plugin C

The numbers in the figure correspond to the following numbers:

1. A developer develops a plugin in a development environment.
Eclipse, which is provided by Navigation Platform, is used for plugin development.
To use Eclipse, setup is required in advance.
2. The developer sends the developed plugin to the editing environment and execution environment.

The system administrator applies the plugin to the editing environment and execution environment.

3. After plugins are applied, the Content Manager, Content Creator (when JP1/Base is used for user authentication),
or Content Editor creates Operational Content in the editing environment.

4. For I/O Plugins, the Content Manager, Content Creator, or Content Editor associates the plugins with Operational
Content by drawing mapping lines between Plugin Parts and Guide Parts.

For Suspend/Resume Plugins and Custom Window Plugins, association is not necessary.

é Note

If the system configuration does not use an editing environment, a developer might also perform the tasks
in 3 and 4 in a development environment. For details about system configurations, see the manual JP1/

1. Overview of Development

JP1/Navigation Platform Development Guide 17

Navigation Platform Setup and Operations Guide. For details about how to create Operational Content, see
the manual JPI/Navigation Platform Content Editing Guide.

The following provides details about plugin development tasks and includes references.

Before starting development
You must construct a development environment before starting the tasks described here. Note that you must have
Windows administrator roles to perform any task described here.

Upon completion of the development

After you have completed development of plugins, send J2EE applications (plugin-name . ear) to an editing
environment and execution environment. In the case of developed I/0 Plugins, export Operational Content associated
with the plugins, and then import them to the editing environment and execution environment.

For details about each task, see the manual JP1/Navigation Platform Setup and Operations Guide.

Table 1-1: Plugin development tasks

Order Task I/O Plugin Suspend/Resume Plugin Custom See:
Window
Plugin
1 Preparing a development environment R R R Chapter 3
(by setting up Eclipse and adding
libraries)
2 Creating template plugins R R R 4.1
3 Importing a template plugin project to R R R 4.2
Eclipse
4 Customizing (editing) the template R R R 4.3.1,44
plugin by using Eclipse
5 Adding (and implementing) necessary S S S 44,45
processing to the plugin
6 Building a customized template plugin R R R 4.6
project by using Ant
7 Deploying the plugin J2EE application R R R 4.7

(plugin-name . ear) by using Ant

8 Placing Plugin Parts in the Guide area R N N 4.8
and then associating plugins with
Operational Content by drawing
mapping lines to connect Plugin Parts

and Guide Parts
9 Checking the user property file R R S 4.9
10 Debugging plugins by using the Eclipse R R R 4.10

debugger function

Legend:
R: The task is required.
N: The task is not required
S: Perform the task if necessary.
Note:
You can change J2EE server setting items if necessary. For details, see 4.13 Changing J2EE server settings.

1. Overview of Development

JP1/Navigation Platform Development Guide 18

Plugin Overview

This chapter describes the types of plugins that can be developed in Navigation Platform, and
provides an overview of each type.

JP1/Navigation Platform Development Guide

19

2.1 Overview of Navigation Platform plugins

Navigation Platform provides two types of plugins: System Plugins that do not need to be developed and User Plugins
that need to be developed. This manual describes User Plugins (referred to as plugins hereafter).

The entity of a plugin is an EAR file. Developers use Eclipse in a development environment to create plugin EAR files
of Navigation Platform. By deploying EAR files created in the development environment into Navigation Platform
(J2EE server) in an editing environment or execution environment, Content Editors and Content users are able to use
plugins.

Plugins deployed in Navigation Platform (J2EE server) might be called J2EE applications. The following indicates the
relationship between plugin EAR files and the Navigation Platform EAR file.

Figure 2—1: Image of plugins incorporated in Navigation Platform

Navigation Platform

Basic functions provided by
default

Plugin 1

Developed functions
(Java class, icons, and
definition information)

Plugin 2

Developed functions
(Java class, icons, and Legend:

definition information) I:I - EAR file

J2EE server
(editing environment or execution environment)

2.1.1 About initialization and termination processing of plugins

Youmustuse the IPluginInitializer interface to implement initialization and termination processing in plugins
in the following cases:

¢ A connection is established from the plugin to a database.
¢ Preprocessing is required for executing a plugin.

* Postprocessing is required when a plugin stops.

When Navigation Platform starts, plugins also start

(1) Creating instances of initialization and termination processing classes

Instances are created when a plugin starts.

2. Plugin Overview

JP1/Navigation Platform Development Guide 20

(2) Discarding instances of initialization and termination processing
classes

Instances are discarded when a servlet stops.

2.1.2 About plugin sessions

When you execute the setAttribute method for the Ht tpSession object acquired in a plugin, do not specify a
name beginning with any of the character strings listed below for the name parameter of the setAttribute method.

Character strings prohibited at the beginning of the name parameter:
ucnp
java.
Jjavax.
javax.portlet.
hptl
com.cosminexus

jp.co.hitachi.soft.portal

2. Plugin Overview

JP1/Navigation Platform Development Guide 21

2.2 Types of plugins

Plugins that can be developed in Navigation Platform are classified by function as follows:

¢ I/O Plugin
* Suspend/Resume Plugin

e Custom Window Plugin

Operation of I/O Plugins and Suspend/Resume Plugins uses the values (cache) entered or selected in windows by users.
Custom Window Plugins are used to display separate windows independent of Navigation Platform.

2. Plugin Overview

JP1/Navigation Platform Development Guide 22

2.3 Overview of I/0 Plugins

I/0 Plugins are executed during node transition in Operational Content. To use, in the next node, the values input by
users in Operational Content windows or to pass such values to external programs, you need to develop I/O Plugins.

2.3.1 1/0 Plugin execution timing

The following table describes the order in which I/O Plugins are executed during node transition in Operational Content.

Table 2—1: 1/O Plugins and methods executed during node transition

Execution I/O Plugin I/0O Plugin method
order

1 I/O Plugin associated with the transfer source node inputFromNode method (IToPluginController
(server processing implementation interface))

2 1/0 Plugin associated with the transfer destinationnode” | outputToNode method (IToPluginController

(server processing implementation interface))

Including an I/O Plugin associated with the start process node that is not connected to the Terminal Node (start)

Note that I/O Plugins are also executed when node transition occurs in the Operational Content Execution Window
(preview). If you do not want to execute I/O Plugins in a preview window, you need to implement accordingly. For
details about the implementation, see 5.2.3 Plugin processing during preview.

The following operations are possible by specifying error information for return values of the methods of I/O Plugins
shown in this table:

* Display an alert when a user executes the I/O Plugin

¢ Highlight the item for which an invalid value is entered, and then suppress node transition

For details about the information you can specify for return values of methods, see the return values of inputFromNode
method or outputToNode method in 5.2 IlloPluginController (server processing implementation interface).

2.3.2 Execution order of I/0 Plugins

When you develop multiple I/O Plugins, we recommend you make sure that they are independent of any other plugin
processing.

However, in case multiple I/O Plugins are placed in the same node, you can specify the execution order in an I/0O Plugin
XML file so that they are executed in the specified ascending order. You can specify the execution order for each plugin,
but cannot specify the execution order of methods within a plugin.

2.3.3 Data that can be passed by I/O Plugins

Data that can be received by plugins

When executing an I/O Plugin, you can receive data such as information about the transfer source or transfer
destination node and the cache of Guide Parts mapped in the Plugin Part parameters. The data is passed as a parameter

2. Plugin Overview

JP1/Navigation Platform Development Guide 23

of the inputFromNode method or outputToNode method of IToPluginController (server processing
implementation interface).

Data returned by plugins

The following operations are possible by specifying the updated cache of Guide Parts mapped in the Plugin Part
parameters and error information for the data to be returned by plugins:

* Display alerts for users
* Highlight the item for which an invalid value is entered, and then suppress node transition

Make sure that the data is returned as a return value of the i nput FromNode method or output ToNode method
of IToPluginController (server processing implementation interface).

For details about data that can be passed with I/O Plugins and, see the following in 5.2 IloPluginController (server
processing implementation interface):

¢ Descriptions of param and return values in inputFromNode method

* Descriptions of param and return values in outputioNode method

2.3.4 Lifecycle of I/0 Plugin instances

The following describes the lifecycle of plugin instances.

(1) Creating and retaining I/0O Plugin instances

The instances of I/O Plugins are managed on the basis of instance IDs. In the case of User Plugins, the instance ID can
be defined as "instance ID = plugin ID".

5 Note

In the case of System Plugins, the instance ID can be defined as follows:

» JavaScript Plugins
Instance ID = Plugin ID + Plugin name

* Plugins other than the above
Instance ID = Plugin ID

For I/0 Plugins having the same instance ID, one instance is retained in one window. The instances are retained in HTTP
sessions based on window IDs as keys. The following figure shows instances of 1/O Plugins.

2. Plugin Overview

JP1/Navigation Platform Development Guide 24

Figure 2—2: 1/0O Plugin instances
HTTP session 1

Window ID: XXX Window ID: YYY
Instance of plugin A Instance of plugin A
Instance of plugin B Instance of plugin C

Instance of plugin C

HTTP session 2
Window ID: ZZZ
Instance of plugin A

Instance of plugin B

Instance of plugin C

When you execute I/O Plugins, instances of the I/O Plugins to be executed are acquired from HTTP sessions by using
window IDs and instance IDs as keys. If an instance cannot be acquired from HTTP sessions, new instances are created
and then added to the HTTP sessions. At this time, only the instances to be executed are created. The figure below shows
an example of Operational Content containing branch nodes. If transition occurs from node 1 to node 2, and to node 4
during execution of this Operational Content, plugins A, B, and D are executed but plugin C is not. Therefore, if operation
of Operational Content containing this transition is executed, an instance of plugin C is not created.

Figure 2-3: Operational Content containing branches

Node 1
Plugin A
A 4 \ 4
Node 2 Node 3
Plugin B Plugin C
Node 4
Plugin D

(2) Discarding I/O Plugin instances

The table below indicates when I/O Plugin instances are discarded. This applies regardless of whether the operation is
performed in the Operational Content Execution Window or Operational Content Execution Window (preview).

2. Plugin Overview

JP1/Navigation Platform Development Guide 25

Table 2—2: When I/O Plugin instance are discarded

No. Discarded when: Plugin instance to be discarded

1 Operational Content is displayed in the Instances retained by the HTTP session (when the operation is performed)
Operational Content Execution Window or based on the window ID of the window in which the operation is performed
Operational Content Execution Window
(preview)”

2 The Editing Window View menu is clicked

3 The Logout button is clicked All instances retained by the HTTP session to be discarded

4 A session times out

Instances are discarded when you select Operational Content in the menu area. If you specify a parameter for the basic URL, and then open a
specific Operational Content, instances are not discarded.

2. Plugin Overview

JP1/Navigation Platform Development Guide 26

2.4 Overview of Suspend/Resume Plugins

Suspend/Resume Plugins are plugins that temporarily save information entered by users in the Operational Content
Execution Window, and restore the saved information when operations are resumed. If you want to perform operation
that requires several days to complete, develop Suspend/Resume Plugins. The entered values are saved as suspend
information. Even if you reference information about other operations or log out in the middle of operation, you can
resume the operation from the temporarily saved status.

2.4.1 Suspend/Resume Plugin execution timing

Suspend/Resume Plugins are executed at the timing shown below.

For suspending operation:

When a user clicks the Suspend button

For resuming operation:

* When a user selects Operational Content in the Operational Content Execution Window

* When a user opens a specific Operational Content by specifying a parameter for the basic URL

2.4.2 Lifecycle of Suspend/Resume Plugins

A Suspend/Resume Plugin terminates by deleting Suspend information when:

A user clicks the Done button in the Operational Content Execution Window.

An error occurs during suspend information check when the user resumes operation in the Operational Content
Execution Window.

The contents of Operational Content displayed in the Operational Content Execution Window are changed.

A Content Manager or Content Creator (when JP1/Base is used for user authentication) deletes Operational Content
in the Operational Content Editing Window.

2. Plugin Overview

JP1/Navigation Platform Development Guide 27

2.5 Overview of Custom Window Plugins

Custom Window Plugins are plugins that develop new windows. If you want to display your original windows besides
the windows of Navigation Platform after you logged in, develop Custom Window Plugins.

2.5.1 Custom Window Plugin execution timing
Custom Window Plugins are executed when:

* You access and log in to Navigation Platform by the URL with the ucnpUserPageId parameter specified.

* When you access and log in to Navigation Platform by the URL for which the value acquired by using the
getCustomWindowUr1l method of CustomWindowUr1Util is specified for the ucnpUserPageId
parameter.

2.5.2 Data that can be received by Custom Window Plugins

To send data to a custom window, you must use the ucnpUserData parameter. If you want to receive multiple pieces
of data in a new window, combine them, and then specify this combination for the ucnpUserData parameter.

You can use the GET or POST method to send the ucnpUserData parameter. You must note the following if you use
the GET method to send data as part of the URL:

* Specify a URL encoded value in UTF-8.

* Specify a value within the maximum number of characters that can be used for the URL of the Web browser you
want to use.

If these conditions are not satisfied, operation is unpredictable.

Note that the ucnpUserData parameter takes effect only on the custom window that first appears when you log in
to Navigation Platform. This parameter is disabled if you switch to another window from the custom window after the
login.

2.5.3 Processing if an error occurs in a Custom Window Plugin

If a Custom Window Plugin is not found or is not running when you log in, a KDCZ10375-E message is displayed in
the error window.

2. Plugin Overview

JP1/Navigation Platform Development Guide 28

Preparation of Development

This chapter describes operation, such as setup and specifying environment variable settings,
required for developing plugins and custom windows.

Before starting preparation of development, you must set up a development environment, and then
create Operational Content (or import it from an editing environment). For details about these tasks,
see the manual JP1/Navigation Platform Setup and Operations Guide.

JP1/Navigation Platform Development Guide 29

3.1 Setting up Eclipse

The following shows the procedure for setting up Eclipse.

@) 'mportant

Use JDK version 11. However, you can use JDK version 5, 6, 7, or 8 to create libraries that are to be
referenced from plugins and custom windows.

By setting up Eclipse according to the following procedure, you can use JDK version 11, which is included
in JP1/Navigation Platform for Developers.

1. Copy the archive of Eclipse to any folder from the CD-ROM of JP1/Navigation Platform for Developers.

2. Extract the copied archive to a folder other than the Navigation Platform for Developers installation directory.
This folder is referred to as the Eclipse installation directory hereafter.

3. Add the following directory to the Path system environment variable:

Eclipse-installation-directory\ plugins\directory-beginning-with-org.apache.ant \bin;

4. Edit the eclipse. ini file directly under the Eclipse installation directory.

Information to add 1
Add the following setting on a line before ~vmargs:
-vm
Navigation-Platform-for-Developers-installation-directory\ PP\ uCPSB\ jdk\bin\javaw.exe
Information to add 2
Add the following setting on a line after ~-vmargs:
-XX:MaxMetaspaceSize=]28-MB-or-greater-value
Example:
-vm
C:\Program Files\Hitachi\HNP\PP\uCPSB\jdk\bin\javaw.exe
-vmargs

-XX:MaxMetaspaceSize=128m

5. Execute eclipse.exe and then make sure that Eclipse starts.

At this time, make sure that a path under the Navigation Platform for Developers installation directory is not specified
for the workspace.

Note:

When you open a file in Eclipse, you might find that Japanese characters are garbled. In such a case, try the following
procedure to fix the garbled characters:

1. From the menu in Eclipse, select Window and then Preferences to open the Preferences window.

2. In the left pane of the Preferences window, select General, Appearance, and then Colors and Fonts. In the
right pane of the Preferences window, select Java and Java Editor Text Font, and then click the Edit button
to open the Font dialog box.

3. In the Font dialog box, specify a font that supports Japanese characters, and then click the OK button.
4. In the Preferences window, click the OK button to apply your change.

3. Preparation of Development

JP1/Navigation Platform Development Guide 30

3.2 Importing a pluginSDK project

You can use a pluginSDK project provided by Navigation Platform to prepare the environment required for developing
plugins.

To import a pluginSDK project to Eclipse:
1. Start Eclipse.

2. In Eclipse, select File and then Import.
The Import window appears.

3. Select General, and then Existing Projects into Workspace.
4. Click the Next button.

5. In the Select root directory text box, specify Navigation-Platform-for-Developers-installation-directory
\pluginSDK.

6. Click the Finish button.
The pluginSDK project is added to Eclipse.

Note:
Make sure that the Copy projects into workspace check box is cleared.

3. Preparation of Development

JP1/Navigation Platform Development Guide 31

3.3 Adding libraries

This section describes how to add Java libraries (JAR files) for use with plugins.

@) 'mportant

A user who adds a library must have Windows administrator roles. If a user without Windows administrator
roles adds a library to a directory such as the OS-installation-drive: \Program Files directory (by
adding or copying a file), the file might be redirected to a user folder.

3.3.1 Location to place libraries

The following describes the directory that stores a library for use with plugins. The directory that stores a library varies
depending on whether the library is shared by the whole J2EE server.

To use the library with plugins only
The library must be placed in the Application Class Loader layer. Store the library in the following directory:
Navigation-Platform-installation-directory\pluginSDK\plugin\plugin-ID\WEB-INF\1lib

To share the library on the whole J2EE server

The library must be placed in the System Class Loader layer. Store the library in the directory shown below. In this
case, you must place the library in both the development environment and execution environment.

Navigation-Platform-installation-directory\usrlib\sys

3.3.2 Creating and configuring libraries

The following describes a note on creating libraries, and how to configure a library you created. Also described is how
to use Eclipse to perform reference resolution of the configured library.

(1) Note on creating libraries

To create a library that references APIs provided by Navigation Platform, specify the following library in the class path,
and then build the library.

Navigation-Platform-installation-directory\ syslib\ucnpsys.jar

(2) Configuring a library
To configure a library:

1. Store the created library in the location indicated in 3.3.1 Location to place libraries.
You do not need to perform the following steps if you want to use the library only with plugins.

To share the library in the whole J2EE server, proceed with the next step.
2. Add the absolute path of the library to the class path specification for the J2EE server.

3. Restart Navigation Platform.

3. Preparation of Development

JP1/Navigation Platform Development Guide 32

To share the library in the whole J2EE server, perform steps 1 to 3 on the J2EE server in an execution environment, in
addition to the J2EE server in a development environment.

(3) Project reference resolution

To perform reference resolution for an Eclipse project, use the following procedure to specify the added library JAR
file:

1. In the Eclipse Project Explorer view, right-click the project.
A menu opens.

2. Click Properties.
3. In the left pane, click Java Build Path.
4. In the right pane, click the Libraries tab.

5. Click the Add JARs button, and then specify the JAR file you want to add.

3.3.3 Notes on adding libraries

The following are notes on adding libraries:

¢ When you configure a library in the Application Class Loader layer, do not specify a file name beginning with ucnp
for the JAR file name of the library.

Because file names are not case sensitive, you cannot use a file name beginning with UCNP or uCNP

* Make sure that only the libraries required for development are stored in the location to place libraries. Storing
unnecessary files or directories might cause an error during a build process.

¢ A user who adds a library must have Windows administrator roles. If a user without Windows administrator roles
adds a library, the library file is redirected to a user folder and does not work properly.

3. Preparation of Development

JP1/Navigation Platform Development Guide 33

Developing Plugins

This chapter describes how to develop plugins.

JP1/Navigation Platform Development Guide

34

4.1 Creating template plugins

To create a template plugin:

1. Edit the plugin information property file.

2. Execute the template plugin creation command.

This section describes details about each step.

é Note

Perform the tasks described here only once for a plugin. If you modify a created plugin, there is no need to
perform these tasks again.

4.1.1 Editing the plugin information property file

A plugin information property file is a property file that defines the information required for creating template plugins.
When you execute the template plugin creation command, files and folders are created based on the information defined
in the plugin information property file.

Create a plugin information property file by editing the following sample file:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin.p
roperties.sam

The file name after editing must be any-character-string .properties.

(1) Notes on creating a property file

The following describes the notes on creating a plugin information property file by editing the sample file:

* Characters in a property file are encoded in ISO 8859-1 (Latinl). Characters other than those of ISO 8859-1 cannot
be used.

¢ You cannot use Windows reserved device names (CON, AUX, COMn (n: 1-9), LPTn (n: 1-9), PRN, NUL, and CLOCK
$).

* A line that begins with a hash mark (#) or exclamation mark (!) is assumed to be a comment.

* Empty characters (single-byte spaces, tabs, or line feeds) at the beginning of a line are ignored.

(2) Property file description format

The following shows an example of property file description format. In the description below, empty character indicates
a single-byte space, tab, or line feed.

property-key=value

¢ Enter a colon (:) or equal sign (=) between the property key and the value. Empty characters entered between the
property key, colon (or equal sign), and value are ignored.

4. Developing Plugins

JP1/Navigation Platform Development Guide 35

* If the property key is followed by : or = (excluding empty characters), the string from the character (excluding
empty characters) just after : or = to the end of the line is assumed to be the value.

¢ If the property key is followed by a character (excluding empty characters) other than: or =, the string from that
character to the end of the line is assumed to be the value.
¢ Empty characters added to the end of the value are assumed to be part of the value.

¢ Colons (:), equal signs (=), hash marks (#), and exclamation marks (!) contained in the value are assumed to be
part of the value.

(3) Details about the property keys used with all plugins

The following describes details about the property keys (specified in the plugin information property file) that are
required for all plugins.

userplugin.id
Specity a plugin ID. Make sure that the plugin ID is unique within the system. For a Suspend/Resume Plugin, you
must always specify the fixed value ucnp.plugin. suspend.
Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)

Single-byte underscores ()

0 Important

The following describes the restrictions on the combination of characters that can be used:

* Only one Suspend/Resume Plugin can be specified within the system. Therefore, you must
always specify the fixed value ucnp.plugin.suspend.

* For I/O Plugins and Custom Window Plugins, you cannot specify a value ending with a period
or beginning with ucnp. In addition, because plugin IDs are not case sensitive, you cannot
specify UCNP or uCnp.

String length that can be specified
1 to 64 bytes
Specification example
userplugin
userplugin.name
Specify a plugin name. Make sure that the plugin name is unique within the system.
Characters that can be used
Single-byte alphanumeric characters

Prohibited plugin names
Plugin names beginning with ucnp (not case sensitive)
env

AppName

String length that can be specified
1 to 31 bytes

4. Developing Plugins

JP1/Navigation Platform Development Guide 36

Specification example

userplugin
userplugin.type

Specify the plugin type.

Characters that can be used
For I/O Plugins: TYPE IO
For Suspend/Resume Plugin: TYPE SUSPEND
For Custom Window Plugins: TYPE WINDOW

userplugin.version

Specify the plugin version.

Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Single-byte underscores ()
Single-byte hyphens (-)

String length that can be specified
1 to 32 bytes

Specification example
00.01

userplugin.java.package
Specify a Java package name.
Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Character strings that are valid as Java package names
Character string not used for creating a directory that has the same name as a Windows reserved device name

Prohibited package names

Package names beginning with jp.co.hitachi.soft.ucnp

String length that can be specified

1 or more bytes

However, make sure that the sum of the values specified for Java-package-name, plugin-1D, and I/O-action-
controller-class-name, or Java-package-name, plugin-1D, and suspend/resume-action-controller-class-name is
no more than 128 bytes.

Specification example
sample.userplugin

(4) Details about the property keys used with 1/O Plugins

The following describes the property keys that must be set if you specify TYPE IO for the userplugin.type
property key.

4. Developing Plugins

JP1/Navigation Platform Development Guide 37

userplugin.server.controller.iocaction
Specify the I/O action controller class name. In 4. /.2 Executing the template plugin creation command, a controller
class is created based on this class name.
Characters that can be used
Single-byte alphanumeric characters
Single-byte underscores ()
Character strings that are valid as Java class names
Character strings that do not contain Windows reserved device names

Character strings that contain a unique value combined with a Java package name

String length that can be specified
1 or more bytes
However, make sure that the sum of the values specified for Java-package-name, plugin-1D, and I/O-action-
controller-class-name is no more than 128 bytes.
Specification example
IoPluginController

userplugin.server.controller.iocaction.type

Specify the character string that identifies the [/O action controller class. Specify a unique value within the system.
In 4.1.2 Executing the template plugin creation command, the I/O plugin XML file (1oaction.xml) is created
based on this character string. Note that the I/O plugin XML file defines the information displayed in the Plugins
palette and Plugin Parts in the Operational Content Editing Window. Generally, specify the same value as the ID of
the template plugin to be created. However, you can specify a different value.
Characters that can be used

Single-byte alphanumeric characters

Single-byte periods (.)

