HITACHI

Inspire the Next

JP1 Version 11

JP1/Advanced Shell Description, User's Guide,
Reference, and Operator's Guide

3021-3-B32-20(E)

I Notices

m Copyright
All Rights Reserved. Copyright (C) 2016, 2017, Hitachi, Ltd.

m Export restrictions

If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade
Law, and USA export control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

m Trademarks
HITACHI, Job Management Partner 1, JP1, uCosminexus are either trademarks or registered trademarks of Hitachi,
Ltd. in Japan and other countries.

Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

IBM, AIX are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/
or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

Microsoft, Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

SUSE is a registered trademark or a trademark of SUSE LLC in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Win32 is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

m Issued
Jan. 2017: 3021-3-B32-20(E)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 2

I Summary of amendments

The following table lists changes in this manual (3021-3-B32-20(E)) and product changes related

to this manual.

Changes
A description of a means to create a job definition script was added.

The following UNIX-compatible commands can now be used:
e tr
* xargs

In addition, notes on the which command were changed.
A description of the initialization script file was added.

The description of automatic startup and automatic termination of the user-reply
functionality management daemon was changed.

A description of the function that sets the file mode creation mask that is to be used
when execution of a job definition script starts was added.

A note on running antivirus software was added.
A description of the output destination in expansion output mode was added.

A description was added, or the existing description was changed, for the spool job
name specification function.

The description of messages that are not output in the minimum output mode was
changed.

[For Windows only] A description of the ADSH RC_EXTERNAL shell variable,
which is used to store the return code of an external command, was added.

Notes on arguments of the ul imit command were added.

The following messages were added:

KNAX0298-E, KNAX6501-I, KNAX6502-1I, KNAX6503-E, and KNAX6504 -
E

The descriptions of the following messages were changed:

KNAX4427-W, KNAX6097-E, KNAX6153-E, KNAX6380-TI, and KNAX6381~
E

The following terms were added to Glossary:
* initialization script file
¢ spool job name

Location
1.3

2.1.1(4), 2.1.2(3), 2.2.7(3)(c), 8.1.2(3), 8.2.2(1),
8.4.36, 8.4.40, 8.4.41

2.2.7(2)(a), 2.6.23, 5.5.3, 7.2.1(2), 7.3.19, 8.3.7, 9.4.5

2.8.3(1)(c)

2.12,7.2.1(2), 7.3.48

2.14
34.1

3.42(3),3.4.4(2),3.7.8,3.9,3.13,5.5.2,8.3.6,8.3.9

3.4.4(1), 3.5.1(2)(c)

5.5.1,5.5.4,5.8.8(3),9.5.9

9.3.30

12.2, 12.3, KNAX0298-E, KNAX6501-I,
KNAX6502-1, KNAX6503-E, KNAX6504-E

12.3, KNAX4427-W, KNAX6097-E, KNAX6153-E,
KNAX6380-1, KNAX6381-E

Appendix D

In addition to the above changes, minor editorial corrections were made.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

I Preface

This manual explains how to use JP1/Advanced Shell to create and execute job definition scripts for batch jobs.

e JP1/Advanced Shell (script execution base for batch jobs)
¢ JP1/Advanced Shell - Developer (script development base for batch jobs)
This manual uses the terms "execution environment" and "development environment" to distinguish between the

environment in which JP1/Advanced Shell is installed and the environment in which JP1/Advanced Shell - Developer
environment is installed, respectively.

m Relevant program products

e P-1M12-B1BL JP1/Advanced Shell 11-10 (for AIX V6.1, AIX V7.1, AIX V7.2)

e P-8112-B1BL JP1/Advanced Shell 11-10 (for Red Hat Enterprise Linux Server 6 (64-bit x86_64), Red Hat
Enterprise Linux Server 7 (64-bit x86_64), Oracle Linux 6 (x64), Oracle Linux 7, CentOS 6, CentOS 7, SUSE
Linux 12)

e P-1J12-B1BL JP1/Advanced Shell 11-10 (for HP-UX 111 V3 (IPF))
e P-9D12-B1BL JP1/Advanced Shell 11-10 (for Solaris 10 (SPARC), Solaris 11 (SPARC))

e P-2A12-B1BL JP1/Advanced Shell 11-10 (for Windows Server 2016, Windows 10, Windows 8, Windows Server
2012, Windows 7, Windows Server 2008)

e P-2A12-B2BL JP1/Advanced Shell - Developer 11-10 (for Windows Server 2016, Windows 10, Windows 8,
Windows Server 2012, Windows 7, Windows Server 2008)

m Intended readers

This manual is intended for those interested in using JP1/Advanced Shell to develop, execute, and/or manage batch
jobs. This manual provides explanations assuming readers are familiar with the following:

* Windows and UNIX

» JP1/AJS

e JP1/Base

* JPI/IM

m Organization of this manual

This manual consists of the following chapters and appendixes.

This manual is common to the OS of both Windows and UNIX. If there are differences between each OS, such
differences are separately described within the text.
PART 1: Overview

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. Chapter 1
describes the purpose of JP1/Advanced Shell, provides an example of its application to a business operation,

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 4

explains the overall system configuration and general procedures, and provides an overview of JP1/Advanced
Shell's operation and functionality in a cluster system.

PART 2: Setup

2. Preparations for Using JP1/Advanced Shell
Chapter 2 discusses the conditions and requirements for using JP1/Advanced Shell, including the program
installation directory, the main programs, prerequisites, installation, environment information settings, custom
job registration, user-reply functionality settings, and environment information settings for cluster operation.

PART 3: Operation

3. Executing Batch Jobs
Chapter 3 explains how to execute batch jobs and the batch job processing in JP1/Advanced Shell (execution
environment).

4. Using JP1/Advanced Shell - Developer (Windows Only)

Chapter 4 explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/Advanced Shell
Editor to develop job description scripts in a Windows environment. The chapter also explains how to use the

editor to debug job definition script files.
5. Creating Job Definition Scripts
Chapter 5 explains the syntax for job definition scripts.

6. Debugging Job Definition Scripts
Chapter 6 describes the debugger functions of JP1/Advanced Shell.

PART 4: Reference

7. Parameters Specified in the Environment Files
Chapter 7 provides details about the description format used for parameters and commands. You define in
environment files information such as return codes, coverage, system execution logs, and directory paths.
Export parameters are used to define environment variables. Conditional parameters are used to apply desired
environment setting parameters or export parameters specifically to the physical host or specifically to a

particular logical host.

8. Commands Used During Operations
Chapter 8 describes the syntax and details of the commands used for operations.

9. Job Definition Script Commands and Control Statements
Chapter 9 describes in detail the description formats for the standard shell commands, extended shell commands,
extended script commands, script control statements, and reserved script commands used in job definition

scripts.
10. Script development parts
Chapter 10 explains the description formats and details of the script development parts.
PART 5: Troubleshooting

11. Troubleshooting
Chapter 11 describes troubleshooting, including how to respond when problems occur, the types of log
information, the troubleshooting information that needs to be collected, and how to collect it.

12. Messages
Chapter 12 lists the messages output by JP1/Advanced Shell and provides detailed information about errors

that might occur.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

A. Coverage Information That Is Acquired

Appendix A describes the coverage information that JP1/Advanced Shell acquires.

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)

Appendix B explains how to start the batch job of JP1/Advanced Shell by using the job scheduler other than JP1/
AIJS in the execution environment.

C. Modifications Made in Each Version
Appendix C lists the modifications made in each version.

D. Glossary

Appendix D is a glossary that explains the terms used in this manual.

m Conventions: Fonts and symbols

The following table explains the text formatting conventions used in this manual:

Text formatting

Bold

Italic

Monospace

underline

Convention

Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:

¢ From the File menu, choose Open.
¢ Click the Cancel button.
¢ In the Enter name entry box, type your name.

Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
* Write the command as follows:
copy source-file target-file
¢ The following message appears:
A filewas not found. (file = file-name)

Italic characters are also used for emphasis. For example:
* Do not delete the configuration file.

Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:

e At the prompt, enter dir.
¢ Use the send command to send mail.
¢ The following message is displayed:

The password is incorrect.

The underline indicates the default value among two or more values enclosed in selection symbols.

The following table explains the symbols used by this manual in syntax explanations:

Symbol

Convention

A vertical bar separates multiple items, and has the meaning of OR. For example:
A|B|C means A, or B, or C.

Curly brackets indicate that only one of the enclosed items is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

Square brackets indicate that the enclosed item or items are optional. A vertical bar is used to delimit multiple
items. For example:

JP1/Advanced Shell Description,

User's Guide, Reference, and Operator's Guide 6

Symbol

<< >>

()

Convention

Examples:
[A] means that you can specify A or nothing.

[B|C] means that you can specify B, or C, or nothing.
Single angle brackets enclose the syntax element that must be used to specify an item.

The plus sign indicates that the immediately preceding item can be specified multiple times. It is also used to
indicate that the items before and after it are specified together.
Examples:

{AIB}+

Indicates that A or B can be specified multiple times in any order.

CR+LF

Indicates that the carriage return character (CR) and the linefeed character (LF) are specified together.

The asterisk indicates that the immediately preceding item can be omitted or that it can be specified one or
more times.
Example:

{AIB}*

Indicates that A or B can be specified one or more times in any order or that A and B can both be omitted.

A swung dash indicates that the syntax element enclosed by the single angle brackets (< >), double angle
brackets (<< >>), or double parentheses ((())) that follow must be used to specify the item that precedes
the swung dash.

Double angle brackets enclose the default value for an item.
Double parentheses enclose the permissible range of values that can be specified.

An ellipsis indicates that the immediately preceding item can be repeated as many times as necessary. For
example:

A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

Denotes a single-byte space.
A o: Denotes zero or more spaces (spaces can be omitted).
A 1: Denotes one or more spaces (at least one space is required).

The following table explains the syntax elements used in this manual:

Syntax element

<numeric characters>

Characters that can be specified

0111213141516171819

<uppercase alphabetic characters> AIBIC|...|Z

<lowercase alphabetic characters> alblcl...lz

<alphabetic characters>

<special characters>

<octal>
<decimal>
<hexadecimal>

<integer>

<uppercase alphabetic characters> | <lowercase alphabetic characters>
L/ IR Lsl+1=1=1 A (space) | \
<01112]31415|6|7>+

<numeric characters> +
01112131415161718[9IAIBICIDIE|F

A series of signed or unsigned numeric characters

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Syntax element
<unsigned integer>

ss<symbolic name>

<environment variable name>

<path name>
<command name>
<logical host name>

<any character string>

<ASCII character string>

Characters that can be specified
<numeric characters> +

{<alphabetic characters> | <numeric characters>| @ | #| _(underscore)} +

Used in: Job names

{<alphabetic characters>| (underscore)} {<alphabetic characters>| (underscore)} |
<numeric characters)} *

Used in: Environment variable file definition names, environment variable names, and
extended script commands

A character string that conforms to the path naming conventions of UNIX or Windows
A path name consisting of permitted characters other than the path separator
{<alphabetic characters> | <numeric characters> | - (hyphen)} +

A string of characters consisting of any combination of alphabetic characters. Note the
following:
¢ JP1/Advanced Shell does not check the character type.
* Character strings with a meaning appropriate for the location where they are used must
be specified.

* We recommend that you use characters in the range permitted for the symbolic name in
which they are used.

A character string consisting exclusively of characters in the ASCII character set, other than
ASCII control characters (a character string in the range from 0x20 to 0x7E)

m Conventions: Abbreviations

Abbreviations for product names

This manual uses the following abbreviations for product names:

Abbreviation

JP1/Advanced Shell

JP1/AJS JP1/AJS3

Full name or meaning

JP1/Advanced Shell

JP1/Advanced Shell - Developer

JP1/Automatic Job Management System 3 - Agent
JP1/Automatic Job Management System 3 - Manager

JP1/Automatic Job Management System 3 - View

JP1/AJS - Agent

JP1/AIJS - Definition
Assistant

JP1/AJS - Manager
JP1/AJS - View

JP1/IM

UNIX

JP1/AJS3 - Agent

JP1/AJS3 - Definition Assistant

JP1/AJS3 - Manager
JP1/AJS3 - View
JP1/IM - Manager

JP1/IM - View

Linux CentOS 6

JP1/Automatic Job Management System 3 - Agent

JP1/Automatic Job Management System 3 - Definition Assistant

JP1/Automatic Job Management System 3 - Manager
JP1/Automatic Job Management System 3 - View
JP1/Integrated Management - Manager
JP1/Integrated Management - View

CentOS 6

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Abbreviation

UNIX Linux CentOS 7
Oracle Linux 6
Oracle Linux 7
RHEL 6
RHEL 7
SUSE Linux 12

AIX

HP-UX

Solaris

Abbreviations for Microsoft product name

Full name or meaning

CentOS 7

Oracle Linux™ Operating System 6 (x64)

Oracle Linux” Operating System 7

Red Hat Enterprise Linux® Server 6 (64-bit x86_64)
Red Hat Enterprise Linux” Server 7 (64-bit x86_64)
SUSE Linux® Enterprise Server 12

AIX V6.1

AIX V7.1

AIX V7.2

HP-UX 11i V3 (IPF)

Solaris 10 (SPARC)

Solaris 11 (SPARC)

This manual uses the following abbreviations for Microsoft product names:

Full name or meaning

Microsoft® Windows Server® 2016 Standard
Microsoft™ Windows Server” 2016 Datacenter
Microsoft® Windows Server® 2012 Standard
Microsoft® Windows Server® 2012 Datacenter
Microsoft® Windows Server™ 2012 R2 Standard
Microsoft® Windows Server® 2012 R2 Datacenter
Microsoft® Windows Server® 2008 R2 Datacenter
Microsoft” Windows Server” 2008 R2 Enterprise
Microsoft” Windows Server” 2008 R2 Standard
Windows® 10 Home 32-bit version

Windows” 10 Pro 32-bit version

Windows" 10 Enterprise 32-bit version
Windows® 10 Home 64-bit version

Windows® 10 Pro 64-bit version

Windows® 10 Enterprise 64-bit version
Windows" 8.1 32-bit version

Windows® 8.1 Pro 32-bit version

Abbreviation

Windows Server 2016 Windows Server”

Windows Server 2012

Windows Server 2008

Windows 10 Windows"

Windows 8

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Full name or meaning Abbreviation
Windows" 8.1 Enterprise 32-bit version Windows 8 Windows”
Windows" 8.1 64-bit version

Windows® 8.1 Pro 64-bit version

Windows” 8.1 Enterprise 64-bit version

Windows" 8 32-bit version

Windows” 8 Pro 32-bit version

Windows" 8 Enterprise 32-bit version

Windows" 8 64-bit version

Windows® 8 Pro 64-bit version

Windows" 8 Enterprise 64-bit version

Microsoft” Windows” 7 Enterprise Windows 7
Microsoft” Windows" 7 Professional

Microsoft® Windows® 7 Ultimate

Microsoft” Excel Excel

Microsoft® Office Excel

#: Windows Server and Windows are sometimes referred to collectively as Windows.

m Conventions: Directory names

This manual uses the term directory wherever possible as a generic term for what Windows calls a folder and UNIX
calls a directory.

In connection with this convention, this manual uses / as the directory delimiter. In Windows-specific cases, \ is used
as the folder delimiter.

m Conventions: The JP1/Advanced Shell installation folder in Windows

In this manual, installation folder refers to the folder in which JP1/Advanced Shell has been installed, unless otherwise
stated. The following shows the installation folder when the product is installed with the default settings.

x86 environment:
system-drive: \Program Files\Hitachi\JP1AS

x64 environment:
system-drive: \Program Files (x86) \Hitachi\JP1AS

m Conventions: Administrators permissions

This manual uses the term Administrators permissions to refer to the Administrators permissions for a local PC. The
actions of a user who has Administrators permissions for a local PC are no different from those for a local user or
domain user, or for a user working in an Active Directory environment.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 10

m Conventions: Common application data folder

The following shows the common application data folder used in this manual.

system drive:\ProgramData

m Conventions: Shared documents folder

The following shows the shared documents folder used in this manual.

system drive:\Users\Public\Documents

m Conventions: Windows menu names used in the manual

The Windows menu names used in this manual assume that you are using one of the following OSs:
Windows 7, Windows Server 2008

In Windows Server 2016, Windows 10, Windows 8, or Windows Server 2012, no Start menu is displayed. Instead,
you must use the Start window, which can be opened from the lower left corner of the window.

m Conventions: KB, MB, GB, and TB

This manual uses the following conventions:

* 1 KB (kilobyte) is 1,024 bytes.
1 MB (megabyte) is 1,0242 bytes
* 1 GB (gigabyte) is 1,024° bytes.
* 1 TB (terabyte) is 1,024* bytes.

m Related publications

This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

Guides related to JP1/Advanced Shell

e JPI1 Version 11 Job Management: Getting Started (Scripting Language) (3021-3-B31(E))
JP1/AJS

e JP1 Version 11 Job Management: Getting Started (Job Scheduler) (3021-3-B11(E))

e JP1 Version 11 JP1/Automatic Job Management System 3 System Design (Configuration) Guide (3021-3-
B13(E))

e JP1 Version 11 JP1/Automatic Job Management System 3 Configuration Guide (3021-3-B15(E))
e JPI1 Version 11 JP1/Automatic Job Management System 3 Troubleshooting (3021-3-B17(E))
e JP1 Version 11 JP1/Automatic Job Management System 3 Operator's Guide (3021-3-B18(E))
e JP1 Version 11 JP1/Automatic Job Management System 3 Command Reference (3021-3-B19(E))

e JP1 Version 11 JP1/Automatic Job Management System 3 - Definition Assistant Description, Operator's Guide
and Reference (3021-3-B25(E))

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 11

Job Management Partner 1/Software Distribution

¢ Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Description and
Planning Guide (3020-3-S79(E)), for Windows systems

¢ Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Administrator's Guide
Volume 1 (3020-3-S81(E)), for Windows systems

* Job Management Partner 1 Version 8 Job Management Partner 1/Software Distribution SubManager (3020-3-
L42(E)), for UNIX systems

JP1/Base
e JP1 Version 11 JP1/Base User's Guide (3021-3-A01(E))
JP1/IM
e JP1 Version 11 JP1/Integrated Management - Manager Configuration Guide (3021-3-A08(E))
e JP1 Version 11 JP1/Integrated Management - Manager Administration Guide (3021-3-A09(E))
uCosminexus Application Server
* uCosminexus Application Server Expansion Guide (3020-3-Y08(E))
* uCosminexus Application Server Command Reference Guide (3020-3-Y15(E))

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 12

Notices 2
Summary of amendments 3
Preface 4

Part 1: Overview

Overview of JP1/Advanced Shell 29
Purposes of JP1/Advanced Shell 30

Inheriting assets between the OSs of batch applications 30

Expediting the configuration of batch applications 30

Improving serviceability and maintainability by central management of batch job execution results 31
1.2 Example of application to a business operation 33
1.3 General procedures 34
1.3.1 Procedure for executing batch jobs automatically (working with JP1/AJS) 35

1.3.2 Flow of processes when executing Java batch applications by using a function of JP1/Advanced
Shell [only for Windows, Linux(R), AlX, and HP-UX] 36

1.3.3 Procedure for using the user-reply functionality 37

1.3.4 Flow of processes when using the application-execution agent functionality 38
14 Overview of operation in a cluster system 41

1.5 Overview of functionality 43

Part 2: Setup

2 Preparations for Using JP1/Advanced Shell 48

2.1 Program installation directory 49

Installation folder (Windows only) 49
Installation directory (UNIX only) 53
Evaluations prior to installation 56

System configuration 56

Programs required in each environment 59
Files used in JP1/Advanced Shell 62
Encoding used in JP1/Advanced Shell 65
Local time settings 65

Notes about standard input 66

Using hard links and symbolic links 66
Installing and uninstalling (Windows only) 70
Installing JP1/Advanced Shell (Windows only) 70

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Uninstalling JP1/Advanced Shell (Windows only) 72

Installing JP1/Advanced Shell - Custom Job 72

Uninstalling JP1/Advanced Shell - Custom Job 74

Installing and uninstalling (UNIX only) 75

Installing JP1/Advanced Shell (UNIX only) 75

Uninstalling JP1/Advanced Shell (UNIX only) 78

Using Hitachi Program Product Installer to display version information (UNIX only) 81
Specifying environment variables 82

Specifying environment information for JP1/Advanced Shell 87

Specifying the environment files 87

Converting path names 89

Converting file paths when files are input and output 92

Converting arguments during command execution 94

Defining files to be started as child jobs 95

Specifying definitions for using UNIX-compatible commands 96

Defining the handling of unsupported conditional expressions (Windows only) 97
Defining job execution results and log output information 97

Defining the return codes of extended script commands 105

Sharing among multiple environments 105

Enabling coverage information collection without having to specify the option during batch job
execution 105

Migrating job definition scripts from UNIX to Windows 106

Loading the files specified in the ENV shell variable 108

Defining the process that will be executing the last command in a pipe 108
Defining the return code in the event of an unresumable errorin a job 108
Setting up the user-reply functionality 117

Checking the JP1 environment (UNIX only) 117

Setting up the shell (UNIX only) 117

Creating the directories required for JP1/Advanced Shell 117

Setting up a JP1/AJS environment 119

Performing user-specific postprocessing when a job is terminated forcibly 120
Preparation for using script development parts 121

Running the initialization script file 122

Specifying environment information for JP1/AJS (applicable when JP1/AJS is used) 126

Registering custom jobs in JP1/AJS - View 126

Defining and executing a jobnet 129

Defining jobs as PC or UNIX jobs 140

Setting up the user-reply functionality 146

Specifying the environment files to use the user-reply functionality 146

Setting up the user-reply functionality after JP1/Advanced Shell has been installed (Windows only)147
Setting up the user-reply functionality after JP1/Advanced Shell has been installed (UNIX only) 150
Specifying environment information in JP1/IM - Manager 154

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

2.8.5 Specifying environment information in JP1/Base 155

29 Running in a cluster configuration 156

2.9.1 Prerequisites and scope of support for cluster operations 156

29.2 Specifying environment information for cluster operation 158

293 How to specify commands during cluster operation 163

294 Notes about cluster operation 164

2.9.5 Settings for running a logical host in a non-cluster environment 165

210 Installing the HTML manual 171

21 Setting the application-execution agent functionality [only for the Windows execution environment]172

212 Setting the file mode creation mask used when execution of a job definition script starts [for UNIX
only] 173

213 Required memory amount and occupied disk amount 174
2.13.1 Virtual memory requirements 174

2.13.2 Disk space requirements 175

2.14 Note on running antivirus software 180

Part 3: Operation

3 Executing Batch Jobs 181
3.1 Structure of jobs 182

Operator's tasks in JP1/AJS jobs 182

Jobs 182

Job steps 187

Starting batch jobs 192

Starting jobs by using JP1/AJS from the execution environment 192

Starting batch jobs by using commands from the execution environment 195
Running job definition scripts as child jobs 196

Specifying what is to be executed by a job from the command line 200

Job controller processing after batch jobs have started 202

Executing Java batch applications by using the adshjava command provided by JP1/Advanced
Shell [only for Windows, Linux, AIX, and HP-UX] 203

Outputting job execution results 204

Specifying the destinations of the standard output and the standard error output 204
Outputting job execution results to spool 205

Suppressing output of specific information messages to job execution logs 210
Suppressing output of information and warning messages to job execution logs 210
Job execution log 213

Outputting the contents of the job execution log by job type 213

Output example of the job execution log (when the spool job of a child job is merged to the spool
job of the root job) 220

Examples of job execution log output(if you delete the spool job of a child job) 231

Examples of job execution log output (when the simple output mode or the minimum output mode
is selected) 238

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Examples of job execution log output (when only the standard error output is output) 240
Outputting the executed commands and their arguments 243

Outputting job definition script operation information 245

Collecting job definition script operation information 245

Outputting job definition script operation information 246

Relationship between dates and times and time zones in the operation information 247
Using multiple OR conditions for output of job definition script operation information 247
Outputting job definition script operation information from different spools 248

Format of operation information 248

Operation information records in CSV format and output items 249

Output items for operation information in CSV format 252

Job definition script operation information that is output 257

Using the user-reply functionality 258

Prerequisites 258

Execution method 258

Relationship with JP1/IM - View 258

How to specify the standard input and output as the input source and output destination of the
user-reply functionality 259

How to handle adshecho and adshread commands that terminate with an error 260
Notes 261

Deleting spool jobs 263

Acquiring coverage information 265

Overview of coverage information 265

Managing coverage information 266

Accumulating coverage information 270

Displaying coverage information 272

Merging coverage information 285

Coverage auto-acquisition functionality 285

Forcibly terminating jobs 287

How to forcibly terminate jobs 287

Processing when signals are received (UNIX only) 289

Job processing during forced termination (Windows only) 293
Using the application-execution agent functionality (only for the Windows execution environment) 296
Prerequisites 296

Execution methods 296

Operation of the application execution agent 297

Notes 298

Specifying a spool job name 299

Examples 299

Notes 300

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Using JP1/Advanced Shell - Developer (Windows Only) 301
Starting and terminating JP1/Advanced Shell - Developer (Windows only) 302

Starting JP1/Advanced Shell - Developer 302

Terminating JP1/Advanced Shell - Developer 302

JP1/Advanced Shell Editor modes (Windows only) 303

Edit mode 303

Debug mode 303

JP1/Advanced Shell Editor operation (Windows only) 304
JP1/Advanced Shell Editor window 305

Menus in the JP1/Advanced Shell Editor window 307

Mouse and key operations in the JP1/Advanced Shell Editor window
Creating job definition scripts (Windows only) 312

Creating job definition scripts 312

Setting up an operating environment for the editor 312

Setting up an execution environment for job definition scripts 313
Checking syntax 314

Searching for and replacing character strings 315

Debugging 318

Displaying coverage information 329

Editing existing job definition scripts (Windows only) 330

Saving job definition scripts (Windows only) 331

Details of the JP1/Advanced Shell Editor window (Windows only) 332
Options (Format) dialog box 332

Options (Colors) dialog box 333

Runtime Environment Settings dialog box 335

Search dialog box 338

Message output window 339

Variable window 340

Console 341

Creating Job Definition Scripts 343

Basic elements of job definition scripts 344

Reserved words 344

Variables 344

Arrays 353

Functions 365

Command alias definitions 371
Metacharacters 371

Execution as a separate process 388
Pattern matching 392

Escape characters 392

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Specifying extended script commands 394

Specifying external commands 394

Specifying UNIX-compatible commands 398

Specifying a shell for running job definition scripts and checking formats 399
Conditionals 400

Control statements 400

Conditional expressions 401

Arithmetic operations 408

Arithmetic operators 408

Increment and decrement operators 409

Bitwise logical operators 409

Assignment operators 409

Priority of conditional and arithmetic operations 411

Shell variables 412

Shell variables set by JP1/Advanced Shell 412

Shell variables whose values are set by the user 414

Function information arrays 415

Shell variable in which to set the return code of an external command [Windows only] 419
Shell options 421

Shell options that can be specified with the set command 421

Shell options that can be specified with the adshexec command 423
Environment variables for job information 424

Defining jobs, job steps, and commands 425

Declaring job names 425

Defining the job end condition 425

Defining job steps 426

Defining commands that terminate normally 432

Defining shell variables that handle path names 434

Calling an external job definition script file from an executing job definition script
Return codes of extended script commands and handling of errors 439
Return codes of jobs, job steps, and commands 441

Job cancellation by the standard shell commands 446

Processing in the event of an error during job execution 447

Notes about output of command execution results 451

Allocating files and performing postprocessing 454

Allocating regular files and performing postprocessing 454

Allocating temporary files and performing postprocessing 464
Allocating program output data files and performing postprocessing 466
Converting the value of a shell variable 470

Conversion using a path conversion rule 470

Conversion using a character string 470

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Increase of \ 471
Code conversion of the value of a variable 471
Example coding of a job definition script file 472

Debugging Job Definition Scripts 474
About the debugger 475

Debugging with the GUI (Windows only) 475

Debugging with the CUI (UNIX only) 477

List of functions of the GUI debugger (Windows only) 479

List of debugger commands (UNIX only) 480

Whether execution can be stopped at the elements of a job definition script 483
CUI debugger (UNIX only) 486

Terminating the debugger (quit command) 486

Running the job definition script (run command) 487

Terminating the job definition script (kill command) 487

Setting a breakpoint (break command) 488

Setting a watchpoint (watch command) 490

Deleting breakpoints and watchpoints (delete command) 492

Commands for restarting execution of the job definition script 493

Performing sequential execution (step and next commands) 494

Performing continuous execution (continue command) 496

Executing a function (finish command) 497

Terminating a function (return command) 498

Sending a signal (signal command) 499

Displaying breakpoint and watchpoint information (info breakpoints command) 500
Displaying coverage information (info coverage command) 501

Displaying function information (info functions command) 502

Displaying job step information (info jobsteps command) 503

Displays the information of the variable name handling the path (info pathvars command)

Displaying signal information (info signals command) 504

Displaying the status (info status command) 505

Displaying shell variable information (info variables command) 506
Enabling and disabling the fault injection mode (joberrmode command) 507
Setting a variable value (set command) 512

Displaying a variable's value (print command) 514

Displaying a backtrace (where command) 514

Displaying the source file (list command) 516

Changing the directory (cd command) 517

Starting the login shell (exec command) 518

Displaying Help (help command) 518

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Part 4: Reference

7
7.1

7.1.1
7.1.2
7.2

7.21
7.2.2
7.2.3
7.3

7.31

7.3.2

7.3.3
7.3.4
7.3.5

7.3.6

7.3.7

7.3.8

7.3.9
7.3.10

7.3.11

7.3.12

7.3.13

7.3.14

7.3.15

7.3.16

7.317

7.3.18
7.3.19
7.3.20

Parameters Specified in the Environment Files 520
Specification format of environment files 521

Formats of parameters 521

Specification format of comments 522

Lists of parameters 523

List of environment setting parameters 523

export parameter 528

Conditional parameters 529

Environment setting parameters 535

ADSHCMD_RC_ERROR parameter (defines the return code to be used when an extended script
command fails) 535

ADSHCMD_RC_SUCCESS parameter (defines the return code to be used when an extended
script command is successful) 535

ASC_FILE parameter (defines a naming rule for accumulation files) 536
BATCH_CVR parameter (enables the coverage auto-acquisition functionality) 537

CHILDJOB_EXT parameter (defines an extension for job definition script files that are to be
executed as child jobs) 537

CHILDJOB_PGM parameter (defines a program path specification that is to be executed as
descendent jobs) 538

CHILDJOB_SHEBANG parameter (defines an executable program path for job definition script
files that are to be executed as child jobs) 541

CMDRC_CMDGRP_CHECK parameter (determines an error of job and job step according to
the return code of the function) 543

CMDRC_THRESHOLD_ DEFINE parameter (defines a return code threshold for a command) 543
CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a
UNIX-compatible command) 546

CMDSUB_PROCESS parameter (defines the execution process of command substitution) [only
for Windows] 548

COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition
scripts during command execution) 549

COMPATIBLE_CMD_EXEC parameter (defines the activation method of an external command)
[only for Windows] 552

COMPATIBLE_CMDSUB parameter (defines the behavior of command substitution) [only for
UNIX] 553

ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when
the escape-character option is omitted) 554

ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in
hexadecimal notation are to be interpreted as escape characters) 555

EVENT_COLLECT parameter (specifies whether the operation information acquisition
functionality is to be enabled for job definition scripts) 556

export parameter (defines an environment variable) 557

INIT SCRIPT READ parameter (defines whether the initialization script file is to be read and run) 559

HOSTNAME_JP1IM_MANAGER parameter (specifies the operation management server on
which JP1/IM - Manager is running that is to be the destination of JP1 events) 559

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 20

7.3.21

7.3.22

7.3.23
7.3.24

7.3.25

7.3.26

7.3.27

7.3.28

7.3.29
7.3.30
7.3.31

7.3.32
7.3.33
7.3.34
7.3.35
7.3.36

7.3.37

7.3.38
7.3.39
7.3.40
7.3.41
7.3.42
7.3.43
7.3.44
7.3.45
7.3.46
7.3.47

7.3.48

7.3.49

7.3.50

7.3.51

JOBEXECLOG_PRINT parameter (defines the job execution log contents to be output to the
standard error output when a job terminates) 560

JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job
execution logs) 562

KSH_ENV_READ parameter (defines whether the ENV shell variable is to be read) 563

LOG_DIR parameter (defines the path name of the directory to which system execution logs are
to be output) 564

LOG_FILE_CNT parameter (defines the number of files to be used to back up system execution
logs) 565

LOG_FILE_SIZE parameter (defines the size of a file to which system execution logs are to be
output) 565

OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of
a child job) 566

OUTPUT_MODE_ROOT parameter (specifies the method for outputting the execution results
of aroot job) 567

OUTPUT_STDOUT parameter (defines the destination for the root job standard output) 569
PATH_CONYV parameter (defines the details of path conversion) 569

PATH_CONV_ACCESS parameter (defines path conversion details when files are input and
output) 571

PATH_CONV_ENABLE parameter (enables the path conversion functionality) 572
PATH_CONV_NOVAR parameter (defines the shell variable that does not handle the path name) 573
PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only) 574
PATH_CONV_VAR parameter (defines the shell variable that handles the path name) 580

PERMISSION_SPOOLJOB_DIR parameter (defines permission for the spool job directory)
(UNIX only) 582

PERMISSION_SPOOLJOB_FILE parameter (defines permission for the files under the spool
job directory) (UNIX only) 582

PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe) 584
SPOOL_DIR parameter (defines the spool root directory path name) 586
SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job is to be handled) 587
SPOOLJOB_CREATE parameter (selects whether a spool job is to be created) 589
TEMP_FILE_DIR parameter (defines the path name of the directory for storing temporary files) 590
TRACE_DIR parameter (defines the path name of the directory to which traces are to be output) 590
TRACE_FILE_CNT parameter (defines the number of files to which traces are to be output) 591
TRACE_FILE_SIZE parameter (defines the size of a file to which traces are output) 592
TRACE_LEVEL parameter (defines a trace output level) 593

TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced
termination request is received) 593

UMASK INHERIT parameter (defines a file mode creation mask when the job definition script
begins to run) [only for UNIX] 595

UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression)
(Windows only) 596

USERREPLY_DEBUG_DESTINATION parameter (specifies the input source and the
destination of event notification and reply-request messages during debug execution) 597

USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1
events are to be issued) 598

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 21

7.3.52 USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum number of concurrent
reply-request messages that can be output for a physical or logical host) 598

7.3.53 VAR_ENV_NAME_LOWERCASE parameter (specifies whether environment variable names in
lowercase letters are supported) (Windows only) 599

7.3.54 VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used) 601

7.3.55 VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of variable values that
are replaced in format ${#variable}) 603

7.4 Conditional parameters 605

741 Ihost_start and lhost_end parameters (define a set of parameters applicable only to a specified
logical host) 605

7.4.2 phost_startand phost_end parameters (define a set of parameters applicable only to the physical
host) 606

8 Commands Used During Operations 607

8.1 Command description format 608

8.1.1 Command description format for shell operation commands and UNIX-compatible command
(script format) (Windows only) 608

8.1.2 Command description format for UNIX-compatible commands 608

8.1.3 File path names 610

8.2 List of commands 611

8.21 List of shell operation commands 611

8.2.2 List of UNIX-compatible commands 612

8.3 Shell operation commands 618

8.3.1 adshappagent command (application execution agent start command) [only for Windows
execution environment] 618

8.3.2 adshappexec command (GUI application execution command) [only for Windows execution
environment] 620

8.3.3 adshchmsg command (replies manually to a reply-request message when a failure occurs) 623

8.3.4 adshcvmerg command (merges coverage information) 625

8.3.5 adshcvshow command (displays coverage information) 626

8.3.6 adshevtout command (outputs job definition script operation information) 629

8.3.7 adshexec command (executes a batch job) 637

8.3.8 adshfile command (specifies the allocation and postprocessing of regular files) 642

8.3.9 adshhk command (deletes spool jobs) 645

8.3.10 adshjava command (executes Java batch applications) [only for Windows, Linux, AlX, and HP-UX]647

8.3.11 adshlsmsg command (displays a list of reply-request messages when a failure occurs) 652

8.3.12 adshmdctl command (starts and stops the user-reply functionality management daemon) (UNIX
only) 653

8.3.13 adshmsvcd command (registers the user-reply functionality management service in a
development environment) (Windows only) 655

8.3.14 adshmsvce command (registers the user-reply functionality management service in an execution
environment) (Windows only) 656

8.4 UNIX-compatible commands 657

8.4.1 awk command (performs text processing and pattern matching) 658

8.4.2 basename command (extracts a file name from a path) 683

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 22

8.4.3
8.44
8.45
8.4.6
8.4.7
8.4.8
8.4.9
8.4.10
8.4.11
8.4.12
8.4.13
8.4.14
8.4.15
8.4.16
8.4.17
8.4.18
8.4.19
8.4.20
8.4.21
8.4.22
8.4.23
8.4.24
8.4.25

8.4.26
8.4.27
8.4.28
8.4.29
8.4.30
8.4.31
8.4.32
8.4.33
8.4.34

8.4.35
8.4.36

8.4.37
8.4.38
8.4.39
8.4.40
8.4.41

cat command (outputs files to the standard output) 685

cmp command (compares binary files) 688

cp command (copies files or directories) 691

cut command (outputs selected parts of lines to the standard output) 693
date command (displays the system date and time) 696

diff command (compares two files) 708

dirname command (retrieves character strings for directory path names from path names) 720
egrep command (searches for characters in files) 722

expand command (replaces tab characters with spaces) 725

expr command (evaluates an expression) 729

find command (searches for files in directories) 732

getopt command (analyzes command line options) 743

grep command (searches for characters in files) 747

gunzip command (decompresses compressed files) 753

gzip command (compresses files or decompresses compressed files) 760
head command (displays the first part of files) 781

hostname command (displays the host name) 782

In command (creates a link file for a file or directory) 783

Is command (lists the contents of files or directories) 790

mkdir command (creates directories) 803

mv command (moves files or directories) 805

paste command (concatenates multiple files in lines) 807

printf command (converts form arguments according to the form and outputs the results to
the standard output) 816

rm command (removes files or directories) 821

rmdir command (removes empty directories) 822

sed command (replaces character strings in text) 823

sleep command (stops for a specified period of time) 837

sort command (sorts text files) 837

split command (splits a file) 847

stat command (outputs the statuses of files and directories to the standard output) 850
tail command (displays the last part of files) 857

tar command (stores the target path name in the archive and extracts/displays the target path
name) 861

touch command (changes a file's last access date and time or modification date and time) 872

tr command (outputs character strings input from the standard input to the standard output while
replacing or deleting characters on a byte-by-byte basis) 878

uname command (displays information about the OS or hardware) 882

unig command (removes duplicated lines from a sorted file) 886

wc command (counts the number of bytes, lines, characters, and words in files) 888
which command (obtains the paths of external commands) 890

xargs command (creates and runs a command line) 893

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

23

UNIX-compatible commands (script format) (Windows only) 902

chmod command (disables the chmod commands specified in job definition scripts) 902
chmod command (changes the file read-only attribute setting (enable or disable)) 903
chmod command (specifies permissions as numeric values) 905

chmod command (specifies permissions as symbols or numeric values) 907

su command (disables the su commands specified in job definition scripts) 911

su command (executes programs with the permissions of the executing user) 912

who command (disables the who commands specified in job definition scripts) 913

who command (outputs login user information to logs) 914

Job Definition Script Commands and Control Statements 915
Command and control statement description formats 916

Standard shell command description format 917

Extended shell command description format 918

Extended script command description format 918

Script control statement description format 920

Reserved script command description format 920

Lists of commands and control statements 921

List of standard shell commands 921

List of extended shell commands 922

List of extended script commands 923

List of script control statements 923

List of reserved script commands 924

Standard shell commands 925

. command (executes a shell script) 925

: command (expands arguments) 926

alias command (defines aliases) 928

break command (exits from a loop) 929

builtin command (executes a built-in command) 930

cd command (changes the current directory) 931

command command (executes a command) 932

continue command (interrupts loop processing and returns to the beginning of the loop) 934
echo command (outputs what is specified in arguments to the standard output) 935
eval command (concatenates arguments into a command and executes it) 938

exec command (executes a command and exits) 939

exit command (exits the shell) 940

export command (exports shell variables) 941

false command (returns 1 as the return code) 943

getopts command (parses option arguments) 943

kill command (sends a signal) 945

let command (evaluates the values of arithmetic expressions) 946
print command (outputs to the standard output) 948

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

9.3.19
9.3.20
9.3.21
9.3.22
9.3.23
9.3.24
9.3.25
9.3.26
9.3.27
9.3.28
9.3.29
9.3.30
9.3.31
9.3.32
9.3.33
9.3.34
9.3.35
9.4
9.4.1

9.4.2

9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.5
9.5.1
9.56.2
9.5.3
9.54
9.56.5
9.5.6
9.5.7

9.5.8

pwd command (outputs the path of the current directory) 949

read command (reads from the standard input and stores the input in variables) 950

readonly command (sets the read-only attribute for variables or displays all read-only variables) 952
return command (returns from a function or an external script) 953

set command (sets shell options, creates an array, or displays variable values) 954

shift command (shifts the run-time parameters) 957

test command (determines the value of a conditional expression) 958

times command (displays the amount of CPU time used by the shell) 959

trap command (specifies the action when signals and forced termination requests are received) 960
true command (returns O as the return code) 965

typeset command (declares explicitly the attributes and values of variables and functions) 966
ulimit command (sets limits on system resources) (UNIX only) 970

umask command (sets the access permissions for creating a new file) (UNIX only) 972

unalias command (removes alias definitions) 974

unset command (unsets variable values and attributes) 975

wait command (waits for child processes to complete) 976

whence command (displays how character strings would be interpreted if used as commands) 977
Extended shell commands 979

adshappexec command (GUI application executable command) (only for Windows execution
environment) 979

adshappexec command (GUI application execution command) [only for Windows development
environment] 979

adshcmdrc command (defining the return code threshold of a command) 982

adshecho command (issues a specified event notification message as a JP1 event) 984
adshjoberr command (reports an error to a job and job step) 986

adshmktemp command (creates a file for which the file name is not duplicated) 987
adshparsecsv command (analyzing CSV data) 989

adshparsejson command (analyzes JSON data) 990

adshread command (issues a specified reply-request message as a reply-waiting event) 992
adshscripttool command (supports creation of job definition scripts) (Windows only) 995
adshvarconv command (converts the value of a variable) 1003

Extended script commands 1009

#-adsh_file command (specifies assignment and postprocessing of regular files) 1009
#-adsh_file_temp command (assigns and postprocesses a temporary file) 1011
#-adsh_job command (declares a name for a job) 1012

#-adsh_job_stop command (defines termination conditions for a job) 1012
#-adsh_path_var command (defines shell variables for handling path names) 1013
#-adsh_rc_ignore command (defines commands to always terminate normally) 1015

#-adsh_script command (calls an external job definition script file from the job definition script
that is running) 1016

#-adsh_spoolfile command (assigns a program output data file) 1018

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 25

#-adsh step start command, #-adsh step error command, #-adsh step end
command (defines a job step) 1019

Script control statements 1024

case statement (chooses from multiple processing paths) 1024

for statement (repeats the same processing) 1025

if statement (branches conditionally) 1026

until statement (loops until a condition is true) 1027

while statement (loops while a condition is true) 1028

Reserved script commands 1029

time command (displays the time used to execute a command) 1029

Script development parts 1031

Description format of script development parts 1032

List of script development parts 1033

Script development parts 1035

getArrayIndex (gets an index based on the value of array) 1035
isEmptyVar (evaluates to a null variable) 1037

isInitVar (evaluates initialization of variable) 1038

sortArray (sorts array data) 1039

deleteSpace (gets the character string without space) 1040
getStrLen (gets the number of characters of character string) 1041
getStrPos (gets the position of character string) 1042

isLowerStr (evaluates half-width lowercase character of the character string) 1043
isUpperStr (verifies half-width uppercase character of the character string) 1044
isNumericStr (evaluates numeric characters) 1045

cmpDate (compares date) 1046

getCalcDate (gets the calculated date) 1047

getDate (gets the current date) 1049

getDateDiff (gets the number of elapsed days) 1049

getDay (gets day from date) 1050

getHour (gets hour from time) 1051

getMinute (gets minute from time) 1052

getMonth (gets month from date) 1053

getSecond (gets second from time) 1053

getTime (gets the current time) 1054

getWeekday (gets weekday from date) 1055

getYear (gets year from date) 1056

isLeapYear (evaluates to a leap year) 1057

getFileMTime (gets date and time of file and directory) 1058
getFileSize (gets size of file) 1059

isDir (evaluates existence of directory) 1060

isEmptyDir (evaluates existence of contents of directory) 1060

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

10.3.28 isFileOrDir (evaluates existence of File Directory) 1061

10.3.29 isNormalFile (evaluates existence of a regular file) 1062

10.3.30 arrayToCsv (outputs a value of two-dimensional array to CSV data) 1063
10.3.31 convCsvSep (converts the delimiter of CSV data) 1065

10.3.32 csvToArray (stores the two-dimensional array of CSV data) 1066

10.3.33 getCsvColumn (gets a column in consideration of blank line of CSV data) 1067
10.3.34 searchCsvColumn (gets a record with the search for specific column of CSV data) 1069
10.3.35 getJsonValue (gets a value corresponding to the name of JSON data) 1070
10.3.36 getXmlAttrValue (obtains an attribute value of elements of XML data) 1071
10.3.37 getXmiDecl (gets the XML declaration) 1073

10.3.38 getXmlElem (obtains contents of elements of XML data) 1074

Part 5: Troubleshooting

1" Troubleshooting 1077
111 Response procedure 1078

11.1.1 Corrective action when using the user-reply functionality 1078

11.1.2 When the root job terminates before its child jobs terminate 1079

11.2 Information needed when a problem occurs 1080

11.2.1 Logs 1080

11.2.2 Error information 1081

11.2.3 Spool information 1081

11.2.4 User-reply functionality's management daemon information (UNIX only) 1081
11.3 How to collect information 1083

11.3.1 adshcollect command (collects information) 1083

12 Messages 1091
121 Message format 1092

12.11 Message output format 1092

12.1.2 Format of message explanations 1093

12.1.3 Assignment of message numbers 1094

12.2 Message output destinations 1095

12.2.1 Notes about the row numbers that are output in messages 1104
12.3 List of messages 1106

124 Details of errors 1353

12.4.1 Details of errors (Windows) 1353

12.4.2 Details of errors (UNIX) 1354

12.4.3 Details of errors (specific to JP1/Advanced Shell) 1356

12.4.4 Handling Error Information Displayed in the User-Reply Functionality

Appendixes 1361
A Coverage Information That Is Acquired 1362

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

A1 Commands for which coverage information is acquired 1362

A.2 Control statements for which coverage information is acquired 1365

A3 Functions for which coverage information is acquired 1366

A4 Metacharacters for which coverage information is acquired 1367

A.5 Shell variable operations for which coverage information is acquired 1367

B If you start from the job scheduler other than JP1/AJS (only for UNIX) 1368

B.1 Preparation for starting from the job scheduler other than JP1/AJS (only for UNIX) 1368
B.2 SCHEDULER_SELECT parameter (selects the job scheduler to be used) 1369
B.3 Notes on starting from a job scheduler other than JP1/AJS 1370

C Modifications Made in Each Version 1371

C.1 Changes in 11-01 1371

C.2 Changes in 11-00 1371

C.3 Changes in 10-51 1372

C4 Changes in 10-50 1373

C.5 Changes in 10-00-01 1376

C.6 Changes in 10-00 1376

C.7 Changes in 09-51-01 1378

C.8 Changes in 09-51 1379

Cc.9 Changes in 9-50-01 1380

D Glossary 1382

Index 1390

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

Part 1: Overview

Overview of JP1/Advanced Shell

JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. This
chapter describes the purposes of JP1/Advanced Shell, provides an example of its application to a

business operation, explains the overall system configuration and general procedures, and provides
an overview of the product's functions.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

29

1.1 Purposes of JP1/Advanced Shell

JP1/Advanced Shell is a product for improving development productivity and the operational efficiency of batch
applications. It enables you to efficiently create and execute job definition scripts (shell scripts) for batch jobs.

JP1/Advanced Shell has the features described below.

1.1.1 Inheriting assets between the OSs of batch applications

» Using existing assets
You can use shell scripts created in a UNIX environment to develop job definition scripts in a Windows environment.

Because the job definition scripts used in JP1/Advanced Shell employ language specifications that have standard
shell compatibility, it is easy to learn the language and migrate from existing shell scripts.

¢ Cross-platform support
Cross-platform means applicability to multiple OS bases. This feature enables you to use cross-platform functions.

* You can execute job definition scripts developed in a Windows environment in both Windows and UNIX
environments.

* You can use UNIX-compatible commands in both Windows and UNIX environments.

1.1.2 Expediting the configuration of batch applications

* Controlling job execution

JP1/Advanced Shell extends job definition scripts so that you can automate and concisely code processes that are
used repetitiously in batch applications.

You can reduce the volume of coding in job definition scripts and improve readability and maintainability of job
definition scripts by doing the following:

» Specifying job step execution conditions
» Using variables that are valid in job steps
* Outputting error messages and setting return codes when batch jobs terminate with errors

* Inthe event a batch job terminates with an error, automatically terminating child processes forcibly and deleting
temporary files used by the batch job

¢ Using an editor to develop job definition scripts (development environment)

In the development environment, you can use the JP1/Advanced Shell Editor (a dedicated editor with debugging
functions) of the Graphical User Interface (GUI) to develop and debug job definition scripts.

* You can execute job definition scripts in job steps, and set breakpoints.
* You can accumulate coverage information for job definition scripts.

The following figure shows the JP1/Advanced Shell Editor window.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 30

Figure 1-1: JP1/Advanced Shell Editor window
& C:\JP1AS\sample\SAMPLE_JOB.ash - Advanced Shell Editor i
File(F) Edit(E) Debug(D) View(¥) Search(S) Help(H)

NEHde e 3 @ A P 6363 S o &% B (]| 04 4 8

L L | Ll | | L8l 1 | L Variable name and variable value 2 x

#-adsh_job SAMPLE_JOB. S
d
#-adsh_job_stop 8:4

4
#-adsh_file_temp JOBTEMP.

4
#ugRERRRRBRERRRRRRRT
job stepi
nunpRREERERERERERERTY
4
#-adsh_step_start S$1¢
input files.J
#-adsh_file INFILE files\\infileJ
#-adsh_file OUTPUTFILE files\\outfileJ
#-adsh -chk no -normal Keep -abnormal deld

4 v
. . . . (5

Message output 2 x

[
IONFONADODNOVZWN -

Ready Job ID: Position:Line 22 Column 15 | Totallines: 46 |INS |

* Efficient file allocation and postprocessing

You can automate and concisely code processes, such as checking for regular files, and allocating and deleting
temporary files.

* You can automatically allocate temporary files during batch job execution and delete them once the batch job
has terminated.

* You can check for regular files during batch job execution and perform appropriate postprocessing on files
depending on job step or job processing results.

1.1.3 Improving serviceability and maintainability by central management
of batch job execution results

Maintainability of batch applications can be improved by automatically outputting job execution logs in the event of an
error and managing such logs centrally.

In conventional open systems, management of batch job execution results is complicated because the results are not
stored at one central location. JP1/Advanced Shell enables you to collect batch job execution results on a spool as job
execution logs, and to manage them centrally. By using JP1/AJS - View, you can execute batch jobs on a periodic basis
and reference the results by automatically executing job definition scripts.

Each job's execution results are output to a spool job directory under the spool directory. The following figure illustrates
central management of batch job execution results.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 31

Figure 1-2: Central management of batch job execution results

Batch job
execution

JOB1

JOB2

JOB3

Job execution logs

Central management of batch job
execution results using a spool

SPOOL
| Spool job directory

for JoB1

Spool job directory

| for JoB2

Spool job directory

[~ for JOB3

JOBLOG

STDERR

STDOUT

JOBLOG

JOBLOG

User

05

Use JP1/AJS -
View to view
messages.

o Output error
information to the
standard error
output.

After the job is
completed,
output a list of job
execution logs to
the standard
error output.

=

For details about the output contents of the job execution logs, see 3.5 Job execution log.

Lastly, troubleshooting support enables you to handle problems through collection of various types of data, including

job execution logs, system execution logs, and trace logs. For details, see 11. Troubleshooting.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

32

1.2 Example of application to a business operation

You can apply JP1/Advanced Shell to the following type of business operation.

In the case of an operation that involves many transactions in an online system during the daytime and totaling of the
transactions at night, you can develop and execute batch jobs that obtain totals, including sales figures, number of
products sold, and inventory updates. You can also develop and execute batch jobs for obtaining rolling totals, such as
daily, monthly, and term-end processing, as well as batch jobs that have specific purposes and that are used for special
occasions.

The following figure shows an example of JP1/Advanced Shell operation (for obtaining daily operation totals)

Figure 1-3: Example of JP1/Advanced Shell operation (obtaining daily operation totals)

® Start of daily operation

Open
infrastructure

1. Perform product 2. Update.
User transactions. Various
sales data
® End of daily operation JP1/Advanced Shell
4. Import.
Job
JP1/AJS definition
3. Execute scripts
automatically.
5. Output.
<—
6. Obtain
. information
Totaling about the Manager
results business.

To run JP1/Advanced Shell:

1. Start daily operation and perform transactions involving products.
2. The open infrastructure product updates the various sales data.

3. Daily operation ends and JP1/AJS issues instructions to execute job definition scripts automatically at specified
times.

4. JP1/Advanced Shell executes job definition scripts to process the various sales data.
5.JP1/Advanced Shell outputs the execution results of the job definition scripts.

6. The manager can obtain information, including totals and changes in product sales, based on the execution results.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 33

1.3 General procedures

JP1/Advanced Shell consists of the execution environment (JP1/Advanced Shell) and the development environment
(JP1/Advanced Shell - Developer). Job definition scripts created in the development environment are executed in the
execution environment. You can also create job definition scripts in a text editor.

The users of JP1/Advanced Shell are classified as system administrators and general users, based on their system
permissions. The following table explains the roles of these two classes of users.

Table 1-1: Classification of JP1/Advanced Shell users

JP1/Advanced Shell user Role

System administrator This user is responsible for system operations. The superuser permission
must have been assigned to this user beforehand.
The system administrator manages an environment that can run JP1/
Advanced Shell and registers the general users who will use JP1/Advanced

Shell.
General user Developer This user's responsibilities include creation and debugging of job definition
scripts.
Operator This user defines and runs JP1/Advanced Shell, checks the execution results,

and handles JP1/Advanced Shell execution errors, if any.

For details about the operator's tasks when JP1/AJS is used, see 3.1.1
Operator's tasks in JP1/AJS jobs.

The following figure shows the overall system configuration of JP1/Advanced Shell.

Figure 1-4: Overall system configuration of JP1/Advanced Shell

® JP1/Advanced Shell - Developer
(development environment: Windows)

JP1/Advanced Shell
2 Editor

1. Develop. 2. Save.
Developer

Job definition scripts

® JP1/Advanced Shell 3. Transfer.
(execution environment: Windows or UNIX)

Execute
automatically.
JP1/AJS
Job
4. Execute. definition
& l& scripts
Execute 5. Output.

Operator manually.
Results

To use a JP1/Advanced Shell system:

1. In the Windows development environment, the developer uses JP1/Advanced Shell Editor or a text editor to prepare
job definition scripts.
2. The job definition scripts are saved from JP1/Advanced Shell Editor or a text editor.

3. The job definition scripts are transferred to the execution environment.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 34

4. In the execution environment, the operator uses the following methods to send instructions to execute the job
definition scripts:

* Automatic execution using JP1/AJS
* Manual execution from the command prompt and UNIX shell

5. The job definition script execution results output by JP1/Advanced Shell are checked.

1.3.1 Procedure for executing batch jobs automatically (working with JP1/
AJS)

When you use JP1/Advanced Shell to run batch jobs, you can call the execution environment from the job scheduler's
JP1/AIJS so that the batch jobs can execute automatically. JP1/Advanced Shell provides job controller functions that
manage execution of a user's business applications. The following figure shows the positioning of JP1/Advanced Shell
for business applications.

Figure 1-5: Positioning of JP1/Advanced Shell for business applications

JP1/Advanced Shell
JP1/AJS e

Business Created in COBOL

Job scheduler Job controller application or C

I
[}
I
[}
I
1
I
i
1
| ——
i ﬂ HiRDB or Oracle
i
I
I
1
I
I
1
1
1
1
1

Job definition ~ Spool
scripts
(shell scripts)

When you link JP1/Advanced Shell to JP1/AJS, you can register batch job execution schedules for executing batch jobs.

A job definition script containing job definitions is analyzed by the job controller. The job controller controls execution
and termination of batch jobs by allocating and releasing input and output devices and various system resources. JP1/
Advanced Shell achieves central management by executing this job definition script and collecting the execution results
on the spool.

The figure below shows the JP1/Advanced Shell operation procedure. In the figure, the processing performed by
JP1/AJS is identified by the number 3, and the processing performed by JP1/Advanced Shell is identified by the numbers
4 through 6.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 35

Figure 1-6: JP1/Advanced Shell operation procedure (working with JP1/AJS)

JP1/AJS
Job
&ﬁ.l& definition Schedule
scripts information
1. Create job 2. Transfer
definition scripts. the scripts.

3. Start the job controller.

Execution
environment

4. Execute jobs.

Job controller
& l& Analyze the Spool
) job definition scripts.

6.U ds to: 5. Manage
. selcomman s to: ¢ the job Job execution results
» Display coverage execution | (jobs 2, B, ...)
information. Allocate file resources. results. =
¢ Output information a
about the execution ¢

results of the job : :
definition scripts. Execute jobs and job steps.

v

Release file resources.

To run JP1/Advanced Shell:

1. Create job definition scripts.
2. Transfer the job definition scripts to JP1/Advanced Shell's execution environment.
3. The job controller starts according to a schedule registered in JP1/AJS.

4. The job controller executes batch jobs using the procedure shown below according to the contents of a job definition
script created in step 1.

Analyze the job definition script =» Allocate file resources =» Execute jobs and job steps =» Release file resources
5. Collect the batch job execution results on the spool for central management.

6. If necessary, use commands to display coverage information and to output information about the execution results
of the job definition scripts.

1.3.2 Flow of processes when executing Java batch applications by using
a function of JP1/Advanced Shell [only for Windows, Linux(R), AlX,
and HP-UX]

Java batch applications can be executed by using the adshjava command provided by JP1/Advanced Shell. The
following figure shows the flow of processes.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 36

Figure 1-7: Flow of processes when executing Java batch applications by using the adshjava
command provided by JP1/Advanced Shell

Batch application of
Java

JP1/Advanced Shell

1. Specify to the adshjava command the
argument to be specified for the cjexecjob
command and execute the command.

2. Execute the batch application of Java
according to the specified details of the
cjexecjob command.

uCosminexus
Application Server

1. The adshjava command instructs uCosminexus Application Server to execute the Java batch application.

2. uCosminexus Application Server executes the Java batch application according to the instructions supplied by the
adshjava command.

If you use execute a Java batch application using the adshjava command and then forcibly terminate the job, the
adshjava command executes the cjkilljob command for the Java batch application being executed. This
automatically stops the Java batch application.

For details, see 3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced Shell
[only for Windows, Linux, AIX, and HP-UX].

1.3.3 Procedure for using the user-reply functionality

The user-reply functionality enables the following operations to be performed from job definition scripts:

¢ Notifying the operator of batch job information
¢ Enabling the operator to reply to job definition scripts

Linked with JP1/IM, the user-reply functionality issues specified character strings as JP1 events. The following figure
shows the procedure for using the user-reply functionality.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 37

Figure 1-8: Procedure for using the user-reply functionality

3. Display JP1 events
in a window. f
JP1/IM - Manager JP1/IM - View

4. Reply to the reply-

|/| waiting event. JP1 events are
displayed in

the window.

JP1/Base

Operation
management
server

L
t—)

Operation L]
management
console

2. Transfer JP1 events.

JP1/Base

1. Issue the specified
character strings as
JP1 events.

Job
JP1/Advanced Shell

definition
scripts

Batch operation server

To use the user-reply functionality:
1. If a command in which a character string is specified is executed by means of a job definition script, the specified
character string is issued as a JP1 event.
2. The issued JP1 event is transferred by JP1/Base to a specified operation management server.
3. The specified character string is displayed in the JP1/IM - View window.

4. If it's a reply-waiting event, the operator can enter a reply.
The reply entered from the operator is stored in a shell variable specified in the job definition script.

For details, see 3.8 Using the user-reply functionality.

1.3.4 Flow of processes when using the application-execution agent
functionality

The application-execution agent functionality can operate independently from the job controller and perform the
following functions.

* You can execute JP1/AJS jobs to run Excel or original interactive programs created by users in VC++.

<Examples>

1. If you newly start Excel, enter specific information including the date, person in charge, and check boxes for
confirming contents of operation, and close Excel, Excel closes and you can move the file to a specific folder
with the succeeding job.

2. If an original interactive program created by a user in VC++ is executed and then the interactive GUI is ended
by clicking the OK button, the job will continue.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 38

* You can open the GUI window in JP1/AJS and execute programs of other products for which tools for automatic
replies can be used.

<Examples>

1. Specify the program of the other product as well as the arguments of the GUI application execution program of
JP1/AS that was specified in the definition of the PC job for JP1/AJS. (You can also use the custom job of the
application-execution agent functionality.)

2. If you execute the PC job of 1, the GUI window appears in JP1/AJS - Agent, an automatic reply is sent, and the
job ends.

The application-execution agent functionality executes the executable application specified by the user by linking the
application-execution agent program with the GUI application execution program. The following is the flow of processes
when using the application-execution agent functionality:

For details, see 3.12 Using the application-execution agent functionality (only for the Windows execution environment).

(1) When waiting for the executable application to finish [only for the
Windows execution environment]

The following is the flow of processes when waiting for the executable application to finish:

JP1/AJS — Agent and
job definition scripts,
Start etc.

*1 *2

3
Application execution Executable application GUI application execution
program Rleorai
——————————————————— >
4
5 5
-
Log of the application-execution agent functionality]
g

1. Start the application-execution agent program for each running user in advance to start up Windows (1).

2. If you need to run the executable application, specify the -w argument and start the GUI application execution
program (2).

3. The application-execution agent program starts the executable application when the GUI application execution
program starts (3).

4. The GUI application execution program finishes when the executable application finishes (the flow of the dotted
arrows) (4).

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 39

5. The application execution log stores the log when executing the application-execution agent program and GUI
application execution program (5).

(2) When not waiting for the executable application to finish [only for the
Windows execution environment]

The following is the flow of processes when not waiting for the executable application to finish:

JP1/AJS — Agent,
Start job definition script, or
other products

y *2

3
4 >
Application execution Executable GUI application execution
program application program
5 5
-
Log of the application-execution agent functionality]

-

1. Start the application-execution agent program for each running user in advance to start up Windows (1).

2. If youneed to run the executable application, specify the -n argument and start the GUI application execution program
).

3. The application-execution agent program starts the executable application when the GUI application execution
program starts (3).

4. The GUI application execution program finishes when the executable application starts (the flow of the dotted
arrows) (4).

5. The application execution log stores the log when executing the application-execution agent program and GUI
application execution program (5).

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 40

1.4 Overview of operation in a cluster system

A cluster system consists of multiple server systems that are configured in such a manner that if a failure occurs on one
of the servers, applications can continue on another server. In a cluster system, hosts are classified as follows:

¢ Server running applications (active server)

¢ Server on standby that can inherit applications if the active server fails (standby server)

If a failure occurs on the active server that is running applications, the applications can be inherited to the standby server.
The function for inheriting applications in the event of a failure is called system switchover. A logical server that is the
unit of failover during system switchover is called a logical host.

In a cluster system, the applications must be run in a logical host environment so that they can continue their processing
even after system switchover. You can run applications that are to be run on a logical host on any server, regardless of
the physical server being used.

A logical host consists of the components explained below. The applications that are run as daemons or services store
data on the shared disk and use a logical IP address to communicate.

Table 1-2: Components of a logical host
Component of logical host Description of component

Daemon or service Daemons and services are the applications that are run in a cluster system, such as JP1/AJS and
JP1/Advanced Shell. If a failure occurs on the active server's logical host, the daemons or
services with the same names are started on the standby server's logical host.

Shared disk This is a disk unit that is connected to both the active server and the standby server. If this disk
stores the information that is to be inherited during system switchover (such as definition
information and execution status), the standby server inherits the connection to the shared disk
in the event of a failure on the active server's logical host.

Logical IP address This is an IP address allocated while a logical host is running. If a failure occurs on the active
server, the standby server inherits the same logical IP address allocation. This enables the client
to use the same IP address as if the same server is always running.

0 Important

In this manual, a logical server that is the unit of failover during system switchover is called a logical
host. However, some cluster software products and applications use different terms, such as group or
package. Check the appropriate terminology in your system by referencing your cluster software's
documentation.

A logical server that is the unit of failover during system switchover is called a logical host, while the
physical server is called a physical host.

The following figure shows accesses during normal operation and after system switchover.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 41

Figure 1-9: Accesses during normal operation and after system switchover

Active server Standby server
Logical host (running) Logical host (on standby)
mmm e
1
Daemons i Daemons
and services] and services
1
1
Shared I | Shared
disk allocation | [disk allocation

i
1
1
Logical IP address Shared disk i Logical IP address
1

R0

: Accesses during normal operation

Legend:

: Accesses after system switchover

The following explains the figure.

* Accesses during normal operation

While the active server is running, the shared disk and logical IP address are allocated on the active server where
the daemons or services are running.

* Accesses after system switchover

If a failure occurs on the active server, the standby server inherits the shared disk and logical IP address and starts
the same daemons or services that were running on the active server. Even though the physical server has changed
as a result of system switchover, it looks to the client as if the server with the same IP address is running because
the standby server inherits the shared disk and logical IP address.

To run JP1/Advanced Shell in a logical host environment, you must have a shared disk to store the data that needs to
be inherited during system switchover and a logical IP address. If you will be using the user-reply functionality, you
must also set up the cluster software so that it can control the start, stop, and operation monitoring of the user-reply
functionality's management daemon or service.

A JP1/Advanced Shell that is running in a logical host environment can inherit the job execution environment from the
active server to the standby server during system switchover by using data stored on the shared disk. This means that
JP1/Advanced Shell must store the spool on the shared disk. Note that execution of a job that was executing at the time
system switchover occurred does not continue.

For details about the JP1/Advanced Shell settings required for cluster operations, see 2.9 Running in a cluster
configuration.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 42

1.5 Overview of functionality

The following table describes the functionality supported by JP1/Advanced Shell.

Table 1-3: Functionality of JP1/Advanced Shell

Functionality

Defining a job execution environment

Creating job definition scripts according
to the syntax for shell scripts

Using files from job definition scripts

Controlling job execution

1. Overview of JP1/Advanced Shell

Related item

Specifying the environment variables required for job execution

Specifying environment files.

