
JP1 Version 11

JP1/Advanced Shell Description, User's Guide,
Reference, and Operator's Guide
3021-3-B32-20(E)

Notices

■ Copyright
All Rights Reserved. Copyright (C) 2016, 2017, Hitachi, Ltd.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade
Law, and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI, Job Management Partner 1, JP1, uCosminexus are either trademarks or registered trademarks of Hitachi,
Ltd. in Japan and other countries.
Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
IBM, AIX are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/
or other countries.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.
Microsoft, Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.
Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.
SUSE is a registered trademark or a trademark of SUSE LLC in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Win32 is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.

■ Issued
Jan. 2017: 3021-3-B32-20(E)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 2

Summary of amendments

The following table lists changes in this manual (3021-3-B32-20(E)) and product changes related
to this manual.

Changes Location

A description of a means to create a job definition script was added. 1.3

The following UNIX-compatible commands can now be used:
• tr
• xargs

In addition, notes on the which command were changed.

2.1.1(4), 2.1.2(3), 2.2.7(3)(c), 8.1.2(3), 8.2.2(1),
8.4.36, 8.4.40, 8.4.41

A description of the initialization script file was added. 2.2.7(2)(a), 2.6.23, 5.5.3, 7.2.1(2), 7.3.19, 8.3.7, 9.4.5

The description of automatic startup and automatic termination of the user-reply
functionality management daemon was changed.

2.8.3(1)(c)

A description of the function that sets the file mode creation mask that is to be used
when execution of a job definition script starts was added.

2.12, 7.2.1(2), 7.3.48

A note on running antivirus software was added. 2.14

A description of the output destination in expansion output mode was added. 3.4.1

A description was added, or the existing description was changed, for the spool job
name specification function.

3.4.2(3), 3.4.4(2), 3.7.8, 3.9, 3.13, 5.5.2, 8.3.6, 8.3.9

The description of messages that are not output in the minimum output mode was
changed.

3.4.4(1), 3.5.1(2)(c)

[For Windows only] A description of the ADSH_RC_EXTERNAL shell variable,
which is used to store the return code of an external command, was added.

5.5.1, 5.5.4, 5.8.8(3), 9.5.9

Notes on arguments of the ulimit command were added. 9.3.30

The following messages were added:
KNAX0298-E, KNAX6501-I, KNAX6502-I, KNAX6503-E, and KNAX6504-
E

12.2, 12.3, KNAX0298-E, KNAX6501-I,
KNAX6502-I, KNAX6503-E, KNAX6504-E

The descriptions of the following messages were changed:
KNAX4427-W, KNAX6097-E, KNAX6153-E, KNAX6380-I, and KNAX6381-
E

12.3, KNAX4427-W, KNAX6097-E, KNAX6153-E,
KNAX6380-I, KNAX6381-E

The following terms were added to Glossary:
• initialization script file
• spool job name

Appendix D

In addition to the above changes, minor editorial corrections were made.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 3

Preface

This manual explains how to use JP1/Advanced Shell to create and execute job definition scripts for batch jobs.

• JP1/Advanced Shell (script execution base for batch jobs)

• JP1/Advanced Shell - Developer (script development base for batch jobs)

This manual uses the terms "execution environment" and "development environment" to distinguish between the
environment in which JP1/Advanced Shell is installed and the environment in which JP1/Advanced Shell - Developer
environment is installed, respectively.