Single-byte underscores ()

Single-byte hyphens (-)
String length that can be specified

1 to 64 bytes
Specification example

userplugin

(5) Details about the property key used with Suspend/Resume Plugins

The following describes the property key that must be set if you specify TYPE SUSPEND forthe userplugin. type
property key.

userplugin.server.controller.suspend

Specify the suspend/resume action controller class name.

Characters that can be used
Single-byte alphanumeric characters
Single-byte underscores ()
Character strings that are valid as Java class names
Character strings that do not contain Windows reserved device names

Character string containing a unique value combined with a Java package name

4. Developing Plugins

JP1/Navigation Platform Development Guide 38

String length that can be specified
1 or more bytes

However, make sure that the sum of the values specified for Java-package-name, plugin-1D, and suspend/
resume-action-controller-class-name is no more than 128 bytes.

Specification example

SuspendActionController

(6) Property file coding example

The following shows examples of coding plugin information property files.

For an I/O Plugin

userplugin.id = example.inputdata

userplugin.name = InputData

userplugin.type = TYPE IO

userplugin.version = 01.00

userplugin.java.package = com.example.inputdata
userplugin.server.controller.icaction = InputDataController
userplugin.server.controller.icaction.type = example.inputdata

For a Suspend/Resume Plugin

userplugin.
userplugin.

id ucnp.plugin.suspend
name = Suspend
userplugin.type TYPE SUSPEND
userplugin.version 01.00
userplugin.java.package
userplugin.server.controller.suspend

com.example.suspend
SuspendActionController

For a Custom Window Plugin

id = example.contentslist
name ContentsList

type = TYPE WINDOW
.version = 01.00

.Java.package

userplugin.
userplugin.
userplugin.
userplugin
userplugin

com.example.customwindow

4.1.2 Executing the template plugin creation command

You can execute the template plugin creation command to create template plugins. Template plugins are created in the
format of an Eclipse Java project.

(1) Format of the template plugin creation command

The following shows the format of the template plugin creation command:

Navigation-Platform-for-Developers—-installation-directory\pluginSDK\bin\npcr
eateplg.batApath-to-the-plugin-information-property-file

4. Developing Plugins

JP1/Navigation Platform Development Guide

39

When you execute the template plugin creation command, a directory is created under Navigation-Platform-for-
Developers-installation-directory\ p1uginSDK\plugin according to the contents of the plugin information property
file.

To create multiple plugins, repeat the process of editing the plugin information property file and create a template plugin
for the number of plugins.

(2) Execution results of the template plugin creation command (for I/O
Plugins)

The following shows the directory structure for I/O Plugins. You need to edit only the underlined files. Bold text indicates
the values specified in the plugin information property file. For details about how to edit the plugin information property
file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
|- plugin-ID
|-.project
|-.classpath
| -build.xml
|-plugin.properties
| -ucnpsdkversion.properties
I--Js
| --dd
| | -——META-INF
| | —application.xml
| | —-cosminexus.xml
| -—images
| | -sample icon.gif
| ——WEB-INF
| |-plugin.xml
| | —-web.xml
|--1ib
| -——conf
| | -iocaction.xml
| |-ucnp label plugin-ID.properties
| | -ucnp message plugin-ID.properties
| |-ucnp plugin-ID.properties
|
|

--src
| --Java-package-name
| ——controller
| -I/O-action-controller-lass—-name.java
|-PluginInitializer.java

(3) Execution results of the template plugin creation command (for
Suspend/Resume Plugins)
The following shows the directory structure for Suspend/Resume Plugins. You need to edit only the underlined files.

Bold text indicates the values specified in the plugin information property file. For details about how to edit the plugin
information property file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
|- ucnp.plugin.suspend
|-.project

4. Developing Plugins

JP1/Navigation Platform Development Guide 40

|-.classpath
| -build.xml

|-plugin.properties
| -ucnpsdkversion.properties
l--Js
| --dd
| | -——META-INF
| | —application.xml
| | —-cosminexus.xml
| -——WEB-INF
| | -plugin.xml
| | —-web.xml
|--1ib
| -—conf
| |-ucnp label ucnp.plugin.suspend.properties
| | -ucnp message ucnp.plugin.suspend.properties
| |-ucnp ucnp.plugin.suspend.properties
| -—src
| -—Java-package-name
| -—controller
| -suspend/resume-action-controller-class-name.java
|-PluginInitializer.java

(4) Execution results of the template plugin creation command (for
Custom Window Plugins)

The following shows the directory structure for Custom Window Plugins. You need to edit only the underlined files.
Bold text indicates the values specified in the plugin information property file. For details about how to edit the plugin
information property file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
| -plugin-ID
|-.project
|-.classpath
| -build.xml
|-plugin.properties
| -ucnpsdkversion.properties
I--Js
l-=Jsp
| |--sys
| | | —-ucnpCustom. jsp
| | -plugin-name. jsp
| --dd
| | -——META-INF
|
|
|

| —application.xml
| —-cosminexus.xml
--WEB-INF
| |-plugin.xml
| | —web.xml
|--1ib
| -—conf
| |-ucnp label plugin-ID.properties
| | -ucnp message plugin-ID.properties
| |-ucnp plugin-ID.properties
|--1ib
| -—-src

4. Developing Plugins

JP1/Navigation Platform Development Guide 41

| --Java-package-name
| ——controller

|-PluginInitializer.java

(5) Notes on executing the template plugin creation command

The following provides the notes on executing the command:

e [f multiple commands are executed at the same time, operation is unpredictable.

» If a directory having the same name as the plugin ID specified in the plugin information property file exists under
Navigation-Platform-for-Developers-installation-directory\p1luginSDK\plugin, an overwrite confirmation
message appears. Specify as follows in response to the confirmation message.

* To overwrite the existing directory:
Specify Y or y.
* Not to overwrite the existing directory:
Specify N or n. Processing is canceled.
In this case, change the plugin ID specified in the plugin information property file, and then re-execute the
command.

¢ To execute the template plugin creation command, you must first open the command prompt by selecting Run as
administrator. If this condition is not satisfied, operation is unpredictable.

4. Developing Plugins

JP1/Navigation Platform Development Guide 42

4.2 Importing a template plugin project

The following shows the procedure for importing a template plugin project to Eclipse.

B Note

Perform this task only once for one plugin. This task is not needed when you modify a created plugin.

1. Start Eclipse.

2. In Eclipse, select File and then Import.
The Import window appears.

3. Select General, and then Existing Projects into Workspace.
4. Click the Next button.
5. Inthe Select root directory text box, specify the template plugin directory created in 4./ Creating template plugins.

6. Click the Finish button.
The template plugin project is added to Eclipse.

Notes:
* Do not select the Copy projects into workspace check box.

* To start Eclipse, right-click the ec1ipse. exe file, and then select Run as administrator. If this condition is
not satisfied, operation is unpredictable.

* Depending on the Eclipse version, an error message indicating that the workspace is being refreshed might
appear during import. If this error message appears, delete the imported project, and then import it again.

To prevent such errors, you need to close or refresh the pluginSDK project before you start the import. Right-
click the pluginSDK project displayed in the Project Explorer view, and then select Close Project or Update.

4. Developing Plugins

JP1/Navigation Platform Development Guide 43

4.3 Customizing template plugins

You can customize template plugins by using Eclipse.

4.3.1 Customizing I/O Plugins
This subsection describes the procedure for customizing I/O Plugins.
To customize a template plugin created as an I/O Plugin:

1. Create the icon of the Plugins palette and Plugin Parts.

2. Edit the I/O plugin XML file.

3. Set tool tips for parameter descriptions.

4. Specify the plugin execution order.

5. Specify whether to display a confirmation dialog box.

6. Specify whether to execute plugins in the preview window.
7. Specify the button type for suppressing execution.

8. Implement processing to be performed by the plugin.

The following describes details about each step.

(1) Creating the icon of the [Plugins] palette and Plugin Parts

If necessary, change the icon of the Plugins palette and Plugin Parts displayed in the Operational Content Editing
Window. The following figure shows the location of the icon of the Plugins palette and Plugin Part.

Figure 4—-1: Location of the icon of the Plugins palette and Plugin Part
H Icon in the Plugins palette B Icon for the Plugin Part

Plugin Q loACi

:_ % OAction
Input from Part Output to Part

® inputitemName1 | outputitemName1 ®

® inputitemName2 | outputitemName2 ®

® inputitemName3 | outputitemName3 @

When you execute the template plugin creation command, the icons provided by Navigation Platform by default are
displayed in the Plugins palette and Plugin Parts.

To develop multiple plugins, you can create a different icon for each plugin to identify plugins by displayed icons. Store
the created icons in the following directory:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin\p
lugin-ID\images

Create icons in the format shown in the following table.

4. Developing Plugins

JP1/Navigation Platform Development Guide

44

Table 4—1: Format for creating icons
No. ltem Description

1 File name See (2) Editing 1/O plugin XML files, and then specify the file name.
Note that the file name of the default icon provided by Navigation Platformis sample icon.gif.

2 File format You can use any format that can be displayed in the Web browser.
Note that the file format of the default icon provided by Navigation Platform is GIF format.

3 Size Create an icon in 24 x 24 pixels.

Note:

If a user without Windows administrator roles creates an icon in a directory such as the OS-installation-
drive: \Program F1iles directory (by adding or copying a file), the file might be redirected to a user folder.
Therefore, the user that adds the file must have Windows administrator roles.

(2) Editing I/O plugin XML files
The I/O plugin XML file (1caction.xml) is created when a template plugin is created. Edit the I/O plugin XML file
to change the following information:
¢ 1/O Plugin execution order
* 1/O parameter definition
* Information displayed in the Plugins palette, for Plugin Parts, and for tool tips in the Operational Content Editing
Window

The following figure shows the correspondence between the information specified in the I/O plugin XML file and the
information displayed in the Operational Content Editing Window.

4. Developing Plugins

JP1/Navigation Platform Development Guide 45

Figure 4-2: Correspondence between the 1/0O plugin XML file and the information displayed in the
Operational Content Editing Window

B Contents of the 1/O plugin XML file

<?xml1 version="1.0" encoding="UTF-8"7>

<ioaction xmins="http://model.xml.ioaction. navi. p1ug1n ucnp. soft. hitachi. co. jp"
id="sample.outputGuideData” name="oOutputGuidepata” version="2.0">

<1opart 1d— 10 part 1">

D o m no

<1 conURL ur

M
<execcon irm va1ue— fa1se />
<execPreview value="true" />

<disableButtonType legacy="false" value="show_next_page” />
<parameters type="title">

<param name- ‘outputGuideDpata” description="description of outputGuidepata"/>

<parameters ty e="1nput > "\

2
<param name="inputItemNamel'} description="description of inputItemNamel"/> @)
<param name="1inputItemName2'| description="description of inputItemName2"/>
<param name="inputItemName3)) description="description of inputItemName3"/>

<parameters type= output > 3)
<param name= outputItemNamel)descmpt1on— ‘description of outputItemNamel'/>

<param name="outputItemName2"|description="description of outputItemname2"/>
<param name="outputItemName3"}description="description of outputItemname3"/>

</ioaction>

B |nformation displayed in the Operational Content Editing Window

® Display contents of the Plugins palette
Plugin

N

The image specified for the i conURL element in (1)

® |Information displayed for the Plugin Part

The image specified for the i conURL element in (1)

é OutputGuideData Plugin name specified in the plugin information

property file
~ Output to Part

[| The values specified for the param elements in (3)
outputitemName2

outputitemName

= The values specified for the param elements in (2)

O T
Ifyou change the I/O plugin XML file (1icaction.xml) for a plugin associated with Operational Content,
you also need to perform tasks such as replacing the plugin by exporting Operational Content. When you

design I/O Plugins, make sure that item settings are suitable for operation of Operational Content, so that
you do not have to modify the I/O plugin XML file later.

The following describes how to edit the I/O plugin XML file (1oaction.xml). This file is stored in the following
directory.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin\p
Jugin-ID\WEB-INF\conf

To edit the I/O plugin XML file, start the editor by selecting Run as administrator.

The following shows an example of editing the I/O plugin XML file (1oaction.xml). Edit the bold text.

4. Developing Plugins

JP1/Navigation Platform Development Guide 46

<?xml version="1.0" encoding="UTF-8"7?>
<ioaction xmlns="http://model.xml.icaction.navi.plugin.ucnp.soft.hitachi.co.
Jjp" id="sample.OutputGuideData" name="OutputGuideData" version="2.0">
<iopart id="io part 1">
<iotype name="sample.OutputGuideData" />
<iconURL url="/ucnpPlugins/OutputGuideData/images/ogdIcon.gif" />
<priority wvalue="700" />
<execConfirm value="false" />
<execPreview value="true" />
<disableButtonType legacy="false" value="show_next page" />
<parameters type="title">
<param name="OutputGuideData" description="description-of-OutputGuideD
ata"/>
</parameters>
<parameters type="input">
<param name="inputItemNamel" description="description-of-inputltemName

1"/>
<param name="inputItemName2" description="description-of-inputItemName
2"/>
<param name="inputItemName3" description="description-of-inputItemName
3"/>
</parameters>

<parameters type="output">
<param name="outputItemNamel" description="description-of-outputItemNa
mel" />
<param name="outputItemName2" description="description-of-outputItemNa
me2" />
<param name="outputItemName3" description="description-of-outputItemNa
me3" />
</parameters>
</iopart>
</ioaction>

The table below describes how to edit the I/O plugin XML file (1oaction.xml). You need to edit only the parts
shown in the table.

Table 4-2: How to edit the I/O plugin XML file (ioaction.xml)

No. Information to be edited | Description Character strings String length specifiable

specifiable for the attribute | for the attribute value
value, and their meanings

1 url attribute of the Specify the file name of the icon ¢ Single-byte alphanumeric | Maximum of 1,024 bytes
<iconURL> tag (file displayed in the Plugins palette and for characters (including /
name part) Plugin Parts in the Operational Content | Single-byte underscores ucnpPlugins/plugin-
Edltlng Window. () name/images /)
Change the file name in the url . Szngle-byte periods (.)

attribute only when you want to change
the file name of the icon created in (7)
Creating the icon of the [Plugins]
palette and Plugin Parts from the

* Single-byte hyphens (-)

default.
2 value attribute of the Specify the execution order of the /O | The following single-byte -
<priority>tag Plugin. numeric values:
The default value is 700. 700 is the e 100-500
intermediate value of the execution o 600-900
order of System Plugins and User
Plugins.

4. Developing Plugins

JP1/Navigation Platform Development Guide

47

No. Information to be edited

2 value attribute of the
<priority> tag

3 value attribute of the
<execConfirm> tag

4 value attribute of the
<execPreview> tag

5 legacy attribute of the
<disableButtonTyp
e> tag

6 value attribute of the
<disableButtonTyp
e> tag

7 description attribute
of the <param> tag

8 name attribute of the
<param> tag under
<parameters
type="input">

9 description attribute
of the <param> tag

4. Developing Plugins

Description

If the priority element is omitted,
the default value is assumed.

Ifnecessary, specify whether to display
a confirmation dialog box during
execution of the I/O Plugin. Specify
true if you want to notify users that
processing might require some time.
If the execConfirm element is
omitted, false is assumed.

If necessary, specify whether to
execute the I/O Plugin in the preview
window.*!

If the execPreview element is
omitted, t rue is assumed.

Specify whether to provide
compatibility of execution suppression
of the I/O Plugin. Specify true to
suppress execution of the I/O Plugin in
Navigation Platform 10-10 the same
way as in earlier versions.

If the disableButtonType
element is omitted, t rue is assumed.

If necessary, specify whether to
suppress execution of the I/O Plugin

depending on the button type.*2

Set the 1egacy attribute to false to
suppress the execution depending on
whether transition occurs, by clicking
the button or by directly selecting a
node.

To specify multiple values, use a
single-byte comma to separate each
value.

If the disableButtonType
element is omitted, an empty character
string is assumed.

If necessary, specify the description
(tool tip) of the I/O Plugin.

Specify the input parameter name.
Specify a unique value in the
<parameters type="input">
tag.

You can specify 0 to 100 <param>
tags. Specify the <param> tags for the
number of input parameters.

If necessary, specify the description
(tool tip) of the input parameter.

Character strings
specifiable for the attribute
value, and their meanings

The following single-byte
numeric values:

100-500
600-900

true
Displayed
false

Not displayed

true
Executed
false

Not executed

true
Compatible
false

Not compatible

start

show next page
show _previous_ pag
e

show complete pag
e

forward jump

Valid only if the value of
the 1egacy attribute is
false

back jump

Valid only if the value of
the 1egacy attribute is
false

Any character string

Single-byte alphanumeric
characters

Single-byte underscores
-

Single-byte periods (.)
Single-byte spaces
Single-byte hyphens (-)

Any character string

String length specifiable
for the attribute value

0 to 64 characters

1 to 64 bytes™

0 to 64 characters

JP1/Navigation Platform Development Guide

48

No. Information to be edited

9 under <parameters
type="input">

10 name attribute of the
<param> tag under
<parameters
type="output">

Description

If necessary, specify the description
(tool tip) of the input parameter.

Specify the output parameter name.
Specify a unique value in the
<parameters type="output">
tag.

You can specify 0 to 100 <param>
tags. Specify the <param> tags for the

Character strings
specifiable for the attribute
value, and their meanings

Any character string3

¢ Single-byte alphanumeric
characters

* Single-byte underscores
Q)

* Single-byte periods (.)

* Single-byte spaces

String length specifiable
for the attribute value

0 to 64 characters

1 to 64 bytes™

number of output parameters. « Single-byte hyphens (-)

11 description attribute 0 to 64 characters

of the <param> tag

If necessary, specify the description
(tool tip) of the output parameter.

Any character string

under <parameters
type="output">

Legend:

#1

#2

#3

#4

--: Not applicable

Processing that determines whether to execute the I/O Plugin in the preview window can also be implemented by using the value of the
ucnp.screen.ispreview key in the inputFromNode and outputToNode methods of the server processing implementation
interface (IToPluginController). However, the setting of the ucnp . screen. ispreview key is used to perform special processing
by the server processing implementation interface (IIoPluginController). Therefore, if you want to simply skip the processing, specify
the setting in the I/O plugin XML file (icaction.xml). For details about the server processing implementation interface
(IToPluginController), see 5.2 lloPluginController (server processing implementation interface).

Processing that determines whether to suppress /O Plugin execution depending on the button type can also be implemented by using the value
of the ucnp.button. type key in the inputFromNode and outputToNode methods of the server processing implementation
interface (IToPluginController). However, the setting of the ucnp.button. type key is used to perform special processing by the
server processing implementation interface (IIoPluginController). Therefore, if you want to simply skip processing, specify the setting
in the I/O plugin XML file (1oaction.xml). For details about the server processing implementation interface
(IToPluginController), see 5.2 lloPluginController (server processing implementation interface.

The character string specified for description is used as is for the HTML attribute when the tool tip is displayed. Therefore, if you want
to enter a line feed in the character string displayed as the tool tip, specify
 ;. If a control character other than & #x0A; is specified, the
display is unpredictable.

Ifalong character string is specified, ending characters might not be displayed for a Plugin Part. For the I/O action controller class, the character
string specified here is used as is.

Reference

Values specified for the name attribute of the <param> tag under <parameters type="input"> and
<parameters type="output">areused for the param parameter and return values of the i nput FromNode
and outputToNode methods of the server processing implementation interface (IToPluginController).

The following shows where the values specified for the name attribute are used.
param parameter

* Map object name for the value corresponding to the name ucnp.current .params.map in the
inputFromNode method

* Map object name for the value corresponding to the name ucnp.next.params.map in the
outputToNode method

4. Developing Plugins

JP1/Navigation Platform Development Guide

49

Return values

* Map object name for the value corresponding to the name ucnp.current.params.map in the
inputFromNode method

* Map object name for the value corresponding to the name ucnp.next.params.map in the
outputToNode method

The following figure shows the correspondence between the values specified for the name attribute and the server
processing implementation interface (IToPluginController).

Figure 4-3: Correspondence between the values specified for the name attribute and the server
processing implementation interface (lloPluginController)
B Contents of the 1/O plugin XML file

<?xml version="1.0" encoding="UTF-8"?>
<ioaction xmIns="http://model.xml.ioaction.navi.plugin.ucnp.soft.hitachi.co.jp"
id="sample.loAction" name="loAction" version="2.0">
<iopart id="io_part_1">
<iotype name="sample.loAction" />
<iconURL url="/loAction/images/sample_icon.gif"/>
<priority value="700" />
<execConfirm value="false" />
<execPreview value="true" />
<disableButtonType value="show_next_page" />
<parameters type="title">
<param name="loAction" description="description of loAction"/>
</parameters>
<parameters type="input">
<param name=inputitemName1
<param name4|"inputltemName2"
<param name=tinputltemName3}

description="description of inputltemName1"/>

description="description of inputltemName3"/>

</parameters>
<parameters type="output">
<param name=/outputitemName1\description="description of outputltemName1"/>
<param name escrlp ion="description of outputltemNameZ2"/> (2
<param name=toutputltemName3)'description="description of outputitemName3"/>
</parameters>
</iopart>
</ioaction>

B Contents of the the server processing implementation interface (lloPluginController) (excerpt)

/* Expand the data received from the client into the Map */
Map<?, ?> inParamMap = (Map<?, ?>) param.get("ucnp.current.params.map");

/* Retrieve the received values from the Map_*/
String param1 = (String) inParamMap.gej("inputltemName1");
String param2 = (String) inParamMap.gei("inputltemName2");
String param3 = (String) inParamMap.ge("inputltemName3");

Values in (1)

/* Set the values to be sent to the client */
String outParam1 = param1;
String outParam2 = paramz2;
String outParam3 = param3;

Map<String, String> outParamMap = new HashMap<String, String>();

/* Set the values to be sent to the Map */
outParamMap.pup(“outputitemName 1™\ outParam1); Values in (2)
outParamMap.pui("outputitemName2" foutParam2);

outParamMap.p "outputltemName:ﬂgutParam&;

For details about the server processing implementation interface (IIoPluginController), see 5.2
1loPluginController (server processing implementation interface).

4. Developing Plugins

JP1/Navigation Platform Development Guide 50

(3) Setting tool tips for parameter descriptions

If you set a description text as a tool tip in the I/O plugin XML file (1oaction.xml), the description appears when
you point the Plugin Part in the Operational Content Editing Window. You can set the following tool tips:

* I/O Plugin description
A tool tip displayed in the title of the Plugin Part

* Input parameter description
A tool tip displayed for input parameters of the Plugin Part

* Output parameter description

A tool tip displayed for output parameters of the Plugin Part

For details about how to set the tool tips and details about the values, see (2) Editing 1/O plugin XML files.

(4) Specifying the plugin execution order

In the I/O plugin XML file (1caction.xml), you can change the plugin execution order. You can specify the following
values for the execution order:

e 100-500
* 600-900

If multiple I/O Plugins are placed in the same node, they are executed in the ascending order specified for the execution
order. If the same execution order is specified for multiple I/O Plugins, the execution order will be undefined.

For details about the values, see (2) Editing 1/0 plugin XML files.

(5) Specifying whether to display a confirmation dialog box

In the I/O plugin XML file (icaction.xml), you can specify whether to display a confirmation dialog box during
execution of the I/0 Plugin. You can specify the following values:

* true

e false

If true is specified for a plugin placed in the node, a confirmation dialog box for the I/O Plugin appears when the
inputFromNode method is executed. Even if t rue is specified for multiple plugins in the node, a confirmation
dialog box appears only once. If Cancel is selected in the confirmation dialog box, the KDCZ00266-Q message is
displayed, and then processing of all plugins set in the node is not executed.

For details about the values, see (2) Editing I/0 plugin XML files.

(6) Specifying whether to execute plugins in the preview window

In the I/O plugin XML file (1caction.xml), you can specify whether to execute the I/O Plugin in the preview window.
You can specify the following values:

* true

e false

If multiple plugins are placed in the node, only the I/O Plugins for which true is specified are executed.

4. Developing Plugins

JP1/Navigation Platform Development Guide 51

For details about the values, see (2) Editing 1/0 plugin XML files.

(7) Specifying the button type for suppressing execution

In the I/O plugin XML file (ioaction.xml), you can specify the button type for suppressing execution of I/O Plugins.

You can specify the values shown below.