Basic components of job definition scripts

Conditional

Arithmetic operations

Shell variables

Shell options

Regular files

Temporary files

Program output data files

Declaring job names

Defining job end conditions

Section

2.5 Specitying
environment variables

2.6 Specitying
environment information
for JP1/Advanced Shell,
7. Parameters Specified
in the Environment Files

5.1 Basic elements of job
definition scripts

5.2 Conditionals, 5.4
Priority of conditional and
arithmetic operations,

9.6 Script control
statements

5.3 Arithmetic
operations, 5.4 Priority
of conditional and
arithmetic operations

5.1.2 Variables, 5.5
Shell variables

5.6 Shell options

5.9.1 Allocating regular
files and performing
postprocessing, 9.5
Extended script
commands

5.9.2 Allocating
temporary files and
performing
postprocessing, 9.5
Extended script
commands

5.9.3 Allocating program
output data files and
performing
postprocessing, 9.5
Extended script
commands

5.8.1 Declaring job
names, 9.5 Extended
script commands

5.8.2 Defining the job
end condition, 9.5
Extended script
commands

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

43

Functionality

Controlling job execution

Acquiring job information within shell

scripts

Related item

Starting or ending job steps

Specifying a definition so that any command is always treated as
having terminated normally

Defining return codes for extended script commands

Calling external scripts

Starting child jobs

Forcibly terminating jobs

Using shell variables for which a job step return code has been
specified

Using environment variables for which job information has been
specified

Using the editor to create job definition scripts®!

Executing commands

1. Overview of JP1/Advanced Shell

Shell operation commands

UNIX-compatible commands

Section

5.8.3 Defining job steps,
9.5 Extended script
commands

(2) Defining commands
that always terminate
normally, 9.5 Extended
script commands

2.6.9 Defining the return
codes of extended script
commands, 7.3
Environment setting
parameters

5.8.6 Calling an external
job definition script file
from an executing job
definition script, 9.5
Extended script
commands

2.6.5 Defining files to be
started as child jobs, (1)
Root jobs and child jobs,
3.2.3 Running job
definition scripts as child
jobs, 5.1.11 Specifying
external commands, 7.3
Environment setting
parameters

2.6.21 Performing user-
specific postprocessing
when a job is terminated
forcibly, 3.11 Forcibly
terminating jobs, 7.3
Environment setting
parameters

5.5.1 Shell variables set
by JP1/Advanced Shell

2.5 Specitfying
environment variables,
5.7 Environment
variables for job
information

4. Using JP1/Advanced
Shell - Developer
(Windows Only), 5.
Creating Job Definition
Scripts

8.3 Shell operation
commands

2.6.6 Specifying
definitions for using
UNIX-compatible
commands, 8.4 UNIX-
compatible commands,
8.5 UNIX-compatible

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

44

Functionality

Executing commands

Registering custom jobs™

Using the user-reply functionality

Collecting the operation information of
job definition scripts™

Using the same job definition scripts on
different platforms

Deleting spool jobs

Collecting coverage information

1. Overview of JP1/Advanced Shell

Related item

UNIX-compatible commands

Standard shell commands

Extended shell commands

Extended script commands

Script control statements

Reserved script commands

Issuing any character string as a JP1 event

Issuing any character string as a reply-waiting event

Starting the user-reply functionality's management daemon or service

Accumulating the operation information of job definition scripts

Outputting the operation information of job definition scripts

Converting job definition scripts so that they can be used in both
Windows and UNIX

Using the UNIX-compatible commands

Acquiring coverage information

Section

commands (script format)
(Windows only)

9.3 Standard shell
commands

9.4 Extended shell
commands

9.5 Extended script
commands

9.6 Script control
statements

9.7 Reserved script
commands

2.7.1 Registering custom
jobs in JP1/AJS - View

9.4 Extended shell
commands

9.4 Extended shell
commands

8.3 Shell operation
commands

7.3 Environment setting
parameters

8.3 Shell operation
commands

2.6.2 Converting path
names, 2.6.3 Converting
file paths when files are
input and output, 2.6.4
Converting arguments
during command
execution, 2.6.12
Migrating job definition
scripts from UNIX to
Windows, 7.3
Environment setting
parameters

2.6.6 Specifying
definitions for using
UNIX-compatible
commands, 8.4 UNIX-
compatible commands,
8.5 UNIX-compatible
commands (script format)
(Windows only)

3.9 Deleting spool jobs,
8.3 Shell operation
commands

3.10 Acquiring coverage
information, 8.3 Shell
operation commands, A.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

45

Functionality Related item

Collecting coverage information Acquiring coverage information

Displaying coverage information

Merging coverage information

Always enabling acquisition of coverage information

Debugging job definition scripts Using CUI for debugging™

Using GUI for debugging?!

Outputting job execution logs

Using the application-execution agent functionality” ! #2

Troubleshooting Collecting data, such as job execution logs, system execution logs, and
trace logs

Replying to reply-request messages when JP1/IM is not available

#1
Available only in the development environment

1. Overview of JP1/Advanced Shell

Section

Coverage Information
That Is Acquired

3.10 Acquiring coverage
information, 8.3 Shell
operation commands

3.10 Acquiring coverage
information, 8.3 Shell
operation commands

3.10 Acquiring coverage
information, 8.3 Shell
operation commands

6.1.2 Debugging with the
CUI (UNIX only), 6.1.4
List of debugger
commands (UNIX only),
6.1.5 Whether execution
can be stopped at the
elements of a job
definition script, 6.2 CUI
debugger (UNIX only)

4.2.2 Debug mode,
4.4.6 Debugging, 6.1.1
Debugging with the GUI
(Windows only), 6.1.3
List of functions of the
GUI debugger (Windows
only), 6.1.5 Whether
execution can be stopped
at the elements of a job
definition script

1.1.3 Improving
serviceability and
maintainability by central
management of batch job
execution results, 3.5 Job
execution log

2.11 Setting the
application-execution
agent functionality [only
for the Windows
execution environment]

8.3 Shell operation
commands
9.4 Extended shell
commands

11. Troubleshooting
8.3 Shell operation

commands, 11.
Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

46

#2

Available only in the execution environment

#3
Available only in the UNIX edition

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

47

Part 2. Setup

Preparations for Using JP1/Advanced Shell

This chapter discusses the conditions and requirements for using JP1/Advanced Shell, including
the program installation directory, the main programs, prerequisites, installation, environment
information settings, and custom job registration.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 48

2.1 Program installation directory

The program installation directory for JP1/Advanced Shell depends on the OS being used. In a Windows environment,
you can change the default installation directory. In a UNIX environment, the program is installed in a fixed directory.

This section explains the organization of JP1/Advanced Shell's program installation directory and the directories used
to store various files that are output and referenced by JP1/Advanced Shell.

2.1.1 Installation folder (Windows only)

(1) Installation folder

In Windows, you can install JP1/Advanced Shell in any folder. The following folders for the environments are created

under the specified installation folder.

Environment to be installed Installation target Remarks

Execution environment installation-folder\ JP1ASE We recommend that you install this
environment on a server.

Development environment installation-folder\ JP1ASD We recommend that you install this
environment on a client PC.

Custom job definition programs included in the installation-folder\ JP1ASV Install these programs at the operation

execution environment (JP1/Advanced Shell -
Custom Job)

management console on which
JP1/AJS - View is installed.

The organization of the installation folder is shown below. Only folders for the selected environments are created.

Installation folder'!

| =-==JP1ASD

| | -——=bin

| | -—-cmd

| | -——-doc

| \ | -—-en

| \ |---Ja

| | -——maintenance
occurs

| | -—--parts

| \ | -—-en
version) folder

| \ |---Ja
version) folder

| | ———sample

| -——JP1ASE

| | -—-bin

| | -——cmd

| | -——-doc

| \ | -—-en

| \ |---Ja

| | -———maintenance
occurs

| | -——parts

| \ |-—-en
edition) folder

| \ l---Ja
edition) folder

| | -———sample

2. Preparations for Using JP1/Advanced Shell

Development environment folder
Program folder

UNIX-compatible command folder

Help folder

Help (English edition) folder

Help (Japanese edition) folder

Folder used that is used when failure

Script development parts folder
Script development parts (English

Script development parts (Japanese

Sample data folder

Execution environment folder

Program folder

UNIX-compatible command folder

Help folder

Help (English edition) folder

Help (Japanese edition) folder

Folder used that is used when failure

Script development parts folder
Script development parts (English

Script development parts (Japanese

Sample data folder

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 49

| | -—-util--setup.exe : Installer of custom job defining

program
| --=JP1ASV : Custom job defining program folder
| -—=bin : Program folder
| -———doc--ja--help--INDEX.HTM : Help (manual)
| -—-image--custom : Custom job icon folder
\ | -———CUSTOM_PC ADSHPC.gif : Custom job icon for PC job
\ | -—-CUSTOM PC ADSHUX.gif : Custom job icon for UNIX job
\ | -—-CUSTOM_ PC_ ADSHAPPEXEC.gif : Custom job icon for GUI application
execution job#2
| -——maintenance : Folder that is used when failure
occurs
#1:
Do not use any of the following characters in the installation foldername: & [] { } *=; ! '+, ~ ~ # %. The

product will not function normally if it is installed in a folder whose name contains any of these characters.

#2:

If a version of JP1/AJS3 - View that is earlier than 11-00 is installed and the custom job definition program is to be
installed, the custom job icons must be copied to the following folder:

Installation folder of JP1/AJS - View\image\custom

(2) Trace output folder and folder for creating a system environment file

The trace output folder and the folder for creating the system environment files are created under the Common application
data folder.

Common-application-data-folder

| -—-Hitachi--JP1AS--JP1ASD : Development environment folder

| | -——-conf : System environment file storage folder

| |-——-trace : Trace output folder

| |---uxpl : Log folder

| —=———= JP1ASE : Execution environment folder

| |---conf : System environment file storage folder

| |-——trace : Trace output folder

| |-—-uxpl : Log folder

| ————~ JP1ASV : Custom job definition program folder

| |-——-trace : Trace output folder

| ————~ misc : Folder for libraries common to all products
|---trace : Trace output folder
|--—uxpl : Log folder

(3) System execution logs, spool, and temporary files

The folders for system execution logs, spool, and temporary files are created in the shared documents folder.

shared-documents—-folder

| -—-Hitachi--JP1AS--JP1ASD : Development environment folder
| |-—--1log : Folder for system execution logs
| | -——spool : Spool folder
| | ———temp : Folder for temporary files
| —=——= JP1ASE : Execution environment folder
|---log : Folder for system execution logs

|

| | -——appexec: Folder for application-execution
| | agent function log

| | ---spool : Spool folder

| | ———temp : Folder for temporary files

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 50

(4) List of programs

Folder for libraries common to all products

Log folder

The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced

Shell.

Table 2-1: Main programs used in JP1/Advanced Shell (Windows only)

Storage folder

installation-folder
\each-

environment's-
folder""\bin

File name

adshappagent.exe

adshappexec.exe

adshchmsg.exe

adshctmj.exe

adshctmjapp.exe

adshctmjapp.bat

adshctmjpc.bat

adshctmjunix.bat

adshcvmerg.exe

adshcvshow.exe

adshcvview.exe

adshedit.exe

2. Preparations for Using JP1/Advanced Shell

Overview of
program

(icon)

Application-execution
agent program

GUI application
execution program

()

Manual response to
reply-request
messages when an
error occurs

JP1/Advanced Shell
execution definition

program ({[:})

GUI application
execution definition

program (G,;)

GUI application
execution definition
program

JP1/Advanced Shell
execution definition
program for PC jobs

JP1/Advanced Shell
execution definition
program for UNIX
jobs

Merging coverage
information

Displaying coverage
information from
commands

Displaying coverage
information from the
editor

JP1/Advanced Shell

Editor (@)

Description

This is the program that executes the executable application in the
execution environment.

This command registers this program to startup and cancels said
registration.

This is the program that reports to the application-execution agent
program when using the executable application in the execution
environment.

Command that is used to respond manually to reply-request
messages when an error occurs. This command must be used by
a user with Administrators permissions.

Program that defines the JP1/Advanced Shell execution
environment in a custom job definition program.

This is the program that defines the execution environment of the
GUI application with the custom job definition program.

This is the program that defines the execution environment of the
GUI application with the custom job definition program.

Program that defines the JP1/Advanced Shell execution
environment for PC jobs in a custom job definition program.

Program that defines the JP1/Advanced Shell execution
environment for UNIX jobs in a custom job definition program.

Command that merges coverage information. This program can
be used in both environments (execution and development).

Command that displays coverage information. This program can
be used in both environments (execution and development).

Program that displays coverage information. This program
enables coverage information to be displayed from the editor in
the development environment.

Editor used to edit job definition scripts in the development
environment. Double-clicking the icon opens the JP1/Advanced
Shell Editor.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 51

Storage folder File name

installation-folder =~ adshesub.exe

\each-

environment's-

folder'\bin
adshevtout.exe
adshexec.exe
adshexecsub.exe
adshfile.exe
adshhk.exe
adshlsmsg.exe
adshmsvcd.exe
adshmsvce.exe

installation-folder =~ awk.exe,

\each- basename.exe,

environment's- cat.exe, cmp.exe,

folder*!\ cmd cp.exe, cut.exe,
date.exe,
diff.exe,

dirname.exe,
egrep.exe,
expand.exe,
expr.exe,
find.exe,
getopt.exe,
grep.exe,
gunzip.exe,
gzip.exe,
head.exe,
hostname.exe,
In.exe, ls.exe,

mkdir.exe, mv.exe,

paste.exe,
printf.exe,

rm.exe, rmdir.exe,

sed.exe,
sleep.exe,
sort.exe,

2. Preparations for Using JP1/Advanced Shell

Overview of
program
(icon)

Debugging in the
editor

Outputting job
definition script
operation information

Executing batch jobs

Registration of file
postprocessing

Deleting spool jobs

Displaying a list of
reply-request
messages when an
error has occurred

User-reply
functionality's
management service

User-reply
functionality's
management service

UNIX-compatible
commands’?

Description

Program that debugs job definition scripts in the development
environment. This program is started automatically from
adshedit.exe.

In an execution environment, the command that outputs job
definition script operation information to a CSV file.

Command that starts the job controller that analyzes and controls
execution of job definition scripts.

Command that executes batch jobs in the execution environment.
This command is started automatically from adshexec.exe.

Command that defines how a specified file is to be processed when
a job step or job is terminated. This program can be used in both
environments (execution and development).

Command that deletes spool jobs. This command can be used in
both environments (execution and development).

Command that outputs job definition script operation information
to a CSV file in the execution environment.

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
development environment. It must be used by a user with
Administrators permissions.

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
execution environment. It must be used by a user with
Administrators permissions.

Commands that are used mainly in UNIX batch applications but
can also be used in a Windows environment. These commands
can be used in both environments (execution and development).

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 52

Overview of
program
(icon)

Storage folder File name Description

installation-folder = split.exe, UNIX-compatible Commands that are used mainly in UNIX batch applications but

\each- stat.exe, commands*? can also be used in a Windows environment. These commands
environment's- tail.exe, tar.exe, can be used in both environments (execution and development).
folder"\ cmd touch.exe, tr.exe,

uname.exe

uniqg.exe, wc.exe,

which.exe,

xargs.exe
installation-folder =~ adshcollect.bat Collecting data Command that collects troubleshooting data. This program can be

\each- used in both environments (execution and development).
environment's-

folder \maint

enance

#1

each-environment's-folderis JP1ASD for the development environment and JP1ASE for the execution environment
and JP1ASV for the custom job definition program.

#2

The UNIX-compatible commands also include chmod, su, and who. If you will be using any of these three
commands, edit beforehand each of the applicable sample script files provided by JP1/Advanced Shell using the
procedure described in (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

2.1.2 Installation directory (UNIX only)

(1) Installation directory

The UNIX execution environment is installed in a fixed directory (/opt/jplas). There is no development
environment for a UNIX environment.

The organization of the installation directory is as follows:

/opt/jplas
+-bin Program directory
+-cmd UNIX-compatible command directory
+-conf System environment file storage directory
+-instlog Installation log information directory
+-1ib Library directory
+ +-nls Message catalog storage directory
+-log System execution log directory
+-maintenance Directory used when a failure occurs
+-parts Directory for script development parts
| +-en Directory for script development parts
| \ (English version)
| +-ja Directory for script development parts
| (Japanese version)
+-sample Sample data directory
+-sbin Directory for programs of system administrator
+-system Directory the user-reply functionality management

2. Preparations for Using JP1/Advanced Shell

daemon uses

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

53

+-trace

+-util-setup.exe

Trace directory
Installer of custom job definition program

(2) Spool directory and directory for temporary files

The spool directory and the directory for temporary files are created in the following directories:

/var/opt/jplas—--spool
+--—-temp

(3) List of programs

Spool directory
Directory for temporary files

The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced

Shell.

Table 2-2: Main programs used in JP1/Advanced Shell (UNIX only)

Storage
directory

/opt/
jplas/bin

/opt/
jplas/cmd

/opt/jplas/
maintenance

/opt/jplas/
sbin

File name

adshcvmerg

adshcvshow

adshevtout

adshexec

adshfile

adshhk

awk, basename, cat,
cmp, Ccp, cut, date,
diff,dirname,
egrep, expand, expr,
find, getopt, grep,
gunzip, gzip, head,
hostname, 1n, 1s,
mkdir, mv, paste,
printf, rm, rmdir,
sed, sleep, sort,
split, stat, tail,
tar, touch, tr,
uname, uniq, wc,
which, xargs

adshcollect

adshchmsg

2. Preparations for Using JP1/Advanced Shell

Overview of
program

Merging coverage
information

Displaying
coverage
information

Outputting job
definition script
operation
information

Executing batch
jobs

Registration of file
postprocessing

Deleting spool
jobs

UNIX-compatible
commands

Collecting data

Manual response
to reply-request

Description

Command that merges coverage information.

Command that displays coverage information.

Command that outputs job definition script operation information to
a CSV file.

Command that executes batch jobs.

Command that defines how a specified file is to be processed when a
job step or job is terminated.

Command that deletes spool jobs.

UNIX-compatible commands that can be used from job definition
scripts.

Command that collects troubleshooting data.

Command that is used to respond manually to reply-request messages
when an error occurs. This command must be used by a user with the
superuser permissions.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 54

Storage File name
directory

/opt/jplas/ adshchmsg
sbin

adshlsmsg

adshmdctl

2. Preparations for Using JP1/Advanced Shell

Overview of
program

messages when an
error occurs

Displaying a list of
reply-request

messages when an
error has occurred

User-reply
functionality's
management
daemon

Description

Command that is used to respond manually to reply-request messages
when an error occurs. This command must be used by a user with the
superuser permissions.

Command that displays a list of reply-request messages when an error
has occurred. This command must be used by a user with the superuser
permissions.

Command that starts and stops the daemon for managing shared
memory for the user-reply functionality. This command must be used
by a user with the superuser permissions.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 55

2.2 Evaluations prior to installation

This section explains the evaluations that need to be made prior to installation, including the system configuration,
prerequisite programs, related programs, and files to be used.

2.2.1 System configuration

This subsection explains the JP1/Advanced Shell system configuration for each execution mode.

(1) Executing batch jobs from JP1/AJS

The following shows the system configuration for executing batch jobs from JP1/AJS.

Figure 2-1: System configuration for executing batch jobs from JP1/AJS

Operation
Development PC management console
Windows Windows or UNIX

JP1/AJS - View
JP1/Advanced Shell

- Developer

JP1/Advanced Shell
- Custom Job

Ik A

[[

A
X D—J_T D£ X

Operation
management server

Batch operation server

Windows or UNIX Windows or UNIX
JP1/Advanced Shell JP1/AJS - Manager
JP1/AJS - Agent JP1/Base
JP1/Base

The following explains the role of each system component.

¢ Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.
» Batch operation server: Enables manual or automatic execution of job definition scripts.
* Operation management server: Manages jobs that are executed.

* Operation management console: Enables use of JP1/AJS - View for displaying job execution results, and is used to
define the job definition scripts that are to be executed automatically. To perform job definition in JP1/Advanced
Shell, you must have JP1/Advanced Shell - Custom Job (custom job definition program).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 56

(2) Executing batch jobs manually

The following shows the system configuration for executing batch jobs manually.

Figure 2-2: System configuration for executing batch jobs manually

Development PC

Windows

JP1/Advanced Shell
- Developer

Batch operation server Batch operation server

Windows or UNIX Windows or UNIX

JP1/Advanced Shell JP1/Advanced Shell

The following explains the role of each system component.

* Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.

» Batch operation server: Enables manual execution of job definition scripts.

(3) When linking with uCosminexus Application Server

The system configuration when linking with uCosminexus Application Server varies as shown in the following figure

depending on whether the job scheduling functionality is used.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

57

Figure 2-3: System configuration when linking with uCosminexus Application Server (when not
using the job scheduling functionality)

Operation monitoring

Batch server agent

Operation management

PRF daemon agent

Cosminexus Management
Server

uCosminexus Application Server

Batch application of
Java

JP1/Advanced Shell

Batch operation server

Figure 2-4: System configuration when linking with uCosminexus Application Server (when using
the job scheduling functionality)

Operation monitoring

Batch server
agent

Compongnt Operation monitoring
Transaction Batch server
) agent
Monitor .
PRF daemon Cosminexus

Management Server

uCosminexus Application Server

Batch application of
Java

JP1/Advanced Shell

Batch operation server

For details, see 3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced Shell
[only for Windows, Linux, AIX, and HP-UX].

(4) Using the user-reply functionality

The following figure shows the system configuration for using the user-reply functionality.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 58

Figure 2-5: System configuration for using the user-reply functionality

JP1/IM - Manager

JP1/IM - View
JP1/Base
: : =l
Operation Operation i
management server management console
[—X

JP1/Advanced
Job Shell
definition
Scrifi JP1/Base

Batch operation server

For details, see 3.8 Using the user-reply functionality.

2.2.2 Programs required in each environment

This subsection explains the prerequisite programs for JP1/Advanced Shell and the related programs.
(1) Prerequisite and related programs for the execution environment

(a) Prerequisite programs for the execution environment

The following table lists the prerequisite programs for the execution environment.

Table 2-3: Prerequisite programs for the execution environment

Server type 0s

Same batch operation server as for JP1/Advanced Shell (Windows only) Windows

Same batch operation server as for JP1/Advanced Shell (UNIX only) AlX,
HP-UX,
Linux, or
Solaris

(b) Related programs for the execution environment

The following tables list the related programs for each server in the execution environment.

Table 2-4: Related programs in the execution environment (when executing batch jobs from JP1/
AJS)

Server type Processing to be performed Programs

Same batch operation server as for JP1/Advanced Shell Executes job definition scripts from JP1/Base
JPI/AJS JP1/AJS - Agent”

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 59

Server type Processing to be performed Programs

Operation management server Manages jobs JP1/Base
JP1/AJS - Manager”

Operation management console (Windows only) Displays job execution results JP1/AJS - View

JP1/AJS - Agent is not needed when JP1/AJS - Manager is installed on the same server as JP1/Advanced Shell,
because JP1/AJS - Manager provides the JP1/AJS - Agent functions.

Table 2-5: Related programs for the execution environment (when executing Java batch
applications upon linking with uCosminexus Application Server) [only for Windows,
Linux, AlIX, and HP-UX]

Server type Program

Same batch operation server as JP1/Advanced Shell uCosminexus Application Server

Table 2-6: Related programs in the execution environment (when using the user-reply functionality)

Server type Programs
Same batch operation server as for JP1/Advanced Shell JP1/Base
Operation management server JP1/IM - Manager
JP1/Base
Operation management console JP1/IM - View
Note:

These programs are not required if you debug and run your coding for the user-reply functionality with the standard
output specified as the output destination.

(2) Prerequisite and related programs for the execution environment
(Windows only)

(a) Prerequisite program for the development environment

The following table shows the prerequisite program for the development environment.

Table 2-7: Prerequisite program for the development environment (Windows only)

Server type (0153

Same development PC as for JP1/Advanced Shell - Developer Windows

(b) Related programs for the development environment

The following tables list the related programs for the servers in the development environment.

Table 2-8: Related programs in the development environment (when using the user-reply
functionality)

Server type Programs

Same development PC as for JP1/Advanced Shell - Developer JP1/Base

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 60

Server type Programs

Operation management server JP1/IM - Manager
JP1/Base
Operation management console JP1/IM - View
Note:

These programs are not required if you debug and run your coding for the user-reply functionality with the standard
output specified as the output destination.

(3) Prerequisite and related programs for the custom job definition
program (Windows only)

(a) Prerequisite programs for the custom job definition program

The table below shows the prerequisite programs for the custom job definition program. Although the custom job
definition program is supported only in Windows, you can use it to create both Windows and UNIX job definitions.

Table 2-9: Prerequisite programs for the custom job definition program (Windows only)

Server type OS and Program
Same operation management console as for JP1/Advanced Shell - Custom Job « OS
Windows
e Program

JP1/AJS - View

(b) Related programs for the custom job definition program

Programs related to the custom job definition development environment are shown for each server.

Table 2-10: Programs related to the development environment (when executing forcibly terminating
upon linking with uCosminexus Application Server)

Server type Program

Same PC for development as JP1/Advanced Shell - Developer uCosminexus Application Server

Table 2-11: Programs related to the development environment (when using the user-reply
functionality)

Server type Program

Same PC for development as JP1/Advanced Shell - Developer JP1/Base

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 61

2.2.3 Files used in JP1/Advanced Shell

(1) List of files used in JP1/Advanced Shell

The table below lists and describes the files that are used in JP1/Advanced Shell. To determine whether a file size can
exceed 2 GB, see (2) Handling of files that are larger than 2 GB (large files).

Table 2-12: Files used in JP1/Advanced Shell

File name (icon)

Job definition script file (g)

Environment file*!

System environment file
Coverage information file
Debugging information file

System execution log"!

Trace information™!

Temporary file

Coverage display temporary file

Start log (UNIX only)

pid file (UNIX only)

Log of the application-
execution agent functionality®!
(Windows execution
environment only)

Extension

.ash

.ase

.ase

.asc

.asd

.log

.log

. tmp

.txt

.log

.pid

.log

2. Preparations for Using JP1/Advanced Shell

File location

Any location

Any location

See (1) Specifying the system environment
files.

Any location

Same directory as for the job definition
script files*

Directory specified in the LOG_DIR
parameter in the environment file

¢ For the adshexec command, the
directory specified in the TRACE DIR
parameter in the environment file

¢ Inall other cases, the directory specified
by the program

* For a temporary file specified in the #-
adsh file temp command, the
directory specified in the
TEMP_FILE DIR parameter in the
environment file

* Inall other cases, the directory specified
by the program

Temporary file directory specified by the
system

/opt/jplas/system

/opt/jplas/system

shared-document-folder
\Hitachi\JP1AS\JP1ASE\appexec

File contents

A job definition script. The user can assign
any file name.

JP1/Advanced Shell environment settings.

A file that sets environment information for
JP1/Advanced Shell.

Coverage environment information for JP1/
Advanced Shell.

Debugging information used by the editor
(development environment)

Log information that provides overall batch
job execution logs for the system
administrator.

JP1/Advanced Shell's internal trace logs.

A temporary file used by JP1/Advanced
Shell.

Temporary file used in displaying coverage
information. The format of file name is as
follows:
adshexec_view_job-definition-script-
file-name_year-month-date_hour-minute-
second . txt

Log information that is collected when the
user-reply functionality's management
daemon is started and stopped.

File used by the user-reply functionality
management daemon and adshmdct1.

Internal log of the application-execution
agent functionality.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

62

#1

#2

You can collect these files by using the adshcollect command. For details about how to collect the files, see
11.3.1 adshcollect command (collects information).

Because a debugging information file cannot be saved, an error is displayed in the following cases:
o The job definition script file being edited is in a directory for which the user does not have write permissions.

¢ The job definition script file being edited is in a compressed folder.

Notes about specifying files and paths

e As the directory delimiter, you can use a backslash (\)* for Windows or a forward slash (/) for UNIX. If you use

other characters, the operation cannot be guaranteed.

Ifyou use a backslash (V) as the directory delimiter for UNIX, the character will not be recognized as the directory
delimiter and JP1/Advanced Shell will not operate correctly.

If you use a forward slash (/) as the directory delimiter for Windows, the character might be recognized as the
directory delimiter. Note that, depending on how the forward slash is used, the character might not be recognized
as the directory delimiter and JP1/Advanced Shell might not operate correctly.

#:
A backslash (\) specified in a job definition script is considered an escape character. For this reason, you need

to specify two consecutive backslashes (\\) or enclose the character string that includes the backslash in single
quotation marks (").

Do not use a file name that begins with a dot (.).

The permitted maximum length for path names must comply with the specifications of the OS being used.
The maximum file name length is 246 bytes (Windows only).

Do not use reserved device names (such as CON, AUX, and NUL) for file names (Windows only).

Do not use NTFS streams for file names (Windows only).

Do not use the junction functionality (Windows only).

You can use UNC names for file names and path names (example: \ \computer-name\ shared-name\file-
name); however, make sure that a path name specified in this format does not end with shared-name (or shared-
name\). The cd standard shell command does not support the UNC format. (Windows only)

UNC formats that can be used:
\\server\share\dir
\\10.111.222.33\share\dir
UNC formats that cannot be used:
\\server\share
\\10.111.222.33\share

Do not use UNC names for the folder path names for traces, system execution logs, spool, and temporary files
(Windows only).

(2) Handling of files that are larger than 2 GB (large files)

JP1/Advanced Shell supports some of the large files (that are larger than 2 GB). Of the files supported by JP1/Advanced
Shell, the files and commands that correspond to large files are as follows:

 Of the files created in the spool job directories, files STDOUT, STDERR, step-number _step-name_STDOUT, and

step-number _step-name_STDERR to which user data is output

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 63

Note that large files might adversely affect the overall system processing because the jobs executed from JP1/AJS3
transfer the contents of files STDERR and step-number step-name_STDERR to JP1/AJS3's manager host. For
details, see the JP1/Automatic Job Management System 3 System Design (Configuration) Guide.

Note that when you use the spool job creation suppression functionality, no spool job is created when the job
definition script is run. For details about the spool job creation suppression functionality, see (a) Determining
whether the spool job creation suppression functionality is to be used.

¢ In redirect specifications, the files specified in >file, < file, >>file, >|file,<>file,n>file, and
n<file

* Files specified in conditional expressions other than -t fd of the conditional expressions that are evaluated with
the test or let command

* Files that are allocated by the extended script commands #-adsh file, #-adsh file temp,and #-
adsh spoolfile

* Files that are created by using the adshmktemp command out of extended shell commands

« Files handled by UNIX-compatible commands
However, a file cannot be exceed 2 GB if it is used for the following operations:
» Editing and displaying the number of bytes that exceeds 2 GB
» Editing and displaying the number of lines that exceed 2 GB
* Executing UNIX commands (such as diff and sort) that use a large amount of memory when large-sized

files are specified

Whether large files are supported depends on the types of file systems and OS settings (example: ulimit setting).
Before you design your operations, check if your environment supports large files.

(3) Notes on file systems

Be careful when using JP1/Advanced Shell with either of the following file systems:

* NFS
Not supported.

* HSFS
When using HSFS, note the following:

* You cannot install JP1/Advanced Shell on HSFS.
* You cannot create a system execution log or traces on HSFS.
» Ifyouuse the user-reply functionality, you cannot specify a directory located on HSFS as the spool job directory.

* Ifyouareusing a version earlier than HSFS 07-00 and you want to use a UNIX-compatible command to reference
or update the files and directories on HSFS, you will need to specify NOCACHE for the HSFS system option
CPFS_CACHE POLICY beforehand.

* Ifyou are using HSFS 07-00 or later and you want to use a UNIX-compatible command to reference or update
the files and directories on HSFS, you will need to specify 0 for the HSFS system option
CPFS_COMPAT LINKCNT beforehand. By default, O is specified for CPFS COMPAT LINKCNT.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 64

2.2.4 Encoding used in JP1/Advanced Shell

You must code job definition script files and environment files used in JP1/Advanced Shell using the encoding that
matches the value of the LANG environment variable in the environment in which JP1/Advanced Shell is run. If a
different encoding is used, operation cannot be guaranteed. If you will execute the same job definition script file on
different OSs, use an encoding that is supported by all the OSs to be used.

In UNIX, the language and encoding in which messages are output by JP1/Advanced Shell are determined by the value
of the LANG environment variable.

The following table shows the values of the LANG environment variable and the encodings for job definition script files
and environment files that are specified when JP1/Advanced Shell is used.

Table 2-13: Encodings corresponding to the LANG environment variable values

(0133 Value of LANG Encoding for job definition script files and environment files
environment variable

Windows - Shift-JIS
Linux ja JP.UTF-8 UTEF-8
AIX Ja_JP Shift-JIS
ja_Jp EUC
JA_JP UTEF-8
JA JP.UTF-8 UTF-8
HP-UX ja JP.SJIS Shift-JIS
ja_JP.eucdP EUC
ja JP.utfs8 UTF-8
Solaris ja_JP.PCK Shift-JIS
ja EUC
ja JP.UTF-8 UTF-8
Legend:
--: Not applicable

2.2.5 Local time settings

JP1/Advanced Shell obtains and outputs local time information by referencing environment variables. You must specify
the local time settings in the environment variables beforehand.

The commands provided by JP1/Advanced Shell output information according to the OS's time zone setting (Windows)
or the TZ environment variable (UNIX). Use one of the methods listed below to specify the TZ environment variable.
Note that no environment variable can be defined for custom job definition programs.

e JP1/AJS's job definition or environment variable definition

e System profile (/etc/profile)
» User profile (SHOME/ .profile)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 65

2.2.6 Notes about standard input

When the commands provided by JP1/Advanced Shell are used to input data from a terminal to the standard input, the
permitted maximum length depends on the language specifications of the OS, terminal, shell, and programming
language.

2.2.7 Using hard links and symbolic links

You can create and use hard links and symbolic links with JP1/Advanced Shell. The following link files can be used
with JP1/Advanced Shell:

» Hard links to files

¢ Symbolic links to files

* Symbolic links to directories

Hereafter, the UNIX edition and Windows edition are described separately.

(1) UNIX edition

In the UNIX edition of JP1/Advanced Shell, hard links and symbolic links can be created by using the UNIX-compatible
1n command and commands provided by the OS, and these links can be used in the job definition script.

(2) Windows edition

(a) Files and folders that support hard links and symbolic links

In the Windows edition of JP1/Advanced Shell, you can create hard links and symbolic links by using the UNIX-
compatible 1n command and commands provided by the OS. The following files and folders support hard links and
symbolic links:

* Files and folders handled by UNIX-compatible commands and standard shell commands

* Files specified for the redirect symbol

* Files and folders specified by using file attributes of conditional expressions
Do not create hard links and symbolic links for the following files and folders.

* Various commands provided by JP1/AS

* Files and folders created when installing JP1/AS

* Job definition script file

» External script file

¢ Initialization script file

* Script file executed by the child job

¢ Files and folders under the spool directory

¢ Files and folders under the temporary file directory
¢ Files and folders under the trace directory

* Files and folders under the log directory

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 66

¢ Environment file

(b) Points to be checked before using symbolic links

Check the following points in advance when using symbolic links.

* When creating, deleting, moving or copying a symbolic link, execute the operation as a user having the administrative
role for creating symbolic links. A user who does not have the necessary permissions to create symbolic links cannot
perform operations involving symbolic links. In addition, even users having the administrative role for creating
symbolic links cannot create a symbolic link in an environment where user account control (UAC) has been enabled.
To create a symbolic link in an environment where UAC has been enabled, you need to grant the administrator
privilege to a user having the administrative role for creating symbolic links.

» Before using symbolic links, confirm whether the target machine is permitted to use symbolic links. For details on
how to check whether the use of symbolic links is permitted, see the manual for Windows.

(3) Notes

Note the following when using hard links and symbolic links:

(a) Notes common to all platforms

¢ In the name of a link file, do not use the same name as a command provided by JP1/Advanced Shell.

¢ The behavior when the number of times a symbolic link file is nested exceeds the upper limit of the OS will be in
accordance with the specifications of each OS.

e Multiple hard links can be created for a single file. However, the maximum number of hard links that can be created
for a single file depends on the OS or file system. Note that creation of a hard link fails when the maximum number
has been exceeded.

(b) Notes for the UNIX edition

You cannot specify a hard link or symbolic link as the output destination for the coverage information file (asc file). If
a hard link or symbolic link is specified, the behavior is as follows.

» Ifasymbolic link is specified as the output destination for the asc file, the symbolic link is deleted and a normal file
having the same name is created.

* Coverage information of the asc file is not updated even if the asc file is updated while multiple hard links are created
for a single asc file.

(c) Notes for the Windows edition

¢ Link files cannot be created in a file system other than NTFS.

» Symbolic links might not work in an environment where a product designed for protecting the file system is installed.
When using symbolic links, make sure the installed product supports symbolic links.

* When starting an executable file by using a symbolic link, the extensions of both the symbolic link and the executable
file must be one of the following: " . bat",".com",".cmd",or". exe". However, as the following formats conform
to specifications of the execution program starting the executable file, determination of the execution role is also
subject to the specifications of the execution program.

¢ system function of the awk command
e Format of the awk command: command-name | get1ine [variable name]

* Format of the awk command: print [expression [, ...]] | command-name

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 67

* -exec and -ok primaries of the £ ind command
* xargs command

* When accessing a file or folder by using a symbolic link, the access privilege of the link destination needs to be
followed. When accessing the symbolic link itself, the access privilege of the link destination needs to be followed.

* If'the link destination of a symbolic link to a directory is a normal file or the link destination of the symbolic link
to a file is a directory, the link destination cannot be accessed and an error occurs.

* As aresult of the support for link files, information related to link files is output. Accordingly, part of the output
format of UNIX-compatible commands including the 1 s command have been changed. If you want to return the
output format to a version earlier than 11-00 without using link files, specify LO for the environment variable
ADSH LINK SUPPORT.

(4) Environment variable ADSH_LINK_SUPPORT (defining the link
support level of JP1/Advanced Shell)

In JP1/Advanced Shell, hard links and symbolic links can be used from 11-00. However, part of the output format and
output content in addition to the results have changed as a result of the support for hard links and symbolic links. Users
who have been using JP1/Advanced Shell of a version earlier than 11-00 and who will not be using link files will need
to consider the specification of the environment variable ADSH LINK SUPPORT.

(a) Values that can be set for environment variable
The following values can be specified for the environment variable ADSH_LINK SUPPORT:

Table 2-14: Values that can be specified for the environment variable ADSH_LINK_SUPPORT

Value Meaning

LO Hard links and symbolic links cannot be used.
The main changes when L0 is specified are as follows.
¢ The number of hard links is not output by the £ind command, 1s command, or stat command.

* Options related to UNIX-compatible commands and standard shell commands are ignored even when they are
specified.

* The -1 option of the adshscripttool command is not available.

» Ifyou use the operators -h, -L, and -ef (which determine the file attribute) without specifying the environment
setting parameter UNSUPPORT _TEST, the job ends in an error.

L1 Hard links and symbolic links can be used with the following functions:
¢ UNIX-compatible commands
 Standard shell commands
¢ Conditional expressions of file attributes
» Redirects to files

Other than the above | Jobs and commands are not executed, and processing ends in an error.
The difference between the output formats when LO and L1 are specified for the environment variable
ADSH_LINK SUPPORT is shown below, by using the 1 s command as an example.It is assumed that the path to the
directory in which the 1s command is installed is stored in the environment variable OSCMD_DIR.

e For LO:

C:\TEMP>%OSCMD_DIR%\1$ -1
total 439744

—rw——————-— Administrators 102000 Jul 06 16:26 HARDLINK.txt
—rw-——————-— Administrators 102000 Jul 06 16:20 SYMLINK.txt
drwx——----- Administrators Jul 06 16:58 TestLog

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 68

—rw-——————-— Administrators

—rw——————-— Administrators
—IWX—————— Administrators
For L1:

C:\TEMP>%0SCMD DIR%\1ls -1
total 337744

—-rw——————-— 2 Administrators

lrw—————-—- 1 Administrators

drwx—-—----- 1 Administrators

-rw-——————- 1 Administrators

—rW——————- 2 Administrators

—rWX—————-— 1 Administrators
(b) Notes

102000 Jul 06 16:20 test data.txt
102000 Jul 06 16:26 test result.txt
31744 Jun 12 16:23 uap.exe

102000
0

102000
102000
31744

Jul
Jul
Jul
Jul
Jul
Jun

06
06
06
06
06
12

16:
16:
16:
16:
16:
16:

26
27
58
20
26
23

HARDLINK. txt

SYMLINK.txt -> .\test_data.txt
TestLog

test data.txt

test result.txt

uap.exe

If the environment variable ADSH_LINK SUPPORT is not defined, the command is executed by assuming that L1

was specified.

Specify either LO or L1 for the environment variable ADSH _LINK SUPPORT. When a value other than L0 and
L1 is specified, jobs and commands are terminated end in an error with return code 255.

The environment variable ADSH_LINK SUPPORT is available with the Windows edition. This environment
variable is not available with the UNIX edition.

If you prepare settings by using a job definition script file or environment file, such settings will only be valid for
child jobs that start from a job definition script, root jobs, the execution of other processes, and some UNIX-

compatible commands.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

69

2.3 Installing and uninstalling (Windows only)

This section explains how to install and uninstall JP1/Advanced Shell in a Windows environment. You must first install
prerequisite and related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

* For running jobs in JP1/AJS
JP1/AJS - Manager

e For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console.

* For running jobs in JP1/AJS
JP1/AJS - View
* For using the user-reply functionality
JP1/IM - View
3. Install JP1/Advanced Shell - Custom Job on the operation management console.

For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

* For running jobs in JP1/AJS
JP1/AJS - Agent

* For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.

For details about installation of JP1/Advanced Shell in a Windows environment, see 2.3.1 Installing JP1/Advanced
Shell (Windows only).

For details about the setup procedure for using the user-reply functionality, see 2.8.2 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (Windows only).

2.3.1 Installing JP1/Advanced Shell (Windows only)

A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM. You install JP1/Advanced Shell -
Developer in the same manner.

(1) Remote installation using JP1/Software Distribution

JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job Management Partner
1/Software Distribution Administrator's Guide Volume I (for Windows systems).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 70

(2) Installation from a CD-ROM
There are three types of installation of JP1/Advanced Shell from a CD-ROM:

* If you are newly deploying JP1/Advanced Shell, perform a new installation.
* If you are upgrading JP1/Advanced Shell, perform an overwrite installation.

* If you are re-installing the same version, perform a recovery installation.

The following subsections explain these three procedures.

(a) New installation

This subsection explains how to perform a new installation of JP1/Advanced Shell. Normally, the execution environment
is installed on a server and the development environment is installed on a client PC. It is also possible to install both
environments (execution and development) on the same PC.

To perform a new installation:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.
2. Terminate all programs.
3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Install JP1/Advanced Shell by entering required information as instructed by the installer.
The following information will be requested during installation:

* Product to be installed (JP1/Advanced Shell or JP1/Advanced Shell - Developer)
e Customer Information
* Destination Folder

5. When the Finish dialog box is displayed, click Finish.
Installation is completed.

(b) Overwrite installation for upgrading

You perform an overwrite installation in the same manner as for a new installation.

You can upgrade JP1/Advanced Shell by performing an overwrite installation without having to uninstall the existing
JP1/Advanced Shell.

If the application-execution agent program is running, log on as the user who started the program and stop the program
before uninstalling the program. [Only for the execution environment]

(c) Recovery installation using the same version

To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell:

1. If the application-execution agent program is running, log on as the user who started the program and stop the
program before uninstalling the program. [Only for the execution environment]

2. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

3. Terminate all programs.

4. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

5. Enter required information as instructed by the installer.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 71

6. When the Finish dialog box appears, click Finish.
Recovery installation is completed.

2.3.2 Uninstalling JP1/Advanced Shell (Windows only)

(1) Uninstalling JP1/Advanced Shell manually

This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell - Developer in the
same manner.

To uninstall JP1/Advanced Shell:
1. If the application-execution agent program is running, log on as the user who started the program and stop the
program. If you register the program for startup, cancel registration. [Only for the execution environment]

2. Logon as auser with an administrator role to the Windows machine on which JP1/Advanced Shell has been installed.

3. Terminate all programs. If you are using the user-reply functionality, stop the services of JP1/Advanced Shell and
then unregister them.

4. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.
5. Enter required information as instructed by the installer, and then select Maintain Program.
6. In Program Maintenance, select Delete.

7. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

8. If there are any unneeded files, such as spool, trace, and debugging information files, delete them.

If you were using the user-reply functionality, after JP1/Advanced Shell has been installed, delete the adapter command
configuration file used for the user-reply functionality that has been set up for JP1/Base. For details about the storage
folder for the adapter command configuration file used for the user-reply functionality, see (2) Setting up the adapter
command (for the execution environment) or (3) Setting up the adapter command (for the development environment).

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell

For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job
Management Partner 1/Software Distribution Administrator's Guide Volume 1 (for Windows systems).

2.3.3 Installing JP1/Advanced Shell - Custom Job

This subsection explains how to install the custom job definition program on the operation management console on
which JP1/AJS - View is already installed. You install the custom job definition program by transferring it from JP1/
Advanced Shell's installation directory to the operation management console.

Although the custom job definition program can be installed only in a Windows environment, it can be used to create
definitions for both Windows and UNIX jobs. This subsection explains the new, overwrite, and recovery installation
methods.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 72

(1) New installation

To perform a new installation of JP1/Advanced Shell - Custom Job:

1.

Log on as a user with an administrator role to the operation management console on which JP1/Advanced Shell -
Custom Job is to be installed.

. Obtain the installer for JP1/Advanced Shell - Custom Job.

The installer is stored at the following location:
* To use the Windows edition of JP1/Advanced Shell
JPI1/Advanced-Shell-installation-folder\ JP1ASE\util\setup.exe

¢ To use the UNIX edition of JP1/Advanced Shell
/opt/jplas/util/setup.exe

. Transfer the installer (setup . exe) for JP1/Advanced Shell - Custom Job to the operation management console.

. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the

following command:
setup.exe

. Install JP1/Advanced Shell - Custom Job by entering required information as instructed by the installer.

Select the language of JP1/Advanced Shell - Custom Job to be installed, and then specify the following information:
e Customer Information: Specify requested information, including a user name.

* Destination Folder: Specify the folder in which JP1/Advanced Shell - Custom Job is to be installed.

. When the Finish dialog box is displayed, click Finish.

Installation is completed.

.Ifaversion of JP1/AJS3 - View earlier than 11-00 is installed and the custom job definition program is to be installed

when using the application-execution agent functionality, the custom job icon must be copied to the following folder:
JP1/AJS-View-installation-folder\ image\ custom

For details about the folder and the file names of the custom job icons to be copied, see 2.1.1 Installation folder
(Windows only).

(2) Overwrite installation for upgrading

When you perform an overwrite installation of JP1/Advanced Shell - Custom Job for purposes of upgrading, there is
no need to uninstall the existing JP1/Advanced Shell - Custom Job.

You perform the overwrite installation in the same manner as for a new installation.

If you copied the previous version's custom job icons to the JP1/AJS - View installation folder, there is no need to copy
them again during upgrading.

(3) Recovery installation using the same version

To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell - Custom Job:

1.

Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
is to be installed.

2. Obtain the installer for JP1/Advanced Shell - Custom Job.

The installer is stored at the following location:

* In Windows: JP1/Advanced-Shell-installation-folder\ JP1ASE\util\setup.exe

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 73

e In UNIX: /opt/jplas/util/setup.exe
3. Transfer the installer (setup . exe) for JP1/Advanced Shell - Custom Job to the operation management console.

4. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the
following command:

setup.exe
5. From Program Maintenance, select Repair.

6. When the Finish dialog box is displayed, click Finish.

Recovery installation is completed.

2.3.4 Uninstalling JP1/Advanced Shell - Custom Job

To uninstall JP1/Advanced Shell - Custom Job:
1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
has been installed.
2. Terminate all programs.

3. In cases when a version of JP1/AJS - View earlier than 11-00 has been installed and the icon of the application-
execution agent functionality exists, delete the custom job icon that has been copied to the following folder.

JP1/AJS-View-installation-folder\ image\ custom

4. On the Control Panel, select the product from Add or Remove Programs.

If you are uninstalling JP1/Advanced Shell - Custom Job in an environment where user account control (UAC) is
enabled, the User Account Control window is displayed. Select Yes in this window.

5. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

6. If there are any unneeded trace files, delete them.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 74

2.4 Installing and uninstalling (UNIX only)

This section explains how to install and uninstall JP1/Advanced Shell in a UNIX environment. In a UNIX environment,
you can install only the execution environment on the batch operation server. You must first install prerequisite and
related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

* For running jobs in JP1/AJS
JP1/AJS - Manager

e For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console in a Windows environment.

* For running jobs in JP1/AJS
JP1/AJS - View

* For using the user-reply functionality
JP1/IM - View

3. Install JP1/Advanced Shell - Custom Job on the operation management console.

For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

* For running jobs in JP1/AJS
JP1/AJS - Agent

* For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.

For details about installation of JP1/Advanced Shell in a UNIX environment, see 2.4.1 Installing JP1/Advanced
Shell (UNIX only).

For details about the setup procedure for using the user-reply functionality, see 2.8.3 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (UNIX only).

2.4.1 Installing JP1/Advanced Shell (UNIX only)

A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM.

(1) Remote installation using JP1/Software Distribution

JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution SubManager (for
UNIX systems).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 75

(2) Installation from a CD-ROM

This subsection explains how to install JP1/Advanced Shell from a CD-ROM.

Note that the directory and file names on the CD-ROM might be different from what is shown here, depending on the
hardware environment. Use the 1s command to check the file names and specify file names exactly as displayed.

To install JP1/Advanced Shell:

1. Specify the user permissions.

Log on as a superuser to the server on which JP1/Advanced Shell is to be installed. Alternatively, use the su command
to change the user permissions to superuser.

2. Terminate all programs.

If any existing JP1-series programs and JP1/Advanced Shell program are running, terminate them.
3. Place the medium that contains JP1/Advanced Shell.
4. Mount the CD-ROM device by executing the following command:
/bin/mount -r -o mode=0544 /dev/cdrom /cdrom
/cdrom is the mount point of the CD-ROM device special file. If there is no mount point directory, create one. Note
that the device special file name and mount point might differ depending on the environment.
5. Start the Hitachi Program Product Installer by executing the following command:
In Linux
/cdrom/LINUX/setup /cdrom®

In AIX
/cdrom/AIX/setup /cdrom”

In HP-UX
/cdrom/IPFHPUX/setup /cdrom”
In Solaris

/cdrom/SOLARIS/setup /cdrom?

#: This example assumes /cdrom as the mount point.
The Hitachi Program Product Installer starts and the initial window is displayed.
The following is an example of the Hitachi Program Product Installer's initial window:

Hitachi PP Installer 05-24

L) List Installed Software.

I) Install Software.

D) Delete Software.

Q) Quit.

Select Procedure ===>

e +
CAUTION!

YOU SHALL INSTALL AND USE THE SOFTWARE PRODUCT LISTED IN THE
"List Installed Software." UNDER THE TERMS AND CONDITION OF
THE SOFTWARE LICENSE AGREEMENT ATTACHED TO SUCH SOFTWARE PRODUCT.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 76

All Rights Reserved. Copyright (C) 1994, 2015, Hitachi, Ltd.

6. In the Hitachi Program Product Installer's initial window, enter I.

A list of programs that can be installed is displayed.
7.Select JP1/Advanced Shell, and then enter I.

JP1/Advanced Shell is installed. To select a program, move the cursor to the desired program, and then press the
space bar to select it.

The following shows an example of the Hitachi Program Product Installer's installation window:

PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell

F) Forward B) Backward J) Down K) Up Space) Select/Unselect I) Install Q) Quit
<@> is displayed to the left of the selected program product. If you enter I following <@>, the following message
is displayed on the last line:

Install PP? (y: install, n: cancel) ==>
If you enter y or Y, installation begins. If you enter n or N, installation is cancelled and the program product
installation window is displayed again.

8. When installation is completed successfully, enter Q.

The Hitachi Program Product Installer's initial window is displayed again.

Note that the following files are created during installation as installer's logs:

/opt/jplas/instlog/ADSH INST LOG
/opt/jplas/instlog/ADSH_INST USERLOG

If the installer's log files are not created, possible causes are as follows:

¢ The installer's log files are not regular files.
¢ The user does not have write permission for the directory in which the installer's log files are to be created.

¢ A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

* "/opt" is not a directory.
* "/opt/jplas" isnot a directory.
e "/opt/jplas/instlog" is not a directory.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 77

When installation is completed, the default environment has been set up. To change the default settings, see the applicable
subsections in 2.6 Specifying environment information for JP1/Advanced Shell.

2.4.2 Uninstalling JP1/Advanced Shell (UNIX only)

(1) Uninstalling JP1/Advanced Shell manually

This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell by following the
Hitachi Program Product Installer's instructions.

Before you uninstall JP1/Advanced Shell, terminate all programs provided by JP1/Advanced Shell. If you are using the
user-reply functionality, terminate the user-reply functionality's management daemon. The installer's log files and any
newly created files are not deleted during uninstallation. To completely delete the environment, the user must delete
these files.

To uninstall JP1/Advanced Shell:

1. Start the Hitachi Program Product Installer by executing the following command:
/etc/hitachi setup
The Hitachi Program Product Installer starts and the initial window is displayed.
The following shows an example of the Hitachi Program Product Installer's initial window:

Hitachi PP Installer 05-24

L) List Installed Software.

I) Install Software.

D) Delete Software.

Q) Quit.

Select Procedure ===>

e +
CAUTION!

YOU SHALL INSTALL AND USE THE SOFTWARE PRODUCT LISTED IN THE
"List Installed Software." UNDER THE TERMS AND CONDITION OF
THE SOFTWARE LICENSE AGREEMENT ATTACHED TO SUCH SOFTWARE PRODUCT.

All Rights Reserved. Copyright (C) 1994, 2015, Hitachi, Ltd.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 78

2. In the Hitachi Program Product Installer's initial window, enter D.

A list of the software programs that can be uninstalled is displayed.

3. Select JP1/Advanced Shell, and then enter D.

JP1/Advanced Shell is uninstalled. To select a program, move the cursor to the target program, and then press the
space bar to select it.

The following shows an example of the uninstallation window:

PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell

F) Forward B) Backward J) Down K) Up Space) Select/Unselect D) Delete Q) Quit
<@> is displayed to the left of the selected program product. If you enter D following <@>, the following message
is displayed on the last line:

Delete PP? (y: delete, n: cancel) ==>
If you enter y or Y, uninstallation begins. If you enter n or N, uninstallation is cancelled and the program product
uninstallation window is displayed again.

4. When uninstallation is completed successfully, enter Q.

The Hitachi Program Product Installer's initial window is displayed again.

5. If there are any unneeded files, such as execution log and trace files, delete them.

Note that the following files are created during uninstallation as installer's logs:

PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell
002 P-812C-6LBL 1100 JP1/Base
003 P-9S12-A111 0806/A uCosminexus Batch Job Execution Server
004 P-CC8112-4KBL 1100 JP1/AJS3 - Manager

If the installer's log files are not created, possible causes are as follows:

* The installer's log files are not regular files.
* The user does not have write permission for the directory in which the installer's log files were created.

* A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

e "/opt" is not a directory.
e "/opt/jplas" is not a directory.
* "/opt/jplas/instlog" is not a directory.

Notes:

If the user-reply functionality's management daemon is running, the uninstallation process is cancelled and the
following message is output to /opt/Jjplas/instlog/ADSH INST LOG:

F) Forward B) Backward J) Down K) Up Space) Select/Unselect D) Delete Q) Quit
Delete PP? (y: delete, n: cancel) ==>

When this message has been output, execute the adshmdct 1 command to terminate the user-reply functionality's
management daemon, and then perform uninstallation again.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 79

Uninstallation is also cancelled if the user-reply functionality's management daemon does not terminated normally.
In such a case, start the user-reply functionality's management daemon and then terminate it, then perform
uninstallation again.

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell

For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution
SubManager (for UNIX systems).

(3) If you were using the user-reply functionality

If you were using the user-reply functionality, perform the following after uninstallation has been completed:

* Delete the adapter command configuration file used for the user-reply functionality that has been set up for JP1/
Base. For details about the storage directory for the adapter command configuration file used for the user-reply
functionality, see (2) Setting up JP1/Base.

* If'the user-reply functionality's management daemon has been set to start and terminate automatically, disable the
automatic start and termination settings.
In AIX:
1. Disable the automatic start setting for the user-reply functionality's management daemon by executing the
following command:
rmitab adshmd
2. If the user-reply functionality's management daemon for the logical host is set to start automatically, execute the

rmitab command specifying the record of the user-reply functionality's management daemon for the logical
host.

3. To disable the automatic termination function at system shutdown, delete the following code from /etc/
rc.shutdown:

test -x /opt/jplas/sbin/adshmdctl && /opt/jplas/sbin/adshmdctl stop

4. If the user-reply functionality's management daemon for the logical host is set to terminate automatically, delete
the specification for automatically terminating the user-reply functionality's management daemon for the logical
host from /etc/rc.shutdown.

[For RHEL 6, Oracle Linux 6, CentOS 6, HP-UX and Solaris]

1. Delete from the target directory the jpl as md script file that was copied from the /opt/jplas/sample
directory.

2. If you have created automatic start and termination script files for the logical host, delete them from the target
directory.

3. Delete the symbolic link that was created as a link to the jpl as_ md script file.

4. If you have created symbolic links to the automatic start and termination script files for the logical host, delete
them.

[For RHEL 7, SUSE Linux 12, Oracle Linux 7 and CentOS 7]

1. Execute the following command to disable automatic startup and automatic termination of user-reply
functionality management daemon.

systemctl disable jpl as md.service

2. Delete the /usr/lib/systemd/system directory at the copy destination from the copied Unit jpl as_md.service
from the /opt/jplas/sample directory.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 80

3. If you set automatic startup and automatic termination of the user-reply functionality management daemon for
logical host, conduct the following actions.

- Substitute the jpl _as_md.service specified at the procedure at 1 with the created Unit file name for logical host
and then execute the systemctl command.

- Delete the Unit file for the logical host that is created in the /etc/systemd/system.

For details about the target directory to which the automatic start and termination script files are to be copied, see
(1) Starting and terminating the user-reply functionality's management daemon automatically. For details about the
target directory to which the automatic start and termination script files for the logical host are to be created and the
target directory to which the symbolic links are to be created, see (2) Automatic startup and termination of the user-
reply functionality's management daemon for the logical host in a non-cluster environment (UNIX only).

2.4.3 Using Hitachi Program Product Installer to display version
information (UNIX only)

Because the Hitachi Program Product Installer installs the UNIX edition of JP1/Advanced Shell, you can display the
JP1/Advanced Shell version information from Hitachi Program Product Installer.

To display the version information:

1. Start the Hitachi Program Product Installer by executing the following command:

/etc/hitachi setup

2. In the initial window, enter L.
A list of Hitachi products that have been installed is displayed. Check the displayed version information.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 81

2.5 Specifying environment variables

The table below lists and describes the environment variables supported by JP1/Advanced Shell.

0 Important

JP1/Advanced Shell sets and references shell and environment variables whose names begin with ADSH.
Therefore, do not use a shell variable or an environment variable whose name begins with ADSH for any
purpose other than those described in this manual.

Table 2-15: Environment variables supported by JP1/Advanced Shell

Environment variable
name

ADSH _AJS_ APPEXEC
(for Windows execution
environments only)
ADSH AJS APPNAME
(for Windows execution
environments only)
ADSH AJS APPARG
(for Windows execution
environments only)
ADSH _AJS_WORKF
(for Windows execution
environments only)
ADSH_AJS_SHOWN
(for Windows execution
environments only)
ADSH AJS AFEXECMV
(for Windows execution
environments only)
ADSH_AJS MESOUT
(for Windows execution

environments only)

ADSH AJS_ENVF

ADSH AJS_ GCHE

ADSH AJS_LHOST

ADSH AJS SCRF

ADSH_ENV

Information to be specified

For indicating the GUI application execution program for

custom jobs

Path name of the application for executing custom jobs

Argument for the application for executing custom jobs

Work folder for custom jobs

Name to be displayed for a custom job

Action after executable application for custom jobs

Message output for custom jobs

Job environment file name for custom jobs

Check option for custom jobs

Logical host name for custom jobs

Job definition script file name for custom jobs

Job environment file name

2. Preparations for Using JP1/Advanced Shell

Timing of specification
when the value is set
automatically

When the job starts if the program
has been started with a custom
job

‘When the job starts if the program
has been started with a custom
job

When the job starts if the program
has been started with a job

When the job starts if the program
has been started with a custom
job

When the job starts if the program
has been started with a custom
job

When the job starts if the program
has been started with a custom
job

‘When the job starts if the program
has been started with a custom
job

When the job starts as a custom
job

When the job starts as a custom
job

When the job starts as a custom

job

When the job starts as a custom
job

When the job starts as a custom
job

Whether
a value
can be
specified

Yes'1

Yes*!

Yes*!

Yes'!

Yes'!

Yes*!

Yes*!

Yes*!

Yes*1

Yes'!

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

82

Environment variable
name

ADSH CMD_ARGORDER
#3

ADSH CMDDATE FORM
AT

ADSH CMDEXPR_LENG
TH

ADSH CMDLN FOLLOW

ADSH CMDLN OPT I
F

ADSH CMDTAR ROOTP
ATH

ADSH_JOB_NAME
ADSH_JOBID

ADSH _JOBRC_FATAL

ADSH LANG
(UNIX only)##6

ADSH LANG JP1EVEN
T

Information to be specified

Rule for determining the order of the command arguments
specified on the command line. The only permitted value is
seq.

This environment variable has effect in the cp, cut, date,
diff, expand, gunzip, gzip, 1n, 1s, mv, and stat
commands. It also has effect in the analysis of user-defined
options in the getopt command.

Format specification code of the date command that executes
the common format process unique to JP1/Advanced shell

Character string length. This environment variable is specified
when the length operator is used in the expr command.
Specify b to acquire the character string length in bytes, and
specify c to acquire the character string length in characters.
If this environment variable is omitted or a value other than b
or c is specified, length is not treated as an operator.

This command sets whether to follow the link when a symbolic
link for a directory has been specified for the argument target
of the 1n command.

Set NO to not follow the symbolic link. Set a value other than
NO to follow the symbolic link.

Sets the option to be enabled when the —i option and the - £
option are both specified for the 1n command.

Set LAST to enable the option specified last.

This command changes the behavior of the root directory of
the tar command. This command stores, extracts, and
displays the root directory without eliminating the root
directory when absolute is specified for the values.

Job name
Job ID (fixed 6-digit decimal number with leading zeros added)

Job return code in the event of a fatal error that interrupts job
processing such as syntax errors.

For details about how to specify the environment variable, see
(2) ADSH_JOBRC FATAL environment variable (specifies

the return code in the event of an unresumable error in jobs).

The language and encoding in which messages are output by
JP1/Advanced Shell.

Set this environment variable if you want to temporarily
change the messages that the adshexec command for a
specific job outputs.

For details about the specifiable values, see 2.2.4 Encoding
used in JP1/Advanced Shell.

If this environment variable is set within a job definition script
or an environment file, the value of such an environment
variable is valid only for a child job, root job, or shell operation
command (other than the adshexec command) that starts
from a job definition script.

The language of messages output by JP1 events that are
generated by the user-reply functionality. Set this environment

2. Preparations for Using JP1/Advanced Shell

Timing of specification
when the value is set
automatically

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

When the job starts
When the job starts

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

Whether
a value
can be
specified

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

83

Environment variable
name

(UNIX only)*

ADSH LINK SUPPORT
[Only for Windows]

ADSH STEP NAME

AJS BJEX_STOP

BLOCKSIZE

COLUMNS

GETOPT COMPATIBLE

GzIp"8

POSIXLY CORRECT™

Information to be specified

variable if you want JP1 event messages to be output in a
different language, in accordance with the settings of JP1/IM
at the output destination, from the language in which messages
are output by JP1/Advanced Shell.

For details about the specifiable values, see 2.2.4 Encoding
used in JP1/Advanced Shell.

If this environment variable is set within a job definition script
file, the value of such an environment variable is valid only for
a child job, root job, or shell operation command (other than
the adshexec command) that starts from a job definition
script. If this environment variable is set within an environment
file, JP1 event messages from a job definition script are output
in the language that conforms to the value.

This command specifies the link response level of JP1/
Advanced Shell.

For details about how to specify the environment variable, see
(4) Environment variable ADSH LINK SUPPORT
(defining the link support level of JP1/Advanced Shell).

Job step name.

When a command outside the job step is executed or when a
job step name is omitted, the environment variable is not
defined.

Interface used for forced termination from JP1/AJS. This
environment variable must be defined when JP1/Advanced
Shell batch jobs are defined in PC or UNIX jobs. Define the
environment variable in PC or UNIX job definitions, not in OS
settings.

Number of bytes per block. This environment variable is used
in the 1s and stat commands.

The defaultis 512.

Output width per line of command execution results. This
environment variable is used in the —C option of the 1s
command and the 1 editing command of the sed command.

Parameter analysis method. This environment variable is used
in the getopt command.

There is no rule for the value to be set. If a value is set, JP1/
Advanced Shell assumes that the getopt command is
specified in format 1 for all arguments to be analyzed.

This environment variable sets the options for the gzip and
gunzip commands. This environment variable is used in the
following commands:

¢ The gzip command

¢ The gunzip command

¢ The tar command (when the -z option is specified)
For the gzip and gunzip commands, the options set in the

arguments take priority. To specify more than one option, use
one or more space or tab characters to delimit the options.

Rule for determining the order of the command arguments
specified on the command line.

2. Preparations for Using JP1/Advanced Shell

Timing of specification
when the value is set
automatically

(Not specified automatically.)

(Not specified automatically.)

When the job step starts

When the job starts as a custom
job

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

(Not specified automatically.)

Whether
a value
can be
specified

Yes

Yes*7

Yes (Only
TERM is
permitted.)

Yes

Yes

Yes

Yes

Yes

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

84

Environment variable Information to be specified Timing of specification Whether

name when the value is set a value
automatically can be
specified
POSIXLY CORRECT* There is no rule for the value to be set. If a value is set, the (Not specified automatically.) Yes

handling is the same as when seq is specified in the
ADSH CMD ARGORDER environment variable.

TMPDIR Directory to which temporary files are output. This (Not specified automatically.) Yes
(UNIX only) environment variable is used in the diff and sort
commands.
#1

#2

#3

#4

#5

#6

#7

These environment variables can be used only in the unit definitions in JP1/AJS's ajsdefine command and in
the job definitions in JP1/AJS - Definition Assistant. Do not use these environment variables in the JP1/Advanced
Shell's job definition scripts or user environments, such as user profiles and system profiles.

If an environment variable is set within a job definition script or an environment file, the value of such an environment
variable is valid only for a child job or root job that is started from a job definition script.

The POSIXLY CORRECT environment variable has effect in the standard Linux OS commands as well as in the
commands in which the ADSH CMD ARGORDER environment variable has effect, but the environment variable
might have additional functionality other than the rule for determining the specification order of the command
arguments. Therefore, if the only thing you want to do is to set a rule for determining the specification order for
command arguments for UNIX-compatible commands, use the ADSH CMD ARGORDER environment variable.

The ADSH LANG environment variable is prioritized over the LANG environment variable. If the ADSH LANG
environment variable is not specified, messages are output in the language and encoding specified in the LANG
environment variable. If neither the ADSH LANG environment variable nor the LANG environment variable is
specified, the value C is assumed.

The ADSH LANG JP1EVENT environment variable takes priority over both the ADSH LANG and the LANG
environment variables.

Ifthe ADSH LANG JP1EVENT environment variable is not specified, messages are output in the language specified
in the ADSH LANG environment variable. If neither the ADSH LANG JP1EVENT nor the ADSH LANG
environment variable is specified, messages are output in the language specified in the LANG environment variable.

If the ADSH LANG environment variable is set to a value other than C, or if the ADSH LANG environment variable
is not specified and the LANG environment variable is set to a value other than C, messages that are output by JP1
events are output in Japanese. In such a case, if you want JP1 event messages to be output in English, set the
ADSH LANG JP1EVENT environment variable to C.