■ Relevant program products
• P-1M12-B1BL JP1/Advanced Shell 11-10 (for AIX V6.1, AIX V7.1, AIX V7.2)

• P-8112-B1BL JP1/Advanced Shell 11-10 (for Red Hat Enterprise Linux Server 6 (64-bit x86_64), Red Hat
Enterprise Linux Server 7 (64-bit x86_64), Oracle Linux 6 (x64), Oracle Linux 7, CentOS 6, CentOS 7, SUSE
Linux 12)

• P-1J12-B1BL JP1/Advanced Shell 11-10 (for HP-UX 11i V3 (IPF))

• P-9D12-B1BL JP1/Advanced Shell 11-10 (for Solaris 10 (SPARC), Solaris 11 (SPARC))

• P-2A12-B1BL JP1/Advanced Shell 11-10 (for Windows Server 2016, Windows 10, Windows 8, Windows Server
2012, Windows 7, Windows Server 2008)

• P-2A12-B2BL JP1/Advanced Shell - Developer 11-10 (for Windows Server 2016, Windows 10, Windows 8,
Windows Server 2012, Windows 7, Windows Server 2008)

■ Intended readers
This manual is intended for those interested in using JP1/Advanced Shell to develop, execute, and/or manage batch
jobs. This manual provides explanations assuming readers are familiar with the following:

• Windows and UNIX

• JP1/AJS

• JP1/Base

• JP1/IM

■ Organization of this manual
This manual consists of the following chapters and appendixes.

This manual is common to the OS of both Windows and UNIX. If there are differences between each OS, such
differences are separately described within the text.

PART 1: Overview

1. Overview of JP1/Advanced Shell
JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. Chapter 1
describes the purpose of JP1/Advanced Shell, provides an example of its application to a business operation,

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 4

explains the overall system configuration and general procedures, and provides an overview of JP1/Advanced
Shell's operation and functionality in a cluster system.

PART 2: Setup

2. Preparations for Using JP1/Advanced Shell
Chapter 2 discusses the conditions and requirements for using JP1/Advanced Shell, including the program
installation directory, the main programs, prerequisites, installation, environment information settings, custom
job registration, user-reply functionality settings, and environment information settings for cluster operation.

PART 3: Operation

3. Executing Batch Jobs
Chapter 3 explains how to execute batch jobs and the batch job processing in JP1/Advanced Shell (execution
environment).

4. Using JP1/Advanced Shell - Developer (Windows Only)
Chapter 4 explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/Advanced Shell
Editor to develop job description scripts in a Windows environment. The chapter also explains how to use the
editor to debug job definition script files.

5. Creating Job Definition Scripts
Chapter 5 explains the syntax for job definition scripts.

6. Debugging Job Definition Scripts
Chapter 6 describes the debugger functions of JP1/Advanced Shell.

PART 4: Reference

7. Parameters Specified in the Environment Files
Chapter 7 provides details about the description format used for parameters and commands. You define in
environment files information such as return codes, coverage, system execution logs, and directory paths.
Export parameters are used to define environment variables. Conditional parameters are used to apply desired
environment setting parameters or export parameters specifically to the physical host or specifically to a
particular logical host.

8. Commands Used During Operations
Chapter 8 describes the syntax and details of the commands used for operations.

9. Job Definition Script Commands and Control Statements
Chapter 9 describes in detail the description formats for the standard shell commands, extended shell commands,
extended script commands, script control statements, and reserved script commands used in job definition
scripts.

10. Script development parts
Chapter 10 explains the description formats and details of the script development parts.

PART 5: Troubleshooting

11. Troubleshooting
Chapter 11 describes troubleshooting, including how to respond when problems occur, the types of log
information, the troubleshooting information that needs to be collected, and how to collect it.

12. Messages
Chapter 12 lists the messages output by JP1/Advanced Shell and provides detailed information about errors
that might occur.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 5

A. Coverage Information That Is Acquired
Appendix A describes the coverage information that JP1/Advanced Shell acquires.

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)
Appendix B explains how to start the batch job of JP1/Advanced Shell by using the job scheduler other than JP1/
AJS in the execution environment.

C. Modifications Made in Each Version
Appendix C lists the modifications made in each version.

D. Glossary
Appendix D is a glossary that explains the terms used in this manual.

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

underline The underline indicates the default value among two or more values enclosed in selection symbols.

The following table explains the symbols used by this manual in syntax explanations:

Symbol Convention

| A vertical bar separates multiple items, and has the meaning of OR. For example:
A|B|C means A, or B, or C.