Table 4-3: Button type for suppressing execution of 1/0 Plugins

No. Compatibility option Setting of the button type for
(value of the "legacy" suppressing execution
attribute) (value of the "value" attribute)

1 false start

2 show next page

3 show_previous_ page
4 show complete page
5 back jump

6 forward jump

7 true start

8 show next page

9 show previous page
10 show complete page

Operation to suppress execution of the 1/0
Plugin

Switch from the Terminal Node (start) to a Process
Node. Alternatively, display the first Process Node
not connected to the Terminal Node (start).

Switch to the next node by clicking the button.

Note, however, that if you switch to a Process Node
for which the transition destination node does not
exist and for which the Back button is hidden,
show complete page is set.

Switch to the previous node by clicking the button.

Switch to a node with the Done button displayed.
Alternatively, switch to a Process Node that does not
have the transition destination node and for which the
Back button is not displayed.

Switch to the next node by directly selecting the node.

Switch to the previous node by directly selecting the
node.

Switch from the Terminal Node (start) to a Process
Node. Alternatively, display the first Process Node
not connected to the Terminal Node (start).

Switch to a node by clicking the button or directly
selecting the node.

Note, however, that if you switch to a Process Node
for which the transition destination node does not
exist and for which the Back button is hidden,
show complete page is set.

Switch to the previous node by clicking the button or
directly selecting the node.

Switch to a node with the Done button displayed.
Alternatively, switch to a Process Node for which the
transition destination node does not exist and for
which the Back button is hidden.

If multiple I/O Plugins are placed in the node, the /O Plugins for which execution is suppressed are not executed.

For details about the values, see (2) Editing I/0 plugin XML files.

4. Developing Plugins

JP1/Navigation Platform Development Guide

52

(8) Implementing processing to be performed by the plugin

To implement the server processing in the I/O Plugin, specify the processing in the class whose name is specified by
the userplugin.server.controller.ioaction key in the plugin information property file. At this time,
specify the processing to be performed during node transition.

If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.2 Customizing Suspend/Resume Plugins

This subsection describes the procedure for customizing Suspend/Resume Plugins.
To customize a template plugin created as a Suspend/Resume Plugin:

1. Configure the user property file.
2. Implement processing to be performed by the plugin.

The following describes details about each step.

(1) Configuring the user property file

See 4.9 Configuring the user property file, and then edit the user property file.

(2) Implementing processing to be performed by the plugin

To implement the suspend information reference and update processing on the Suspend/Resume Plugin, specify the
processing in the class whose name is specified by the userplugin.server.controller. suspendkey in the
plugin information property file.

If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.3 Customizing Custom Window Plugins

This subsection describes the procedure for customizing Custom Window Plugins.
To customize a template plugin created as a Custom Window Plugin:

1. Edit the custom window JSP file.
2. Implement processing to be performed by the plugin.

(1) Editing the custom window JSP file

See 4.3.4 Creating the JSP file used in custom windows, and then implement the processing required for the custom
window JSP file.

4. Developing Plugins

JP1/Navigation Platform Development Guide 53

(2) Implementing processing to be performed by the plugin

If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.4 Creating the JSP file used in custom windows

When you execute the template plugin creation command with the plugin information property file in which Custom
Window Plugin information is defined, the custom window JSP file (ucnpCustom. jsp) is created. Do not edit
ucnpCustom. jsp. JSP files for editing are created in the following directory:

Navigation-Platform-for-Developers-installation-directory\ p1luginSDK\plugin\plugin-ID\ j sp\plugin-
name.jsp

JSP files for editing (plugin-name . j sp) are included in ucnpCustom. jsp. Because Navigation Platform loads
ucnpCustom. jsp and performs processing, JSP files for editing cannot use the library placed on the layer of the
Application Class Loader. Use the library placed on the layer of the System Class Loader.

The following describes the items that can be specified in the JSP file for editing (plugin-name . 3 sp).

Table 4—4: Items that can be specified in a JSP file used in custom windows

No. Category ltem Description

1 Tag Directive Specify a directive in the following format:

<%Q@ directive%>

2 Scriptlet Specify a scriptlet in the following format:

<% Java-code %>

3 Expression Specify an expression in the following format:

<%= expression %>

4 Comment Specify a comment in the following format:

<%-- comment ——%>

5 Directive page Define information such as JSP file encoding and Java import statement. To use a
different encoding from that of the custom window JSP file (ucnpCustomn. jsp),
specify the pageEncoding attribute.

Do not specify the following attributes:

contentType attribute
"text/html; charset=UTF-8" is automatically applied during execution
of the JSP file.

language attribute
"java" is automatically applied during execution of the JSP file.

6 include Include other files such as a text file and JSP file.

7 Implicit object request Object variable of the javax.servlet.http.HttpServletRequest class

8 response Object variable of the javax.servlet.http.HttpServletResponse
class

9 session Object variable of the javax.servlet.http.HttpSession class

4. Developing Plugins

JP1/Navigation Platform Development Guide 54

4.4 Adding database connection processing

To add database connection processing to a plugin, specify DB Connector as a Cosminexus resource adapter on the
J2EE server. The required tasks are as follows:

1. Configure (add, change settings of, or delete) a resource adapter.
2. Set a plugin.

3. Implement database connection processing.
The database and resource adapter to be connected are as follows:

Database
HiRDB Single Server 08-00 or later

Resource adapter
DB _Connector for HIRDB Type4
This resource adapter is imported when Navigation Platform is set up.

4.4.1 Adding a resource adapter

To add a resource adapter, you need the Connector attribute file. The following describes the procedure:

1. Execute the command as follows to display a list of resource adapters, and then make sure that a resource adapter
named DB_Connector for HiRDB Type4 is not found:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjlistrar
UCNP_J2EE
2. Execute the command as follows to deploy the DB Connector for HiRDB Type4 resource adapter:
Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjdeployr

ar uCNP_J2EE -resname DB Connector for HiRDB Type4

3. Display a list of resource adapters again, and then make sure that the DB Connector for HiRDB Type4
resource adapter has been added.

4. Execute the command as follows to acquire the Connector attribute file for the resource adapter you added:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjgetrarp
rop uCNP_ J2EE -resname DB Connector for HiRDB Type4 -c "C:\temp\TP_ Connect
or for HiRDB Typed.xml"

"C:\temp\TP Connector for HiRDB Type4.xml" is the file path to which the acquired Connector
attribute file (extension is . xm1) is stored. You can change this file path as needed.

Note that this step is not necessary if you have already created a Connector attribute file.

5. Edit the Connector attribute file to specify the database information to which you want to add the connection
processing.

Specify values for the tags listed below according to the settings for the database:

4. Developing Plugins

JP1/Navigation Platform Development Guide 55

Tag Explanation

display-name Resource adapter name

description Database port number

DBHostName Database's IP address or host name

encodelang Character set corresponding to the database's character codes
User Name of the user connecting to the database

Password Password of the user connecting to the database

Observe the following rules when editing the display-name tab:
* Do not specify a character string beginning with ucnp (the specified value is not case sensitive).
* Do not specify a value that is already used in another resource adapter.

Note that this step is not necessary if you have already created a Connector attribute file.

6. Execute the command as follows to apply the contents of the edited Connector attribute file to the resource adapter
you added:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjsetrarp
rop uCNP J2EE -resname resource-adapter-display-name -c "C:\temp\TP Connec
tor for HiRDB Type4.xml"

The resource adapter display name is either DB Connector for HiRDB Type4 or the name specified for the
display-name tag in the Connector attribute file.

7. Execute the command as follows to check whether the added resource adapter can connect to the database:
Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjtestres
uCNP J2EE -type rar -resname resource-adapter-display-name
8. Execute the command as follows to start the resource adapter:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjstartra
r uCNP J2EE -resname resource-adapter-display-name

4.4.2 Changing resource adapter settings

To change settings of an added resource adapter, you need to stop the plugin and resource adapter. The following
describes the procedure:

1. Execute the command as follows to display a list of resource adapters, and then check the status of the resource
adapter for which you want to change the settings:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjlistrar
uCNP J2EE

A resource adapter is running if its display name is preceded by running. A resource adapter is stopped if its
display name is preceded by stopped.

Note that the resource adapter whose display name is uCNP_DB Connector for HiRDB Type4 is for use
with Navigation Platform. Resource adapters having other display names have been added for plugins.

4. Developing Plugins

JP1/Navigation Platform Development Guide 56

2. If any plugin is using the resource adapter for which you want to change the settings, stop that plugin by executing
the command as follows:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjstopapp
uCNP_J2EE -name plugin-name

3. Execute the command as follows to stop the resource adapter for which you want to change the settings:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjstoprar
uCNP_ J2EE -resname resource-adapter-display-name

4. Perform step 5 and subsequent steps in 4.4.1 Adding a resource adapter.

4.4.3 Deleting resource adapters

To delete a resource adapter, you must first delete the plugin that is using the resource adapter. The following describes
the procedure:

1. Perform steps 1 and 3 in 4.4.2 Changing resource adapter settings.

2. If any plugin is using the resource adapter to be deleted, execute the command as follows to delete that plugin:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjdeletea
pp uCNP J2EE -name plugin-name

3. Execute the command as follows to delete the resource adapter:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjdeleter
es uCNP J2EE -type rar -resname resource-adapter-display-name

4.4.4 Setting a plugin for database connection processing

To set database connection processing in a plugin, you need to edit the two files (web . xml and cosminexus.xml)
to add resource adapter information. The following shows the storage location and editing contents of each file.

0 Important

To edit web . xml and cosminexus.xml, use the editor started by selecting Run as administrator.

(1) Editing web.xml

Add the resource definition to the web . xm1 file of the User Plugin. The web . xm1 file is stored in:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin\p
lugin-ID\WEB-INF\web.xml

The following shows a coding example when the resource reference name is jdbc/
TP Connector for HiRDB Type4:

4. Developing Plugins

JP1/Navigation Platform Development Guide 57

<resource-ref>
<res-ref-name>jdbc/TP Connector for HiRDB Type4</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Add the above lines to immediately before </web-app> at the end of the web . xm1 file.

(2) Editing cosminexus.xml

Edit the cosminexus.xml file of the User Plugin.

The following shows the cosminexus.xml file is stored in:

Navigation—-Platform-for-Developers-installation-directory\pluginSDK\plugin\p
lugin-ID\dd\META-INF\cosminexus.xml

The following shows a coding example when the resource reference name is jdbc/
TP Connector for HiRDB Type4 and the resource adapter display name is
TP _Connector for HiRDB Type4:

<resource-ref>
<res-ref-name>jdbc/TP Connector for HiRDB Type4</res-ref-name>
<linked-to>TP Connector for HiRDB Type4</linked-to>
</resource-ref>

Add the above lines to immediately before </war> at the end of the cosminexus.xml file.

4.4.5 Implementing database connection processing

The following indicates the conditions for developing plugins to be connected to a database:

* Processing that acquires the data source is implemented by the plugin initialization processing
(PluginInitializer classofthe IPluginInitializer interface).

* Data source lookup processing is implemented by the init method of the PluginInitializer class.
If you are developing plugins to be connected to a database, the following implementations are recommended:

* Ifan attempt to acquire data sources fails, UCNPPluginUserException is thrown.
¢ Data source update processing is implemented by the i nput FromNode method.
» Data source reference processing is implemented by the outputToNode method.

* For plugins linked with external systems, the update and reference timing is synchronized by using other plugins.

5 Note

If you ignore a failure of the data source lookup processing and then terminate the plugin start processing,
the next lookup processing is not executed until you restart Navigation Platform.

4. Developing Plugins

JP1/Navigation Platform Development Guide 58

Because the lookup processing fails by either of the following causes, UCNPPluginUserException
must be thrown to prevent Navigation Platform from starting:

* The resource adapter is not running.

* The resource adapter settings are inconsistent with the plugin implementation.

(1) Example of implementing plugin initialization processing

// Store the data source in the static member variable so that the data so
urce can be acquired from the inputFromNode method.
private static DataSource mDs;

@Override
public void init () throws UCNPPluginUserException ({
try {
// Data source lookup processing must be performed within the init met
hod.
InitialContext i1c = new InitialContext () :;
DataSource ds = (DataSource) ic.lookup(
"java:comp/env/jdbc/TP_Connector for HiRDB Type4d");
mDs = ds;
} catch (NamingException e) {
// If lookup processing fails, UCNPPluginUserException must be thrown.
UCNPPluginUserException ue = new UCNPPluginUserException (
"Lookup processing failed.", e);
throw ue;

}

public static DataSource getDataSource () {
return mDs;

}

(2) Example of implementing the outputToNode method

public Map<String, Object> outputToNode (HttpSession session, Map<String, O
bject> param) {
Map<String, Object> map = new HashMap<String, Object>();

DataSource ds = PluginInitializer.getDataSource(); // Acquire the instan
ce
Connection con = null;
PreparedStatement statement = null;
String name = null;
try {
// Establish a connection
con = ds.getConnection();

// Execute SQL

// The outputToNode method must perform Reference processing
statement = con.prepareStatement ("SELECT NAME FROM TP TBL");
statement.setString(l, uid);

ResultSet set = statement.executeQuery();

4. Developing Plugins

JP1/Navigation Platform Development Guide

// Obtain results
i1f (set.next()) {
name = set.getString(l);
}
Map<String, String> rtnParm = new HashMap<String, String>();
rtnParm.put ("outputParaml", name);
map.put ("ucnp.next.params.map ",rtnParm);
} catch (SQLException e) {
// Store the error information in response and interrupt transition.
map.put ("ucnp.error.message", "An error occurred during DB access.");
map.put ("ucnp.error.type", "NG") ;
} finally {
if (statement !'= null) {
try |
statement.close() ;
} catch (SQLException e) {
}
}
if (con != null) {
try |
con.close();
} catch (SQLException e) {
}
}
}

return name;

4. Developing Plugins

JP1/Navigation Platform Development Guide

60

4.5 Implementing processing to be performed during plugin initialization
or termination

Inthe PluginInitializer class of the IPluginInitializer interface, implement the processing that must
be performed when a plugin starts or stops. If there is no such processing, the PluginInitializer class created
by the template plugin creation command can be used without changes.

4. Developing Plugins

JP1/Navigation Platform Development Guide 61

4.6 Building plugins

The section describes how to build plugins and how to take actions if an attempt to build a plugin fails.

4.6.1 Procedure for building plugins

You can build customized template plugins by executing build.xml of the pluginSDK project from Ant. To build
plugins:

1. Start Eclipse.
2. Select File, Import, General, and then Existing Projects into Workspace.

3. In the Select root directory text box, specify the following value, and then click the Finish button:
Navigation-Platform-for-Developers-installation-directory\ pluginSDK

Do not select the Copy projects into workspace check box.
4. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.

5. From the project imported in 3.2 Importing a pluginSDK project, drag build.xml into the Ant view.
root is added in the Ant view.

6. In the Ant view, click the + icon for root to display the target list.

File Edit Navigate Search Project Run Window Help

. Qy Soecti |01 |2 {13 BYOTUVIZYOVIdE ViR
> - - v| < Quick Access : B |
[2 Project Explorer 52 < 3 =0 gEo g =0
4 13 pluginSDK An outline is not available.

& bin

& conf

& lib

& plugin

& plugintemplates

) buildxml

) plugin_build.xml
%) plugin_targetdef_build
| plugin.properties.sam

Q % /N0 X%
rOOt 4 1 root
*) checkversion

® children
® clean
® deleteEar

(Douglaerclick) < ‘;' ear [default] ’

®) earcommon
® init

® stantar

® stopEar

[2. Markers (7] Properties it Servers [Data Sourc.. 2. Snippets [Console # Ant 52 < O

« m »

/pluginSDK/build.xml |

Ant view

7. In the target list, double-click ear.

All plugins under the Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugins
directory are built, and then the EAR file is created in the following directory:

Navigation-Platform-for-Developers—-installation-directory\pluginSDK\dest

4. Developing Plugins

JP1/Navigation Platform Development Guide 62

When you build plugins after the first time, if necessary, double-click clean in the target list before double-clicking
ear in the target list. This deletes intermediate files for the class, library, and plugins.

4.6.2 Actions to be taken if an attempt to build plugins fails

The following describes how to take action if an attempt to build plugins fails.

The probable cause of a failure in building plugins is an error of java.lang.OutOfMemoryError. This error is
likely to occur if there are multiple plugins.

If an error (java.lang.OutOfMemoryError) occurs, perform the following, and then build the plugins again:

1. Right-click root in the Ant view. In the menu that opens, select Run As, and then External Tools Configurations

The External Tools Configurations dialog box opens.

2. Click the JRE tab, and then enter —XX : MaxMetaspaceSize=256m in the VM arguments field.

Create. manage. and run configurations Q
Run an Ant build file, @
LN 2 Name: ‘ pluginSDK build.xml l
type filter text =] Main Refresh | [osh Build | v Targets | ¥ Classpath | <» Properties | =4 JRE| >
v & AntBuild Buildfile:

% pluginSDK build.xml
@3 APl Use Report
Q. Program Browse Workspace... | Browse File System... Variables...

l ${workspace_loc:/pluginSDK/build.xml} f

Base Directory:

Browse Workspace... | Browse File System... Variables...

Arguments:

-0CMaxMetaspaceSize=256m

Variables...

Note: Enclose an argument containing spaces using double-quotes ().
Set an Input handler

< >
Filter matched 4 of 4 items

7™\

3. Click the Apply button, and then click the Close button.
The External Tools Configurations dialog box is closed.

4. Developing Plugins

JP1/Navigation Platform Development Guide 63

4.7 Deploying plugins

Before you can use developed plugins, you must deploy and start them by using Eclipse. The following describes the

procedure.

O Tir

You must perform this procedure as a user having Windows administrator roles. Note that the procedure
assumes that the root node of the pluginSDK project has been added to the Eclipse Ant view.

1. Start Navigation Platform (J2EE server).

This step is not necessary if Navigation Platform is already running. For details about how to start Navigation
Platform, see the manual JPI/Navigation Platform Setup and Operations Guide.

2. Select Run as administrator, and then start Eclipse.
3. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.

4. From the project imported in 3.2 Importing a pluginSDK project, drag build.xml into the Ant view.

root is added in the Ant view.

5. In the Ant view, click the + icon for root to display the target list.

File Edit Navigate Search Project Run Window Help

- e e LR R PO QUGG I®O PRI
< > N | Quick Access | oms |
[2 Project Explorer 52 = 3 =0 Eo 8 il = |
a&|e T ¢ v
4 3 pluginSDK An outline is not available.

& bin

& conf

& lib

& plugin

&> plugintemplates

&) buildxml

) plugin_build.xml

%) plugin_targetdef_build
| plugin.properties.sam

Q % 7RO XK
rOOt 4 ;E root
®) checkversion

&) children
®) clean

Double-click © deleteEar
®) deploytar

[2/ Markers [7] Properties it Servers ({3 Data Sourc.. 2. Snippets [Console # Ant 52 = O

€ earcommon
*) init

® startEar
® stopEar

« i »

/pluginSDK/build.xmi I

Ant view

6. If any plugin is running on the J2EE server, double-click stopEar in the target list.
The J2EE application for the plugin stops.

7.1f a plugin exists on the J2EE server, double-click deleteEar in the target list.
The J2EE application for the plugin is deleted.

8. In the target list, double-click clean, and then double-click ear.

4. Developing Plugins

JP1/Navigation Platform Development Guide

64

Plugins are built.

9. In the target list, double-click deployEar.

The J2EE applications for plugins are imported.

10. In the target list, double-click startEar.
The J2EE applications for plugins are started.

11. Restart Navigation Platform (J2EE server).

4. Developing Plugins

JP1/Navigation Platform Development Guide

65

4.8 Associating I/O Plugins with Operational Content

In the Operational Content Editing Window, associate I/O Plugins with Operational Content that uses the plugins. You
do not perform this for Suspend/Resume Plugins and Custom Window Plugins. A port (®) is displayed with a Guide
Part that can be associated with an I/O Plugin.

This section describes how to associate I/O Plugins with Guide Parts by using mapping lines in the Operational Content
Editing Window.

4.8.1 Drawing mapping lines (connecting Guide Parts and Plugin Parts)

The following describes the procedure for placing I/O Plugin parts and then drawing mapping lines.

O Tir

You can view and work with Plugin Parts and mapping lines only when the Guide area is in mapping mode.
For details about each step, see the manual JP1/Navigation Platform Content Editing Guide.

1. Specify the following URL on the Web browser to invoke the login window:
http (s) : //host-name : port-number/ucnpBase/portal/screen/TitlePortlet/portlet/
ucnp/pane/-440b4408440g555767Z21i/layout id/default/
tab 1d/-440b4408440g55S76z2i?start editor=true&open editor=true
* host-name

Host name or IP address of the J2EE server machine in a development environment.

* port-number

Web server port number in a development environment. This value will be specified for
ucnp.setup.server.cosminexus.hws.http.port property in the user setup property file
(ucnp setup user.properties).

2. Enter the user ID and password, and then click the Login button.

If you enter incorrect information, click the Reset button to clear the entered information, and then enter information
again.

When you click the Login button, the Operational Content Editing Window appears.

3. In the Operational Flow area, click the Process Node in which you want to set a plugin.
The Guide corresponding to the Operational Flow appears in the Guide area.

4.Click @& Plugin (Plugin button) in the toolbar.

The Guide area switches to mapping mode.
5. In the Plugins palette in the Guide area, click an (Plugin button).

6. Click a location in the Guide area.
A Plugin Part is placed.

4. Developing Plugins

JP1/Navigation Platform Development Guide 66

Register member

Register information required for member registration. @ Plugin
Name o | o :E
Address @ #-

°

24 loAction

Input from Part Output to Part
® linputitemName1 | outputitemName1 ®

® linputitemName2 | outputitemName2 @

® linputitemName3 | outputitemName3 ®

If you want to place other plugins, repeat steps 5 and 6.

7. Draw a mapping line by clicking and dragging from the port (®) of the transition-source Guide Part to an input
parameter of the Plugin Part (the port on the left of the Plugin Part).

The cache value of the Guide Part will be passed to the plugin as an input parameter.
For details about cache values of each Guide Part, see 5.2.1 (5) Cache values of Guide Parts.

8. Draw a mapping line by clicking and dragging from an output parameter of the Plugin Part (the port to the right of
the Plugin Part) to the transition-destination Guide Part.

The value set in the plugin will be passed to the Guide Part as an output parameter.
Supplementary note:

* Mapping lines appear as colored arrows as shown in the figure below. Because each mapping line has a different
color, you can easily identify lines even if they cross over.

B When a Plugin Part is selected B When mapping lines are selected
o o
9 10Action 4 toAction
Input from Part Qutput to Part Input from Part Output to Part
® linputitemName1 | |outputitemName1 ,Q ® linputitemName1 | |outputitemName1

@ |inputitemName2 outputltemNameZl,v" @ |inputitemName2 | |outputitemName

® |inputitemName3 | |outputitemNam ® |inputitemName3 | |outputitemNam

o

City, ward, town, village: @ , City, ward, town, village: @ v
Prefecture: . ’ Prefecture: .

* You can draw mapping lines to multiple input parameters from one Guide Part.
* You cannot draw mapping lines from multiple output parameters to one Guide Part.
* It is not mandatory that you draw mapping lines to the ports of a Plugin Part.

* Ifyou have placed a Plugin Part, plugin processing is invoked when a transition occurs between nodes containing
the plugin in the Operational Content Editing Window, even if no mapping lines are drawn to the Plugin Part.

* Mapping lines or Plugin Parts set in this task are not displayed in the Operational Content Execution Window.
Notes on cache values of Guide Parts

The cache values of Guide Parts are shared between Guide Parts of the same type. When the Operational Flow
includes a Branching node, if a Process Node that has already been displayed is displayed again via another route,
the cache value used when the Process Node was first displayed is used.

4. Developing Plugins

JP1/Navigation Platform Development Guide 67

You can use [/O Plugins (server processing implementation interface) to change the cache value according to certain
conditions. For details about the server processing implementation interface, see 5.2 lloPluginController (server
processing implementation interface).

Notes on associating Plugin Parts with drop-down parts in a parent-child relationship

To associate Plugin Parts with drop-down parts that are configured in a parent-child relationship, define the
Operational Content so that the parameter linked to the parent drop-down part is above the parameter linked to the
child drop-down part. The parameters of parent and child drop-down parts need not be contiguous.

The following figure shows an example in which output parameters (the ports on the right side of a Plugin Part) are
associated with drop-down parts in a parent-child relationship.