If you execute the adshmdct 1 command with this environment variable specified, messages to the syslog are also
output in the language and encoding specified in the ADSH LANG environment variable. Depending on the system,
outputting the character encodings of the language and encoding to the syslog might be impossible. In this case, do
not use the adshmdct1 command with this environment variable specified.

If settings are prepared by using the job definition script file or environment file, the specifications will be valid for
child jobs and root jobs started from the job definition script and some of the UNIX-compatible commands.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 85

#8

Note the following when setting an option that has a value for the GZIP environment variable:

 If the value of the option is enclosed in either single quotation marks (') or double quotation marks ("), the
quotation marks (' or ") are handled as part of the value of the option.

 If the value of the option contains any spaces or tab characters, the spaces or tab characters are handled as
delimiter characters and multiple arguments are assumed to be specified.

From job definition scripts, you can reference the default environment variables that are set by the OS and the
environment variables that are specified in the export parameter in the environment files, in addition to the
environment variables listed in the above table. For details about the export parameter, see 7.3.18 export parameter
(defines an environment variable).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 86

2.6 Specifying environment information for JP1/Advanced Shell

Once you have installed JP1/Advanced Shell, you must specify environment information by performing the tasks listed
below. After you have specified the environment information, you will be able to execute batch jobs based on the
specified environment information.

¢ Specify the JP1/Advanced Shell environment files (environment information) and environment variables, as needed.

For details about the environment files and environment variable settings, see 2.6.1 Specifying the environment
files through 2.6.15 Defining the return code in the event of an unresumable error in a job.

Also, read the following subsections as needed:
* 2.6.16 Setting up the user-reply functionality
* 2.6.17 Checking the JP1 environment (UNIX only)
e 2.6.18 Setting up the shell (UNIX only)

* If you want to change the directories and files used for JP1/Advanced Shell from their default settings, you must
create new directories and files.

For details, see 2.6.19 Creating the directories required for JP1/Advanced Shell.

¢ Specify the definition files for collecting maintenance information.
For details about collecting maintenance information, see 11.3 How to collect information.

0 Important

JP1/Advanced Shell sets and references shell and environment variables whose names begin with
ADSH. Therefore, do not use a shell variable or an environment variable whose name begins with ADSH
(in Windows, lower-case representations are included) for any purpose other than those described in
this manual.

2.6.1 Specifying the environment files

The two types of environment files are system environment files and job environment files. The supported parameters
are the same. The following table explains each type of file.

Table 2-16: Types of environment files

Type of environment file Description

System environment file An environment file of this type is common to all systems and is specified by the system administrator. Services
and daemons use the settings in a system environment file. This environment file is used automatically when
it is stored in the predefined directory.

Job environment file This environment file is specified for each job by the developer. It includes the following:
* Environment file specified in the ADSH_ENV environment variable
* Job environment file specified in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box
* Job environment file specified when JP1/Advanced Shell custom jobs are defined

JP1/Advanced Shell services and daemons use the information defined in system environment files. The information
defined in system environment files takes effect at the time a JP1/Advanced Shell service or daemon starts.

Job controllers use the information defined in system environment files and job environment files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 87

For details about the parameters that can be specified in the environment files, see 7. Parameters Specified in the
Environment Files.

All directories specified in parameters in a system environment file must exist. If you wish to change the default
directories, you must create the new directories beforehand.

If you have edited a system environment file in a UNIX environment, check that there are no errors by executing the
adshmdctl command with the conftest option specified.

The following subsections explain how to specify each environment file.

(1) Specifying the system environment files

The system administrator creates and specifies the system environment files. The created system environment files take
effect when they are stored on the file paths specified in the following table.

Table 2-17: File names of system environment files

Environment File name of system environment file

Windows common-application-data-folder \HITACHI\JP1AS\JP1ASD\conf\adshrc.ase
(development

environment)

Windows common-application-data-folder\HITACHI\JP1AS\JP1ASE\conf\adshrc.ase
(execution

environment)

UNIX /opt/jplas/conf/adshrc.ase

(2) Specifying the job environment files

To use a job environment file to execute batch jobs, specify the file path in the ADSH ENV environment variable. Use
the procedure described below to create and specify a job environment file.

In JP1/Advanced Shell Editor, you can specify the path for a job environment file in the Runtime Environment Settings
dialog box. When you define a JP1/Advanced Shell custom job, you can specify the path for the job environment file
that is to be used.

To create and specify a job environment file:

1. Copy the sample . ase environment file sample data from the following directory to a desired directory and file:*

¢ Windows execution environment
installation-folder\ JP1ASE\sample\sample.ase

* Windows development environment

installation-folder\ JP1ASD\sample\sample.ase

¢ UNIX execution environment
/opt/jplas/sample/sample.ase

2. Specify the required parameters in the copy of the job environment file.
For details about the parameters that are required in a job environment file, see 7. Parameters Specified in the
Environment Files. Make sure that the encoding of the job environment file matches the value of the LANG
environment variable in the environment in which job definition scripts are to be run. For details about the encoding
of job environment files and the LANG environment variable, see 2.2.4 Encoding used in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 88

3. Specify the path of the created job environment file in the ADSH ENV environment variable so that the job

environment file can be used during batch job execution.
Use one of the following methods to specify the ADSH ENV environment variable:

* OS setting (Windows only)
* System profile /etc/profile (UNIX only)
* User profile (SHOME/ .profile) (UNIX only)

Do not use any of the following characters in a job environment file directory or filename: & () [1 { } *
=; ! "+, ° ~ # % Ifany of these characters is used, JP1/Advanced Shell will not function normally.

2.6.2 Converting path names

Define the path conversion settings as parameters so that the path names used in job definition scripts can be used in
both Windows and UNIX.

In JP1/Advanced Shell, you can specify paths in job definition scripts according to the platform as shown in the
following.

Table 2-18: Rules for paths supported in Windows and UNIX environments

Item Windows environment UNIX environment

Directory separator A\ /

Path separator ;

Capitalization of path name Case sensitive™? Case sensitive
Absolute path A path name begins with drive-letter: \ | A path name begins with /
\#1,#3
#1

#2

#3

In a Windows environment, use \ \ because \ is treated as an escape character. Alternatively, enclose the entire path
name in single quotation marks.

When path names are converted, they are case sensitive also in a Windows environment.

UNC names are also supported. When you define path name conversion in job definition scripts, make sure that the
path obtained after conversion will not end with a shared name (including a name ending with \). If a path name
ends with a shared name, operation is not guaranteed.

To convert paths according to the above rules, the following definitions are required in the parameters:

If you want to execute job definition scripts in a Windows environment:
Define / and : so that the separators used in the UNIX environment can be interpreted correctly.

If you want to execute job definition scripts in a UNIX environment:
Define \\ and ; so that the separators used in the Windows environment can be interpreted correctly.

The following explains the parameters used to convert path names.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 89

e PATH CONV_ENABLE parameter

Enables the path conversion functionality. Specify the path separator and directory separator before conversion.
a Windows environment, define / and :. In a UNIX environment, define \\ and ;.

* PATH CONV_RULE parameter (Windows only)

As the path name conversion target, define one of the following:

* The range enclosed in double quotation marks is the conversion target (path conversion setting 1)

In

¢ All text excluding the range enclosed in single quotation marks is the conversion target (path conversion setting

2)

If the parameter is omitted or in UNIX, the path conversion setting 1 is applied, in which case only the range enclosed

in double quotation marks is converted.

* PATH CONV parameter

Defines path name character strings before and after conversion. When job definition scripts are executed, path

names are converted according to the rules defined in the parameter. Only the range in a path name that is defined

by the PATH CONV_RULE parameter is converted.

If a path name matches the conversion character string defined in the PATH CONV parameter, path separators and

directory separators are also converted.

(1) Example of file path conversion (path conversion setting 1)

This example shows how job definition scripts before execution are converted according to the information in the
environment file.

¢ Information in the environment file

The following shows an example environment file for Windows:

#-adsh_conf PATH CONV_ENABLE /
#-adsh conf PATH CONV_RULE 1
#-adsh _conf PATH CONV /home/hitachi/bin "C:\\Program Files" <-
#-adsh conf PATH CONV /tmp "C:\\temp" <

N =

* Job definition script before execution

#-adsh path var DIR,DIR2
"/home/hitachi/bin/myprogl" "/tmp/file" <-1., 2.

DIR="/home/hitachi/bin" <-1.
"SDIR/myprogl" "/tmp/file" <-2.
DIR2=SDIR

"SDIR2/myprog2" "/tmp/file" <=2.

* Job definition script after execution
The following results when paths have been converted:

"C:\\Program Files\\myprogl" "C:\\temp\\file" <-1., 2.

DIR="C:\\Program Files" <-1.
"$SDIR\\myprogl" "C:\\temp\\file" <=2.
DIR2=S$DIR

"SDIR2\\myprog2" "C:\\temp\\file" <-2.

1. Path /home/hitachi/bin is converted to C: \\Program Files according to the PATH CON parameter
definition.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

90

Also, the directory separator is converted from / to \\ according to the PATH CONV_ENABLE parameter
definition.

2.Path /tmp is converted to C: \ \ temp according to the PATH CONV parameter definition.

Also, the directory separator is converted from / to \\ according to the PATH_CONV_ENABLE parameter
definition.

(2) Example of file path conversion (path conversion setting 2)

This example shows how job definition scripts before execution are converted according to the information in the
environment file.

* Information in the environment file
The following shows an example environment file for Windows:

#-adsh_conf PATH CONV_ENABLE /

#-adsh conf PATH CONV _RULE 2

#-adsh _conf PATH CONV /home/user0l d:\\home\\user0l
#—adsh_conf PATH_CONV BB/AA BB\ \AA

¢ Job definition script before execution

#-adsh _job JOB0O1

#-adsh path var DIRO1

echo -E "/home/userQ0l/file"
cat /home/user0l/file
DIRO1=/home/user01

cat $DIR01/file02 <-
PATH=/home/user01/prog: SPATH <
uap01l

DIR02=/home/user01
PATH="$DIR02:/home/user0l/prog: SPATH"
AA=10

BB=200

let ANS=BB/AA <-3.
echo S$ANS

cat BB/AA

* Job definition script after execution
The following results when paths have been converted:

#-adsh job JOBOO1

#-adsh path var DIRO1

echo -E "d:\\home\\user01l\\file"
cat "d:\\home\\user01"\\file
DIR01="d:\\home\\user0O1l"

cat "S$DIR01"\\fileO2 <-1.
PATH="d:\\home\\user01"\\prog";""SPATH" <=2.
uap01

DIR02="d:\\home\\user01l"
PATH="$DIR02;d:\\home\\user01l\\prog; SPATH"
AA=10

BB=200

let ANS="BB\\AA" <-3.
echo S$ANS

cat "BB\\AA"
1. Because shell variable DTR01 that handles path names is defined in the job definition script before conversion, shell

variable DIRO01 is enclosed in double quotation marks (") and then a directory separator is added after the shell
variable.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 91

2. Because the top of the character string matches the conversion rule, it is enclosed in double quotation marks (™).
The path separator is converted to " ; ". Furthermore, because the character string was converted to the path, variable
name PATH is also enclosed in double quotation marks.

3. Conversion takes place because the arithmetic expression matches the path conversion setting. To suppress this
conversion, the job definition script must be corrected with either of the following methods:

* Enclose the variable in single quotation marks such as 1et ANS="BB/AA".

* Add $ at the beginning of the variable name to be referenced such as 1et ANS=$BB/SAA.

(3) Notes

* Ifthis definition is used to convert path names to obtain Windows path names, the directory separator in path names
becomes \. Therefore, if a path name is displayed by the echo command unconditionally in a job definition script,
\ and the immediately following character are replaced with the escape character.

If you do not want to replace these characters with the escape character, execute the echo command with the -E
option specified. For details, see 9.3.9 echo command (outputs what is specified in arguments to the standard output)
in 9.3 Standard shell commands.

¢ The metacharacters ~, ~+, and ~- cannot be replaced if they are enclosed in quotation marks, or if they are specified
immediately before an escape character (\) or immediately before a character string enclosed in quotations marks.
For the metacharacters, use the corresponding shell variables by referencing 5.1.6 Metacharacters.

2.6.3 Converting file paths when files are input and output

The file paths specified in job definition scripts are converted to the file paths that are subject to input and output
operations according to the rules defined for file input and output operations. The specified file paths must correspond
exactly to the file paths to be input and output.

(1) File path conversion conditions during file input and output operations

When a file input or output operation occurs, the file path is converted by using the redirect characters (<, >, <>, >>).

Input operations also occur in job definition scripts that are run by using the . (dot) or #-adsh script command.
However, in these job definition scripts, file paths are not converted during file input and output operations. If you want
to convert such file paths, define conversion rules in the COMMAND CONV ARG parameter that converts arguments
during command execution.

File path conversion for file input and output operations applies to job definition scripts that are subject to path
conversion, as described in 2.6.2 Converting path names.

You can perform file path conversion during file input and output operations between the different platforms (UNIX
= Windows or Windows =» UNIX) as well as between the same platforms (UNIX =» UNIX or Windows =»
Windows).

(2) Example of file path conversion during file input and output operations

The following subsections explain how job definition scripts are converted when files are input and output according
to the information (PATH CONV_ACCESS parameter) in the environment file defined for file input and output
operations.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 92

(a) Information in the environment file
The following shows an example environment file:
#-adsh conf PATH CONV_ENABLE /

#-adsh conf PATH_CONV_/tmp "D:\\tmp"
#-adsh conf PATH CONV_ACCESS /dev/null nul

(b) Job definition script before execution

The following shows an example job definition script before execution:

while read LOG
do

echo $LOG > /dev/null
done < "/tmp/input.txt"

(c) Job definition script during execution

The job definition script is interpreted during execution as follows:

while read LOG
do
echo SLOG > nul
done < "D:\tmp\input.txt"

(3) Example of combining the PATH_CONV and PATH_CONV_ACCESS
parameters

This subsection presents an example in which the PATH CONV and PATH CONV_ACCESS parameters are combined
in the Windows edition. If both parameters are specified, the PATH CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file

The following example shows the contents of an environment file (with a number assigned to each line):

#-adsh conf PATH CONV_ENABLE /

#-adsh conf PATH CONV /tmp "C:\\temp"

#-adsh conf PATH CONV_ACCESS /tmp/result.log "C:\\jplas tmp\\result3.log"
#-adsh conf PATH CONV_ACCESS "C:\temp\result.log" "C:\\jplas tmp\\result4.log"
#-adsh conf PATH CONV_RULE 1

g w N

(b) Contents of job definition script and the conversion method

If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat data.txt > "/tmp/result.log"

In this example, the range enclosed in double quotation marks (") is converted by the PATH CONV parameter because
1 is specified in the PATH CONV_RULE parameter.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 93

Because "/tmp/result.log" specified in the cat command is enclosed in double quotation marks ("), it is
converted to "C: \\temp\\result.log" by the rule on line 2 in the environment file. Therefore, the rule on line
3 does not apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jplas tmp\
\result4.log".

cat data2.txt > /tmp/result.log

Because /tmp/result. log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH CONV parameter on line 2. The rule on line 3 applies and the path is converted to
"C:\\jplas tmp\\result3.log".

2.6.4 Converting arguments during command execution

JP1/Advanced Shell converts arguments when commands are executed; this applies to standard shell commands,
extended shell commands, extended script commands, reserved script commands, functions, external commands, and
user programs. You can perform this conversion between the following platforms:

¢ Between the same platforms: UNIX =» UNIX or Windows =» Windows

¢ Between different platforms: UNIX =» Windows or Windows =» UNIX
JP1/Advanced Shell analyzes each line of a job definition script according to the defined rules. If a character string in
a specified argument exactly matches the character string in an argument of a command to be executed, the character

string in the argument is converted to the specified character string. You use the COMMAND CONV_ARG parameter to
specify conversion rules.

(1) Example of combining the PATH_CONV and COMMAND_CONV_ARG
parameters

This subsection presents an example in which the PATH CONV and COMMAND CONV_ ARG parameters are combined
in the Windows edition. If both parameters are specified, the PATH CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file

The following example shows the contents of an environment file (with a number assigned to each line):

#-adsh conf PATH CONV_ENABLE /

#-adsh conf PATH CONV /tmp "C:\\temp"

#-adsh conf COMMAND CONV_ARG /tmp/data.txt "C:\\jplas tmp\\data3.txt"
#-adsh conf COMMAND CONV_ARG "C:\temp\data.txt" "C:\\jplas_ tmp\\datad.txt"
#-adsh_conf PATH CONV_RULE 1

g wN -

(b) Contents of job definition script and the conversion method

If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat "/tmp/data.txt" > ./result.log

This example specifies 1 inthe PATH CONV_RULE parameter; therefore, the range enclosed in double quotation marks
(") is converted by the PATH CONV parameter.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 94

Because " /tmp/data.txt" specified in the cat command is enclosed in double quotation marks ("), it is converted
to "C:\\temp\\data.txt" by the rule on line 2 in the environment file. Therefore, the rule on line 3 does not
apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jplas tmp\\data4.txt".

cat /tmp/data.txt > ./result.log

Because /tmp/result.log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH CONV parameter specified on line 2. The rule on line 3 applies and the path is
convertedto "C:\\jplas tmp\\data3.txt".

2.6.5 Defining files to be started as child jobs

You can specify a job definition script as a command name in another job definition script. This enables you to run a
job definition script specified in the adshexec command as a JP1/Advanced Shell job. This feature is useful in the

following cases:

* Migrating a user's existing asset shell scripts from a UNIX environment to a Windows environment
» Executing an existing shell script that is run in the OS's shell in a UNIX environment as a JP1/Advanced Shell job

without rewriting its contents

Of the job definition scripts that are executed as descendant processes, those jobs that are executed by using specific
environment setting parameters are called child jobs. For details about root jobs and child jobs, see (1) Root jobs and
child jobs. For details about how to execute job definition scripts as child jobs, see 3.2.3 Running job definition scripts
as child jobs.

If you will be starting job definition script files as child jobs, you must specify in an environment file the conditions for
the files to be used. The following provides an overview of the environment setting parameters.

e CHILDJOB EXT parameter

Defines the extension for a job definition script file that is to be executed as a child job.

* CHILDJOB PGM parameter
Defines the path to be replaced so that a job definition script file is executed as a child job.

* CHILDJOB SHEBANG parameter
Defines the path of the executable program of the job definition script file that is to be executed as a child job.

A job definition script file that you create that satisfies the default definition for the CHILDJOB SHEBANG parameter
is run as a child job.

For details about the individual parameters, see 7. Parameters Specified in the Environment Files.

0 Important

If you want to run both root and child jobs by using the same environment file parameters, do not change
the ADSH ENV environment variable values or the contents of the environment files during job execution.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 95

2.6.6 Specifying definitions for using UNIX-compatible commands

(1) Definitions for using executable UNIX-compatible commands in
existing job definition scripts

If you will be using executable UNIX-compatible commands in existing job definition scripts, set the path to the directory
in which the UNIX-compatible commands are installed in the PATH environment variable. This method eliminates the
need for correcting the existing job definition scripts. If there is a command having the same name as a UNIX-compatible
command, you can always run the UNIX-compatible command in JP1/Advanced Shell's job definition scripts by
specifying the path at the beginning of the PATH environment variable value by using the export parameter in the
environment file.

For details about the export parameter, see 7.3.18 export parameter (defines an environment variable) in 7.
Parameters Specified in the Environment Files. Before you run your job definition scripts, make sure that the correct
paths have been set in each environment in which the job definition scripts are to be run.

(2) Preparations for using the script-format UNIX-compatible commands
(Windows only)

The script-format UNIX-compatible commands use sample script files provided by JP1/Advanced Shell.

Execute the script-format UNIX-compatible commands (such as chmod and su) according to the sample script file
provided by JP1/Advanced Shell.

To execute script-format UNIX-compatible commands:

1. Copy to a desired folder the files that you will be using of the sample script files stored at the following location:

¢ Windows execution environment
installation-folder\ JP1ASE\sample

* Windows development environment
installation-folder\ JP1ASD\ sample

For the types of sample script files, see 8.5 UNIX-compatible commands (script format) (Windows only).

2. Rename the copied files to applicable command names.

For example, rename sample script files script chmodl and script sul as chmod and su, respectively. If
you want to define a command that does nothing, copy sample script file script 0 and then rename it.

3. To specify only the file name of the sample script, not its absolute or relative path, do either of the following:
* Store the sample script to be run in the folder defined in the PATH environment variable.
* Add to the PATH environment variable the path of the folder containing the sample script that is to be run.

4. If necessary, define KNAX6831-T message output suppression.

If you do not want the KNAX6831-TI message to be output after the sample script has run, specify the following
coding in the job environment file:

#-adsh conf JOBLOG SUPPRESS MSG KNAX6831-I

If you want to suppress output of the KNAX6831-T message for all job definition scripts in the system, specify the
above coding in the system environment file.

5. Run the job definition scripts.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 96

Run the job definition scripts by using the job environment file created in step 4. If you specified the definition in
the system environment file, the information specified in step 4 is imported automatically.

2.6.7 Defining the handling of unsupported conditional expressions
(Windows only)

The following parameter is used for defining the handling when unsupported conditional expressions are executed in
the test command.

¢ UNSUPPORT_ TEST parameter

In a Windows environment, conditional expressions for evaluating the file attributes that are listed below are not
supported. If any of these conditional expressions is specified, an error will result. However, by specifying the
UNSUPPORT_ TEST parameter, you can display a message and handle a specified conditional expression either as an
error or as a normal event. The unsupported conditional expressions are as follows:

e -G file: Verify if the group to which a file belongs matches the group executing the calling process.

e -O file: Verify whether the owner of the file has a valid user ID for the process.
Although JP1/Advanced Shell supports the following conditional expressions, versions earlier than 11-00 do not support
these conditional expressions so that the following conditional expressions can be specified.

* -h file: Verify if the file is a symbolic link.

e -L file: Verify if the file is a symbolic link (same as -h).

« filel -ef file2: Verify if filel and file2 exist and the entities of filel and file2 are the same (if either their symbolic
link or hard link targets are the same).

2.6.8 Defining job execution results and log output information

Job execution results are output to the spool directory. You can reference some of the output information as job execution
logs. In the event of a problem, you can collect logs and investigate the cause of the problem. In the environment file,
define the output destination and contents of these logs.

The following table lists the types of log information that are output while JP1/Advanced Shell is running, and where
each type is stored.

Table 2-19: Log information output while running JP1/Advanced Shell and its storage locations

Log information
Job execution log

System execution log

Trace log

(UNIX only)
Start log™?

Information that is output
Log of batch jobs

Comprehensive JP1/Advanced Shell execution
log

JP1/Advanced Shell internal trace log

Start and end log of the user-reply functionality's
management daemon

2. Preparations for Using JP1/Advanced Shell

Storage location
Under the spool root directory

Directory specified by the LOG_DIR
parameter”! in the environment file.

Directory specified by the TRACE DIR
parameter”! in the environment file.

Under /opt/jplas/system

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

97

#1
If the parameter is omitted, the default value is used.

#2
This log information is collected when the user-reply functionality's management daemon is started and stopped.
This log information is stored under the /opt/jplas/system directory with the following file names:
¢ User-reply functionality's management daemon on a physical host: adshmd. 1log

e User-reply functionality's management daemon on a logical host: adshmd_[logical-host-name . 1og

The following subsections explain the spool output information and how to define output information for each log.

(1) Defining the spool output information

This subsection explains the spool-related parameters for each output information to be defined.

(a) Determining whether the spool job creation suppression functionality is to be
used

The spool job creation suppression functionality enables you to prevent the spool directory's disk space usage from
increasing continually. It also eliminates the need to delete unneeded directories and files from the spool directory.

Use the SPOOLJOB CREATE parameter to enable the spool job creation suppression functionality. For details, see
7.3.41 SPOOLJOB_CREATE parameter (selects whether a spool job is to be created).

JP1/Advanced Shell always runs with the following settings while the spool job creation suppression functionality is in
effect:

* #-adsh conf EVENT COLLECT NO
Disables the operation information acquisition functionality.
* #-ads h conf OUTPUT MODE CHILD MINIMUM
Executes child jobs in the minimum output mode.
* #-ads h conf OUTPUT MODE ROOT MINIMUM
Executes root jobs in the minimum output mode.
* #-adsh conf SPOOLJOB CHILDJOB DELETE
Deletes the spool jobs for child jobs when the child jobs are terminated.
* adshexec -m MINIMUM

Executes the specified job in the minimum output mode regardless of the specified —m option.

* adshscripttool -exec -m MINIMUM

Executes the specified child job in the minimum output mode regardless of the specified —m option.

Note that when the spool job creation suppression functionality is used, none of the following functions that use spool
job directories can be used:

* #-adsh spoolfile command
If this command is used, the KNAX6385-E message is issued and the script is terminated.

e adshfile command

If this command is used, the KNAX1880-E message is issued and the command is terminated.

¢ Collection of job execution logs

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 98

Job execution logs are not collected.
» Operation results collection functionality
Operation results are not collected.

Even when the spool job creation suppression functionality is in effect, spool directories are still needed.

When the spool job creation suppression functionality is in effect, the following environment setting parameters are
ignored:

s EVENT COLLECT
¢ JOBEXECLOG_PRINT

¢ JOBLOG_SUPPRESS_ MSG

¢ OUTPUT MODE_CHILD

¢ OUTPUT MODE_ROOT

s OUTPUT_ STDOUT

¢ PERMISSION SPOOLJOB DIR
¢ PERMISSION SPOOLJOB FILE

¢ SPOOLJOB CHILDJOB

During CUI debugging, a DBG file with the name shown below is created. This file is deleted automatically when
debugging is finished. If deletion of this file fails, an error message is output to the standard error output and to the
system execution log.

temporary-file-directory/ADSH DBG process-ID job-ID
* temporary-file-directory
Temporary file directory defined in the TEMP FILE DIR parameter

* process-ID

Process ID consisting of five or more digits
e job-ID
Job ID consisting of six digits

(b) Defining the path name of the spool root directory

The following parameter is used for defining the path name of the spool root directory:
* SPOOL_DIR parameter: Defines the path name of the spool root directory.

If you will be using the user-reply functionality, define the SPOOL DIR parameter only in the system environment file.

(c) Changing the spool job directory or file permissions (UNIX only)

When a job is terminated, its execution results are output to the spool job directory created for that job. You can use the
following parameters to change the permissions for the directory or the files under that directory:

e PERMISSION SPOOLJOB_DIR parameter
Specify this parameter to change permissions for the spool job directory.
The default is 700.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 99

¢ PERMISSION SPOOLJOB FILE parameter
Specify this parameter to change permissions for the files under the spool job directory.
The default is 600 (in . DBG files, 666).

(d) Defining the standard output and standard error for spool jobs

When a job is executed, information and warning messages for the job controller and job execution logs are output in
addition to the job execution results. The standard output and the standard error output are output to files under the spool
job directory.

You specify the simple output mode or the minimum output mode to suppress output of the standard output and the
standard error output to files under the spool job directory. You use the following parameters and command options for
this specification:
e OUTPUT MODE ROOT parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for root jobs.
e OUTPUT MODE CHILD parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for child jobs.
e -m option of the adshexec command
Specifies the expansion output mode, simple output mode, or minimum output mode for jobs.

e —moption of the adshscripttool command

Specifies the simple output mode or minimum output mode for child jobs.

If these parameters and option are omitted, expansion output mode is assumed, in which case the standard output and
the standard error are output to files under the spool job directory.

In the simple and minimum output modes, information and warning messages for the job controller are not output to
standard output or standard error output. Also, when jobs are terminated, job execution logs are not output to the standard
error output. In addition, in the minimum output mode, messages whose output is suppressed are not output to the job
execution logs under spool job directories.

For details about the difference in output information among the simple output mode, expansion output mode, and
minimum output mode, see 3.4.4 Suppressing output of information and warning messages to job execution logs.

(2) Defining the information to be output to the job execution log

This subsection explains information related to the job execution log that is to be specified during the environment setup.
For details about the information that is output to the job execution log, see 3.5 Job execution log.

(a) Defining the types of job execution logs to be output to the standard error

When a job is terminated, the information listed below is output as job execution logs to the standard error. The output
job execution logs are displayed on the terminal screen used when the adshexec command is executed, and in
JP1/AIJS - View's Execution Results Details dialog box.

e JOBLOG file (Messages indicating the job's execution status, including command execution results and file
allocation results)

¢ Job definition script

* Contents of the standard error during job execution

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 100

To output only the contents of the standard error during job execution to the standard error, specify the parameter shown
in the following to limit the contents of job execution logs to be output:

* JOBEXECLOG_ PRINT parameter

If a job is executed in JP1/Advanced Shell - Developer or the job controller is started in the debugger mode, JOBLOG,
standard output, and standard error are output to the console regardless of the specification of this parameter. When the
job is terminated, the contents of the job execution log are not output to the standard error.

When a job is executed in the simple output mode or the minimum output mode, job execution logs are not output to
the standard error output when the job is terminated regardless of the specification of the JOBEXECLOG PRINT
parameter.

(b) Merging the job execution logs for a root job and child jobs

The following parameter enables you to choose whether child jobs' spool jobs are to be deleted when the child jobs are
terminated, or to be merged into the root job's spool jobs:

¢ SPOOLJOB CHILDJOB parameter

If child jobs' spool jobs are merged into the root jobs spool jobs, the child jobs are output in the order they are terminated
in such a format that the root job can be identified from the child jobs.

(3) Defining the information to be output to the system execution log

The system execution log provides system administrators with a comprehensive execution history of batch jobs.

The log information is output to AdshLog. 1og under the directory specified by the LOG DIR parameter in the
environment file. The files are swapped (AdshLog 1.log, AdshLog 2.1log, .., AdshLog N.log) according
to conditions (such as maximum file size) specified in parameter settings. Because a new system execution log file is
created when log files are swapped, the owner of each file will be the user at the time swapping occurs.

(a) Flow of output to the system execution log

The system execution log is the destination for log information about the batch jobs running in each job controller
process. You can specify in the environment files the output destination for the system execution log, as well as
parameters that control log file swapping (such as maximum file size and number of files). The following figure shows
the flow of output to the system execution log.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 101

Figure 2-6: Flow of output to the system execution log
JP1/Advanced Shell server

Job controller
Job controller process B
process A

System execution log output

System execution log

The system execution log is created as follows.

* Messages to be output to the system execution log are collected and output in CSV format.
For details about the messages that are output, see 12.2 Message output destinations.

* In time, log file swapping is performed and a backup is created.

* Just before it exceeds the file size specified in the LOG FILE SIZE parameter in the environment file, the
current system execution log file is renamed so that it becomes a backup file, and a new system execution log
is created and message output continues to it.

* The file name of the backup will be AdshLog N.log (where N is an integer). N is assigned a number in
ascending order from the newest backup, starting from 1.

* The maximum number of backups to be created is specified in the LOG_FILE CNT parameter in the
environment file. When the number of backup files exceeds this value, the oldest backup file is deleted.

(b) Parameters required to output the system execution log

The following parameters are used for outputting system execution logs:

* LOG_DIR parameter: Defines the path name of the directory to which system execution logs are to be output.
* LOG FILE CNT parameter: Defines the number of files used for backing up system execution logs.

* LOG FILE SIZE parameter: Defines the file size for output of system execution logs.

If multiple users output system execution logs to the same file, the LOG FILE CNT and LOG FILE SIZE parameter
values specified by the last user who starts output of system execution logs take effect. Therefore, we recommend that
you use the same value for LOG_FILE CNT and LOG FILE SIZE.

(c) Contents of the system execution log

The following shows an example of a message output to the system execution log:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 102

seqnum=1, date=2013-12-06T10:41:19.242+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0004-I, msg="Job ID=000006, JPINBQSQueueName=, scheduler job ID="
seqnum=2, date=2013-12-06T10:41:19.250+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0091-I, msg="JOBl The job started."

segqnum=3, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7901-I, msg="The adshexec command will wait for all asynchronous processes
at the end of the job."

seqnum=4, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7902-I, msg="The adshexec command will run in tty stdin mode."

seqnum=5, date=2013-12-06T10:41:19.252+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOBl.STEPl step started.”

seqnum=6, date=2013-12-06T10:41:19.263+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uapOl.exe (line=5) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s"

seqnum=7, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOBl.STEPl step succeeded. exit status=0 execution
time=0.022s CPU time=0.015s"

seqnum=8, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOBl.STEP2 step started."

seqnum=9, date=2013-12-06T10:41:19.289+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap02.exe (line=10) finished
successfully. exit status=0 execution time=0.008s CPU time=0.015s"

seqnum=10, date=2013-12-06T710:41:19.290+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOBl.STEP2 step succeeded. exit status=0 execution
time=0.016s CPU time=0.015s"

seqnum=11, date=2013-12-06T10:41:19.290409:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOBl.STEP2 step started."

seqnum=12, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap03.exe (line=15) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s"

seqnum=13, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOBl.STEP2 step succeeded. exit status=0 execution
time=0.009s CPU time=0.000s"

seqnum=14, date=2013-12-06T10:41:19.300+409:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0098-I, msg="JOBl The job ended. exit status=0 execution time=0.053s CPU
time=0.030s"

The following table lists and explains the data items that are added in front of the message texts in the system execution
log:

Data items output to the Meaning
system execution log

segnum Message's serial number
date Output date and time (in the format yyyy-mm-ddThh : mm :ss . sssTZD)
pgmid Program ID

In a job controller, adshexec is output.

jobid Job ID

pid Process ID

msgid Message ID of the output message
msg Message text of the output message

(4) Defining the information to be output to trace logs

Trace logs are JP1/Advanced Shell's internal trace logs. In the event of a problem in JP1/Advanced Shell, traces are
collected to resolve the problem.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 103

The following table shows the types of trace logs.

Table 2-20: Types of trace logs

No. Type of trace log Trace log output destination (default Log file File size
value) count
1 JP1/Advanced Shell execution environment ¢ Windows <<4>> <<2>>
trace log (Windows and UNIX)* and JP1/ common-application-data-folder ((1 to 64)) ((1 to 16))
Advanced Shell's job definition script operation \Hitachi\JP1AS\JP1ASE\trace
1nf0rmati10nt outp;lt c#ornmand (adshevtout « UNIX
command) trace log /opt/jplas/trace
2 JP1/Advanced Shell - Developer's non-editor common-application-data-folder\Hitachi <<4>> <<2>>
trace log” \JP1AS\JP1ASD\trace ((1 to 64)) ((1 to 16))
3 JP1/Advanced Shell custom job trace log common-application-data-folder\Hitachi 1 1
\JP1AS\JP1ASV\trace
4 JP1/Advanced Shell - Developer's editor trace common-application-data-folder\Hitachi 1 1
log \JP1AS\JP1ASD\adshedit\trace
5 JP1/Advanced Shell and JP1/Advanced Shell - common-application-data-folder\Hitachi 4 2
Developer's shared commands trace log \JP1AS\misc\trace

Environment setting parameters can be used to change the trace log output destination, number of log files, and file
size.

The following parameters are used for defining trace files:

* TRACE DIR parameter

Defines the path name of the directory to which traces are to be output. The trace log file names are
AdshTrace n.log (n: number of files).

e TRACE FILE CNT parameter

Defines the number of files to which traces are to be output. The specified number of trace log files are used
sequentially and then overwritten in wraparound fashion once all of the files become full.

e TRACE FILE STZE parameter
Defines the file size for output of traces.

e TRACE LEVEL parameter

Defines the trace output level.

If multiple users output traces to the same file, the TRACE_FILE CNT and TRACE FILE SIZE parameters are
handled as follows:
* The largest user values specified for the TRACE FILE CNT and TRACE FILE SIZE parameters take effect.

» Ifthe TRACE FILE CNT and TRACE FILE SIZE parameter values are changed, the new values are compared
with the existing number of trace files and file size, and the largest user values specified for these parameters take
effect.

To reduce the number of trace files or the file size, you must delete all the files in the trace folder. Before you delete all
files from the trace folder, make sure that no job is outputting traces to the corresponding trace files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 104

2.6.9 Defining the return codes of extended script commands

The following parameters are used to change the default values for the return codes that indicate whether extended script
commands failed or were successful:

* ADSHCMD RC_ERROR parameter: Defines the return code to be used to indicate that an extended script command
failed.

* ADSHCMD RC_SUCCESS parameter: Defines the return code to be used to indicate that an extended script command
was successful.

For details, see 5.8.7 Return codes of extended script commands and handling of errors.

2.6.10 Sharing among multiple environments

You can run multiple environments on the same host by using the following environment setting parameters to specify
different directories:

* LOG_DIR parameter
¢ SPOOL DIR parameter
e TEMP FILE DIR parameter

¢ TRACE DIR parameter

To inherit information to a standby server during cluster operation, any directory to be inherited must be shared among
the multiple hosts. In such a case, you must share among the multiple hosts at least the directory specified in the following
parameter:

¢ SPOOL DIR parameter

2.6.11 Enabling coverage information collection without having to specify
the option during batch job execution

By specifying the environment setting parameters listed below for collecting coverage information, you eliminate the
need to specify the coverage information collection option (-t option) during batch job execution:

* BATCH_CVR parameter: Uses the coverage auto-acquisition functionality.

* ASC_FILE parameter: Defines the accumulation file naming rules to be used by the coverage auto-acquisition
functionality.

The following subsections show example settings in the environment file and the command to be executed.

(1) Example settings in the environment file

This example specifies the following parameters in the environment file:

#-adsh conf BATCH CVR YES
#-adsh conf ASC FILE ./cvrg/ver001-*

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 105

The following explains each line of the settings:

1. BATCH_CVR: Uses the coverage auto-acquisition functionality.

2.ASC FILE: Defines the accumulation file naming rules used by the coverage auto-acquisition functionality.

(2) Command to be executed

This example executes the following command using the above settings in the environment file:

adshexec sample.ash

This command produces the same results as if the adshexec command with adshexec -t -0 . /cvrg/ver001-
sample sample.ash specified were executed. However, if the adshexec command with adshexec -t
sample.ash specified (the -t option specified) were executed, the return code would be 1, resulting in an error.

2.6.12 Migrating job definition scripts from UNIX to Windows

This subsection explains how to migrate UNIX job definition scripts to Windows job definition scripts. Before you
perform the procedure, make sure that the encoding of the job definition scripts and environment files matches the value
of the LANG environment variable that is used on the target platform.

To migrate from UNIX job definition scripts to Windows job definition scripts:

1. Enable the path conversion functionality.

To convert the separators used in UNIX job definition scripts to those supported by Windows platforms, specify the
following parameter in the environment file:

#-adsh conf PATH CONV_ENABLE /

2. Specify the setting needed for converting the specified paths.

If program paths are specified explicitly in job definition scripts, specify the parameter shown below to convert the
paths to paths used in the Windows environment. This example converts the paths of UNIX-compatible commands.

#-adsh _conf PATH CONV /opt/jplas "C:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"

3. Specify the setting needed for converting the separators around the shell variables that handle paths.

If you describe the path of the program in the job definition script, you need to specify the shell variable that handles
the path to convert the path separator that uses the shell variable. The shell variable that handles the path is specified
with the environment file or job definition script.

* The command is specified as follows in the environment file:

#-adsh_conf PATH CONV_VAR VAR

* Add the following command in the job definition script:
#-adsh path var VAR
4. Select the path conversion setting. (Windows only)

Specify the path conversion setting by using the PATH CONV_RULE parameter.

If you want to convert a part enclosed in double quotation marks ("), specify path conversion setting 1 as follows:

#-adsh conf PATH CONV_RULE 1

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 106

If you want to convert a part that is not enclosed in double quotation marks (™) as well as a part enclosed in double
quotation marks, specify path conversion setting 2 as follows:

#-adsh_conf PATH CONV_RULE 2

5. Verify that conversion is enabled.
In path conversion setting 1, verify that the paths to be converted are enclosed in double quotation marks (") as
shown in the following example:

"SVAR/cmd/1s"™ -1 "/opt/jplas/sample"

In path conversion setting 2, verify that the path that you do not wish to convert is enclosed in single quotation marks
(")
6. Check the path conversion results.

Perform a syntax check on the job definition script (adshexec —c command) and check the path conversion results
in the generated script image. If the conversion results are not correct, either change the path conversion setting or
edit the job definition script, and then perform a syntax check again.

The following shows examples of path conversion settings 1 and 2.

¢ Example of conversion using path conversion setting 1
Environment setting parameters:
#-adsh conf PATH CONV_ ENABLE /

#-adsh conf PATH CONV RULE 1
#-adsh _conf PATH CONV /opt/jplas "c:\\Program Files\\HITACHI\\JPI1AS\\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -c
samplel.ash

x%* D:\home\user00l\samplel.ash *****
0001 : #-adsh job SAMPLE
0002 : #-adsh path var VAR

0003 :

0004 : VAR=/opt/jplas

0005 : "$VAR/cmd/1ls" -1 "/opt/jplas/sample"
0006 :

*****x Converted lines in "C:\home\user00l\samplel.ash" ****x*
0005 : "$VAR\\cmd\\1ls" -1 "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\\sample"
KNAX7999-1 Advanced Shell ended. exit status=0

D:\home\user001>
* Example of conversion using path conversion setting 2
Environment setting parameters:

#-adsh conf PATH CONV ENABLE /
#-adsh conf PATH CONV RULE 2
#-adsh conf PATH CONV /opt/jplas "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -c
samplel.ash

*****x D:\home\user00l\samplel.ash ***x**
0001 : #-adsh job SAMPLE

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 107

0002 : #-adsh path var VAR

0003 :

0004 : VAR=/opt/jplas

0005 : "S$VAR/cmd/1ls" -1 "/opt/Jjplas/sample"
0006 :

***** Converted lines in "D:\home\user00l\samplel.ash"™ *****

0004 : VAR="c:\\Program Files\\HITACHI\\JP1AS\\JP1lASE"

0005 : "SVAR\\cmd\\1ls" -1 "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\\sample"
KNAX7999-1I Advanced Shell ended. exit status=0

D:\home\user001>

2.6.13 Loading the files specified in the ENV shell variable

You can use the KSH _ENV_READ environment setting parameter to specify whether the . env files specified in the
ENV environment variable are to be loaded when the job controller starts. If this parameter is omitted, the default value
depends on the OS, as shown in the following:

¢ Linux and Windows: YES (loads ENV files)
¢ AIX, HP-UX, and Solaris: NO (does not load ENV files)

2.6.14 Defining the process that will be executing the last command in a
pipe

To define whether the last command in a pipe is to be executed by the current process or another process, specify the

PIPE CMD LAST environment setting parameter as follows:

e CURRENT: Executes in the current process.
* OTHER: Executes in another process.

e SEQUENTIAL [Only for Windows]: Execute all commands sequentially by the current process.

Ifthe PIPE_CMD_LAST parameter is omitted, CURRENT is applied in the UNIX edition and SEQUENTIAL is applied
in the Windows edition.

2.6.15 Defining the return code in the event of an unresumable error in a
job

Ifajob is terminated due to an error, such as a memory shortage or a job definition script parsing error, the job controller's
return code is set to 1. You can change this return code to any value from 1 to 255 by setting a value in the
ADSH JOBRC_ FATAL environment variable.

For details about how to specify the ADSH JOBRC_FATAL environment variable, see (2) ADSH_JOBRC_FATAL
environment variable (specifies the return code in the event of an unresumable error in jobs).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 108

(1) Whether the ADSH_JOBRC_FATAL environment variable can be
applied

The following table lists the types of errors that might occur while the job controller is running and whether the return
code defined in the ADSH JOBRC FATAL environment variable can be applied.

Table 2-21: Whether the ADSH_JOBRC_FATAL environment variable setting is applied by error

type
No. Timing of error Error type Applicability#?
1 When a job is started by the Errors that prevent the OS from starting execution of the adshexec command. N

adshexeccommandorajob For example, this type of error occurs when the load module that is used by the

definition script is debugged adshexec command does not exist.
from the editor

2 Before a job definition script | Parsing errors in the ADSH JOBRC_FATAL environment variable N#2
is run

3 Event file initialization errors N

4 (UNIX only) Errors that occur during signal reception N3

5 (Windows only) Errors that occur if any of the following processes is terminated N

immediately by a function such as TerminateProcess:
* adshexec.exe

* adshexecsub.exe

* adshesub.exe

¢ adshedit.exe

6 All errors other than those listed in 2 to 5 above. The typical errors are as follows: Y
e Command line parsing errors in the adshexec command
e Invalid status errors in a job definition script file specified in the adshexec
command's argument
¢ Environment file parsing errors
* Job definition script parsing errors
« Initialization errors in the job execution log, system execution log, and trace
log
* Initialization errors in asc files
* (Windows only) License check errors

* (Windows only) Errors resulting from a reception of control signal (CTRL
+C, CTRL+BREAK, CTRL CLOSE_EVENT)

7 While a job definition scriptis | Errors that do not stop job definition script processing* N
running
Errors caused when a job is terminated by using the debugger's command, menu,
or button listed below during debugging:

¢ (UNIX only) Executing of the ki1l or quit command or re-execution of
the run command

¢ (Windows only) Selecting the Quit Debugging menu, clicking the Quit
Debugging button, or closing the editor window to cancel debugging

9 (UNIX only) Errors that occur during signal reception N#3

10 (Windows only) Errors that occur if any of the following processes is terminated N
immediately by a function such as TerminateProcess:

¢ adshexec.exe
* adshexecsub.exe
* adshesub.exe

¢ adshedit.exe

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 109

No. Timing of error Error type Applicability#?

11 While a job definition scriptis = This includes all errors other than those listed in 7 to 10 above. The typical errors Y
running are as follows:

* Special built-in command errors (excluding the typeset errors and the
errors in the return command executed within a function or an external
script)

* Assignment operation errors™

« Errors in variable substitution in a job termination format™

¢ Errors caused by the specification of an out-of-range array element (outside
the range from 0 to 65535)

¢ Resource allocation errors caused by a shortage of memory and disk capacity
 Input/output errors
¢ Internal conflict errors

¢ (Windows only) Errors resulting from a reception of control signal (CTRL
+C,CTRL+BREAK,CTRL_CLOSE_EVENT)

¢ (Windows only) Errors resulting from the execution of a conditional
expression containing the operator —h, -G, -L, -0, or —e f (except when a
value other than ERR is specified in the UNSUPPORT TEST parameter)

12 After execution of a job (UNIX only) Errors that occur during signal reception N#3

definition script
13 The following errors related to files and directories: N

 Parsing errors in the files allocated by an extended script command
* Postprocessing errors in spool job management files
» Postprocessing errors in the root job's spool job directory

¢ Post processing errors in event files

14 (Windows only) Errors that occur if any of the following processes is terminated N
immediately by a function such as TerminateProcess:

* adshexec.exe
e adshexecsub.exe
* adshesub.exe

* adshedit.exe

15 All errors other than those listed in 12 to 14 above. The typical errors are as Y
follows:

¢ Postprocessing errors in the asc files

¢ Child jobs' spool job directory deletion errors
* (UNIX only) DBG file parsing errors

¢ Internal conflict errors

¢ (Windows only) Errors resulting from a reception of control signal (CTRL
+C, CTRL+BREAK, CTRL_CLOSE_EVENT)

Legend:
Y: The setting of the ADSH JOBRC _FATAL environment variable takes effect.
N: The setting of the ADSH JOBRC _FATAL environment variable does not take effect.

#1

The options specified in the adshexec command do not affect whether the setting of the ADSH JOBRC FATAL
environment variable takes effect. For example, if the adshexec command with the —c option specified is executed
and a syntax error occurs, the ADSH JOBRC_FATAL environment variable setting still takes effect.

This applicability depends on the OS as follows:
* In UNIX, the -d option is specified in the adshexec command

For the debugger and the jobs subject to debugging that are executed by the run command, the following items
in the table are checked to determine the applicability:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 110

#2

#3

#4

#5

Debugger: Items 1 to 6 and 12 to 15
Jobs subject to debugging: Items 7 to 15

* In Windows, debugging is executed from the editor
For the jobs to be debugged, items 1 to 15 in the table are checked to determine the applicability.

The return code is 255.

If the job controller receives a signal and the job terminates with an error, the job's return code is 128 + the signal
number.

If an extended script command results in an error while a job definition script is running, the subsequent job steps
and commands listed below are not executed; however, this is not treated as an unresumable error. Therefore, the
setting of the ADSH JOBRC_FATAL environment variable does not take effect.

* Job steps whose run attribute is omitted or normal

* Instructions outside job steps

This does not apply when an assignment operation is specified in the argument of a regular built-in command.
The table below shows the classification of assignment operation specifications and whether the setting of the
ADSH JOBRC_FATAL environment variable is applied. The error indicated in this table occurs if an attempt is
made to assign a value to the NUM variable that has been defined as being read-only in readonly NUM.

Classification of assignment operation specification Example of error Applicability

An assignment operation is specified on its own. NUM=100 Y

An assignment operation is specified in the argument of a reserved script command. | time NUM=100

Y
An assignment operation is specified in the argument of a special built-in command. = export NUM=100 Y
N

An assignment operation is specified in the argument of a regular built-in command. = let NUM=100

#6

Legend:
Y: The setting of the ADSH JOBRC_FATAL environment variable takes effect.
N: The setting of the ADSH JOBRC FATAL environment variable does not take effect.

As a result of variable substitution, the job might become unresumable and be terminated with an error depending
on the status of variable. The following shows the status of variable that results in an error for each format:

${variable:?[word]}
If variable has been defined and its value is null (empty character string) or is undefined, an error results.
${variable?[word]}

If variable is undefined, an error results.

(2) ADSH_JOBRC_FATAL environment variable (specifies the return code

in the event of an unresumable error in jobs)

The ADSH JOBRC FATAL environment variable is used to specify the job controller's return code in the event a job
becomes unresumable and is terminated with an error. The specified return code is applied to jobs that are executed by
using the adshexec command and to jobs that are executed from JP1/Advanced Shell - Developer's editor.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 111

The following shows how to apply the value of this environment variable globally in the entire system:

* Windows
Define ADSH JOBRC_FATAL as a system environment variable.

« UNIX
Specify the ADSH JOBRC_FATAL environment variable setting in /etc/profile.

If this environment variable is not specified and a job terminates with an unresumable error, the controller's return code
issetto 1.

(a) Values permitted in the environment variable

termination-code ~<unsigned integer> ((1 to 255))

Specifies the return code to be set when a job cannot be resumed. If the value is padded with leading zeros such as
001, the leading zeros are deleted and the value is treated as being 1.

(b) Notes

» Ifthe ADSH JOBRC FATAL environment variable is defined by using the export parameter in the environment
file or the ADSH JOBRC_FATAL environment variable is defined or changed within a file or a job definition script
specified in the ENV shell variable, this functionality does not take effect within that job. The functionality takes
effect on another job that is started from that job.

e The ADSH JOBRC_ FATAL environment variable defines the final return codes for jobs. It does not affect the return
codes of individual commands and job steps.

» Ifany of the following values is set, the job terminates, without being executed, with an error with return code 255 :
* Value consisting of four or more characters (example: 1234)
¢ Value outside the permitted range (example: 500)
¢ Non-numeric characters (example: 124, +8, 8.0)
* Value consisting of no character (null character string)

* Whether the ADSH JOBRC_FATAL environment variable is applied in the event of an error depends on each job.
If an unresumable error occurs only within aroot job or a child job, the ADSH JOBRC_FATAL environment variable
will not be applied to any other root job or child job to change its return code.

(c) Examples

The following shows an example of a UNIX job that was started with 8 setin the ADSH JOBRC FATAL environment
variable and terminated with an unresumable error.

The job could not be resumed because the directory specified in the SPOOL_DIR parameter in the environment
file was not found:

Contents of /etc/profile:

ADSH JOBRC_ FATAL=8
export ADSH JOBRC FATAL

Command specification at the job start:

$ /opt/Jjplas/bin/adshexec test.sh

The following shows the execution results:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 112

KNAX0441-E The directory specified for the parameter "SPOOL DIR" does not exist.
line=1

KNAX0410-E An error occurred when parsing the environment file "sample.ase". For
details, see the message output before this one.

KNAX0240-I The setting specified for the environment variable ADSH JOBRC FATAL
was applied. value=8 R S

KNAX7999-1I Advanced Shell ended. exit status=8 L2,

The following explains execution results 1 and 2:
1. This is a message indicating that the ADSH JOBRC_FATAL environment variable was applied.
2. The setting of the ADSH JOBRC_FATAL environment variable was applied as the job controller's return code.
A child job was terminated due to an error in the special built-in command (unset command).
Contents of /etc/profile:

ADSH JOBRC_ FATAL=8
export ADSH JOBRC FATAL

Contents of the environment file:

#-adsh conf CHILDJOB SHEBANG /bin/sh

Contents of the root job's job definition script (prt . sh):

./cld.sh
. /cmdA

Contents of the child job's job definition script (c1d. sh):

#!/bin/sh
val=10
unset
./cmdX Sval

Command specification at the job start:

$ /opt/Jjplas/bin/adshexec prt.sh

The following shows the execution results:

xAkAKKHx JOB CONTROLLER MESSAGE ***xxx*x%

15:02:55 000042 KNAX0091-I ADSH000042 The job started.

15:02:55 000042 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.

15:02:55 000042 KNAX7902-I The job controller will run in tty stdin mode.
15:02:55 000042 KNAX6831-I The command definition matched the rule specified by
the environment settings parameter CHILDJOB SHEBANG. script="./cld.sh"
shebang="/bin/sh"

>>>>>> [JOBLOG] /home/usr/cld.sh

15:02:55 000043 KNAX6571-I The child job ADSHO000043 started. parent
Job=ADSH000042 parent job ID=000042

15:02:55 000043 KNAX6572-I The child job ADSH000043 will use the job environment
file "/opt/Jjplas/conf/adsh.conf".

15:02:55 000043 KNAX7902-I The job controller will run in tty stdin mode.
15:02:55 000043 KNAX6110-I Execution of the command val=10 (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s

15:02:55 000043 KNAX6015-E No argument is specified. filename="/home/usr/cld.sh"
line=3

15:02:55 000043 KNAX6521-E The command unset (line=3) failed. exit status=1
execution time=0.000s CPU time=0.000s

15:02:55 000043 KNAX6584-1I A job stopped because a command that terminates

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 113

execution of the script was executed.

15:02:55 000043 KNAX0101-E ADSH000043 An error occurred during execution of the
Jjob.

15:02:55 000043 KNAX6578-I The child job ADSH000043 ended. exit status=8
execution time=0.001ls CPU time=0.000s

<<<<<< [JOBLOG] /home/usr/cld.sh

15:02:55 000042 KNAX6521-E The command ./cld.sh (line=1) failed. exit status=8
execution time=0.027s CPU time=0.000s

15:02:55 000042 KNAX6116-I Execution of the command ./cmdA (line=2) finished
successfully. exit status=0 execution time=0.001ls CPU time=0.000s

15:02:55 000042 KNAXO0101l-E ADSH000042 An error occurred during execution of the
job.

15:02:55 000042 KNAX0098-I ADSH000042 The job ended. exit status=0 execution
time=0.030s CPU time=0.000s

*kkkkKkk Kk Scrlpt IMAGE *kk Kk k kKK

k*xx /home/usr/prt.sh *x

0001 : ./cld.sh
0002 : ./cmdA
0003

kKkk* CONVERSION INFORMATION *%*%*

x*x%% /home/usr/cld.sh *xxx
0001 : #!/bin/sh

0002 : wval=10

0003 : unset

0004 : ./cmdX $val

0005 :

k&k%* CONVERSION INFORMATION **%*
Xk Kk kK Kk Kk JOB SCOPE STDERR Kk K ok Kk Kk Kk k

>>>>>> [STDERR] /home/usr/cld.sh

KNAX0726-1I The child job ID was assigned. job ID=000043

KNAX0101l-E ADSHO000043 An error occurred during execution of the job.
KNAX0240-I The setting specified for the environment variable ADSH JOBRC FATAL
was applied. value=8

<<<<<< [STDERR] /home/usr/cld.sh

KNAX0101l-E ADSHO000042 An error occurred during execution of the job.
KNAX0098-I ADSH000042 The job ended. exit status=0 execution time=0.030s CPU
time=0.000s

*kkkkk kK JOBSTEP OUTPUT *kkkkk kK

KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jplas/spool/000042-ADSH000042/"

KNAX7999-1 Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:
1. The setting of the ADSH JOBRC_FATAL environment variable was applied as the child job's return code.

2. This is a message indicating that the ADSH JOBRC FATAL environment variable was applied to the child job.

The following shows an example of a Windows job that was started with 16 set in the ADSH JOBRC_FATAL system
environment variable and terminated with an unresumable error.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 114

The job could not be resumed because the directory specified in the LOG_DIR parameter in the environment
file was not found.

This example specifies the following system environment variable and value:
* Variable: ADSH JOBRC_FATAL
* Value: 16

Command specification at the job start:

adshexec test.ash

The following shows the execution results:

KNAX0441-E The directory specified for the parameter "LOG DIR" does not exist.
line=1

KNAX0410-E An error occurred when parsing the environment file "sample.ase". For
details, see the message output before this one.

KNAX0240-I The setting specified for the environment variable ADSH JOBRC FATAL

was applied. value=16 ..u 1.
KNAX7999-1 Advanced Shell ended. exit status=16 ... 2.

The following explains execution results 1 and 2:
1. This is a message indicating that the ADSH JOBRC FATAL system environment variable was applied.
2. The setting of the ADSH JOBRC_FATAL environment variable was applied as the job's return code.

A child job was terminated due to an error in the special built-in command (unset command)

This example specifies the following system environment variable and value:
* Variable: ADSH JOBRC FATAL
* Value: 16

Contents of the environment file:

#-adsh conf CHILDJOB SHEBANG /bin/sh

Contents of the root job's job definition script (prt . sh):

./cld.sh
. /cmdA

Contents of the child job's job definition script (c1d. sh):

#!/bin/sh
val=10
unset
./cmdX S$val

Command specification at the job start:

adshexec prt.sh

The following shows the execution results:

FHrHxxxHkxx JOB CONTROLLER MESSAGE — **xx**x*xx

17:15:38 000155 KNAX0091-I ADSH000155 The job started.

17:15:38 000155 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.

17:15:38 000155 KNAX7902-I The job controller will run in tty stdin mode.
17:15:38 000155 KNAX6832-I The command definition matched the rule specified by
the environment settings parameter CHILDJOB EXT. script=".\cld.sh"

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 115

>>>>>> [JOBLOG] c:\homel\usr\cld.sh

17:15:38 000156 KNAX6571-I The child job ADSH000156 started. parent
Job=ADSH000155 parent job ID=000155

17:15:38 000156 KNAX6572-I The child job ADSH000156 will use the job environment
file "c:\jplas\confladsh.conf".

17:15:38 000156 KNAX7902-I The job controller will run in tty stdin mode.
17:15:38 000156 KNAX6110-I Execution of the command val=10 (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s

17:15:38 000156 KNAX6015-E No argument is specified. filename="c:\home\usr
\cld.sh" line=3

17:15:38 000156 KNAX6521-E The command unset (line=3) failed. exit status=1
execution time=0.000s CPU time=0.000s

17:15:38 000156 KNAX6584-I A job stopped because a command that terminates
execution of the script was executed.

17:15:38 000156 KNAXO1l0l-E ADSHO000156 An error occurred during execution of the
Jjob.

17:15:38 000156 KNAX6578-I The child job ADSH000156 ended. exit status=16
execution time=0.000s CPU time=0.000s

<<<<<< [JOBLOG] c:\home\usr\cld.sh

17:15:38 000155 KNAX6521-E The command .\cld.sh (line=1) failed. exit status=16
execution time=0.062s CPU time=0.015s

17:15:38 000155 KNAX6116-1I Execution of the command .\cmdA.exe (line=2) finished
successfully. exit status=0 execution time=0.016s CPU time=0.016s

17:15:38 000155 KNAXO0101-E ADSHO000155 An error occurred during execution of the
job.

17:15:38 000155 KNAX0098-I ADSH000155 The job ended. exit status=0 execution
time=0.078s CPU time=0.047s

*hkkk Kk KkKkKk Scrlpt IMAGE *kk Kk kKKK

***k*x*x c:\home\usr\prt.sh ***x*xx*

0001 : .\\cld.sh
0002 : .\\cmda
0003

k K%k CONVERSION INFORMATION *%**

*xx** c:\home\usr\cld.sh *****
0001 : #!/bin/sh

0002 : wval=10

0003 : unset

0004 : .\\cmdX S$val

0005 :

kKk%* CONVERSION INFORMATION **%*
Xk K ok Kk Kk Kk JOB SCOPE STDERR %k K ok Kk Kk kK

>>>>>> [STDERR] c:\home\usr\cld.sh

KNAX0726-1 The child job ID was assigned. job ID=000156

KNAX0101l-E ADSHO000156 An error occurred during execution of the job.
KNAX0240-I The setting specified for the environment variable ADSH JOBRC FATAL
was applied. value=16

<<<<<< [STDERR] c:\home\usr\cld.sh

KNAX0101-E ADSH000155 An error occurred during execution of the job.
KNAX0098-I ADSH000155 The job ended. exit status=0 execution time=0.078s CPU
time=0.047s

K’k kK Kk kkk JOBSTEP OUTPUT K’k kK Kk Khkkk

KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="C:\Users\Public\Documents\Hitachi\JP1AS\JP1ASE\spool\000155

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 116

-ADSHOO00155\"
KNAX7999-1I Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:
1. The setting of the ADSH JOBRC_FATAL environment variable was applied as the child job's return code.

2. This is a message indicating that the ADSH JOBRC FATAL system environment variable was applied to the
child job.

2.6.16 Setting up the user-reply functionality

To use the user-reply functionality, you must set up an appropriate environment in both JP1/Advanced Shell and
JP1/IM. For details about this environment setup, see 2.8 Setting up the user-reply functionality.

2.6.17 Checking the JP1 environment (UNIX only)

The JP1 environment is determined by /etc/opt/jplbase/conf/jplbs param.conf. Specify the character
encoding according to the environment being used. For details, see the JP1/Base User's Guide.

2.6.18 Setting up the shell (UNIX only)

The table below shows the login shell used when jobs are started from JP1/AJS. Specify the settings so that the correct
login shell can be used.

OS type Login shell
Linux Bash
AIX Korn (ksh)
HP-UX
Solaris

Notes:

If the adshexec command is run as a child process of the login shell when a job is started from JP1/AJS and then
forced termination occurs, the login shell's processing might terminate before the adshexec command's job
execution results are passed to JP1/AJS. If this happens, the job execution results might not be applied to JP1/AJS
- View.

To avoid this, first (before starting) check the definitions in the login script file to verify that the login shell's process
is overwritten (such as by deleting the t rap command specification).

For details about the definitions, see the manual JPI/Automatic Job Management System 3 Configuration Guide or
JP1/Automatic Job Management System 3 Troubleshooting.

2.6.19 Creating the directories required for JP1/Advanced Shell

If you want to change the default settings for the directories required for execution after you have installed JP1/Advanced
Shell, you must create new directories, and then specify them in the environment files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 117

The directories required for JP1/Advanced Shell and the information to be specified are described below. The user who
will be running JP1/Advanced Shell must grant the required permissions to these directories.

* Directory for temporary files

Specify the directory in which the files to be used only within batch jobs are to be created temporarily.

* Directory for the spool

Specify the directory used to store job execution logs and program output data files.

¢ Directory for system execution logs

Specify the directory used to store batch job logs as system execution logs that are used by the system administrator
for monitoring execution of batch jobs.

* Directory for traces

Specify the directory used to store the statuses for troubleshooting purposes in the event of system failure.

The table below lists the directories required in JP1/Advanced Shell. For details about how to specify the environment
setting parameters, see 7. Parameters Specified in the Environment Files.

Table 2-22: Directories required in JP1/Advanced Shell

Directory

Directory
for
temporary
files

Directory
for the
spool

Directory

for system
execution

logs

Directory
for traces

2. Preparations for Using JP1/Advanced Shell

Environment setting

parameter

TEMP FILE DIR

SPOOL_DIR

LOG DIR
LOG_FILE CNT
LOG_FILE SIZE

TRACE_DIR
TRACE_FILE CNT
TRACE FILE SIZE
TRACE_LEVEL

Default directory or path

Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\temp
Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\temp
Execution environment (UNIX only)
/var/opt/jplas/temp

Execution environment (Windows only)

shared-documents-folder\Hitachi\JP1AS\JP1ASE
\spool

Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD
\spool

Execution environment (UNIX only)
/var/opt/jplas/spool

Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\log
Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\log
Execution environment (UNIX only)

/opt/jplas/log

Execution environment (Windows only)

common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace

Development environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASD
\trace

Custom job definition program (Windows only)

common-application-data-folder\Hitachi\JP1AS\JP1ASV
\trace

Execution environment (UNIX only)
/opt/jplas/trace

Default permissions

CRWD (Windows)
1777 (UNIX)

CRWD (Windows)
1777 (UNIX)

CRWD (Windows)
0777 (UNIX)

CRWD (Windows)
1777 (UNIX)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

118

Legend:
The letters shown in the Default permissions column indicate the following Windows permissions:
C: Create, R: Read, W: Write, D: Delete

(1) Required permissions
This subsection describes the permissions required for the users who execute batch jobs.

(a) In Windows

Grant full control to the users who will be executing batch jobs.
(b) In UNIX
Grant to the users who will be executing batch jobs the file permissions shown below for each type of directory.

Table 2-23: File permissions for directories

Directory type Read permission (r) Write permission (w) Execution Sticky bit (t)
permission (x)

Directory for temporary R R R S

files

Directory for the spool R R R S

Directory for system R R R N

execution logs

Directory for traces R R R S
Legend:

R: Specification is required.
S: Specify according to system operation guidelines.
N: Do not specify.

Specify the sticky bit for directories according to the system operation guidelines.

If no sticky bit is specified for a directory for which a user has write permission, that user can delete any file directly
under that directory.

If a sticky bit is specified for a directory, only the owner of the directory or files can delete any file directly under that
directory. No other user can delete these files even if the user has write permission for the directory.

(2) File systems

Because the size of the spool might become large depending on the applications, we recommend that you create and
use a dedicated file system.

2.6.20 Setting up a JP1/AJS environment

To run JP1/Advanced Shell from JP1/AJS, you must set up an execution environment beforehand. This subsection
discusses various aspects of the JP1/AJS environment setup.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 119

(1) Estimating the capacity of JP1/AJS logs

When JP1/Advanced Shell is run from JP1/AJS, the amount of internal job execution log data increase by about 350
bytes per job.
In Windows Server 2008 and Windows Server 2012

$ALLUSERSPROFILE$\Hitachi\JP1\JP1 DEFAULT\JP1AJS2\log\jpgagent\jpgagt {00]01]02|
03]104]05/06|07}.1log

The default value of $ALLUSERSPROFILES is system-drive\Program Data.
In UNIX

/var/opt/jplajs2/log/jpgagent/jpgagt {00[01]02]03|04]05/06]07}.1log

To estimate the total size of logs that are output when JP1/Advanced Shell is run from JP1/AJS, use the formula provided
in the applicable JP1/AJS manual.

2.6.21 Performing user-specific postprocessing when a job is terminated
forcibly

The job controller allows you to perform user-specific post-processing when a forced termination is requested by JP1/
AJS, by the STGTERM signal in UNIX, or by the taskkill command in Windows (immediate termination of process
by such means as TerminateProcess). This feature enables the user to enhance operational flexibility by performing
user-specific termination processing when a forced termination request is received. You must define the
TRAP_ACTION SIGTERM environment setting parameter in order to perform user-specific postprocessing when a
forced termination request is received.