{ } Curly brackets indicate that only one of the enclosed items is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] Square brackets indicate that the enclosed item or items are optional. A vertical bar is used to delimit multiple
items. For example:

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 6

Symbol Convention

[] Examples:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

< > Single angle brackets enclose the syntax element that must be used to specify an item.

+ The plus sign indicates that the immediately preceding item can be specified multiple times. It is also used to
indicate that the items before and after it are specified together.

Examples:
{A|B}+
Indicates that A or B can be specified multiple times in any order.
CR+LF
Indicates that the carriage return character (CR) and the linefeed character (LF) are specified together.

* The asterisk indicates that the immediately preceding item can be omitted or that it can be specified one or
more times.

Example:
{A|B}*
Indicates that A or B can be specified one or more times in any order or that A and B can both be omitted.

~ A swung dash indicates that the syntax element enclosed by the single angle brackets (< >), double angle
brackets (<< >>), or double parentheses ((())) that follow must be used to specify the item that precedes
the swung dash.

<< >> Double angle brackets enclose the default value for an item.

(()) Double parentheses enclose the permissible range of values that can be specified.

... An ellipsis indicates that the immediately preceding item can be repeated as many times as necessary. For
example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

Denotes a single-byte space.
0: Denotes zero or more spaces (spaces can be omitted).
1: Denotes one or more spaces (at least one space is required).

The following table explains the syntax elements used in this manual:

Syntax element Characters that can be specified

<numeric characters> 0|1|2|3|4|5|6|7|8|9

<uppercase alphabetic characters> A|B|C|...|Z

<lowercase alphabetic characters> a|b|c|...|z

<alphabetic characters> <uppercase alphabetic characters>|<lowercase alphabetic characters>

<special characters> ,|.|/|'|(|)|*|&|+|-|=| (space)|\

<octal> <0|1|2|3|4|5|6|7> +

<decimal> <numeric characters> +

<hexadecimal> 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F

<integer> A series of signed or unsigned numeric characters

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 7

Syntax element Characters that can be specified

<unsigned integer> <numeric characters> +

ss<symbolic name> {<alphabetic characters>|<numeric characters>|@|#|_ (underscore)} +
Used in: Job names

<environment variable name> {<alphabetic characters>|_ (underscore)}{<alphabetic characters>|_ (underscore)}|
<numeric characters)} *
Used in: Environment variable file definition names, environment variable names, and
extended script commands

<path name> A character string that conforms to the path naming conventions of UNIX or Windows

<command name> A path name consisting of permitted characters other than the path separator

<logical host name> {<alphabetic characters>|<numeric characters>|- (hyphen)} +

<any character string> A string of characters consisting of any combination of alphabetic characters. Note the
following:
• JP1/Advanced Shell does not check the character type.
• Character strings with a meaning appropriate for the location where they are used must

be specified.
• We recommend that you use characters in the range permitted for the symbolic name in

which they are used.

<ASCII character string> A character string consisting exclusively of characters in the ASCII character set, other than
ASCII control characters (a character string in the range from 0x20 to 0x7E)

■ Conventions: Abbreviations

Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

JP1/Advanced Shell JP1/Advanced Shell

JP1/Advanced Shell - Developer

JP1/AJS JP1/AJS3 JP1/Automatic Job Management System 3 - Agent

JP1/Automatic Job Management System 3 - Manager

JP1/Automatic Job Management System 3 - View

JP1/AJS - Agent JP1/AJS3 - Agent JP1/Automatic Job Management System 3 - Agent

JP1/AJS - Definition
Assistant

JP1/AJS3 - Definition Assistant JP1/Automatic Job Management System 3 - Definition Assistant

JP1/AJS - Manager JP1/AJS3 - Manager JP1/Automatic Job Management System 3 - Manager