Figure 4—4: Example of associating output parameters with drop-down parts in parent-child
relationship

o
*-. loAction

Input from Part Output to Part
® inputitemName1 | joutputitemName [l /osoe%° Plon Fart win

0

Associate Plugin Part with

® inputitemName2 | |outputitemName2
f child drop-down part

® |inputitemName3 outputltemNamé' *

o // o
City, ward, town, village: ¢ [

Prefecture: o]

In this example, cutputItemNamel is associated with the parent drop-down part, and outputItemName? is
associated with the child drop-down part. Because the parameters associated with drop-down parts in parent-child
relationships need not be contiguous, for example, outputItemName3 could also be associated with the child
drop-down part.

These notes do not only apply to output parameters. They also apply when you associate input parameters with
parent-child drop-down parts.
Operations after editing plugins

If you edit a plugin after associating its Plugin Part with parameters, you need to place the Plugin Part for the edited
plugin again and redraw the mapping lines.

For details about how to enable edited plugins without placing them and redrawing mapping lines, see the description
about updating User Plugins in the manual JPI/Navigation Platform Setup and Operations Guide.

4.8.2 Details about values input to or output from plugins

The following table describes the values input to or output from plugins for each type of Guide Part.

Table 4-5: Input values from Guide Parts to plugins and output results from plugins to Guide Parts

Guide Part type Value input to the plugin Result output to the Guide Part

Static text The character string displayed as static text The character string is output as the static
text.

Text box The character string entered in the text box The character string is output to the text box.

Text area The character string entered in the text area The character string is output to the text area.

4. Developing Plugins

JP1/Navigation Platform Development Guide 68

Guide Part type

Value input to the plugin

Result output to the Guide Part

Radio button The value of the selected radio button The corresponding radio button becomes
selected.
Check box One of the following values depending on whether the check | The check box becomes selected if the
box is selected: value is true.
If the check box is selected For any other value, the check box remains
true cleared.
If the check box is not selected
false
Drop down The value of the selected list The value corresponding to the selected list
entry is output.
Hyperlink The anchor text and URL (specified in the Attribute Settings | The value®! consisting of the anchor text and
window) connected by a linefeed code (\r\n) URL connected by a linefeed code (\ r\n)is
output.
Image The value? consisting of the image part URL and The value™ consisting of the URL set for the

Inline frame

HTML Part

#1

description (the value in the Tool tip text box) specified in
the Attribute Settings window and connected by a linefeed
code (\r\n)

The URL used to display the inline frame

Of the information specified in the HTML source string
area for the HTML Part, a character string encoded after the
name and value attributes of the following are acquired:

¢ Text box

¢ Password box
¢ hidden field
¢ Check box

¢ Radio button
¢ Selection box

o Text area

Note the following regarding the output value:

image part, a linefeed code (\ r\n), and the
image description (the value in the Tool tip
text box) is output.

The URL used to display the inline frame is
output.

The value set in the HTML source string
area for the HTML Part is output.

- An empty character string is output if the value is null, empty character string, or consists only of a linefeed code.

- If the value does not contain a linefeed code, the entire string is processed as anchor text (an empty character string is output for the URL).

- If the value contains two or more linefeed codes, the values on the third and subsequent lines are ignored.

#2

If the Tool tip text box was left blank (empty character string), the input value will be the URL followed by a linefeed code (\ r\n). Take care
not to include the linefeed code if your intention is to extract only the URL.

#3

Note the following regarding the output value:

- An empty character string is output if the value is null.

- If the value does not contain a linefeed code (\ r\n), the entire string is processed as a URL. An empty character string is output for the tool
tip.

- If the value contains two or more linefeed codes, the values on the third and subsequent lines are ignored.

4.8.3 Updating Plugin Parts

If you change any of the following items by editing the I/O plugin XML file, you need to update the Plugin Part to
enable the changes:

4. Developing Plugins

JP1/Navigation Platform Development Guide 69

* File name of a tool icon

* Execution order

* Execution confirmation dialog box

* Preview window execution flag

¢ Execution suppression by the button type

* Description character string

¢ Input parameter

* Qutput parameter
If the plugin before change is already associated with Operational Content, you need to delete the placed plugin and
then perform the association process again. For details about how to enable changes without performing the association

process again, see the description about updating User Plugins in the manual JPI/Navigation Platform Setup and
Operations Guide.

Note that the task for associating plugins again or updating User Plugins must also be performed in an editing
environment and execution environment. Therefore, if you edit the I/O plugin XML file, notify the system administrator.

4.8.4 Checking configuration information for Operational Content that
uses plugins

You can check configuration information for Operational Content that uses plugins. To do this, click the Mapping List
button in the toolbar in the Operational Content Editing Window to output a mapping list file. For details about the
output procedure and output contents, see the manual JPI/Navigation Platform Content Editing Guide.

4. Developing Plugins

JP1/Navigation Platform Development Guide 70

4.9 Configuring the user property file

To enable developed plugins so that they operate normally, you need to configure the user property file
(ucnp user.properties)as follows:

* Do not specify all for the ucnp.base.client.directjump.enable property.
If you specify al1l, an error occurs in a Suspend/Resume Plugin, and Navigation Platform does not start. Similarly,
I/0 Plugins do not operate.

e Specify true for the ucnp.base.client.suspend.enable property only if a Suspend/Resume Plugin
exists.
If you specify t rue, Suspend/Resume Plugins operate. If you specify t rue when there is not a Suspend/Resume
Plugin, an error occurs after the login, disabling the Operational Content Execution Window.

¢ Change the values of the ucnp.base.server.logoutbutton.display property from the defaults
according to custom window processing.

To log out from a custom window, specify false for the ucnp.base.server.logoutbutton.display
property, and then make sure that the Logout button is not displayed in the Operational Content Execution Window
of Navigation Platform.

If necessary, change the values of the following properties from the defaults:

* ucnp.base.client.viewer.confirm.discardinput.enable property (whether to display a
confirmation dialog box when input information is discarded)

e ucnp.base.client.suspend.confirm.load.enable property (whether to display a confirmation
dialog box when operation is resumed)

For the storage location of the user property file and details about properties, see the manual JP1/Navigation Platform
Setup and Operations Guide.

4. Developing Plugins

JP1/Navigation Platform Development Guide 71

4.10 Debugging plugins

To debug plugins, use Eclipse.

4.10.1 Conditions for debugging plugins

To debug plugins, you need to set up a development environment by specifying t rue for the
ucnp.setup.server.cosminexus.debug.enable property in the user setup property file
(ucnp_setup user.properties). You also need to start Navigation Platform when you start debugging.

For details about the setup procedure, property details, and how to start Navigation Platform, see the manual JP1/
Navigation Platform Setup and Operations Guide.

4.10.2 How to debug plugins

To debug a plugin by using the Eclipse debugger function:

1.

2.

Start Eclipse.

In the Package Explorer View, click the template plugin project imported in 4.2 Importing a template plugin project.
The project is selected.

. From the menu, select Debug, and then Debug Configurations.

The Debug Configurations dialog box appears.

. Right-click Remote Java Application and, in the menu that opens, click New.

A new remote Java application is created. For the port number, specify the value set for the
ucnp.setup.server.cosminexus.debug. jdwp.port property in the user setup property file
(ucnp setup user.properties).

. Click the Debug button.

The debugger runs.

. Set breakpoints in the implemented Java code.

. In the Web browser, perform the operation below for debugging the plugin.

For I/O Plugins
Perform operation on Operational Content associated with the plugin and make sure that the plugin operates
correctly.

For Suspend/Resume Plugins
Partially perform operation on any Operational Content, and then log out by clicking the Suspend button. Then,
log in again and make sure that the contents of operation up to the suspended point were saved and you can
resume the operation from the middle of the Operational Flow.

For Custom Window Plugins
After you log in, make sure that the custom window appears.

4. Developing Plugins

JP1/Navigation Platform Development Guide 72

4.11 Deleting plugins

To delete plugins, use Eclipse. Before deleting plugins, you need to check the IDs of the plugins and whether the plugins
use a library.

4.11.1 How to delete plugins

To delete plugins:

1.

Start Navigation Platform (J2EE server).

This step is not necessary if Navigation Platform is already running. For details about how to start Navigation
Platform, see the manual JP1/Navigation Platform Setup and Operations Guide.

. To delete I/O Plugins, delete Operational Content that uses the plugins, or delete the association with those plugins

from Operational Content.

. Select Run as administrator, and then start Eclipse.
. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.
. In the target list, double-click stopEar and then deleteEar to delete all plugins.

. Delete the directory of the plugins to be deleted (Navigation-Platform-for-Developers-installation-directory

\pluginSDK\plugin\plugin-ID).

. If the plugins to be deleted only use the library placed on the layer of the System Class Loader, delete both the library

and class path settings.

. If the plugins deleted in step 5 contain a plugin you do not want to delete, double-click deployEar and then startEar

to deploy it again.

9. Restart Navigation Platform.

4. Developing Plugins

JP1/Navigation Platform Development Guide 73

4.12 Calculating memory usage for plugins
The expression for obtaining the memory usage for a User Plugin is as follows:
memory—usage—A# - memory-usage-B = memory-usage-for-User-Plugin

Legend:
memory-usage-A: For executing Operational Content created by using a User Plugin
memory-usage-B: For executing Operational Content created without using a User Plugin

When using the ucnpOptions parameter, measure the memory usage by specifying the ucnpOptions
parameter before executing Operational Content.

4.12.1 Procedure for creating Operational Content for measurement

To calculate the memory usage for User Plugins, you must execute the same Operational Content by using a User Plugin
and without using a User Plugin, and then measure the memory usage for each case.

To create Operational Content that does not use User Plugins:
1. Log in to Navigation Platform.
2. Copy the Operational Content created by using a User Plugin.
3. Delete the User Plugin from the copy of the Operational Content.

4. Save the Operational Content.

4.12.2 Procedure for measuring the memory usage for plugins

The following describes the procedure for measuring the memory usage.

(1) Restarting Navigation Platform
1. Use the npstop command (stop) to stop Navigation Platform.

2. Use the npstart command (start) to start Navigation Platform.

(2) Executing Operational Content

1. Log in to Navigation Platform.
2. Select Operational Content for which you want to measure the memory usage.

3. Click the Next button repeatedly to execute Operational Content to the end.

If Operational Content contains multiple routes with branching, use the route that passes the node in which the plugin
is placed.

4. Developing Plugins

JP1/Navigation Platform Development Guide 74

Note after execution is completed

After execution of Operational Content, do not display another Operational Content or log out.

(3) Performing a GC (garbage collection)

1. Execute the following command to acquire the process ID of the process that is using the RMI registry port of
Navigation Platform:

netstat -abo

The following shows a command output example:

Protocol Local address External address Status PID
TCP 0.0.0.0:24702 navipla:0 LISTENING 1876

Check the PID on the line on which the local address port number is 24702. In this example, 1876 is the process
ID of the process using the RMI registry port. If the RMI registry port is unknown, check the value specified for the
ucnp.setup.server.cosminexus.ejbserver.rmi.naming.port property in the user setup
property file (ucnp setup user.properties). The defaultis 24702.

2. Use the following command to perform a GC:

"Navigation-Platform-installation-directory\PP\uCPSB\Jjdk\bin\javagc.exe" -
P process-ID-of-the-process-using-the-RMI-registry-port

When you execute the command, the message below appears. Enter y, and then press the Enter key.

Force VM to execute GC: ? (y/n)

(4) Stopping J2EE applications for Navigation Platform and plugin

1. Execute the following command to stop the J2EE application for the plugin:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjstopapp
uCNP_ J2EE -name User-Plugin-name

If there are multiple User Plugins, repeatedly execute this command until all plugins stop.

2. Execute the following command to stop the J2EE application for Navigation Platform:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin\cjstopapp
uCNP JZ2EE -name ucnp

(5) Checking operating statistics
Check the JavaVM operating statistics file output to the following path:

Navigation-Platform—-installation-directory\PP\uCPSB\CC\server\public\ejb\Nav
igation Platform-J2EE-server-name\stats\HJVMStats YYYYMMDDhhmmTZ.csv

Legend:
YYYYMMDDhhmm: Date and time that the operating statistics file is created
TZ: Time zone

4. Developing Plugins

JP1/Navigation Platform Development Guide 75

If you open the operating statistics file in Excel, the memory usage when Operational Content was executed is output
to cell AK. This value shows the maximum memory usage (unit: bytes) per session released from the Explicit heap in
the last 60 seconds after the J2EE application for Navigation Platform stopped.

(6) Restarting Navigation Platform
1. Use the npstop command (stop) to stop Navigation Platform.

2. Use the npstart command (start) to start Navigation Platform.

4. Developing Plugins

JP1/Navigation Platform Development Guide 76

4.13 Changing J2EE server settings

This section describes J2EE server setting items that can be changed as required, and how to change them. For items
not described in this manual, do not change the settings from the default.

4.13.1 J2EE server setting items that can be changed during plugin
development

The following shows the J2EE server files that can be edited and the setting items that can be changed.
User property file for J2EE servers (usrconf.properties)

Java VM system property

Option definition file for J2EE servers (usrconf.cfq)
System class path
Minimum value for the Java heap memory usage for Java VM
Maximum value for the Java heap memory usage for Java VM
Maximum size of the Explicit memory block for the Explicit Memory Management functionality of Java VM

In addition, you can also change the resource adapter according to the plugin you develop. For details about changing
the resource adapter, see 4.4 Adding database connection processing.

4.13.2 Storage location of the files used for changing J2EE server
setting items

The storage location of the user property file for J2EE servers (usrconf .properties) and option definition file
for J2EE servers (usrconf.cfq) is as follows:

Navigation-Platform-installation-directory\PP\uCPSB\CC\server\usrconflejb\uC
NP J2EE

4.13.3 Procedure for changing the user property file for J2EE servers
(usrconf.properties)

The setting item that can be changed in the user property file for J2EE servers (usrconf.properties)is the Java
VM system property. The following describes the procedure.

0 Important

Do not edit anything not described in this procedure. Do not add any value not described here.

1. Start the editor as an administrator and then open the user property file for J2EE servers (usrconf .properties).

2. Add the value specified for the Java VM system property to a line below the following comment lines:

4. Developing Plugins

JP1/Navigation Platform Development Guide 77

igsdsssasdaasdsaddiasadaasdiaadiaasdsassiaasdaaad s ad iR intR i

When you edit, please add description below.

##

igsddsaasdaasdsadd it iaad AR R R AR AR AR AR AR AR

3. Execute the npstop command (stop) and npstart command (start) to restart Navigation Platform.

(1) Details about the Java VM system property

Format
Specify a key as follows:
key-name = value

Specification method

¢ FEach value ends at the linefeed.

* A line that begins with a hash mark (#) is assumed to be a comment.

* A line that does not contain any value is ignored.

* Character strings such as empty characters and comments cannot be added following the value. If such a string

is added, the value is interpreted to be invalid.

You can specify any character string for a system property key name. However, do not use any of the following prefixes:

* ucnp.

* Jjava.

* javax.

* javax.portlet.

e hptl

e com.cosminexus

* jp.co.hitachi.soft.portal

* The following keys that are reserved for the J2EE server:

e com.cosminexus

cosminexus. jpa

ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.

ejbserver.

4. Developing Plugins

application
client

common’j
compiler
connectionpool
connector
container

ctm

deploy
distributedtx

JP1/Navigation Platform Development Guide

78

ejbserver.

ejbserver

ejbserver.

ejbserver

ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.

ejbserver.

ejbserver

ejbserver

ejbserver.
ejbserver.
ejbserver.
ejbserver.
ejbserver.

ejbserver.

ejbserver
ejbserver
https
Jjava
javax

vbj

vbroker

webserver.
webserver.
webserver.
webserver.
webserver.
webserver.

webserver.

webserver

webserver.
webserver.

webserver.

4. Developing Plugins

DynamicStubLoading

.ejb

ext

.http

instrumentation
jca

jndi

Jpa

jta

logger

.management

.manager

naming
rmi
security
server
stateful

stdoutlog

.watch

.webj2ee

application
connector
container
context
dbsfo
eadssfo

errorpage

.http

Jsp
logger

servlet

JP1/Navigation Platform Development Guide

79

e webserver.session
e webserver.static
* webserver.work

e webserver.xml

(2) Example of editing the user property file for J2EE servers
(usrconf.properties)

The following shows an example of adding a key named com.example.property.keyl in the user property file
for J2EE servers:

FHA A S S S
When you edit, please add description below.
FH A S S
com.example.property.keyl=valuel

4.13.4 Procedure for changing the option definition file for J2EE servers
(usrconf.cfg)

You can change the following items in the option definition file for J2EE servers (usrconf.cfg):

* System class path
» Java heap memory usage for Java VM

* Explicit memory block size for the Explicit Memory Management functionality of Java VM

The following describes the procedure.

0 Important

Do not edit anything not described in this procedure. Do not add any value not described here.

1. Start the editor as an administrator and then open the option definition file for J2EE servers (usrconf.cfq).

2. To change the settings of the Java VM Java heap memory usage and the Explicit memory block size for the Java
VM Explicit Memory Management functionality, change the key values on the lines below the following comment

lines:
FHERH A A S S
When you change settings, please correct the following description.

A A A A R R R R R R R

3. To change the system class path setting, add the specification to a line below the following comment lines:

FHEE AR R 4
When you edit, please add description below.
G

4. Execute the npstop command (stop) and npstart command (start) to restart Navigation Platform.

4. Developing Plugins

JP1/Navigation Platform Development Guide 80

(1) System class path

Specify a user-created program, such as a User Plugin or user library, to be loaded by the System Class Loader on the
J2EE server.

Specify a program that can be referenced from the entire J2EE server. Multiple programs can also be specified.

Key name
add.class.path

Specified value
Specify a system class path. To specify multiple paths, delimit them with a semicolon (;).

Default value
None

(2) Details about the Java heap memory usage for Java VM

For the Java heap memory usage for Java VM on the J2EE server, you must specify a value greater than the memory
usage for Navigation Platform. Specify the same value for the minimum value and maximum value.

0 Important

You cannot omit the maximum and minimum values for the Java heap memory usage for Java VM on the
J2EE server. Do not delete the add . jvm. arg key entered by default.

Key name
add.jvm.arg

Specified value
—-Xmxmemory-usage-sizem

Specify the memory usage size in the range from 1024 to 1434. If you specify a value greater than 1434, the memory
size will exceed the upper-limit for the OS memory size. Note that m at the end of the specified value indicates MB
(megabytes).

Default value
-Xmx1024m

(3) Details about the Explicit memory block size for the Explicit Memory
Management functionality of Java VM

For the maximum size of the Explicit heap for Java VM on the J2EE server, you must specify a value greater than the
Explicit memory block size for Navigation Platform.

0 Important

You cannot omit the maximum size of the Explicit heap. Do not delete the add. jvm. arg key entered by
default.

4. Developing Plugins

JP1/Navigation Platform Development Guide 81

5 Note

User Plugin instances and session information containing the value of the ucnpOptions parameter are
stored in the Explicit heap. Therefore, we recommend that you assume a case in which the Explicit heap
must be expanded for the memory size required for User Plugin instances per user X maximum number of

concurrently executing users.

Key name
add.jvm.arg

Specified value
-XX:HitachiExplicitHeapMaxSize=maximum-size-of-Explicit-heapm
Specify a value equal to or greater than 160 for the maximum size of the Explicit heap. Note that m at the end of the
specified value indicates MB (megabytes).

Default value
-XX:HitachiExplicitHeapMaxSize=160m

4. Developing Plugins

82

JP1/Navigation Platform Development Guide

4.14 Notes on using Google Chrome or Mobile Safari to develop a plug-in
that displays Operational Contents

¢ You cannot implement a process that uses JavaScript to close a window created with a Custom Window Plugin. You
must therefore use the standard functionality provided by the browser to close this type of window.

 If execution of JavaScript takes 10 or more seconds, Google Chrome and Mobile Safari processing might stop.
Develop the plugin so that plugin processing is completed within 10 seconds, including the communication time.

4. Developing Plugins

JP1/Navigation Platform Development Guide 83

4.15 Setting up access permissions to Java packages to be used by User
Plugins

For some Java packages to be used by User Plugins, you need to set up access permissions individually.

1. Start the editor by selecting Run as administrator, and open the following file:

Navigation-Platform-installation-directory\PP\uCPSB\CC\server\usrconfl\ejb\
uCNP J2EE\server.policy

2. Add accessClassInPackage settings to the following locations:

grant codeBase "file:${ejbserver.http.root}/ejb/${ejbserver.serverName}/ap
ps/-" |
permission java.io.FilePermission "<<ALL FILES>>", "read, write, delete,
execute";
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission java.lang.RuntimePermission "getProtectionDomain";
permission java.lang.RuntimePermission "setFactory";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission java.lang.RuntimePermission "getenv.*";
permission java.lang.RuntimePermission "getClassLoader";
permission java.lang.RuntimePermission "accessClassInPackage.Java-packag
e-name-to-be-used"; // Add
i

3. Restart Navigation Platform.

4. Developing Plugins

JP1/Navigation Platform Development Guide 84

API Reference (for I/O Plugin Development)

This chapter describes the APIs used for developing I/O Plugins.

JP1/Navigation Platform Development Guide

85

5.1 List of APIs (for I/O Plugin development)

The following describes the APIs used for developing I/O Plugins.

Table 5-1: List of APIs (I/O Plugin development)

Category Interface name or class name Description
Common to all IUCNPSession An interface for using session information
plugins

IPluginInitializer An interface used to implement the

processing for starting (initializing) and
terminating User Plugins

UCNPPluginUserException User Plugin exception class

1/0 Plugin IToPluginController An interface used to implement the server
processing for I/O Plugins

ParamConvertUtil A utility class that converts I/O parameters
to the Map format

UCNPPluginException A class that indicates exceptions that
occurred in I/O Plugins

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 86

5.2 lloPluginController (server processing implementation interface)

This interface is used to implement the server processing for I/O Plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.controller;

Format

public interface IIoPluginController

Methods

e inputFromNode method

When transition occurs from a node that contains an I/O Plugin to another node, this method performs processing
to acquire and input information about the transition source node.

e outputToNode method

When transition to a node that contains an I/O Plugin occurs, this method performs processing to output information
to the transition destination node.

5.2.1 inputFromNode method

When transition occurs from a node that contains an I/O Plugin to another node, this method performs processing to
acquire and input information about the transition source node.

You can use this method to effectively implement data update processing, such as acquiring information about the
transition source node and linking with the external system, during node transition.

Notes on the inputFromNode method

¢ Ifmultiple I/O Plugins are placed in the same node, the inputFromNode methods of all I/O Plugins are executed
irrespective of the results of a previously executed inputFromNode method. Therefore, if you place multiple
plugins whose input parameters must be checked, you need to check the input parameters for the input FromNode
methods of all I/O Plugins.

¢ The inputFromNode method is executed more than once in the following cases:
e The result of an inputFromNode method that is executed later indicates an error.

* The transition destination node contains an I/O Plugin and the result of the output ToNode method
indicates an error.

Therefore, when you implement the processing, maintain the integrity of data to be updated so that no problem
occurs if the inputFromNode method is executed multiple times. Note that a method's execution results, other

than error, are normal and warning.

(1) Format

public Map<String, Object> inputFromNode (HttpSession session, Map<String, Ob
ject> param) ;

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 87

(2) Arguments

(a) session
This argument stores the current session. To execute the setAttribute () method for the Ht tpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

¢ Name beginning with "ucnp"

e Name beginning with "java."

e Name beginning with "javax."

* Name beginning with "javax.portlet."

* Name beginning with "hpt1"

¢ Name beginning with "com.cosminexus"

e Name beginning with "jp.co.hitachi.soft.portal™”

You can also use the URL request parameter. To use this parameter, you must acquire the ucnpOptions parameter
by using the ucnp.request.options key.

You can acquire the ucnpOpt ions parameter for each session or for each window ID. We recommend that you acquire
the value of the ucnpOptions parameter for each window ID. For details about how to acquire the values for each
window ID, see (b) param.

Reason why data acquisition for each session is not recommended
If multiple windows of Navigation Platform are displayed in the same session, the HTTP session is overwritten with
the value of the ucnpOpt ions parameter of the window that you worked with last. As a result, information of the
ucnpOptions parameters for previously used windows is deleted.