Note that the operand supported by the TRAP_ ACTION SIGTERM environment setting parameter is different between
the UNIX edition and the Windows edition. For details about the TRAP ACTION SIGTERM environment setting
parameter, see TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced termination
request is received) in 7. Parameters Specified in the Environment Files.

The following shows an example:

Contents of the environment variable

#-adsh_conf TRAP ACTION SIGTERM TERM

Contents of the job definition script

#-adsh job JOBO1
trap "UAP TERM" TERM
UAPO1

= If a forced termination request is received while UAPO1 is running, the job controller executes UAP TERD,
performs postprocessing (such as deleting allocated files and forcibly terminating descendant processes), and then
terminates the job.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 120

2.6.22 Preparation for using script development parts

JP1/Advanced Shell provides script development parts so you can improve the productivity of creating job definition
scripts. For details on script development parts, see the 10. Script development parts.

Follow the procedure below to use the script development parts.
1. Script development parts are stored in the following location”. Script development parts can be copied and stored

in a different location.

For the execution environment of Windows:
destination-folder\JP1 ASE\parts\en
destination-folder\JP1 ASE\parts\ja

For the development environment of Windows:
destination-folder\JP1 ASD\parts\en
destination-folder\JP1 ASD\parts\ja

For the execution environment of UNIX:
/opt/jplas/parts/en
/opt/jplas/parts/ja

*. Script development parts are deleted when JP1/Advanced Shell is uninstalled. In addition, script development
parts are updated when performing an overwrite installation.

2. Specify the FUNCTION for the environment setting parameter CMDRC CMDGRP_CHECK.
3. Load the script development parts to be used by using one of the following methods.

* Loading the file for script development parts by using the . (dot) command (The file can also be loaded by using
the #-adsh script command.)

The following is an example of a job definition script for loading the script development part cmpDate in which
Japanese comments are written:

"${ADSH DIR PARTS JA}cmpDate"
The following is an example of a job definition script for loading the script development part getFileSize in
which English comments are written:

"${ADSH DIR PARTS EN}getFileSize"

* Loading the file for script development parts by using the function-preload functionality

The following is an example of a job definition script for loading the script development part cmpDate in which
Japanese comments are written:

export FPATH=/opt/jplas/parts/ja

For details on how to use each function, see the following items.
e "9.3 Standard shell commands" > "9.3.1 . command (executes a shell script)"

* "9.5 Extended script commands" >"9.5.7 #-adsh script command (calls an external job definition script
file from the job definition script that is running)"

* "(3) Function preload functionality"

4. Call the script development parts in the job definition script.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 121

2.6.23 Running the initialization script file

You can run a specific common script file before the job controller of JP1/Advanced Shell runs the job definition script
file. By running a specific common script file before the job definition script file is run, you can specify the system-
common initial settings, such as substituting values into variables, defining aliases, and moving data to the work
directory.

(1) Overview of the initialization script file

The job controller handles the following files as script files:

Script files handled by the Jjob controller
|-—- Job definition script file
| --- External scripts
| | -—- External script files for the #-adsh script command
| | -—- External script files for the . (dot) command
| |-—- Initialization script file
|

|-—= .env files

|-—— [For Windows only] UNIX-compatible commands (script format)

The initialization script file is assumed to be a kind of external script file. Therefore, the job controller runs the
initialization script file as an external script file, which is part of a job.

(2) Initialization script file

The initialization script file is a script file that the job controller runs for initialization when running the job definition
script. If the INIT SCRIPT READ environment setting parameter is specified, the job controller reads and runs an
initialization script file immediately before running the root job. However, the job controller outputs the KNAX6504 -
E message and terminates abnormally without running the initialization script in the following cases:

* When the initialization script file does not exist

* When a role required for execution is not granted

The following table describes how the behavior of the job controller changes depending on the specification of the
INIT SCRIPT READ environment setting parameter and the status of the initialization script file.

Table 2-24: Specification of INIT SCRIPT READ, status of the initialization script file, and behavior
of the job controller

No. Specification of Status of the initialization script file Behavior of the job
INIT SCRIPT READ controller
Presence Role for reading
1 NO (Alternatively, this parameter is =~ -- -- Does not run the
not specified.) initialization script file.
2 YES Not present -
3 Present A role for reading the file

is not granted.

4 A role for reading the file = Runs the initialization
is granted. script file.

Legend:
--: Not applicable

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 122

The system administrator is responsible for creating and setting up the initialization script file. The created initialization
script file takes effect in only a specific path. The following table shows the valid path of the initialization script file.

Table 2-25: Valid path of the initialization script file

No. Environment Valid path of the initialization script file

1 Windows (development environment) common-application-folder\HITACHI\JP1AS\JP1ASD\conf
\adshinit root.ash

2 Windows (execution environment) common-application-folder\HITACHI\JP1AS\JP1ASE\conf
\adshinit root.ash

3 UNIX /opt/jplas/conf/adshinit root.ash

The job controller reads files in the order shown in the following table. Therefore, if an environment variable is set in
both the environment file and the initialization script file, the setting specified by the initialization script file overrides
the setting specified by the environment file.

Table 2-26: File read order of the job controller

Order File type Remarks

1 System environment file --

2 Job environment file --

3 .env file This file is read if YES is set for the KSH _ENV_READ environment

setting parameter.

4 Initialization script file This file is read if YES is set for the INIT SCRIPT READ environment
setting parameter.

5 Job definition script file --

Legend:
--: Not applicable

In the initialization script file, specify the initialization processing to be performed when the job controller starts. Note
that the following commands must not be used in the initialization script file:

¢ Shell operation commands other than adshappexec
¢ The following extended shell commands: adshecho, adshread, and adshjoberr
* Extended script commands
The execution results of the commands specified in the initialization script file are output to the job execution log in the

same way as for the commands specified in the job definition script file. The contents of the initialization script file are
not output to the script image file.

(3) Notes

* Do not change the contents of the initialization script file while jobs are running. Also, in the initialization script
file, do not specify a process that changes the job definition script file.

* Make sure that the following items match: 1) encoding of the initialization script file, 2) encoding of the job definition
script file, and 3) the value of the LANG environment variable of the environment in which the job definition script
is run. If the same setting is not specified in all of these environments, correct operation is not guaranteed.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 123

* If the processing of the initialization script file cannot continue due to an error that occurred in the file, the job
controller abnormally terminates with a return code of 1 or the value set forthe ADSH JOBRC FATAL environment
variable. In this case, the job controller does not run the job definition script.

* The behavior adopted when the root job is run from the initialization script file is as follows:

* The root job run from the initialization script file does not run the job definition script file, and abnormally
terminates with a return code of 1 or the value set for the ADSH JOBRC_FATAL environment variable.

* The job controller that is running the initialization script file continues processing.

* The initialization script file does not support link files. Do not replace the initialization script file itself by a link
file.

* The initialization script file cannot be run by a debugger. To debug the initialization script file with the CUI or GUI
debugger, run the file as a job definition script file in an environment in which NO is set for the
INIT SCRIPT_ READ environment setting parameter.

¢ Coverage information can be collected from only job definition script files. Therefore, to collect the coverage
information of the initialization script file, run the file as a job definition script file.

* The syntax of the initialization script file is not checked in syntax check mode. To check the syntax of the initialization
script file, run the file as a job definition script file.

* Function information arrays cannot be used in the initialization script file.

(4) Preparation for running the initialization script file

To run the initialization script file, use the following procedure:

1. Specify YES for the INIT SCRIPT READ environment setting parameter.

#-adsh_conf INIT SCRIPT READ YES

2. Place the initialization script file to be run in a valid path shown in Valid path of the initialization script file.

(5) Examples
Case in which the initialization script file terminates normally

* Contents of the initialization script file

ADSH_SPOOL_JOBNAME=$("${ADSH_DIR_CMD}basename" S{AJSJOBNAME})
alias 1s=""${ADSH DIR CMD}1ls" -la'
cd 'C:\ExecUser\init'

» Contents of the job definition script file

#-adsh step start S01
echo "Job step start"
#-adsh step end

¢ Execution result

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-1 The job ID was assigned. job ID=000003

Advanced Shell 11-10

[Information]
Job 1ID : 000003

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 124

Spool directory : C:\ExecUser\result\spool\000003\

Date : 2016/08/19
EnvFile (system)
EnvFile (job) : C:\ExecUser\conf.ase
Host name : HOSTOO0O01

[Environment variable from Automatic Job Management System]
JP1JobName : adshexec.exe
JP1JobID : 0000002362
JP1 USERNAME : jobadmin
JP1UNCName : HOSTOO0O01
JPINBQSQueueName: \\HOSTO001\Q@SYSTEM
JP1Priority : 64
AJSEXECID : @A665
AJSJOBNAME : /ExecUser/test/ASinit

Frxxxkxx JOB CONTROLLER MESSAGE *x*xkxxx*

14:51:19 000003 KNAX0091-I ADSH000003 The job started.

14:51:19 000003 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.

14:51:19 000003 KNAX7902-I The job controller will run in non-tty stdin mode.
14:51:19 000003 KNAX6501-I This job will execute the initialization script file
"C:\ProgramData\HITACHI\JP1AS\JP1ASE\confl\adshinit root.ash".

14:51:19 000003 KNAX6126-1I Execution of the command C:\PROGRA~2\Hitachi\JP1AS
\JP1ASE\cmd\basename.exe for the function command substitution finished
successfully. exit status=0 execution time=0.015s CPU time=0.015s

14:51:19 000003 KNAX6110-I Execution of the command ADSH SPOOL_ JOBNAME=ASinit
(line=1) finished successfully. exit status=0 execution time=0.000s CPU
time=0.000s

14:51:19 000003 KNAX6112-I Execution of the command alias (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s

14:51:19 000003 KNAX6112-I Execution of the command cd (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s

14:51:19 000003 KNAX6502-T Execution of the initialization script finished.
14:51:19 000003 KNAX0092-I ADSH000003.S01 step started.

14:51:19 000003 KNAX6112-I Execution of the command echo (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s

14:51:19 000003 KNAX6597-I ADSH000003.S01 step succeeded. exit status=0 execution
time=0.032s CPU time=0.015s

14:51:19 000003 KNAX0098-I ADSH000003 The job ended. exit status=0 execution
time=0.063s CPU time=0.046s

K’k kK Kk ok kK Scrlpt IMAGE * kK Kk kk kK

*x*x%x C:\ExecUser\test.ash *****
0001 : #-adsh step start SO1
0002 : echo "Job step start"
0003 : #-adsh step end

*xx** CONVERSION INFORMATION ***xx*

*kkhkkkhkkkk K JOB SCOPE STDERR *khkkkk Kk kK

KNAX6597-1I ADSHO000003.S01 step succeeded. exit status=0 execution time=0.032s CPU
time=0.015s

KNAX0098-I ADSH000003 The job ended. exit status=0 execution time=0.063s CPU
time=0.046s

* Kk kkkkkx JOBSTEP OUTPUT * Kk kkkkkx
KNAX0719-1I STEP. step number=0001 step name=S0l output destination=STDERR

KNAX6380-I A job name will be added to the spool job directory of the root job.

spool job directory="C:\ExecUser\result\spool\000003-ASinit\"
KNAX7999-1 Advanced Shell ended. exit status=0

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 125

2.7 Specifying environment information for JP1/AJS (applicable when
JP1/AJS is used)

This section explains the specification of environment information when JP1/AJS is used.

You automate job execution in JP1/AJS by registering jobs into JP1/AJS - View. In JP1/AJS - View, the commands and
batch files that are used for operations are defined as jobs, and system operations are automated by associating the
execution order of those jobs.

JP1/AJS - View supports definitions for the following types of jobs:

e Custom jobs
* PC jobs (for Windows)
* UNIX jobs (for UNIX)

For details about JP1/AJS - View, see the JPI1/Automatic Job Management System 3 Operator's Guide.

2.7.1 Registering custom jobs in JP1/AJS - View

Use of custom jobs makes job definition easier and more accurate compared with directly specifying commands and
batch files in jobs.

Custom jobs are templates for jobs that make job creation easy when jobs that link JP1/AJS - View and other programs
are defined.

With custom jobs, you can use GUI to define jobs for JP1/Advanced Shell.
To register custom jobs into JP1/AJS - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Register Custom Jobs.

The Register Custom Job dialog box is displayed.

Register Custom Job E3

Registerd Custom Job:
Name] Comment

Close(L)

2. Click the Add button.
The Set Properties of Custom Job dialog box is displayed.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 126

3. Register a custom job for JP1/Advanced Shell. Register a custom job as follows, respectively, when the execution
environment is Windows, UNIX, or a GUI application execution job.

¢ In Windows

Set Properties of Custom Job [X|

Nane: [aDsHPC

Comment: |JP1/AS_PC job execution

Defining program: |C:\Progra.m Files\Hitachi\JPlAS\JPli _I

Executing program: |C:‘~.Program Files\Hitachi\JPlAS\JPli _I

Version: |0600
Class: [aDsHPC
Job Type &~ pC " UNIX

0K Cancel

Name: Specify ADSHPC.

Comment: We recommend that you specify the fixed character string JP1/AS PC job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.

Defining program: installation-folder\ JP1ASV\bin\adshctmjpc.bat. This is the folder on the PC on
which the custom job is installed.

Executing program: installation-folder\ JP1ASE\bin\adshexec.exe. This is the folder on the PC on
which the execution environment is installed.

Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHPC.
Job Type: For a job for JP1/Advanced Shell, always select PC.

e In UNIX
Name: [ADSHUX
Comment: [7P1/AS_UNIX job execution

Defining program: lC:\Program Files\Hitachi\JP1lAS\JP1lZ J

Executing program: I/opt/jplas/bin/adshexec _J
Version: IOSOO
Class: [ADSHUX
Job Type * pC " UNIX
() SN Cancel

Name: Specify ADSHUX.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 127

Comment: We recommend that you specify the fixed character string JP1/AS UNIX job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.

Defining program: installation-directory\ JP1ASV\bin\adshctmjunix.bat. This is the folder on the
PC on which the custom job is installed.

Executing program: /opt/jplas/bin/adshexec
Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHUX.

Job Type: For a job for JP1/Advanced Shell, always select PC.

e For a GUI application execution job

Set Properties of Custom Job E3

Naue: [aDSHAPP

Conment: |J P1/AS_GUI

Defining program: IC:\Program Files\Hitachi\JPlAS\JP1l2 _]

Executing program: IC:\.ongram Files\Hitachi\JPlAS\JP1la _I

Version: [os00
Class: |ADSHAPPEXEC
Job Type (¢ PC " UNIX

0K Cancel

Name: Specify ADSHAPP.

Comment: We recommend the fixed character string JP1/AS GUI application execution job.
You can specify any character string up to 40 bytes in length or you can omit this field.

Defining program: installation-folder\ JP1ASV\bin\adshctmjapp.bat. This is the folder on the PC in
which the custom job has been installed.

Executing program: installation-folder\ JP1ASE\bin\adshappexec.exe.
Version: 0600 This is the version of the interface of JP1/AJS - View.

Class: Specify ADSHAPPEXEC.

Job Type: For a job for JP1/Advanced Shell, always select PC.

4. Click the OK button.
The custom job is registered into JP1/AJS - View.

In cases when a version of JP1/AJS - View earlier than 11-00 has been installed and the application-execution agent
functionality is to be used, the custom job icon needs to be copied to the following folder:

JP1/AJS-View—installation-folder\image\custom

The following table explains the icons used in JP1/AJS.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 128

Table 2-27: Explanation of icons used in JP1/AJS

Icon

&

&
&

L

Notes:

name

Job icon for execution in
Windows

Job icon for execution in
UNIX

GUI application
execution job icon

JP1/Advanced Shell
(execution definition)
icon

GUI application
execution (execution
definition) icon

File name
CUSTOM_PC_ADSHPC.
gif

CUSTOM_ PC ADSHUX.
gif

CUSTOM PC_ADSHAPP
EXEC.gif

adshctmj.exe

adshctmjapp.exe

Description

This is the Windows custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

This is the UNIX custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

This is the custom job icon of the GUI application execution job used
in the Jobnet Editor of JP1/AJS - View. This icon is displayed in the
Custom Job tab within the [Jobnet Editor] window.

This is the definition program that links JP1/AJS in custom jobs.

This is the definition program that links the GUI application execution
program with the custom job.

If JP1/Advanced Shell is installed on multiple machines and their paths differ from one machine to another, specify
the JP1/Advanced Shell installation path in a variable and then specify the variable's name, instead of the full path,
in Executing program during custom job registration. For details about the specification method, see Defining the
work path used during job execution as a variable in the JP1/Automatic Job Management System 3 Configuration

Guide.

The following shows an example specification:

jajs config -k "[JP1l DEFAULT\JPINBQAGENT\Variable]" "jplasebin"="C:\Program Files
\Hitachi\JP1AS\JP1ASE\bin"

You can share multiple paths in JP1/AJS - View by specifying the path of JP1/Advanced Shell as a variable in JP1/
AIJS on each machine on which JP1/Advanced Shell is installed and then specifying $jplasebin$
\adshexec.exe in Executing program during custom job registration in JP1/AJS - View.

2.7.2 Defining and executing a jobnet

To automate job execution in JP1/AJS, you can define registered custom jobs, PC jobs (for Windows), UNIX jobs (for
UNIX), or GUI application execution jobs into a jobnet in JP1/AJS - View, and then execute the jobnet. For details about
JP1/AIJS - View, see the description of job definition in the JP1/Automatic Job Management System 3 Operator's Guide.

To define and execute a jobnet in JP1/AJS3 - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and

then Job Management System.

The JP1/AJS3 - View - Login window is displayed.

2. To log in, specify your user name, password, and the host to connect.
The JP1/AJS3 - View window is displayed.

3. Select Edit, New, then Jobnet.
The Define Details -[Jobnet] dialog box is displayed.

4. Specify information including attributes of the jobnet, and then click the OK button.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 129

Specify the appropriate information in Exec-agent according to the operating environment. This information can
be omitted. For details about the JP1/AJS items, see the applicable JP1/AJS manual.

Define Details - [Jobnet]

Connection service

Jobnet connector

order method

CRTT cancel | Help |

The jobnet is created and displayed in the list area.

5. Double-click the created jobnet.
The Jobnet Editor window is displayed.

-:~, AJSROOT1:/IP1AS/jplas_job - Jobnet Editor{(jp1admin@ym001071)
File Edit View Options Help
------ &'S dplas job l l— | I
"\ Basic / Events /. Actions /. CustomJobs /. Tools /
Jobnet :[/ I” Exclusive edit
-
v
4| | »
9
Unit name / | comment. | Type |
Ready Last accessed 2013/12/06 17:46:39

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 130

6. Select Exclusive edit so that no other user can access the job while you are defining and associating it.

7. Drag the required custom job, PC job, or UNIX job icon from the icon list to the map area.

.:._ AJSROOT1:/IP1AS/jplas_job - Jobnet Editor(jp1admin@vym001071)
File Edit View Options Help

T = » s

'\ Basic /{ Events / Actions)\ Custom Jobs /, Tools /

Jobnet :|/ IV Exclusive edit

-

JPLAS_UNIX
-job-execu
tion-1

-
4 | »

Unit name / [conment [Type |
3 JPLAS_UNIX-job-execution-1 Custon Job
| Ready | Last accessed 2013/12/06 17:51:35

The Define Details - [Custom Job], Define Details - [PC Job], or Define Details - [UNIX Job] dialog box is
displayed.
The steps below explain the definition method for custom jobs. For details about the settings required to use PC or
UNIX jobs in JP1/Advanced Shell, see 2.7.3 Defining jobs as PC or UNIX jobs.

8. In the Define Details - [Custom Job] dialog box, define information including job attributes.

Specify the appropriate information on the Definition and Attributes pages as described in the applicable JP1/AJS
manual. Also specify the appropriate information in Exec-agent according to the operating environment. This
information can be omitted.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 131

Define Details - [Custom Job]

Unit name JPLAS_UNIX-job-execution-1l

|

Exec-agent hostnane LI

Definition | atritutes |

Standard output

End judgment

If either of the following is specified with a PC job or UNIX job, an empty file is output when Standard output is
specified in the Definition tab:

* The -s option is specified in the adshexec command or SPOOL is specified in the OUTPUT STDOUT
parameter in the environment file (the standard output is redirected to spool files).

* EXTENDED is specified in the OUTPUT MODE_ROOT parameter (the expansion output mode is selected).

This is because the contents of the standard output are output to a separate file by JP1/Advanced Shell's job controller
and nothing is output to the standard output that is returned to JP1/AJS.

9. Select the Definition tab, and then click the Details button.

The Define Execution dialog box corresponding to type of custom job appears. Displays for Windows, UNIX, and
GUI application execution jobs are as follows:

e In Windows

Define Script Execution (PC) - [Advanced Shell]

E3
|
|
|

Logical host [

Check syntax

e In UNIX

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 132

Define Script Execution (UNIX) - [Advanced Shell]

Job definition script file

Runtime parameters

Job environment file

Logical host . =1

Check syntax

[ok | Cancel | Hep |

* For a GUI application execution job

Define GUI Application Execution - [Advanced Shell]

Action after executing app.

bl bl bl bl | X

Message output

For more information about steps 9 and 10, also see (2) Supplementary information about the jobnet definition
procedure for custom jobs.

10. In the Define Script Execution dialog box, specify the information required for execution of the JP1/Advanced
Shell job controller, and then click the OK button.

For a PC job or UNIX job

* Job definition script file ~<path name> Windows: ((1 to 247 bytes)), UNIX: ((1 to 1,023 bytes))
Specifies the name of the job definition script file. This item cannot be omitted.

* Runtime parameters ~<ASCII character string>((0 to 1,022 bytes))

Defines the parameters that are to be passed when the job definition script file is executed. If you specify multiple
parameters, use the space as the delimiter.

* Job environment file ~<path name> Windows: ((0 to 247 bytes)), UNIX: ((0 to 1,023 bytes))
Specifies the name of the job environment file. When this item is specified, the system uses the specified job
environment file, evenifthe ADSH ENV environment variable is specified in JP1/Advanced Shell's job controller
environment. If this item is omitted but the ADSH ENV environment variable is defined in JP1/Advanced Shell's
job controller environment, the system uses the specified ADSH ENV environment variable value during
execution. If this item is omitted and the ADSH ENV environment variable is not defined in JP1/Advanced
Shell's job controller environment, the system assumes that no job environment file is specified. JP1/Advanced
Shell's job controller that was started by JP1/AJS sets the path of the job environment file that it used in the
ADSH_ENV environment variable and then starts job execution. If another job controller is started as a descendant
process, that job controller uses the value of the ADSH ENV environment variable.If you start another job
controller or any other command that loads a job environment file as a child process, that job controller or
command will use the value of the ADSH ENV environment variable. Therefore, if the value of the ADSH ENV

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 133

environment variable is not set during job execution, the job controller uses the same job environment file that
was used by JP1/Advanced Shell's job controller that was started by JP1/AJS. If the value of the ADSH ENV
environment variable is set during job execution, the job controller uses the job environment file containing the
new value.
* Logical host
Specifies whether the job is to be executed on a logical host. If the Run on a logical host check box is selected,
the job is executed on the logical host specified in JP1/AJS (value ofthe JP1 HOSTNAME environment variable).
* Check syntax
Specifies whether the job's contents are to be checked. When the Check job definition script syntax check box
is selected, the contents of the job definition script file are checked but the job definition script file is not executed.
For a GUI application execution job

e Command line ~ <ASCII character string> ((1 to 1,022bytes))
Specifies the file name of the executable application and the specified parameter for execution of the executable
application. This parameter cannot be omitted.

¢ Path name of the executable application ~ <ASCII character string> ((1 to 247 bytes))
Specifies the path name of the executable application.

* Argument for the executable application ~ <ASCII character string> ((0 to 1,023 bytes))
Specifies the argument for the executable application.

* Work folder ~ <path name>((0 to 247 bytes))
This command specifies the work folder for execution of the executable application.

The work folder can be omitted. When the work folder has been omitted, JP1/AJS-Agent (or JP1/AJS-Manager)
will become the runtime directory (work directory) used when starting the GUI application execution program.
For the runtime directory (work directory) when JP1/AJS-Agent (or JP1/AJS-Manager) starts the job controller
of JP1/AS, see "JP1/Automatic Job Management System 3 Configuration Guide.

Name to be displayed ~ <ASCII character string> (0 to 247 bytes) Specifies the name that appears when you
left-click on the application execution agent icon. The name to be displayed can be omitted. If the name to be
displayed is omitted, the content of the command line will be applied.

* Action after executable application

This command specifies whether the command will wait for the executable application to finish after the
executable application is executed. When an application is executed without placing a check in the Action after
executing app. check box, the command will wait for the executable application to finish after the executable
application has been executed. When an application is executed upon placing a check in the Action after
executing app. check box, the command will not wait for the executable application to finish after the executable
application has been executed.

* Message output

This command specifies whether to suppress message output. When an application is executed upon placing a
check in the Suppress output to stderr check box, output of messages to the standard error output will be
suppressed.

11. Display the Define Details - [Custom Job] dialog box again, and then click the OK button.
The job is defined in the jobnet. If necessary, define another job in the same manner.

12. Associate the jobs according to their execution order.
The jobnet is defined. The following shows an example job definition in JP1/AJS - View.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 134

-:o. AJSROOT1:/IP1AS/jplas_job - Jobnet Editor{(jp1admin@ym001071)
File Edit View Options Help
':3 las job k 8"_6 %
\ Basic /, Events / Actions)\ Custom Jobs / Tools / S] E’
Jobnet :|/ IV Exclusive edit
-
N 4 N 4P
0TI '@ 'Ea
JPLAS_UNIX JPLAS_UNIX JPLAS_PC-j
-job-execu -job-execu ob-executi
tion-1 tion-2 on
v
< »
9
Unit name / | Comment | Type |
(0 JP1AS_UNIX-job-execution-l Custon Job
(J JP1AS_UNIX-job-execution-2 Custon Job
(0 JP1AS_PC-job-execution Custon Job
‘ Ready Last accessed 2013/12/06 17:55:17

13. Execute the jobnet by using JP1/AJS.

JP1/Advanced Shell's job controller returns its return code as the job return code to JP1/AJS.

(1) Notes about jobnet definitions

Specification of coverage

If you want to enable coverage from custom jobs, specify the coverage auto-acquisition functionality in the
environment file.

Run-time directory to be used when JP1/Advanced Shell's job controller is started from JP1/AJS

When JP1/Advanced Shell's job controller is started from JP1/AJS, the run-time directory is set to the one that is
used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job controller. For details about
the run-time directory that is used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job
controller, see the manual JP1/Automatic Job Management System 3 Configuration Guide. In the JP1/AJS manuals,
the run-time directory is referred to as a work path (work directory).

Environment variables to be used when JP1/Advanced Shell's job controller is started from JP1/AJS

Normally, when JP1/Advanced Shell's job controller for Windows is started from JP1/AJS, the system environment
variable settings are enabled when the JP1/AJS services are started and no user environment variables are loaded.

For details, see the applicable JP1/AJS manual.

Connecting to an overseas version of JP1/AJS - Manager whose language is set to English

When connecting to an overseas version of JP1/AJS - Manager whose language is set to English, in the Define Script
Execution dialog box, in the definition information, use only ASCII alphanumeric characters.

Environment variable that is used when JP1/AJS starts the GUI application execution program

Environment variable of the running user is used when JP1/AJS starts the GUI application execution program starts.

(2) Supplementary information about the jobnet definition procedure for

custom jobs

With respect to the job execution settings in steps 9 and 10in 2.7.2 Defining and executing a jobnet, you can also specify
the unit definition in the ajsdefine command in JP1/AJS and the job definition in JP1/AJS - Definition Assistant.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 135

For details about the unit definition, see the manual JP1/Automatic Job Management System 3 Command Reference.

For details about JP1/AJS - Definition Assistant, see the manual JP1/Automatic Job Management System 3 - Definition

Assistant Description, Operator's Guide and Reference.

The following provides the details of the environment variables and parameters that are specified in the unit definition
and JP1/AJS - Definition Assistant when custom jobs are used.

(a) For PC jobs and UNIX jobs

* Environment variables configured in the Define Execution dialog box of JP1/Advanced Shell

ADSH_AJS SCRF: Job definition script file name
ADSH AJS ENVF: Job environment file name

ADSH_AJS LHOST: Logical host
ADSH AJS GCHE: Precheck

* Environment variables passed to job controller of JP1/Advanced Shell

Environment variables are defined as env parameters of the unit definition file.

The following table shows the setting items for environment variables passed to the job controller of JP1/Advanced

) of an environment variable (Shift-JIS)

Shell.
Table 2-28: Setting items for environment variables passed to the job controller of JP1/Advanced
Shell
Item Description
name
Input Number of bytes that can be specified as the value (character string following
range
Settings Types of characters that can be defined
* Character string: Characters other than control characters (0x00 to 0x1f, 0x7f)
¢ Symbol name: Half-width alphanumeric characters, "@", "#", and " "
e Numeric characters
Initial Value loaded when a custom job is started as a new job
value

Omission If a required value is omitted, the job controller of JP1/Advanced Shell returns an error.

The following table shows the input range and settings of environment variable items passed to the job controller

of JP1/Advanced Shell.

Table 2-29: Input range and settings of environment variable items passed to the job controller

of JP1/Advanced Shell.

Environment variable Input range

ADSH_AJS _SCRF PC job: 1 to 247 bytes
UNIX job: 1 to 1,023 bytes

ADSH_AJS ENVF PC job: 0 to 247 bytes
UNIX job: 0 to 1,023 bytes

ADSH_AJS_LHOST 0 to 2 bytes

2. Preparations for Using JP1/Advanced Shell

Settings

Character string

Character string

e If checked
-h
¢ Ifnot checked

Initial Omissio
value n

Null Not
character permitted
string

Null Permitted
character

string

Null Permitted
character

string

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

136

Environment variable Input range Settings
ADSH_AJS LHOST 0 to 2 bytes Null character string
ADSH_AJS GCHE 0 to 2 bytes e If checked

-C
¢ If not checked

Null character string

AJS BJEX_STOP 4 bytes "TERM"

¢ Details of parameters passed to the job controller of JP1/Advanced Shell

Initial
value

Null
character
string

Null
character
string

"TERM"

Omissio
n

Permitted

Permitted

Not
permitted

The field Runtime parameters is defined as the prm parameter in the unit definition file and passed as a parameter

for the job controller of JP1/Advanced Shell. The permitted values are as follows:

Input range: 1 to 1,023 bytes”
Setting: Character string

Initial value: Null character string
Omission: Permitted

To define for run-time parameters in the Define Execution dialog box a value equivalent to the null character string,

define a single-byte space for the prm parameter in the unit definition file.

k.

The maximum length of 1,023 bytes applies only when a character string consisting only of spaces is specified
for the prm parameter. If any non-space characters are specified, the permitted maximum length is 1,022 bytes.
If a character string consisting only of spaces is specified for the prm parameter, the specified character string

minus a one-byte space is displayed in the Runtime parameters text box in the Define Execution dialog box.

() Important

Note the following points when deleting definition information in the unit definition file:

- For the env parameter, delete the value specified for the environment variable (character string

following "=") or delete the specification of the env parameter itself.

- For the prm parameter, specify a single-byte space as the value for prm or delete the specification

of the prm parameter itself.

The following is an example of a unit definition:

unit=Unit name, ,Running user, ;

{
ty=cpj;
cty="ADSHUX";
sc="/opt/jplas/bin/adshexec";
env="AJS BJEX STOP=TERM";

env="ADSH AJS SCRF=/tmp/JPlAS/scr/samplescrfile.ash";

prm="paraml param2";

env="ADSH AJS ENVF=/tmp/JPlAS/env/sampleenvfile";
env:"ADSH_AJS_LHOST:—I’I" ;

env="ADSH AJS GCHE=-c";

tho=0;

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

137

The following are descriptions corresponding to the numbers shown in the right margin:

1. AJS BJEX STOP: Because the AJS BJEX STOP environment variable is used by the system, make sure that you
define this environment variable and specify TERM as its value.

2. ADSH_AIJS_SCREF: Specifies the name of the job definition script file.
You must define the ADSH_AJS_SCRF environment variable.

3. The prm parameter is specified in the unit definition file.

4. ADSH_AJS_ENVF: Specifies the job environment file name.

5.ADSH_AJS LHOST: If you want the job to be executed on a logical host, specify -h. In all other cases, do not
specify anything.

6. ADSH_ AJS GCHE: If you want to perform only the precheck, specify -c. If all other cases, do not specify anything.

After creating the unit definition file, you can define the job by using the ajsdefine command of JP1/AJS or JP1/
AJS3 - Definition Assistant.

(b) For the GUI application execution job

¢ Environment variables configured in the Define Execution dialog box of JP1/Advanced Shell
ADSH _AJS APPNAME: Application path name
ADSH_AJS_APPARG: Application parameter
ADSH_AJS WORKF: Work folder
ADSH_AJS SHOWN: Display name
ADSH_AJS AFEXECMYV: Behavior after executing the executable application
ADSH AJS MESOUT: Message output
* Environment variables passed to the GUI application execution program
Environment variables are defined as env parameters of the unit definition file.

The following table shows the setting items for environment variables passed to the GUI application execution
program.

Table 2-30: Setting items for environment variables passed to the job controller of JP1/Advanced

Shell
Item name Description
Input range Number of bytes that can be specified as the value (character string following "=") of an environment variable
(Shift-JIS)

Settings Types of characters that can be defined

¢ Character string: Characters other than control characters (0x00 to 0x1f, 0x7f)

* Symbol name: Half-width alphanumeric characters, "@", "#", and " "

e Numeric characters
Initial value Value loaded when a custom job is started as a new job
Omission If the value cannot be omitted, an error will occur in the GUI application execution program.

The following table shows the input range and settings of environment variable items passed to the GUI application
execution program.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 138

Table 2-31: Input range and settings of environment variable items passed to the GUI application
execution program

Environment Input range Settings Initial value Omission
variable

ADSH_AJS APPNAM 1 to 247 bytes Character string Null character string Not permitted
E

ADSH_AJS APPARG 0 to 1,023 bytes Character string Null character string Permitted
ADSH _AJS WORKF 1 to 247 bytes Character string Null character string Permitted
ADSH_AJS SHOWN 0 to 247 bytes Character string Null character string Permitted
ADSH_AJS AFEXEC 0 to 2 bytes e If checked Null character string Permitted
MV -n

* Ifnot checked
Null character string

ADSH_AJS MESOUT 0to 2 bytes If checked Null character string Permitted
-m
* Ifnot checked
Null character string

ADSH_AJS_APPEXEC @ 7 bytes " APPEXEC" " APPEXEC" Not permitted

0 Important

If you delete definition information from the unit definition file, delete the value of the environment variable
(character string following "=") or delete the specification of the env parameter itself for the env parameter.

The following is an example of a unit definition:

unit=Unit name, ,Running user, ;
{
ty=cpj;
cty="ADSHAPPEXEC";
sc=" C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshappexec.exe";

env="ADSH AJS APPEXEC=APPEXEC"; -—>1.
env="ADSH AJS APPNAME=C:\ExecApp.exe"; -=>2.
env="ADSH AJS APPARG=paraml param2"; -=>3.
env="ADSH AJS WORKF=C:\work-folder"; -=>4,
env="ADSH AJS SHOWN=ExecApplication"; -=>5.
env="ADSH AJS AFEXECMV=-n"; -->6.
env="ADSH AJS MESOUT=-m"; -—>7.
tho=0;

The following are descriptions corresponding to the numbers shown in the right margin:
1. Because the ADSH_AJS APPEXEC environment variable is used by the system, you must define this environment
variable and specify APPEXEC as its value.

2. ADSH_AJS_APPNAME: Specifies the application path name.
You must define the ADSH_AJS APPNAME.

3. ADSH_AJS APPARG: Specifies the application parameter.
4. ADSH_AJS WORKEF: Specifies the work folder.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 139

5.ADSH_AJS SHOWN: Specifies the display name.

6. ADSH_AJS AFEXECMYV: If you want the action performed after the execution of the executable application to
wait for termination, specify -n. In all other cases, do not specify anything.

7. ADSH_AJS MESOUT: If you want to suppress output to the standard error output, specify -m. In all other cases,
do not specify anything.

After creating the unit definition file, you can define the job by using the ajsdefine command of JP1/AJS or JP1/
AJS3 - Definition Assistant.

2.7.3 Defining jobs as PC or UNIX jobs

(1) Defining jobs as PC jobs

This subsection explains the items required to define JP1/Advanced Shell batch jobs as PC jobs.

(a) When defining a batch job

¢ Executable file name

Specify the path of the adshexec command in Executable file name in the Definition tab in the Define Details
- [PC Job] dialog box or in sc="script-file-name" in the unit definition file.

installation-folder\JP1ASE\bin\adshexec.exe

e Parameters

Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters in the Definition tab in the Define Details - [PC Job] dialog box or in prm="parameter" in the unit
definition file.

¢ Environment variable

Specify the following details in Environment variables in the Definition tab in the Define Details - [PC Job]
dialog box or in env="environment-variable™ in the unit definition file.

AJS BJEX STOP=TERM

The following figure provides an example specification of a batch job in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 140

Figure 2-7: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

e R [
g

Definition | Transfer File | Attributes |

Hitachi\JPlAS\JPLlASE\bin\adshexec.exe" I

"D:\sczipt:s\scwl.ash" paraml param2 I
AJS_BJEX_STOP=TERM ;]I
H

Comment

Environment variables

Environment file

Working path

Standard input
Standard output

End judguent

Retry on abnormal end

s g izl

Return code

Maximum retry times

Retry interval

User name

OK I Cancel l Help l

(b) When defining a GUI application execution job

This section explains the items required to define a GUI application execution job of JP1/Advanced Shell as a PC job.

¢ Executable file name

Specify the path of the adshappexec command in Executable file name in the Definition tab in the Define
Details - [PC Job] dialog box or in sc="script-file-name" in the unit definition file.

installation-folder\JP1ASE\bin\adshappexec.exe

e Parameters

Specify the parameters for the adshappexec command in Parameters in the Definition tab in the Define Details
- [PC Job] dialog box or in env="parameter" in the unit definition file.

* Environment variables and environment variable file name
Environment variables and the environment variable file name are ignored even if they are specified.

The following figure provides an example specification of a batch job in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 141

Figure 2-8: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

Define Details - [PC Job]

l

Unit name PC-Job l

Conment I
Exec-agent _VJI

Definition | Transfer File | Atributes |

File name -TACHI\JPlAS\JPLASE\bin\adshappexec.exe I

Parameters cion -w C:\Execdpp.exe -- paraml param2|l

Environment variables

ok |1 cancer | Help |

(2) Defining jobs as UNIX jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as UNIX jobs.

¢ Script file name

Specify the path of the adshexec command in Script file name on the Definition tab in the Define Details -
[UNIX Job] dialog box or in sc="script-file-name" in the unit definition file:

/opt/jplas/bin/adshexec

Alternatively, you can specify the path of the adshexec command following # ! on the first line (example:
#!/opt/jplas/bin/adshexec), and then specify the path of the job definition script file with execution
permissions granted:

Path of job definition script file

¢ Command statement

You can specify, as part of command text, the path of the adshexec command or path of the job definition script
file in the same way as for the script file name. Specify the path in Command statement on the Definition tab in
the Define Details - [UNIX Job] dialog box, or in te="command-text" in the unit definition file. If a job defined
in the command statement is terminated forcibly in JP1/AJS, the following restrictions apply.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 142

* Depending on the timing at which forced termination is performed, you might not be able to reference the contents
of the job execution log or standard error output for the job from JP1/AJS - View. In this case, you can check
the contents of the job execution log in the spool job directory.

* Jobs with return code 143 are output to the job execution log. However, jobs with return code -1 can be
referenced from JP1/AJS - View.
* Parameters

Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters on the Definition tab in the Define Details - [UNIX Job] dialog box or in prm=""parameter" in the
unit definition file.

If you specified a job definition script file name for the script file name, specify only the runtime parameters.

¢ Environment variables

Specify the following value in Environment variables on the Definition tab in the Define Details - [UNIX Job]
dialog box or in env="environment-variable" in the unit definition file:

AJS_BJEX_STOP=TERM

The following figure shows a specification example of a JP1/Advanced Shell batch job In this example, the adshexec
command is specified for "script file name" and job definition script file path is specified.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 143

Figure 2-9: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying the adshexec command)

e]
i
5

Definition | Transfer File | Atributes |

-~
Command statement '
v

Jopt/iplas/bin/adshexec I

Script file name

:/fuserl/scripts/sct02.ash paraml pazamzl

AJS_BJEX_STOP=TERM A
= I

Standard output

Standard error

End judguent

ok |8 cancer | Help |

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

144

Figure 2-10: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying a job definition script file path)

S |ER]

=

Definition | Transfer File | Atributes |

Command statement

Script file name /hone fuserl/scripts/sct02.ash I

paraml param2 I

AJS_BJEX_STOP=TERM
Environment

Environment file

Working path

Standard input

Standard output

Standard error

End judguent

ok [cancer | Help |

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

145

2.8 Setting up the user-reply functionality

2.8.1 Specifying the environment files to use the user-reply functionality

In JP1/Advanced Shell, you can specify the operating environment by using two types of environment files, the system
environment file for applying the same operating environment to multiple jobs, and a job environment file for applying
a different operating environment to each job. If you will be using the user-reply functionality, you must edit the system
environment file as appropriate for the system's environment.

Once you have edited the system environment file, you must restart the daemon or service.

(1) Specifying the spool root directory

Use the SPOOL DIR parameter to specify the spool root directory to which job execution results are to be output. When
you will be using the user-reply functionality, you must define the SPOOL_DIR parameter only in the system
environment file. Path names cannot contain multibyte characters.

For details about the SPOOL_DIR parameter, see 7.3.39 SPOOL_DIR parameter (defines the spool root directory path
name) in 7. Parameters Specified in the Environment Files.

(2) Specifying the JP1 event destination host

You must use the HOSTNAME JP1IM MANAGER parameter in the system environment file to specify the operation
management server on which the JP1/IM - Manager that is the destination of JP1 events is running. If this parameter is
omitted, the host name displayed when the hostname command is executed on the server on which JP1/Advanced
Shell is running is assumed as the destination of JP1 events. Define the HOSTNAME JP1IM MANAGER parameter only
in the system environment file. Also, verify that the name of the host on which JP1/Advanced Shell is run can be resolved
on the host specified in this parameter.

For details about the HOSTNAME JP1IM MANAGER parameter, see 7.3.20 HOSTNAME JP1IM_MANAGER
parameter (specifies the operation management server on which JP1/IM - Manager is running that is to be the destination
of JP1 events) in 7. Parameters Specified in the Environment Files.

(3) Specifying JP1 event flow control

When you use the user-reply functionality, the conditions shown in the table below concerning output of JP1 events
must be satisfied. These conditions apply to all JP1 events that are received by the same JP1/IM.

No. Description Output condition
1 JP1 events The number of JP1 events output per second must be less than 2.
2 Reply-waiting events The number of reply-waiting events output per minute must be less than 1.

In the job controller of JP1/Advanced Shell, you can use the USERREPLY JP1EVENT INTERVAL parameter to
specify the minimum event-issuing interval at which JP1 events are issued by the adshecho and adshread
commands. [f multiple jobs issue events, specify the parameter in such a manner that the frequency of JP1 event issuance
by the adshecho and adshread commands from all jobs satisfies the above conditions.

For details about the USERREPLY JP1EVENT INTERVAL parameter, see 7.3.51
USERREPLY JPIEVENT INTERVAL parameter (specifies the minimum interval at which JP1 events are to be issued)
in 7. Parameters Specified in the Environment Files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 146

(4) Specifying the maximum number of concurrent reply-request
messages that can be output

You use the USERREPLY WAIT MAXCOUNT parameter to specify the maximum number of concurrent reply-request
messages that can be output by the user-reply functionality for each physical or logical host. Specify in this parameter
a value that is at least equal to the number of jobs that will execute the adshread command concurrently.

For details about the USERREPLY WAIT MAXCOUNT parameter, see 7.3.52 USERREPLY WAIT MAXCOUNT
parameter (specifies the maximum number of concurrent reply-request messages that can be output for a physical or
logical host) in 7. Parameters Specified in the Environment Files.

2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (Windows only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality. These settings must be specified by a user with an administrator role.

(1) Setting up the service

(a) Specifying how to start the JP1/Advanced Shell service

To have the JP1/Advanced Shell service start automatically:

1. From the Windows Control Panel, select Administrative Tools, and then Services.
2. From the displayed list of service names, display the properties of the following service:
* To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE

* To use the user-reply functionality from the development environment, service name beginning with
AdshmSveD

3. On the General page, change Startup Type as follows:

Immediately after JP1/Advanced Shell has been installed, the initial setting is Manual. If you want to have the
service start automatically whenever Windows starts, change this setting to Automatic.

(b) Starting the JP1/Advanced Shell service

This subsection explains how to start the JP1/Advanced Shell service manually. You can skip this procedure if you set
Startup Type to Automatic in (a) Specifying how to start the JP1/Advanced Shell service, and then started Windows.

To start the JP1/Advanced Shell service

1. From the Windows Control Panel, select Administrative Tools, and then Services.

2. From the displayed list of service names, display the properties of the following service:
* To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE
* To use the user-reply functionality from the development environment, service name beginning with AdshmSve

3. On the General page, click the Start button.

If the service does not start, check the error information output to the event logs.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 147

If the KNAX7552~E message is issued as error information, check and, if necessary, revise the system environment
file, and then restart the service.

(c) Registering a service

If a service (AdshmSvceD or AdshmSvcE) to be registered automatically during installation is deleted, you must re-
register the service to use the user-reply functionality. You can use the adshmsvcd and adshmsvce commands to
register services.

The following explains how to register a service.

* How to re-register a service

If AdshmSveD or AdshmSvcE are not displayed in Services in Administrative Tools, registration of the service
might have been deleted. You can re-register the service by executing the following command:

* To register the AdshmSvcD service

adshmsved -install

* To register the AdshmSvcE service

adshmsvce -install

If the command terminates normally, the registered service is displayed in Services in Administrative Tools.

For details about how to start a registered services, see (b) Starting the JP1/Advanced Shell service.

(2) Setting up the adapter command (for the execution environment)

To use the user-reply functionality in the execution environment, you must specify the adapter command shown below
inJP1/Base. Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed
JP1/Base, you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpa th in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.

The adapter command configuration file used for the user-reply functionality is stored at the following location:

Installation-folder\JP1ASE\sample\Adapter HITACHI JP1 AS ASE USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:
* In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1 AS ASE USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe
¢ In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1l/IM/CC
componenttype JP1 AS ASE USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 148

2. Copy the adapter command configuration file used for the user-reply functionality shown in step 1 to the JP1/Base
installation target.

The target folder is as follows:

JPl1/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

(3) Setting up the adapter command (for the development environment)

To use the user-reply functionality in the development environment of JP1/Advanced Shell, you must specify the settings
described here. However, if you specify the standard output as the output destination of the user-reply functionality,
there is no need to perform this setup.

Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpa th in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.

The adapter command configuration file used for the user-reply functionality is stored at the following location:

JP1/Advanced-Shell-installation-folder\JP1ASD\sample
\Adapter HITACHI JP1 AS ASD USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:
* In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1 AS ASD USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe
* In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1 AS ASD USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe

2. Copy the file shown in step 1 to the JP1/Base installation target.
The target folder in JP1/Base is as follows:

JPl/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 149

2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (UNIX only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality.

After you have set up JP1/Advanced Shell, you must enable the function for reply-waiting events in JP1/IM - Manager.
For details, see 2.8.4 Specifying environment information in JP1/IM - Manager.

(1) Starting and terminating the user-reply functionality's management
daemon automatically

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts up and shuts down.

(a) In AIX

 Setting up the automatic start function at system startup

You use the mkitab command to have the user-reply functionality's management daemon start automatically at
the time of system startup. The specified setting takes effect the next time the system starts.

The following shows an example of the mkitab command:
mkitab "adshmd:2:wait:/opt/jplas/sbin/adshmdctl start"
Set the user-reply functionality's management daemon to start after the services of linked JP1-series products have

started. For example, to have JP1/Base, JP1/IM - Manager, and JP1/Advanced Shell start automatically in this order,
execute the mkitab commands as follows:

mkitab -i hntr2mon "Jplbase:2:wait:/etc/opt/jplbase/Jjbs start"
mkitab -i jplbase "jplcons:2:wait:/etc/opt/jplcons/jco_start"
mkitab -i jplcons "adshmd:2:wait:/opt/jplas/sbin/adshmdctl start"

After you have specified the settings, execute the following 1sitab command to check the settings:

lsitab -a

The following shows an example of the output after command execution:

init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of
system boot

hntr2mon:2:once:/opt/hitachi/HNTRLib2/etc/D002start
jplbase:2:wait:/etc/opt/Jjplbase/jbs_start
jplcons:2:wait:/etc/opt/jplcons/jco_start
adshmd:2:wait:/opt/jplas/sbin/adshmdctl start

¢ Setting up the automatic termination function at system shutdown

To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
youmust edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon is terminated before the services of linked JP1-series products are stopped:

test -x /opt/jplas/sbin/adshmdctl && /opt/jplas/sbin/adshmdctl stop

termination processing for services of linked JPl-series products

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 150

(b) For RHEL 6, Oracle Linux 6 and CentOS 6

In JP1/Advanced Shell, the script file jpl as md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jplas/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

* Adding to the /etc/rc.d/init.d directory
Add jpl as md stored inthe /opt/jplas/sample directory to /etc/rc.d/init.d. To add
jpl as_md, specify as follows:
cp /opt/jplas/sample/jpl as md /etc/rc.d/init.d

chmod u=rwx,go=rx /etc/rc.d/init.d/jpl as md
chown root:root /etc/rc.d/init.d/jpl as md

¢ Creating a symbolic link for automatic startup
Create asymboliclinkto /etc/rc.d/init.d/jpl as mdinthe /etc/rc.d/rcN.ddirectory (Nindicates
the execution level at startup). You must name the symbolic link in such a manner that the user-reply functionality's
management daemon is started after the services of linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc.d/
rc3.dand /etc/rc.d/rc5.ddirectoriesis S99 JP1 10 BASE and the name of the symbolic link for JP1/
IM - Manager's automatic start script is S99 JP1 20 CONS, the user-reply functionality's management daemon
will be started after JP1/Base and JP1/IM - Manager if you specify as follows, using S99 JP1 70 AS asthe name
of the symbolic link so that it falls after S99 JP1 20 CONS:

ln -s /etc/rc.d/init.d/jpl _as md /etc/rc.d/rc3.d/S99 JP1 70 AS
In -s /etc/rc.d/init.d/jpl_as md /etc/rc.d/rc5.d/S99 JP1 70 AS
chown -h root:root /etc/rc.d/rc3.d/s99 Jpl_70_AS
chown -h root:root /etc/rc.d/rc5.d/S99 JP1 70 AS

¢ Creating a symbolic link for automatic termination
Createasymboliclinkto /etc/rc.d/init.d/jpl as mdinthe /etc/rc.d/rcN.ddirectory (Nindicates
the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the services of the linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc.d/rcO.dand /etc/rc.d/rc6.d directories is KOl _JP1 90 BASE and the name of the symbolic link
for JP1/IM - Manager's automatic termination script is K01 JP1 80 CONS, the user-reply functionality's
management daemon will be terminated before JP1/Base and JP1/IM - Manager if you specify as follows, using
K01 JP1 30 AS as the name of symbolic link so that it falls before KO1 JP1 80 CONS:

In -s /etc/rc.d/init.d/jpl as md /etc/rc.d/rc0.d/K01_JP1l 30 AS
ln -s /etc/rc.d/init.d/jpl _as md /etc/rc.d/rc6.d/K01 JP1 30 AS
chown -h root:root /etc/rc.d/rc0.d/KO01 JP1 30 AS
chown -h root:root /etc/rc.d/rc6.d/K01 JP1 30 AS

If you change the JP1 30 AS part in the name of symbolic link KO1 JP1 30 AS, you must also change
_JP1 30 AS on the following lines in the jpl as md script file:

touch /var/lock/subsys/ JP1 30 AS
rm -f /var/lock/subsys/ JP1 30 AS

(c) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7

In JP1/Advanced Shell, the Unit file jpl as md.service for automatic startup and automatic termination of the user-
reply functionality management daemon is stored in the /opt/jplas/sample directory. Follow the procedures below to
perform settings by using this Unit file.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 151

* Addition to the /usr/lib/systemd/system directory
Add jpl _as md.service that is stored in the /opt/jplas/sample directory to /usr/lib/systemd/system. Specify the
following setting to add jpl as md.service.

cp /opt/jplas/sample/jpl as md.service /usr/lib/systemd/system
chmod u=rw,go=r /usr/lib/systemd/system/jpl as md.service
chown root:root /usr/lib/systemd/system/jpl as md.service

 Setting of automatic startup and automatic termination
Execute setting of automatic startup and automatic termination of the user-reply functionality management daemon
by specifying the systemctl command as follows.
systemctl --system enable jpl as md.service

If automatic startup and automated stop of the user-reply functionality management daemon are performed according
to the aforementioned setting, the following actions will occur depending on the timing.

* At the time of automatic startup
Information of the status when the OS accesses the pid file of the user-reply functionality management daemon

may be output to the result of the start of the user-reply functionality management daemon that is output by the
OS, but no action is required.

* At the time of an automatic stop

The OS may send a stop signal to the job that is waiting for a response of the reply-request message when the
system stops. In this case, unanswered reply-request messages are canceled by the job controller.

(d) In HP-UX

In JP1/Advanced Shell, the script file jpl as md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jplas/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

* Adding to the /sbin/init.d directory

Add jpl as md stored in the /opt/jplas/sample directory to /sbin/init.d. Toadd jpl as md,
specify as follows:
cp /opt/jplas/sample/jpl as md /sbin/init.d

chmod u=rx,go=r /sbin/init.d/jpl as md
chown root:sys /sbin/init.d/jpl as md

¢ Creating a symbolic link for automatic startup
Create a symbolic link to /sbin/init.d/jpl as mdinthe /sbin/rc2.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is started after the services
of the linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /sbin/rc2.d
directory is S900Jpl base and the name of the symbolic link for JP1/IM - Manager's automatic start script is
S901jpl cons, the user-reply functionality's management daemon will be started after JP1/Base and JP1/IM -
Manager if you specify as follows, using S905jpl as md as the name of the symbolic link so that 905 falls after
901:

In -s /sbin/init.d/jpl as md /sbin/rc2.d/S905jpl as md
chown -h root:sys /sbin/rc2.d/S905jpl as md

* Creating a symbolic link for automatic termination

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 152

Create a symbolic link to /sbin/init.d/jpl as mdinthe /sbin/rcl.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.

For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /sbin/
rcl.ddirectory is K100jpl base and the name of the symbolic link for JP1/IM - Manager's automatic
termination scriptisK099jpl cons, the user-reply functionality's management daemon will be terminated before
JP1/Base and JP1/IM - Manager if you specify as follows, using K095jpl as md as the name of symbolic link
so that 095 falls before 099:

1n -s /sbin/init.d/jpl as md /sbin/rcl.d/K095jpl as md
chown -h root:sys /sbin/rcl.d/K095jpl as md

(e) In Solaris

In JP1/Advanced Shell, the script file jpl as md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jplas/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

* Adding to the /etc/init.d directory

Add jpl as md stored in the /opt/jplas/sample directoryto /etc/init.d. Toadd jpl as md,
specify as follows:
cp /opt/jplas/sample/jpl as md /etc/init.d

chmod u=rwx,go=r /etc/init.d/jpl as md
chown root:sys /etc/init.d/jpl _as md

¢ Creating a symbolic link for automatic startup

Create a symbolic link to /etc/init.d/jpl as mdinthe /etc/rc2.d directory (N indicates the execution
level at startup). You must name the symbolic link in such a manner that the user-reply functionality's management
daemon is started after the services of the linked JP1-series products have been started.

For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc2.d

directory is S99 JP1 10 BASE and the name of the symbolic link for JP1/IM - Manager's automatic start script
is S99 JP1 20 CONS, the user-reply functionality's management daemon will be started after JP1/Base and JP1/
IM - Manager if you specify as follows, using S99 JP1 70 AS as the name of the symbolic link so that it falls

after S99 JP1 20 CONS:

ln -s /etc/init.d/jpl as md /etc/rc2.d/S99 JP1 70 AS
chown -h root:sys /etc/rc2.d/S99 JP1 70 AS

* Creating a symbolic link for automatic termination
Create a symbolic link to /etc/init.d/jpl as mdinthe /etc/rcO0.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc0.ddirectory isKO1 JP1 90 BASE and the name of the symbolic link for JP1/IM - Manager's automatic
termination script is KO1_JP1 80 CONS, the user-reply functionality's management daemon will be terminated
before JP1/Base and JP1/IM - Manager if you specify as follows, using KO1 JP1 30 _AS as the name of symbolic
link so that it falls before KO1 _JP1 80 CONS:

ln -s /etc/init.d/jpl as md /etc/rc0.d/K01_JP1 30 AS
chown -h root:sys /etc/rc0.d/KO01 JP1 30 AS

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 153

(2) Setting up JP1/Base

To use the user-reply functionality, you must have first copied the adapter command configuration file that is provided
by JP1/Advanced Shell and used for the user-reply functionality to the corresponding directory in JP1/Base. Copy the
following adapter command configuration file used for the user-reply functionality to the corresponding directory in
JP1/Base:

* Source directory (directory containing the adapter command configuration file that is provided by JP1/Advanced
Shell and used for the user-reply functionality)

/opt/jplas/sample

Name of the adapter command configuration file that is provided by JP1/Advanced Shell and used for the user-reply
functionality
Adapter HITACHI JP1 AS USERREPLY.conf

¢ Target directory (corresponding directory in JP1/Base)
/opt/jplbase/plugin/conf

Perform this setup only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

2.8.4 Specifying environment information in JP1/IM - Manager

This subsection explains how to set up JP1/IM - Manager to use the user-reply functionality. You perform this setup in
JP1/IM - Manager on the host that was specified in the HOSTNAME JP1IM MANAGER parameter in (2) Specifying

the JP1 event destination host.

(1) Copying the definition file for extended event attributes to JP1/IM -
Manager

Copy the definition file for extended event attributes from the sample directory under the JP1/Advanced Shell
installation directory to JP1/IM - Manager. Perform the following procedure as a user with superuser permissions.

To copy the definition file for extended event attributes and enable it:

1. Copy the definition file for extended event attributes to the machine on which JP1/IM - Manager is installed.

* Source definition file for extended event attributes
The extended attribute definition file to be copied will vary depending on the language of operation.

Languages of operation Definition file for extended event attributes to be copied
Japanese hitachi_jpl_as base attr ja.conf
English hitachi_jpl_as base_attr_en.conf
Chinese hitachi_jpl as base_attr cn.conf

(However, the display will be in English.)

* Target directory

The following table shows the target directory to which the definition file for extended event attributes is to be
copied on the machine on which JP1/IM - Manager is installed:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 154

Target OS Target directory

Windows JP1/IM-Manager-console-path\ conf\console\attribute\
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-folder\jplcons\conf\console\attribute\

UNIX /etc/opt/jplcons/conf/console/attribute/
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-directory/jplcons/conf/console/attribute/

For details about JP1/IM - Manager's console path, see the JPI/Integrated Management - Manager Configuration
Guide.

For details about the shared folder and directory, see the description of cluster systems in the JP1/Integrated
Management - Manager Configuration Guide.

2. Restart JP1/IM - Manager.

(2) Setting up JP1/IM - Manager and JP1/IM - View

The function related to reply-waiting events must be enabled in JP1/IM - Manager and JP1/IM - View. If this function
is not enabled, replies cannot be entered in JP1/IM - View.

For details about how to set up JP1/IM - Manager and JP1/IM - View and the settings for communication between JP1/
Advanced Shell and JP1/IM - Manager, see the description related to linking with JP1/Advanced Shell in the JP1/
Integrated Management - Manager Configuration Guide.

2.8.5 Specifying environment information in JP1/Base

If you will be using the user-reply functionality, the character encoding of JP1/Base that is run on the same host as JP1/
Advanced Shell must match the character encoding used for event notification messages and reply-request messages
that are specified in the adshecho and adshread commands.

For details about the character encoding settings in JP1/Base, see the sections on installation and setup in the JP1/Base
User's Guide.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 155

2.9 Running in a cluster configuration

2.9.1 Prerequisites and scope of support for cluster operations

In a cluster system, JP1/Advanced Shell is run in a logical host environment and can inherit the job execution
environment in the event of system switchover. However, execution of a job that was underway at the time system
switchover occurred cannot continue. If necessary, you must re-execute such a job manually after system switchover is
completed.

When JP1/Advanced Shell is run on a logical host, the cluster software program must manage the logical IP address as
well as allocation, deletion, and operation monitoring of the shared disk. In addition, you must configure the system
and set up the environment so that the following prerequisites are satisfied.

(1) Prerequisites for a logical host environment

When JP1/Advanced Shell is run in a logical host environment, the following prerequisites apply to the logical IP address
and the shared disk.

Table 2-32: Prerequisites for logical host environment
Logical host component Prerequisites

Shared disk * A shared disk that can be inherited from the active server to the standby

server is available.

* The shared disk is allocated before the JP1/Advanced Shell program
starts.

* The shared disk allocation is not released while the user-reply
functionality's management daemon or service are running.

¢ The shared disk allocation is released after the user-reply functionality's
management daemon or service have stopped.

* The shared disk is locked to prevent illegal access from multiple nodes.

* Files are protected from unexpected events, such as system shutdown, by
using file systems with journal functions.

e When a planned termination is performed on a running program during
system switchover, the file contents are guaranteed and inherited.

» Forced system switchover is available even if a process is using the shared
disk during system switchover.

¢ In the event of a failure of the shared disk, the cluster software controls
the recovery processing. If it is necessary to start and stop the user-reply
functionality's management daemon or service as an extension of the
recovery processing, the cluster software will issue requests to start and
stop the user-reply functionality's management daemon or service.

Logical IP address * Alogical IP address that can be inherited is available for communication.
* A unique logical IP address can be obtained from the logical host name.
¢ The logical IP address is allocated before the user-reply functionality's

management daemon or service start.

* The logical IP address is not deleted while the user-reply functionality's
management daemon or service is running.

* The correspondence between logical host name and logical IP address
remains unchanged while the user-reply functionality's management
daemon or service is running.

¢ The logical IP address is deleted after the user-reply functionality's
management daemon or service has stopped.

* Inthe event of a network failure, the cluster software controls the recovery
processing without having to involve the user-reply functionality's

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 156

Logical host component Prerequisites

Logical IP address management daemon or service in the recovery processing. If it is
necessary to start and stop the user-reply functionality's management
daemon or service as an extension of the recovery processing, the cluster
software is to issue requests to start and stop the user-reply functionality's
management daemon or service.

e If multiple logical hosts are started on the same physical host, one IP
address is allocated to each logical host.

(2) Prerequisites for a physical host environment

In a cluster system that runs JP1/Advanced Shell on a logical host, each server's physical host environment must satisfy
the following prerequisites.

Table 2-33: Prerequisites for physical host environment
Physical host component Prerequisites

Server machine » The cluster configuration consists of at least two server machines.

¢ Sufficient CPU performance is available for the processing to be performed
(for example, if multiple logical hosts will run concurrently, there will be
sufficient CPU performance).

¢ There is enough real memory for the processing to be performed (for example,
if multiple logical hosts will run concurrently, there will be enough real memory
capacity).

Disk * Files are protected from unexpected events, such as system shutdown, by using
file systems with journal functions.

Network Ifthe user-reply functionality's management daemon or service are used in a
physical host environment, the IP address corresponding to the physical host
name (obtained by the hostname command) is supported for
communications (communications will not be disabled by a program such as
the cluster software).”

* The correspondence between host name and IP address remains unchanged
while the user-reply functionality's management daemon or service is running
(the correspondence will not be changed by a program such as the cluster
software or a name server).

¢ In Windows, a LAN board corresponding to the host name is given priority by
the network binding settings (no other LAN board, such as a heartbeat LAN,
is granted priority).

OS and cluster software ¢ The environment settings of the individual servers are identical so that the same
processing can be performed after system switchover.

¢ The cluster software and its version are supported by JP1/Advanced Shell.

¢ Patches and service packs required by JP1/Advanced Shell and cluster software
have been applied.

Depending on the cluster software, the IP address corresponding to the physical host name (host name displayed by
the hostname command) might not be supported for communications. In such a case, the user-reply functionality's
management daemon or service cannot run in the physical host environment. Use the user-reply functionality's
management daemon or service in the logical host environment only.

(3) Scope of support by JP1/Advanced Shell

When JP1/Advanced Shell is run in a cluster system, it supports only its own operation. The logical host environment
(shared disk and logical IP address) is controlled by the cluster software.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 157

If the prerequisites for the logical and physical host environments are not satisfied or there is a problem in the control
of the logical host environment, JP1/Advanced Shell might not function normally. In such a case, check the physical
and logical host environments or the cluster software settings and revise the prerequisites as necessary.

(4) Conditions for logical host names

The following conditions apply to logical host names:

¢ Permitted number of characters
Windows: 1 to 196 bytes (a maximum of 63 bytes is recommended)
UNIX: 1 to 255 bytes (a maximum of 63 bytes is recommended)

If the cluster software or JP1 products being used impose limitations, you must observe those limitations in naming
the logical hosts.

e Permitted characters
Alphanumeric characters and the hyphen (-)

2.9.2 Specifying environment information for cluster operation

This subsection explains the environment settings for JP1/Advanced Shell to support cluster operation.

(1) Installing and setting up the JP1-series products to be linked

Install and set up on the active and standby servers the JP1-series products to be linked. For details about the installation
and setup of the JP1-series products to be linked, see the applicable manuals.

(2) Installing JP1/Advanced Shell

Install JP1/Advanced Shell on the local disk of both the active and standby servers.

Do not install JP1/Advanced Shell on the shared disk.

(3) Specifying environment information for JP1/Advanced Shell

To use JP1/Advanced Shell in a cluster system, perform the tasks described below.

(a) Evaluating the configuration of directories and files

Evaluate according to the system operation guidelines the directory and file configuration items shown in the following
table.

Table 2-34: Directory and file configuration evaluation items

Type of directory or file Creation criterion
Directory for temporary files SorL
Directory for the spool S
Directory for system execution logs SorL
Directory for traces L
System environment file L

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 158

Type of directory or file Creation criterion

Job environment file SorL

Job definition script SorL

File referenced from job definition scripts SorL

Other SorL
Legend:

S: Create on the shared disk.
S or L: Create on the shared disk or logical disk according to the system operation guidelines.
L: Create on the local disk.

(b) Specifying environment information on the physical hosts

Specify the environment information for JP1/Advanced Shell on the physical hosts of the active and standby servers.
For details about the specification of environment information, see 2.6 Specifying environment information for JP1/
Advanced Shell.

(c) Specifying environment information on the logical host

Specify the environment information for JP1/Advanced Shell on the logical host of the active server.
To specify the environment information on the logical host:

1. Create the directories needed for execution.
According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files, create
the following directories required for running JP1/Advanced Shell on the shared disk or logical disk:
* Directory for temporary files
* Directory for the spool
* Directory for system execution logs
* Directory for traces
The following explains how to create directories:

* When creating the directories on the shared disk

Create the directories on the shared disk in such a manner that the active server can access the shared disk.

* When creating the directories on the local disk
Create the directories on the local disks of both the active and standby servers.