JP1/AJS - View JP1/AJS3 - View JP1/Automatic Job Management System 3 - View

JP1/IM JP1/IM - Manager JP1/Integrated Management - Manager

JP1/IM - View JP1/Integrated Management - View

UNIX Linux CentOS 6 CentOS 6

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 8

Abbreviation Full name or meaning

UNIX Linux CentOS 7 CentOS 7

Oracle Linux 6 Oracle Linux® Operating System 6 (x64)

Oracle Linux 7 Oracle Linux® Operating System 7

RHEL 6 Red Hat Enterprise Linux® Server 6 (64-bit x86_64)

RHEL 7 Red Hat Enterprise Linux® Server 7 (64-bit x86_64)

SUSE Linux 12 SUSE Linux® Enterprise Server 12

AIX AIX V6.1

AIX V7.1

AIX V7.2

HP-UX HP-UX 11i V3 (IPF)

Solaris Solaris 10 (SPARC)

Solaris 11 (SPARC)

Abbreviations for Microsoft product name
This manual uses the following abbreviations for Microsoft product names:

Full name or meaning Abbreviation

Microsoft® Windows Server® 2016 Standard Windows Server 2016 Windows Server#

Microsoft® Windows Server® 2016 Datacenter

Microsoft® Windows Server® 2012 Standard Windows Server 2012

Microsoft® Windows Server® 2012 Datacenter

Microsoft® Windows Server® 2012 R2 Standard

Microsoft® Windows Server® 2012 R2 Datacenter

Microsoft® Windows Server® 2008 R2 Datacenter Windows Server 2008

Microsoft® Windows Server® 2008 R2 Enterprise

Microsoft® Windows Server® 2008 R2 Standard

Windows® 10 Home 32-bit version Windows 10 Windows#

Windows® 10 Pro 32-bit version

Windows® 10 Enterprise 32-bit version

Windows® 10 Home 64-bit version

Windows® 10 Pro 64-bit version

Windows® 10 Enterprise 64-bit version

Windows® 8.1 32-bit version Windows 8

Windows® 8.1 Pro 32-bit version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 9

Full name or meaning Abbreviation

Windows® 8.1 Enterprise 32-bit version Windows 8 Windows#

Windows® 8.1 64-bit version

Windows® 8.1 Pro 64-bit version

Windows® 8.1 Enterprise 64-bit version

Windows® 8 32-bit version

Windows® 8 Pro 32-bit version

Windows® 8 Enterprise 32-bit version

Windows® 8 64-bit version

Windows® 8 Pro 64-bit version

Windows® 8 Enterprise 64-bit version

Microsoft® Windows® 7 Enterprise Windows 7

Microsoft® Windows® 7 Professional

Microsoft® Windows® 7 Ultimate

Microsoft® Excel Excel

Microsoft® Office Excel

#: Windows Server and Windows are sometimes referred to collectively as Windows.

■ Conventions: Directory names
This manual uses the term directory wherever possible as a generic term for what Windows calls a folder and UNIX
calls a directory.

In connection with this convention, this manual uses / as the directory delimiter. In Windows-specific cases, \ is used
as the folder delimiter.

■ Conventions: The JP1/Advanced Shell installation folder in Windows
In this manual, installation folder refers to the folder in which JP1/Advanced Shell has been installed, unless otherwise
stated. The following shows the installation folder when the product is installed with the default settings.

x86 environment:
system-drive:\Program Files\Hitachi\JP1AS

x64 environment:
system-drive:\Program Files(x86)\Hitachi\JP1AS

■ Conventions: Administrators permissions
This manual uses the term Administrators permissions to refer to the Administrators permissions for a local PC. The
actions of a user who has Administrators permissions for a local PC are no different from those for a local user or
domain user, or for a user working in an Active Directory environment.