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) from the session. By
specifying this key in the HttpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

» Specification example of the ucnp.request.options key (for each session) (not recommended)

public class IoPluginController implements IIoPluginController {

/**

* Execute the server processing for I/0O Plugins.
*

* @param session

* The current session

* @param param

* The parameter sent from the client
*/

public Map<String, Object> inputFromNode (HttpSession session, Map<Stri
ng, Object> param) {

/* Obtain the value of the ucnpOptions parameter from the current
session. */

String ucnpOptions = (String) session.getAttribute ("ucnp.request.o
ptions");

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 88

if (ucnpOptions != null) {
/* If the ucnpOptions parameter is specified, describe the pro

cessing for that value. */

(b) param

This argument stores the information sent from the client during execution of the I/O Plugin. The table below provides

details. Do not update the param parameter.

Table 5-2: Keys stored in param (inputFromNode method)

No. Key name

1 ucnp.current.params.map

2 ucnp.current.params.type.ma
P

3 ucnp.button.type

5. API Reference (for I/O Plugin Development)

Value

Map<String, String>

Key: String of one or
more characters

Value: String of zero or
more characters

Map<String, String>

Key: String of one or
more characters

Value: String of zero or
more characters

String

One of the following:

"start"

"show next page"
"show previous pa
ge "

"show complete pa
ge "

Description

When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:

* Key
Input parameter name of the I/O Plugin
¢ Value
Cache value of the Guide associated with the
input parameter
Parameters not associated with the Guide are not
contained in the key.

For details about cache values of Guide Parts, see
(5) Cache values of Guide Parts.

When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:

* Key
Input parameter name of the I/0 Plugin
e Value
Type name of the Guide associated with the
input parameter
Parameters not associated with the Guide are not
contained in the key.

For details about type name of Guide Parts, see (6)
Type names of Guide Parts.

Indicates the type of the clicked button or the type
of transition.

e "start"

Switch from the Terminal Node (start) to a
Process Node.
Alternatively, display the first Process Node
not connected to the Terminal Node (start).

* "show next page"
Switch to the next node by clicking the button
or directly selecting the node.
Alternatively, switch to a Process Node for
which the transition destination node exists or
a Process Node with the Back button
displayed.

* "show previous page"
Switch to the previous node by clicking the
button or directly selecting the node.

JP1/Navigation Platform Development Guide

89

No. Key name

3 ucnp.button. type

4 ucnp.isdirectjump

5 ucnp.current.node.name

6 ucnp.next.node.name

7 ucnp.current.node.id

8 ucnp.next.node.id

9 ucnp.flow.contents.id

10 ucnp.flow.contents.name

11 ucnp.flow.contents.execute.
id

12 ucnp.flow.contents.version.
id

13 ucnp.screen.id

14 ucnp.screen.ispreview

5. API Reference (for I/O Plugin Development)

Value

String

One of the following:

e "start"

¢ "show next page"

¢ "show previous pa
ge"

¢ "show complete pa
ge"

String
Either of the following:
e "true"

e "false"

String

String of zero or more
characters

String

String of zero or more
characters

String

String of zero or more
characters

String

String of zero or more
characters

String
String of one or more
characters

String

String of one or more
characters

String

String

String

String of one or more
characters

String
Either of the following:
e "true"

e "false"

Description

* "show complete page"
Switch to a node with the Done button
displayed.
Alternatively, switch to a Process Node for
which the transition destination node does not
exist and for which the Back button is hidden.

Indicates whether the transition type is direct
transition.

Y " t rue "
Direct transition
e "false"

Not direct transition

The node name corresponding to the transfer-
source Guide is passed.

If the node name has not been set, an empty
character string is passed.

The node name corresponding to the transfer-
destination Guide is passed.

If the node name has not been set, an empty
character string is passed.

The node ID corresponding to the transfer-source
Guide is passed.
If the node ID has not been set, an empty character
string is passed.

The node ID corresponding to the transfer-
destination Guide is passed.

If the node ID has not been set, an empty character
string is passed.

The Operational Content ID of the selected
Operational Content is passed.

The Operational Content name of the selected
Operational Content is passed.

Indicates the Operational Content execution ID,
which is assigned during execution of
Operational Content

Indicates the version ID of the Operational Content
being used for execution.

The window ID is passed, which uniquely
identifies the window being used for execution of
Operational Content.

Indicates whether the window being used for
execution of Operational Content is the preview
window.

o "trye"

Preview window

JP1/Navigation Platform Development Guide

90

No. Key name Value Description

14 ucnp.screen.ispreview String e "false"
Either of the following: Operational Content Execution Window
° " t rue "
e "false"
15 ucnp.options.param® String Indicates the URL decoded value of the
ucnpOptions parameter acquired for each
window ID.

This key isnot setifthe ucnpOpt ions parameter
is not specified.

This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) for each window ID.
By specifying this key in the param argument, you can acquire the URL decoded value of the ucnpOptions
parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

* Specification example of the ucnp.options.param key (for each window ID) (recommended)

public class IoPluginController implements IIoPluginController {

/**

* Execute the server processing for I/0O Plugins.
*

* @param session

* The current session

* @param param

* The parameter sent from the client
*/

public Map<String, Object> inputFromNode (HttpSession session,Map<String
, Object> param) {
/* Acquire the value of the ucnpOptions parameter from the argume
nt. */
String ucnpOptions = (String) param.get ("ucnp.options.param");
if (ucnpOptions != null) {
/* If the ucnpOptions parameter is specified, describe the pro
cessing for that value. */
}
}

(3) Return values

The execution result of the I/O Plugin is returned as a Map. The table below provides details. Values not covered in the
table are ignored.

Table 5-3: Return values of the inputFromNode method

No. Key name Value Description

1 ucnp.error.message String Set this key if you want to display a message for
String of zero or more users after execution of the inputFromNode
characters method.

The string specified for this key is displayed in the
message dialog box after the inputFromNode
methods of all I/O Plugins associated with the
transfer-source node are executed.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 91

No. Key name

1 ucnp.error.message
2 ucnp.error.type
3 ucnp.error.params.list

5. API Reference (for I/O Plugin Development)

Value

String

String of zero or more
characters

String

Either of the following:

¢ "NG"
e "WARNING"

List<String>

String of one or more
characters

Description

Note the following when setting this key:

e Use \n to specify a linefeed.

* Ifthis key is set for multiple I/O Plugins, the
specified strings are connected and displayed
in the message dialog box, using a linefeed as
a delimiter. If a message is too long, it might
not be displayed fully in the window. Check the
message size and make sure that the whole
message can be displayed in the window.

Specify whether to suppress node transition after
the message dialog box specified for
ucnp.error.message is displayed.
¢ "NG"
Transition is suppressed.
e "WARNING"

Transition is not suppressed.

The value specified for this key is ignored in the
following cases:
* A value is not specified for
ucnp.error.message.
* Null is specified for
ucnp.error.message.

"NG" is assumed in the following cases:
* A string other than "NG" and "WARNING" is
specified.
* Null is specified.

* A value is not specified.

When you execute multiple I/O Plugins, operation
is different depending on the setting as shown
below:
e "WARNING" is specified for all I/O Plugins.
Transition is not suppressed.

e "WARNING" is not specified for any I/O
Plugin.
Transition is suppressed.

Set this key if you want to highlight a Guide Part
for which node transition is suppressed. For the
value of the key, specify the list of input parameters
associated with that part. The Guide Part will be
displayed with a colored frame.

The default frame color is red. You can change the
frame color by using the
ucnp.base.client.erroritem.emphas
is.border.color property in the user
property file (ucnp user.properties).

For details about the user property file, see the
manual JP1/Navigation Platform Setup and
Operations Guide.

Specify this key together with the
ucnp.error.message key in the Map of the
return value. If you set this key without setting the
ucnp.error.message key, the highlight
display is disabled.

If node transition is not suppressed, the value
specified for this key is ignored.

JP1/Navigation Platform Development Guide

92

No.

Key name

ucnp.next.nodes.active.list

Value

List<String>

Description

Specify the transition destination node.

This activates the Next button corresponding to the
process node ID contained in the list, and
deactivates buttons not included in the list.

To activate all buttons, specify null.

To deactivate all buttons, specify an empty list.
If this key is specified by multiple plugins
simultaneously, buttons will be activated if even
one of these is activated.

If a transition destination node is specified from a
JavaScript Plugin, by default all buttons will be
activated without running the plugin when the
Back button is clicked.

To specify the transition destination node even
when the Back button is clicked, select the
Execute when return. check box before
specifying this.

This setting may make direct transition impossible
for certain nodes. The check mark will be removed
for nodes that can no longer transition due to this
setting.

A KDCZ00362-E error will occur if direct
transition destination nodes can no longer
transition due to the plugin specified on the
transition path. When an error occurs, Navigation
Platform will behave in the same way as when
"NG" is specified for ucnp.error. type.

The following table describes the return values of the inputFromNode method and operations after execution of the
I/O Plugin associated with the transition source node.

Table 5—-4: Return values and operations after execution of the 1/0 Plugin associated with the
transition source node

No.

5. API Reference (for I/O Plugin Development)

Value
specified for
"ucnp.error.m
essage"

Not specified,
or null

Specified
(other than
null)

Value specified
for
"ucnp.error.type

NG

WARNING

Values other than
NG and
WARNING

Value specified
for
"ucnp.error.par
ams.list"

Specified (other
than null)

Not specified, or
null

Specified (other
than null)

Not specified, or
null

Specified (other
than null)

Not specified, or
null

Specified (other
than null)

Execution result
of the method

Normal

Normal

Normal

Normal

Normal

Normal

Error

Dialog box Node Highlight

display transition display
Disabled Disabled Disabled
Disabled Disabled Disabled
Disabled Disabled Disabled
Disabled Disabled Disabled
Disabled Disabled Disabled
Disabled Disabled Disabled
Enabled Enabled Enabled

JP1/Navigation Platform Development Guide

93

No.

10

11

12

Value
specified for
"ucnp.error.m
essage"

Specified
(other than
null)

(4) Exception

None

Value specified
for
"ucnp.error.type

NG

WARNING

Values other than
NG and
WARNING

Value specified | Executionresult | Dialog box Node Highlight
for of the method display transition display
"ucnp.error.par

ams.list"

Not specified, or Error Enabled Enabled Disabled
null

Specified (other Warning Enabled Disabled Disabled
than null)

Not specified, or Warning Enabled Disabled Disabled
null

Specified (other Error Enabled Enabled Enabled
than null)

Not specified, or Error Enabled Enabled Disabled

null

(5) Cache values of Guide Parts

The following table describes the cache values of Guide Parts retained in plugins.

Table 5-5: Cache values for each type of Guide Part

No.

1

5. API Reference (for I/O Plugin Development)

Guide Part type

Static text

Image

Text box

Text area

Radio button

Check box

Cache value

Displayed character string

A string consisting of the URL and the attribute
value of the tool tip connected by a linefeed
code (if the tool tip is an empty character string,
the linefeed code is still included in the cache
value).

The value entered in the text box

The value entered in the text area

- If the Store label information too. check box
is not selected:

The value specified in the Value text box for the
selected radio button

- If the Store label information too. check box
is selected:

A string consisting of the value specified in the
Displayed string text box and the value
specified in the Value text box in the Attribute
Settings window for setting the selected radio
button, which are connected to each other by a
linefeed code (if a radio button is not selected:
empty character string)

- If the Store label information too. check box
is not selected:

Default value

The value specified in the Displayed string
text box in the Attribute Settings window

A string consisting of the value specified in
the URL text box, a linefeed code, and the
value specified for the Tool tip text box in
the Attribute Settings dialog box

The value specified in the Default value text
box in the Attribute Settings window

The value specified in the Default value text
area in the Attribute Settings window

empty character string

- If the Store label information too. check
box is not selected:

JP1/Navigation Platform Development Guide

94

No. Guide Part type

6 Check box
7 Drop down
8 Hyperlink

9 Inline frame
10 HTML Part

Cache value

e true: The check box is selected

» false: The check box is cleared
(In any case, a single-byte character string is
used.)

- If the Store label information too. check box

is selected:

A string consisting of the value specified in the

Displayed string text box in the Attribute

Settings window and the following value, which

are connected to each other by a linefeed code:
e true: The check box is selected

e false: The check box is cleared

(In any case, a single-byte character string is
used.)

The value selected in the Selections list field
(Even if the value including commas or
quotation marks ("), specify the value as is
without using escape characters in CSV. For
example, Cali"fornia" specified for the
cache value is not interpreted as
"Cali""fornia""".

A string consisting of the anchor string and the
value specified for the URL, connected by a
linefeed code

(A tool tip is not included in the string.)

The URL of the displayed page

(The setting of whether to display a frame is not
included.)

Displayed HTML Content

Notes applicable to all types of parts

Default value

¢ true: The Change the default value to
the check status check box is selected

e false: The Change the default value
to the check status check box is cleared

- If the Store label information too. check
box is selected:

A string consisting of the value specified in
the Displayed string text box in the
Attribute Settings window and the following
value, which are connected to each other by
a linefeed code:

¢ true: The Change the default value to
the check status check box is selected

e false: The Change the default value
to the check status check box is cleared

 The first value in the Selections list field
(in the Attribute Settings window) that
corresponds to a value in the Parent
value field (if no corresponding value
exists in the Parent value field, an empty
character string is used)

 Ifno parent drop down exists, the first
value of the Selections list field (in the
Attribute Settings window) for which the
Parent value field is an empty character
string

¢ A string consisting of the anchor string
and the value specified for the URL,
connected by a linefeed code

» The values specified in the Anchor
String text box and URL text box in the
Attribute Settings window

The value specified in the URL text box in
the Attribute Settings window

The value specified in the HTML String
text box in the Attribute Settings window

¢ Ifyoudisplay the Guide area while proceeding with a task or returning to a previous step in the Operational Content
Execution Window, values are displayed with the following priority:

1. Output values of the I/O Plugin

2. Values previously entered by the user in the Operational Content Execution Window (not including static text

parts)

3. Default cache values for each part (Table 5-5)

* The lifecycle of a cache value is from starting of a task to its end or disposal. When you resume a task that was
temporarily saved by using a Suspend/Resume Plugin, the cache values are also inherited.

* A cache value is shared between Guide Parts of the same type in the Guide areas corresponding to the same Process
Node. Therefore, for an Operational Flow including a branch, if a Process Node that has already been displayed is
displayed again via another route, the cache value used when the Process Node was previously displayed is used as
is. If you want to change the cache value according to certain conditions, use an I/O Plugin.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide

95

* The linefeed code for cache values is \ r\n. To include a linefeed in a cache value specified for a return value of
this method, specify \r\n as a linefeed.

Note on text boxes

 Ifastring including a linefeed is output as a cache value from a plugin, the string from which the linefeed is excluded
will be set as the cache value.

Note on radio buttons and check boxes

 If the value in the Displayed string text box, which has been specified by input from a plugin, does not contain a
linefeed code, the value in the Displayed string text box remains unchanged, and it is assumed that only the selection
status has been specified.

Notes on drop-down parts

* If'the cache value specified for a parent drop-down part is different from the value specified in the plugin, the cache
value of the child drop-down part is reset. The reset cache value of the child drop-down part is displayed as the first
value of the corresponding parent drop-down part in the Selections list field in the Attribute Settings window.

For example, the figure below shows drop-down parts specified in the Attribute Settings window. If the cache value
of the parent drop-down partis California and the specified plugin value is Georgia, the reset cache value of
the child drop-down part is Cobb county, which first corresponds to Georgia.

Attribute Settings
Type: Drop down
Guide Part ID: |Do02

Parent Guide PartID: [D001

Set selections associated with values in the selections list for the parent.
If no parent exists, specify only the items in the selections list {leave the parent value

blank).
Selections list {comma-separated)
Parentvalue Upper: Label Lower: Value Add
IGeorgia Cobb county, Fulton county [Delete]
Cobb county] Fulton county
|California |Los Angeles, San Diego | Delete |
ILos Angeles, San Diego
Update] [Cancel]

Note that if you change the selection status of a parent drop-down part in the Operational Content Execution Window,
the values of child drop-down parts are also reset.

¢ Cache values are applied in the order of plugin parameters. Therefore, to update cache values of drop-down parts
configured in a parent-child relationship, the child drop-down part must be associated with a parameter that appears
later than the parameter associated with the parent drop-down part.

 Ifthe value specified for the cache value is not found in the Selections list ficld corresponding to the Parent value
field in the Attribute Settings window, the specified cache value is ignored.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 96

Note on hyperlinks

If the cache value does not contain a linefeed, the system assumes that only the label is specified.

(6) Type names of Guide Parts

The following table describes the type names of Guide parts retained in plugins.

Table 5-6: Guide Part type names

No. Guide Part type Guide Part type name
1 Static text Label

2 Image Image

3 Text box TextBox

4 Text area TextArea

5 Radio button RadioButton

6 Check box CheckBox

7 Drop down DropDown

8 Hyperlink HyperLink

9 Inline frame Iframe

5.2.2 outputToNode method

When transition to a node that contains an I/O Plugin occurs, this method performs processing to output information to
the transition destination node.

You can use this method to effectively implement data reference processing, such as applying information acquired
from external systems, during node transition.

If you want to switch the I/O Plugin processing for each transition path at a Branch Node, determine the transition path

from the transition source node by using the I/O Plugin outputToNode method, and then switch the processing.

Notes on the outputToNode method

If an I/O Plugin is placed in the transition source node and the execution result of the inputFromNode that was

executed in advance indicates an error, the outputToNode methods of all I/O Plugins are not executed.

If multiple I/O Plugins are placed in the same node and the execution result of the output ToNode method was

executed in advance indicates an error, subsequent I/O Plugins are not executed.

Note that a method's execution results, other than error, are normal and warning.

(1) Format

public Map<String, Object> outputToNode (HttpSession session, Map<String,

ect> param) ;

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide

97

(2) Arguments

(a) session

This argument stores the current session. To execute the setAttribute () method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

¢ Name beginning with "ucnp"

e Name beginning with "java."

e Name beginning with "javax."

* Name beginning with "javax.portlet."
* Name beginning with "hpt1"

¢ Name beginning with "com.cosminexus"

e Name beginning with "jp.co.hitachi.soft.portal™”

You can also use the URL request parameter. To use this parameter, you must acquire the ucnpOptions parameter
by using the ucnp.request.options key.

You can acquire the ucnpOpt ions parameter for each session or for each window ID. We recommend that you acquire
the value of the ucnpOptions parameter for each window ID. For details about how to acquire the values for each
window ID, see (b) param.

Reason why data acquisition for each session is not recommended
If multiple windows of Navigation Platform are displayed in the same session, the HTTP session is overwritten with
the value of the ucnpOpt ions parameter of the window that you worked with last. As a result, information of the
ucnpOptions parameters for previously used windows is deleted.

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) from the session. By
specifying this key in the HttpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 IloPluginController (server processing implementation interface).

(b) param

This argument stores the information sent from the client during execution of the I/O Plugin. The table below provides
details. Do not update the param parameter.

Table 5-7: Keys stored in param (outputToNode method)

No. Key name Value Description

1 ucnp.next.params.map Map<String,String> When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:

* Key
Output parameter name of the I/O Plugin
e Value

Cache value of the Guide associated with the
output parameter at the point before transition

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 98

No. Key name

1 ucnp.next.params.map

2 ucnp.button. type

3 ucnp.isdirectjump

4 ucnp.current.node.name
5 ucnp.next.node.name

6 ucnp.current.node.id

7 ucnp.next.node.id

8 ucnp.flow.contents.id

5. API Reference (for I/O Plugin Development)

Value

Map<String, String>

String

One of the following:

"start"

"show next page"
"show previous pa
ge"

"show complete pa
ge"

String
Either of the following:

"true"

"false"

String

String of zero or more
characters

String

String of zero or more
characters

String

String of zero or more
characters

String

String of zero or more
characters

String

String of one or more
characters

Description

Parameters not associated with the Guide are not
contained in the key.

For details about cache values of Guide Parts, see
5.2.1(5) Cache values of Guide Parts.

Indicates the type of the clicked button or the type
of transition.

e "start"

Switch from the Terminal Node (start) to a
Process Node.

Alternatively, display the first Process Node
not connected to the Terminal Node (start).

* "show next page"
Switch to the next node by clicking the button
or directly selecting the node.
Alternatively, switch to a Process Node for
which the transition destination node exists or
a Process Node with the Back button
displayed.

* "show previous page"
Switch to the previous node by clicking the
button or directly selecting the node.

* "show complete page"
Switch to a node with the Done button
displayed.
Alternatively, switch to a Process Node for

which the transition destination node does not
exist and for which the Back button is hidden.

Indicates whether the transition type is direct
transition.

° " t rue "
Direct transition
e "false"

Not direct transition

The node name corresponding to the transfer-
source Guide is passed.

If the node name has not been set, an empty
character string is passed.

The node name corresponding to the transfer-
destination Guide is passed.

If the node name has not been set, an empty
character string is passed.

The node ID corresponding to the transfer-source
Guide is passed.
If the node ID has not been set, an empty character
string is passed.

The node ID corresponding to the transfer-
destination Guide is passed.

If the node ID has not been set, an empty character
string is passed.

The Operational Content ID of the selected
Operational Content is passed.

JP1/Navigation Platform Development Guide

99

No.

10

11

12

13

14

Key name

ucnp.flow.contents.name

ucnp.flow.contents.execute.

id

ucnp.flow.contents.version.

id

ucnp.screen.id

ucnp.screen.ispreview

ucnp.options.param®

Value

String

String of one or more
characters

String

String

String
String of one or more
characters

String

Either of the following:

o "tyrye"

e "false"

String

Description

The Operational Content name of the selected
Operational Content is passed.

Indicates the Operational Content execution ID,
which is assigned during execution of
Operational Content

Indicates the version ID of the Operational Content
being used for execution.

The window ID is passed, which uniquely
identifies the window being used for execution of
Operational Content.

Indicates whether the window being used for
execution of Operational Content is the preview
window.

e "true"
Preview window
e "false"

Operational Content Execution Window

Indicates the URL decoded value of the
ucnpOptions parameter acquired for each
window ID.

This key isnot setifthe ucnpOptions parameter
is not specified.

This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) for each window ID.
By specifying this key in the param argument, you can acquire the URL decoded value of the ucnpOptions
parameter. If the ucnpOptions parameter is not specified for the URL, null is returned. For details about the
specification example of the ucnp . options.param key, see the specification example of the inputFromNode
method in 5.2 lloPluginController (server processing implementation interface).

(3) Return values

The execution result of the I/O Plugin is returned as a Map. The table below provides details. Values not covered in the
table are ignored.

Table 5-8: Return values of the outputToNode method

No.

1

Key name

ucnp.next.params.map

ucnp.error.message

5. API Reference (for I/O Plugin Development)

Value

Map<String, String>

String

Description

When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:

* Key
Output parameter name of the I/O Plugin
e Value

Cache value of the Guide associated with the
output parameter

Set this key if you want to display a message for
users after execution of the outputToNode
method.

JP1/Navigation Platform Development Guide

100

No. Key name

2 ucnp.error.message
3 ucnp.error. type
4 ucnp.next.nodes.active.list

5. API Reference (for I/O Plugin Development)

Value

String

String

Either of the following:
e "NG"
¢ "WARNING"

List<String>

Description

If the I/O Plugin associated with the transition
destination node terminates with either of the
following results, the string specified for this key
is displayed in the message dialog box:

* The execution result type of the
outputToNode method for any I/O Plugin is
error.

* The execution result type of the
outputToNode method for all I/O Plugins is
normal or warning.

Note the following when setting this key:

* Use \n to specify a linefeed.

* Ifthis key is set for multiple I/O Plugins, the
specified strings are connected and displayed
in the message dialog box, using a linefeed as
a delimiter. If a message is too long, it might
not be displayed fully in the window. Check the
message size and make sure that the whole
message can be displayed in the window.

Specify whether to suppress node transition after
the message dialog box specified for
ucnp.error.message is displayed. You can
specify the following strings.

« "NG"
Transition is suppressed.
¢ "WARNING"
Transition is suppressed.
The value specified for this key is ignored in the
following cases:

* A value is not specified for
ucnp.error.message.

e Null is specified for
ucnp.error.message.
"NG" is assumed in the following cases:
* A string other than "NG" and "WARNING" is
specified.
e Null is specified.
* A value is not specified.
When you execute multiple I/O Plugins, operation

is different depending on the setting as shown
below:

e "WARNING" is specified for all I/O Plugins.
Transition is not suppressed.

* "WARNING" is not specified for any /O
Plugin.
Transition is suppressed.

Specify the transition destination node.