2. Specify the environment file.
You must specify the settings required for each logical host in the system environment file of JP1/Advanced Shell.
To do this, specify the environment setting parameters for each logical host between the 1host start and
lhost_end conditional parameters. For details about the 1host start and 1host end conditional
parameters, see 7.4.1 lhost start and lhost end parameters (define a set of parameters applicable only to a specified
logical host) in 7.4 Conditional parameters.

To run JP1/Advanced Shell in a logical host environment, specify at least the following parameters in the system
environment file:

» Parameters for the directories required for running JP1/Advanced Shell

According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files,
specify in the system environment file the directories created in step 1. Specify these directories in the system

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 159

environment file only, so that they are swapped when system switchover occurs. Do not specify them in job
environment files. For details about the parameters for directories required for running JP1/Advanced Shell, see
2.6.19 Creating the directories required for JP1/Advanced Shell.

» Parameters for the user-reply functionality

If you will be using the user-reply functionality in a logical host environment, specify in the system environment
file the appropriate parameters for the user-reply functionality for the logical host.

For details about the parameters for the user-reply functionality, see 2.8.1 Specifying the environment files to
use the user-reply functionality.

An example of the settings in the system environment file with physical and logical hosts specified are shown below.

In this example, /shdskl/1host001 and /shdsk2/1host002 are directories on the shared disk, and /

lhost001, /1lhost002, and /phost are directories on the local host.

i #

Settings common to both physical and logical hosts

#H##

#-adsh_conf USERREPLY JP1EVENT INTERVAL

#H#

500

Settings for each of the physical and logical hosts

i #

specify parameter for only logical host (lhost001).

#-adsh conf lhost start lhost001

#-adsh _conf LOG _DIR "/shdskl/1lhost001/log"
#-adsh conf SPOOL DIR "/shdskl/lhost001/spool"
#-adsh conf TEMP FILE DIR "/shdskl/lhost001/temp"
#-adsh conf TRACE DIR "/lhost001/trace"

#-adsh conf HOSTNAME JP1IM MANAGER IMlhost001

#-adsh conf USERREPLY WAIT MAXCOUNT 5

#-adsh conf

lhost end

specify parameter for only logical host (lhost002).

#-adsh conf lhost start lhost002

#-adsh conf LOG_DIR "/shdsk2/1lhost002/1log"
#-adsh conf SPOOL DIR "/shdsk2/1host002/spool"”
#-adsh conf TEMP FILE DIR "/shdsk2/1lhost002/temp"
#-adsh conf TRACE DIR "/lhost002/trace"
#-adsh conf HOSTNAME JP1IM MANAGER IMlhost002

#-adsh conf USERREPLY WAIT MAXCOUNT 5

#-adsh conf lhost end

#4## specify parameter for physical host.

#-adsh conf phost start

#-adsh conf LOG DIR "/phost/log"

#-adsh conf SPOOL DIR "/phost/spool"

#-adsh conf TEMP_ FILE DIR "/phost/temp"

#-adsh conf TRACE DIR "/phost/trace"
#-adsh_conf HOSTNAME JP1IM MANAGER IMphost001

#-adsh conf USERREPLY WAIT MAXCOUNT 10

#-adsh_conf

phost end

3. Register the user-reply functionality's management service for the logical hosts (Windows only).

To use the user-reply functionality in a logical host environment, you must register the user-reply functionality's
management service for the logical hosts on both the active and standby servers. You can use the adshmsvcd and
adshmsvce commands to register the user-reply functionality's management service. To register the service for a
logical host, execute the command with the ~install and -1hostname options specified.

When the command terminates normally, the registered service is displayed in the Services administrative tool.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 160

For example, to use 1host001 as a logical host in the execution environment of the active server, execute the
following command:

adshmsvce -install -lhostname lhost001

If the command terminates normally, AdshmSvcE_ lhost001 is displayed in the Services administrative tool.

4. Check the file configuration on the active and standby servers.

According to the file configuration evaluated in (a) Evaluating the configuration of directories and files, perform
the following tasks:

¢ For the files to be created on the local disk

The configuration of the files to be referenced and the file contents must be identical between the active and
standby servers. Copy the files created on the local disk of the active server, such as the system environment file
created in step 2. Specify the environment file, to the same path on the standby server.

¢ For the files to be created on the shared disk
Create the files so that the active server can access them on the shared disk.

0 Important

For the created files, set the permissions so that they can be accessed from both the active and standby
servers. If access permissions are granted to a specific user or group, you must specify the same
user name and user ID (UID) or the same group name and group ID (GID) on both the active and
standby servers.

(4) Registering into the cluster software (Windows)

Register the user-reply functionality's management service on the logical host into the cluster software so that it can be
started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host environment,
skip this task.

(a) Registering into the cluster software
In Windows, register into the cluster software the service with the name shown in the following that has been registered
as a service for the logical host:
Name Service name
AdshmSvcE_logical-host-name User-reply functionality's management service
For details about how to register the service, see the applicable cluster software's documentation. After you have

registered the user-reply functionality's management service into the cluster software, use the cluster software to start
and stop the service.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management service on the logical host, the shared disk and logical IP address must
be available. The start and stop sequence depends on the linked JP1-series products.
e When the logical host is started
1. Allocate the shared disk and logical IP address and enable them.
2. Start the services of the linked JP1-series products (except JP1/AJS).*

3. Start the user-reply functionality's management service.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 161

4. Start the services of JP1/AJS.
e When the logical host is terminated
1. Stop the services of JP1/AJS.
2. Stop the user-reply functionality's management service.
3. Stop the services of the linked JP1-series products (except JP1/AJS).”
4. Release the allocation of the shared disk and the logical IP address.

For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

(5) Registering into the cluster software (UNIX)

Register into the cluster software the user-reply functionality's management daemon on the logical host so that it can
be started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host
environment, skip this task.

(a) Registering into the cluster software

The following table provides the information needed for registering the user-reply functionality's management daemon
into the cluster software.

Table 2-35: Functions to be registered in to the cluster software and the commands used by each
function

Function to be registered Description

Start Starts the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name start

Checking the result of starting the daemon
Use the operation monitoring described below to check the result of starting the user-reply

functionality's management daemon; do not use the return code.
Stop Stops the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name stop

Checking the result of stopping the daemon

Use the operation monitoring described below to check the result of stopping the user-reply
functionality's management daemon; do not use the return code.

Operation monitoring Monitors the user-reply functionality's management daemon to check if it is running normally.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name status

Checking the result of operation monitoring
The following explains the return code:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 162

Function to be registered Description

Operation monitoring Return code = 0 (running)
The user-reply functionality's management daemon is running normally.
Return code = 1 (stopped)

The user-reply functionality's management daemon is stopped for some reason. Treat this status
as an error.

For details about the adshmdctl command, see 8.3.12 adshmdctl command (starts and stops the user-reply
functionality management daemon) (UNIX only) in 8. Commands Used During Operations.

0 Important

If the user-reply functionality's management daemon is terminated without releasing the shared memory
due to some error, the next startup will fail. If this occurs, take appropriate action according to the
information provided in Syntax in 8.3.12 adshmdctl command (starts and stops the user-reply functionality
management daemon) (UNIX only) in 8. Commands Used During Operations.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management daemon on the logical host, the shared disk and logical IP address
must be available. The start and stop sequence depends on the linked JP1-series products.
¢ When the logical host is started
1. Allocate the shared disk and logical IP address and enable them.
2. Start the daemons and services of the linked JP1-series products (except JP1/AJS).*
3. Start the user-reply functionality's management daemon.
4. Start the services of JP1/AJS.
e When the logical host is terminated
1. Stop the services of JP1/AJS.
2. Stop the user-reply functionality's management daemon.
3. Stop the daemons and services of the linked JP1-series products (except JP1/AJS).#
4. Release the allocation of the shared disk and the logical IP address.

For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

2.9.3 How to specify commands during cluster operation

To execute a command on a logical host, you must specify the logical host name in the command. A command in which
no logical host name is specified is executed on the physical host. Specify the logical host in commands as shown in
the following.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 163

(1) adshexec command (executes a batch job)

(a) Executing from a JP1/AJS custom job

To execute the command from a custom job, select the Logical host check box in Define detailed info in the Define
Details - [Custom Job] dialog box to execute the command on the logical host.

Note that the JP1/AJS Exec-agent that executes the custom job must be running on the logical host. If the JP1/AJS Exec-
agent is running on the physical host, the command will not function normally.

For details about custom jobs, see 2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is
used).

(b) Executing from a program other than a JP1/AJS custom job
To execute the command from a program other than a custom job, specify the command as follows:
adshexec -h "" path-name-of-job-definition-script-file
If the command is executed from JP1/AJS - Agent running on the logical host, the logical host name is set in the
JP1 HOSTNAME environment variable. If the null character string (which is two double-quotation marks, " ") is

specified in the —h option, the adshexec command acquires the logical host name from the JP1 HOSTNAME
environment variable. For details about the JP1 HOSTNAME environment variable, see the JP1/Base User's Guide.

Note that the executing JP1/AJS Exec-agent must be running on the logical host. If the JP1/AJS Exec-agent is running
on the physical host, see Executing from a program other than JP1/4JS below.

(c) Executing from a program other than JP1/AJS

Execute the command with the logical host name specified in the —h option, as shown in the following:
adshexec -h logical-host-name path-name-of-job-definition-script-file

(2) Commands other than adshexec

Execute the command with the logical host name specified in the —h option, as shown in the following:
command -h logical-host-name

This example executes adshlsmsg as a logical host:
adshlsmsg -h logical-host-name

If the user-reply functionality is used, the logical host name specified in the user-reply functionality's management

daemon or service must the same as the logical host name specified in the adshexec command. For details about the
individual commands that can be executed as a logical host, see 8.3 Shell operation commands.

2.9.4 Notes about cluster operation

This subsection provides additional information about use of JP1/Advanced Shell in a cluster operation.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 164

* (Windows only) UNC names can be used as file and path names. However, the path names ending with a shared
name (including names ending with \) are not supported.

e JP1/Advanced Shell does not support some file systems. For details, see (2) File systems.

* When multiple logical hosts are configured and multiple copies of JP1/Advanced Shell are run, the user-reply
functionality is still executed for each logical host. Information cannot be referenced from the user-reply functionality
running on one logical host by the user-reply functionality running on another logical host.

* If system switchover occurs while a job using reply-request messages of the user-reply functionality is running,
reply-request events might remain in JP1/IM - View. If this occurs, use JP1/IM - View to release the reply-request
events manually.

e (UNIX only) If the shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error by signal.

* (Windows only) Ifthe shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error when it attempts to access a file on the shared disk.

e Ifyourun JP1/Advanced Shell in a cluster environment, do not collect coverage information.

2.9.5 Settings for running a logical host in a non-cluster environment

This subsection provides an overview of the configuration and operations of logical hosts in a non-cluster environment.
In the case of logical hosts that run in a non-cluster environment, you specify the same environment information as for
logical hosts that run in a normal cluster system.

(1) Specifying environment information to run logical hosts in a non-
cluster system

This subsection explains how to run JP1/Advanced Shell on a logical host in a non-cluster environment without linking
JP1/Advanced Shell to cluster software.

(a) Preparing the logical host environment

Provide a disk area and IP address for the logical host to create a logical host environment.

* Disk area for the logical host
Create storage directories on the local disk for the files that will be used by JP1/Advanced Shell separately from the
directories used by the physical host and the JP1-series products on other logical hosts.

¢ [P address for the logical host

Allocate in the OS the IP address that will be used by JP1/Advanced Shell for the logical host. It can be a real IP
address or an alias [P address. Make sure that the IP address can be uniquely identified from the logical host.

The prerequisites for these tasks are the same as for operation in a cluster system. However, the conditions related
to cluster software do not apply because JP1/Advanced Shell is not run in a cluster environment.

In2.9 Running in a cluster configuration, replace the information about shared disk and logical IP address with the disk
area and IP address allocated above for the logical host.

* Estimating performance

When you estimate performance, determine whether JP1/Advanced Shell can be run as a system in terms of the
following:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 165

* Determine whether there are enough resources to run multiple JP1-series products in the system. If there are not
enough resources, the system might not function correctly or adequate performance might not be realized.

(b) Specifying environment information for the logical host

Specify environment information for the logical host using the same procedure as for the active server in a cluster system.
For details about the specification of environment information for cluster operation, see 2.9.2 Specifying environment
information for cluster operation. Note that in a cluster system, the environment information must be specified on both
servers involved in system switchover, but for a logical host that is run in a non-cluster environment, specify the
environment information only on the server on which JP1/Advanced Shell will be run.

(2) Automatic startup and termination of the user-reply functionality's
management daemon for the logical host in a non-cluster environment
(UNIX only)

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts and shuts down.

(a) In AIX

» Setting up the automatic start function at system startup

You use the following mkitab command to have the user-reply functionality's management daemon start
automatically at the time of system startup:

mkitab "record-of-user-reply-functionality-management-daemon-for-logical host:
2:wait:/opt/jplas/sbin/adshmdctl -h logical-host-name start"

Set the user-reply functionality's management daemon for the logical host to start after the logical host services of
linked JP1-series products have started. For example, to have JP1/Base and JP1/IM - Manager on the logical host
start automatically in this order, execute mkitalb commands as follows:

mkitab -i record-of-JPl-Base-for-logical-host "record-of-JPl/IM-Manager-for-
logical-host:2:wait:/etc/opt/jplcons/jco _start.cluster logical-host-name"

mkitab -i record-of-JPl/IM-Manager-for-logical-host "record-of-user-reply-
functionality-management-daemon—-for-logical host:2:wait:/opt/jplas/sbin/adshmdctl
-h logical-host-name start"

 Setting up the automatic termination function at system shutdown

To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
you must edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon for the logical host stops before any of the logical host services of linked JP1-series products are stopped:

test -x /opt/jplas/sbin/adshmdctl && /opt/jplas/sbin/adshmdctl -h logical-host-
name stop

termination processing for services of linked JPl-series products

(b) For RHEL 6, Oracle Linux 6 and CentOS 6

* Creating automatic start and stop scripts

Create automatic start and stop scripts for the logical host in the /etc/rc.d/init.d directory. The following
shows an example:

#!/bin/sh

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 166

JP1 HOSTNAME=logical-host-name

case $1 in

'start')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME start
touch /var/lock/subsys/lock-file-name
fi
'stop')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME stop
rm -f /var/lock/subsys/lock-file-name
fi
esac
exit 0O

Specity for the lock file name the symbolic link name created for automatic stop without the leading numeric part
(KXX part). For example, if the symbolic link name for automatic stop is K01 JP1 AS CLUSTER, specify
_JP1_AS_CLUSTER.

¢ Creating a symbolic link for automatic startup

Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN.d directory (N
indicates the execution level at startup). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is started after the logical host services of the linked JP1-series products have
been started. For details about how to create symbolic links, see (1) Starting and terminating the user-reply
functionality's management daemon automatically.

* Creating a symbolic link for automatic termination

Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN. d directory (N
indicates the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the logical host services of the linked JP1-series products
are stopped. For details about how to create symbolic links, see (1) Starting and terminating the user-reply
functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(c) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7

¢ Creation of the Unit file of the user-reply functionality management daemon for logical host

Create the Unit file of the user-reply functionality management daemon for logical host in the /etc/systemd/
system directory. For the name of the Unit file service to be created, use . service as the extension such as in
jpl as md logical host name.service.

An example of the Unit file to be created is as follows. Refer to the document of JP1/Base for "Unit file name of
JP1/Base for logical host".

[Unit]
Service name
Description=Advanced Shell - adshmd logical-host-name

Depecdencies

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 167

Requires=unit-file-name-of-JPl/Base-for-logical-host
After=unit-file-name-of-JPl/Base-for-logical-host
ConditionFileIsExecutable=/opt/jplas/sbin/adshmdctl

[Service]

Service type

Type=forking

PIDFile=/opt/jplas/system/adshmd logical-host-name.pid

Service operations
ExecStart=/opt/jplas/sbin/adshmdctl -h Iogical-host-name start
ExecStop=/opt/jplas/sbin/adshmdctl -h logical-host-name stop

KillMode=none

[Install]
WantedBy=multi-user.target graphical.target

Set the owner of the created Uni t file, belonging group, and permission in /etc/systemd/systemn.

chmod u=rw,go=r /etc/systemd/system/Unitfile name of the user-reply functionality management
daemon for logical host
chown root:root /etc/systemd/system/Unitfile name of the user-reply functionality management
daemon for logical host

¢ Setting of automatic startup and automatic termination
Execute the setting of automatic startup and automatic termination of the user-reply functionality management
daemon for the logical host by specifying the systemctl command as follows.
systemctl --system enable the Unit file name of the user-reply functionality management daemon for
logical host

For actions that occur at the timing when the user-reply functionality management daemon is automatically started or
terminated according to the aforementioned setting, see (1) Starting and terminating the user-reply functionality's
management daemon automatically - (¢) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7.

(d) In HP-UX

¢ Creating automatic start and stop scripts
Create the automatic start and stop scripts for the logical host in the /sbin/init .d directory. The following
shows an example:

#!/bin/sh

Set Environment-variables
PATH=/sbin:/bin:/usr/bin:/opt/jplas/sbin
export PATH

JP1 HOSTNAME=logical-host-name

case $1 in
start msgqg)

echo "Start Advanced Shell - adshmd $JP1 HOSTNAME"
stop msg)

echo "Stop Advanced Shell - adshmd $JP1 HOSTNAME"

rr

'start')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME start
fi

rr

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 168

'stop')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME stop
fi

esac

exit 0

* Creating a symbolic link for automatic startup

Create a symbolic link to the created automatic start and stop scripts in the /sbin/rc2.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
logical host services of the linked JP1-series products have been started. For details about how to create symbolic
links, see (1) Starting and terminating the user-reply functionality's management daemon automatically.

¢ Creating a symbolic link for automatic termination

Create a symbolic link to the created automatic start and stop scripts in the /sbin/rcl.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is terminated before
the logical host services of the linked JP1-series products are stopped. For details about how to create symbolic
links, see (1) Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(e) In Solaris

* Creating automatic start and stop scripts

Create the automatic start and stop scripts for the logical hostinthe /etc/init .d directory. The following shows
an example:

#!/bin/sh
JP1 HOSTNAME=logical-host-name

case $1 in

'start')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME start
fi
'stop')
if [-x /opt/jplas/sbin/adshmdctl]
then
/opt/jplas/sbin/adshmdctl -h $JP1 HOSTNAME stop
fi
esac
exit O

¢ Creating a symbolic link for automatic startup

Create a symbolic link to the created automatic start and stop scripts in the /etc/rc2.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see (1)
Starting and terminating the user-reply functionality's management daemon automatically.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 169

* Creating a symbolic link for automatic termination

Create a symbolic link to the created automatic start and stop scripts in the /etc/rc0.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see (1)
Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names

of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(3) How to specify logical hosts

You specify commands that are to execute on a logical host in the same manner as for commands that are used on the
logical host in a cluster system. For details about how to specify commands for the logical host in a cluster system, see
2.9.3 How to specify commands during cluster operation.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 170

2.10 Installing the HTML manual

You can use the HTML manual for JP1/Advanced Shell's custom job programs and JP1/Advanced Shell Editor by
copying the HTML manual to a specified folder.

To install the HTML manual:

1. Locate the manual CD-ROM supplied as a standard with the program product.

2. From the manual CD-ROM, copy all of the JP1/Advanced Shell HTML and CSS files and the GRAPHICS folder
to the following folders:

e To view Help from JP1/Advanced Shell:
installation-directory\ JP1ASE\doc\en\help

* To view Help from JP1/Advanced Shell Editor:
installation-directory\ JP1ASD\doc\en\help

* To view Help from JP1/Advanced Shell's custom job definition programs:
installation-directory\ JP1ASV\doc\en\help

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 171

2.11 Setting the application-execution agent functionality [only for the
Windows execution environment]

We recommend that you configure settings as follows when using the application-execution agent functionality.

1. Log on as the user who will be using the application-execution agent functionality.

The user who will be using the application-execution agent functionality must be assigned rights by using the
administration tool of Windows under Local security policy > Local policy > Assign user rights > Create global
object.

If the right to "create a global object" cannot be enabled due to security problems, a user who can enable the rights
to "create a global object" must use the application execution agent function.

2. Select All Programs > Advanced Shell > Application Execution Agent from the Start menu of Windows.
The Application Execution Agent icon appears in the notification area of the Task bar.

@

3. Right-click the Application Execution Agent icon and select Add Startup.
Add Startup(a)
Exit(X)
The application execution agent automatically starts automatically from the next log on.

Notes on registering startup

When uninstalling JP1/Advanced Shell, if the application execution agent is registered to startup, right-click the
Application Execution Agent icon and select Delete startup to delete the application execution agent from startup.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 172

2.12 Setting the file mode creation mask used when execution of a job
definition script starts [for UNIX only]

The file mode creation mask that is to be used when execution of a job definition script starts differs depending on the
specification of the UMASK INHERIT environment setting parameter, as shown in the following table.

Environment setting parameter File mode creation mask used when Remarks
execution of a job definition script
starts®
UMASK_INHERIT NO 0 Default
UMASK_INHERIT YES File mode creation mask of the parent process = --
Legend:
--: Not applicable
#
Child jobs are included.
Notes

If the UMASK INHERIT NO environment setting parameter is specified when a child job is started, the child job
does not inherit any changes made to the file mode creation mask by using the uma sk command in the root job.
Therefore, the child job is run with a file mode creation mask of 0.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 173

2.13 Required memory amount and occupied disk amount

2.13.1 Virtual memory requirements

The formula for estimating the used virtual memory space is as follows:

(1) Job controller

#
1

Environment

Execution environment

Development
environment

0s

Linux

AIX

HP-UX

Solaris

Windows

Windows

Process

adshexec

adshexec

adshexec

adshexec

adshexec
+ adshexecsub

adshedit
+ adshesub

S: Number of commands called in the job definition script

J: Number of job step definitions

F: Number of allocated files

FS: File size (in KB) of the job definition script

Formula for estimating

12000KB + (S x 1KB) + (J x 2KB) + (F x 3KB)
+ (FS x 5KB)

2000KB + (S x 1KB) + (J x 2KB) + (F x 2KB) +
(FS x 5KB)

12000KB + (S x 1KB) + (J x 2KB) + (F x 3KB)
+ (FS x 5KB)

10000KB + (S x 1KB) + (J x 3KB) + (F x 3KB)
+ (FS x 6KB)

17000KB + (S x 2KB) + (J x 4KB) + (F x 5KB)
+ (FS x 7KB)

40000KB + (S x 2KB) + (J x 4KB) + (F x 5KB)
+ (FS x 14KB)

(2) User-reply functionality management daemon and service

#

1

Environment

Execution environment

Development
environment

(O]

Linux

AIX

HP-UX

Solaris

Windows

Windows

2. Preparations for Using JP1/Advanced Shell

Process

adshmd

adshmd

adshmd

adshmd

adshmsvce

adshmsved

Formula for estimating

10MB x Number of user-reply function
management daemons started

2MB x Number of user-reply function management
daemons started

10MB x Number of user-reply function
management daemons started

8MB x Number of user-reply function management
daemons started

9MB x Number of user-reply function management
services started

9MB x Number of user-reply function management
services started

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

174

(3) Shared memory used by user-reply function management daemons

and service

Environment oS

1 Execution environment Linux

2 AIX

3 HP-UX

4 Solaris

5 Windows

6 Development Windows
environment

Formula for estimating

IMB x Number of user-reply function management daemons started
IMB x Number of user-reply function management daemons started
IMB x Number of user-reply function management daemons started
IMB x Number of user-reply function management daemons started
IMB x Number of user-reply function management services started

IMB x Number of user-reply function management services started

(4) Shared memory used by application-execution agent program

(Windows only)

12KB x Number of users that execute the GUI application execution program

2.13.2 Disk space requirements

(1) Amount of disk space required for execution modules and libraries

Environment

1 Execution environment

6 Development environment

#1

oS
Linux
AIX
HP-UX
Solaris
Windows

Windows

Formula for estimating
34 MB

32 MB

50MB

31 MB

34 MB#!

17 MB#2

Depending on the type of Windows OS, the actual value might be smaller than this value. During installation, a
maximum of an additional 112 MB of disk space will be temporarily used.

#2

Depending on the type of Windows OS, the actual value might be smaller than this value. During installation, a
maximum of an additional 62 MB of disk space will be temporarily used.

(2) Amount of disk space required for each directory

(a) System execution log

The default is as follows, but you can change it via the environment file.

¢ Location

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 175

e Size

(b) Trace log

Environment oS

Execution environment

Development environment

Linux
AIX
HP-UX
Solaris

Windows

Windows

Environment

Execution environment

Development environment

Location

/opt/jplas/log (LOG_DIR parameter)

/opt/jplas/log (LOG_DIR parameter)

/opt/jplas/log (LOG_DIR parameter)

/opt/jplas/log (LOG_DIR parameter)

shared-documents-folder\Hitachi\JP1AS\JP1ASE\log

(LOG_DIR parameter)

shared-documents-folder\Hitachi\JP1AS\JP1ASD\log

(LOG_DIR parameter)

oS

Linux

AIX

HP-UX

Solaris

Windows

Windows

The default is as follows, but you can change it via the environment file.

¢ Location

#

e Size

Environment oS
Execution environment | Linux
AIX
HP-UX
Solaris
Windows
Development Windows
environment
Environment os
Execution environment Linux
AIX

2. Preparations for Using JP1/Advanced Shell

Location

Size

2MB x 5 (LOG_FILE CNT
parameter)

2MB x 5 (LOG_FILE_CNT
parameter)

2MB x 5 (LOG_FILE_CNT
parameter)

2MB x 5 (LOG_FILE_CNT
parameter)

2MB x 5 (LOG_FILE_CNT
parameter)

2MB x 5 (LOG_FILE_CNT
parameter)

/opt/jplas/trace (TRACE DIR parameter)

/opt/jplas/trace (TRACE_DIR parameter)

/opt/jplas/trace (TRACE DIR parameter)

/opt/jplas/trace (TRACE_DIR parameter)

common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace (TRACE_DIR parameter)

common-application-data-folder\Hitachi\JP1 AS\JP1ASD
\trace (TRACE_DIR parameter)

Size

2MB x 4 (TRACE_FILE CNT parameter)

2MB x 4 (TRACE_FILE CNT parameter)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

176

(c) Spool

Environment

Execution environment

Development environment

0os
HP-UX
Solaris
Windows

Windows

Size

2MB x 4 (TRACE_FILE_CNT parameter)
2MB x 4 (TRACE_FILE CNT parameter)
2MB x 4 (TRACE_FILE_CNT parameter)

2MB x 4 (TRACE_FILE CNT parameter)

Default is as follows, but the location can be changed via the environment file.

¢ Location

#

e Size

Environment

Execution environment

Development environment

(015
Linux
AIX
HP-UX
Solaris

Windows

Windows

Location

/var/opt/jplas/spool (SPOOL_DIR parameter)
/var/opt/jplas/spool (SPOOL_DIR parameter)
/var/opt/jplas/spool (SPOOL_DIR parameter)
/var/opt/jplas/spool (SPOOL_DIR parameter)

shared-documents-folder\Hitachi\JP1 AS\JP1ASE\spool
(SPOOL_DIR parameter)

shared-documents-folder\Hitachi\JP1AS\JP1 ASD\spool
(SPOOL_DIR parameter)

Calculate the disk space (in KB) required for each job to be executed, by totaling the calculation results of the
formulas in the File size column in the table below.

Note that the total of the calculation results of the following formulas will be larger than the disk space required for
a typical job. This is to tolerate the variation of the disk space required for the spool because the required space

varies due to various causes (for example, the length of the path name of the job definition script file and the number
of environment variables).

#
1

Output Information

Fixed information (such as the
header information)

Log information for each step
to be executed(*)

Information about the script to
be executed

Information stored in the
program output data file

File Information

Job execution log
(JOBLOG)

File Size

500.0KB

Count of execution of the command or control statement of
the script to be executed x 0.2KB

+
Number of #-adsh_step start commands x 0.4KB

File in which SCRIPT is The size of the job definition script file

included in File Name

File assigned by the #-

The amount of data to be output to the file assigned by the

adsh_spoolfile command #-adsh_spoolfile command

#:As for this data, you can restrain the output of the specified information message to the job execution log by using
the environment setting parameter JOBLOG_SUPPRESS MSG.

In execution environment, the value calculated according to the formula in the File size column in the table below
must be added to the required disk space in the table above.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 177

Output Information File Information File Size

1 Information about the standard | Files for which names contain The amount of data output by commands and
output and standard error STDOUT and STDERR user applications
output
2 Operation information () File for which the name contains Number-of-commands-and-control-statements-
EVENTFILE of-the-script-to-be-executed * 2.5 KB

#:As for this data, you can restrain creation of operation information by setting the environment setting parameter
EVENT COLLECT to NO.

Calculate the estimated disk space required for the spool for one operation by multiplying the value (in KB) calculated
from the above formulas and the number of jobs to be executed.

¢ Concept of the number of commands and control statements

The number of commands and control statements means the number of commands or instructions that are executed
when the job definition script is actually executed. The following shows examples.

Example 1:

commandA
commandB
varA="paramA"
commandC $varA

For the aforementioned script, the count of the execution of the command or control statement will be as follows.
e commandA
e commandB
* Assignment expression (varA="paramA")
* commandC

Therefore, the number of commands and control statements is 4.

Example 2:

lop=1

while [$lop -le 5] ; do
echo "Loop count: $lop"
((lop+=1))

done

The commands and control statements for the above script are as follows:
* Assignment expression (lop=1)
e Condition evaluation ([$lop -le 5]) <--+
* echo command <--+-- Equivalent to 15 steps,
* Arithmetic operation (((lop+=1))) <--+ because 5 loops are repeated.
* Condition evaluation ([$lop -le 5]) <----- Final determination processing to break out of the loop

Therefore, the number of commands and control statements is 17.

For loop processing such as in example 2, the number of loops might be dynamically determined depending on the
operational status. We recommend that you allow a margin for values, based on the possible maximum.

(d) User-reply function management daemon start-up log (UNIX only)

The size and location of user-reply function management daemon start-up log is as follows:

¢ Location

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 178

/opt/jplas/system

* Size
maximum of 1 MB (usually under 1 KB)
To activate the user-reply function management daemon of the logical host, multiply the size by the number of user-
reply function management daemons that are running. The size decreases to 0 when the user-reply function
management daemon restarts.
While the user-reply function management daemon is stopped, if a reply-request message that is awaiting a reply is
canceled, the size increases. If an error occurs, the size increases.

(e) Log of the application-execution agent functionality (Windows only)
The size and location of log of the application-execution agent functionality is as follows:

¢ Location

shared-documents—-folder\Hitachi\JP1AS\JP1ASE\appexec

e Size
maximum of 6MB+1KB(CONF file)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 179

2.14 Note on running antivirus software

If a virus check is run during execution of JP1/Advanced Shell, the virus check might not run properly. In addition,
execution of the job definition script might be delayed. To avoid these problems, if you run a virus check during execution
of JP1/Advanced Shell, exclude the following files and directories from the check targets.

Files and folders for JP1/Advanced Shell (in Windows):

installation-folder and all its contents
common-application-folder\Hitachi\JP1AS and all its contents
shared-document-folder\Hitachi\JP1AS and all its contents

Folder specified for the LOG DIR environment setting parameter and all its contents

Folder specified for the SPOOL_DIR environment setting parameter and all its contents
Folder specified for the TEMP FILE DIR environment setting parameter and all its contents
Folder specified for the TRACE DIR environment setting parameter and all its contents

All job environment files

All script files

Files and folders for JP1/Advanced Shell (in UNIX):

/opt/jplas directory and all its contents
/var/opt/jplas directory and all its contents
Directory specified for the LOG DIR environment setting parameter and all its contents

Directory specified for the SPOOL_DIR environment setting parameter and all its contents

Directory specified for the TEMP FILE DIR environment setting parameter and all its contents

Directory specified for the TRACE DIR environment setting parameter and all its contents
All job environment files

All script files

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

180

Part 3: Operation

Executing Batch Jobs

This chapter explains how to execute batch jobs and the batch job processing in JP1/Advanced
Shell (execution environment).

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 181

3.1 Structure of jobs

This section explains the structure of jobs.

3.1.1 Operator's tasks in JP1/AJS jobs

This subsection explains the general procedure for the operator's tasks when JP1/AJS is used to execute jobs.

(1) Defining jobs

To use JP1/AJS to execute jobs, you must define the jobs according to the procedure explained in 2.7.2 Defining and
executing a jobnet.

(2) Executing jobs

The three methods for using JP1/AJS to execute jobs are planned execution, fixed execution, and immediate execution.
For details about these three execution methods, see the JP1/Automatic Job Management System 3 Operator's Guide.

If you do not use JP1/AJS, you can execute jobs (job definition scripts) by entering commands from the command
prompt or shell.

(3) Monitoring a jobnet

In JP1/AJS, you start the jobnet monitor to check job execution status.

(4) Re-executing jobs

If you need to re-execute jobs, re-execute them from the JP1/AJS - View window.

3.1.2 Jobs

Any request to start the job controller from a JP1/AJS or Windows command prompt or a UNIX shell is accepted as a
job. A general user who will be using the job passes the job definition script containing a collection of instructions to
the job controller.

The job controller analyzes the instructions to determine what is being requested by the user and executes the job in a
manner that makes efficient use of system resources.

(1) Root jobs and child jobs

In general, a job is the unit in which the system is requested to perform a single integrated task prepared by a general
user. Individual tasks that are requested are treated as being mutually independent.

A job consists of a series of processing programs. To execute these processing programs, you must define their execution
order, execution conditions, and the files that will be required for them to execute.

Jobs are classified into root jobs and child jobs.

* Root job

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 182

Of the jobs to be executed from programs, such as JP1/AJS and login shell, all jobs other than child jobs are root
jobs.

e Child job

In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of
the parameters listed below or its default definition are child jobs:

* CHILDJOB EXT parameter
* CHILDJOB PGM parameter

e CHILDJOB SHEBANG parameter

The following figure shows an example procedure for starting root jobs and child jobs.

JP1/AJS ## ROOT.ash ##
Login shell - RIS T
Command prompt SH1.8h mmmmmmmmmmem S ## SHL.sh #4 |
etc. i . 1
| Y
Ve o i___ gt #!/bin/sh !
| SHZ.sh TP 44 SH2.sh #4 |
i ! ! i
R | o i
adshexec SH3.ash 44 SH3.ash #4
UAP1 [UAP1]
Legend: Start sH4 . ash ## SH4.ash ##
[:Root job
1”7 :Child job

—» : Started by the user by specifying the adshexec command
—> : Started by the user by specifying a command other than the adshexec command
--p : Started by using the CHILDJOB_SHEBANG parameter

Explanation:

e Jobs sH1.sh and SH2. sh that were started by using the CHILDJOB SHEBANG parameter become
child jobs.

e Job ROOT. ash that was started from a program such as JP1/AJS becomes a root job.

e Job SH3. ash that was started by specifying the adshexec command becomes a root job.

e Job SH4.ash that is a descendant process of the job definition script but was started via a process
that is not adshexec becomes a root job.

(2) Job input modes

Jobs are executed in one of the following modes according to the status of the standard input:

* Terminal input mode

If the standard input is associated with the terminal when a job starts, the job is executed in this mode. The following
is an example of starting a job in this mode:

* In the login shell, executing the adshexec command with the standard input associated with the terminal

* Non-terminal input mode
If the standard input is not associated with the terminal when a job starts, the job is executed in this mode.
The following are examples of starting a job in this mode:

¢ Starting a job from JP1/AJS
 In the login shell, executing the adshexec command by redirecting the standard input from a file

* In the login shell, executing the adshexec command in a middle of or at the end of a pipe

When a job starts, the KNAX7902~-T1 message indicating the mode used to execute the job is displayed.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 183

In UNIX, how a job is forcibly terminated depends on the job input mode. For details, see 3.11 Forcibly terminating jobs.

In Windows, the job input mode has no effect on the job processing.

(3) Relationship between jobs

Root jobs are mutually independent. This means that jobs processed concurrently do not influence each other, nor can
an executed root job influence root jobs that are executed later. Also, information cannot be inherited from one root job
to another (except for the information in files).

However, there might be relationships between jobs, such as the following:

* Depending on the scheduling by JP1/AJS, root jobs are associated with each other in terms of their execution order.

e If multiple jobs use the same regular file concurrently, those jobs are associated with each other. A schedule must
be designed in JP1/AJS so that the jobs are executed in the appropriate order.

* There might be a relationship between a root job and child jobs and between child jobs.

(4) Relationship between jobs and environment files

Both root and child jobs load the system environment file and a job environment file when the jobs start. Therefore, a
root job and its child jobs use parameters in different environment files in the following cases:

» Afterarootjobloaded the environment files at the start, the value of the ADSH ENV environment variable is changed
to a different job environment file path before a child job loads the environment files when it starts.
* After a root job loaded the environment files at the start, the contents of the system environment file or job

environment file is changed before a child job loads the environment files when it starts.

If you want to run a root job and its child jobs using the same environment file parameters, do not change the value of
the ADSH_ENV environment variable or the contents of the environment files while the jobs are executing.

Ifthe export parameter is defined in the environment files, its value takes precedence over the value of the environment
variable that the job inherits from its parent process. The following shows an example.

* Rootjob root.ash

export ENV1I=SCRIPTFILE
childjob.ash #start the child job

Child job childjob.ash

echo S$SENV1

* Contents of environment file adshzrc . ase that are loaded by root job root . ash and child job childjob.ash

export ENV1=ENVFILE
¢ echo output results of child job childjob.ash
export ENVI=ENVFILE
In this example, the jobs are run in the following procedure:

1. Root job root.ash starts and ENVFILE is set in ENV1 by the export parameter in environment file
adshrc.ase.

2.Rootjob root .ashsets SCRIPTFILE in environment variable ENV1 before its child job childjob. ash starts.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 184

3. Child job childjob.ash starts and inherits environment variable ENV1 from root job root . ash. Immediately
after the process of child job childjob.ash started, the value of ENV1 was SCRIPTFILE.

4. Child job childjob.ash loads environment file adshrc.ase at the start. ENVFILE is set in ENV1 by the
export parameter.

5. The result of echo by child job childjob.ash is ENVFILE, which was set in step 4.

(5) Temporary files and regular files

Batch jobs perform processing by referencing data, such as the information provided by open base products, as temporary
files or regular files.

(a) Temporary files

Temporary files are used temporarily during job execution. They are created automatically by jobs and job steps and
deleted automatically when the jobs terminate. Temporary files are created in a directory defined in the environment
files.

We recommend that you manage the temporary files for batch jobs separately from the temporary files for applications.
The directory for storing temporary files in the job controller of JP1/Advanced Shell is specified in the

TEMP_FILE DIR parameter. Normally, the temporary files are deleted, but they might remain if a failure occurs. For
this reason, make sure that you delete temporary files periodically.

(b) Regular files

Regular files are used to input and output job definition scripts and can be placed in any directory. These files are retained
as job results after jobs have terminated, but you can delete them during job execution.

(6) Asynchronously executed processes

The job controller of JP1/Advanced Shell does not terminate a job until all the related root jobs, child jobs, and commands
have terminated.

(a) Asynchronous execution by using & and |&

A job is not terminated until all the processes executed with & and | & specified are completed.
Note that if an asynchronously executed process is terminated due to receipt of a signal such as STGSTOP at the time
the job terminates, the job might be terminated without waiting for that process to terminate. If you want to terminate

a job without waiting for termination of asynchronously executed processes, create the job definition script in such a
manner that the OS shell is used only for the parts that you want to execute asynchronously.

The following shows an example.

¢ Example for the UNIX edition
Example of a job definition script waiting for the termination of an asynchronously executed process

#!/opt/Jjplas/bin/adshexec
mycommand A &

If you execute this script in the job controller, the job waits for mycommand to complete before terminating. If you
want to terminate this job without waiting for the completion of mycommand, prepare the job definition script as
shown below. This example uses /bin/ksh as the OS shell.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 185

Example of a job definition script that ends without waiting for an asynchronously executed process to finish

#!/opt/Jjplas/bin/adshexec
/bin/ksh exec _cmdA.sh

Message of exec_cmdA.sh

mycommand A &

« Example for the Windows edition
Example of a job definition script waiting for the termination of an asynchronously executed process

mycommand A &

If you execute this script in the job controller, the job waits for mycommand to complete before terminating. If you
want to terminate this job without waiting for the completion of mycommand, prepare the job definition script as
shown below.

Example of a job definition script that ends without waiting for an asynchronously executed process to finish

cmd.exe "/c start exec _cmdA.bat"

Contents of exec_cmdA.bat

mycommand A

(b) Using the exec command to execute external commands

If an external command is specified in the argument of the exec command, the adshexec command executes the
external command as a child process and waits for its completion. When the external command is completed, no
commands following the exec command will be executed. In such a case, the return code of the completed external

command becomes the return code of the job definition script.

(c) Message notifying that the command is to wait for completion of asynchronously
executed process

When the adshexec command starts, it outputs the KNAX7 901 -I message notifying that the command is to wait for
completion of asynchronously executed process when the job terminates. This message is normally output to the job
execution logs, system execution logs, and standard error. During debugging, this message is output to the standard
error output.

(d) Job processing when an asynchronously executed process is stopped (UNIX
only)

If an asynchronously executed process is stopped due to receipt of a signal such as STGSTOP, JP1/Advanced Shell
sends STGHUP and STGCONT to child processes or descendant processes when the job terminates. When this
transmission is completed, JP1/Advanced Shell waits for one second and then performs job postprocessing.

How SIGHUP and SIGCONT are transmitted depends on the job input mode, as described in the following:

e Terminal input mode
SIGHUP and SIGCONT are sent only to the child processes of the adshexec command. SIGHUP and SIGCONT
are not sent to any of the descendant processes of the adshexec command, including grandchild processes. If
grandchild processes remain, use the ps command to obtain the process IDs of the remaining processes, and then
manually terminate them with the ki11 command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 186

* Non-terminal input mode
SIGHUP and STGCONT are sent to the descendant processes of the adshexec command.

3.1.3 Job steps

The job step is a unit of job execution and is a part of a job definition script consisting of a group of commands. When
you allocate regular files and temporary files, you can define the files that are valid only within one job step. Such files
are postprocessed when the job step in which the files were allocated terminates.

Several job steps are mutually related. If one job step is not processed correctly, execution of the next job step might be
meaningless. In such a case, you can specify job step execution conditions so that subsequent processing is skipped.

Jobs steps are used for the following purposes:

* Automating command and program error processing

* Controlling shell script execution in units of job steps

(1) Automating termination processing and log output in the event of a
command error

Conventional scripts require the return code to be checked, error messages output, temporary files deleted, and other
error handling procedures to be performed for each command that is executed.

A job step enables you to monitor the return code of a command executed within the job step, output an error message,
delete temporary files, and perform predefined processing (such as an error handling procedure).

The following shows an example script that uses job steps to automate termination processing and output a log in the
event of an error.

Comparison based on whether job steps are used

When job steps are not used

01 progA

02 ret=$7

03 1f [[Sret != 0 11; then -—— (1)
04 echo "progA error" -——= (1)
05 exit S$Sret --= (1)
06 fi -—= (1)
07

08 TEMP="/tmp/tempfile"

09

10 progB ${INFILE B} ${TEMP}

11 ret=$?

12 if [[Sret != 0]]; then

13 echo "progB error"

14 rm ${TEMP} -— ()
15 exit Sret

16 fi

17

18 progC ${TEMP} ${OUTFILE_C}

19 ret=$?

20 1if [[Sret !'= 0]]; then

21 echo "progC error"

22 fi

23

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 187

24 rm ${TEMP} -—= (2)
25 exit Sret

When job steps are used

01 #-adsh _job J01

02

03 #-adsh step start SO01 -—= (1)
04 ProgA

05 #-adsh step end

06

07 #-adsh step start S02

08 #-adsh file temp TEMP -—= (2)
09 progB ${INFILE B} ${TEMP}

10 progC ${TEMP} ${OUTFILE C}

11 #-adsh step end

The following explains (1) and (2) in the example script.
About (1)

If you do not use job steps, you must check for an error each time a command is executed, and then code error

message output processing and script cancellation processing.

On the other hand, if you define a group of commands as a job step, you can output an error message automatically

in the event of an error, and then terminate the job step without executing the subsequent commands.

About (2)

If no job step is used, the user must code each and every process for deleting the created temporary files.

Ifajob step is used, the temporary files allocated for the job step by JP1/Advanced Shell's temporary file function

are deleted automatically when the job step terminates.

When you use job steps, processes such as in (1) and (2) above can be automated. The following shows the log output

results in the case where progB results in an error.

Job execution logs (excerpt)

*kkk Kk kk Kk * Kk Kk ok kK kK

JOB CONTROLLER MESSAGE
17:05:25 000515 KNAX0091-I J01 The job started.

17:05:25 000515 KNAX7901-I The adshexec command will wait for all asynchronous

processes at the end of the job.

17:05:25 000515 KNAX7902-I The adshexec command will run in tty stdin mode.
17:05:25 000515 KNAX0092-I J01.S01 step started.

finished

17:05:25 000515
successfully. ex
17:05:25 000515
time=0.001s CPU
17:05:25 000515
17:05:25 000515
17:05:25 000515
jplas/temp/TEMP
17:05:25 000515
execution time=0
17:05:25 000515
jplas/temp/TEMP
17:05:25 000515
was deleted.
17:05:25 000515
time=0.002s CPU
17:05:25 000515
17:05:25 000515
CPU time=0.000s

KNAX6116-1I Execution of the command ./progA (line=4)

it status=0 execution time=0.000s CPU time=0.000s

KNAX6597-1I J01.S01 step succeeded. exit status=0 execution

time=0.000s

KNAX0092-1I J01.S02 step started.

KNAX1601-I J01.S02 Allocation of file(s) for a step started.

KNAX6409-I The file TEMP was allocated as "create". path=/var/opt/

000515 J01 CGNCtb

KNAX6521-E The command ./progB

.000s CPU time=0.000s ... (1)

KNAX6410-I The file TEMP was deallocated as

000515 J01 CGNCtb

KNAX1604-I The file /var/opt/jplas/temp/TEMP 000515 J01 CGNCtb
... (2)

KNAX6596-E J01.S02 step failed.

time=0.000s

KNAX0101l-E J01 An error occurred during execution of the job.

KNAX0098-I J01 The job ended. exit status=1 execution time=0.006s

(3)

(line=9) failed. exit status=1

"del". path=/var/opt/

exit status=1 execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

188

The following explains job execution logs (1) through (3):

About (1)

The command resulted in an error, so the subsequent commands were not executed.

About (2)
A temporary file allocated by JP1/Advanced Shell's temporary file function was deleted automatically.

About (3)

The job terminated with the return code specified in the error handling procedure.

(2) Controlling execution in units of job steps

You can define a group of related commands as a job step and control job execution according to the results of the job
step's processing. JP1/Advanced Shell provides various functions for controlling execution in units of job steps.

The following shows an example script that controls execution in units of job steps.

Comparison based on whether job steps are used
When job steps are not used

01 retmax=0
02 VAR= proghA’
03 export VAR

04 progB

05

06 tempVAR=S$SVAR -—— (1)
07 VAR= progC"

08 progD

09 retD=$? -—= (2)
10 if [[Sretmax -1t S$SretD]]; then

11 retmax=$retD -—= (3)
12 fi

13 VAR=S$tempVAR -—= (1)
14

15 if [[$retD -ge 16]]; then -—= (4)
16 exit SretD

17 fi

18

19 if [[$retD -ne 0]]; then -—— (5)
20 if [[SretD -eq 4]1]; then -—— (2)
21 result="progD: warning"

22 else

23 result="progD: error"

24 fi

25 progE $result

26 retE=5$7

27 if [[Sretmax -1t SretE]]; then

28 retmax=SretkE -—— (3)
29 fi

30 if [[$retE -ge 16]]; then -—— (4)
31 exit SretE

32 fi

33 fi

34

35 progF -—= (6)
36 exit S$Sretmax -—— (3)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 189

When job steps are used

01 4#-adsh job stop 16: --- (4)
02 VAR=progA’
03 export VAR

04 progB

05

06 #-adsh step start S01 -stepVar VAR -——= (1)
07 VAR="progC"

08 export VAR

09 progD
10 #-adsh step end

11

12 #-adsh step start S02 -run abnormal -—= (5)
13 if [[SADSH STEPRC S0l -eq 4]]; then --- (2)
14 result="STEPOl: warning"

15 else

16 result="STEPOl: error"

17 fi

18 progE S$result

19 #-adsh step end

20

21 #-adsh step start S03 -run always -—— (06)
22 progF

23 exit $ADSH7RC7STEPMAX -—= (3)

24 #-adsh step end

The following explains (1) through (6) in the example script.

About (1)

If you do not use job steps, using a shell variable with a duplicated name for another purpose requires a separate
process (such as saving its value temporarily in another variable).

If you use a job step, you can use shell variables that are valid only within the job step by using the stepVar
attribute of the #-adsh step start extended script command to declare the variable names.

About (2)

If you do not use job steps, to branch processing based on the return code of a specific command, you must store
the command's return code in a separate shell variable.

If you use job steps, you can reference the return code of each job step, which is set automatically by the job
controller.
About (3)

If you do not use job steps, to reference the maximum value of a command's return code, you must update the
maximum value each time the command is executed.

If you use job steps, you can reference the maximum value of the return code of each job step, which is set
automatically by the job controller.
About (4)

If you do not use job steps, to terminate a script when a command's return code exceeds a threshold value, you
must check the threshold value each time a command is executed.

If you use job steps, you can monitor each job step's return code automatically by using the #-adsh_job stop
extended script command to declare the threshold value.
About (5)

If you do not use job steps, you must control execution by determining whether the subsequent processing is to
be executed based on a command's return code.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 190

If you use job steps, you can define that a job step is to be executed only when the preceding process results in
an error. You do this by specifying abnormal in the run attribute of the #-adsh step start extended
script command.

About (6)

If you use job steps, you can define a job step to always execute, regardless of whether the preceding process
was successful. You do this by specifying always inthe run attribute of the #-adsh step start extended
script command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 191

3.2 Starting batch jobs

This section explains for each execution method how to start batch jobs. It also explains the job controller processing
after batch jobs have started.

3.2.1 Starting jobs by using JP1/AJS from the execution environment

This subsection explains how to start JP1/Advanced Shell's batch job applications by using JP1/AJS from the execution
environment.

For details about using JP1/AJS for automation of batch job applications, see the applicable JP1/AJS manual. For details
about how to define and execute JP1/Advanced Shell jobs in jobnets, see 2.7.2 Defining and executing a jobnet.

When you automate batch job applications, you can reduce costs as well as run your system more securely with a smaller
staff. JP1/AJS is a product for automating standard batch job applications. JP1/AJS can also automate a combination
of complex batch job applications. Using JP1/Advanced Shell together with JP1/AJS operations provides the following
advantages:

* You can use the temporary file function to allocate files that are used temporarily and delete them when the job or
job step terminates.
* You can share job definitions among multiple applications by calling external scripts.

* You can achieve flexible job definitions by changing, adding, and deleting coding in job definition scripts.
To use JP1/AJS to execute batch job applications automatically, you must define the following:

* Content and processing order of the batch job applications

* Schedule for executing the batch job applications or registration of events that trigger execution of the batch job
applications

The following figure provides an overview of using JP1/AJS to automate batch job applications. The numbers in the
figure correspond to the numbers in the explanation that follows.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 192

Figure 3-1: Overview of using JP1/AJS to automate batch job applications

1. Register the batch job application content and execution order,
and the application schedule.

Batch job application
content and execution order Application schedule

Process batch job

application A.
Application
starts (8:00).
Total data.
Calendar definition
Output to printer. 12345 6

7 8 9101112 13
141516 17 18 19 20
21122 23 24 25 26 27
2829 30 31

2. Execute the batch job application according to the schedule.

Process batch job
application A.

1| Execute the application Total data.
— automatically according to the schedule.

Output to printer.

1. Registers the batch job application content and execution order, and the application schedule.

2. The batch application is executed automatically according to the registered schedule.

(1) Defining batch job applications and their execution order

Many applications are executed at a specified time in a specified order.
For example, totaling of sales slips is executed in the following order:

1. Extract data from the database.

2. Sort data.

3. Output to printer.
Steps 1 through 3 can be automated as a job controller's job step by defining these steps in a job definition script file,
but the task of extracting data from the database at 12:00 cannot be automated. To define batch job applications and
their execution order in JP1/Advanced Shell and JP1/AJS, define in the job controller the series of steps that make up

the applications and then define the relationships among the definitions of the individual batch job applications and their
execution order as the JP1/AJS execution order or execution time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 193

If batch job applications are broken up into task units, such as commands, application programs, or job definition scripts,
JP1/AIJS alone can achieve jobs equivalent to those that can be achieved by JP1/Advanced Shell. They are also called
jobs in JP1/AJS.

When batch job applications and execution orders are defined in JP1/Advanced Shell and JP1/AJS, the batch job
execution orders are defined by using jobnets in JP1/AJS.

The following figure shows a jobnet used when batch job applications and their execution order are defined in JP1/
Advanced Shell and JP1/AJS.

Figure 3-2: Jobnet used to define batch job applications and their execution order in JP1/Advanced
Shell and JP1/AJS

Jobnet
Batch Batch
job A job E
Batch Batch
jobC job D

Batch
job G
Batch \
job B

Batch
job F

Explanation
The following explains the execution order of the batch jobs that are defined by using JP1/AJS jobnet.

* When batch job A terminates, batch job E is executed.

* When batch jobs A and B terminate, batch job C is executed.

* When batch job C terminates, batch jobs D and G are executed.
* When batch job B terminates, batch job F is executed.

(2) Defining the definition schedule of batch job applications and their
execution order

To automatically define a definition schedule for multiple batch job applications and their execution order, you need a
schedule definition that determines when this definition is to be executed.

JP1/AJS's schedule definition contains such information as a calendar that specifies the company's business days and
holidays, the date and time execution is to begin, and an execution interval. Based on this definition, JP1/AJS determines
the execution schedule and automatically starts JP1/Advanced Shell's job execution on the specified date and time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 194

(3) Registering the timing of starting batch job applications

You can register an event, such as when a file is created or when some specific event occurs, as the timing for starting
abatch job application. If you have registered the required information, you can start a batch job application at a specified
time as well as whenever some specified event (such as creation of a file) occurs.

3.2.2 Starting batch jobs by using commands from the execution
environment

(1) Specifying job definition scripts in the argument of the adshexec
command

To start batch jobs by using commands from the execution environment, you use the adshexec command shown
below. In Windows, enter the command from the command prompt; in UNIX, enter the command from the shell.

adshexec batchjobl.ash

You can also use the —r option of the adshexec command to directly specify the contents of a job definition script.
To specify multiple commands, use the adshexec command as follows:

adshexec -r "export DATA=fileOl ; pgm001"

In UNIX, you can also debug batch jobs by specifying the —d option in the adshexec command. For details about
the adshexec command, see 8.3.7 adshexec command (executes a batch job) in 8.3 Shell operation commands.

(2) Specifying job definition scripts as commands

In UNIX, you can start a batch job by simply entering the name of the job definition script (assuming that execution
permissions have been granted to that job definition script) by specifying the path of the adshexec command beginning
with # ! on the first line (example: #! /opt/jplas/bin/adshexec).

Job definition script file (file name: /home /userl/scripts/batchjob2.ash):

#! /opt/jplas/bin/adshexec
#-adsh job SAMPLE
(followed by the body of the job definition script)

Execution example of batch job start:

/home/userl/scripts/batchjob2.ash

Notes
In Windows, a batch job cannot be started by a method such as specifying from the command prompt the path of
the adshexec command beginning with #! on the first line, and then entering the file name of the job definition
script.
However, if you provide a job definition script in which # ! followed by /opt/jplas/bin/adshexec
or /opt/jplas/bin/adshexec -mMINIMUM is specified on the first line, and then enter its file name from
another job definition script, you can start child jobs in Window as well as in UNIX. Therefore, we recommend that
you specify # ! followed by /opt/jplas/bin/adshexecor /opt/jplas/bin/adshexec -
mMINIMUM on the first line of new job definition scripts even in Windows.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 195

If the first line already contains # ! /bin/sh, such as when existing shell scripts have been migrated, you can also
run the shell scripts as child jobs without editing the scripts.

For details about child jobs, see 3.2.3 Running job definition scripts as child jobs.

3.2.3 Running job definition scripts as child jobs

This subsection explains how to run job definition scripts as child jobs and the operation of child jobs. For details about
priority, see (3) Priority of command execution methods and (4) Priority of child jobs or external commands that have
the same name as the function.

(1) How to execute child jobs

(a) Executing child jobs by specifying parameters in environment files

In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of the
parameters listed below or its default definition are called child jobs:

e CHILDJOB EXT paramecter
* CHILDJOB PGM parameter
¢ CHILDJOB SHEBANG parameter

The following figure shows an example operation for starting a child job by specifying the CHILDJOB SHEBANG
parameter.

Figure 3-3: Example operation for starting a child job

Contents of environment file

#-adsh conf CHILDJOB SHEBANG /bin/sh

Job definition script

t job . .
(xoot job) Job definition script
cmdA | (/jplas/childjob.ash)
/jplas/ .
childjob.ash Execute /jplas/ #!/bin/sh
childjob.ashasa cmdX
child job. cmdY
’ Return.
cmdB

This example specifies another job definition script chi1djob . ash in the job definition script of the root job. Because
childjob.ash satisfies the CHILDJOB SHEBANG parameter definition, the job controller starts the JP1/Advanced
Shell job as a child process, and executes childjob.ash as a child job.

If the root job that starts the child job is executed on a logical host, the child job is also executed on the logical host.

(b) Executing child jobs by using a default definition for the parameter

By using a default definition for the CHILDJOB SHEBANG parameter, you can start child jobs without having to specify
the parameter in environment files.

The following two values have been defined as defaults for the CHILDJOB SHEBANG parameter:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 196

Default definition

/opt/jplas/bin/adshexec

/opt/jplas/bin/adshexec -mMINIMUM

Output mode when the child job is started

Operation is performed according to the specified OUTPUT MODE _CHILD

parameter.

Operation is performed in the minimum output mode.

If you specify a job definition script whose first line is # ! /opt/Jjplas/bin/adshexec in another job definition
script, the former can be run as a child job. If you want to execute only a specific child job in the minimum output mode,
specify #! /opt/jplas/bin/adshexec —-mMINIMUM on the first line of that job definition script.

The operation of a child job executed by a default definition is the same as for a child job started by the method described
in (a) Executing child jobs by specifying parameters in environment files.

Note that the CHILDJOB SHEBANG parameter specified in the environment file takes precedence over the
CHILDJOB SHEBANG parameter's default definitions. If a value that is the same as a default definition is specified in
the CHILDJOB SHEBANG parameter in the environment file, the following takes effect:

¢ Contents of the environment variable

#-adsh conf CHILDJOB SHEBANG "/opt/Jjplas/bin/adshexec -mMINIMUM"

¢ Job definition script that is started by the child job

#! /opt/jplas/bin/adshexec -mMINIMUM

In this example, /opt/jplas/bin/adshexec -mMINIMUM specified in the job definition script satisfies the
definition of the CHILDJOB SHEBANG parameter in the environment file. Therefore, the output mode for the child
job depends on the specified OUTPUT MODE CHILD parameter.

(2) Functional comparison with root jobs and external scripts

The following table compares the functions of root jobs, child jobs, and external scripts:

Function

Relationship of processes
with the calling job

Job controller to be
started

Spool job directory

3. Executing Batch Jobs

Type of job
Root job

Runs in the child process
of the calling job.

¢ In UNIX
adshexec
command

¢ In Windows
adshexec.exe
command +
adshexecsub.ex
e command

Created

Child job

Runs in the child process
of the calling job.

e In UNIX
adshexec
command

¢ In Windows
adshexecsub.ex
e command

Created in the root job's
spool job directory and
deleted when the job
terminates.

The user selects one of the
following about the job
execution log:

External script

External script of .
(dot) command

Runs in the same process
as the calling job.

None

Not created.

(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

External script of #-
adsh_script

Runs in the same process
as the calling job.

None

Not created.

(outputs command
execution results to the
calling job's JOBLOG and
outputs script images to
the calling job's
SCRIPT).

JP1/Advanced Shell Description, User's Guide, Reference,

and Operator's Guide

197

Function

Spool job directory

Job start and termination
messages

Loading of environment
files

Whether standard input
can be used

Destination of standard
output

Type of job

Root job

Created

Provided
(KNAX0091-T and
KNAX0098-1I)

Loaded

Can be used.

Depends on the
specification of the -s
option, the —m option, the
OUTPUT_ STDOUT
parameter, and the
OUTPUT_MODE_ROOT
parameter.

Child job

¢ Output only JOBLOG
to stderr.

* Merge into the root
job's job execution
log.

Provided

(KNAX6571-1 and
KNAX6578-1)

Loaded

Can be used.

Output destination
inherited from its parent
process.

External script

External script of .
(dot) command

Not created.

(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

None

Not loaded.

(depends on the calling
job's processing).

Can be used.

Depends on the calling
job's processing.

(3) Behavior of child jobs when signals are received

This subsection explains the behavior of descendant jobs when signals are received.

External script of #-
adsh_script

Not created.

(outputs command
execution results to the
calling job's JOBLOG and
outputs script images to
the calling job's
SCRIPT).

None

Not loaded.

(depends on the calling
job's processing).

Can be used.

Depends on the calling
job's processing.

The following example jobs are used to explain the behavior of descendant jobs when termination request signals are
sent to the root job, descendant jobs, and an external command:

adshexec (1) ~adshexec (2) ~adshexec (3) -sleep

The following table describes the behaviors when forced termination is performed from JP1/AJS (by sending STGTERM
from JP1/AJS to adshexec (1)) and STGTERM is sent from the login shell to adshexec (1), adshexec (2),
adshexec (3), and sleep.

Timing
Forced termination from

JP1/AJS

Sending STGTERM from
the login shell to
adshexec (1)

Sending SIGTERM from
the login shell to
adshexec (2)

3. Executing Batch Jobs

adshexec(1)

Terminates with error
rc=143.

Terminates with error
rc=143 due to signal.

e Ifajob step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step

adshexec(2)

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

adshexec(3)

Terminates with error
rc=143 due to signal.

Terminates with error

rc=143 due to signal.

Terminates with error
rc=143 due to signal.

sleep

Terminates with error
rc=143 due to signal.

Terminates with error

rc=143 due to signal.

Terminates with error
rc=143 due to signal.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

198

Timing

Sending SIGTERM from
the login shell to
adshexec (2)

Sending SIGTERM from

the login shell to
adshexec (3)

Sending STGTERM from
the login shell to sleep

adshexec(1)

following run
abnormal/
always.

e Ifajob step is not
specified
Performs the next
processing.

Depends on the result of
adshexec (2)

Depends on the result of
adshexec (2)

adshexec(2)

Terminates with error
rc=143 due to signal.

e Ifajob step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

e Ifajob step is not
specified
Performs the next
processing.

Depends on the result of
adshexec (3)

adshexec(3)

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

e Ifajobstep is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

e Ifajob step is not
specified
Performs the next
processing.

sleep

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

(4) Notes about child jobs that are executed from another child job

If a descendant job that was executed from another descendant job is terminated abruptly through the intermediate job
by a means such as SIGKILL in UNIX or TerminateProcess in Windows, the root job might terminate without
waiting for all its descendant jobs to finish. To prevent such an outcome, do not execute an abrupt termination of this
type. However, should such occur, check the execution results of the relevant root job and its descendant jobs.

For the descendant jobs other than the abruptly terminated job, the spool job directory might have been deleted or it
might remain after a failed attempt to delete it. Even if it has been deleted, the logs will still be preserved, because the

contents of JOBLOG will have been output to the standard error output.

Example:

This example illustrates the case where a descendant job is executed from another descendant job (the chain of one
job calling the next is indicated by =»):

[root job] =»

[descendant job

(child)] =

[descendant job

(grandchild)]

In this case, if [descendant job (child)] terminates abruptly, [root job] might terminate earlier than [descendant job
(grandchild)]. In such a case, the behavior of each job and the status of the spool job directory are as follows:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

199

Item

Behavior of the

job

Status of the spool

job directory

Type of job
Root job

The job behaves as though the descendant job
(child) had terminated with an error.

The behavior is the same as when a user program
terminates abruptly due to an error.

In Windows, if the descendant job (grandchild)
has already opened the job execution log, the
renaming of the spool job directory will fail.
Otherwise, or in the case of UNIX, the spool job
directory will be renamed as per normal.

Descendant
job (child)

The job is
terminated
abruptly.

Directory remains
without being
deleted.

Descendant job (grandchild)

The job terminates normally.

However, in Windows, it might behave as if it
was forcibly terminated, depending on the status
of other, related jobs.

Ifthe root job has successfully renamed its spool
job directory, the renaming of this spool job
directory will fail.

Otherwise, the contents of JOBLOG will be
output to stderr and will be deleted as per
normal.

3.2.4 Specifying what is to be executed by a job from the command line

If you use the —r option of the adshexec command to specify on the command line any commands that can be
described in a job definition script file, such as standard shell commands and UNIX-compatible commands, you can
execute the commands without having to create a job definition script file. To specify the pwd command, which is a
standard shell command, on the command line, execute the following adshexec command:

adshexec -r pwd

You can specify on the command line any contents that can be described in a job definition script file, such as multiple
commands delimited by the command separator. The following adshexec command specifies multiple commands on

the command line:

adshexec -r "export DATA=fileOl ;

pgm001™"

If you specify any spaces on the command line, you must enclose the command line specification in single or double
quotation marks (' or "). Because metacharacters, such as $, *, and the semicolon (;), are expanded, depending on the
shell used to execute the adshexec command, you must enclose them in single or double quotation marks (' or ") or
use an escape character (\). To specify metacharacters, execute the adshexec command as follows:

In UNIX:

B When an escape character is specified

¢ Entered command:

adshexec -m MINIMUM -r

"A=(1 2 3);

¢ Output results:

1

2

3

e When no escape character is specified

e Entered command:

adshexec -m MINIMUM -r

"A=(1 2 3);

¢ Output results:

Nothing is output.

3. Executing Batch Jobs

echo \${A[@]}"

echo S{A[@]}"

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

200

B Output of positional parameter $0 (when an escape character is specified)
e Entered command:

adshexec -m SIMPLE -r "echo \$0O"

¢ Output results:

adshexec

¢ Output of positional parameter $0 (when no escape character is specified)
¢ Entered command:

adshexec -m SIMPLE -r "echo $0"

¢ Output results:
-bash
adshexec receives the contents obtained by converting positional parameter $0 by the login shell. If the login
shell is bash, -bash is output.

In Windows:
B When an escape character is specified

¢ Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo \S${A[@]}"
¢ Output results:

s{af[ely

B When no escape character is specified
¢ Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo S${A[@Q]}"

¢ Output results:

123

B Output of positional parameter $0 (when an escape character is specified)
¢ Entered command:

adshexec -m SIMPLE -r "echo \$0"

¢ Output results:

$0

¢ Output of positional parameter $0 (when no escape character is specified)
e Entered command:

adshexec -m SIMPLE -r "echo $0O"

¢ Output results:

adshexec

Note the following about executing the adshexec command with the —r option specified:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 201

* If you want to use the execution results of the command line in other programs or output the execution results of
the command line to the console or files, also specify -m SIMPLE or -m MINIMUM at the same time.

* Collection of coverage information by the —t or BATCH CVR parameter is not supported.

e —r CMDLINE is output for the following part of a path that indicates the path name of the job definition script file:
» Path name of the job definition script file that is output to the script image file
» Path name of the job definition script file that is output to the operation information for the job definition script
* Path name of the job definition script file that is displayed in message text output by the job controller

* The $0 positional parameter stores executable program name adshexec.