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 10

■ Conventions: Common application data folder
The following shows the common application data folder used in this manual.

system drive:\ProgramData

■ Conventions: Shared documents folder
The following shows the shared documents folder used in this manual.

system drive:\Users\Public\Documents

■ Conventions: Windows menu names used in the manual
The Windows menu names used in this manual assume that you are using one of the following OSs:

Windows 7, Windows Server 2008

In Windows Server 2016, Windows 10, Windows 8, or Windows Server 2012, no Start menu is displayed. Instead,
you must use the Start window, which can be opened from the lower left corner of the window.

■ Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

■ Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

Guides related to JP1/Advanced Shell
• JP1 Version 11 Job Management: Getting Started (Scripting Language) (3021-3-B31(E))

JP1/AJS
• JP1 Version 11 Job Management: Getting Started (Job Scheduler) (3021-3-B11(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 System Design (Configuration) Guide (3021-3-
B13(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Configuration Guide (3021-3-B15(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Troubleshooting (3021-3-B17(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Operator's Guide (3021-3-B18(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Command Reference (3021-3-B19(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 - Definition Assistant Description, Operator's Guide
and Reference (3021-3-B25(E))

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 11

Job Management Partner 1/Software Distribution
• Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Description and

Planning Guide (3020-3-S79(E)), for Windows systems

• Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Administrator's Guide
Volume 1 (3020-3-S81(E)), for Windows systems

• Job Management Partner 1 Version 8 Job Management Partner 1/Software Distribution SubManager (3020-3-
L42(E)), for UNIX systems

JP1/Base
• JP1 Version 11 JP1/Base User's Guide (3021-3-A01(E))

JP1/IM
• JP1 Version 11 JP1/Integrated Management - Manager Configuration Guide (3021-3-A08(E))

• JP1 Version 11 JP1/Integrated Management - Manager Administration Guide (3021-3-A09(E))

uCosminexus Application Server
• uCosminexus Application Server Expansion Guide (3020-3-Y08(E))

• uCosminexus Application Server Command Reference Guide (3020-3-Y15(E))

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 12

Contents

Notices 2
Summary of amendments 3
Preface 4

Part 1: Overview

1 Overview of JP1/Advanced Shell 29
1.1 Purposes of JP1/Advanced Shell 30
1.1.1 Inheriting assets between the OSs of batch applications 30
1.1.2 Expediting the configuration of batch applications 30
1.1.3 Improving serviceability and maintainability by central management of batch job execution results 31
1.2 Example of application to a business operation 33
1.3 General procedures 34
1.3.1 Procedure for executing batch jobs automatically (working with JP1/AJS) 35
1.3.2 Flow of processes when executing Java batch applications by using a function of JP1/Advanced

Shell [only for Windows, Linux(R), AIX, and HP-UX] 36
1.3.3 Procedure for using the user-reply functionality 37
1.3.4 Flow of processes when using the application-execution agent functionality 38
1.4 Overview of operation in a cluster system 41
1.5 Overview of functionality 43

Part 2: Setup

2 Preparations for Using JP1/Advanced Shell 48
2.1 Program installation directory 49
2.1.1 Installation folder (Windows only) 49
2.1.2 Installation directory (UNIX only) 53
2.2 Evaluations prior to installation 56
2.2.1 System configuration 56
2.2.2 Programs required in each environment 59
2.2.3 Files used in JP1/Advanced Shell 62
2.2.4 Encoding used in JP1/Advanced Shell 65
2.2.5 Local time settings 65
2.2.6 Notes about standard input 66
2.2.7 Using hard links and symbolic links 66
2.3 Installing and uninstalling (Windows only) 70
2.3.1 Installing JP1/Advanced Shell (Windows only) 70