This activates the Next button corresponding to the
process node ID contained in the list, and
deactivates buttons not included in the list.

To activate all buttons, specify null.

To deactivate all buttons, specify an empty list.

JP1/Navigation Platform Development Guide

101

No. Key name Value Description

4 ucnp.next.nodes.active.list List<String> If this key is specified by multiple plugins
simultaneously, buttons will be activated if even
one of these is activated.

If a transition destination node is specified from a
JavaScript Plugin, by default all buttons will be
activated without running the plugin when the
Back button is clicked.

To specify the transition destination node even
when the Back button is clicked, select the
Execute when return. check box before
specifying this.

This setting may make direct transition impossible
for certain nodes. The check mark will be removed
for nodes that can no longer transition due to this
setting.

A KDCZ00362-E error will occur if direct
transition destination nodes can no longer
transition due to the plugin specified on the
transition path. When an error occurs, Navigation
Platform will behave in the same way as when
"NG" is specified for ucnp.error. type.

The following table describes the return values of the output ToNode method and operations after execution of the
I/O Plugin associated with the transition destination node.

Table 5-9: Return values and operations after execution of the 1/0 Plugin associated with the
transition destination node

No. Value specified for Value specified for Execution Dialog box Node
"ucnp.error.message" "ucnp.error.type" result of the display transition
method

1 Not specified, or null NG Normal Disabled Disabled

2 WARNING Normal Disabled Disabled

3 Values other than NG and Normal Disabled Disabled
WARNING

4 Specified (other than null) NG Error Enabled Enabled

5 WARNING Warning Enabled Disabled

6 Values other than NG and Error Enabled Enabled
WARNING

(4) Exception

None

5.2.3 Plugin processing during preview

1/0 Plugins are executed when node transition occurs during preview, in addition to node transition in the Operational
Content Execution Window. If you do not want I/O Plugins to be executed during a preview, use the param parameter
when implementing the inputFromNode or outputToNode method. When this parameter is specified as shown

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 102

in the following example, the system checks whether the window used to execute the plugin is a preview window, and
from this check determines whether to allow plugin processing to be performed.

Implementation example

public Map<String,Object> outputToNode (HttpSession session,

Map<String, Obj
ect> param) {

boolean isPreview = Boolean.valueOf ((String)
view")) ;

if (!isPreview) {

param.get ("ucnp.screen.ispre

// Perform plugin processing only when a preview window is not used.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide

103

5.3 IPluginlnitializer (User Plugin startup (initialization) and termination
processing implementation interface)

This interface is used to implement the processing for starting (initializing) and terminating User Plugins.

Package

package jp.co.hitachi.soft.ucnp.base.pluginmng.controller;

Format

public interface IPluginInitializer

Methods

e init method

Implements the User Plugin initialization processing.

¢ destroy method

Implements the User Plugin termination processing.

5.3.1 init method

This method is invoked when a User Plugin EAR starts. When this method is invoked, the User Plugin initialization
processing is performed.

For example, when you implement a User Plugin that performs database connection processing, use this method to
perform data source lookup processing. For details about how to implement database connection processing, see 4.4
Adding database connection processing.

A data source lookup for connection with the database must be implemented within this method. If you implement the
lookup with any other method, operation is unpredictable. To use the data source with the input FromNode () method,
or any other method, implement processing so that the data source instance found by the lookup in the init () method
is retained in a static variable and passed.

(1) Format

public void init () throws UCNPPluginUserException;

(2) Arguments

None

(3) Return values

None

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 104

(4) Exception

If an error occurs with this method, startup of the User Plugin is interrupted and the UCNPPluginUserException
exception is thrown.

5.3.2 destroy method

This method is invoked when a User Plugin EAR stops. When this method is invoked, the User Plugin termination
processing is performed.

(1) Format

public void destroy();
(2) Arguments
None

(3) Return values

None

(4) Exception

None

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 105

5.4 UCNPPIluginUserException (User Plugin exception class)

This exception is thrown by a User Plugin to Navigation Platform.

Package

package jp.co.hitachi.soft.ucnp.base.pluginmng.controller;

Format

public class UCNPPluginUserException extends Exception;

Constructor

e UCNPPluginUserException (String) constructor

Invokes the Exception (String) constructor of the parent class.

¢ UCNPPluginUserException (String, Throwable) constructor

Invokes the Exception (String, Throwable) constructor of the parent class.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 106

5.5 ParamConvertUtil (I/O parameter conversion utility class)

This utility class converts I/O parameters to the Map format.

Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.util;

Format

public class ParamConvertUtil

Method

e decodeHtmlPartParam method

Receives encoded character strings input from an HTML Part as arguments, and then converts them to the Map
format.

e getParamValue method

This method acquires the cache value of the specified parameter from the Map object stored in the argument param
of the I/O Plugin method.

5.5.1 decodeHtmlIPartParam method

This method receives encoded character strings input from an HTML Part as arguments, and then converts them to the
Map format.

(1) Format

public static Map<String, String> decodeHtmlPartParam(String param)
throws UCNPPluginException;

(2) Arguments

(a) param

This argument stores the encoded character strings input from the HTML Part.

(3) Return values

Map<String, String>

The value corresponding to an input item in the HTML Part is returned in a Map. The Map contains the name attribute
as the key and the value attribute as the value. If the param argument is an empty character string, an empty Map is
returned. You can acquire the value from the returned Map by using the name attribute of the element specified in the
HTML Part as the key.
(4) Exception

UCNPPluginException - Conversion of an encoded character string fails.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 107

If an error occurs with this method, conversion to the Map format is interrupted and the UCNPPluginException
exception is thrown. The following shows a list of errors.

Table 5-10: List of errors that occur in the decodeHtmIPartParam method

Error Message ID
This method is executed for data other than an HTML Part. KDCZ10205-E
(5) Example

The following describes an example of using the decodeHtml PartParam method within the inputFromNode
method of the IToPluginController interface.

Conditions

This example is based on the following conditions:

* Use a sample I/O Plugin.
For details about sample 1/O Plugins, see A.1 How to use 1/O Plugins (sample).

* The following external CSS files for HTML Parts are created:

table.sample {
border:lpx solid #777777;
border-collapse:collapse;
border-spacing:0;
background-color:#ffffff;

}

th.sample {
border-right:1px solid #777777;
border-bottom:1px solid #777777;
background-color: #e3ebe’7;
padding:0.3em lem;
text-align:center;

}

td.sample {
border-right:1lpx solid #777777;
border-bottom:1px solid #777777;
pradding:0.3em lem;

}

* Input parameter inputItemNamel is associated with the HTML Part to which the following source code is input:

<TABLE class="sample">
<TBODY>
<TR>
<TH class="sample"></TH>
<TH class="sample">Order number</TH>
</TR>
<TR>
<TD class="sample"><input type="radio" name="order" value="0001-2010080
1-00001" /></TD>
<TD class="sample"> 0001-20100801-00001</TD>
</TR>
<TR>
<TD class="sample"><input type="radio" name="order" value="0001-2010080
1-00002" /></TD>

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 108

<TD class="sample"> 0001-20100801-00002</TD>
</TR>

</TBODY>

</TABLE>

The HTML Part displayed in the window is as follows:

Order number
0001-20100801-00001

0001-20100801-00002

e Output parameter outputItemNamel is associated with static text parts.

¢ The order number displayed in the Guide area of the next step changes according to the radio button selected by the
user.

1/0 Plugin implementation example

The following shows an example of implementation to receive and process the input parameter from the HTML Part
indicated in the conditions. The decodeHtmlPartParam method is used in the part in bold.

package Jjp.co.hitachi.soft.ucnp.plugin.sample.icaction.controller;

import java.util.HashMap;

import java.util.Map;

import javax.servlet.http.HttpSession;

import jp.co.hitachi.soft.ucnp.plugin.inputoutput.controller.IIoPluginContro
ller;

import jp.co.hitachi.soft.ucnp.plugin.inputoutput.common.UCNPPluginException

import Jjp.co.hitachi.soft.ucnp.plugin.inputoutput.util.ParamConvertUtil;

public class IoPluginController implements IIoPluginController {
/* The member variable that retains the input parameter values received
from the client */

private String paraml = null;
private String param2 = null;
private String param3 = null;

public Map<String, Object> inputFromNode (HttpSession session,
Map<String, Object> param) {

/* Create a Map used for sending processing results to the client. *
Map<String, Object> map = new HashMap<String, Object>();
/* Processing changes depending on the button type.*/
String buttonType = (String) param.get ("ucnp.button.type");
if ("show next page".equals (buttonType)) {
/* If the Next button is clicked, input values are obtained and
then retained in the member variables. */
/* Expand the data received from the client to the Map. */
Map<?, ?> inParamMap = (Map<?, ?>) param.get ("ucnp.current.param

s.map") ;

/* Obtain the value to be converted from the Map. */

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 109

String inParaml = (String) inParamMap.get ("inputItemNamel");

Map<String, String> decodedMap = null;
/* Enclose the API to be used in the try-catch block.*/

try {
decodedMap = ParamConvertUtil.decodeHtmlPartParam(inParaml) ;

} catch (UCNPPluginException e) {
/* Perform exception processing. */
String errMsg = e.getMessage() ;
/* Perform processing such as outputting plugin log data. */
/* Return the map with an error message added.*/
map.put ("ucnp.error.message'", errMsqg) ;
return map;

}

/* Obtain the value of the value attribute corresponding to the

name attribute "order".*/
String value = decodedMap.get ("order");

/* Set the input parameter values in the member variables. */

paraml = value;

param?2 = (String) inParamMap.get ("inputItemName2") ;

param3 = (String) inParamMap.get ("inputItemName3") ;
} else if ("show previous page".equals (buttonType)) {

/* If the Back button is clicked, nothing is performed. */
}

return map;

}

public Map<String, Object> outputToNode (HttpSession session,
Map<String, Object> param) {

/* Create a Map to be sent to the client. */
Map<String, Object> map = new HashMap<String, Object>();

/* Processing changes depending on the button type.*/
String buttonType = (String) param.get ("ucnp.button.type");
if ("show next page".equals (buttonType)) {
/* If the Next button is clicked, input values are mapped to the
output items. */

Map<String, String> outParamMap = new HashMap<String, String>();

/* Set data to be sent to the Map. */
/* Because the static text parts are set for outputItemNamel,
the values obtained from the HTML Part are set as the values
of the static text parts. */
outParamMap.put ("outputItemNamel", paraml);
outParamMap.put ("outputItemName2", param?2);
outParamMap.put ("outputItemName3", param3);

map.put ("ucnp.next.params.map", outParamMap) ;
} else if ("show previous page".equals (buttonType)) {

/* If the Back button is clicked, nothing is performed. */
}

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 110

return map;

5.5.2 getParamValue method

This method acquires the cache value of the specified parameter from the Map object stored in the argument param of
the I/O Plugin method.

If the connected Guide Parts are radio buttons, check boxes, or hyperlinks, you can specify whether to acquire the entire
cached value including the label portion of it or the cached value without the label portion.

(1) Format

Format 1

public static String getParamValue (Map<String, Object> param, String paramNa
me) ;

Format 2

public static String getParamValue (Map<String, Object> param, String paramNa
me, boolean withLabel);

(2) Arguments

(a) param

This argument specifies the Map object to be passed to the second argument (param) of the input FromNode method.

(b) paramName

This argument specifies the name of the parameter for which to acquire a cached value.

(c) withLabel

This argument specifies whether to acquire the entire cached value, including the label, for the parameter. Note that, if
you use this method with Format 1, it is assumed that this argument is set to false.

* true

The entire value including the label is returned as is.

 false
Depending on the type of the connected Guide Part, one of the values shown in the following table is returned.

Table 5-11: Types of Guide Parts and the corresponding values to be acquired
No. Guide Part type Value to be acquired

1 Static text Cached value

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 111

No. Guide Part type Value to be acquired

2 Image Cached value
3 Text box Cached value
4 Text area Cached value
5 Radio button - If the Store label information too. check box is selected:

Cached value
- If the Store label information too. check box is not selected:

Cached value from which the label portion (from the beginning of the
value to the linefeed code (\ r\n)) has been removed

6 Check box - If the Store label information too. check box is selected:
Cached value
- If the Store label information too. check box is not selected:

Cached value from which the label portion (from the beginning of the
value to the linefeed code (\ r\n)) has been removed

7 Drop down Cached value

8 Hyperlink Cached value from which the label portion (from the beginning of the
value to the linefeed code (\r\n)) has been removed

9 Inline frame Cached value

(3) Return values

The cached value for the specified parameter is returned.

(4) Exception

None

(5) Example

The example provided here describes how to use the get Paramvalue method within the execute method by using
a sample I/O Plugin.

For details about sample I/O Plugins, see 4.1 How to use 1/O Plugins (sample).

Preconditions for the 1/O Plugin and guide parts

¢ Connect from radio button 1 (label: Label1, value: Valuel), radio button 2 (label: Label2, value: Value?),
and radio button 3 (label: Label3, value: Value3) to the input parameter inputItemNamel of the I/O Plugin.

* Connect from the check box (label: CheckboxLabel, value: true or false) to the input parameter
inputItemName?2 of the I/O Plugin.
Processing overview
* Acquire the Map object by using the inputFromNode method.
¢ Acquire the values of radio buttons 1 to 3 with the label removed from them.

e Acquire the value of the check box, including the label.

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 112

Implementation example

public Map<String, Object> inputFromNode (HttpSession session, Map<String, Ob
ject> param) {

Map<String, Object> map = new HashMap<String, Object>();
// Acquire the value without the label
radioButtonValue = ParamConvertUtil.getParamValue (param, "inputItemNamel™)

// Acquire the value including the label

checkBoxValue = ParamConvertUtil.getParamValue (param, "inputItemName2", tr
ue) ;

return map;

}

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 113

5.6 UCNPPIluginException (/O Plugin exception class)

This class indicates exceptions that occurred in I/O Plugins.
Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.common;

Format

public class UCNPPluginException extends Exception

Methods

¢ getMessage method

Acquires detailed messages describing the causes of errors.

e getMessageId method

Acquires message 1Ds.

5.6.1 getMessage method

This method acquires detailed messages describing the causes of errors. Message IDs are not included.

(1) Format

public String getMessage () ;

(2) Arguments

None

(3) Return values

Detailed messages describing the causes of errors

(4) Exception

None

5.6.2 getMessageld method

This method acquires message IDs.

(1) Format

public String getMessagelId();

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 114

(2) Arguments

None

(3) Return values

Message IDs

(4) Exception

None

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide 115

5.7 IUCNPSession (session information use interface)

This interface is used for using session information.

You can acquire an instance of this interface from the Ht tpSession object by using the following code:

IUCNPSession ucnpSession = (IUCNPSession)session.getAttribute ("ucnp.session"

) ;

Note that you can acquire the instance of the TUCNPSession interface only when you are logged in. If you are not

logged in, the ucnpSession variable in the above code is set to null.

Package

package jp.co.hitachi.soft.ucnp.base.portlet;

Format

public interface IUCNPSession

Method
* getLoginId method

Returns the user ID of the current login user.

¢ getJplToken method

Returns the JP1 token while you are logged in to JP1/Base.

5.7.1 getLoginld method

This method returns the user ID of the current login user.

(1) Format

public String getLoginId();

(2) Arguments

None

(3) Return values

User ID

(4) Exception

None

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide

116

5.7.2 getJp1Token method

This method returns the JP1 token while you are logged in to JP1/Base.

(1) Format

public byte[] getJplToken();

(2) Arguments

None

(3) Return values

* When you are logged in to JP1/Base
JP1 token

* When you are not logged in to JP1/Base

null

(4) Exception

None

5. API Reference (for I/O Plugin Development)

JP1/Navigation Platform Development Guide

117

API Reference (for Suspend/Resume Plugin
Development)

This chapter describes the APIs used for developing Suspend/Resume Plugins.

JP1/Navigation Platform Development Guide 118

6.1 List of APIs (for Suspend/Resume Plugin development)

The following describes the APIs used for developing Suspend/Resume Plugins.

Table 6-1: List of APIs (for Suspend/Resume Plugin development)

Category Interface name or class name
Suspend/Resume Plugin ISuspendActionController
ISuspendInfo

SupendInfoSerializeUtil

UCNPPluginException

Description
An interface used to manipulate suspend information

An interface that indicates the suspend information to
be saved or recovered

A utility class used to serialize suspend information
or recover the serialized suspend information

A class that indicates exceptions that occurred in
Suspend/Resume Plugins

For details about the APIs that can be used with any type of plugin, see 5.7 List of APIs (for 1/O Plugin development).

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide

119

6.2 ISuspendActionController (suspend/resume action controller
interface)

This interface is used to manipulate suspend information in Suspend/Resume Plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.controller;

Format

public Interface ISuspendActionController

Methods
* save method
Saves suspend information associated with Operational Content IDs.
* load method
Loads the suspend information associated with Operational Content IDs.
e contains method
Checks whether suspend information associated with Operational Content IDs exists.
¢ delete method
Deletes the suspend information associated with Operational Content IDs.

e deleteAll method

Deletes all suspend information associated with Operational Content IDs.

About an instance of a user implementation class that inherits ISuspendActionController

An instance of a user implementation class that inherits ISuspendActionController is created only once when
a method is invoked for the first time. All methods are invoked for the same instance.

6.2.1 save method

This method saves suspend information in Suspend/Resume Plugins. It saves the suspend information associated with
the Operational Content ID specified by the parameter.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void save (String contentId, ISuspendInfo suspendInfo, HttpSession ses
sion)
throws UCNPPluginException;

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 120

(2) Arguments

(a) contentld

This argument indicates the Operational Content ID.

(b) suspendinfo

This argument stores the suspend information of the Operational Content selected when the Suspend button is clicked.

(c) session
This argument stores the current session. To execute the setAttribute () method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

* Name beginning with "java."

* Name beginning with "javax."

¢ Name beginning with "Jjavax.portlet."

e Name beginning with "hpt1"

* Name beginning with "com.cosminexus"

e Name beginning with "Jjp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the Ht tpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 HoPluginController (server processing implementation interface).

(3) Return values

None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being saved.

Navigation Platform displays the detailed message for the UCNPP1luginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, the message dialog box might not be fully
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing

Navigation Platform invokes this method when:

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 121

* The Suspend button is clicked.

6.2.2 load method

This method loads and recovers suspend information in Suspend/Resume Plugins, by loading the suspend information
associated with the Operational Content ID specified by a parameter.

This method is invoked only if the return value of the contains () method is t rue. Therefore, if the return value of
this method is null, a plugin error message is displayed in the dialog box. If no suspend information is found, throw the
UCNPPluginException exception for which a message is set.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Ifthe return value of this method is invalid or if this method throws the UCNPP1uginExcept ion exception, a message
appears in the dialog box, and then the operation starts from the beginning.

(1) Format

public ISuspendInfo load(String contentId, HttpSession session)
throws UCNPPluginException;

(2) Arguments

(a) contentld

This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute () method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

* Name beginning with "ucnp"

* Name beginning with "java."

* Name beginning with "javax."

¢ Name beginning with "Jjavax.portlet."

e Name beginning with "hpt1"

* Name beginning with "com.cosminexus"

¢ Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 122

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the Ht tpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 lloPluginController (server processing implementation interface).

(3) Return values

Suspend information associated with the Operational Content ID

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being loaded.

Navigation Platform displays the detailed message for the UCNPP1luginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing

Navigation Platform invokes this method if the following occurs:

e After the contains () method of the implementation class that inherits the suspend/resume action controller
interface was invoked, that contains () method returns true.
Ifthe contains () methodreturns false orifthe UCNPPluginException exception is thrown, this method
is not invoked. For details about the time that the contains () method is invoked, see the description of the
contains method in 6.2 ISuspendActionController (suspend/resume action controller interface).

6.2.3 contains method

This method checks the presence of suspend information associated in Suspend/Resume Plugins. It checks whether the
suspend information associated with the Operational Content ID specified by the parameter exists. This method returns
true if the associated suspend information exists, and returns false if such information does not exist.

If this method throws the UCNPP1luginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public boolean contains (String contentId, HttpSession session)
throws UCNPPluginException;

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 123

(2) Arguments

(a) contentld

This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute () method for the Ht tpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

e Name beginning with "ucnp"

* Name beginning with "java."

* Name beginning with "javax."

* Name beginning with "javax.portlet."

¢ Name beginning with "hpt1"

e Name beginning with "com.cosminexus"

¢ Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the Ht tpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 lloPluginController (server processing implementation interface).

(3) Return values

* true: Suspend information associated with the Operational Content ID exists.

e false: Suspend information associated with the Operational Content ID does not exist.

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being loaded.

Navigation Platform displays the detailed message for the UCNPP1luginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, specify the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing

Navigation Platform invokes this method if either of the following occurs:

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 124

* A user selects Operational Content in the Operational Content Execution Window.

* A URL is directly specified and Operational Content is selected by using the content Id parameter that directly
specifies the Operational Content ID.

6.2.4 delete method

This method deletes suspend information in Suspend/Resume Plugins. It deletes suspend information associated with
the Operational Content ID specified by the parameter.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void delete(String contentId, HttpSession session)
throws UCNPPluginException;

(2) Arguments

(a) contentld

This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute () method for the Ht tpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute ()
method:

¢ Name beginning with "ucnp"

e Name beginning with "java."

e Name beginning with "javax."

* Name beginning with "javax.portlet."

* Name beginning with "hpt1"

¢ Name beginning with "com.cosminexus"

e Name beginning with "jp.co.hitachi.soft.portal”

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key.

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 125

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the Ht tpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 lloPluginController (server processing implementation interface).

(3) Return values

None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being deleted.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing

Navigation Platform invokes this method if either of the following occurs:

* A user clicks the Done button in the Operational Content Execution Window.

» After the 1oad method of the implementation class that inherits the suspend/resume action controller interface was
invoked, an error occurs during the check of the suspend information returned by that 1oad method.
During the check, the system checks whether Operational Content has been updated since the suspend information
was saved, and then assumes an error if any update was found. For details about the time that the 10ad method is
invoked, see the description of the load method in 6.2 ISuspendActionController (suspend/resume action controller
interface).

Note:

This function is invoked only when Suspend/Resume Plugins are enabled in the system. If Suspend/Resume Plugins
are disabled in the system, this function cannot be invoked even if the above conditions exist.

6.2.5 deleteAll method

This method deletes all suspend information associated with the Operational Content in Suspend/Resume Plugins. This
method deletes all suspend information associated with the Operational Content ID specified by the parameter.

If a user who creates Operational Content edits or deletes Operational Content, the user invokes this method to delete
all the associated suspend information. If Operational Content is edited or deleted, the saved suspend information is
disabled. Therefore, delete all suspend information associated with the Operational Content.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 126

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void deleteAll (String contentId, HttpSession session)
throws UCNPPluginException;

(2) Arguments

(a) contentld

This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. If this method is executed during publishing start processing of Operational
Content in the publishing reservation status, the value is null. To execute the setAttribute () method for the
HttpSession object acquired in a plugin, do not specify any of the following names for the name argument of the
setAttribute () method:

* Name beginning with "ucnp"

* Name beginning with "java."

¢ Name beginning with "javax."

e Name beginning with "javax.portlet."

e Name beginning with "hpt1"

* Name beginning with "com.cosminexus"

¢ Name beginning with "Jjp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key

This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute () method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

For details about a specification example of the ucnp . request.options key, see the specification example
of the inputFromNode method in 5.2 IloPluginController (server processing implementation interface).

(3) Return values

None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being deleted.

Navigation Platform displays the detailed message for the UCNPP1luginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPP1luginException exception to be

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 127

thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing

The following table describes when Navigation Platform invokes this method and the suspend information to be deleted.

Table 6-2: When the deleteAll method is invoked and suspend information to be deleted

Invoked when: Suspend information to be deleted

The contents of Operational Content displayed in the Operational All suspend information associated with the target Operational
Content Execution Window change by operation on the Web browser. | Content

A user who creates Operational Content deletes Operational Content | All suspend information associated with the deleted Operational
in the Operational Content Editing Window. Content

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 128

6.3 ISuspendinfo (suspend information interface)

This interface indicates suspend information in Suspend/Resume Plugins. This interface is used to send and receive
suspend information to be saved or recovered by each method of the TSuspendActionController interface. An
object of this interface is created by the system and therefore, you do not need to create that object for plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.model;

Format

public interface ISuspendInfo

Methods
e getContentSuspendedId method

Acquires the suspend ID, which can be used to match the log data output to the audit log with suspend information.

e getWorkId method

Acquires the work IDs, which can be used for matching to check whether the operations output to the operation log
are the same as the operations that were suspended.