¢ Spool directories are created when a command is executed with the —r option specified. Spool job directories are
created only when the —r option is specified as the root job. Note that frequent execution of a command with the
- option specified increases the number of spool jobs in the spool.

3.2.5 Job controller processing after batch jobs have started

Batch jobs are executed as job controller processes. The job controller is started in the following manner:

 In the execution environment, the job controller is started from JP1/AJS - Agent according to JP1/AJS's schedule.
¢ In the execution environment, the user enters a command to start a process called a job controller.

* On the development PC, the user runs a text while editing the development environment.
To process a job after starting it:

1. The job controller analyzes the options for starting a batch job and JP1/Advanced Shell's environment files.

2. The job controller analyzes the entered job definition script file at the initial stage. During this analysis process, the
job controller analyzes syntax and creates a table for storing job information without executing commands.

3. The job controller's job execution control analyzes and executes the job definition script file.

4. The file management function used in extended script commands allocates and releases regular files, temporary
files, and program output data files.

5. The shell variables and environment variables in extended script commands store job step return codes in shell
variables and set job information in environment variables so that this information can be referenced by user
programs.

In both the Windows and the UNIX execution environment, the job controller analyzes and executes job definition
scripts. For details about creating job definition scripts, see 4. Using JP1/Advanced Shell - Developer (Windows Only)
and 5. Creating Job Definition Scripts.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 202

3.3 Executing Java batch applications by using the adshjava command
provided by JP1/Advanced Shell [only for Windows, Linux, AlX, and
HP-UX]

The following describes the prerequisites and the execution method for executing Java batch applications by using the
adshjava command provided by JP1/Advanced Shell.

* Prerequisites
Install uCosminexus Application Server in the same host as JP1/Advanced Shell. Start the batch server after setting
the batch server. For details on the required programs, see 2.2.2 Programs required in each environment.

¢ Execution methods

The following describes the procedure for executing Java batch applications.

1. Create a Java batch application.
For notes on creating Java batch applications, see uCosminexus Application Server Expansion Guide.
2. Execute the Java batch application by using the adshjava command provided by JP1/Advanced Shell. Specify

the argument to pass to the cjexecjob command (execution of the Java batch application) of uCosminexus
Application Server for the adshjava command.

For details on the execution role and execution methods of the adshjava command, see 8.3.10 adshjava
command (executes Java batch applications) [only for Windows, Linux, AIX, and HP-UX].

3. For the adshjava command, specify the argument specified for the cjexecjob command and execute the
command.
For details on the cjexecjob command, see the manual uCosminexus Application Server Command Reference
Guide.

4. The adshjava command returns the results of the cjexecjob command of uCosminexus Application Server.
To confirm the results of the cjexecjob command, check the return code of the adshjava command.

Ifthe job controller detects a forced termination during job execution, it automatically executes the cjkilljob
command (to stop the batch application) for uCosminexus Application Server. As a result, the job is terminated
after the Java batch application being executed is forcibly terminated.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 203

3.4 Outputting job execution results

Job execution results are output as spool job directories under the spool root directory. The contents of some directories
in the spool job directory are output as job execution logs that can be used to check messages during job execution.

You can suppress output to the job execution log of some types of messages.

3.4.1 Specifying the destinations of the standard output and the standard
error output

The destinations of the standard output and the standard error output for jobs executed in JP1/Advanced Shell depend
on specified options and the job execution mode, as described in the following table:

Item

Normal
execution

Expansion
output
mode™?

Simple
output
mode or
minimum
output
mode*?

Debug execution

#1

Standard error output

Root job

Spool files
(standard error
output of job
execution log)*

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Child job

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Standard output
Root job

SPOOL specified
in the OUTPUT _
STDOUT
parameter®!

Spool files
(standard output of
job execution log)

Output destination
at the time the
process starts

Output destination
at the time the
process starts

PARENT
specified in the
OUTPUT _
STDOUT
parameter#1

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Child job

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

In addition to the OUTPUT STDOUT parameter, the adshexec command's s option can be used to specify the

value.

#2

Use the following commands or parameters to specify the expansion, simple, or minimum output mode:

* —moption in the adshexec command

* —moption in the adshscripttool command

* OUTPUT MODE_ ROOT parameter (for root jobs)

* OUTPUT MODE CHILD parameter (for child jobs)

#3

When the job finishes executing, output is to the standard error output in effect when the job controller started.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

204

3.4.2 Outputting job execution results to spool

In the spool root directory specified in the environment file, create a directory for each job and output job execution
results to that directory. Job execution logs and the files output by programs in job steps are output to the directory for
each job.

The following shows the structure of the spool directory:

spool-root-directory

|-lock-file

+-spool-job-directory
+-.adshallocfile or adshallocfiletl
+-.joborder or adsh.joborder#1
+-.sysout or sysout.init!
+-EVENTFILE ROOT INF 000000 000000 000001
+-EVENTFILE execution-start-date-and-time_ job-ID

+-EVENTFILE execution-start-date-and-time_ job-ID

+-JOBLOG*?

+-JOBLOG_job-ID sequence-number

+-JOBLOG number—giving—the—order—in—which—a—chilol—job—starts#1

+-SCRIPTF2

+-SCRIPT number-giving-the-order-in-which-a-child-job-startstl

+-STDERRF2

+-STDOUT*2

+—step—number_step—nazme_STDOUT#2

+-step-number step-name STDERR*?

+-0000_ job-name sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name*3

+-Cnumber-giving-the-order-in-which-a-child-job-starts 0000 job-name sequence-
number-of-file-environment-variable-definition-name file-environment-variable-
definition-name®3

+-step-number step-name sequence-number-of-file-environment-variable-definition-
name_file—environment—variable—definition—name#3

+-step-number step-name sequence-number-of-file-environment-variable-definition-
name file-environment-variable-definition-name

| -Cnumber-giving-the-order-in-which-a-child-job-starts step-number step-
name sequence-number-of-file-environment-variable-definition-name file-environment-
variable-definition-name*3

#1
This is a temporary file created during job execution. The following explains the contents of such temporary files:

File name Description

.adshallocfileoradshallocfile Allocation management file

.joborder or adsh. joborder File that manages the start order of child
jobs

.sysout or sysout.ini Spool job management file

JOBLOG_number-giving-the-order-in-which-a-child-job-starts Job execution log for a child job for
merging that is output when MERGE

SCRIPT_number-giving-the-order-in-which-a-child-job-starts (merging the child job's spool job into the

root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in
the environment file

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 205

Ifajob is terminated immediately by SIGKILL in UNIX or TerminateProcess in Windows, these files might
remain in the spool job directory. When you delete spool directories, also delete these files.

#2

The contents of this file are also output to the job execution log. For details about what is output to the job execution
log, see 3.5 Job execution log.

#3

This is a program output data file that is allocated by the #-adsh spoolfile command. For details about
program output data files, see 5.9.3 Allocating program output data files and performing postprocessing.

0 Important

* In Windows, all output files except EVENTFILE are appended with the extension . sysout.

* Do not place under the spool directory any user-specific file that is not a file or directory created by
JP1/Advanced Shell.

The following subsections explain the files and directories that are not temporary files.

(1) spool-root-directory

The directory name is specified in the SPOOL_DIR parameter in the environment file.

(2) lock-file

This file is used to lock each spool directory so that the same event file is not used by multiple commands at the same
time. This file is created when the adshevtout and adshhk commands are executed.

The name of the lock file is as shown below. Do not delete a created lock file.

e In UNIX: .spool.lck

¢ In Windows: spool.1lck

(3) spool-job-directory

A spool job directory is created for each job, with the job ID as its name. When the job terminates, the directory is
renamed to job-ID-spool-job-name. The spool-job-name in the file name is the job name in JP1/Advanced Shell.
You can also use the ADSH SPOOL_JOBNAME shell variable to specify an arbitrary character string in spool-job-name.

You can use the adshhk command to delete accumulated spool jobs. For details about the adshhk command, see
3.9 Deleting spool jobs.

When a job terminates, the spool job directory named with the job ID is renamed. If a directory exists with the same
name as the new directory, renaming will fail and the name of the spool job directory will remain as the job ID. Because
the job execution has been completed and the succeeding job can be executed, the job returns O as the return code. While
a directory named with the job ID remains, that job ID cannot be used and the directory cannot be deleted by using the
adshhk command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 206

(4) EVENTFILE_ROOT_INF_000000_000000_000001

This is a root job search event file. It contains the information used to determine whether the condition specified in the
adshevtout command (output job definition script operation information) is satisfied. This file is created for each

root job. This file is not created in the following cases:
e JP1/Advanced Shell - Developer is used
e The job is executed in the debugger mode.

* The adshexec command terminated before the KNAX0091 -1 message was issued.

(5) EVENTFILE_execution-start-date-and-time_job-ID

This is an event file. While the event file is being created, making is appended to the file name. This file is created
for each root job and each child job.

Example of event file name:
EVENTFILE 20120422 193502 123456

This file is not created in the following cases:

¢ JP1/Advanced Shell - Developer is used
¢ The job is executed in the debugger mode.
¢ The adshexec command terminated before the KNAX0091-T message was issued.
execution-start-date-and-time
The root or child job's execution start date and time (UTC) are output in the following format:
YYYYMMDD hhmmss dddddd
YYYY: Four-digit decimal number indicating the calendar year (1970 through 2038)
MM: Two-digit decimal number indicating the month (01 through 12)
DD: Two-digit decimal number indicating the date (01 through 31)
hh: Two-digit decimal number indicating the hour (00 through 2 3)
mm: Two-digit decimal number indicating the minute (00 through 59)

ss: Two-digit decimal number indicating the second (00 through 59)
dddddd: Six-digit decimal number indicating the microsecond (000000 through 999999)

job-ID
A six-digit decimal number is assigned to each root job or child job.

(6) JOBLOG

This is for job execution messages. Messages indicating the job's execution status, including command execution results
and file allocation results, are output to this directory.

(7) JOBLOG_job-ID_sequence-number
This is the job execution log for a child job.

This file is created when the child job starts, but only if one of the following methods was used to specify that the child
job is to be run in the simple output mode or the minimum output mode:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 207

* Specifying SIMPLE or MINIMUM with the —m option in the adshexec command
¢ Specifying SIMPLE or MINIMUM with the —m option in the adshscripttool command

* Specifying SIMPLE or MINIMUM in the OUTPUT MODE_CHILD parameter

This file is not created when MERGE (merging the child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter.

(8) SCRIPT

This is for script image files. The contents of the first job definition script started and the contents of external job
definition script files specified in the #-adsh script command are output to this directory. External job definition
script files specified using other methods, such as the . (dot) command, are not output to this directory. When you want
to output the contents of job definition scripts as logs, you must use the #-adsh script command.

If MERGE is specified in the SPOOLJOB_CHILDJOB parameter when the root job is run in the expansion output mode
and the child job is run in the minimum output mode, the child job's SCRIPT is not merged into the root job's SCRIPT.
For details, see (c) When the output mode of the root job differs from that of the child job.

(9) STDERR

This is the standard error output for the job. This file is not created when either of the following methods was used when
the root job started to specify that the root job is to be run in the simple output mode or the minimum output mode:

¢ Specifying SIMPLE or MINIMUM with the —m option in the adshexec command

* Specifying SIMPLE or MINIMUM in the OUTPUT MODE ROOT parameter

The following header is output at the beginning of the file:

*hkk Kk kk kK JOB SCOPE STDERR * ok Kk Kk kA kK

(10) STDOUT

This is the standard output for the job. It is created when the —s option is specified in the adshexec command or
SPOOL is specified in the OUTPUT STDOUT parameter in the environment file. This file is not created when either of
the following methods was used when the root job started to specify that the root job is to be run in the simple output
mode or the minimum output mode:

¢ Specifying SIMPLE or MINIMUM with the —m option in the adshexec command

* Specifying SIMPLE or MINIMUM in the OUTPUT MODE ROOT parameter

The following header is output at the beginning of the file:

* ok kk kK kK JOB SCOPE STDOUT *kkkk kKK
(11) step-number_step-name_STDOUT

If job steps are defined, this is the standard output within the corresponding job step. If the job step name consists of
more than eight bytes, only the first eight bytes of the job step name are used for step-name.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 208

This standard output is created when the - s option is specified in the adshexec command or SPOOL is specified in
the OUTPUT STDOUT parameter in the environment file. This file is not created when either of the following methods
was used when the root job started to specify that the root job is to be run in the simple output mode or the minimum
output mode:

¢ Specifying SIMPLE or MINIMUM with the —m option in the adshexec command

* Specifying SIMPLE or MINIMUM in the OUTPUT MODE_ROOT parameter

(12) step-number_step-name_STDERR

If job steps are defined, this is the standard error output within the corresponding job step. If the job step name consists
of more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This file is not created when either of the following methods was used when the root job started to specify that the root
job is to be run in the simple output mode or the minimum output mode:

* Specifying SIMPLE with the —m option in the adshexec command

* Specifying SIMPLE in the OUTPUT MODE ROOT parameter

(13) 0000_job-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh spoolfile command outside the job step.
(14) Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-

name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh spoolfile command outside the child job's job step.

This file is created only when MERGE (merging a child job's spool job into the root job's spool job) is specified in the
SPOOLJOB CHILDJOB parameter in the environment file.

(15) step-number_step-name_sequence-number-of-file-environment-
variable-definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh spoolfile command inside the job step.

(16) Cnumber-giving-the-order-in-which-a-child-job-starts_step-
number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh spoolfile command inside the child job's job step.

This file is created only when MERGE (merging a child job's spool job to the root job's spool job) is specified in the
SPOOLJOB CHILDJOB parameter in the environment file.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 209

3.4.3 Suppressing output of specific information messages to job
execution logs
You can limit the size of the job execution log file by suppressing output to the job execution log file of specific

information messages. You specify the JOBLOG SUPPRESS MSG parameter in the environment file to use this
function.

For the messages whose output can be suppressed and the details of the JOBLOG SUPPRESS MSG parameter, see
7.3.22 JOBLOG SUPPRESS MSG parameter (defines a message that is not to be output to job execution logs) in 7.
Parameters Specified in the Environment Files.

3.4.4 Suppressing output of information and warning messages to job
execution logs

If you intend to use job execution results with other programs, you might want to suppress the following types of output:

* QOutput of files under the spool job directory to the standard output and the standard error output

¢ OQOutput of information and warning messages (excluding some exception messages) to the standard output and the
standard error output

¢ Qutput to the standard error output of job execution logs at the time of job termination

To suppress these outputs, use one the following methods to specify the simple output mode or the minimum output
mode:

» Specifying the OUTPUT MODE ROOT parameter (for a root job) or the OUTPUT MODE CHILD parameter (for a
child job) when you specify environment settings

For details about the OUTPUT MODE ROOT parameter, see 7.3.28 OUTPUT_MODE ROOT parameter (specifies
the method for outputting the execution results of a root job). For details about the OUTPUT MODE_CHILD
parameter, see 7.3.27 OUTPUT MODE CHILD parameter (defines the method for outputting the execution results
of a child job).

¢ Specifying the —m option in the adshexec command during job execution

For details about the adshexec command, see 8.3.7 adshexec command (executes a batch job).

¢ Specifying the —m option in the adshscripttool command

For details about the adshscripttool command, see 9.4.10 adshscripttool command (supports creation of job
definition scripts) (Windows only).

If both are specified, the adshexec command specification takes effect. If neither is specified, the expansion output
mode is assumed.

(1) Differences in output contents among the expansion output mode, the
simple output mode, and the minimum output mode

The following table describes the differences in the output contents among the expansion output mode, the simple output
mode, and the minimum output mode.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 210

Table 3-1: Differences in output contents among the expansion, the simple, and the minimum output

modes

Output timing

Job execution

Job termination

Debug execution

3. Executing Batch Jobs

Expansion output mode

The contents of the standard
output and the standard error
output depend on the type of
job:

¢ Root jobs

The contents of the
standard output and the
standard error output are
output to the spool job
directory.

¢ Child jobs
Output to their output
destinations at the time
the process started.

Job execution logs are output
to the standard error output
(for child jobs, the output is
to the root-job's standard
error output’?),

JOBLOG is output to the
standard error output at
suitable times.

Job controller messages that
are to be output to standard
output and standard error
output are output to the
standard output and standard
error output that were in
effect when debug execution
started.

Simple output mode

The contents of the standard output
and the standard error output are
output to their output destinations
at the time the process started.

The job controller messages output
to standard output and standard
error output are limited to error
messages.”!

Job execution logs are not output
to the standard error output.
However, error messages to be
output only to JOBLOG are also
output to the standard error output
during job execution in order to
report errors.

A child job's JOBLOG is created
under the root job's spool job
directory and is retained even after
the job has terminated.”?

This handling is in effect
regardless of the specification of
the JOBEXECLOG_PRINT
parameter.

JOBLOG is not output to the
standard error output.

Job controller messages that are to
be output to standard output and
standard error output are output to
the standard output and standard
error output that were in effect
when debug execution started.

When debugging is terminated,
only error messages are output.
However, a child job that is not
subject to debugging is run in the
same manner as in normal
execution.

Minimum output
mode

Standard output and
standard error output
are the same as the
output destination
when the process starts.

Job controller messages
output to standard
output and standard
error output are limited
to error messages, with
some excluded.!-#3

Same as at the left

JOBLOG is not output
to the standard error
output.

Job controller messages
that are to be output to
standard output and
standard error output
are output to the
standard output and
standard error output
that were in effect when
debug execution
started.

When debugging
terminates, only
messages that are not
subject to output
suppression are output.
However, a child job
that is not subject to
debugging is run in the
same manner as in
normal execution.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

21

#1

In addition to error messages, some messages are output as exceptions. For details about such exception messages
and the destinations by message type, see 12.2 Message output destinations.

#2

Not output when a child job's job execution log is merged into the root job's job execution log (MERGE is specified
in the SPOOLJOB_CHILDJOB parameter).

#3

For details on the error messages whose output is suppressed in minimum output mode, see 3.5.1 Outputting the
contents of the job execution log by job type.

If you start a job definition script from another job definition script in the simple output mode or the minimum output
mode, use child jobs. If a root job is started in the simple output mode or the minimum output mode, error messages
are displayed in the standard error output.

(2) How to locate the spool job directory of a job that was executed in the
simple output mode or the minimum output mode

When the simple output mode or the minimum output mode is selected, messages that display job IDs and spool job
directory names are no longer output. The following describes how to locate the spool job directory of a job that was
executed in the simple output mode or the minimum output mode:

* Specify unique job names with the #-adsh job command (declares a name for a job). You can also use the
ADSH SPOOL_JOBNAME shell variable to specify a unique spool job name.

¢ When the job starts, output the values of the following environment variables or shell variable to standard error
output or to a specific file so that they can be referenced later:

* ADSH JOBID environment variable (stores a job ID)
* ADSH JOB_ NAME (stores a job name)
* ADSH SPOOL JOBNAME shell variable (stores a spool job name)

* Locate the spool job directory based on the job execution date and time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 212

3.5 Job execution log

The purpose of a job execution log is to notify users of the results of executing batch jobs. This log information, excluding
the contents for the standard output for user programs, is output to the files under the spool job directory and to the
standard error output when a job terminates. You can use JP1/AJS - View, among other methods, to view job execution
logs.

The following information is output to the job execution log:

¢ Start and end messages for batch jobs

 Start and end messages for job steps

* Contents of job definition scripts

* Results of executing commands

 Status and postprocessing results of files that have been prepared
« Standard output from user programs (stdout)"!

» Standard error output from user programs (stderr)*

* Messages related to acquiring coverage information

#1
Output while the job is running to the standard output in effect at the time the job started if either of the conditions
listed below is satisfied.

* The -s option is specified in the adshexec command or PARENT is specified in the OUTPUT STDOUT
parameter in the environment file.

* The root job is in the simple output mode or the minimum output mode.

#2

Not output to the files under the spool job directory if the root job is in the simple output mode or the minimum
output mode. However, while the job is running, the user program's standard error output is output to the standard
error output in effect at the time the job started.

If you are not using JP1/AJS, refer to the JOBLOG file in the batch job's directory under the spool root directory specified
in the SPOOL DIR parameter in the environment file.

The JOBLOG SUPPRESS MSG parameter can be set to suppress output to the JOBLOG file of some information
messages. For details, such as the messages whose output can be suppressed, see 7.3.22 JOBLOG_SUPPRESS MSG
parameter (defines a message that is not to be output to job execution logs) in 7. Parameters Specified in the Environment
Files.

3.5.1 Outputting the contents of the job execution log by job type

What is output to the job execution log depends on the type of job that is executed, as described in the following
subsections.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 213

(1) Destination and output contents of the job execution log when root
jobs are executed

This subsection explains the destination and output contents of the job execution log when root jobs are executed in the
expansion output mode, the simple output mode, or the minimum output mode (as specified in the
OUTPUT MODE ROOT parameter).

(a) When the expansion output mode is selected

The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Output to spool files.
During debug execution, JOBLOG is also output to the standard error output during job execution.

Script image Output to spool files.

Destination of the standard output Output to the destination specified by either of the following methods:
* —s option in the adshexec command

* OUTPUT_STDOUT parameter in the environment file

During debug execution, this information is also output to the standard error output in effect at the time
debug execution started.

Destination of the standard error Output to spool files.

output During debug execution, this information is output to the standard error output in effect at the time
debug execution started.

A spool job directory is created for each job.

After job execution, the contents of the job execution log, excluding the contents for the standard output, are output to
the standard error output.

During debug execution, the contents of the job execution log after job execution are not output to the standard error
output.

(b) When the simple output mode is selected

The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description
JOBLOG Output to spool files.
Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.

Error messages for the standard error output and the standard output are output (during debug execution,

Destination of the standard error
messages other than error messages are also output).

output
P Also, error messages for JOBLOG are output to the standard error output.

During normal execution, output of any message whose type is W or I (excluding signal reception and
event reception messages) is suppressed.

Note that the job execution log is not output to the standard error output when the job terminates.

(c) When the minimum output mode is selected

The following table describes the output contents of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 214

Message output destination
JOBLOG

Script image

Destination of the standard output

Destination of the standard error
output

Description

Messages that are not subject to output suppression are output to spool files.

Not output to spool files. This information is output to the destination in effect when the process started.
Messages for the standard error output and the standard output that are not subject to output suppression
are output (during debug execution, messages that are not subject to output suppression are also output).
Also, messages for JOBLOG that are not subject to output suppression are output to the standard error
output.

Note that the job execution log is not output to the standard error output when the job terminates.

Messages that are suppressed are as follows: However, there are messages that are output as exceptions regardless of
the output mode. For messages that are exceptions, see 12.2 Message output destinations.

Timing Message whose output is suppressed
During normal * Messages of message type W and I (excluding signal reception messages and event reception messages other than
execution KNAX7893-1 and KNAX7896-I)

* The following messages whose type is E:
KNAXO0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-F, KNAX6593-E,
KNAX6594-E, KNAX6596-E

* The following messages whose type is I:
KNAX7893-I, KNAX7896-1

During debug * Messages whose type is W or I (excluding signal reception and event reception messages)

execution * The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591 -E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

(2) Destination and output contents of the job execution log when child
jobs are executed

This subsection explains the destination and output contents of the job execution log when child jobs are executed in
the expansion output mode, the simple output mode, or the minimum output mode (as specified in the

OUTPUT MODE CHILD parameter). For the output contents when a child job's spool job is to be merged into the root
job's spool job, see (3) Merging a child job's spool job into the root job's spool job.

(a) When the expansion output mode is selected

The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination

JOBLOG

Script image
Destination of the standard output

Destination of the standard error
output

3. Executing Batch Jobs

Description

Temporarily output to spool files.
When the child job terminates, this file is deleted from the spool after JOBLOG has been output to the
standard error output in effect when the process started.

Temporarily output to spool files, but is deleted when the child job terminates.

Output to the destination in effect when the process started.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 215

A spool job directory is created during job execution, but this directory is deleted after the job has executed. Because
the program output data file allocated in the spool job directory is also deleted, the KNAX6380~-T message indicating
successful renaming of the spool job directory is not output.

After job execution, the contents of JOBLOG are output to the standard error output. However, the following header
lines are not output:

Advanced Shell version-number

[Information]
Job ID : job-ID
Spool directory : spool-job-directory-path
Date : execution-date
EnvFile(system) : environment-file-path (System environment file)
EnvFile (job) : environment-file-path (Job environment file)
Host name : host-name

[Environment variable from Automatic Job Management System]
environment-variables-passed-from-JP1/AJS

*xxkx%k%x% JOB CONTROLLER MESSAGE ~ ****%%%%

Because no job execution log other than JOBLOG is output, the job execution log cannot be referenced from other
programs, such as JP1/AJS or the login shell.

Because the job return code is output to JOBLOG for the parent process's job, the KNAX7999-T message indicating
termination of adshexec command execution is not output to the standard error output.

(b) When the simple output mode is selected

The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description

JOBLOG Output to spool files for each child job in the root job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.
Destination of the standard output Output to the destination in effect when the process started.

Error messages for the standard error output and the standard output are output. Error messages for

Destination of the standard error JOBLOG are also output to the standard error output.

output
Only error messages are output.

Output of messages whose type is W or I (excluding signal reception and event reception messages) is
suppressed.

Messages are output to JOBLOG during job execution. Error messages among these messages are also output to the
standard error output.

The job execution log is output to spool files for each child job under the root job's spool job directory. The job execution
log is not output to the standard error output even after the job has executed.

(c) When the minimum output mode is selected

The following table describes the output destination of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 216

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to files for each child job in the root
job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.

Messages for the standard error output and the standard output that are not subject to output suppression
are output. Also, messages for JOBLOG that are not subject to output suppression are output to the
standard error output.

Destination of the standard error
output

Messages whose output is suppressed are not output.

Messages whose output is suppressed are as follows. However, there are messages that are output as exceptions
regardless of the output mode. For messages that are exceptions, see 12.2 Message output destinations.

* Messages of message type W and I (excluding signal reception messages and event reception messages other than
KNAX7893-T and KNAX7896-T)

* The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-F, KNAX6541-FE, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-FE, KNAX6562-E, KNAX6586-FE, KNAX6591-FE, KNAX6592-F, KNAX6593-F,
KNAX6594-FE, KNAX6596-E

* The following messages whose type is I:
KNAX7893-T1, KNAX7896-1

(3) Merging a child job's spool job into the root job's spool job

If MERGE is specified in the SPOOLJOB CHILDJOB parameter, the child job's spool job is merged into the root job's
spool job. An overview of the job execution log contents is provided below. For an example of job execution log output,
see 3.5.3 Examples of job execution log output(if you delete the spool job of a child job).

(a) During normal operation

¢ JOBLOG
JOBLOG for a child job is output between a message indicating that the rule for replacing the child job's execution
was satisfied and a message indicating that the command used to execute the child job has terminated.

The symbols indicating the start and end of the child job's JOBLOG are displayed before and after JOBLOG, as
shown in the following figure:

16:27:17 010496 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="childl.sh" shebang="/bin/sh"
(End-of-line code)

>>>>>> [JOBLOG] (absolute-path-of-child-job's-job-definition-script)

Indicates the start of
the child job's JOBLOG.

The child job's JOBLOG is displayed here.

Indicates the end of the
child job's JOBLOG.

<<<<<< [JOBLOG] (absolute-path-of-child-job's-job-definition-script)
(End-of-line code)

16:27:17 010496 KNAX6116-I Execution of the command childl.sh (line=5) finished
successfully. exit status=0 execution time=0.006s CPU time=0.000s

e SCRIPT

A child job's SCRIPT is displayed before its root job's SCRIPT. The header (******** Script IMAGE
* % x %% % %) js not displayed in the child job output section.

¢ STDERR

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 217

The symbols indicating the start and end of the child job's STDERR are displayed before and after the child job's

standard error output as shown below.

These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

KAhkKKKKKK JOB SCOPE STDERR KAkKkKKKKK
Root job's job-scope standard error output contents

(End-of-line code)
>>>>>> [STDERR] (absolute-path-of-child-job's-job-definition-script)

The child job's job-scope standard error output contents are displayed
here.

<<<<<< [STDERR] (absolute-path-of-child-job's-job-definition-script)
(End-of-line code)

Root job's job-scope standard error output contents

*kkkkkkk JOBSTEP OUTPUT *kkkkkkk
Root job's step-scope standard error output contents

(End-of-line code)
>>>>>> [STDERR] (absolute-path-of-child-job's-job-definition-script)

The child job's step-scope standard error output contents are
displayed here.

<<<<<< [STDERR] (absolute-path-of-child-job's-job-definition-script)
(End-of-line code)

Root job's step-scope standard error output contents

Indicates the start of
the child job's STDERR.

Indicates the end of the
child job's STDERR.

Indicates the start of
the child job's STDERR.

Indicates the end of the
child job's STDERR.

e STDOUT
STDOUT is not merged.

(b) During debug execution

¢ JOBLOG

JOBLOG is merged in the same format as during normal execution. For the standard error output, the same contents
are also displayed immediately after termination of the child job.

e SCRIPT

SCRIPT is merged in the same format as during normal execution. The contents of SCRIPT are not output to the

standard error output.

e STDERR, STDOUT

The symbols indicating the start and end of a set of a child job's STDERR and STDOUT are displayed before and
after the child job's standard error output, as shown below. The text [STDERR, STDOUT] is displayed in the standard

error output even when the child job's standard error output and standard output are redirected.

These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

Root job's standard error output contents

Indicates the start of

(End-of-line code)
>>>>>> [STDERR, STDOUT] (absolute-path-of-child-job's-job-definition-script)

| and STDOUT.

The child job's standard error output contents are displayed here.

<<<<<< [STDERR, STDOUT] (absolute-path-of-child-job's-job-definition-script)
(End-of-line code)

Root job's standard error output contents

STDOUT.

the child job's STDERR

| Indicates the end of the
child job's STDERR and

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

218

(c) When the output mode of the root job differs from that of the child job

When MERGE is specified in the SPOOLJOB CHILDJOB environment setting parameter and the root job is run in the
expansion output mode and the child job is run in the minimum output mode, the results of merging JOBLOG and

SCRIPT are as follows:

¢ JOBLOG

* If no message has been output to JOBLOG of the child job running in the minimum output mode

This child job's JOBLOG is not merged into the root job's JOBLOG. Therefore, the strings indicating the beginning
and end of output of the child job's JOBLOG are also not output.

* Ifmessages have been output to JOBLOG of the child job running in the minimum output mode

This child job's JOBLOG is merged into the root job's JOBLOG. The strings indicating the beginning and end of
output of the child job's JOBLOG are also output.

During both normal execution and debug execution, the strings that indicate the beginning and end of output of the

child job's JOBLOG are >>>>>> [JOBLOG] path-name and <<<<<< [JOBLOG] path-name, respectively.

e SCRIPT

The child job's SCRIPT is not merged into the root job's SCRIPT.

When the child job is run in the minimum output mode and its grandchild job is run in the expansion output mode
or the simple output mode, the child job's SCRIPT is not merged either. Therefore, the grandchild job's SCRIPT
merged into the child job's SCRIPT is not output.

Root job
(Expansion output mode)

Root job's SCRIPT

Xl

Not output
Root job
(Expansion output mode)
Root job's SCRIPT
Not output

Root job
(Expansion output mode)

Root job's SCRIPT

Child job's SCRIPT

[

Grandchild job's SCRIPT

Output
Root job
(Expansion output mode)
Root job's SCRIPT
Child job's SCRTPT (
Output

3. Executing Batch Jobs

Child job
(Minimum output mode)

Child job's SCRIPT

Grandchild job's SCRIPT

Child job
(Minimum output mode)

Child job's SCRIPT

Child job
(Expansion output mode
or simple output mode)

Child job's SCRIPT

Grandchild job's SCRIPT

Child job
(Expansion output mode
or simple output mode)

Child job's SCRIPT

Grandchild job
(Expansion output mode
or simple output mode)

Grandchild job's SCRIPT

Output

K

Not output

Output

Grandchild job
(Minimum output mode)

Grandchild job's SCRIPT

Grandchild job
(Expansion output mode
or simple output mode)

Grandchild job's SCRIPT

Grandchild job
(Minimum output mode)

Grandchild job's SCRIPT

M

Not output

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

219

The same applies when the root job is run in the simple output mode or the minimum output mode. However, in this
case, SCRIPT is not output to the standard error output.

3.5.2 Output example of the job execution log (when the spool job of a
child job is merged to the spool job of the root job)

The following is an output example of the job execution log when MERGE is specified for the environment setting
parameter SPOOLJOB_CHILDJOB (when the spool job of a child job is merged to the spool job of the root job).

(1) Example 1 (defining ch1.sh and ch2.sh)

As shown below, this example defines the child job chl.sh, which is to start from the root job, and the child job ch2.sh,
which is to start from a job step of the root job.

chl.sh
U T i
| #!/bin/sh H
parent.sh ## i # chl.oh 44 E
chl.sh i E
! 1
!]

#-adsh step start S
ch2.sh ch2.sh

r 1

#-adsh step end | #!/bin/sh i
|4 ch2.sh #

1 1

H 1

H 1

Legend: : echo str002 >&2:
[] :Rootjob ~ TTTTTTTTTTTTOOC '

i~ :Child job

The following describes the configuration and provides an output example of the job execution log of the root job that
is output to the standard error output.

(a) Configuration of the job execution log

The following describes the configuration of the job execution log and the output locations of the execution results of
child jobs chl.sh and ch2.sh. The execution results of the child jobs are output to JOBLOG and SCRIPT.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 220

Job ID display
(Environment file analysis error messages, etc.)

Job execution log header

JOBLOG
Command execution results

JOBLOG (for chl.sh)
Command execution results for chl.sh

i r

1

| 1 JOBLOG (for ch2.sh)

i i Command execution results for ch2.sh
[

SCRIPT
Script image

SCRIPT (for chl.sh)
Script image for ch1.sh

1
| SCRIPT (for ch2.sh)

i Script image for ch2. sh
1

| JOB STDERR

1 Standard error output for the job scope

! 1
i 1 Standard error output for chl.sh '
I 1
I 1
1

STEP STDERR
Standard error output for the step scope

1
1 Standard error output for ch2.sh i
1
1

Spool job directory name change message:
Advanced Shell ended. exit status=xxx

(b) Output example of the job execution log

The following is an output example of the job execution log.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 221

KNAX7901-I The jcob controller will wait for all asynchronous processes at the end of the job.
KNAX0724-I The jcob ID was assigned. job ID=000094

Advanced Shell 11-00

[Information]
Jcb ID : 000094
Spool directory : /var/opt/jplas/spool/000094/
Date : 2015/10/30
EnvEile (system)
EnvFile (job) : /home/usr/adsh job.ase
Host name : HOSTO1
[Environment variable from Automatic Job Management System]
JP1JobName : boot.sh
JP1JobID : 119
JP1_USERNAME : jpladmin
JP1UNCName : HOSTO1
JPINBOSQueueName: \\HOSTO01\@SYSTEM
JP1Priority : 1
AJSEXECID : @A125

*xxkxkkx JOB CONTROLLER MESSAGE ~ ***kk

19:12:21 000094 KNAX0091-I ADSH000094 The job started.

19:12:21 000094 KNAX7901-I The job controller will wait for all asynchronous processes at the
end of the job.

19:12:21 000094 KNAX7902-I The job controller will run in non-tty stdin mode.

19:12:21 000094 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/chl.sh" shebang="/bin/sh"

chl.sh output 7

>>>>>> [JOBLOG] /home/usr/chl.sh
19:12:21 000095 KNAX6571-I The child job ADSHO00095 started. parent jolb=ADSH000094 parent jcb
ID=000094

19:12:21 000095 KNAX6572-I The child job ADSH000095 will use the job environment file "/home/
usr/adsh job.ase".

19:12:21 000095 KNAX7902-I The jcb controller will run in non-tty stdin mode.

19:12:21 000095 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:12:21 000095 KNAX6578-I The child job ADSHO00095 ended. exit status=0 execution
time=0.001s CPU time=0.000s

<<<<<< [JOBLOG] /home/usr/chl.sh

19:12:21 000094 KNAX6116-I Execution of the command /home/usr/chl.sh (line=2) finished
successfully. exit status=0 execution time=0.031s CPU time=0.010s

19:12:21 000094 KNAX0092-I ADSHO000094.S step started.

19:12:21 000094 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/ch2.sh" shebang="/bin/sh"

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

222

(Continued from the previous figure)

ch2.sh output 7
>>>>>> [JOBLOG] /home/usr/ch2.sh 2

19:12:21 000096 KNAX6571-I The child job ADSHO00096 started. parent job=ADSHO00094 parent jcb
ID=000094

19:12:21 000096 KNAX6572-I The child job ADSHO00096 will use the job environment file "/home/
usr/adsh job.ase".

19:12:21 000096 KNAX7902-I The jcb controller will run in non-tty stdin mode.

19:12:21 000096 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:12:21 000096 KNAX6578-I The child job ADSHO000096 ended. exit status=0 execution
time=0.001s CPU time=0.010s

<<<<<< [JOBLOG] /home/usr/ch2.sh

19:12:21 000094 KNAX6116-I Execution of the command /home/usr/ch2.sh (line=5) finished
successfully. exit status=0 execution time=0.012s CPU time=0.010s

19:12:21 000094 KNAX6597-I ADSHO00094.S step succeeded. exit status=0 execution time=0.013s
CPU time=0.010s

19:12:21 000094 KNAX0098-I ADSHO00094 The job ended. exit status=0 execution time=0.047s CPU
time=0.020s

*kkhkkkhkk Script II\/JAGE *hkkhkkkkkk
x%% /home/usr/parent.sh ***xx

0001 : ## parent.sh ##
0002 : chl.sh

0003 :
0004 : #-adsh step start S
0005 : ch2.sh

0006 : #-adsh step end

*xkxk CONVERSION INFORMATION *****

chl.sh output -
xxx /home/usr/chl.sh **x* b

0001 : #!/bin/sh

0002 : ## chl.sh ##
0003 :

0004 : echo str001 >&2

*xxxk CONVERSION INFORMATION *****

*x%%% /home/usr/ch2.sh ***** ch2.sh output 1

0001 : #!/bin/sh

0002 : ## ch2.sh ##
0003 :

0004 : echo str002 >&2

*xkxk CONVERSION INFORMATION *****

(Continued in the following figure)

(Continued from the previous figure)

*kkkkkkk JOB SCOPE STDERR *kkkkkkk
chl.sh output

>>>>>> [STDERR] /home/usr/chl.sh

KNAX0726-I The child job ID was assigned. job ID=000095
str001

<<<<<< [STDERR] /home/usr/chl.sh

KNAX6597-1 ADSH000094.S step succeeded. exit status=0 execution time=0.013s CPU time=0.010s
KNAX0098-I ADSH000094 The job ended. exit status=0 execution time=0.047s CPU time=0.020s

*kkkkkkk JOBSTEP OU'TPU'T *hkkkkhkkkk
KNAX0719-I STEP. step number=0001 step name=S output destination=STDERR

ch2 . sh output
>>>>>> [STDERR] /home/usr/ch2.sh

KNAX0726-I The child job ID was assigned. job ID=000096

str002

<<<<<< [STDERR] /home/usr/ch2.sh

KNAX6380-I A job name will be added to the spool job directory of the root jcob. spool job
directory="/var/opt/jplas/spool/000094-ADSHO00094 /"
KNAX7999-1 Advanced Shell ended. exit status=0

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

223

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)

As shown below, this example defines child jobs child1.sh and child2.sh, and the job grandchild.sh, which starts from
the child job child2.sh.

childl.sh

#!/opt/jplas/bin/ashexec
#-adsh job ROOT

! /bin/sh
—adsh job CHILDL

echo str001 >&2
childl.sh
echo str003 >&2

#!/bin/sh
#-adsh job CHILD2

#-adsh step start S
echo str004 >&2
child2.sh

! grandchild.sh
1
i
echo str008 >&2 !
1
1
1
1
1
1

V#/pin/shT T
1 #-adsh job GRANDCHILD

1
echo str005 >&2 H
#-adsh_step end grandchild.sh | echo str006 >&2
echo str007 >&2 i i
__________________ 1 b o o
Legend:
[]: Root job

1" 7712 Child job

The following describes the configuration and provides an output example of the job execution log of the root job that
is output to the standard error output.

(a) Configuration of the job execution log

The following describes the configuration of the job execution log and the output locations of the execution results of
child jobs childl.sh, child2.sh, and grandchild.sh. The execution results of the child jobs are output to JOBLOG and
SCRIPT.

¢ Job execution log that can be referred from JP1/AJS

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 224

Job ID display
(Environment file analysis error messages, etc.)

Job execution log header

JOBLOG
Command execution results

JOBLOG (for child2.sh)
Command execution results for child2.sh

JOBLOG (for grandchild. sh)
Command execution results for grandchild. sh

SCRIPT
Script image

1
| SCRIPT (for childl.sh)

i Script image for childl.sh
1

1
| SCRIPT (for child2.sh)

i Script image for child2.sh
1

1
| SCRIPT (for grandchild.sh)

i Script image for grandchild.sh
1

OB STDERR
tandard error output for the job scope

o

(Continued)

(Continued from the previous figure)

STEP STDERR
Standard error output of step scope

tCommand execution results, etc. of
1grandschild.sh

1
1
P i
i 1 JOBLOG (of grandchild.sh) i
1 1
; :
1

Spool job directory name change message
The job controller of the root job finished the batch
job. rc = XXX

* Job execution log when debugging

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 225

Job ID display
(Environment file analysis error messages, etc.)
Command execution results, etc.

1

1Job ID display

1 Standard error output and standard
1output of child1.sh

1JOBLOG (of child1.sh)
ICommand execution results, etc. of
ichild1.sh

1

iJob ID display

| Standard error output and standard
1output of child2.sh

1
1

1Job ID display
! Standard error output and standard

1output of grandchild.sh

Pm—————————

1JOBLOG (of child2.sh)
ICommand execution results, etc. of
ichild2.sh

1JOBLOG (of grandchild.sh)
!Command execution results, etc. of

1grandschild.sh

Spool job directory name change message
The job controller of the root job finished the batch
job. rc = XXX

(b) Output example of the job execution log

The following is an output example of the job execution log.

¢ Job execution log that can be referred from JP1/AJS

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

226

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the
job.
KNAX0724-1 The job ID was assigned. job ID=000090

Advanced Shell 11-00

[Information]
Job ID : 000090
Spool directory : /var/opt/jplas/spool/000090/
Date : 2015/10/30
EnvFile (system)
EnvFile (job) : /home/usr/adsh job.ase
Host name : HOSTO1
[Environment variable from Automatic Job Management System]
JP1JobName : boot.sh
JP1JobID : 118
JP1 USERNAME : jpladmin
JP1UNCName : HOSTO1
JPINBOSQueueName: \\HOSTO1\@SYSTEM
JP1Priority : 1
AJSEXECID : QA124

*kkkkkkk JOB CONT‘ROLI‘ER D/JESSAGE *kkkkkkk

19:10:50 000090 KNAX0091-I ROOT The job started.

19:10:50 000090 KNAX7901-I The job controller will wait for all asynchronous processes at
the end of the job.

19:10:50 000090 KNAX7902-I The job controller will run in non-tty stdin mode.

19:10:50 000090 KNAX6112-I Execution of the command echo (line=4) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000090 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/childl.sh" shebang="/bin/
Sh"

- childl.sh output]
>>>>>> [JOBLOG] /home/usr/childl.sh

19:10:50 000091 KNAX6571-I The child job CHILD] started. parent job=ROOT parent job
ID=000090

19:10:50 000091 KNAX6572-I The child job CHILD1 will use the job environment file "/home/
usr/adsh job.ase".

19:10:50 000091 KNAX7902-I The job controller will run in non-tty stdin mode.

19:10:50 000091 KNAX6112-I Execution of the command echo (line=4) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000091 KNAX6578-I The child job CHILD1 ended. exit status=0 execution time=0.001ls
CPU time=0.000s

<<<<<< [JOBLOG] /home/usr/childl.sh

19:10:50 000090 KNAX6116-I Execution of the command /home/usr/childl.sh (line=5) finished
successfully. exit status=0 execution time=0.021s CPU time=0.010s

19:10:50 000090 KNAX6112-I Execution of the command echo (line=6) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000090 KNAX0092-I ROOT.S step started.

19:10:50 000090 KNAX6112-I Execution of the command echo (line=9) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000090 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/child2.sh" shebang="/bin/
sh"

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 227

(Continued from the previous figure)

- child2.sh output
>>>>>> [JOBLOG] /home/usr/child2.sh

19:10:50 000092 KNAX6571-I The child job CHILD2 started. parent job=ROOT parent job
ID=000090

19:10:50 000092 KNAX6572-I The child job CHILD2 will use the job environment file "/home/
usr/adsh job.ase".

19:10:50 000092 KNAX7902-I The job controller will run in non-tty stdin mode.

19:10:50 000092 KNAX6112-I Execution of the command echo (line=4) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000092 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/grandchild.sh" shebang="/
bin/sh"

:>.>;>.>>. .[J.OlgL(.)G.]./%Smé/.us'r./(frén:jéh'il'd.'sﬁ' AR .:
»19:10:50 000093 KNAX6571-I The child job GRANDCHILD started. parent job=CHILD2 parent job
=ID=000092 .
:19:10:50 000093 KNAX6572-I The child job GRANDCHILD will use the job environment file "/ *
«home/usr/adsh job.ase". .
=19:10:50 000093 KNAX7902-I The job controller will run in non-tty stdin mode. .
:19:10:50 000093 KNAX6112-1 Execution of the command echo (line=4) finished successfully. =
exit status=0 execution time=0.000s CPU time=0.000s :
=19:10:50 000093 KNAX6578-I The child job GRANDCHILD ended. exit status=0 execution .
"time=0.001s CPU time=0.000s =
= SSSSS JJOBLOG), [home/usz/grandehild;sh, |grandchild.shoutput) ;
19:10:50 000092 KNAX6116-I Execution of the command /home/usr/grandchild.sh (line=5)
finished successfully. exit status=0 execution time=0.012s CPU time=0.000s

19:10:50 000092 KNAX6112-I Execution of the command echo (line=6) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000092 KNAX6578-I The child job CHILD2 ended. exit status=0 execution time=0.015s
CPU time=0.000s

<<<<<< [JOBLOG] /home/usr/child2.sh

child2.sh output -
19:10:50 000090 KNAX6116-I Execution of the command /home/usr/child2.sh (1line=10) finished
successfully. exit status=0 execution time=0.030s CPU time=0.020s

19:10:50 000090 KNAX6112-I Execution of the command echo (line=11) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:10:50 000090 KNAX6597-I ROOT.S step succeeded. exit status=0 execution time=0.031s CPU

time=0.020s

19:10:50 000090 KNAX0098-I ROOT The job ended. exit status=0 execution time=0.055s CPU
time=0.030s

KAhkkKk kKKK Scrlpt IMAGE KhkkkkKkk Kk

x%% /home/usr/parent.sh *xx
0001 : #!/opt/jplas/bin/adshexec
0002 : #-adsh job ROOT

0003 :

0004 : echo str001 >&2

0005 : childl.sh

0006 : echo str003 >&2

0007 :

0008 : #-adsh step start S
0009 : echo str004 >&2
0010 : child2.sh

0011 : echo str008 >&2

0012 : #-adsh step end

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 228

(Continued from the previous figure)

FxAxk CONVERSION INFORMATION *****

- childl.sh output -
Fkx% /home/usr/childl.sh ***

0001 : #!/bin/sh

0002 : #-adsh job CHILD1
0003 :

0004 : echo str002 >&2

Fxxkk CONVERSION INFORMATION ***#**

xxxxx /home/usr/child2.sh ****x child2.sh output]

0001 : #!/bin/sh
0002 : #-adsh job CHILD2
0003 :

0004 : echo str005 >&2
0005 : grandchild.sh
0006 : echo str007 >&2

FRFx* CONVERSION INFORMATION *****

pE———, /home/usr/grandchild.sh ***%* grandchild.sh output =
0001 : #!/bin/sh

0002 : #-adsh job GRANDCHILD
0003 :

0004 : echo str006 >&2

FxAxk CONVERSION INFORMATION *****

*hkkkkkkk JOB SCOPE STDERR Kk kkkkkk
str001

- childl.sh output
>>>>>> [STDERR] /home/usr/childl.sh

KNAX0726-I The child job ID was assigned. job ID=000091
str002
<<<<<< [STDERR] /home/usr/childl.sh

str003
KNAX6597-1 ROOT.S step succeeded. exit status=0 execution time=0.031s CPU time=0.020s
KNAX0098-I ROOT The job ended. exit status=0 execution time=0.055s CPU time=0.030s

(Continued in the following figure)

(Continued from the previous figure)

*hkkkkhkkkk JOBSTEP OU'TPU'T *hkkkkkkk
KNAX0719-1 STEP. step number=0001 step name=S output destination=STDERR

str004
child2.sh output _

>>>>>> [STDERR] /home/usr/child2.sh

KNAX0726-I The child job ID was assigned. job ID=000092
str005

23558 TéheRR)” /home use/grandehildieh STt TTTer St grandehild.shoutput! |
"KNAX0726-I The child job ID was assigned. job ID=000093
- str006

" <K< [STDERR] /home/usr/grandchild.sh

str007
<<<<<< [STDERR] /home/usr/child2.sh

str008

KNAX6380-I A job name will be added to the spool job directory of the root job. spool job
directory="/var/opt/jplas/spool/000090-ROOT/"
KNAX7999-1 Advanced Shell ended. exit status=0

* Job execution log when debugging

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 229

$ adshexec -d parent.sh

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the
job.

KNAX(0724-T The job ID was assigned. job ID=038312

(adshdb) run

KNAX7007-I Execution of the following script will now start: /home/usr/parent.sh

KNAX(0724-T The job ID was assigned. job ID=038313

KNAX0091-TI ROOT The job started.

KNAX7902-I The job controller will run in tty stdin mode.

str001

KNAX6112-T Execution of the command echo (line=4) finished successfully. exit status=0
execution time=0.000s CPU time=0.000s

KNAX6831-I The command definition matched the rule specified by the environment settings
parameter CHILDJOB SHEBANG. script="/home/usr/childl.sh" shebang="/bin/sh"

childl. sh output
>>>>>> [STDERR, STDOUT] /home/usr/childl.sh

KNAX0726-I The child job ID was assigned. job ID=038314

str002

<<<<<< [STDERR, STDOUT] /home/usr/childl.sh

childl.sh output
>>>>>> [JOBLOG] /home/usr/childl.sh

15:14:12 038314 KNAX6571-I The child job CHILD started. parent job=ROOT parent job ID=038313
15:14:12 038314 KNAX6572-I The child job CHILD will use the job environment file "/home/usr/
adsh job.ase".

15:14:12 038314 KNAX7902-I The job controller will run in tty stdin mode.

15:14:12 038314 KNAX6112-I Execution of the command echo (line=4) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

15:14:12 038314 KNAX6578-I The child job CHILD ended. exit status=0 execution time=0.001s
CPU time=0.000s

<<<<<< [JOBLOG] /home/usr/childl.sh

KNAX6116-I Execution of the command /home/usr/childl.sh (line=5) finished successfully. exit
status=0 execution time=0.290s CPU time=0.010s

str003

KNAX6112-TI Execution of the command echo (line=6) finished successfully. exit status=0
execution time=0.000s CPU time=0.000s

KNAX0092-I ROOT.S step started.

str004

KNAX6112-T Execution of the command echo (line=9) finished successfully. exit status=0
execution time=0.000s CPU time=0.000s

KNAX6831-I The command definition matched the rule specified by the environment settings
parameter CHILDJOB SHEBANG. script="/home/usr/child2.sh" shebang="/bin/sh"

>>>>>> [STDERR, STDOUT] /home/usr/child2.sh I A Rl CILNY

KNAX0726-I The child job ID was assigned. job ID=038315
str005

a"EssEsssssssssEzEssssssssEsssssssssm=zu=nssees grandchild. shoutput
>>>>>> [STDERR, STDOUT] /home/usr/grandchild.sh

KNAX0726-1 The child job ID was assigned. job ID=038316 .
str006 .
3<<<<< [STDERR, STDOUT] /home/usr/grandchild.sh =
str007
<<<<<< [STDERR, STDOUT] /home/usr/child2.sh

(Continued)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 230

(Continued from the previous figure)

>>>>>> [JOBLOG] /home/usr/child2.sh child2.sh output]
15:14:12 038315 KNAX6571-I The child job CHILD2 started. parent job=ROOT parent job
ID=038313

15:14:12 038315 KNAX6572-I The child job CHILD2 will use the job environment file "/home/
usr/adsh job.ase".

15:14:12 038315 KNAX7902-I The job controller will run in tty stdin mode.

15:14:12 038315 KNAX6112-I Execution of the command echo (line=4) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

15:14:12 038315 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/grandchild.sh" shebang="/
bin/sh"

s sssssssssssssssssssssssnssnnnssnnnssssasssdrandchild.shoutput
B>>>>>> [JOBLOG] /home/usr/grandchild.sh

ﬂ5:14:12 038316 KNAX6571-I The child job GRANDCHILD started. parent job=CHILD2 parent job
RID=038315

ﬂ5:14:12 038316 KNAX6572-I The child job GRANDCHILD will use the job environment file "/
home/usr/adsh job.ase".

?5:14:12 038316 KNAX7902-I The job controller will run in tty stdin mode.

Wl15:14:12 038316 KNAX6112-T Execution of the command echo (line=4) finished successfully.
[exit status=0 execution time=0.000s CPU time=0.000s

kl15:14:12 038316 KNAX6578-I The child job GRANDCHILD ended. exit status=0 execution
[time=0.008s CPU time=0.000s

FSSSS JIOBIOG], /hgme g/ qrandghild, sh

15:14:12 038315 KNAX6116-I Execution of the command /home/usr/grandchild.sh (line=5)
finished successfully. exit status=0 execution time=0.146s CPU time=0.010s

15:14:12 038315 KNAX6112-I Execution of the command echo (line=6) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

15:14:12 038315 KNAX6578-I The child job CHILD2 ended. exit status=0 execution time=0.162s
CPU time=0.020s

<<<<<< [JOBLOG] /home/usr/child2.sh

KNAX6116-I Execution of the command /home/usr/child2.sh (line=10) finished successfully.
exit status=0 execution time=0.722s CPU time=0.020s

str008

KNAX6112-T Execution of the command echo (line=11) finished successfully. exit status=0
execution time=0.000s CPU time=0.000s

KNAX6597-T ROOT.S step succeeded. exit status=0 execution time=0.726s CPU time=0.020s
KNAX0098-TI ROOT The job ended. exit status=0 execution time=1.031ls CPU time=0.040s
KNAX6380-I A job name will be added to the spool job directory of the root job. spool job
directory="/var/opt/jplas/spool/038313-ROOT/"

(adshdb) quit

KNAX6380-I A job name will be added to the spool job directory of the root job. spool job
directory="/var/opt/jplas/spool/038312-ROOT/"

KNAX7999-1 Advanced Shell ended. exit status=0

3.5.3 Examples of job execution log output(if you delete the spool job of
a child job)

The following examples illustrate the job execution log information that is output when a root job and child jobs are
executed.

(1) Example 1 (defining ch1.sh and ch2.sh)

As shown below, this example defines child job chl . sh that is started from the root job and child job ch2. sh that is
started from within the root job's job step.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 231

#!/bin/sh
chl.sh

-
1

parent.sh ## i
1

chl.sh i
1

1

#-adsh step start S
ch2.sh ch2.sh

[mm——mmm———————— 1
#-adsh step end | #!/bin/sh i
|4 ch2.sh #

H 1

H 1

H 1

Legend: : echo str002 >&2 :
[] :Rootjob Tttt '

1”7 : Child job

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log

The figure below shows the configuration of the job execution log and the locations where the execution results of child
jobs chl.sh and ch2. sh are output. The execution results of ch1 . sh are output within the job scope, and the
execution results of ch2 . sh are output within the step scope.

Job ID display
(environment file parser error messages, etc.)

Job execution log header

1
! 1
1
| JOBLOG i
N 1
! Command execution results :

1
1
SCRIPT H
Script image i

1
1
JOB STDERR !
Standard error output for the job i

1

1
1
JOBLOG (for ch1. sh)
Command execution results for chl.sh !

STEP STDERR
Standard error output for the step

1
1
JOBLOG (for ch2. sh) i
. 1
Command execution results for ch2 . sh !

Spool job directory name change message:
Advanced Shell ended. exit status=xxx

(b) Example of job execution log output

The following shows an example of job execution log output:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 232

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the
jab.
KNAX0724-I The job ID was assigned. job ID=000097

Advanced Shell 11-00

[Information]
Job ID : 000097
Spool directory : /var/opt/jplas/spool/000097/
Date : 2015/10/30
EnvFile (system)
EnvFile (job) : /home/usr/adsh job.ase
Host name : HOSTO1
[Environment variable from Automatic Job Management System]
JP1JobName : boot.sh
JP1JobID : 120
JP1 USERNAME : jpladmin
JP1UNCName : HOSTO1
JPINBOSQueueName: \\HOST01\@SYSTEM
JP1Priority 1
AJSEXECID : @Al26

*kkkkkkk JOB CONT‘ROLI‘ER N|ESSAGE *kkkkkkk

19:15:34 000097 KNAX0091-I ADSHO00097 The job started.

19:15:34 000097 KNAX7901-I The job controller will wait for all asynchronous processes at
the end of the job.

19:15:34 000097 KNAX7902-I The job controller will run in non-tty stdin mode.

19:15:34 000097 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/chl.sh" shebang="/bin/sh"
19:15:34 000097 KNAX6116-I Execution of the command /home/usr/chl.sh (line=2) finished
successfully. exit status=0 execution time=0.042s CPU time=0.020s

19:15:34 000097 KNAX0092-I ADSHO00097.S step started.

19:15:34 000097 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/ch2.sh" shebang="/bin/sh"
19:15:34 000097 KNAX6116-I Execution of the command /home/usr/ch2.sh (line=5) finished
successfully. exit status=0 execution time=0.012s CPU time=0.000s

19:15:34 000097 KNAX6597-I ADSHO00097.S step succeeded. exit status=0 execution time=0.012s
CPU time=0.000s

19:15:34 000097 KNAX0098-I ADSHO00097 The job ended. exit status=0 execution time=0.061ls CPU
time=0.020s

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 233

(Continued from the previous figure)

*hkkkkhkkkk Script IMAGE *hkkkkkkk

%%% /home/usr/parent.sh *x*x
0001 : ## parent.sh ##
0002 : chl.sh

0003 :
0004 : #-adsh step start S
0005 : ch2.sh

0006 : #-adsh step end

FxAx% CONVERSION INFORMATION *****

kkxkk JOB SCOPE STDERR ek ok kA kK chl.sh output

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the job:
KNAX0724-1 The job ID was assigned. job ID=000098

str001

19:15:34 000098 KNAX6571-I The child job ADSHO00098 started. parent job=ADSH000097 parent job
ID=000097

19:15:34 000098 KNAX7901-I The job controller will wait for all asynchronous processes at the
end of the job.

19:15:34 000098 KNAX7902-I The job controller will run in non-tty stdin mode.

19:15:34 000098 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:15:34 000098 KNAX6578-I The child job ADSHO00098 ended. exit status=0 execution
time=0.003s CPU time=0.000s

KNAX6597-1 ADSHO000097.S step succeeded. exit status=0 execution time=0.012s CPU time=0.000s
KNAX0098-I ADSHO000097 The jcob ended. exit status=0 execution time=0.061ls CPU time=0.020s

*kkkkkkk JOBSTEP OUTPUT *kkkkkkk

KNAX0719-I STEP. step number=0001 step name=S output destination=STDERR L
KNAX7901-I The job controller will wait for all asynchronous processes at the end of the job.
KNAX0724-1 The job ID was assigned. job ID=000099

str002

19:15:34 000099 KNAX6571-I The child job ADSHO00099 started. parent job=ADSH000097 parent job
ID=000097

19:15:34 000099 KNAX7901-I The job controller will wait for all asynchronous processes at the
end of the job.

19:15:34 000099 KNAX7902-I The job controller will run in non-tty stdin mode.

19:15:34 000099 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:15:34 000099 KNAX6578-I The child job ADSHO00099 ended. exit status=0 execution
time=0.001s CPU time=0.000s

ch2.sh output

KNAX6380-I A job name will be added to the spool job directory of the root job. spool job
directory="/var/opt/jplas/spool/000097-ADSHO00097/"
KNAX7999-1 Advanced Shell ended. exit status=0

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)

As shown below, this example defines child job childl. sh, child job child2.sh, and grandchild. sh thatis
started from child job chi1d2. sh.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 234

childl.sh

#!/bin/sh
#-adsh job CHILD1

#!/opt/jplas/bin/ashexec
#-adsh job ROOT

echo str001 >&2
childl.sh
echo str003 >&2

echo str002 >&2

#!/bin/sh
#-adsh job CHILD2

#-adsh step start S
echo str004 >&2
child2.sh

! grandchild.sh
1
i
echo str008 >&2 !
1
1
1
1
1
1

echo str005 >&2
grandchild.sh
echo str007 >&2

#-adsh step end

Legend:

[]: Root job

i _71: Child job

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log

The figure below shows the configuration of the job execution log and the locations where the execution results of child
job childl.sh, child job child2.sh, and grandchild. sh are output. The execution results of
grandchild. sh are output within the execution results of child job child2. sh.

Job ID display
(Environment file analysis error messages, etc.)

Job execution log header

| JOBLOG
i Command execution results

1
i SCRIPT
i Script image
1

OB STDERR
tandard error output for the job scope

[R

EJOBLOG(mrchildl.sh)

! Command execution results for childl.sh
1

1

TEP STDERR
tandard error output for the step scope

wwn

JOBLOG (for child2.sh)
Command execution results for child2.sh

| JOBLOG (for grandchild. sh) E
1 .
! Command execution results for !
! grandchild.sh)

Spool job directory name change message:
Advanced Shell ended. exit status=xxx

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 235

(b) Example of job execution log output

The following shows an example of job execution log output:

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the job.
KNAX0724-1 The job ID was assigned. job ID=000107

Advanced Shell 11-00

[Information]
Job ID : 000107
Spool directory : /var/opt/jplas/spool/000107/
Date : 2015/10/30
EnvFile (system)
EnvFile (job) : /home/usr/adsh job.ase
Host name : HOSTO1
[Environment variable from Automatic Job Management System]
JP1JobName : boot.sh
JP1JobID . 123
JP1_USERNAME : jpladmin
JP1UNCName : HOSTO1
JPINBOSQueueName: \\HOST01\@SYSTEM
JP1Priority 1
AJSEXECID : QA129

*KkkKkKkkKkK JOB CONTROILER 1\4ESSAGE *kkkkKkk*k

19:23:58 000107 KNAX0091-I ROOT The job started.

19:23:58 000107 KNAX7901-I The job controller will wait for all asynchronous processes at the
end of the job.

19:23:58 000107 KNAX7902-I The job controller will run in non-tty stdin mode.

19:23:58 000107 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000107 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/childl.sh" shebang="/bin/
sh"

19:23:58 000107 KNAX6116-I Execution of the command /home/usr/childl.sh (line=5) finished
successfully. exit status=0 execution time=0.032s CPU time=0.010s

19:23:58 000107 KNAX6112-T Execution of the command echo (line=6) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000107 KNAX0092-I ROOT.S step started.

19:23:58 000107 KNAX6112-T Execution of the command echo (line=9) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000107 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/child2.sh" shebang="/bin/
sh"

19:23:58 000107 KNAX6116-I Execution of the command /home/usr/child2.sh (line=10) finished
successfully. exit status=0 execution time=0.025s CPU time=0.020s

19:23:58 000107 KNAX6112-I Execution of the command echo (line=11) finished successfully.
exit status=0 execution time=0.000s CPU time=0.000s

19:23:58 000107 KNAX6597-I ROOT.S step succeeded. exit status=0 execution time=0.026s CPU
time=0.020s

19:23:58 000107 KNAX0098-I ROOT The job ended. exit status=0 execution time=0.061ls CPU
time=0.040s

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

236

(Continued from the previous figure)

*kkkkkkk Script IMAGE *kkkkkkk

*xx%% /home/usr/parent.sh *****x
0001 : #!/opt/jplas/bin/adshexec
0002 : #-adsh job ROOT

0003 :

0004 : echo str001 >&2

0005 : childl.sh

0006 : echo str003 >&2

0007 :

0008 : #-adsh step start S
0009 : echo str004 >&2
0010 : child2.sh

0011 : echo str008 >&2

0012 : #-adsh step end
*Hxxxxk CONVERSION INFORMATION ****%

*kkkkkkk JOB SCOPE STDERR *kkkkkkk
str001

KNAX7901-I The jcb controller will wait for all asynchronous processes at the end of the job.
KNAX0724-1 The job ID was assigned. job ID=000108

str002

19:23:58 000108 KNAX6571-I The child job CHILD1 started. parent job=ROOT parent job ID=000107
19:23:58 000108 KNAX7901-I The job controller will wait for all asynchronous processes at the
end of the job.

19:23:58 000108 KNAX7902-I The job controller will run in non-tty stdin mode.

19:23:58 000108 KNAX6112-I Execution of the command echo (line=4) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000108 KNAX6578-I The child job CHILD1 ended. exit status=0 execution time=0.001s
CPU time=0.000s

childl.sh output

str003
KNAX6597-1 ROOT.S step succeeded. exit status=0 execution time=0.026s CPU time=0.020s
KNAX0098-I ROOT The job ended. exit status=0 execution time=0.061s CPU time=0.040s

(Continued in the following figure)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

237

(Continued from the previous figure)

*kkkkkkk JOBSTEP OUTPUT *kkkkkkk

KNAX0719-1 STEP. step number=0001 step name=S output destination=STDERR
str004

KNAX7901-I The job controller will wait for all asynchronous processes at the end of the job|

KNAX0724-1 The job ID was assigned. job ID=000109
str005 grandchild. sh output

child2.sh output

WKNAX7901-T The job controller will wait for all asynchronous processes at the end of the jof
"KNAX0724-1 The job ID was assigned. job ID=000110

"str006 .
®19:23:58 000110 KNAX6571-I The child job GRANDCHILD started. parent job=CHILD2 parent job =
-ID=000109 .
=19:23:58 000110 KNAX7901-I The job controller will wait for all asynchronous processes at thg
“end of the job. .
=19:23:58 000110 KNAX7902-I The job controller will run in non-tty stdin mode. .
:19:23:58 000110 KNAX6112-I Execution of the command echo (line=4) finished successfully. ex;t
sstatus=0 execution time=0.000s CPU time=0.000s

:19:23:58 000110 KNAX6578-I The child job GRANDCHILD ended. exit status=0 execution
0,005 CPY HIE00005 L L L L\ttt e e e e e e e e e
str007

19:23:58 000109 KNAX6571-I The child job CHILD2 started. parent jol=ROOT parent job ID=000107
19:23:58 000109 KNAX7901-I The job controller will wait for all asynchronous processes at thg
end of the job.

19:23:58 000109 KNAX7902-I The job controller will run in non-tty stdin mode.

19:23:58 000109 KNAX6112-I Execution of the command echo (line=4) finished successfully. exif
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000109 KNAX6831-I The command definition matched the rule specified by the
environment settings parameter CHILDJOB SHEBANG. script="/home/usr/grandchild.sh" shebang="/
bin/sh"

19:23:58 000109 KNAX6116-I Execution of the command /home/usr/grandchild.sh (line=5) finished
successfully. exit status=0 execution time=0.012s CPU time=0.000s

19:23:58 000109 KNAX6112-T Execution of the command echo (line=6) finished successfully. exif]
status=0 execution time=0.000s CPU time=0.000s

19:23:58 000109 KNAX6578-I The child job CHILD2 ended. exit status=0 execution time=0.015s
CPU time=0.000s

str008

KNAX6380-I A job name will be added to the spool job directory of the root job. spool job
directory="/var/opt/jplas/spool/000107-ROOT/"
KNAX7999-1 Advanced Shell ended. exit status=0

3.5.4 Examples of job execution log output (when the simple output mode

or the minimum output mode is selected)

This subsection presents examples of the job execution log when the simple output mode or the minimum output mode
is selected with the OUTPUT MODE ROOT or OUTPUT MODE CHILD environment setting parameter. Note that the

error messages output in the simple output mode differ from those output in the minimum output mode.

(1) Configuration of job execution log

The following shows the configuration of the job execution logs.

* Job execution log that can be referenced from other programs (such as JP1/AJS)

The following information for the root job and child jobs:
(output at suitable times during execution)

e Standard output

e Standard error output

* Job execution log during debug execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

238

Job ID display
(environment file analysis error messages, etc.)

The following information for the root job and child jobs:
(output at suitable times during execution)

e Standard output

e Standard error output

e Job step termination message

* Job termination message

(2) Examples of job execution log output

The following are examples of job execution log output:

¢ Job execution log that can be referenced from other programs (such as JP1/AJS)
B Environment setting parameters

#—adsh_conf OUTPUT MODE ROOT SIMPLE
#-adsh_conf OUTPUT MODE CHILD SIMPLE
#-adsh _conf CHILDJOB EXT ash

B Job definition script: logroot.ash

#-adsh job SampleJobRoot

#-adsh file temp WORKO1

#-adsh file temp WORKO2
./logsub.ash data tokyo 2>SWORKO1
./logsub.ash data fukuoka 2>$SWORKO02
echo —-E "***WORKQ1*****x" >g2

cat SWORKO01l >&2

echo —-E "***WORKQ2*****x" >g2

cat SWORKO02 >&2

B Job definition script: logsub.ash

#-adsh job SampleSub
cat $1 | grep $2 >&2

B Input data: data

aichi nagoya 052
fukuoka kurume 0942
fukushima iwaki 0246
tokyo machida 042
tokyo tachikawa 042

B Execution example

[user001@HOSTOL ~]$ /opt/jplas/bin/adshexec logroot.ash
WORKO]_**

tokyo machida 042

tokyo tachikawa 042

WoRKOz*‘k

fukuoka kurume 0942

[user001@HOSTO1 ~1$

[user001@HOSTO1 ~1$

 Job execution log during debug execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

239

[user001@hosta user001]$ /opt/jplas/bin/adshexec —-d logroot.ash

KNAX7901-I The adshexec command will wait for all asynchronous processes at the end of the
jab.

KNAX0724-I The job ID was assigned. job ID=000483

(adshdb) list

1: #-adsh job SampleJobRoot

2: #-adsh file temp WORKO1

3: #-adsh file temp WORK02

4: ./logsub.ash data tokyo 2>$WORKO1

5: ./logsub.ash data fukuoka 2>$SWORK02

6: echo —E "***WORKQL*****" >g2

7: cat SWORKO1l >&2

8: echo -E "***WORKO2*****" >g2

9: cat SWORKO2 >&2

(adshdb) b 4

KNAX7018-I Breakpoint "1": filename="logroot.ash" line=4

(adshdb) run

KNAX7007-I Execution of the following script will now start: /home/user001/logroot.ash

KNAX0724-I The job ID was assigned. job ID=000484

KNAX7018-I Breakpoint "1": filename="logroot.ash" line=4
KNAX7032-I The script "logroot.ash" stopped running.

4: ./logsub.ash data tokyo 2>$SWORKO1

Current: ./logsub.ash

(adshdb) info b

Num Type What
1 breakpoint logroot.ash:4
(adshdb) s

KNAX7032-I The script "logroot.ash" stopped running.
5: ./logsub.ash data fukuoka 2>SWORK02
Current: ./logsub.ash

(adshdb) c¢

KNAX7034-I The script will continue.
WORKO:L**

tokyo machida 042

tokyo tachikawa 042
WORKO2**

fukuoka kurume 0942

KNAX0098-I SampleJobRoot The job ended. exit status=0 execution time=24.432s CPU time=0.020s

(adshdb) quit
[user00l@hosta user001]$

3.5.5 Examples of job execution log output (when only the standard error
output is output)

This subsection presents an example of the job execution log when STDERR (output only the standard error output to
the job execution log) is selected with the JOBEXECLOG PRINT environment setting parameter.

This example assumes that job definition scripts sample.ash, samplesubl.ash, and samplesub?2.ash have
been defined as shown in the following.

* Job definition script sample.ash

#—adsh_job SAMPLEJOB

echo JOB STDERR 001 >&2

cd /home/user001/dir

cd xXxX

cd /home/user001

#-adsh step start S1 -run always -onError cont
echo STEP STDERR 001 >&2

cd /home/user001/dir

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 240

cd xxx

cd /home/user001

#-adsh step end

echo JOB STDERR 002 >&2
#-adsh step start S2 -run always -onError cont

echo STEP STDERR 002 >&2
./samplesubl.ash
#-adsh_step end

cd /home/user001/dir

cd xxx

cd /home/user001

echo JOB STDERR 003 >&2
./samplesub2.ash

¢ Job definition script samplesubl.ash

#-adsh job SAMPLE SUB1

echo SUB1 JOB STDERR 001 >&2

cd /home/user001/dir

cd xxxSUB1

cd /home/user001

#-adsh step start SUBl1 S1 -run always -onError cont
echo SUB1 STEP STDERR OOl >&2

cd /home/user001/dir

cd xxxSUB1

cd /home/user001

#-adsh_step end

echo SUB1 _JOB_STDERR 002 >&2

#-adsh step start SUBl S2 -run always -onError cont
echo SUB1 STEP STDERR 002 >&2

#-adsh _step end

cd /home/user001/dir

cd xxxSUB1

cd /home/user001

echo SUB1 JOB_ STDERR 003 >&2

¢ Job definition script samplesub2.ash

#-adsh job SAMPLE SUB2

echo SUB2 JOB STDERR 001 >&2

cd /home/user001/dir

cd xxxSUB2

cd /home/user001

#-adsh step start SUB2 S1 -run always -onError cont
echo SUBZ2 STEP STDERR 001 >&2

cd /home/user001/dir

cd xxxSUB2

cd /home/user001

#-adsh step end

echo SUBZ JOB STDERR 002 >&2

#-adsh step start SUB2 S2 -run always -onError cont
echo SUBZ2 STEP STDERR 002 >&2

#-adsh step end

cd /home/user001/dir

cd xxxSUB2

cd /home/user001

echo SUB2 JOB STDERR 003 >&2

The following shows an example of the job execution log output:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 241

[user001@hosta ~]$ /opt/jplas/bin/adshexec sample.ash

KNAX7901-I Job controller waits for completion of all asynchronous execution
processes when a job is finished.

KNAX0724-I A job ID has been assigned. Jobid=046287

HA KA A KA Contents of the STDERR file of the executable job
JOB_STDERR_ 001

KNAX6030-E The directory cannot be moved./ home/user001/dir/xxx - No such
file or directory. filename="/home/user001l/sample.ash" line=4

KNAX6521-E Command (cd, line number=4) finished with an error. rc=1 E-
Time=0.000s C-Time=0.000s

KNAX6597-1I SAMPLEJOB.S1 The job step finished normally. rc=0 E-Time=0.001ls C-
Time=0.000s JOB STDERR 002

KNAX6597-1I SAMPLEJOB.S2 The job step finished normally. rc=0 E-Time=0.004s C-
Time=0.000s

KNAX6030-E The directory cannot be moved./ home/user001/dir/xxx - No such
file or directory. filename="/home/user001l/sample.ash" line=18

KNAX6521-E Command (cd, line number=18) finished with an error. rc=1 E-
Time=0.000s C-Time=0.000s JOB STDERR 003

SUB2_ JOB_STDERR 001

SUB2 STEP STDERR 001

SUB2 JOB_STDERR 002

SUB2 STEP_ STDERR 002

SUB2_JOB_STDERR_ 003

KNAX0101-E SAMPLEJOB An error occurred while the job was being executed.
KNAX0098-I SAMPLEJOB The job finished. rc=0 E-Time=0.014s C-Time=0.010s

-STDERR output

*HxkEkxxxx Qutput of job step *xFxxxxx

KNAX0719-I STEP Step number =0001 Step name =31 Output destination =STDERR
STEP_STDERR_001

KNAX6030-E The directory cannot be moved./ home/user001/dir/xxx - No such
file or directory. filename="/home/user001l/sample.ash" line=9

KNAX6521-E Command (cd, line number=9) finished with an error. rc=1 E-
Time=0.000s C-Time=0.000s

KNAX0719-I STEP Step number =0002 Step name =S2 Output destination =STDERR
STEP_STDERR 002

SUB1 JOB_STDERR 001

SUBlisTEPisTDERRiool

SUB1 JOB_STDERR 002

SUBlisTEPisTDERR7002

SUB1 JOB STDERR 003

KNAX6380-I Add a job name to the spool job directory of the root job. spool
job directory="/var/opt/jplas/spool/046287-SAMPLEJOB/"

KNAX7999-I Job controller of the root job finished the batch job. rc=0
[user00l@hosta ~1$

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 242

3.6 Outputting the executed commands and their arguments

When the xt race shell option is enabled, the executed commands and their arguments are output to the standard error
output as trace information.

There are three ways to enable the xt race shell option:

* Executing the set command with the -x or —o xtrace option specified in job definition scripts
* Executing the adshexec command with the —x option specified during job execution

* Selecting Enable xtrace in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box
The trace information is output in the following format:

* The value of the PS4 shell variable is added at the beginning of the trace information.
* If'the values of variables are referenced, the variable substitution results are output.

* If command arguments contain wildcard characters, the results of the wildcard replacement are output.

Example of trace information output
This example shows an executed job definition script and the trace information that is output.

Contents of the job definition script

0001 : set -o xtrace

0002 : typeset -1 cnt=1

0003 : if [$cnt -eg 1]

0004 : then

0005 : echo "--- JOB START ---"
0006 : fi

0007 : date

Standard error output results

+ typeset -i cnt=1

+ [1 -eqg 1]

+ echo --- JOB START ---
+ date

Notes about trace information
Even when the xt race shell option is enabled, the following commands and their arguments are not output:

e Commands in the [[]] format that is the abbreviated form of the test command

» Extended script commands

Commands in the (()) format that is the abbreviated form of the 1et command are replaced with the 1et
command in the trace information. The following shows an example of a command in the (()) format and the
output information:

Contents of the job definition script

0001 : set -o xtrace
0002 : typeset -1 a=0
0003 : ((a=(2+3)*9))

0004 : echo $Sa

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 243

Standard error output results

+ typeset -i a=0
+ let a=(2+3)*9
+ echo 45

Trace information for functions themselves are output, but trace information for commands within the functions is
not output. To output trace information for commands within a function, execute the t ypeset command to enable
the function's trace mode. The following shows an example of the t ype set command's specification and the output
information:

Contents of the job definition script

0001 : set -o xtrace

0002 : fnl () {

0003 : echo "call $1 $2"
0004 : echo SLINENO

0005 : }

0006 : echo "in main"

0007 : fnl "function" "1"
0008 : typeset -ft fnl
0009 : fnl "function" "2"

Standard error output results

echo in main

fnl function 1
typeset -ft fnl

fnl function 2

echo call function 2
echo 4

+ + o+ o+ o+

When the xt race shell option is enabled, trace information for the job definition script executed by the child job
is output, but trace information for the commands within the child job is not output. To output trace information for
a job definition script that is executed by a child job, also enable the xt race shell option within the child job's job
definition script.

The input contents of here documents are not output as trace information even when the xtrace shell option is
enabled.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 244

3.7 Outputting job definition script operation information

Job definition script operation information includes the execution time of each command executed by the job, the CPU
time, any output messages, and job step execution results. You can use this information to obtain the job execution status
and investigate the causes of delays in job execution.

The following figure shows the general procedure for collecting and outputting job definition script operation
information.

Figure 3-4: Collection and output of job definition script operation information

Job Spool
definition script Operation
information
(CSV file)
Eventfile = o [e
1. Use the adshexec 2. Use the adshevtout =~ LZ222t@
command to execute B command to output the
the job (collect operation information.

operation information).

1. When the user uses the adshexec command to execute a job, the adshexec command collects the job definition
script operation information for the job and then outputs it to the event file on the spool.

2. The adshevtout command outputs the job definition script operation information that is contained in the event
file to a CSV file.

You can use a program such as a spreadsheet to analyze a CSV file that contains job definition script operation
information.

3.7.1 Collecting job definition script operation information

The following table shows when job definition script operation information can be collected:

Environment Execution status Collection of job definition script operation information
Execution Normal Y
environment
Debugger mode N
Development (Not applicable) N
environment
Legend:

Y: Can be collected
N: Cannot be collected

In the normal status, when the adshexec command is used to execute a job, the adshexec command collects the
job definition script operation information for the job and outputs it to the event file on the spool.

However, if the following specification is made in the environment file, the adshexec command does not output job
definition script operation information to the event file:

#-adsh conf EVENT COLLECT NO

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 245

3.7.2 Outputting job definition script operation information

You use the adshevtout command to output job definition script operation information from the event file on the
spool to a CSV file.

For details about how to specify the adshevtout command and an example output of job definition script operation
information, see 8.3.6 adshevtout command (outputs job definition script operation information) in 8. Commands
Used During Operations.

(1) Specifying a job whose job definition script operation information is
to be output

You use the adshevtout command to specify a job whose job definition script operation information is to be output.

The following job information can be specified to select the job definition script operation information that is to be
output:

¢ Range of job's execution start date and time
e JP1/AIJS job name, job execution ID, and job number
* JP1/Advanced Shell job name, job ID, and path name of the job definition script file

If multiple conditions are specified, the information that satisfies all the specified conditions is output.

If no conditions are specified, the job definition script operation information for all jobs on the spool is output (except
that job definition script operation information located in inaccessible event files will not be output).

(2) Controlling the job definition script operation information that is to be
output

You can use the adshevtout command to control which information will be output, such as the following:

* Suppress output of header information
¢ Output only the header information (do not output the job definition script operation information itself)
¢ Output only the messages contained in the job definition script operation information

* Do not output information about environment variables in the job definition script operation information

(3) Spool to be referenced

The adshevtout command references the event files on the spool to output job definition script operation information.

The spool to be referenced by the adshevtout command is determined by the specified environment file in the same
manner as for the adshexec command.

Ifalogical host is specified in the adshevtout command, the command uses the spool corresponding to the specified
logical host in the same manner as for the adshexec command.

(4) Output destination of the job definition script operation information

The job definition script operation information is output to the adshevtout command's standard output (stdout).

If you use the redirect function, you can also output the operation information to a file.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 246

3.7.3 Relationship between dates and times and time zones in the
operation information
The adshevtout command interprets and outputs the date and the time in the formats year-month-date and hour-

minute-second for the time zone in effect when the command is executed. Use the TZ environment variable to specify
the time zone.

As shown in the three sets of examples in the following table, a given date and time (in the year—-month—date and hour-
minute—second formats) will be represented differently depending on the time zone:

Time zone Date and time example 1 Date and time example 2 Date and time example 3

UTC-2 2012-06-1008:00:00 2012-06-1023:00:00 2012-06-1115:00:00

UTC 2012-06-1010:00:00 2012-06-1101:00:00 2012-06-1117:00:00

UTC+3 2012-06-1013:00:00 2012-06-1104:00:00 2012-06-1120:00:00

UTC+9 2012-06-1019:00:00 2012-06-1110:00:00 2012-06-1202:00:00
Remarks:

UTCH9 indicates the time zone that is nine hours ahead of coordinated universal time (UTC). The sign differs from
when the value is set in the TZ environment variable.

3.7.4 Using multiple OR conditions for output of job definition script
operation information

The adshevtout command outputs the job definition script operation information for the job that satisfies all the
conditions specified in the arguments.

If you want to output the information that satisfies any one of multiple conditions, execute as many adshevtout

commands as there are OR conditions, and then output the concatenated job definition script operation information to
a single CSV file.

The following example outputs concatenated job definition script operation information to the out file file.

adshevtout -d > outfile

adshevtout -t option-specifying-condition-1 >> outfile
adshevtout -t option-specifying-condition-2 >> outfile
adshevtout -t option-specifying-condition-n >> outfile

e The first adshevtout command outputs only the header line (-d suppresses output of job definition script
operation information).

* The second adshevtout command outputs the operation information for the job that satisfies condition-1 without
a header line (by specifying -t).

e The third adshevtout command outputs the operation information for the job that satisfies condition-2 without
a header line (by specifying -t).

* The adshevtout command # + 1 outputs the operation information for the job that satisfies condition-n without
a header line (by specifying —t).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 247

You output operation information that satisfies multiple OR conditions by executing the adshevtout command in
this manner.

3.7.5 Outputting job definition script operation information from different
spools

The job definition script operation information that can be output by executing the adshevtout command typically
is for the job located on the spool that was specified in the environment file when the adshevtout command was
executed. To output the job definition script operation information for a job located on another spool, you must use the
corresponding environment file.

An example is shown below. In this example, a different spool root directory is specified in each environment file.

Example:
Environment file envfilel: Specifies spool root directory spooldirl.
Environment file envfile?2: Specifies spool root directory spooldir?.

Environment file envfile3: Specifies spool root directory spooldir3.

To output the job definition script operation information for a job in each of these spool root directories, execute the
adshevtout command with the correct environment file specified as follows:

export ADSH ENV=envfilel
adshevtout

export ADSH ENV=envfile2
adshevtout

export ADSH ENV=envfile3
adshevtout

3.7.6 Format of operation information

The adshevtout command outputs operation information to a CSV file.

(1) Types of operation information

The operation information that is output by the adshevtout command consists mainly of the items listed below. Each
item forms one record.

¢ When the adshexec command's execution began

* Environment variables

e Commands

* Messages

¢ Start of job step execution

* End of job step execution

¢ Skipped job step execution

* End of job execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 248

(2) Configuration of operation information

The operation information items are output in the following order for each job:

Order Output item Remarks
1 Header information --
2 Start of the adshexec command's execution --
3 Environment variables Output if there are any environment variables
4 Commands Output according to the execution of the job definition script
Messages

Start of job step execution
End of job step execution
Skipped job step execution
End of job execution

Legend:
--: Not applicable

The order in which messages and the following records are output might differ:

¢ Commands

¢ Start of job step execution
¢ End of job step execution
¢ Skipped job step execution

* End of job execution
The order in which the following operation information items are output is not predefined:

¢ Output order among spool jobs

* Output order of the root and child jobs in a spool job

(3) Configuration of operation information records

The operation information records consist of multiple items.

Each item value is enclosed in double quotation marks (). If an item value contains a double quotation mark, that
double quotation mark is represented as two consecutive double quotation marks.

The items are delimited by the comma ().

3.7.7 Operation information records in CSV format and output items

The following table shows the relationship between the operation information records in CSV format and the output
items.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 249

Table 3-2: Operation information records and output items

No. Item name

1 EvtName

2 RecTZ

3 RecTime

4 PhysicalHostName

5 LogicalHostName

6 OsName

7 JplajsService

8 JplajsRootJobnet

9 JplajsJobName

10 JplajsExecId

11 JplajsJobld

12 JplasJobName

13 JplasJobId

14 JplasJobTime

15 JplasJobPid

16 JplasUid

17 JplasGid

18 JplasUserName

19 JplasGroupName

20 JplasScriptPath

21 JplasEnvPath

22 JplasSpoolPath

23 JplasJobLang

24 JplasJobEncode

25 RecTZExec

26 JplasJobParentJobName
27 JplasJobParentJobId
28 JplasJobParentJobTime
29 JplasJobParentJobPid
30 JplasJobRc

31 JplasJobSig

32 EnvVar

33 JplasScriptLineNo

3. Executing Batch Jobs

Job Env Cmd Func Extd Msg Job Job
start var tion Cmd step step
start end

Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
YN YN YN YN YN YN YN YN
Y Y Y Y Y Y Y Y
YN YN YN YN YN YN YN YN

o
Z
=
Z
~
Z
<
Z
=
Z
o
Z
~
Z
=
Z

YN YN YN YN YN YN YN YN
YN YN YN YN YN YN YN YN
YN YN YN YN YN YN YN YN
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
YN YN YN YN YN YN YN YN
YN YN YN YN YN YN YN YN
YN YN YN YN YN YN YN YN
YN YN YN YN YN YN YN YN
N N N N N N N N
N N N N N N N N
N Y N N N N N N
N N Y Y Y N Y Y

Job Job
step end
skipd

Si< 3 < < < =
Si< 3 < < < =

=
Z
=
Z

<z z zZ 5 3 3 5 < < < < < < < < < < < < < < 35553
Z zZ < < 5 3 3 5 < < < < < < < < < < < < < < 35553

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

250

No.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Item name

JplasStepSeq
JplasStepName
JplasStepSkip
JplasStepRc
JplasStepSig
JplasCmdExec
JplasCmdType
JplasCmdPath
JplasCmdArg
JplasLang
JplasCharEncode
JplasCmdStart
JplasCmdEnd
JplasCmdElaps
JplasCmdRc
JplasCmdSig
JplasCmdPid
JplasCmdCpuUser
JplasCmdCpuSys
Reservedl
Reserved2
JplasMsgId
JplasMsgText
JplasMsglang

JplasMsgEncode

Legend:

Job
start

z zZz Z|\z z =z z zZz Z Z Z Z Z Z 2z Z zZ| .z Z| z zZz z| zZ Z Z

Env
var

Z|\z|z Z =z Z z Z z Z zZ|zZ Z |z Z z Z z Z Z zZ Z| |z Z z

Cmd

R N = R =R R R R - =R

=
z

z z z z z z 3 3

Job start: Start of adshexec command execution

Env var: Environment variables

Cmd: Commands

Extd cmd: Commands (extended script commands)

Msg: Messages

Job step start: Start of job step execution
Job step end: End of job step execution

Job step skipd: Skipped job step execution

Job end: End of job execution

3. Executing Batch Jobs

Func

tion

R = = R R - e = R

z z Zz|z z| z

Extd
Cmd

z z z z 2z zZ z zZ zZ zZ Z z Z zZ < =< 3 < < < 2z 2z 2z z Z

Msg

< | K|K X|\zZ2 Z z Z z Z z|zZ Z z Z =z Z z Z Z zZ Z| |z Z z

Job
step

start

Y

ZZZZZZZZZZZZZZZZZZZZZZZE

Job
step
end

ZZZZZZZZZZZZZZZZZZZZ<<Z§~<

Job
step

skipd

Y

z

z 'z Z|\z z z|z zZ Z, Z Z Z 2zZ Z 2z zZ Z|z z z zZz zZ X

Job
end

z zZz Z|\z z =z z zZ Z Z Z Z Z Z 2z Z zZ z Z z < <|2zZ Z Z

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

251

Y: Information is output.

YN: Information is output, but if there is no information to be output, the null character string is set.

N: There is no information to be output (the null character string is set).

3.7.8 Output items for operation information in CSV format

The following table lists and describes the output items (columns) for operation information in CSV format.

Table 3-3: Output items (columns) for operation information

No. Item name
1 EvtName
2 RecTZ
3 RecTime
4 PhysicalHostName
5 LogicalHostName
6 OsName
7 JplajsService
8 JplajsRootJobnet
9 JplajsJobName
10 JplajsExecId

3. Executing Batch Jobs

Description

Name indicating the type of operation information (record):
* adshStart: Start of adshexec command execution
e envVar: Environment variable
e command: Command
e function: Function
* message: Message
* stepStart: Start of job step execution
* stepEnd: End of job step execution
* stepSkip: Skipped job step execution
* jobEnd: End of job execution

Time zone in effect when the adshevtout command was executed.”

This is the time zone that is used to represent the date and time information in the operation

information.
Date and time the operation information was recorded”
Physical host name

Logical host name.
If a logical host is not used, the null character string is set.

OS name.
One of the following character strings:
* Windows
* Linux
e AIX
e HP-UX

e Solaris

JP1/AJS scheduler service name.
This is the value set in the AJS_AJSCONF environment variable by JP1/AJS.

This information is output when the job was started from JP1/AJS.

JP1/AJS's root jobnet name.
This is the value set in the AJSNETNAME environment variable by JP1/AJS.
This information is output if the job was started from JP1/AJS.

JP1/AJS's job name.
This is the value set in the AJSJOBNAME environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

JP1/AJS's job execution ID.
This is the value set in the AJSEXECID environment variable by JP1/AJS.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

252

No.

11

12
13
14
15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

Item name
JplajsExecId

JplajsJobId

JplasJobName
JplasJobId
JplasJobTime
JplasJobPid

JplasUid

JplasGid

JplasUserName

JplasGroupName

JplasScriptPath
JplasEnvPath

JplasSpoolPath

JplasJobLang

JplasJobEncode

RecTZExec

JplasJobParentJobName

JplasJobParentJobId

JplasJobParentJobTime

JplasJobParentJobPid

JplasJobRc

JplasJdobSig

EnvVar

3. Executing Batch Jobs

Description
This information is output when the job was started from JP1/AJS.

JP1/AJS's job number.
This is the value set in the JP1JobID environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

JP1/Advanced Shell's job name

JP1/Advanced Shell's job ID

adshexec command execution start date and time*
Process ID of the adshexec command

User ID of the adshexec command's process.

In Windows, the null character string is set.

Group ID of the adshexec command's process.

In Windows, the null character string is set.
User name of the adshexec command's process.

Group name of the adshexec command's process.

In Windows, the null character string is set.
Path name of the job definition script*
Path name of the environment file”

Path name of spool directory.”

Although the directory name of a spool job after the job has terminated is job-ID-spool-job-
name, this item will output the directory name as job-ID.

Value of the LANG environment variable when the adshexec command's execution started.
Character encoding when the adshexec command's execution started.”

Time zone in effect when the adshexec command was executing.”

This time zone is not used to represent the date and time information in the operation
information.

Name of the parent job.
For a root job, the null character string is set.

Job ID of the parent job.
For a root job, the null character string is set.

Parent job execution start date and time.”
For a root job, the null character string is set.

Process ID of the parent job.
For a root job, the null character string is placed.

adshexec command's return code

Signal number if the adshexec command terminated with a signal.
If the command did not terminate with a signal, O is set.

In Windows, the null character string is set.

Environment variables used when the adshexec command started.
The format is environment-variable-name=value.

For details, see (1) Environment variables in the EnvVar item below.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

253

No.

33

34

35

36

37
38

39

40

41

'y}

43
44
45
46

47

48

49

50

Item name

JplasScriptLineNo

JplasStepSeq

JplasStepName

JplasStepSkip

JplasStepRc

JplasStepSig

JplasCmdExec

JplasCmdType

JplasCmdPath

JplasCmdArg

JplaslLang
JplasCharEncode
JplasCmdStart
JplasCmdEnd

JplasCmdElaps

JplasCmdRc

JplasCmdSig

JplasCmdPid

3. Executing Batch Jobs

Description

Line number in the job definition script.
For details, see (2) Line number in the JplasScriptLineNo item below.

Job step number.
If this is not a step, the null character string is set.

Job step name.
If the job step name is omitted or this is not a step, the null character string is set.

The preceding command or job step's status when the job step was skipped:
* normal: Skipped because the status was normal.

¢ abnormal: Skipped because an error resulting in termination occurred.
Job step's return code.

Signal number if the job step terminated with a signal.
If the job step did not terminate with a signal, 0 is set.

In Windows, the null character string is set.

Command execution mode:
* null-character-string: Foreground execution.

¢ back: Background execution.

For details, see (3) Command execution mode in the JplasCmdExec item below.

Command type:
e assign: Standard shell command that updates a shell variable.
* embStd: Standard shell command or extended shell command.
* embAdsh: Extended script command.
* extCmd: External command.

e function: function

Command name.
For an external command, the command's path name.”

For details, see (4) Command name and command's path name in the JplasCmdPath item
below.

Command arguments.
The arguments are delimited by the space.

These are not the arguments as specified on the command line or in the job definition script,
rather they are the character strings obtained by evaluating (expanding) the arguments specified
on the command line or in the job definition script and that are passed to the command.

Value of the LANG environment variable during command execution
Character encoding during command execution”

Command execution start date and time”

Command execution termination date and time”

Duration of command execution.

This is the difference between the command's execution start date and time and its termination
date and time (microseconds).

Command's return code

Signal number if the command terminated with a signal.
If the command did not terminate with a signal, 0 is set.

In Windows, the null character string is set.

Process ID of an external command

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

254

No.
51
52
53
54
55
56
57

58

Item name
JplasCmdCpuUser
JplasCmdCpuSys
Reservedl
Reserved2
JplasMsgId
JplasMsgText
JplasMsgLang

JplasMsgEncode

Description

Command's user CPU time” (microseconds)

Command's system CPU time” (microseconds)

Reserved item (null character string)

Reserved item (null character string)

Message ID

Message text

Value of the LANG environment variable when the message was output

Character encoding when the message was output”

The following table explains the output items.

Item

End-of-line code

Date and time

Time zone

Character encoding

3. Executing Batch Jobs

Output contents

An end-of-line code contained in the value of an item is replaced with a space.

Specifically, each of the character encodings LF (0x0A) and CR (0x0D) is replaced with a
space (0x20).

For a new line in Windows, a pair of CR (0x0D) and LF (0x0A2) is replaced with two bytes
of spaces (0x20).

The date and time are represented in the following format
YYYY-MM-DD hh:mm:ss . nnn

YYYY: Calendar year

MM: Month

DD: Date

hh: Hour

mm: Minute

ss: Second

nnn: Millisecond

The date and time when the adshevtout command is executed are represented based on
the time zone specified in the TZ environment variable.

Ifacquisition of date and time information failed due to an error in the time acquisition function
at the time the operation information was collected by the adshexec command, the date and
time are represented as follows:

EEEE-EE-EE ee:ee:ee.eece

The difference from UTC is indicated in one of the formats shown below. The sign differs
from the setting of the TZ environment variable.

+hh:mm:ss

—hh:mm:ss

hh: Hour

mm: Minute

ss: Second

If the time difference is 0, the value is +00:00: 00.

Example:

The time zone that is nine hours ahead of coordinated universal time (UTC) is
+09:00:00.

If the time zone cannot be converted to the format shown above, the value in this item is
+EE:EE:EE.

¢ In Windows

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 255

Item Output contents

Character encoding This is always SJIS regardless of the actual character string encoding used.
e In Linux, AIX, HP-UX, and Solaris

In Japanese, the character encoding determined from the value of the LANG environment
variable is set as follows:

SJIS: Shift JIS code

EUC: Extended UNIX Code

UTF8: UTF-8

In all other cases, the following value is set:
OTHER(value of the LANG environment variable)

Path name Any number of consecutive directory separators in path names are output as is.
Consecutive directory separators are not replaced with a single directory separator.
For example, if the specified path name is "C: \\dizr", "C:\\dizr" is output.

CPU time For external commands:
CPU time of the process that executed the external command

For other commands:
The CPU time of the process of adshexec that executed the command.

This is not the CPU time when each command was executed.

(1) Environment variables in the EnvVar item

The following environment variables are output

e The environment variables that were specified at the time the job started are output.

 If environment variables are specified in the environment file, the environment variables to which the settings in
the environment file have been applied are output.

* The environment variables set by the adshexec command are output.
* The environment variables deleted by the adshexec command are not output.

* Value of the ADSH JOB_NAME environment variable is the standard job name ADSHxxxxxx (xxxxxx: job ID). This
is not the job name specified in #-adsh_job.

* The above also apply to child jobs.

(2) Line number in the Jp1asScriptLineNo item

The value of this item is the null character string in the following cases:

¢ A command whose action was specified in the t rap command was executed.
* The #-adsh script command was executed.

* A command specified by command substitution was executed.

If a function is executed, the line number assigned to the command that is defined in the body of the function is output.

(3) Command execution mode in the Jp1asCmdExec item

If cmdl | cmd2 | cmd3 is executed, the item value is back because cmd1 and cmd2 are executed in separate
processes.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 256

(4) Command name and command's path name in the Jp1asCmdPath item

(a) If the command is executed in another process

Ifthe command is executed in another process, the item value is Another process script as shown in the following
example:
Example:

(echol a ; echo2 b)
(echol a) &

(echol a ; echo2 b) &

{ echol a ; echo?2 b ; }
{ }

&
echol a ; echo2 b ; \

&

In the following example, the value of the part { echol a ; echo2 b ; } becomes Another process script.

{ echol a ; echo2 b ; } | echo3 c

(b) If the command is executed by using a pipe
If cmdl | cmd2 | cmd3 is executed and cmdl, cmd2, and cmd3 are all external commands, the item values become
as follows:

e cmdl: command-name (file-name)

* cmd2: command-name (file-name)

e cmd3: path-name

3.7.9 Job definition script operation information that is output

An example of job definition script operation information that is output is shown below. In this example, the header line
is output on the first line.

"EvtName", "RecTZ", "RecTime", "PhysicalHostName", "LogicalHostName", ---
"adshStart","+09:00:00","2012-07-12 12:23:15.381","HOSTO1","", ——-
"envVar","+09:00:00","2012-07-12 12:23:15.382","HOSTO1", """, ——--

(job definition script operation information that is output)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 257

3.8 Using the user-reply functionality

The user-reply functionality notifies JP1/IM of batch job information by issuing JP1 events and enables replies to be
sent. By using this functionality, you can notify the operator by issuing character strings even in an environment where
a window used as the standard input and output is not available, such as when batch jobs are started from JP1/AJS.

The operator can monitor the JP1 events issued during command execution from a JP1/IM - View that is connected to
JP1/IM - Manager. Because JP1/IM - View's integrated console can display multiple servers' JP1 events, the operator
can monitor several servers from a single location.

3.8.1 Prerequisites

For details about the required programs, including JP1/IM, see 2.2.2 Programs required in each environment. You must
also perform the environment setup described in 2.8 Setting up the user-reply functionality.

3.8.2 Execution method

You use the commands shown below to specify character strings that are to be issued as JP1 events by the user-reply
functionality. You specify these commands in job definition scripts.

Command name Usage Section describing how to specify the command

adshecho Issues an event notification 9.4.4 adshecho command (issues a specified event notification message as a
message as a JP1 event. JP1 event) in 9.4 Extended shell commands

adshread Issues a reply-request message as =~ 9.4.9 adshread command (issues a specified reply-request message as a reply-
a reply-waiting event. waiting event) in 9.4 Extended shell commands

An issued JP1 event is displayed in the JP1/IM - View window. The operator can enter a reply to a reply-request event
from JP1/IM - View.

3.8.3 Relationship with JP1/IM - View

When the user-reply functionality is used, the event notification messages and reply-request messages specified in job
definition scripts are output as JP1 events. You use JP1/IM - View to view event notification messages and reply-request
messages output as JP1 events.

A reply-request message specified in the adshread command is treated as a reply-request event by JP1/IM - Manager.
The reply-request events are accumulated and displayed in JP1/IM - View and the operator can enter replies to them
from JP1/IM - View.

For details about how to enter replies, see the applicable JP1/IM manual. The following table lists and describes the
statuses that are displayed in the Enter Replies window when replies are entered from JP1/IM - View.

Table 3-4: Statuses displayed in JP1/IM - View's Enter Replies window

Status Meaning Whether a reply can be
entered from JP1/IM - View

READY TO RESPOND A reply can be entered. Y

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 258

Status
NO LONGER MANAGED BY JP1/AS

RESPONDED SUCCESSFULLY
ALREADY RESPONDED

INTERNAL ERROR

Legend:
Y: A reply can be entered.

N: A reply cannot be entered.

Meaning

A reply cannot be entered because the reply-request message is
not managed by JP1/Advanced Shell.

A reply entered to the reply-request message was successful.
A reply to the reply-request message has already been entered.

A reply cannot be entered because an internal error has occurred
in JP1/Advanced Shell.

Whether a reply can be
entered from JP1/IM - View

N

N

3.8.4 How to specify the standard input and output as the input source
and output destination of the user-reply functionality

Because the adshecho and adshread commands issue JP1 events, these commands terminate with an error if they
are used in an environment that does not have JP1/Base or JP1/IM, such as when job definition scripts are debugged.
To enable the user to debug job definition scripts in such cases, the user-reply functionality provides the following

functions:

¢ Function to output character strings to the standard output, rather than to JP1/IM - View

¢ Function to enable replies to be entered from the standard input, rather than from JP1/IM - View

You use the USERREPLY DEBUG DESTINATION parameter to specify whether JP1 events are to be issued or the
standard input and output are to be used when the adshecho and adshread commands are used. Specify the
USERREPLY DEBUG DESTINATION parameter in the system environment file or the job environment file. You can
also set the input source and output destination of character strings to the standard input and output by specifying the
—d option in the adshecho and adshread commands.

The function for setting the input source and output destination for the user-reply functionality to the standard input and
output is enabled only during debugging (performed by using adshexec —d in UNIX and in the development

environment in Windows). When you use this function, the JP1/Base, JP1/Integrated Management - Manager, and JP1/
Integrated Management - View programs that are related to the user-reply functionality are not needed. There is also no
need to start the user-reply functionality's management daemon or service.

Note that the following parameters are ignored:

e HOSTNAME JPI1IM MANAGER parameter

e USERREPLY JP1EVENT INTERVAL parameter

e USERREPLY WAIT MAXCOUNT parameter

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

259

3.8.5 How to handle adshecho and adshread commands that terminate
with an error

Ifthe adshecho or adshread command terminates with an error, its re-execution might result in successful command
processing. To re-execute the adshecho or adshread command, create a job definition script for re-executing the
command by referencing the following example:

#! /opt/jplas/bin/adshexec

#H#

#Function executing the adshread command
#Argument: Reply-request message

#Return code: 0 (normal termination)

1 (terminated with a retryable error)
2 (terminated with a non-retryable error)
#H#4

func_adshread()

{

adshread ans "S$S1"

case "$?" in
Normal termination
0) return 0 ;;
When terminated with a retryable error
31 4] 6 | 8) return 1 ;;
When terminated with any other error
*) return 2 ;;
esac

}

4
Body of script
L3

#
Specify a process that is to be executed as a job

#
##

Wait for the operator's reply before resuming processing
#44

while
do

#Call the function that executes the adshread command
func_adshread "Do you want to resume processing? (Y/N) [host name: $HOSTNAME,
script name: S$0]1"

if [$?2 = 0]; then #The adshread command terminated normally
break #Exit the loop
elif [$? = 1] ; then #The adshread command terminated with a retryable error
continue #Re-execute the adshread command
else #The adshread command terminated with a non-retryable
error
echo "The adshread command terminated with an error."
exit 1 #Terminate the script
fi
done

#H#

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 260

Perform processing according to the reply received by adshread

#44

if ["$ans"™ = "Y"] ; then
adshecho "Y was entered. The processing will be resumed."

elif ["$Sans" = "N"] ; then
adshecho "N was entered. The processing will be terminated."
exit 1 #Terminate the script

else
adshecho "An invalid reply was entered. The processing will be terminated."
exit 1 #Terminate the script

fi

3.8.6 Notes

You can enter replies only from a JP1/IM - View that is connected to the JP1/IM - Manager specified in the
HOSTNAME JP1IM MANAGER parameter.

Because there is a limit to the number of reply-waiting events that can be accumulated by JP1/IM - Manager, design
your operations in such a manner that this limitation is observed.

The character encodings that can be entered from JP1/IM - View are those within the range of the ASCII character
encodings (excluding the control characters). If a character encoding outside this range is entered, an error message
will be displayed. In such a case, re-enter a character encodings within the permitted range.

When the adshecho and adshread commands are executed, JP1/Base closes a TCP/IP connection with the host
specified in the HOSTNAME JP1IM MANAGER parameter and then establishes connection using a new port.

The port that was being used becomes unavailable for a period equal to the OS's maximum segment lifetime (MSL)
x 2 (seconds). If the value of MSL is large or there are only a few ports, a shortage of ports might occur.

For this reason, set MSL, the number of JP1 events to be output during a period of MSL x 2 (seconds), and the
number of ports to satisfy the following condition:

n X MSL x 2 + 3 <number-of-ports
n: Number of JP1 events that can be output by the user-reply functionality during a period of MSL x 2 (seconds)

In UNIX, when the user-reply functionality's management daemon starts, a file with the following name is created
in the spool directory to manage reply-request messages in the shared memory:

* .adsh mgueue

* .adsh mqueue_logical-host-name (applicable when the user-reply functionality's management daemon is
started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. When the user-reply
functionality's management daemon terminates, this file remains and can be reused the next time the user-reply
functionality's management daemon starts.

In HP-UX, in addition to the above file, a file with the following name is also created in the spool directory:
* .adsh mgueueS

* .adsh mqueue logical-host-nameS (applicable when the user-reply functionality's management daemon is
started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. The file is deleted when
the user-reply functionality's management daemon terminates.

Before you shut down the OS, terminate the user-reply functionality's management daemon or service. If there are
reply-request messages still waiting for replies when the user-reply functionality's management daemon or service
stops, the daemon or service will cancel these reply-request messages and then stop. If OS shutdown processing is

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 261

performed, the OS might be shut down before the reply-request messages are cancelled. If this happens, the
accumulated reply-waiting events will remain in JP1/IM - View.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 262

3.9 Deleting spool jobs

Spool jobs stored on a spool increase in size while they are stored in a spool directory. Therefore, make sure that you
periodically delete old spool jobs to free up disk space.

* How to delete spool jobs

To delete spool jobs, enter the adshhk command below. For details about how to specify the adshhk command,
see 8.3.9 adshhk command (deletes spool jobs).

adshhk target-list-file-name report-file-name log-file-name [number-of-days]

Before you execute the adshhk command, specify in the file indicated as target-list-file-name the necessary
information, including the name of the spool directory that contains the spool jobs to be deleted.

The adshhk command's execution results are output to the file whose name is specified in report-file-name. The
execution results are also output to trace logs.

Error messages are output to the file whose name is specified in log-file-name.

Spool jobs that have existed for more than the number of days specified in number-of-days are deleted. For example,
if you specify 2, spool jobs that have existed for 2 or more days are deleted.

¢ Report file created by the adshhk command

When the adshhk command has executed, the execution results are output to a report file. In the following example
report file, the header information is output on the first line:

"jobid", "jobname","rc", "start date","end date","act","info", "spool", "target
days", "execute date"

"000056","JoBOO1"™,"1","2011/06/13 09:03:31","2011/06/13 09:03:31","delete","","C:
\Documents and Settings\All Users\Documents\Hitachi\jplas\jplase
\spool","15","2011/06/30 18:19:58"

Legend:

The first line of the execution results contains the headers listed below. The subsequent lines display the values
corresponding to the header items.

Header Meaning
jobid Job ID
jobname The job name in JP1/Advanced Shell

If the command cannot determine the job name in JP1/Advanced Shell, it outputs the spool job name.
rc Job's return code

start date Job's execution start date and time (in the format yyyy/mm/dd hh : mm : ss).

The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the debugging start date and time are output.

end date Job's termination date and time (in the format yyyy/mm/dd hh: mm : ss).

The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the job termination date and time are not output.

act Applied action (keep: save, delete: delete, error: an error occurred during deletion processing)
info Detailed error information

spool Spool directory

target days Target days

execute date Command execution start date and time (in the format yyyy/mm/dd hh : mm : ss)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 263

0 Important

If the spool directory contains any user-specified file or directory that was not created by JP1/
Advanced Shell, the adshhk command outputs a message such as KNAX4419-E, and then

terminates.

3. Executing Batch Jobs

264

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

3.10 Acquiring coverage information

If the user specifies during job execution that coverage information is to be acquired, JP1/Advanced Shell records in a
coverage information file (asc file) such information as whether commands in the job definition script were executed.

You can use the coverage information manipulation commands to merge and display coverage information.

3.10.1 Overview of coverage information

Coverage information consists of indicators used to determine the coverage of tests of programs. The two types of
coverage information indicators are the CO information and the C1 information.

(1) CO information and C1 information

The following explains the CO and C1 information.

¢ (O (statement coverage information): Command coverage

This indicator determines the percentage of the commands in the tested job definition script that were executed. It
is calculated as follows:

CO0 = number of executed commands + total number of commands x 100 (%)

¢ CI (branch coverage information): Branch coverage

This indicator determines the percentage of the branches in the tested job definition script that were executed. It is
calculated as follows:

C1 = number of executed branches + total number of branches that could be executed x 100 (%)

(2) Usage of coverage information

You can use the coverage information as reference data when you test your job definition scripts. You can also
accumulate, display, and merge coverage information. For details about the coverage information that is acquired, see
A. Coverage Information That Is Acquired.

The differences between Windows and UNIX in how coverage information is collected, displayed, and merged, are
described in the following table.

Table 3-5: Differences between Windows and UNIX in how coverage information is collected,
displayed, and merged

Environment

Windows development
environment

Windows execution
environment

3. Executing Batch Jobs

Collecting coverage information

Use JP1/Advanced Shell Editor's debugging function to
collect coverage information. The collected coverage
information is accumulated in a coverage information
file.

Coverage information is not collected unless
Accumulate coverage information is selected during
execution environment setup.

The coverage auto-acquisition functionality is not
available.

When a job definition script is run, use the adshexec
command with the coverage accumulation option (-t)
specified to collect coverage information. The collected

Displaying coverage
information

Either of the following
methods can be used:
e adshcvshow
command
e JP1/Advanced Shell
Editor

The adshcvshow
command is used to

Merging coverage
information

The adshcvmerg
command” is used to
merge coverage
information.

An editor cannot be used
to merge coverage
information.

The adshcvmerg
command” is used to

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

265

Environment

Windows execution
environment

UNIX execution
environment

Note

Collecting coverage information

coverage information is accumulated in a coverage
information file.

The debugging function is not available.

Specify in the adshexec command one or both of the
following options:
¢ Coverage accumulation option (-t) to collect
coverage information in a coverage information file.
» Debugging option (-d) to collect coverage
information in memory.

Displaying coverage
information

display coverage
information.

¢ Ifthe coverage
information was
collected in a
coverage information
file, the
adshcvshow
command is used to
display it.

* Ifthe coverage
information was
collected in memory,
the info
coverage
command is used to
display it.

The following notes apply to sharing coverage information between different platforms:

- Do not transfer coverage information between different platforms.

Merging coverage
information

merge coverage
information.

The adshcvmerg
command” is used to
merge coverage
information.

- A coverage information file created in one OS cannot be processed with the commands of a different OS.

You can use the adshcvmerg command to merge coverage information from two coverage information files at a
time. To merge coverage information from three or more coverage information files, execute this command multiple

times.

3.10.2 Managing coverage information

The coverage information files (asc files) are used to manage coverage information.

(1) File name and storage directory for coverage information files

(a) File name

Coverage information is collected for each job definition script and each user. Therefore, the default asc file name
consists of a job definition script name and a user name.

In the execution environment, you can specify any asc file name by using a command option.

In the editor, the default asc file names are used. Non-default asc file names cannot be specified.

The following shows the default asc file name:

job-definition-script—-name (without-the-extension) user—-name.asc

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

266

If the length of an asc file name exceeds the maximum length supported by the OS being used, collection of coverage
information will fail. For this reason, you must pay attention to the number of characters in the file name of each job
definition script that is to be executed.

(b) Storage directory

In the execution environment, the default asc files are created in the current directory during command execution.

In the development environment, if coverage information is accumulated from a Windows's editor, the asc files are
created in the directory that contains the job definition script file.

(2) Updating asc files
The asc files are updated whenever coverage information is accumulated or merged.

An asc file cannot be shared among multiple users at the same time. If an attempt is made to use an asc file that is in
use by another user, the command issues the KNAX6211-E message and results in an error.

(3) asc file output processing

If a coverage information write operation on an a s c file fails for a reason such as insufficient disk capacity, that coverage
information is lost.

If the asc file already exists when obtaining coverage information, the asc file is updated as follows to prevent loss
of the previously obtained coverage information. The existing asc file is not directly updated.

* Outputs new coverage information to a temporary asc file.

* Renames the existing asc file to be the backup asc file.

* Renames the temporary asc file to be the specified asc file (including a file with the default asc file name when
specification is omitted).

¢ Deletes the backup asc file.

Therefore, if a process to output coverage information to an asc file terminates prematurely and the command is re-
executed, JP1/Advanced Shell recovers the coverage information and then resumes command processing.

When command processing terminates successfully, there will be no temporary asc file or backup asc file. If a process
to output coverage information to an a sc file terminates prematurely, the temporary and backup a sc files might remain.
These files will be deleted if the command is re-executed or when the command is processed and terminates normally.

You can delete temporary asc files manually. Do not delete any backup asc file. If a backup asc file is deleted, the
coverage information accumulated up to the point of a command's error termination will be lost.

Normally, when you use the coverage functionality, you need not know the above details.

You can determine whether a specified asc file (including a file with the default asc file name when specification is
omitted) has been updated by new coverage information because the KNAX6242-T message will have been output
during the previous command execution.

If the KNAX6242-T has been output, the contents of the specified asc file (including a file with the default asc file
name when specification is omitted) have been updated by new coverage information.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 267

(4) File names associated with asc files

When coverage information is collected in an asc file, a temporary file is created. This file is called a temporary
coverage information file (temporary asc file). The file name, which always begins with a fixed character string, is as
shown in the following:

Name of a temporary asc file

The file name always begins with a fixed character string as follows:
* For the adshexec command: adshexec temp any-character-string

Name of a backup asc file
When an asc file is renamed temporarily (backup asc file), the following file name is used:

* For the adshexec command: adshexec backup_any-character-string

When you specify an asc file name (including the default asc file name) in an argument of a command, you must

make sure that the specified file name does not exceed the maximum length (in bytes) permitted for a path name by the
OS being used.

If processing is cancelled during command execution, temporary and backup asc files might remain. The remaining
files are handled as follows:

* You can re-execute the command with the temporary asc file remaining in the system. Alternatively, you can
manually delete the temporary asc file and then re-execute the command.

e Ifabackup asc file remains in the system, do not delete it. The adshexec command automatically restores the
original asc file name from the remaining backup asc file name and then collects coverage information.
Alternatively, you can manually restore the original asc file name and then re-execute the command.

Do not create a user file that has the same name as a temporary asc file or backup asc file. If a file with the same
name as a temporary asc file for an asc file exists in the same directory, that user file will be deleted. If a file with the
same name as a backup asc file for an asc file exists in the same directory, that user file might be treated as an asc
file and deleted.

(5) Using temporary and backup asc files

In the execution environment, whether temporary and backup asc files are used depends on the specification of the -
t and —-d options in the adshexec command. The following table shows whether temporary and backup asc files
are used in the execution environment.

Table 3-6: Whether temporary and backup asc files are used in the execution environment

adshexec command's option Windows UNIX
-t -d Temporary asc Backup asc file Temporary asc Backup asc file
file file
Omitted Omitted N N N N
Omitted Specified -- -- Y N
Specified Omitted Y Y Y Y
Specified Specified -- -- Y Y
Legend:

Y: File is used.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 268

N: File is not used.
--: The debugging option is not supported in Windows.

In the Windows development environment, whether temporary and backup asc files are used depends on the
specification of Coverage information in the Runtime Environment Settings dialog box. The following table shows
whether temporary and backup asc files are used in the development environment.

Table 3-7: Whether temporary and backup asc files are used in the development environment

Specification of Coverage information Windows development environment (editor)
Temporary asc file Backup asc file
Do not accumulate N N
Accumulate Y Y
Accumulate (and overwrite on update) Y Y
Legend:

Y: File is used.
N: File is not used.

(6) Commands and temporary asc files

Temporary asc files are used as work files during command execution. If a file with the same name as a temporary
asc file exists before command execution, that file will be deleted.

(7) Processing of asc files during execution of the adshexec command

The following table explains how asc files are processed during execution of the adshexec command.

Table 3-8: Processing of asc files during execution of the adshexec command

Status when the command starts = Command processing

job.asc adshexec_bac job.asc adshexec_bac Status of asc file and how it is processed
kup_job.asc kup_job.asc
N N Created None There is neither a new nor an old asc file.

An asc file is created.

N Y None Renamed to The old asc file job.asc has been renamed as
job.asc backup file adshexec _backup job.asc.

The asc file job. asc is restored from backup asc
file adshexec_backup_ job.asc.

Y N Used None job.asc is either the old or the new asc file.

If job.asc is the new asc file, the KNAX6242-1
message was issued during the previous execution.

Y Y Used Deleted job.asc is the new asc file and
adshexec_backup_ job.asc is the old asc file.

The old asc file adshexec_backup_ job.ascis
deleted.

The new asc file job.asc is used.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 269

Legend:
Y: The file exists.
N: The file does not exist.
job.asc: Name of asc file

adshexec backup job.asc: Name of backup asc file

3.10.3 Accumulating coverage information

(1) How to accumulate coverage information and the format of coverage
information

When you execute a job definition script, you use an option of the execution command to specify that coverage
information is to be accumulated. When this specification is made, coverage information will be accumulated inan asc
file.

The option for accumulating coverage information is the —t option. You can also use the —o option to rename the asc
file to a name of your choosing. The format of the execution command with the option for accumulating coverage
information specified is shown below. If there is conflicting information in the job definition script that is to be executed,
an error will result. However, if the — £ option is specified, the coverage information will be overwritten without resulting
in an error.

adshexec [other-options...] [-t [-f][-o0 path-name-of-asc-file]]
path-name-of-job-definition-script-file [run-time-parameters]

In UNIX, if the adshexec command is executed with the —d option specified (and not the —t option), coverage
information is collected only in memory. In this case, you can use the debugger's info coverage command to display
the coverage information. If you exit the debugger by entering the debugger's quit command, the collected coverage
information will be discarded and the memory released.

(2) Accumulation methods

The two coverage information accumulation methods are initial accumulation, which is the first accumulation, and
continued accumulation, which is any subsequent accumulation. The accumulation method that is used (initial or
continued) is determined by whether there is already an asc file.

If a change is made to a job definition script, the changed information will no longer have the same line numbers.
Therefore, a backup of the job definition script is stored in the asc file. If there is a difference between the job definition
script file and the backup asc file, the command terminates with an error without executing the job definition script.

In the initial accumulation, the command creates an a s c file and writes the coverage information into it during execution.
In a continued accumulation, the command reads the contents of the asc file and updates it by adding coverage
information for the current execution.

(a) Examples of initial accumulation

The following are examples of initial accumulation.

Example 1:

This example collects coverage information when there is no coverage information file (asc file).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 270

Example 2:
If all the following conditions are satisfied, the command performs initial accumulation:

e There is a coverage information file (asc file).

e The job definition script file differs from that used when coverage information was collected in the existing
coverage information file.

A different job definition script file is used and the option for initializing the coverage information file (- f option
in the adshexec command) is specified.

(b) Examples of continued accumulation

If all the following conditions are all satisfied, the command performs a continued accumulation:

* A coverage information file (asc file) already exists.

¢ The job definition script file is the same as the one used when coverage information was collected in the existing
coverage information file.

One of the conditions for performing continued accumulation is that the job definition script is the same as the previous
one used to collect coverage information. The command determines that job definition scripts are identical in the
following manner:

* A binary comparison that is performed on the job definition scripts shows that their sizes and contents are the same.

When these conditions are satisfied, the command treats the job definition scripts as being identical even if their file
names and paths differ.

(3) File names of job definition scripts that are registered in coverage
information files

In a continued accumulation, the file name of the job definition script that was used the first time coverage information
was collected takes effect.

Example:
The following files are treated as being the same job definition scripts although their file names differ:
e /dirl/filel
e /dir2/file2

If a continued accumulation is performed by using an output asc file named out . asc and the above job definition
scripts, the scrip file name in the out . asc will be as follows:

1.If adshexec -t —o out.asc /dirl/filel is executed, the script file name in out.ascis /dirl/
filel.

2.1f adshexec -t —o out.asc /dir2/file? is executed, the script file name in out .ascis /dir2/
file2.

3.If adshexec -t —o out.asc /dirl/filel isre-executed, the script file name in out.ascis /dirl/
filel.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 271

(4) Extension of coverage information files

The default extension for coverage information files (asc files) is . asc. The extension for coverage information files
does not have to be . asc. When coverage information is collected, the command treats a file with any extension that
was specified as coverage information as an asc file.

(5) Size of a job definition script

The size of a job definition script file must not exceed 2 gigabytes.

(6) Initializing accumulated coverage information

To initialize accumulated coverage information, delete the corresponding asc file with a command such as rm, and
then collect coverage information using the initial accumulation method.

3.10.4 Displaying coverage information

The following figure shows the general procedure from executing a job definition script to displaying the coverage
information.

Figure 3-5: General procedure for displaying coverage information

& l& APPLICATION.ash
=

Execute.
Operator (adshexec command) Job definition script

Create (first time).
Accumulate
(second and subsequent times).

Display coverage -

information.
(adshcvshow command) Coverage information files

(asc files)

You can also use an editor to display coverage information in the development environment. For details about how to
use an editor to display coverage information, see 4.4.7 Displaying coverage information.

(1) How to display and command format

The adshcvshow coverage information display command is used to display coverage information. This command
displays the contents of a specified asc file. If you wish to display only a desired range of a job definition script's
coverage information, you can do so by specifying the range in the -1 option.

If the -s option is specified, the command displays only the contents of a job definition script that has been backed up.
You use the —s option to check the contents of a job definition script that has been backed up and to determine if there
is any differential information between job definition scripts.

The following shows the format of the coverage information display command:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 272

adshcvshow {[-1 nl[-[n2]][,n3[-[n4]]]...]|-s} path-name-of-asc-file

To specify lines, use the comma (,) to separate individual line numbers and the hyphen (-) to specify a range of lines
numbers. For example, to specify lines 1 through 10, line 15, and lines 21 through 30, specify the command as follows:

adshcvshow -1 1-10,15,21-30 path-name-of-asc-file

If no number follows a hyphen, the command assumes a range from the specified line number through the last line. For
example, to specify lines 21 through the last line, specify the command as follows:

adshcvshow -1 21- path-name-of-asc-file

(2) Coverage information display format

The following table explains the coverage information display format.

Table 3-9: Explanation of the coverage information display format

Item

Title line (Advanced Shell Coverage
Information)

Date and time (top right)

Header section (Header Information)
Job definition script name (Shellscript Name)
Version of asc file (Asc version)

Coverage information collection start time
(Coverage Start Time)

Coverage information collection end time (Coverage
End Time)

Number of times coverage information was collected
(Test Count)

3. Executing Batch Jobs

Description

Main title line indicating that this is coverage information acquired by JP1/Advanced
Shell.

Displays the date and time the adshcvshow command was executed, in the format
yyyy—-mm—dd hh : mm : ss. If the month, day, hour, minute, or second value consists
of one digit, a leading zero is added.

Section title line indicating display of header information.
Displays the absolute path name of the job definition script.
Displays the asc file's version number.

Displays the time collection of coverage information started. The format is the same
as for the date and time.

Displays the time collection of coverage information ended. The format is the same
as for the date and time.

Displays the number of times coverage information was collected.
If the coverage information collection count exceeds 9,999, 9999+ is displayed.

How the collection count is obtained depends on an option specified in the batch job
execution command (adshexec).

adshexec command with -t and -d specified
* For coverage information in memory
o Initial value

If there is an asc file, the coverage information collection count for the asc file
is used.

If there is no asc file, the collection count is 0.
e Updating
The coverage information collection count is incremented by one each time the
debugger's run command is executed.
e Foran asc file

When the adshexec command terminates, the coverage information collection
count is increased by the number of times the debugger's run command
executed.

adshexec command with -t only specified

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 273

Item

Number of times coverage information was collected
(Test Count)

Main information section (Main Information)

Line number (Line)

Additional information (Info)

CO0 information (CO)

C1 information (C1)

Job definition script (<Shellscript Image>)

Totals section (Total Information)

Totals subject to CO and C1 targets (Target Total)

<CO0>

<Cl>

Totals subject to CO and C1 that were executed
(Executed Total)

3. Executing Batch Jobs

Description

When the adshexec command terminates, the coverage information collection
count is increased by one.

adshexec command with -d only specified
* Coverage information in memory
o Initial value
The initial value for the coverage information collection count is 0.
e Updating
The coverage information collection count is incremented by one each time the
debugger's run command is executed.

e Foran asc file

asc files are not updated.
Section title line indicating display of coverage information (C0 and C1 information).

The line numbers begin with 1.

A line number exceeding 9999 is displayed as 9999+

This is the header for CO and C1 information. The coverage information is displayed
in units of lines. If a command spans multiple lines, the CO and C1 information is
displayed on the lines containing the command name.

If the numbers of CO and C1 information items are both 32 or fewer, the coverage
information can be recorded and this item is blank. The character strings that are
displayed when the coverage information cannot be recorded are explained below:

overCO0: The number of CO information items exceeds 32.
overC1l: The number of C1 information items exceeds 32.

over: The numbers of CO and C1 information items both exceed 32.

Displays the CO information:
@: Command was executed.
-: Command was not executed.

If a line contains multiple commands, the C0 information for a maximum of the first
four commands is displayed as four characters.

Displays the C1 information:
@: Execution path was executed.
-: Execution path was not executed.

If a line contains multiple execution paths, the C1 information for a maximum of the
first four execution paths is displayed as four characters.

Displays the contents of the job definition script in units of lines. If a range is
specified, only the lines in the specified range are displayed.

Section title line indicating display of totals of the CO and C1 information. If a range
is specified, the Total Information line and lines subsequent to it are not
displayed. If the count exceeds 99,999,999, 99999999+ is displayed.

<CO0> displays the total number of target commands, and <C1> displays the total
number of execution paths.

Includes the total number of commands subject to CO in the job definition script. All
target commands are counted even if there is a line that contains more than 32
commands subject to CO.

Includes the total number of execution paths subject to C1 in the job definition script.
All execution paths are counted even if there is a line that contains more than 32
execution paths subject to C1.

<CO0> displays the total number of commands executed, and <C1> displays the total
number of execution paths executed.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 274

Item

<CO0>

<Cl>

Totals subject to CO and C1 that were not executed
(Unexecuted Total)

<CO0>

<C1l>

Execution percentage rate (Coverage Rate)

<CO0>

<C1l>

Description

Execution is recorded as coverage information for a maximum of the first 32
commands subject to CO in each line. Of these 32 commands, the commands that
were executed are counted.

Execution is recorded as coverage information for a maximum of the first 32
execution paths subject to C1 in each line. Of these 32 execution paths, the execution
paths that were executed are counted.

<CO0> displays the total number commands that were not executed, and <C1>
displays the total number of execution paths that were not executed.

This is the total number subject to CO (Target Total) - total number subject to
CO0 that were executed (Executed Total).

This is the total number subject to C1 (Target Total) - total number subject to
C1 that were executed (Executed Total).

Displays the execution percentages of CO and C1 (%). The values are rounded off to
the first decimal place.

This is the total subject to CO that were executed (Executed Total)/total subject
to CO (Target Total).

Ifthere was a line containing more than 32 commands subject to CO0, this value would
be less than 100%, even if all commands were executed.

This is the total subject to C1 that were executed (Executed Total)/total subject
to Cl (Target Total).

If there was a line containing more than 32 execution paths subject to C1, this value
would be less than 100%, even if all execution paths were executed.

The following subsections presents example coverage information displays. One is for when a maximum of one CO and
one C1 information item is displayed per line. The second display is for when a maximum of four information items

are displayed per line.

(a) Example display of commands for which coverage information is displayed
(maximum of one C0O and one C1 information item displayed per line)

In this example, a single @ and a single — in Main Information indicate that CO and C1 were acquired.

* Advanced Shell Coverage Information *

2013-12-06 12:22:50

* Kk kK% Header Information Ak hkkhk Ak kA hAh A hkhkhkhhAhkh kA hkhhrhhkhkhkrhhkhkhhrhkhkhkhrhkkhkrkhhrhkhhkhkxkx*k
Shellscript Name : /home/testuser/sample

Asc version : 1.0

Coverage Start Time : 2013-12-06 12:21:38

Coverage End Time : 2013-12-06 12:21:39

Test Count : 1

* Kk Kk Kk Main Information LR SR i S b dh S e Sb b dh S e db b b b db b dR b b db b IR S b db I S S b db b db S b 2h Sb S db b db b 24

Line Info (of0) C1 <Shellscript Image>

1

2 @ echo 1
3

4 @ @ if true
5 then

6 @ echo 2
7 - fi

8

9 @ echo 3

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 275

10

11 @ - if false

12 then

13 - echo 4

14 @ fi

15

16 @ echo 5

17

18 @ @ if true

19 then

20 @ echo 6

21 - else

22 - echo 7

23 fi

24

25 @ echo 8

26

27 @ - if false

28 then

29 - echo 9

30 @ else

31 @ echo 10

32 fi

33

34 @ echo 11

35

36

* Kk kK Total Information KA KKK
<CO0> <Cl>
Target Total 15 8
Executed Total 12 4
Unexecuted Total 3 4
<CO0> <Cl>

Coverage Rate 80.0 % 50.0 %

(b) Example display of commands for which coverage information is displayed
(maximum of four C0 and C1 information items displayed per line)

In this example, lines 13 and 37 in Main Information indicate that multiple CO and C1 information items were
acquired.

* Line 13 displays the contents of lines 3 through 7.

@@QQ in the CO column indicates that the commands echo 1, echo 2, echo 3, and echo 4 were executed in this
order.

@Q@QQ in the CO column does not indicate whether command echo 5 was executed.
* Line 37 displays the contents of lines 20 through 31.
* Each character in @@-- in the CO column corresponds to a command from the top.
The first character @ indicates that the command t rue was executed.
The second character @ indicates that the command echo 1 was executed.
The third character - indicates that the command t rue that follows the first e1i f was not executed.
The fourth character - indicates that the command echo 2 was not executed.
The characters @ @-- in the C0 column show only whether the first four commands above were executed; whether

the commands starting with t rue that follows the second e11if were executed is not indicated.

e Each character in @—-- in the C1 column corresponds to each command from the beginning.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 276

The first character @ indicates that the execution path of the first then of if was executed.
The second character — indicates that the execution path of then for the first e11i f was not executed.
The third character - indicates that the execution path of then for the second e11i f was not executed.

The fourth character - indicates that the execution path of e1 se was not executed.

* Line 73 displays the contents of lines 43 through 67.
The meaning of each character in @@-- in the CO column and in @--- in the C1 column is the same as for line 37.

@---in the C1 column does not indicate whether the execution paths that follow the execution path of then for
if (the fifth execution path from the top) were executed.