¢ getContentName method

Acquires the name of Operational Content being used for execution when operation is suspended.

¢ getGroupName method

Acquires the group name of Operational Content being used for execution when operation is suspended.

e getCurrentNodeName method

Acquires the name of the node being executed when operation is suspended.

6.3.1 getContentSuspendedid method

This method acquires the suspend ID, which can be used to match the log data output to the audit log with suspend
information.

(1) Format

public String getContentSuspendedId() ;

(2) Arguments

None

(3) Return values
Suspend ID

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 129

(4) Exception

None

6.3.2 getWorkld method

This method acquires the work IDs, which can be used for matching to check whether the operations output to the
operation log are the same as those that were suspended.

(1) Format

public String getWorkId() ;

(2) Arguments

None

(3) Return values
Work ID

(4) Exception

None

6.3.3 getContentName method

This method acquires the name of Operational Content being used for execution when operation is suspended.

(1) Format

public String getContentName () ;

(2) Arguments

None

(3) Return values

Name of Operational Content being used for execution when operation is suspended

(4) Exception

None

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 130

6.3.4 getGroupName method

This method acquires the group name of Operational Content being used for execution when operation is suspended.

(1) Format

public String getGroupName () ;

(2) Arguments

None

(3) Return values

Group name of Operational Content being used for execution when operation is suspended

Note:

Reading suspend information that was created in JP1/Navigation Platform versions earlier than 12-50 results in a
return value containing the exact value that was set when the suspend information was created, even if the group
name includes a backslash (\). Note that JP1/Navigation Platform 12-50 or later interprets a backslash (\) in a group
name as a separator for group levels, and you need to handle the return value accordingly.

(4) Exception

None

6.3.5 getCurrentNodeName method

This method acquires the name of the node being executed when operation is suspended.

(1) Format

public String getCurrentNodeName () ;

(2) Augments

None

(3) Return values

Name of the node being executed when operation is suspended

(4) Exception

None

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 131

6.4 SupendinfoSerializeUtil (utility class for suspend information
serialization)

This utility class provides the methods for serializing and deserializing suspend information (ISuspendInfo).

You can use the serialize method of this class to serialize suspend information (I SuspendInfo)to XML format.
You can also use the deserialize method to recover the suspend information (I SuspendInfo) serialized to XML
format.

Package
package jp.co.hitachi.soft.ucnp.plugin.suspend.util;

Format

public class SuspendInfoSerializeUtil

Methods

e serialize method

Serializes suspend information to XML format.

e deserialize method

Loads and recovers the serialized suspend information.

6.4.1 serialize method

This method is used to serialize suspend information in Suspend/Resume Plugins. It serializes the suspend information
(suspendInfo) specified by the parameter to XML format, and then writes the results into the output stream out.
This method does not close the output stream out. The invocation side is responsible for performing the close
processing.

If an attempt to serialize the suspend information or output the information to the stream fails, the method throws the
UCNPPluginException exception. A Navigation Platform message ID is added to the detailed message for the
UCNPPluginException exception thrown by this method. You need to handle the thrown exception and then
throw the UCNPPluginException exception for which the message to be displayed in the dialog box is set.

(1) Format

public static void serialize (ISuspendInfo suspendInfo, OutputStream out)
throws UCNPPluginException;

(2) Arguments

(a) suspendinfo

This argument stores suspend information.

(b) out

This argument stores the output stream to which the serialized suspend information is written.

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 132

(3) Return values

None
(4) Exception
UCNPPluginException - An attempt to serialize and output suspend information fails.

If an error occurs with this method, serialization processing is interrupted and the UCNPPluginException exception
is thrown. The following shows a list of errors.

Table 6-3: List of errors that occur in the serialize method

Error Message ID

Null is specified for the suspendInfo parameter. KDCZ10083-E
Null is specified for the out parameter. KDCZ10083-E
An invalid object (an object not created by Navigation Platform) is specified for the KDCZ10084-E

suspendInfo parameter.

It was not possible to write information to the output stream specified by the parameter due | KDCZ10085-E
to a problem with access permissions or disk space.

6.4.2 deserialize method

This method is used to recover the serialized suspend information in Suspend/Resume Plugins. It loads the serialized
suspend information from the input stream in specified by the parameter, and then recovers the suspend information.
This method does not close the input stream in. The invocation side is responsible for performing the close processing.

If an attempt to recover the serialized suspend information or input the information from the stream fails, the method
throws the UCNPPluginException exception. A system message ID is added to the message for the exception
thrown by this method. You need to handle the thrown exception and then throw the UCNPPluginException
exception for which the message to be displayed in the dialog box is set.

(1) Format

public static ISuspendInfo deserialize(InputStream in)throws UCNPPluginExce
ption;

(2) Arguments

(@) in

This argument stores the input stream from which the deserialized suspend information is loaded.

(3) Return values

Serialized suspend information recovered from the input stream

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 133

(4) Exception

UCNPPluginException - An attempt to recover and input suspend information fails.

If an error occurs with this method, deserialization processing is interrupted and the UCNPPluginException

exception is thrown. The following shows a list of errors.

Table 6—4: List of errors that occur in the deserialize method
Error
Null is specified for the in parameter.

The input stream specified for the in parameter cannot be used to recover suspend
information (ISuspendInfo).

It was not possible to load information from the input stream specified by the parameter due
to a problem with access permissions.

6. API Reference (for Suspend/Resume Plugin Development)

Message ID
KDCZ10083-E

KDCZ10086-E

KDCZ10093-E

JP1/Navigation Platform Development Guide

134

6.5 UCNPPIuginException (Suspend/Resume Plugin exception class)

This class indicates exceptions that occurred in Suspend/Resume Plugins.

If an error occurs in a method of TSuspendActionController, the method throws this exception with a message
set. The exception message is displayed in the dialog box.

If the message describing the Suspend/Resume Plugin error is too long, the full text might not be displayed because,
depending on the Web browser, the string might be truncated in the message dialog box.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.common;

Format

public class UCNPPluginException extends Exception

Constructors

e UCNPPluginException (String message) constructor

Creates a new exception by using the specified detailed message.

e UCNPPluginException (Stringmessage, Throwable cause) constructor

Creates a new exception by using the specified detailed message and cause of the error.

6.5.1 UCNPPIluginException(String message) constructor

This constructor creates a new exception by using the specified detailed message.

(1) Format

public UCNPPluginException(String message) ;

(2) Arguments

(a) message

This argument displays the detailed message indicating the cause of the error.

This message is displayed in the dialog box in the Operational Content Execution Window. Therefore, specify the
message that helps users to understand error details and how to take action.

(3) Exception

None

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide 135

6.5.2 UCNPPIluginException(String message, Throwable cause)
constructor

This constructor creates a new exception by using the specified detailed message and cause of the error.

(1) Format

public UCNPPluginException(String message, Throwable cause);

(2) Arguments

(a) message

This argument displays the detailed message indicating the cause of the error.

This message is displayed in the dialog box in the Operational Content Execution Window. Therefore, specify the
message that helps users to understand error details and how to take action.

(b) cause

This argument stores the Throwable object that caused the error.

(3) Exception

None

6. API Reference (for Suspend/Resume Plugin Development)

JP1/Navigation Platform Development Guide

136

API Reference (for Custom Window Plugin
Development)

This chapter describes the APIs used for developing Custom Window Plugins.

JP1/Navigation Platform Development Guide 137

7.1 List of APIs (for Custom Window Plugin development)

The following describes the APIs used for developing Custom Window Plugins.

Table 7—1: List of APIs (Custom Window Plugin development)

Category Interface name or class name Description
Logout function CustomWindowUrlUtil A utility class used to acquire the URL of a custom window
LogoutActionUtil A utility class used to log out from Navigation Platform

For details about the APIs that can be used with any type of plugin, see 5.7 List of APIs (for 1/O Plugin development).

7. API Reference (for Custom Window Plugin Development)

JP1/Navigation Platform Development Guide 138

7.2 CustomWindowUrlUtil (utility class for custom window URL
acquisition)

This utility class is used to acquire the URL of a custom window.

Package

package jp.co.hitachi.soft.ucnp.base.common;

Format

public class CustomWindowUrlUtil

Method

e getCustomWindowUrl method

Acquires the URL of a custom window.

7.2.1 getCustomWindowUrl method

This method acquires the URL of a custom window. You need to specify the ucnpUserPageId parameter for the
URL acquired by this method.

(1) Format

public static String getCustomWindowUrl (HttpServletRequest request, HttpServ
letResponse response);

(2) Arguments

None

(3) Return values

The custom window URL beginning with ucnpBase is returned.

(4) Exception

None

(5) Example of use

The following shows an example when the form tag is used in the JSP file of the custom window.

<

o°

String url = CustomWindowUrlUtil.getCustomWindowUrl (request, response);
>

o\

<form action="<%= url %$>" method="post" target=" self">
<input type="hidden" name="ucnpUserPageld" value="userCustomPage" />

7. API Reference (for Custom Window Plugin Development)

JP1/Navigation Platform Development Guide 139

(snip)
</form>

7. API Reference (for Custom Window Plugin Development)

JP1/Navigation Platform Development Guide 140

7.3 LogoutActionUtil (logout processing class)

This utility class is used to log out from Navigation Platform. This class is used in the JSP file. To make a branch to the
logout processing from normal processing in the custom window, use the ucnpUserData parameter.

For details about the ucnpUserData parameter, see 2.5.2 Data that can be received by Custom Window Plugins.

Package

package jp.co.hitachi.soft.ucnp.base.common;

Format
public class LogoutActionUtil

Method
e logout method

Logs out from Navigation Platform.

7.3.1 logout method

This method logs out from Navigation Platform. If you have not logged in to Navigation Platform, nothing is performed.

To check the logout results, see the trace file. If an attempt to log out fails, the KDCZ18033-E message is output to the
trace file.

The default storage directory of the trace file is as follows:

Storage directory
Navigation-Platform-installation-directory\ logs\ucnp trace/N].log (/N]: number of files)

(1) Format

public static void logout (HttpServletRequest request, HttpServletResponse re
sponse) ;

(2) Arguments

(a) request

Specify the JSP implicit object request. If any other value is specified, an error occurs.

(b) response

Specify the JSP implicit object request. If any other value is specified, an error occurs.

(3) Return values

None

7. API Reference (for Custom Window Plugin Development)

JP1/Navigation Platform Development Guide 141

(4) Exception

None

7. API Reference (for Custom Window Plugin Development)

JP1/Navigation Platform Development Guide 142

A.

How to Use Sample Plugins

Navigation Platform for Developers provides the following sample plugins:

I/0 Plugin (sample)

When a node transition occurs, this plugin retains input values of Guide Parts associated with Plugin Part parameters.
When the operation is completed, the retained input values are output to a file.

Suspend/Resume Plugin (sample)

This plugin is useful when you use multiple Operational Contents in parallel. Even if you reference another
Operational Content or log out in the middle of operation, this plugin allows you to resume the Operational Content
operation from the temporarily saved status.

Suspend information is saved in a file system on the server. When you resume the operation, suspend information
is read from the file system on the server.

This section describes how to use sample plugins. When using sample plugins, you must note the restrictions in 4.3
Notes on using sample plugins.

A.1 How to use I/O Plugins (sample)

To use the I/O Plugin (sample):

1.

Copy the sample plugin to the plugin development work directory.
The following indicates the file to be copied and the destination directory.

File to be copied
Navigation-Platform-for-Developers-installation-directory\ sample\plugin
\sample.OutputGuideData

Destination directory
Navigation-Platform-for-Developers-installation-directory\ pluginSDK\plugin

. Build the plugin.

For details about how to build the plugin, see 4.6 Building plugins.

. Deploy and start the plugin.

For details about how to deploy the plugin, see 4.7 Deploying plugins.

. Create the output destination folder for files to which input values are output when an operation is completed.

To use the sample plugin as is:

C:\ucnpwork

To change the output folder:

Customize the plugin. For details about how to customize plugins, see 4.3.1(8) Implementing processing to be
performed by the plugin.

. Associate the sample plugin with Operational Content, and then check the operation

For details about how to associate sample plugins with Operational Content, see 4.8 Associating I/O Plugins with
Operational Content. To use sample plugins, you need to place Plugin Parts and a Terminal Node in the Operational
Flow as follows:

* Place a Plugin Part in the start Process Node.

A. How to Use Sample Plugins

JP1/Navigation Platform Development Guide 144

* Place a Terminal Node at the end point of the Operational Flow, and place a Plugin Part in the Process Node
immediately before the Terminal Node.

A.2 How to use Suspend/Resume Plugins (sample)

To use a Suspend/Resume Plugin (sample):

1. Copy the sample plugin to the plugin development work directory.
The following indicates the file to be copied and the destination directory.

File to be copied
Navigation-Platform-for-Developers-installation-directory\ sample\plugin\ucnp.plugin. suspend

Destination directory

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin

2. Edit the value specified for the constant DEFAULT SAVE FOLDER to change the folder to which suspend
information will be output.

3. Build the plugin.
For details about how to build the plugin, see 4.6 Building plugins.

4. Enable the Suspend/Resume Plugin in the system.
Specify true for the ucnp.base.client.suspend.enable key in the user property file
(ucnp user.properties). For details about how to configure the user property file, see the manual JP1/
Navigation Platform Setup and Operations Guide.

A.3 Notes on using sample plugins

Note the following when using sample plugins:

» Sample plugins do not contain error processing. If necessary, add error processing.
* Before using plugins, sufficiently confirm the operation to ensure that no error occurs.

 If a user without Windows administrator roles adds a file to copy the sample plugin to a work directory under the
OS-installation-drive : \Program Files directory, the file might be redirected to a user folder. Therefore, the user
who adds the file must have Windows administrator privileges.

¢ Ifan installation directory other than the default is used in an attempt to import a sample plugin project into Eclipse,
building of the project fails with the following error messages:

Project 'OutputGuideData' is missing required library: 'C:\Program Files (
x86) \Hitachi\HNP\1lib\ucnppluginif.jar'

Project 'OutputGuideData' is missing required library: 'C:\Program Files (
x86) \Hitachi\HNP\syslib\ucnpsys.jar'

Project 'OutputGuideData' is missing required library: 'C:\Program Files (
x86) \Hitachi\HNP\1lib\ucnpclasses.jar'

Project 'OutputGuideData' is missing required library: 'C:\Program Files (
x86) \Hitachi\HNP\PP\uCPSB\CC\client\1lib\j2ee-javax.jar'

In this case, change the JAR file paths displayed in the message as follows:
Navigation-Platform-installation-directory\ 1Lib\ucnppluginif. jar

A. How to Use Sample Plugins

JP1/Navigation Platform Development Guide 145

Navigation-Platform-installation-directory\ syslib\ucnpsys.jar
Navigation-Platform-installation-directory\1ib\ucnpclasses. jar

Navigation-Platform-installation-directory\ PP\ uCPSB\CC\client\1lib\j2ee-javax.jar

A. How to Use Sample Plugins

JP1/Navigation Platform Development Guide 146

B. Important Point for I/O Plugin Development

This section describes the important point for developing I/0 Plugins.

B.1 Suppressing execution of 1/0 Plugins depending on the presence of
mapping lines

You can suppress execution of I/O Plugins depending on the presence of mapping lines between 1/O parameters and
Guide Parts.

The following describes suppression of the I/O Plugin processing in the example of Operational Content shown below.

Figure B—1: Example of Operational Content

A
B 1/0O Plugin
C 1/0O Plugin
D
Legend:
: Terminal Node : 1/O Plugin Part
- Process Node : Mapping line for the input parameter
_— : Connector : Mapping line for the output parameter

If transition occurs from Process Node A to Process Node D in Operational Content in this figure, the I/0 Plugins
perform processing in the following order:

1. outputToNode method of the I/O Plugin placed in Process Node B
2. inputFromNode method of the I/0 Plugin placed in Process Node B
3. outputToNode method of the I/O Plugin placed in Process Node C

B. Important Point for I/O Plugin Development

JP1/Navigation Platform Development Guide 147

4. inputFromNode method of the I/O Plugin placed in Process Node C

If you want to suppress the processing of the method executed in 1, confirm the following and then suppress the
processing:

e The value of the ucnp.next .params.map key in the param argument of the outputToNode method is an
empty Map.

If you want to suppress the processing of the method executed in 4, confirm the following and then suppress the
processing:

e The value of the ucnp.current.params.map key in the param argument of the i nput FromNode method
is an empty Map.

Note that if you do not want to suppress the processing of the method executed in 4, draw a mapping line to the input
parameter of the I/O Plugin in Process Node C. This allows the processing to be performed without being suppressed.

B. Important Point for I/O Plugin Development

JP1/Navigation Platform Development Guide 148

C. Migration from Old Versions

This section describes the procedure for migrating old versions of development environment settings and developed
files to Navigation Platform. This section also describes the functions that cannot be migrated from old versions and
the functions that do not need migration.

C.1 Migration from Old Versions (version 09-50 or later)

(1) Procedure for migrating plugins developed in old versions

By migrating I/O Plugins and Suspend/Resume Plugins developed in an old version (version 09-50 or later), you can
use them in Navigation Platform. To migrate such plugins:

1. See 4.1 Creating template plugins and create a new template plugin.
Apply the values specified in version 09-50 or later to the plugin information property file of the new template.

Values you must apply:

The value specified for the userplugin. id key

The value specified for the userplugin.name key

The value specified for the userplugin.server.controller.iocaction. type key

For details about the storage location of the plugin information property file for plugins of version 09-50 or later,
see the manual used for development.

2. Overwrite the new template plugin files with the files of version 09-50 or later.

Table C—1: List of files for overwriting (common)

No.

Files of version 09-50 or later

Files directly under Navigation-
Platform-installation-directory
\pluginSDK\plugin\plugin-name
\WEB-INF\1lib

Files directly under Navigation-
Platform-installation-directory

\usrlib\app®!

Files directly under Navigation-
Platform-installation-directory

\usrlib\sys"

Files directly under the path specified
for the add.class.path key added

by the developer to the option definition
file for J2EE servers

(usrconf.cfg)?

Navigation-Platform-installation-
directory\pluginSDK
\base\dd\META-INF

\cosminexus .xml#!

portal-project\WEB-INF\web . xm1#!

C. Migration from Old Versions

Copy destination folder

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\1lib

Navigation-Platform-installation-
directory\usrlib\sys

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\dd\META-INF

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF

Copy is required if:

The file to be loaded to Application
Class Loader is added.

The file to be loaded to System Class
Loader is added.

Resource adapter settings are added.

JP1/Navigation Platform Development Guide

149

#1

These files were shared by all plugins in old versions, but are no longer shared in Navigation Platform. Therefore, you need to place these
files in all plugins individually.

#2
You also need to set the class path in the Option definition file for J2EE servers (usrconf.cfg).

3. For I/O Plugins, further overwrite the files listed below in the new template plugin files.

Table C-2: List of files for overwriting (I/O Plugin)

No. Files of version 09-50 or later Copy destination folder Note

1 Files directly underNavigation- Navigation-Platform-installation- Copy all the files even if there are more
Platform-installation-directory directory\pluginSDK\plugin old version files than new template
\pluginSDK\plugin\plugin-name | \plugin-name\images plugin files.
\images

2 Navigation-Platform-installation- Navigation-Platform-installation- Apply the contents of the old version file
directory\pluginSDK\plugin directory\pluginSDK\plugin by editing the file of the same name in
\plugin-name\WEB-INF\conf \plugin-name\WEB-INF\conf the copy destination folder, rather than
\ioaction.xml copying the old file to overwrite the new

one.

Note that the URL specified for the
iconURL tag is different from that of
old versions.

The value specified for the i conURL
tag in old versions
" /plugin-name/images/file-
name"

The value specified for the new
iconURL tag
" /ucnpPlugins/plugin-name/
images/file-name"

* For migration from 09-60
The button type specified for the
diableButtonType tag allows
you to distinguish between transfer
by buttons and direct transfer. If you
want the same operation as that in
09-60, specify true for the
legacy attribute.

3 Navigation-Platform-installation- Navigation-Platform-installation- Change the character code to UTF-8
directory\pluginSDK\plugin directory\pluginSDK\plugin while retaining the file contents, and
\plugin-name\WEB-INF\src\Java- | \plugin-name\WEB-INF\src\Java- | then overwrite the file.
package\controller\I/O-action- package\controller

controller . java

4. For Suspend/Resume Plugins, further overwrite the files listed below in the new template plugin files.

Table C-3: List of files for overwriting (Suspend/Resume Plugin)

No. File of version 09-50 or later Copy destination folder Note
1 Navigation-Platform-installation- Navigation-Platform-installation- Change the character code to UTF-8
directory\pluginSDK\plugin directory\pluginSDK\plugin while retaining the file contents, and
\plugin-name\WEB-INF\src\Java- | \plugin-name\WEB-INF\src\Java- | then overwrite the file.
package\controller\Il/O-action- package\controller

controller . java

C. Migration from Old Versions

JP1/Navigation Platform Development Guide 150

5. If the plugin uses a resource adapter, see 4.4 Adding database connection processing and then add resource adapter
settings.

6. Build, deploy, and then debug the plugin in the same way as for creating a new plugin.
* 4.6 Building plugins
* 4.7 Deploying plugins
* 4.10 Debugging plugins

(2) Migration of the menu area developed in old versions

In old versions, the menu area was able to be customized by using HTML or JSP files. However, the menu area in
Navigation Platform cannot be customized.

(3) Migration of custom windows (new windows) developed in old
versions

In old versions, custom windows (new windows) were developed separately from plugins. In Navigation Platform,
custom windows (new windows) must also be developed again as plugins.

In old versions, a custom window was required to use the search function. However, you do not need to develop a custom
window for the search function in Navigation Platform because the search function is provided by default.

For details about how to develop plugins for custom windows, see Chapter 4. Developing Plugins.

(4) J2EE server settings in old versions

If you have changed J2EE server settings in the development environment of an old version, return the settings to the
default values, except for the items described in 4.713.1 J2EE server setting items that can be changed during plugin
development.

C.2 Migration from 12-00, 12-00-01 and 12-10

(1) Migration of radio buttons and check boxes

With Navigation Platform version 12-50 or later, character strings to be displayed in radio buttons and check boxes are
no longer included in input values. To include these values in input values, select the Store label information too.
check box in the Attribute Settings window for guide parts.

C. Migration from Old Versions

JP1/Navigation Platform Development Guide 151

D. Version Changes

This appendix provides the revision history of this manual for each version.

D.1 Changes in version 12-60

* The following properties were removed from the user property file (ucnp user.properties):
* The ucnp.base.server.close.button.setting property
* The ucnp.base.client.complete.button.window.close property
Following this change, the following information was modified:
* Discarding I/O Plugin instances
* Settings when logging out from a custom window
* The following operating system is now supported:
* Microsoft(R) Windows Server(R) 2022
* Windows(R) 11
e HTTPS is now supported.
Following this change, the following information was modified:
* URLSs used to access Navigation Platform windows

* Transfer destination nodes can now be specified in I/O Plugins.

Transfer destination nodes can now be specified for the return values of the following methods of
IToPluginController (server processing implementation interface):

¢ The inputFromNode methods
* The outputToNode methods

 JavaScript Plugins can now be executed when returning to the previous window.
Following this change, the following information was added:

* Notes regarding the return value of the inputFromNode method of IToPluginController (server
processing implementation interface)

* Notes regarding the return value of the outputToNode method of IToPluginController (server
processing implementation interface)

D.2 Changes in version 12-50

¢ For cases where JP1/Base is used for user authentication, Content Creator, a user who has permission to access an
Operational Content as a creator (with the JP1 permission level HNP Creator), was added.

Following this change, the Content Creator was added to the following descriptions:
* Flow of plugin development
» Lifecycle of Suspend/Resume Plugins

* The version of JDK that is used for setting up Eclipse was changed from 8 to 11.
Following this change, the following information was added or modified:

D. Version Changes

JP1/Navigation Platform Development Guide 152

* In the procedure for setting up Eclipse, a step to edit the eclipse.ini file
* A note about garbled Japanese characters in a file opened in Eclipse

* The path of a command to perform a GC (garbage collection) that is used for measuring the memory usage
for plugins

e The Store label information too. check box was added to the Attribute Settings windows for radio button parts and
check box parts. This check box is used to specify whether to connect the displayed string and the value with a
linefeed code (\ r\n) and store them as a cache value.