* Advanced Shell Coverage Information *

2013-12-06 12:24:27

* k Kk k Header Information Ak hkhkhkhkhhhhhhhkhhhhhhkhhhkhkhhhkhkrhhkhkrhkhkhkhrkhkhkhhhhhhhhhrxkrk
Shellscript Name : /home/testuser/samplel.ash
Asc version : 1.0
Coverage Start Time : 2013-12-06 12:21:49
Coverage End Time : 2013-12-06 12:21:50
Test Count : 1
* Kk kK Main Information KA KKK
Line Info CcO Cl <Shellscript Image>
1
2
3 @ echo 1
4 @ echo 2
5 @ echo 3
6 @ echo 4
7 @ echo 5
8
9
10
11
12
13 @EE@ echo 1l;echo 2;echo 3;echo 4;echo 5
14
15
16
17
18
19
20 @ @ if true
21 then
22 @ echo 1
23 - - elif true
24 then
25 - echo 2
26 - - elif true
27 then
28 - echo 3
29 - else
30 - echo 4
31 fi
32
33
34
35
36
37 @Q@-- @--- if true ;then echo 1 ;elif true ;then echo 2 ;elif
true ;then echo 3 ;else echo 4 ;fi
38

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 277

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
73
true

74

* Kk kK

Target
Executed
Unexecuted Total

Q@-- @--- if true
;else echo 4
;then echo 7

;then echo 3
6 ;elif true

Total Information

if true
then

echo 1
elif true
then

echo 2
elif true
then

echo 3
else

echo 4
fi

if true
then

echo 5
elif true
then

echo 6
elif true
then

echo 7
else

echo 8
fi

<CO0>

;then echo 1 ;elif true ;then echo 2 ;elif
;f£i;
;else echo 8 ;fi

if true ;then echo 5 ;elif true ;then echo

KAA AR A A AR A A IR AR IR A A AN A A AN A A I A A A I A A A I A ARk A Ak A,k Kk

<Cl>
24

(3) How to display C0 and C1 information

The target subject to collection of coverage information varies depending on how script control statements are executed
in a job definition script. When coverage information is displayed, an at mark (@) is displayed for a target that was
executed, and a hyphen (-) is displayed for a target that was not executed.

(a) if statements

¢ When there isno else

e Ifapath of then was executed, the following information is displayed:

co

3. Executing Batch Jobs

Job definition script

<-- Cl is acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 278

@ true <-- CO is acquired

then
@ cmd?2 <-- CO is acquired
@ cmd3 <-- CO0 is acquired
- fi <-- Cl is not acquired

¢ Ifapath of then was not executed, the following information is displayed:

Co Cl Job definition script

- if <-- Cl is not acquired
@ false <-- CO is acquired
then
- cmd?2 <-- CO is not acquired
- cmd3 <-- CO is not acquired
@ fi <-- Cl is acquired

If a path of then and a path that is not then were both executed, the following information is displayed:

CO Cl Job definition script

@ if <-- Cl is acquired
@ false <- CO is acquired
then
@ cmd?2 <-- CO is acquired
@ cmd3 <-- CO is acquired
@ fi <-- Cl is acquired

¢ When there is else

e If then was executed, the following information is displayed:

CO Cl Job definition script

@ if <-- Cl is acquired
@ true <-- CO0 is acquired
then
@ cmd?2 <-- CO is acquired
- else <-- Cl is not acquired
- cmd3 <-- CO is not acquired
fi <-- None

e Ifelse was executed, the following information is displayed:

(o10] Cl Job definition script

- if <-- Cl is not acquired
@ false <-- CO0 is acquired
then
- cmd?2 <-- CO is not acquired
@ else <-- Cl is acquired
@ cmd3 <-- CO is acquired
fi <-- None

* If then and else were both executed, the following information is displayed:

(&10] Cl Job definition script

@ if <-- Cl is acquired
@ false <-- CO is acquired
then
@ cmd?2 <-- CO is acquired
@ else <-- Cl is acquired
@ cmd3 <-- CO0 is acquired
fi <-- None

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

279

(b) for statements
» Ifaloop was executed, the following information is displayed:

CO Cl Job definition script

@ for <-- Cl is acquired
do
@ cmdl <-- CO is acquired
- done <-- Cl is not acquired

» [faloop was not executed, the following information is displayed:

Co Cl Job definition script

- for <-- Cl is not acquired
do
- cmdl <-- CO0 is not acquired
@ done <-- Cl is acquired

¢ If execution involved executing a loop and then skipping a loop, the following information is displayed:

CO Cl Job definition script

@ for <-- Cl is acquired

do
@ cmdl <-- CO is acquired
@ done <-- Cl is acquired

(c) while and until statements

This subsection describes how while statements are displayed. until statements are displayed in the same manner.

* Ifaloop was executed, the following information is displayed:

(&f0] Cl Job definition script

@ while <-- Cl is acquired
do
@ cmdl <-- CO is acquired
- done <-- Cl is not acquired

¢ If aloop was not executed, the following information is displayed:

(o10] Cl Job definition script

- while <-- Cl is not acquired
do
- cmdl <-- CO is not acquired
@ done <-- Cl is acquired

* If execution involved executing a loop and then skipping a loop, the following information is displayed:

CO Cl Job definition script

@ while <-- Cl is acquired

do
@ cmdl <-- CO is acquired
@ done <-- Cl is acquired

(d) case statements

Whether an * pattern is used determines how the C1 information is displayed. An * pattern means that none of the
patterns was a match in the case statement.

e Ifthere is an * pattern
The C1 information is displayed for esac.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 280

¢ Ifthere is no * pattern

The C1 information is displayed for esac.
* Display method when there is an * pattern

» Ifcase 1 was executed, the following information is displayed:

(o10] Cl Job definition script
case $SA in

Q 1) <-- Cl is acquired
@ echo "abc" <-- CO is acquired
- *) <-- Cl is not acquired
- echo "efg" <-- CO is not acquired
esac <-- None

* Ifan * pattern was executed, the following information is displayed:

Co Cl Job definition script
case SA in
- 1) <-- Cl is not acquired
echo "abc"

rr

@ *) <-- Cl is acquired
@ echo "efg" <-- CO is acquired
esac <-- None

e Ifcase 1 and an * pattern were both executed, the following information is displayed:

CO Cl Job definition script
case SA in

@ 1) <-- Cl is acquired
@ echo "abc" <-- CO is acquired
- *) <-- Cl is not acquired
- echo "efg" <-- CO is not acquired
esac <-- None

* Display method when there is no * pattern

» Ifcase 1 was executed, the following information is displayed:

(o10] Cl Job definition script
case SA in

@ 1) <-- Cl is acquired
@ echo "abc" <-- CO is acquired
- 2) <-- Cl is not acquired
- echo "efg" <-- CO is not acquired
- esac <-- Cl is not acquired

e If case 2 was executed, the following information is displayed:

Co Cl Job definition script
case SA in

- 1) <-- Cl is not acquired
- echo "abc" <-- CO is not acquired
@ 2) <-- Cl is acquired

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

281

@ echo "efg" <-- CO is acquired
- esac <-- Cl is not acquired

* Ifan * pattern was executed, the following information is displayed:

(o10] Cl Job definition script

@ case SA in <-- CO0 is acquired
- 1) <-- Cl is not acquired
- echo "abc" <-- CO is not acquired
- 2) <-- Cl is not acquired
- echo "efg" <-- CO is not acquired
@ esac <-- Cl is acquired

(e) #-adsh_step_start command

Specification of the argument shown below inthe #-adsh step start command sets whether ajob step's execution
is to be determined by the preceding job step and the status of the extended script command in the job definition script.

[—run {normal | abnormal | always}]
The following information is displayed in the C1 information to indicate whether a job step was executed:

* —-: Execution did not reach the #-adsh step start command.
* N-: The preceding job step or job definition script is normal.
e —A: The preceding job step or job definition script is erroneous.

e NA: Cases N- and -A were both executed.

(f) #-adsh_step_error command

If an error occurs in a job step, the job definition script following the #-adsh step error command is executed.
To indicate whether the error was handled, the following information is displayed in the C1 information.

» —-: Execution did not reach the step containing the #-adsh step error command.
* N-: No error handling procedure executed because no error occurred in a job step.
e —E: An error handling procedure was executed because an error occurred in a job step.

e NE: Cases N- and -E were both executed.

(g) Functions

The following shows an example of function execution:

CO Cl Job definition script

funcAAA () { -——> 1.

@ echo "start funcAAA" -——> 2.
@ if true -—> 2.

then -——> 2.

@ echo true -——> 2.
- else -——> 2.

- echo false -—> 2.
fi -—> 2.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 282

@ funcAAA -—> 3.

1. When a function is executed, neither CO nor C1 information is displayed at the location where the function is defined.
2. In the body of the function, CO and C1 information is displayed for the commands and execution paths that executed

3. When a function has executed, the CO information is displayed at the location where the function was called.

(h) (cmd1; cmd 2)

Commands enclosed in parentheses are executed as a separate process. In this case, coverage information is not collected
either for the entire command group or for the individual commands in the command group.

(i) {cmd1; cmd2}

Commands enclosed in curly brackets are executed in the same process as the adshexec command. In this case,
coverage information is collected for each command in the command group.

(j) cmd1 &

A separate process is generated, and the command is executed in the background in parallel with execution of the job
definition script by the adshexec command. No coverage information is collected for job definition scripts that are
executed in the background.

(k) trap actions

No coverage information is collected for t rap actions.

e Example

trap "date; echo xxx" INT

() Command substitution

No coverage information is collected for a command or a script control statement that is executed by command
substitution.

e Example

ls “which adshexec”

(m) Arguments of the time command

No coverage information is collected for a command that is executed as an argument of the t ime command.

e Example

time adshexec scriptl

(n) Arguments of the eval command

No coverage information is collected for a command that is executed as an argument of the eval command.

* Example

eval 1ls dirl

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 283

(o) Pipe function

No coverage information is collected for a command that is executed by using the pipe function.

e Example

ls | cat

(p) External scripts

Coverage information is not collected for called external scripts. Coverage information is collected for a process that
calls an external script. An external script call is subject to collection of CO information, but is not subject to collection
of C1 information.

(4) Displaying coverage information collected in memory (UNIX only)

If you have used the info coverage command for debugging, you can display coverage information collected in
memory.

The coverage information to be displayed depends on the accumulation type (initial or continued accumulation). For

the initial accumulation, the coverage information up to the breakpoint is displayed. For a continued accumulation, the
accumulated coverage information plus the coverage information up to the breakpoint is displayed. If accumulation is
not specified, the coverage information up to the breakpoint is displayed in the same manner as for initial accumulation.

The types and format of the information that is displayed are the same as when the adshcvshow command is used to
display coverage information.

(5) Case where the C1 execution percentage rate is not 100%

Ifthe #-adsh step start command is used and no job step or command precedes the job step of #-

adsh step start,theCl execution percentage rate will never be 100%, even if all the execution paths are executed.
#-adsh step start collects Cl information in the cases described below. However, if no job step or command
precedes the job step of #-adsh step start, Cl information cannot be collected for case 2 below:

1. All the preceding job steps and commands terminated normally.

2. At least one of the preceding job steps or commands did not terminate normally.

In this case, you can enable the fault injection mode during debugging to simulate errors at the corresponding locations.
This method enables you to collect CI information and improve the CI execution percentage rate to 100%. The following
explains how to simulate errors.

¢ Debugging in GUI (Windows only)
You can simulate errors by using JP1/Advanced Shell Editor's Fault Injection Mode menu. For details about the
procedure, see (4) Simulating errors.

* Debugging in CUI (started with the —d option of the adshexec command) (UNIX only)

You can simulate errors by using the joberrmode command. For details about the joberrmode command, see
6.2.21 Enabling and disabling the fault injection mode (joberrmode command).

You can use the info status command to check whether the fault injection mode is enabled. For details about
the info status command, see 6.2.19 Displaying the status (info status command).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 284

3.10.5 Merging coverage information

The purpose of merging coverage information is to combine the results obtained from testing by multiple users of the
same job definition script. If different test cases were performed on a specific job definition script by different users,
you can merge the separate pieces of coverage information into a single entity.

(1) How to merge

You use the adshcvmerg command to merge coverage information. This command merges two specified asc files.
The following shows the command's format:

adshcvmerg -o output-file asc-file-1 asc-file-2

The command merges the information in asc-file-1 and asc-file-2 and outputs the results to the specified output file in
asc file format.

(2) Types of information to be merged

The information to be merged includes the test counts and coverage information. For example, if the command
adshcvmerg —o out cl c2 is entered to perform merge processing, the information is changed as follows:

* Full path name of job definition script: Full path name of c1
* Test count: Test count for c1 + test count for c2
* Coverage information collection start date and time: The start date and time for c1 or c2, whichever was earlier

¢ Coverage information collection end date and time: The end date and time for c1 or c2, whichever was later

3.10.6 Coverage auto-acquisition functionality

The coverage auto-acquisition functionality enables you to collect coverage information without having to change
parameters in the adshexec command.

If you use the environment setting parameters listed below to set the coverage information to be collected, there is no
need to specify the —t option for collecting coverage information when you execute batch jobs with the adshexec
command.

* BATCH_CVR parameter: Specifies that the coverage auto-acquisition functionality is to be used.

* ASC_FILE parameter: Defines the naming rules for accumulation files used by the coverage auto-acquisition
functionality.

The following shows an example of specifying the adshexec command:
adshexec job-definition-script-name.ash

This command executes the specified job definition script without having to specify the options (-t and -o) for
collecting coverage information.

When the coverage auto-acquisition functionality is used, the -t option cannot be specified in the adshexec command.
If the adshexec command is executed with the —t option specified in such a case (such as adshexec -t
sample.ash), it will terminate with an error and set return code 1.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 285

You collect the coverage information by specifying #-adsh conf BATCH CVR YES in the environment file.

When the coverage function is enabled by the coverage auto-acquisition functionality, the asc files (coverage
information files) are output to the current directory in which each command was executed.

If #-adsh conf ASC_FILE cvr/ver001-* is specified in the environment file, the above command produces
the same results as when adshexec -t —o cvr/ver001-job-definition-script-name job-definition-script-
name . ash is executed.

If the current directory differs for each command, the asc files are created in various directories. By specifying # -
adsh conf ASC FILE, you can designate a specific directory to which the asc files are to be output. You can also
standardize the asc file names.

For details about the settings in the environment files, see 2.6.11 Enabling coverage information collection without
having to specify the option during batch job execution.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 286

3.11 Forcibly terminating jobs

This section explains forced termination of jobs.

3.11.1 How to forcibly terminate jobs

(1) How to forcibly terminate a job

There are two ways to forcibly terminate a job:

 If the job was started from JP1/AJS, use JP1/AJS's forced termination procedure.
To be able to forcibly terminate from JP1/AJS a job for a job icon that was executed in Windows or UNIX, you must
have specified the AJS BJEX STOP=TERM environment variable beforehand. For details about jobs for job icons
that are run in Windows or UNIX, see 2.7.2 Defining and executing a jobnet.

* Send a termination request signal to the adshexec command's process. In Windows, you can use a command such
as taskkill to terminate the adshexec process.

When ajob is forcibly terminated, the job controller forcibly terminates its child or descendant process that are executing.
For details, see (2) Forcibly terminating child or descendant processes.

After forcibly terminating the child or descendant process, the job controller performs postprocessing on the allocated
files, and then terminates the job without executing any subsequent job steps or commands. The job controller does not
execute a subsequent job step even if abnormal or always is specified in its run attribute. In UNIX, when a job is
forcibly terminated, the adshexec command terminates with an error by signal. For details about the job processing
in UNIX when SIGTERM is received, see 3.11.2 Processing when signals are received (UNIX only). For details about
the job processing in Windows when jobs are forcibly terminated, see 3.11.3 Job processing during forced termination
(Windows only).

0 Important

In Windows, when the adshexec command is started, the adshexecsub command is also started, and
when the adshexec command is forcibly terminated, the adshexecsub command is also terminated.
Therefore, do not forcibly terminate the adshexecsub command. If an attempt is made to forcibly
terminate the adshexecsub command, the following events might occur:

* A descendant process that is executing might not terminate.

e Temporary files might remain in the system.

Ifthese events occur, use the taskkill command or the task manager to forcibly terminate the descendant
process and delete the temporary files manually.

0 Important

Because the job controller of JP1/Advanced Shell in a Windows environment uses job objects to forcibly
terminate descendant processes, note the following:

* A child process generated by the job controller cannot be associated with a job object.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 287

» Ifajob controller process has already been associated with a job object, forcibly terminating the job
will not terminate processes generated by child processes of the job controller.

0 Important

In Windows, if a job that executes an external command and generates a child process is terminated forcibly
and more than 255 processes that are at its grandchild or lower levels exist concurrently, the KNAX6381 -
E message might be issued and renaming of the spool job directory might fail. Note the following three
points about this:

» To reference a spool job directory that has failed, use the directory name displayed in the immediately
following KNAX6382-1 message that is issued.

* A spool job directory whose renaming has failed cannot be deleted by the adshhk command. If
necessary, delete it manually.

* In the case of a job that has failed in renaming a spool job directory in the execution environment, job
definition script operation information is not output by the adshevtout command.

(2) Forcibly terminating child or descendant processes

Ifajob is forcibly terminated, the job controller forcibly terminates its child or descendant processes, and then terminates
the job.

(a) In UNIX

How child or descendant processes are forcibly terminated depends on the job input mode, as described in the following:

¢ Terminal input mode
SIGTERM is sent only to the child processes of the adshexec command. SIGTERM is not sent to any of the
descendant processes of the adshexec command, including grandchild processes. If you want to perform
postprocessing on these processes, use one of the following methods to create and execute a job:

» If the user creates external commands, design the external commands to perform postprocessing on the
descendant processes, for example, by automatically sending STGTERM also to the descendant processes after

SIGTERM is received.

* When a job is forcibly terminated in the terminal input mode, not only the adshexec command but all the
descendant processes, including grandchild processes, are subject to operations such as Ctrl+C and Ctrl+\.

If grandchild processes remain after forced termination, use the ps command to obtain the process IDs of the
remaining processes, and then manually terminate them with the k111 command.

* Non-terminal input mode
SIGTERM is sent to the descendant processes of the adshexec command.

(b) In Windows

The TerminateProcess and TerminateJobObject functions are used to forcibly terminate the descendant
processes of the adshexec command. The forced termination method is the same regardless of the job input mode.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 288

(3) Notes about operations including Ctrl+C (UNIX only)

If ajob is executed in the non-terminal input mode, operation such as Ctrl+C and Ctrl+\ might not be able to terminate
simultaneously the root job, child jobs, and other external commands that were started.” If you wish to forcibly terminate
these jobs and commands all at once, use the ki1l command to send a termination request signal such as SITGTERM
to the root job immediately under the login shell.

#

If a job is executed in the non-terminal input mode, the adshexec command's process and its child processes
belong to separate process groups. Therefore, if an operation such as Ctrl+C or Ctrl+\ is performed from the login
shell while the job is executing, SIGINT or SIGQUIT is sent only to the process group currently running in the
foreground.

The jobs and external commands running as descendant processes of the job that received the signal are forcibly
terminated, but those jobs and external commands running as higher processes, including the parent process, are not
forcibly terminated.

3.11.2 Processing when signals are received (UNIX only)

This subsection explains the processing that occurs when the job controller has received signals during normal execution
and during debug execution.

(1) During normal execution

This subsection explains for the STGTERM signal and for other signals the processing that occurs when the job controller
has received signals during normal execution.

(a) SIGTERM

The processing that occurs when STGTERM has been received depends on the specified TRAP ACTION SIGTERM
environment setting parameter.

Table 3-10: When DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting

parameter”

When an operation is not defined with the trap command When an operation is
defined with the trap
command

* Ifthe root job received SIGTERM Operation cannot be defined

First time: Outputs a message, performs postprocessing, and then terminates without performing any with the trap command.”
subsequent processing. If the root job was not started from JP1/AJS, the root job sends SIGTERM to
itself and then terminates with the signal.
Second time: Terminates immediately.
 Ifachild job received SIGTERM
The child job that received SIGTERM outputs a message, performs postprocessing, and then terminates
itself without performing any subsequent processing. In this case, the child job sends SIGTERM to itself

and then terminates with the signal "2

#1
This includes when the TRAP_ ACTION SIGTERM environment setting parameter is not specified.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 289

#2

For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received.

#3
When the action for SIGTERM is specified by the trap command, the job terminates with a trap command error.

Table 3-11: When TERM is specified in the TRAP_ACTION_SIGTERM environment setting

parameter
When an operation is not defined with the trap command When an operation is defined the trap
command
* If'the root job received SIGTERM * If'the root job received SIGTERM

First time: Outputs a message, performs postprocessing, and then terminates Outputs a message and then executes the action
without performing any subsequent processing. If the root job was not started from defined for SIGTERM with the t rap command.
JP1/AJS, the root job sends SIGTERM to itself and then terminates with the signal. After executing the action, the root job terminates
Second time: Terminates immediately. without performing any subsequent processing. If

the root job was not started from JP1/AJS, the root
job sends SIGTERM to itself and then terminates
with the signal.

e Ifa child job received SIGTERM

Outputs a message and then executes the action
defined for SIGTERM with the t rap command.
After executing the action, the child job
terminates without performing any subsequent
processing.

¢ Ifachild job received SIGTERM

The child job that received STGTERM outputs a message, performs postprocessing,
and then terminates itself without performing any subsequent processing. In this
case, the child job sends SIGTERM to itself and then terminates with the signal.

The parent job of the child job performs subsequent processing according to the
results of the child process that terminated with termination code 128 + signal
number of SIGTERM "

The parent job of the child job performs
subsequent processing according to the results of
the child process that received STGTERM."

For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received.

Table 3-12: When CONT is specified in the TRAP_ACTION_SIGTERM environment setting

parameter
Job start method When an operation is not defined When an operation is defined with the
with the trap command trap command
Started from JP1/AJS The job definition script is not run and the job terminates with an error (error during

(Started from a custom job or with TERM set in the environment file analysis).
AJS_BJEX_ STOP environment variable)

Started using a method that does not involve e If'the root job received SIGTERM e If'the root job received STGTERM
JP1/AJS First time: Outputs a message, Outputs a message and then executes the
(Started with a method other than the above) performs postprocessing, and then action defined for SIGTERM with the
terminates without performing any trap command. After executing the
subsequent processing. The root action, the root job performs any
job sends SIGTERM to itself and subsequent processing in the job
then terminates with the signal. definition script.
Second time: Terminates e Ifachild job received SIGTERM
immediately. The behavior of a child job that has
e Ifachild job received SIGTERM received STGTERM is the same as that of
The behavior of a child job that has the root job.
received SIGTERM is the same as The parent job of the child job performs
that of the root job. subsequent processing according to the

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 290

Job start method

Started using a method that does not involve
JP1/AJS

(Started with a method other than the above)

When an operation is not defined When an operation is defined with the
with the trap command trap command

The parent job of the child job
performs subsequent processing
according to the results of the child
process that terminated with
termination code 128 + signal
number of SIGTERM *

results of the child process that received
SIGTERM.”

For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals

are received..

Table 3-13: When AUTO is specified in the TRAP_ACTION_SIGTERM environment setting

parameter

Job start method

Started from JP1/AJS

When an operation is not defined = When an operation is defined with the
with the trap command trap command

Same processing as when TERM is specified

(Started from a custom job or with TERM set in the

AJS_BJEX_ STOP environment variable)

Started using a method that does not involve
JP1/AJS

(Started with a method other than the above)

(b) Other than SIGTERM

Same processing as when CONT is specified

Table 3-14: Processing when signals are received

Type of signal

Termination
request signal

SIGHUP, SIGINT,
SIGXCPU, SIGXFSZ,
SIGQUIT, SIGUSRI,
SIGUSR2, SIGPIPE,
SIGALRM, SIGVTALRM,
SIGPROF

When an operation is not defined
with the trap command

When an operation is defined the trap
command

¢ If'the root job received the signal If'the root job received the signal

Performs postprocessing, such as
termination of descendant processes and
deletion of temporary files, and then .
terminates with an error by signal

without executing any subsequent
instruction.

The processing depends on the operation
defined by the t rap command.

If a child job received the signal
The processing of the child job that

received the signal is the same as when
the signal was received by the root job.

* Ifachild job received the signal The parent job of the child job that

The processing of the child job that
received the signal is the same as when
the signal was received by the root job.

received the signal performs subsequent
processing according to the results of the
child job.

SIGMSG, SIGDANGER,
SIGMIGRATE, SIGPRE,
SIGVIRT, SIGALRMI,
SIGRECONFIG,
SIGCPUFAIL, SIGGRANT,
SIGRETRACT, SIGSOUND

SIGLOST

3. Executing Batch Jobs

The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.*!

Same as above.
(AIX only)

Same as above.
(AIX only)

Same as above.
(HP-UX and Solaris only)

Same as above.
(HP-UX and Solaris only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

291

Type of signal

Error SIGILL, SIGTRAP,

notification SIGABRT, SIGFPE,

signal SIGBUS, SIGSEGV,
SIGSYS

SIGIOT, SIGEMT

SIGLOST

Other

#1

When an operation is not defined
with the trap command

e Ifthe root job received the signal
Terminates the program according to the
default OS processing for the
corresponding signal.

e Ifachild job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.*!

Same as above.
(AIX, HP-UX, and Solaris only)

Same as above.
(AIX only)

 Ifthe root job received the signal
Depends on the default OS processing
for the corresponding signal.

¢ Ifa child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent

processing according to the results of the
child job.*!

When an operation is defined the trap
command

* Ifthe root job received the signal
The processing depends on the operation
defined by the t rap command.

e Ifa child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent

processing according to the results of the
child job.

Same as above.
(AIX, HP-UX, and Solaris only)

Same as above.
(AIX only)

* Ifthe root job received the signal

The processing depends on the operation
defined by the t rap command.”2
 Ifachild job received the signal

The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent

processing according to the results of the
child job.

 For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals

are received.

#2

e For SIGKILL and SIGSTOP, the t rap command cannot be used to define an operation.

* For SIGWAITING, the trap command cannot be used to define an operation (AIX only).

0 Important

If you set - for the operation when you are using the t rap command, the operation to be performed when
signals are received is reset to the default.

With some signals, the operation during debug execution differs from that described in the tables. For details
about the differences in signal processing depending on whether an operation is defined with the trap
command, see (2) During debug execution.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

292

(2) During debug execution

Table 3-15: Processing when signals are received during debug execution

Type of signal When an operation is not defined When an operation is defined with the
with the trap command trap command

SIGINT The debugger terminates execution of ~ The debugger terminates execution of the job
the job definition script and then waits ~ definition script and then waits for entry of a
for entry of a command.” command.?

The processing depends on the operation
defined by the t rap command.

SIGCHLD, SIGTSTP, SIGTTOU, SIGURG, Performs the next processing. The processing depends on the operation
SIGWINCH, SIGIO, SIGPWR defined by the t rap command.
SIGSTKFLT

(Linux only)

SIGWAITING, SIGLWP, SIGFREEZE,
SIGTHAW, SIGCANCEL, SIGXRES, SIGJVMI,
SIGJIVM2

(Solaris only)

Real-time signal
(HP-UX, Linux, and Solaris only)

For details about terminating a job definition script, see 6.2 CUI debugger (UNIX only).

3.11.3 Job processing during forced termination (Windows only)

The following table describes job processing in Windows during forced termination.

If you use the t rap command to define processing for immediate termination of a process by using a function such as
TerminateProcess, specify TERM in the TRAP ACTION SIGTERM parameter.

Table 3-16: Job processing during forced termination

Forced termination method When an operation is not = When an operation is
defined with the trap defined with the trap
command command

Control signal CTRL+C The control signal is sent to all | Operation cannot be defined

CTRL + BREAK process groups that are running | with the t rap command.
CTRL CLOSE EVENT as the root job, child jobs, and

commands.

* Processing of the root job
(adshexec.exe) that
received the control signal
Child process
adshexecsub.exe
performs postprocessing,
and then terminates
without executing
subsequent scripts.
adshexec.exe that
received the control signal
waits for termination of the

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 293

Forced termination method When an operation is not
defined with the trap
command

Control signal CTRL+C child process, and then

CTRL + BREAK
CTRL CLOSE_EVENT °

terminates itself.

Processing of the root job
(adshexecsub.exe)
that received the control
signal and its child jobs

adshexecsub.exe that
received the control signal
outputs the KNAX7896-I
message, performs
postprocessing, and then
terminates without
executing subsequent
scripts.

CTRL LOGOFF EVENT Terminates immediately
without performing

CTRL SHUTDOWN EVENT

postprocessing because OS

logoft and shutdown
processing take precedence.

Immediate termination of process by a means such as .
TerminateProcess

3. Executing Batch Jobs

If the root job
(adshexec.exe)is
subject to immediate
termination

The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of'its child processes and
the child jobs perform
postprocessing, and then
terminate without
executing subsequent
scripts.

If the root job
(adshexecsub.exe)is
subject to immediate
termination

The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

If a child job is subject to
immediate termination

The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing

When an operation is
defined with the trap
command

Operation cannot be defined
with the trap command.

Operation cannot be defined
with the t rap command.

¢ If'the root job
(adshexec.exe)is
subject to immediate
termination

The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of its child processes and
the child jobs perform the
operation defined with the
trap command, perform
postprocessing, and then
terminate.

« Ifthe root job
(adshexecsub.exe)is
subject to immediate
termination

The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

» Ifa child job is subject to
immediate termination

The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

294

Forced termination method

Immediate termination of process by a means such as
TerminateProcess

Note

When the t rap command is used and - is set for the operation, the command resets the previously specifiedaction

When an operation is not
defined with the trap
command

that occurs when a child
process is terminated with

an error and return code 1.

When an operation is
defined with the trap
command

that occurs when a child
process is terminated with
an error and return code 1.

setting for the specified method so that the method is not associated with any action setting.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

295

3.12 Using the application-execution agent functionality (only for the
Windows execution environment)

The application-execution agent functionality enables the application to be operated in the logon area (console
application, batch program and choice command, etc.) as the execution application.

JP1/AJS displays the GUI by using this function and enables the executable application that is waiting for input to be
executed as a job.

3.12.1 Prerequisites

Log in as the user who will be executing the job.

3.12.2 Execution methods

The execution method is as follows for an example where notepad. exe, a standard Windows application, is used as
the executable application that is executed from a PC job of JP1/AJS.

1. Define the PC job of JP1/AJS.

* When waiting for the executable application to finish:

Specify the GUI application execution program (installation folder\ JP1ASE\bin\adshappexec.exe) of
JP1/Advanced Shell for the name of the executable file.

Specify the -w and executable application name for the parameter. In this example, "-w notepad.exe" is
specified.
* When not waiting for the executable application to finish:

Specify the GUI application execution program (installation folder\JP1ASE\bin\adshappexec.exe) of
JP1/Advanced Shell for the name of the executable file.

Specify the -n and executable application name for the parameter. In this example, "-n notepad.exe" is
specified.

2. Start up the application execution agent.
Log in as the user who will be executing the job of JP1/AJS and conduct the following actions.

If you select All Programs > Advanced Shell > Application Execution Agent from Start menu of Windows, the
Application Execution Agent icon appears in the notification area of the Task bar.

@

If the application execution agent has been registered as a startup, this operation is not required.
3. Execute the job of JP1/AJS.

* When waiting for the executable application to finish:
When the job of JP1/AJS is executed, notepad. exe starts.

When notepad. exe is closed, the job finishes.

* When not waiting for the executable application to finish:
The job finishes without waiting for notepad. exe to close.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 296

3.12.3 Operation of the application execution agent

Operation of the application execution agent is as follows:

(1) Left-click menu of icon

If you left-click the Application Execution Agent icon, the currently running executable application appears in the
Pop-Up Menu.

[@A139] C:\program files (x86)\windows NT\Accessories\wordpad.exe
v [@A140] C:\windows\system32\notepad.exe

[@A141] C:\windows\system32\notepad.exe

[---] notepad.exe

' éxit(X)

The Pop-Up menu appears in the following format:

Execution status [Execution ID of job of JP1/AJS] Name to be displayed

If the entry outputting the executable application information is selected, the Task bar of the selected executable
application blinks for 5 seconds and runs in the foreground.

If the window had been minimized, the window will stay minimized.
Some executable applications might not run in the foreground, including executable applications without a GUI.

Messages that are displayed in pop-ups are as follows:

Execution status If nothing appears, the executable application is starting properly.

An entry that displays " v " indicates that the job has been terminated by such as forced termination
from JP1/AJS while the executable application is starting.

We recommend terminating executable applications for which " v " is displayed.

Due to being subject to the number of the adshappexec commands to be executed concurrently, a
waiting status will occur with the start of the adshappexec command if the number of number of
commands to be executed concurrently increases.

Execution ID of the job of JP1/AJS The execution ID of the JP1/AJS job starting the executable application is displayed. If the
adshappexec command has not been started from JP1/AJS or the execution ID of the job of JP1/
AIJS has not been requested, "-----" is displayed.
If the adshappexec command is executed from JP1/AJS, the execution ID of the JP1/AJS job is
displayed even if the command has been started from a job definition script.

Name to be displayed The name of the running executable application to be displayed (the content specified with the -v
argument of the adshappexec command) appears.

If the -v argument has been omitted in the adshappexec command, the executable application
name will appear.

Termination Select this option if not using the application-execution agent functionality. Terminates the application
execution agent and deletes the [Application Execution Agent] icon from the notification area of the
task bar.

While the displayed order is the order of storage in the shared memory, this order might vary as registrations are made
upon searching for free space.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 297

If the entry displaying the executable application information is selected, the selected executable application can be run
in the foreground. Some executable applications may not be able to run in the foreground including executable
applications without a GUI.

(2) Right-click menu of the icon

If you right-click the Application Execution Agent icon, the following pop-up menu is displayed.
Add Startup(a)
Exit(X)

Contents that are displayed in the pop-up menu are as follows:

Startup registration Register the application execution agent for startup. If the startup is not registered, "Startup Registration" is
activated and the application execution agent can be registered in startup.

If the application execution agent has already been registered for startup, "Startup Registration" is deactivated
and the application execution agent cannot be registered in startup.

Startup cancellation Delete the application execution agent from startup. If the startup is registered, "Startup Registration" is
deactivated and the application execution agent can be deleted from startup.

If the startup is not registered, "Startup Registration" is deactivated and startup cannot be canceled.

Termination Select this option if not using the application-execution agent functionality. Terminate the application
execution agent and delete the Application Execution Agent icon from the notification area of the Task bar.

3.12.4 Notes

¢ When uninstalling, finish the application execution agent, log in as the user who registered the application execution
agent in startup and then delete the application execution agent registered in startup.

If you uninstall without deleting the application execution agent registered in startup, install JP1/Advanced Shell
again, log in as the user that startup remains and then delete the application execution agent remains in startup.

» If a user manually adds the application execution agent to startup, it is unnecessary to newly add the application
execution agent to startup. If the application execution agent is added, the application execution agent starts doubly
at the time of login.

* For the following cases, the executable application might not blink or run in the foreground even if the Application
Execution Agent icon is left-clicked.

1. Executable application that does not have GUI

2. Items that took time to initialize the executable application (5 seconds or longer)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 298

3.13 Specifying a spool job name

When a job ends, the spool job directory is renamed to job-ID-spool-job-name. The spool job name used in the new
spool job directory name is a job name of JP1/Advanced Shell. However, you can use the ADSH SPOOL_JOBNAME
shell variable to specify a desired character string as a spool job name.

Shell variable name Value to be specified

ADSH SPOOL_JOBNAME Specify the spool job name that is to be used for renaming the spool job directory.

If the shell variable is used as a local variable in a function, the specified value is not used for renaming
the spool job directory.

When the spool job directory is renamed at the end of a job, the value specified in this shell variable is used as the spool
job name. If this shell variable is not specified, the job name of JP1/Advanced Shell is used to rename the directory.

The spool job name must consist of only characters that can be used in a directory name. Also, specify the spool job
name so that the path name of each file in the spool directory must not be longer than the maximum length. If these
rules are violated, the spool job directory cannot be renamed. Note that if the spool job name specified in the
ADSH SPOOL_JOBNAME shell variable includes the following characters, they are replaced by underscores (_) when
the spool job directory is renamed.

Characters replaced by underscores Forward slashes (/), backslashes (\), and periods (.)

If invalid multibyte characters are included, they are replaced by underscores (_) on a byte-by-byte basis when the spool
job directory is renamed.

3.13.1 Examples

The following shows an example of specifying a spool job name in the initialization script.

In the initialization script, a part of the JP1/AJS job name specified in the AJSJOBNAME environment variable is
extracted, and is specified for the ADSH SPOOL_JOBNAME shell variable as a spool job name. If the job is not run
from JP1/AJS or if the extracted part is longer than 100 bytes, the job execution date and time is used as a spool job
name. Note that this behavior applies if BYTE is specified for the VAR SHELL GETLENGTH environment setting
parameter. [f CHARACTER is specified, the 100-byte limit changes to the 100-character limit.

* Example of the initialization script that extracts the last one of the elements separated by forward slashes (/)

If the value of the AJSJOBNAME environment variable is /user01/AJS-unit-name/PCjob, the spool job
directory name is job-ID-PCjob.

WK="$ ("S{ADSH DIR CMD}basename" "SAJSJOBNAME")"

if [[S{#WK} -le 100 1] && [[S{#WK} -ge 1]]
then

ADSH_ SPOOL_JOBNAME="$ {WK}"
else

ADSH SPOOL_ JOBNAME="S ("S${ADSH DIR CMD}date" "+%Y%m%d %HZM%S")"
fi

* Example of the initialization script that extracts the last two elements separated by forward slashes (/), and combines
them with an underscore ()

If the value of the AJSJOBNAME environment variable is /user01/AJS-unit-name/PCjob, the spool job
directory name is job-ID-AJS-unit-name PCjob.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 299

SV_IFS="S$SIFS"
IFs="/"

WK= ($AJSJOBNAME)
IFS="$SV_IFS"
1=S {#WK[*]}

if [[1 -gt 1 11 && [["((S{#WK[i-1]} + S{#WK[i-2]1}))" -le 99 1] && [[S
{#WK[i-1]} -ge 1 1] && [[S{#WK[i-2]} -ge 1]]
then
ADSH SPOOL_JOBNAME="${WK[1i-2]} S{WK[i-1]}"
else

ADSH SPOOL JOBNAME="$ ("S${ADSH DIR CMD}date" "+%Y%m%d %H%MSS")"
fi

3.13.2 Notes

* You can use the ADSH SPOOL JOBNAME shell variable to change the spool job name that is used in the spool job
directory name. However, you cannot use the shell variable to change any JP1/Advanced Shell job names.

* You can use either of the following two methods to change the spool job name of the CUI debugger:
* Specify the new name forthe ADSH SPOOL JOBNAME environment variable before starting the CUI debugger.

* Use the export environment setting parameter to specify the new name for the ADSH SPOOL_JOBNAME
environment variable.

* Do not specify the ADSH SPOOL JOBNAME shell variable for the ~stepVar option of the #-
adsh step start extended script command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 300

Using JP1/Advanced Shell - Developer (Windows
Only)

This chapter explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/
Advanced Shell Editor to develop job definition scripts in a Windows environment. The chapter also
explains how to use the editor to debug job definition script files.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 301

4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows
only)

You can create and debug job definition script files in JP1/Advanced Shell's development environment. This section
explains how to start and terminate JP1/Advanced Shell's development environment.

4.1.1 Starting JP1/Advanced Shell - Developer

This subsection explains how to start JP1/Advanced Shell - Developer. You start the editor to create and edit job definition
scripts files. There are two ways to start the editor.

(1) Starting from the Start menu

1. From the Start menu, select All Programs, and then Advanced Shell - Developer.

2. From the Advanced Shell - Developer group, select the Editor icon.

(2) Starting from the right-click menu

1. From Explorer, right-click the job definition script file.
2. Select Edit.

4.1.2 Terminating JP1/Advanced Shell - Developer

To terminate JP1/Advanced Shell - Developer, do one of the following:

¢ Select File, and then Exit.
¢ Click the Exit button on the toolbar.

The editor function terminates.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 302

4.2 JP1/Advanced Shell Editor modes (Windows only)

The editor has two modes, the edit mode and the debug mode.

4.2.1 Edit mode

The edit mode is used to create and edit job definition script files. The editor is in this mode when it starts.

4.2.2 Debug mode

The debug mode is used to debug created job definition script files. In this mode, the editor's edit window is grayed-out
and the job definition script cannot be edited. The debug mode supports two functions:

e Syntax checking

Selecting the Check Syntax menu from the Debug menu or clicking the Check Syntax button on the toolbar starts
syntax checking.

¢ Debug execution
Making the following menu item selection or clicking the following button executes debugging:

* Selecting the Run to Breakpoint item from the Debug menu or clicking the Run to Breakpoint button on the
toolbar

* Selecting the Step In, Step Over, or Step Out item from the Debug menu, or clicking the Step In, Step
Over, or Step Out button on the toolbar

For details about syntax checking, see 4.4.4 Checking syntax. For details about debugging, see 4.4.6 Debugging.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 303

4.3 JP1/Advanced Shell Editor operation (Windows only)

The editor is a program you use to create job definition scripts and to edit existing job definition scripts. This section
explains the JP1/Advanced Shell Editor window that is displayed when the editor starts. The section also explains the
editor's functions by menu item.

The following lists the operations available in the JP1/Advanced Shell Editor window (the applicable section or
subsection number is enclosed in parentheses):

Creating job definition scripts (4.4.1 Creating job definition scripts)
Setting up an operating environment for the editor (4.4.2 Setting up an operating environment for the editor)

Setting up an execution environment for job definition scripts (4.4.3 Setting up an execution environment for job
definition scripts)

Checking syntax (4.4.4 Checking syntax)
Searching for and replacing character strings (4.4.5 Searching for and replacing character strings)

Setting and releasing the breakpoint upon execution of debugging ("4.4.6 Debugging" >"(1) Setting and releasing
breakpoints during debugging")

Executing and stopping the debugging ("4.4.6 Debugging" > "(2) Performing and canceling debugging")

Setting and releasing the breakpoint upon execution of debugging ("4.4.6 Debugging" > "(3) Referencing and
updating variable values while debugging")

Simulating errors ("4.4.6 Debugging" > "(4) Simulating errors")

Executing the action of the t rap command ("4.4.6 Debugging" > "(5) Executing the trap command's action")
Changing the message output mode”

Displaying coverage information (4.4.7 Displaying coverage information)

Editing existing job definition scripts (4.5 Editing existing job definition scripts (Windows only))
Saving job definition scripts (4.6 Saving job definition scripts (Windows only))

Printing the contents of job definition script files”

Undoing the previous operation”

Redoing the previous operation”

Cutting a selected character string and saving it on the clipboard”

Copying a selected character string onto the clipboard”

Pasting the character string from the clipboard to a specified location”

Selecting all character strings”

Jumping to the execution-point line

Changing toolbar view/hide settings”

Switching the appearance of the application”

Changing the status bar view/hide setting#

Changing the ruler view/hide setting”

Changing the vertical scroll bar view/hide setting”

Changing the horizontal scroll bar view/hide setting”

Changing the line numbers view/hide setting”

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 304

« Displaying the beginning of the file”

* Displaying the end of the file"
« Displaying Help”
» Using the input support function

These operations are not explained in this manual (they are implemented by the standard Windows operating

procedures or by selecting the corresponding items from the applicable menu lists).

4.3.1 JP1/Advanced Shell Editor window

The following figure shows the JP1/Advanced Shell Editor window and the names of the window's components.

Figure 4-1: JP1/Advanced Shell Editor window

Shell£d

b 10; Postioniline 13 Column 1| Totalines: 46 |INS |

Toolbars

(1) Toolbars

o) | EE) Debuo®) Vow) Seach®))
oS0l © | 9 b @ 2 AR LR e ABY
[Lol Lol Lo L] ML Lo @
1 |#-adsh_job SAMPLE_JOBJ A
204
3 [#-adsh_job_stop 8:4
Hh
5 [#-adsh_file_temp JOBTEMPJ
Ak
s [job stept W
0|
_file INFILE Files\\infiles
= h_file OUTPUTFILE files\\outfileJ
([]
)
3) $
s
ap |4 job step: [
3p | nunuuunununmnnnng | ’LI
.
[]
Rady
Line numbers Rul
: uler
Client area
Breakpoint area .
Message output window

Variable window

Status bar

The toolbars display buttons for the most frequently used of the commands that can be selected from the menu bar. You
can execute a command by clicking its button on a toolbar. You can also use the View menu to hide the toolbars. Hovering
the mouse cursor over a button displays a description of the button's function.

The following table lists the buttons on the Standard Toolbar and describes their functions.

Button
New button
Open button
Save button

Print button

4. Using JP1/Advanced Shell - Developer (Windows Only)

Function
Creates a new job definition script file.

Opens an existing job definition script file.

Saves the job definition script file being edited.

Prints the job definition script file being edited.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

305

Button

Exit button

Help button

Undo button

Redo button

Cut button

Copy button

Paste button

Select All button

Option button

Check Syntax button
Run to Breakpoint button

Stop Script button

Quit Debugging button

Step In button
Step Over button

Step Out button

Set/Remove Breakpoint button
Remove All Breakpoints button
Runtime Environment Settings button
View Coverage Information button
Search button

Find Previous button

Find Next button

(2) Ruler

Function

Terminates JP1/Advanced Shell Editor and enables you to select
whether to save the file.

Displays online help for JP1/Advanced Shell.

Undo the previous operation.

Redo the previous operation.

Cuts a selection and saves it to the clipboard.

Copies a selection and saves it to the clipboard.

Pastes the contents of the clipboard to the selected location.
Selects the entire file.

Enables the operating environment for the editor to be set up.
Checks the syntax of the entered job definition script.

Starts and restarts execution up to a breakpoint.

Stops the job definition script. Continues the command whose
execution is underway when the Stop Script button is clicked and
stops the job definition script before the next command is executed.

Continues the command whose execution is underway when the Quit
Debugging button is clicked stops the job definition script before the
next command is executed. After this, the job definition script is
stopped to quit debugging.

Executes the next command or statement one at a time. If a function
is called, this button also executes one line at a time in the function
and then stops execution.

Executes the next command or statement one at a time. If a function
is called, this button does not stop after executing one line at a time in
the function but stops when a breakpoint is reached.

Executes the script up to the end of a function call. Stops on the line
immediately following the function call or at a breakpoint.

Sets or releases a breakpoint.

Releases all breakpoints that have been set.

Sets up the script file execution environment.

Displays coverage information during debugging.

Used to enter a character string to be searched or replaced.
Searches up for the character string or replaces it.

Searches down for the character string or replaces it.

This is a tick-marked bar that displays the horizontally-arranged columns.

(3) Line number area

This area displays the line numbers in a job definition script.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

306

(4) Breakpoint area

This area displays the following symbols: a symbol at the line where a breakpoint is set (@), a symbol that indicates
the line that is to execute next (>), and a symbol that indicates the line where the debugger process ends (§>).

(5) Status bar

The status bar displays messages related to the current processing being executed by JP1/Advanced Shell Editor and
messages related to the status after processing has terminated. The following table describes the status bar functions in
the JP1/Advanced Shell Editor window.

Table 4-1: Functions of the status bar in the JP1/Advanced Shell Editor window

Status bar Description

Job ID Displays the job ID of the job that is being debugged.

Position Displays the location of the cursor.

Total lines Displays the total number of lines in the job definition script file being edited.

INS or OVR Displays the overwrite mode that can be switched by toggling the Insert key. The two modes

are the following (where the Insert mode is the default):
¢ OVR:Overwrite mode
¢ INS:Insert mode

(6) Client area

The client area displays the job definition script file you are working on.

(7) Message output window

Error messages that are generated while debugging are displayed in the Message output window.

(8) Variable window

Variable names and variable values are displayed in the Variable window while debugging.

4.3.2 Menus in the JP1/Advanced Shell Editor window

This subsection explains the menus displayed on the menu bar and the pop-up menus that are displayed in the JP1/
Advanced Shell Editor window.

(1) Menus on the menu bars

This subsection explains the menus that are displayed in the editor window. The following table lists the menus in the
JP1/Advanced Shell Editor window and describes the functions of the items you can select on these menus.

Table 4-2: Menus in the JP1/Advanced Shell Editor window and their functions

Menu Description

File New Creates a job definition script file.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 307

Menu

File

Edit

Debug

Open
Save

Save As

Print
Exit

(file-name)

Undo

Redo

Cut

Copy

Paste

Select All

Options

Check Syntax
Run to Breakpoint

Stop Script

Quit Debugging

Step In

Step Over

Step Out

Set or Remove Breakpoint
Remove All Breakpoints

Runtime Environment
Settings

Add Variable to Watch List

Fault Injection Mode

Execute a trap action

Message output mode

4. Using JP1/Advanced Shell - Developer (Windows Only)

Description
Enables an existing job definition script file to be opened.
Saves the job definition script file being edited.

Saves the job definition script file being edited as a new job definition script file
under a specified name.

Prints the job definition script file being edited.
Exits the editor and enables you to select whether the file is to be saved.

Opens the file whose name is displayed.

The names of the most recent job definition script files that were saved are
displayed (maximum of nine).

Undoes the previous operation.

Re-executes the previous operation.

Cuts a selection and saves it on the clipboard.

Copies a selection to the clipboard.

Pastes the contents of the clipboard to the selected location.
Selects the entire file.

Enables an operating environment for the editor to be set up.
Checks the syntax of the job definition script.

Starts and restarts execution up to a breakpoint in the debug mode.

Stops execution of the job definition script at the next line. Completes the
command whose execution is underway when Stop Script is selected and stops
the job definition script before the next command executes.

Completes the command whose execution is underway when Quit Debugging is
selected, stops execution before the next command executes, then stops the job
definition script and cancels debugging.

Executes the next command or statement in the debug mode. Ifa function is called,
this menu item also executes one line in the function and then stops execution.

Executes the next command or statement in the debug mode. Ifa function is called,
this menu item does not stop after executing one line in the function, but stops
only when a breakpoint is reached.

Executes through the end of a function call and stops on the line immediately
following the function call or at a breakpoint.

Sets a breakpoint or releases the selected breakpoint.
Releases all breakpoints that have been set.

Sets up a script file execution environment.

Adds a specified variable to the Watch List window.

Enables or disables the fault injection mode while execution of the job definition
script is stopped.

Executes the t rap command's action and continues processing up to a
breakpoint.

You can switch the message output mode of the script that is being executed.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 308

Menu

Debug Jump to the currently
executing line

View Toolbar and docking window
> Toolbar

Toolbar and docking window
> Message output

Toolbar and docking window
> Variable name and variable
value

Status Bar

Appearance of application

Ruler

Vertical Scrollbar

Horizontal Scrollbar

Show Line Numbers

Show First Line

Show Last Line

View Coverage Information
Search Search for

Replace with

Find Previous
Find Next
Help Open Help
Display usage example

About

(2) Pop-up menus

Description

Jumps to the line that is executing currently.

You can display/hide the toolbar.

You can display/hide the Message output window.

You can display/hide the Variable window.

Changes the view/hide setting for the status bar.

You can change the appearance of the window.

Changes the view/hide setting for the ruler.

Changes the view/hide setting for the vertical scrollbar.
Changes the view/hide setting for the horizontal scrollbar.
Changes the view/hide settings for the line number.
Displays the first line of the job definition script file.
Displays the last line of the job definition script file.
Displays coverage information during debugging.

Enables entry of a character string to be searched for.

Enables entry of a character string that is to be searched for and a character string

that is to replace the retrieved character string.

Searches for the search character string in the up direction.

Searches for the search character string in the down direction.

Displays Help for JP1/Advanced Shell.

Usage examples are displayed as input support functions.

Displays program information, version, and copyright information.

Clicking the mouse's right button while the cursor is in the client area of the JP1/Advanced Shell Editor window displays

a pop-up menu. The pop-up menu's contents depend on whether the mode is the edit mode or the debug mode.

* Pop-up menu in the edit mode

The following table lists and describes the pop-up menu items that are displayed in the edit mode.

Pop-up menu item Description

New Creates a job definition script file.

Open Enables an existing job definition script file to be opened.
Save Saves the job definition script file being edited.

Undo Undoes the previous operation.

Redo Re-executes the previous operation.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

309

Pop-up menu item Description

Cut Cuts a selection and saves it on the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes the contents of the clipboard to the selected location.
Select All Selects the entire file.

* Pop-up menu in the debug mode
The following table lists and describes the pop-up menu items that are displayed in the debug mode.

Pop-up menu item Description
Copy Copies a selection to the clipboard.
Set/Remove Breakpoint Sets a breakpoint or releases the selected breakpoint.

4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window

This subsection explains the mouse and key operations in the JP1/Advanced Shell Editor window.

(1) Mouse operations

The following table describes the mouse operations in the client area of the JP1/Advanced Shell Editor window.

Table 4-3: Mouse operations in the JP1/Advanced Shell Editor window

Operation Description

Click Selects a target for an operation or releases an existing selection.
Double-click Selects a character string.

Right-click Displays a pop-up menu.

(2) Key operations

The following table describes the key operations while the cursor is positioned in the client area of the JP1/Advanced
Shell Editor window and indicates the modes in which each operation is applicable.

Table 4-4: Key operations in the JP1/Advanced Shell Editor window

Operation Edit mode Debug mode Description

Ctrl+A Y Y Selects the entire file.

Ctrl+C Y Y Copies a selection.

Ctrl+E Y N Sets up a script file execution environment.

Ctrl+F Y P Enables entry of a character string to be searched for.

Ctrl+H Y N Enables entry of a character string to be searched for and a
character string that is to replace the retrieved character string.

CtrI+K Y Y Usage examples are displayed as input support functions.

Ctrl+F1

Ctrl+N Y N Creates a job definition script file.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 310

Operation Edit mode Debug mode
Ctrl+O Y

Ctrl+P
Ctrl+S
Ctrl+Vv
Ctrl+X
Ctrl+Z
Ctrl+Home

Ctrl+End

< | << 2z z Z z Z

F1

F3

o

F5

F7

F9

T S I T e T T e T B S e T B SN

<<l zZ <<

F11

Alt+F4

<
<

Shift+F3

Shift+F5

Shift+F9

< =<z <

<<

Shift+F11

Shift+Ctrl+F11 Y Y

Shift+Ctrl+Z

Enter

Legend:
Y: Applicable
P: Partially applicable
N: Not applicable

4. Using JP1/Advanced Shell - Developer (Windows Only)

Description

Enables an existing job definition script file to be opened.
Prints the job definition script file being edited.

Saves the job definition script file being edited.

Pastes the contents of the clipboard to the selected location.
Cuts a selection.

Undoes the previous operation.

Displays the first line of the job definition script file.
Displays the last line of the job definition script file.
Displays Help for JP1/Advanced Shell.

Searches for a character string in the down direction.
Starts and restarts execution up to a breakpoint.

Checks the syntax of the job definition script.

Sets a breakpoint or releases the selected breakpoint.

Executes the next command or statement. If a function is called,
this key also executes one line in the function and then stops
execution.

Exits JP1/Advanced Shell Editor and enables whether the file is to
be saved to be specified.

Searches for a character string in the up direction.
Terminates the job definition script and cancels debugging.
Releases all breakpoints that have been set.

Executes through the end of a function call and stops on the line
immediately following the function call or at a breakpoint.

Executes the next command or statement. If a function is called,
this key does not stop after executing one line in the function, but
stops only when a breakpoint is reached.

Re-executes the previous operation.

Creates a new line by copying the spaces and tabs from the
beginning of the selected line. If an end-of-line code is entered after
{, this key adds a tab to the next line and } on the following line.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 311

4.4 Creating job definition scripts (Windows only)

This section explains how to create job definition scripts in JP1/Advanced Shell Editor.

4.4.1 Creating job definition scripts

To create a job definition script:

1. From the File menu, select New.
A new JP1/Advanced Shell Editor window is displayed.

4.4.2 Setting up an operating environment for the editor

To set up an operating environment for the editor:

1. From the Edit menu, select Options.
The Options (Format) dialog box is displayed.

Options !3

Format IOolors |
Font: |FixedSys Fontsize: [14 SeledFont@...l
—Word wrap Spaces pertab
& Nhiap 2t window border((‘H 2 @ 48 C 2@

" Wrap by no. of characters(S) [V Show tabs(D)
No, of characters(C] |7 00 j [V Show line breaks(R)
[V Show multibyte spaces(D)

Max undo count(U): [100 :Il

[ok | concel |

For details about how to specify settings in this dialog box, see 4.7.1 Options (Format) dialog box.

2. Specify the format-related settings.

3. Click the Colors tab.
The Options (Colors) dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

312

4. Specify the display color information.
To reset the display colors to the defaults, click the Reset to Default button.
For details about how to specify settings in this dialog box, see 4.7.2 Options (Colors) dialog box.

5. Click the OK button.
An operating environment is now set up for the editor, and the dialog box closes.

4.4.3 Setting up an execution environment for job definition scripts

You can specify for each job definition script file run-time parameters, a run-time directory, a job environment file, and
a logical host. The specified information is stored in the debugging information file.

To set up an execution environment for a job definition script:

1. From the Debug menu, select Runtime Environment Settings.
The Runtime Environment Settings dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 313

Runtime Environment Settings m

Runtime parameters(P):

Runtime directory[W):

I

Job environment file(E):

Logical host(H):

— Coverage information
¢ Do not accumulate
" Accumulate

" Accumulate and ovenwrite on update

— Shell options
¢ Run without xtrace

" Run with xtrace

o]

Cancel

For details about how to specify settings in this dialog box, see 4.7.3 Runtime Environment Settings dialog box.

2. Click the OK button.

An execution environment is now set up, and the dialog box closes.

If Do not accumulate is selected in Coverage information, coverage information will not be collected.

4.4.4 Checking syntax

You can check the syntax of a job definition script file. The editor checks for any syntax errors, but does not execute
the script. Coverage information is not collected even if the option for accumulating coverage information is specified

(this corresponds to the —c option in the adshexec command).

The console is not displayed. Errors are displayed in the Error List window.

To check syntax:

1. From the Debug menu, select Check Syntax.

The editor is placed in the debug mode and starts syntax checking.

The window will be grayed out while syntax checking is underway.

* Display during syntax checking

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

314

@ S= -
Fie(F) Edt(E) Debug(D) View(v) Search(S) Help(H)
VA8 de RRh@ 2> aSaLbRe 3 3 »

i 1 | T il Tl L L Ll L
SAMPLE_JOBJ Al

ol
Hi-adsh_job

#-adsh_job_stop 8:4

i

#-adsh_file_tenp JOBTEWP.

n

AR
job step

9 |unnsunES

10 (4
11 #-adsh_step_start S1J
12 # input Files.d

18]| #-adsh_file INFILE files\\infile abch

14| #-adsh_file OUTPUTFILE Files\\outfiles

15| #-adsh -chk no -normal keep -abnormal dels

17| # paraneters

18| ©-adsh_file temp PARHFILE -id params
19 (# cat<<@a@>${PARHFILE}J

~in ${INFILE})

-out S{OUTFILE}d

—work \\tmpJ

I
S
Trae=s

26| # execute user program.J
27 | sluap ${PARMFILE}J
4

29 |#-adsh_step_errors
38| recovery_uap ${JTHP}J
31 |#-adsh_step_end.

32 (s
33 [mumnnnmEnRRREENR
3 |4 job step2 a

35 |ninnnusnununnnnnnn, i lll
« >

Message output

Ready 1: Postionline 13 Colunn 39| Totallnes: 46 |INS | ¢

* Display when syntax checking has been completed

If any syntax errors are detected, information about the errors is displayed in the Message output window.

& C:\IP1AS\sample\SAMPLE_JOB.ash - Advanced Shell Editor = X
¢ File(F) Edt(E) Debug(D) View(y) Search(S) Help(H)

NEHdede oD@ A > 1 IR LNbReE ARG

[1 il | | 3 | bl 1 3 1 Variable name and variable value 2 x
#-adsh_job SAMPLE_JOBJ -

4

#-adsh_job_stop 8:4

4

#-adsh_file_temp JOBTEMP.

4
HugHRHRHRERERERERERY
job stepi
nunnRRBERERERERRRRRT
10 |4
11 [#-adsh_step_start S14

12 # input files.d

13 #-adsh_file INFILE files\\infile abc.

14 #-adsh_file OUTPUTFILE files\\outfileJ

15 | #-adsh -chk no -normal keep -abnormal dels
16 |
17 # parameterd

18 #-adsh_file_temp PARMFILE -id paramd
19 (# cat<<EEER>${PARMFILE}J

20 |# -in ${INFILE}J

21 |# -out ${OUTFILE}J

22 |# -work \\tmpJ

23 | #EEE) hd
< >

Message output o x
KNAX63168-E The item "abc™ is incorrect. filename="C:\JP1AS\sample\SAMPLE_JOB.ash" line=13

VBNV EWN

Ready Job ID: Position:Line 1 Column 1 Totallines: 46 |INS | .

2. Check the information displayed in the Message output window.
For details about the Message output window, see 4.7.5 Message output window.
Notes:

 In the debug mode, the menus are grayed out and Check Syntax cannot be selected from the Debug menu.

* Ifyou attempt to perform a syntax check on a job definition script file that does not yet have a name, the Save
As dialog box for specifying a name for the file and saving it will be displayed. A syntax check cannot be
performed for such a file until it is saved with a new job definition script file name (. ash).

 Ifthe contents of the job definition script file have changed, a message asking whether the file is to be updated
is displayed. To update the file, save it, and then perform the syntax check.

4.4.5 Searching for and replacing character strings

This subsection explains how to search for and replace character strings in job definition script files.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 315

(1) Searching for character strings

To search a job definition script file for a character string:

1. From the Search menu, select Search.

The Search dialog box is displayed.

I Replace(l] Find Previous(L) Shit+F 3
SearchforS) | ~| l Find NewtlD) F3 I
Replace with(R): | L‘ Replace All(4) |

I~ Match case(C) Cancel |

I~ Find whole words only[\)

For details about how to specify settings in this dialog box, see 4.7.4 Search dialog box.

2. Make sure that the Replace check box is not selected.
If the Replace check box is selected, clear it.

3. In Search for, enter the character string to be searched for. If necessary, select the Match case and Find whole

words only check boxes.

™ Replace(T) Find Previous(U) Shift+F3)|
Search for(S): Is1 uap| LI l Find Next(D) F3 |
Replace wit(Rl: | ~] Replace AllAI |

[~ Match case(C) Cancel |

I~ Find whole words only[\w)

4. Click the Find Previous or Find Next button.

The specified character string is searched for. If there is no matching character string, the editor sounds a beep tone.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

316

& C:\JP1AS\sample\SAMPLE_JOB. ash - Advanced Shel Editor T
¢ File(F) Edt(E) Debug(D) View(¥) Search(S) Help(H)

NG Hdede ' DB R AP LR ARG

1 | | | | | 1

Var
8 |# job stepi #d =
9 |HunHunHRBHERBHRIHIR
10 (4
11 [#-adsh_step_start S14
12 # input files.d
13 #-adsh_file INFILE files\\infile abc.
14 #-adsh_file OUTPUTFILE files\\outfileJ
15| #-adsh -chk no -normal keep -abnormal delJ
16
17
18
19
20

riable name and variable value ax

d
parameterd
#-adsh_file_temp PARMFILE -id paramd
cat<<@EE>${PARMFILE}J
-in ${INFILE}J
21 |# -out ${OUTFILE}J
22 |# -work \\tmpJ
HEER)

24 |4
25 (4
26 # execute user program.d
27| ${PARMFILE}J

d

28
29 [#-adsh_step_errord
| 30| recovery uap ${JTHP}: | lL‘
< »
Message output o x
Ready Job ID: Position:Line 27 Column 8 Totallines: 46 |INS | .

5. To end the search, click the Cancel button.
The Search dialog box closes.

(2) Replacing character strings

To replace a character string in a job definition script file:

1. From the Search menu, select Replace.
The Search dialog box is displayed.

I Replace(T) Find Previous(U) Shift+F3)|

Search for(S): || LI I Find Next(D) F3

Replace with(R): I ZI Replace Alli4) |
I~ Match case(C) Cancel I
I Find whole words only(w)

For details about how to specify settings in this dialog box, see 4.7.4 Search dialog box.

2. Make sure that the Replace check box is selected.
If the Replace check box is not selected, select it.

3. In Search for, enter the character string to be searched for and replaced. If necessary, select the Match case and
Find whole words only check boxes.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 317

[V Replace(T) Find Previous(U) Shift+F3|

SearchforS) [sTuap = [FdNes)Fz |

Replace with(R): |32uapl ﬂ Replace All{) |
[~ Match case(C) Cancel I
I~ Find whole words only(w)

4. In Replace with, enter the character string that is to replace the specified Search for character string.

5. Click the Find Previous or Find Next button.

The editor starts searching for the specified Search for character string and replacing it with the specified Replace
with character string. If there is no character string to be replaced, the editor sounds a beep tone.

& C:\JP1AS\sample\SAMPLE _JOB.ash * - Advanced Shell Editor)
: File(F) Edit(E) Debug(D) View(¥) Search(S) Help(H)
i NEHE0 9 L@ D> I SRALRKBE ARG
L | T [Y 12 1 Variable name and variable value 2 x

8 |# job stepi # Al

9 |HuntuuHRRHERBHRIHIR

10 |4

11 [#-adsh_step_start S14

12 # input files.J

13 #-adsh_file INFILE files\\infile abc.

14 #i-adsh_file OUTPUTFILE files\\outfileJ

15| #-adsh -chk no -normal keep -abnormal deld

16 (4

17 # parameterd

18 #-adsh_file_temp PARMFILE -id paramJ

19 [# cat<<EER>${PARMFILE}J

20 |# -in ${INFILE}J

21 |# -out ${OUTFILE}J
22 |# -work \\tmpJ
HEERY

24 |4

26 # execute user program.d

1 ${PARMFILE}J

28 |4
29 |#-adsh_step_errord
! 30| recovery uap ${JTHP}: | lﬂ
< »
Message output o x
Ready Job ID: Position:Line 27 Column 8 Totallines: 46 |INS | .

6. To end the replace operation, click the Cancel button.
The Search dialog box closes.

4.4.6 Debugging

Checking the behavior of a job definition script file is called debugging.

This is equivalent to the adshexec command with the —d option specified. The console is displayed while debugging
is being performed. Error messages are displayed in the Error List window.

There are two ways to perform debugging:

Method Operation Overview
Execution From the Debug menu, select Run to Breakpoint. Starts and restarts execution up to a
breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 318

Method Operation

Step-by-step execution From the Debug menu, select Step In.

From the Debug menu, select Step Over.

From the Debug menu, select Step Out.

Notes:

Overview

Executes one line of the job definition script,
and then stops execution. If a function is
called, the editor also executes one line in the
function and stops execution.

Executes one line of the job definition script
and then stops execution. If a function is
called, the editor does not stop after executing
a single line in the function, but stops only
when a breakpoint is reached.

Stops on the line immediately following a
function call or at a breakpoint.

* Ifyou attempt to debug a job definition script file that does not yet have a name, the Save As dialog box for
specifying a name for the file and saving it will be displayed. A file cannot be debugged until it is saved with a

new job definition script file name (. ash).

 Ifthe contents of the job definition script file have changed, a message asking whether the file is to be updated

is displayed. If you update the file, you can then debug it.

 Ifthe editor is forcibly terminated during debugging (because, for example, End now is selected in the Exit the
Program dialog box), the debugger's adshesub . exe process might keep running and the console might remain
displayed. If this happens, terminate the adshesub . exe process with the taskkill command or from the

task manager.

(1) Setting and releasing breakpoints during debugging

You set breakpoints at locations where you want execution to stop temporarily during debugging. You can also release

breakpoints that have been set.

Because JP1/Advanced Shell Editor sets a breakpoint at the line where the cursor is located, breakpoints cannot be set
in external scripts. Even if breakpoints have already been set in an external script, execution will not stop at such

breakpoints. You can set a maximum of 999 breakpoints.

(a) Setting breakpoints

To set a breakpoint:

1. Move the cursor to the line where you want to set a breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide

319

@ C:\JP1AS\sample\SAMPLE_JOB.ash * - Advanced Shell Editor o
¢ File(F) Edit(E) Debug(D) View(¥) Search(S) Help(H)

NEHed0@ (9t y ulm@ A > QDR BE NS

29 |#-adsh_step_errord =
30 recovery_uap ${JTHP}J

31 |#-adsh_step_endJ

32 |4

33 [nununRHRBRRHRRBERER
34 |# job step2 #d
35 |#unnuHnRHRRRERRHRIRET
36 (4
37