Following this change, the following information was modified:

* The cache values of radio buttons and check boxes for the i nput FromNode method of the server processing
implementation interface (IToPluginController)

* The cache values of radio buttons and check boxes for the withLabel argument for the getParamvalue
method of the I/O parameter conversion utility class (ParamConvertUtil)

* Migration of radio buttons and check boxes from old versions

The section about migration from 11-50 or earlier was removed, and the section about migration from 12-00,
12-00-01, and 12-10 was added.

* Operational Contents can now belong to a hierarchical group.

Following this change, the following information was added:

* A note about cases where a group name includes a backslash (\) when using the getGroupName method of
ISuspendInfo (suspend information interface) to read suspend information that was created in a JP1/
Navigation Platform version earlier than 12-50

D.3 Changes in version 12-10

* The following operating system is now supported:
* Microsoft(R) Windows Server(R) 2019
* The following operating systems are no longer supported:
* Microsoft(R) Windows Server(R) 2012
* Microsoft(R) Windows(R) 7
* The following products were removed from the list of products to be upgraded:
¢ uCosminexus Navigation Platform 09-00, 09-50, 09-60
¢ uCosminexus Navigation Platform - User License 09-00, 09-50, 09-60
¢ uCosminexus Navigation Platform - Authoring License 09-00, 09-50, 09-60
¢ uCosminexus Navigation Developer 09-00, 09-50, 09-60
» Hitachi Navigation Platform 10-00
» Hitachi Navigation Platform for Developers 10-00
* JP1/Integrated Management - Navigation Platform 10-01, 10-10, 10-50
* The following web browser is now supported:
* Google Chrome

A note on using Google Chrome or Mobile Safari to close a window created with a Custom Window Plugin was
modified.

D. Version Changes

JP1/Navigation Platform Development Guide 153

D.4 Changes in version 12-00

The following products are no longer available in JP1/Navigation Platform 12-00 and later versions:
* Hitachi Navigation Platform
* Hitachi Navigation Platform for Developers
The following OS is no longer supported:
* Microsoft(R) Windows Server(R) 2008 R2
* Windows(R) 8
The instances of I/O Plugins are now managed in units of instance IDs instead of plugin IDs.

Specifications were modified so that the value representing the selection status can be passed by using the cache
value of the following Guide Parts:

* Radio button
* Check box
To reflect this modification, information regarding how to migrate from the following older versions was added:
» Hitachi Navigation Platform for Developers 10-50 or earlier
» JP1/Navigation Platform for Developers 11-50 or earlier

The key (ucnp.current.params. type.map) for storing the type name of Guide Parts was added to the
param parameter of the i nput FromNode method.

The following method was added to the I/O parameter conversion utility class (ParamConvertUtil) for
developing I/O Plugins:

e getParamValue method

The following method was added to the session information use interface (IUCNPSession) for developing I/O
Plugins:

e getJplToken method

D.5 Changes in version 11-50

The version of JDK, which is a prerequisite for setting up Eclipse, was changed to 8.

The value to be entered in the VM arguments field by clicking the JRE tab when an attempt to build plugins has
failed was changed to -XX:MaxMetaspaceSize=256m.

D. Version Changes

JP1/Navigation Platform Development Guide 154

E. Reference Material for This Manual

This appendix provides reference information, including various conventions, for this manual.

E.1 Related publications

The Navigation Platform manuals are listed below.

JP1/Navigation Platform
Setup and Operations Guide
(3021-3-D11(E))

JP1/Navigation Platform
Content Editing Guide
(3021-3-D12(E))

JP1/Navigation Platform
I Development Guide
(3021-3-D13(E))

JP1/Navigation Platform
L Messages
(3021-3-D14(E))

e JP1/Navigation Platform Setup and Operations Guide (3021-3-D11(E))

This manual provides an overview of Navigation Platform and its functionality, and describes how to set up and
operate a system that incorporates Navigation Platform.

Users of Navigation Platform should read this manual first.
e JPI1/Navigation Platform Content Editing Guide (3021-3-D12(E))

This manual describes how to create, modify, and delete Operational Content, and how to manage the permissions
that govern access to this content.

e JPI/Navigation Platform Development Guide (3021-3-D13(E))

The manual you are reading. This manual describes how to develop plugins and custom windows for Navigation
Platform.

» JPI1/Navigation Platform Messages (3021-3-D14(E))
This manual explains the messages output when using Navigation Platform.

E.2 Conventions: Abbreviations for product names

This manual uses the following abbreviations for product names and related software names:

Abbreviation Full name or meaning
Cosminexus’” uCosminexus Primary Server Base
Eclipse Eclipse Web Tools Platform

E. Reference Material for This Manual

JP1/Navigation Platform Development Guide 155

In descriptions of uCosminexus Navigation Platform, the term Cosminexus is sometimes used generically to refer to uCosminexus Application
Server and uCosminexus Developer.

E.3 Conventions: Acronyms

This manual also uses the following acronyms:

Acronym Full name or meaning

EAR Enterprise ARchive

ISO International Organization for Standardization
J2EE Java 2 Platform, Enterprise Edition

JavaVM Java Virtual Machine

UTF UCS Transformation Format

WAR Web ARchive

XML eXtensible Markup Language

E.4 Conventions: KB, MB, GB, and TB

This manual uses the following conventions:

1 KB (kilobyte) is 1,024 bytes.

1 MB (megabyte) is 1,0242 bytes

1 GB (gigabyte) is 1,0243 bytes.

1 TB (terabyte) is 1,024* bytes.

E. Reference Material for This Manual

JP1/Navigation Platform Development Guide 156

F. Glossary

application server
A server used to process user operations from the Web browser and apply the results to a business system
such as a database.

Branch Node

A node required to create an Operational Flow with branching steps. A Branch Node is represented by a
diamond in Navigation Platform windows.

cache
Data of the values input or set for Guides of Operational Content by the user. By using the cache, plugins
can save the values in the middle of input and pass the input values to other windows or systems.

Content Creator
For cases where JP1/Base is used for user authentication, a user who has the creator's access permissions
for Operational Contents.

Content Editor

A user who has permission to access Operational Content as an editor.

Content Manager
A user who has permission to access Operational Content as a manager.

Custom Window Plugin
A plugin used to develop windows other than the windows of Navigation Platform. A window developed
by this plugin is called a custom window.

development environment
An environment in which plugins are developed. You must have JP1/Navigation Platform for Developers
to use a development environment.

editing environment
An environment in which you can create and edit Operational Content, and assign access permission for
Operational Content. You must have JP1/Navigation Platform to use the editing environment.

execution environment
The environment accessed by users who use Operational Content to perform an operation. You must have
JP1/Navigation Platform to use the execution environment.

export
To output the configuration information of Operational Content and access permissions in ZIP format.
Exported data can be imported to another environment.
Guide
A type of Operational Content. A Guide is a description of the individual tasks performed as part of an
operation.
F. Glossary

JP1/Navigation Platform Development Guide 157

Guide Part

A component used to create Guides. You can create a Guide by selecting Guide Parts from the Guide
pallette and placing them in the guide area.

import

To load the exported information into the local environment.

You can import the configuration information of Operational Content and access permissions.

I/0O Plugin
A plugin that processes the information input in the Navigation Platform windows, and determines what
information to display in the windows. By using I/O Plugins, you can check the integrity of values input
into a Guide, output the input values to external programs, or prepare them for recording as log data.

I/0O plugin XML file
A file that defies information (input and output parameters) required to associate I/O Plugins with
Operational Content. Information defined in this file is displayed in Plugin Parts in the Plugins pallette.

In addition, icons in the Plugins pallette displayed in the Operational Content Editing Window can be set
in any file.

mapping line
An arrow that represents the input or output relationship between Guide Parts and Plugin Parts.

Navigation Platform
A collective term for JP1/Navigation Platform and JP1/Navigation Platform for Developers.

node
A component displayed in an Operational Flow that represents a step in the operation. There are three types
of node: Terminal Nodes, Process Nodes, and Branch Nodes.

Operational Content
The information required to perform an operation. You can create and display Operational Content in the
windows of Navigation Platform.

Operational Content Editing Window
A window of Navigation Platform in which you can perform the following operations:
¢ Create, modify, copy, and delete Operational Content
* Publish and unpublish Operational Content
* Associate I/O Plugins

* Set access permissions for Operational Content

Operational Flow
A type of Operational Content. An Operational Flow is the flow of an operation presented as a flow chart.

part

A component placed in the Navigation Platform window.

F. Glossary

JP1/Navigation Platform Development Guide 158

plugin
A user program developed for use with Navigation Platform. Its purpose might be to link Navigation
Platform with an external program, or to use certain extended functionality of Navigation Platform.

Navigation Platform provides the interfaces required to develop plugins.

plugin information property file
A file that defines information required to create template plugins.

Plugin Part
A component that associates plugins with Operational Content. You can select Plugin Parts from the Plugins
pallette and place them in the guide area.

Process Node
A node that represents an intermediate step in an operation. There must be at least one Process Node between
Terminal Nodes. A Process Node is represented by a rectangle in Navigation Platform windows.

relation line
An arrow that shows the transition from one node to another.

Suspend/Resume Plugin
A plugin required to allow a user to resume the operation from the temporarily saved status even if the user
references information about other operations or logs out in the middle of operation.

suspend information
Information that is temporarily saved when the user suspends window operation in an environment in which
Suspend/Resume Plugins are used. Suspend information is recovered when the user resumes the window
operation.

System Plugin
A plugin provided by Navigation Platform that is required to link with external programs or between Guide
Parts.

template plugin
A file from which plugins are created. You can create plugins by editing a template plugin.

Template plugins are created in the format of an Eclipse Java project.

Terminal Node
A node that represents the start or end of an operation. A Terminal Node is placed at the beginning and end
of an Operational Flow. A Terminal Node is represented by a circle in Navigation Platform windows.

User Plugin
A plugin developed by a developer using the API provided by Navigation Platform.

Web server
A server that performs processing relating to receiving requests from and sending data to the Web browser.

window ID
An ID that uniquely identifies the window in which an operation of Operational Content is being performed.

F. Glossary

JP1/Navigation Platform Development Guide 159

Index

A

abbreviations for products 155

access permissions to Java packages used by user
plugins, settingup 84

acronyms 156
actions to be taken if attempt to build plugins fails 63
adding

database connection processing 55

libraries 32

libraries, noteson 33

resource adapter 55
API reference

for Custom Window Plugin development 137

for I/O Plugin development 85

for Suspend/Resume Plugin development 118
application server (glossary) 157
associating 1/0 Plugins with Operational Content 66

B

Branch Node (glossary) 157
building plugins 62
button type for suppressing execution, specifying 52

Cc

cache (glossary) 157
cache values 94
changing resource adapter settings 56

checking configuration information for Operational
Content that uses plugins 70

conditions for debugging 72
configuring

libraries 32

user property file 71
constructors

UCNPPIuginException(String message, Throwable
cause) 136

UCNPPIuginException(String message) 135
UCNPPIuginUserException(String, Throwable) 106
UCNPPIuginUserException(String) 106

contains method 123

Content Creator (glossary) 157

Content Editor (glossary) 157

Content Manager (glossary) 157

conventions

abbreviations for products 155
acronyms 156
fonts and symbols 9
KB, MB, GB,and TB 156
creating
icon of Plugins palette and Plugin Parts 44
libraries 32
property file, notes on 35
template plugins 35

customizing
Custom Window Plugins 53
I/O Plugins 44

Suspend/Resume Plugins 53
template plugins 44
custom window JSP file 54
Custom Window Plugin (glossary) 157
Custom Window Plugins, customizing 53
CustomWindowUrlUtil 139

D

database connection processing
adding 55
implementing 58
debugging plugins 72
decodeHtmlPartParam method 107
deleteAll method 126
delete method 125

deleting

plugins 73

resource adapter 57
deploying 64

plugins 64

deserialize method 133
destroy method 105
details about values input to or output from plugins 68
developing
plugins 34
development environment (glossary) 157
directory for storing icons 44

drawing mapping lines (connecting Guide Parts and
Plugin Part) 66

E
editing

JP1/Navigation Platform Development Guide

160

I/O plugin XML file 45 format 44

plugin information property file 35 icon of Plugins palette and Plugin Parts, creating 44
editing environment (glossary) 157 lloPluginController 87
execution environment (glossary) 157 implementing
export (glossary) 157 database connection processing 58
processing to be performed by plugin 53
F import (glossary) 158

importing

pluginSDK project 31

template plugin project 43

G init method 104

inputFromNode method 87
ioaction.xml (1/O plugin XML file) 45
IPlugininitializer 104
ISuspendActionController 120
ISuspendinfo 129

IUCNPSession 116

flow of plugin development 17
font conventions 9

GB meaning 156

GC (garbage collection) 75
getContentName method 130
getContentSuspendedld method 129
getCurrentNodeName method 131
getCustomWindowUrl method 139
getGroupName method 131
getdp1Token method 117

getLoginld method 116
getMessageld method 114

J

Java heap memory usage 77

getMessage method 114 K
getParamValue method 111 KB meaning 156
getWorkld method 130
Guide (glossary) 157 L
Guide Part (glossary) 158 libraries
adding 32
H creating and configuring 32
how to use notes on adding 33
I/O Plugins (sample) 144 list of APIs
sample plugins 144 for Custom Window Plugin development 138
Suspend/Resume Plugins (sample) 145 for I/O Plugin development 86
for Suspend/Resume Plugin development 119
| load method 122
I/O parameter conversion utility class 107 location to place libraries 32

LogoutActionUtil 141
logout method 141

I/O Plugin (glossary) 158
I/O Plugin exception class 114

/O Plugins logout processing class 141
customizing 44
important points development 147 M
I/O Plugins (sample), how to use 144 Map format 107
I/0O plugin XML file 38 mapping line (glossary) 158
directory for storing 46 mapping lines (connecting Guide Parts and Plugin
editing 45 Part), drawing 66
/O plugin XML file (glossary) 158 MB meaning 156
icon 44 memory usage for plugins

JP1/Navigation Platform Development Guide 161

calculating 74

procedure for measuring 74
methods

contains 123
decodeHtmlPartParam 107
delete 125

deleteAll 126

deserialize 133

destroy 105
getContentName 130
getContentSuspendedld 129
getCurrentNodeName 131
getCustomWindowUrl 139
getGroupName 131
getlp1Token 117
getLoginld 116
getMessage 114
getMessageld 114
getParamValue 111
getWorkld 130

init 104

inputFromNode 87

load 122

logout 141

outputToNode 97

save 120

serialize 132

migration 149

N

Navigation Platform (glossary) 158
node (glossary) 158
notes on

adding libraries 33

creating property file 35

notes on using Google Chrome or Mobile Safari to
develop plug-in that displays Operational Contents 83

(0

Operational Content (glossary) 158
Operational Content Editing Window (glossary) 158
Operational Flow (glossary) 158
option definition file for J2EE servers 80
outputToNode method 97
overview

of development 15

of Navigation Platform plugins 20

P

ParamConvertUtil 107
param parameter
inputFromNode method 89
outputToNode method 98
part (glossary) 158
plugin (glossary) 159
plugin execution order, specifying 51
plugin for database connection processing, setting 57
plugin information property file, editing 35
plugin information property file (glossary) 159
plugin overview 19
Plugin Part (glossary) 159
Plugin Parts, updating 69
plugin processing during preview 102
plugins
building 62
debugging 72
deleting 73
deploying 64
developing 34
pluginSDK project, importing 31
preparation of development 29
procedure
for building plugins 62
for creating Operational Content for measurement74
processing to be performed by plugin, implementing 53
Process Node (glossary) 159
property file description format 35

R

range of development 16
relation line (glossary) 159
resource adapter

adding 55

changing settings 56

deleting 57

S

sample plugins
how to use 144
notes on using 145
save method 120
serialize method 132

JP1/Navigation Platform Development Guide

162

server processing implementation interface 87
session information use interface 116
setting
plugin for database connection processing 57
tool tips for parameter descriptions 51
specification example

of ucnp.options.param key (for each window ID)
(recommended) 91

of ucnp.request.options key (for each session) (not
recommended) 88

specifying
button type for suppressing execution 52
plugin execution order 51
whether to display confirmation dialog box 51
whether to display plugins in preview window 51
SupendInfoSerializeUtil 132

suppressing execution of 1/0 Plugins depending on
presence of mapping lines 147

suspend/resume action controller interface 120
Suspend/Resume Plugin (glossary) 159
Suspend/Resume Plugin exception class 135
Suspend/Resume Plugins, customizing 53
Suspend/Resume Plugins (sample), how to use 145
suspend information (glossary) 159

suspend information interface 129

symbol conventions 9

System Plugin (glossary) 159

T

TB meaning 156
template plugin (glossary) 159
template plugin creation command, executing 39
template plugin project, importing 43
template plugins
creating 35
customizing 44
Terminal Node (glossary) 159
tool tips for parameter descriptions, setting 51
type names of Guide parts 97

U

ucnp.request.options key 88
ucnpOptions parameter (session) 88
UCNPPIluginException 114, 135

UCNPPIuginException(String message, Throwable
cause) constructor 136

UCNPPIuginException(String message) constructor
135

UCNPPIuginUserException 106

UCNPPIluginUserException(String, Throwable)
constructor 106

UCNPPIluginUserException(String) constructor 106
ucnpUserData parameter 28

updating, Plugin Parts 69

userplugin.id 36

userplugin.java.package 37
userplugin.name 36
userplugin.server.controller.ioaction 38
userplugin.server.controller.ioaction.type 38
userplugin.server.controller.suspend 38
userplugin.type 37

userplugin.version 37

User Plugin (glossary) 159

User Plugin exception class 106

User Plugin startup (initialization) and termination
processing implementation interface 104

user property file
configuring 71
for J2EE servers 77
usrconf.cfg 80
usrconf.properties 77
utility class
for custom window URL acquisition 139
for suspend information serialization 132

w

Web server (glossary) 159

whether to display confirmation dialog box, specifying
51

whether to execute plugins in preview window,
specifying 51
window ID (glossary) 159

JP1/Navigation Platform Development Guide

163

®Hitachi, Ltd.
6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan

	JP1/Navigation Platform Development Guide
	Notices
	Summary of amendments
	Preface
	Contents
	1. Overview of Development
	1.1 Range of development
	1.2 Flow of plugin development

	2. Plugin Overview
	2.1 Overview of Navigation Platform plugins
	2.1.1 About initialization and termination processing of plugins
	2.1.2 About plugin sessions

	2.2 Types of plugins
	2.3 Overview of I/O Plugins
	2.3.1 I/O Plugin execution timing
	2.3.2 Execution order of I/O Plugins
	2.3.3 Data that can be passed by I/O Plugins
	2.3.4 Lifecycle of I/O Plugin instances

	2.4 Overview of Suspend/Resume Plugins
	2.4.1 Suspend/Resume Plugin execution timing
	2.4.2 Lifecycle of Suspend/Resume Plugins

	2.5 Overview of Custom Window Plugins
	2.5.1 Custom Window Plugin execution timing
	2.5.2 Data that can be received by Custom Window Plugins
	2.5.3 Processing if an error occurs in a Custom Window Plugin

	3. Preparation of Development
	3.1 Setting up Eclipse
	3.2 Importing a pluginSDK project
	3.3 Adding libraries
	3.3.1 Location to place libraries
	3.3.2 Creating and configuring libraries
	3.3.3 Notes on adding libraries

	4. Developing Plugins
	4.1 Creating template plugins
	4.1.1 Editing the plugin information property file
	4.1.2 Executing the template plugin creation command

	4.2 Importing a template plugin project
	4.3 Customizing template plugins
	4.3.1 Customizing I/O Plugins
	4.3.2 Customizing Suspend/Resume Plugins
	4.3.3 Customizing Custom Window Plugins
	4.3.4 Creating the JSP file used in custom windows

	4.4 Adding database connection processing
	4.4.1 Adding a resource adapter
	4.4.2 Changing resource adapter settings
	4.4.3 Deleting resource adapters
	4.4.4 Setting a plugin for database connection processing
	4.4.5 Implementing database connection processing

	4.5 Implementing processing to be performed during plugin initialization or termination
	4.6 Building plugins
	4.6.1 Procedure for building plugins
	4.6.2 Actions to be taken if an attempt to build plugins fails

	4.7 Deploying plugins
	4.8 Associating I/O Plugins with Operational Content
	4.8.1 Drawing mapping lines (connecting Guide Parts and Plugin Parts)
	4.8.2 Details about values input to or output from plugins
	4.8.3 Updating Plugin Parts
	4.8.4 Checking configuration information for Operational Content that uses plugins

	4.9 Configuring the user property file
	4.10 Debugging plugins
	4.10.1 Conditions for debugging plugins
	4.10.2 How to debug plugins

	4.11 Deleting plugins
	4.11.1 How to delete plugins

	4.12 Calculating memory usage for plugins
	4.12.1 Procedure for creating Operational Content for measurement
	4.12.2 Procedure for measuring the memory usage for plugins

	4.13 Changing J2EE server settings
	4.13.1 J2EE server setting items that can be changed during plugin development
	4.13.2 Storage location of the files used for changing J2EE server setting items
	4.13.3 Procedure for changing the user property file for J2EE servers (usrconf.properties)
	4.13.4 Procedure for changing the option definition file for J2EE servers (usrconf.cfg)

	4.14 Notes on using Google Chrome or Mobile Safari to develop a plug-in that displays Operational Contents
	4.15 Setting up access permissions to Java packages to be used by User Plugins

	5. API Reference (for I/O Plugin Development)
	5.1 List of APIs (for I/O Plugin development)
	5.2 IIoPluginController (server processing implementation interface)
	5.2.1 inputFromNode method
	5.2.2 outputToNode method
	5.2.3 Plugin processing during preview

	5.3 IPluginInitializer (User Plugin startup (initialization) and termination processing implementation interface)
	5.3.1 init method
	5.3.2 destroy method

	5.4 UCNPPluginUserException (User Plugin exception class)
	5.5 ParamConvertUtil (I/O parameter conversion utility class)
	5.5.1 decodeHtmlPartParam method
	5.5.2 getParamValue method

	5.6 UCNPPluginException (I/O Plugin exception class)
	5.6.1 getMessage method
	5.6.2 getMessageId method

	5.7 IUCNPSession (session information use interface)
	5.7.1 getLoginId method
	5.7.2 getJp1Token method

	6. API Reference (for Suspend/Resume Plugin Development)
	6.1 List of APIs (for Suspend/Resume Plugin development)
	6.2 ISuspendActionController (suspend/resume action controller interface)
	6.2.1 save method
	6.2.2 load method
	6.2.3 contains method
	6.2.4 delete method
	6.2.5 deleteAll method

	6.3 ISuspendInfo (suspend information interface)
	6.3.1 getContentSuspendedId method
	6.3.2 getWorkId method
	6.3.3 getContentName method
	6.3.4 getGroupName method
	6.3.5 getCurrentNodeName method

	6.4 SupendInfoSerializeUtil (utility class for suspend information serialization)
	6.4.1 serialize method
	6.4.2 deserialize method

	6.5 UCNPPluginException (Suspend/Resume Plugin exception class)
	6.5.1 UCNPPluginException(String message) constructor
	6.5.2 UCNPPluginException(String message, Throwable cause) constructor

	7. API Reference (for Custom Window Plugin Development)
	7.1 List of APIs (for Custom Window Plugin development)
	7.2 CustomWindowUrlUtil (utility class for custom window URL acquisition)
	7.2.1 getCustomWindowUrl method

	7.3 LogoutActionUtil (logout processing class)
	7.3.1 logout method

	Appendixes
	A. How to Use Sample Plugins
	A.1 How to use I/O Plugins (sample)
	A.2 How to use Suspend/Resume Plugins (sample)
	A.3 Notes on using sample plugins

	B. Important Point for I/O Plugin Development
	B.1 Suppressing execution of I/O Plugins depending on the presence of mapping lines

	C. Migration from Old Versions
	C.1 Migration from Old Versions (version 09-50 or later)
	C.2 Migration from 12-00, 12-00-01 and 12-10

	D. Version Changes
	D.1 Changes in version 12-60
	D.2 Changes in version 12-50
	D.3 Changes in version 12-10
	D.4 Changes in version 12-00
	D.5 Changes in version 11-50

	E. Reference Material for This Manual
	E.1 Related publications
	E.2 Conventions: Abbreviations for product names
	E.3 Conventions: Acronyms
	E.4 Conventions: KB, MB, GB, and TB

	F. Glossary

	Index