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 13

2.3.2 Uninstalling JP1/Advanced Shell (Windows only) 72
2.3.3 Installing JP1/Advanced Shell - Custom Job 72
2.3.4 Uninstalling JP1/Advanced Shell - Custom Job 74
2.4 Installing and uninstalling (UNIX only) 75
2.4.1 Installing JP1/Advanced Shell (UNIX only) 75
2.4.2 Uninstalling JP1/Advanced Shell (UNIX only) 78
2.4.3 Using Hitachi Program Product Installer to display version information (UNIX only) 81
2.5 Specifying environment variables 82
2.6 Specifying environment information for JP1/Advanced Shell 87
2.6.1 Specifying the environment files 87
2.6.2 Converting path names 89
2.6.3 Converting file paths when files are input and output 92
2.6.4 Converting arguments during command execution 94
2.6.5 Defining files to be started as child jobs 95
2.6.6 Specifying definitions for using UNIX-compatible commands 96
2.6.7 Defining the handling of unsupported conditional expressions (Windows only) 97
2.6.8 Defining job execution results and log output information 97
2.6.9 Defining the return codes of extended script commands 105
2.6.10 Sharing among multiple environments 105
2.6.11 Enabling coverage information collection without having to specify the option during batch job

execution 105
2.6.12 Migrating job definition scripts from UNIX to Windows 106
2.6.13 Loading the files specified in the ENV shell variable 108
2.6.14 Defining the process that will be executing the last command in a pipe 108
2.6.15 Defining the return code in the event of an unresumable error in a job 108
2.6.16 Setting up the user-reply functionality 117
2.6.17 Checking the JP1 environment (UNIX only) 117
2.6.18 Setting up the shell (UNIX only) 117
2.6.19 Creating the directories required for JP1/Advanced Shell 117
2.6.20 Setting up a JP1/AJS environment 119
2.6.21 Performing user-specific postprocessing when a job is terminated forcibly 120
2.6.22 Preparation for using script development parts 121
2.6.23 Running the initialization script file 122
2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is used) 126
2.7.1 Registering custom jobs in JP1/AJS - View 126
2.7.2 Defining and executing a jobnet 129
2.7.3 Defining jobs as PC or UNIX jobs 140
2.8 Setting up the user-reply functionality 146
2.8.1 Specifying the environment files to use the user-reply functionality 146
2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (Windows only)147
2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (UNIX only) 150
2.8.4 Specifying environment information in JP1/IM - Manager 154

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 14

2.8.5 Specifying environment information in JP1/Base 155
2.9 Running in a cluster configuration 156
2.9.1 Prerequisites and scope of support for cluster operations 156
2.9.2 Specifying environment information for cluster operation 158
2.9.3 How to specify commands during cluster operation 163
2.9.4 Notes about cluster operation 164
2.9.5 Settings for running a logical host in a non-cluster environment 165
2.10 Installing the HTML manual 171
2.11 Setting the application-execution agent functionality [only for the Windows execution environment]172
2.12 Setting the file mode creation mask used when execution of a job definition script starts [for UNIX

only] 173
2.13 Required memory amount and occupied disk amount 174
2.13.1 Virtual memory requirements 174
2.13.2 Disk space requirements 175
2.14 Note on running antivirus software 180

Part 3: Operation

3 Executing Batch Jobs 181
3.1 Structure of jobs 182
3.1.1 Operator's tasks in JP1/AJS jobs 182
3.1.2 Jobs 182
3.1.3 Job steps 187
3.2 Starting batch jobs 192
3.2.1 Starting jobs by using JP1/AJS from the execution environment 192
3.2.2 Starting batch jobs by using commands from the execution environment 195
3.2.3 Running job definition scripts as child jobs 196
3.2.4 Specifying what is to be executed by a job from the command line 200
3.2.5 Job controller processing after batch jobs have started 202
3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced

Shell [only for Windows, Linux, AIX, and HP-UX] 203
3.4 Outputting job execution results 204
3.4.1 Specifying the destinations of the standard output and the standard error output 204
3.4.2 Outputting job execution results to spool 205
3.4.3 Suppressing output of specific information messages to job execution logs 210
3.4.4 Suppressing output of information and warning messages to job execution logs 210
3.5 Job execution log 213
3.5.1 Outputting the contents of the job execution log by job type 213
3.5.2 Output example of the job execution log (when the spool job of a child job is merged to the spool

job of the root job) 220
3.5.3 Examples of job execution log output(if you delete the spool job of a child job) 231
3.5.4 Examples of job execution log output (when the simple output mode or the minimum output mode

is selected) 238

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 15

3.5.5 Examples of job execution log output (when only the standard error output is output) 240
3.6 Outputting the executed commands and their arguments 243
3.7 Outputting job definition script operation information 245
3.7.1 Collecting job definition script operation information 245
3.7.2 Outputting job definition script operation information 246
3.7.3 Relationship between dates and times and time zones in the operation information 247
3.7.4 Using multiple OR conditions for output of job definition script operation information 247
3.7.5 Outputting job definition script operation information from different spools 248
3.7.6 Format of operation information 248
3.7.7 Operation information records in CSV format and output items 249
3.7.8 Output items for operation information in CSV format 252
3.7.9 Job definition script operation information that is output 257
3.8 Using the user-reply functionality 258
3.8.1 Prerequisites 258
3.8.2 Execution method 258
3.8.3 Relationship with JP1/IM - View 258
3.8.4 How to specify the standard input and output as the input source and output destination of the

user-reply functionality 259
3.8.5 How to handle adshecho and adshread commands that terminate with an error 260
3.8.6 Notes 261
3.9 Deleting spool jobs 263
3.10 Acquiring coverage information 265
3.10.1 Overview of coverage information 265
3.10.2 Managing coverage information 266
3.10.3 Accumulating coverage information 270
3.10.4 Displaying coverage information 272
3.10.5 Merging coverage information 285
3.10.6 Coverage auto-acquisition functionality 285
3.11 Forcibly terminating jobs 287
3.11.1 How to forcibly terminate jobs 287
3.11.2 Processing when signals are received (UNIX only) 289
3.11.3 Job processing during forced termination (Windows only) 293
3.12 Using the application-execution agent functionality (only for the Windows execution environment) 296
3.12.1 Prerequisites 296
3.12.2 Execution methods 296
3.12.3 Operation of the application execution agent 297
3.12.4 Notes 298
3.13 Specifying a spool job name 299
3.13.1 Examples 299
3.13.2 Notes 300

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 16

4 Using JP1/Advanced Shell - Developer (Windows Only) 301
4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows only) 302
4.1.1 Starting JP1/Advanced Shell - Developer 302
4.1.2 Terminating JP1/Advanced Shell - Developer 302
4.2 JP1/Advanced Shell Editor modes (Windows only) 303
4.2.1 Edit mode 303
4.2.2 Debug mode 303
4.3 JP1/Advanced Shell Editor operation (Windows only) 304
4.3.1 JP1/Advanced Shell Editor window 305
4.3.2 Menus in the JP1/Advanced Shell Editor window 307
4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window 310
4.4 Creating job definition scripts (Windows only) 312
4.4.1 Creating job definition scripts 312
4.4.2 Setting up an operating environment for the editor 312
4.4.3 Setting up an execution environment for job definition scripts 313
4.4.4 Checking syntax 314
4.4.5 Searching for and replacing character strings 315
4.4.6 Debugging 318
4.4.7 Displaying coverage information 329
4.5 Editing existing job definition scripts (Windows only) 330
4.6 Saving job definition scripts (Windows only) 331
4.7 Details of the JP1/Advanced Shell Editor window (Windows only) 332
4.7.1 Options (Format) dialog box 332
4.7.2 Options (Colors) dialog box 333
4.7.3 Runtime Environment Settings dialog box 335
4.7.4 Search dialog box 338
4.7.5 Message output window 339
4.7.6 Variable window 340
4.7.7 Console 341

5 Creating Job Definition Scripts 343
5.1 Basic elements of job definition scripts 344
5.1.1 Reserved words 344
5.1.2 Variables 344
5.1.3 Arrays 353
5.1.4 Functions 365
5.1.5 Command alias definitions 371
5.1.6 Metacharacters 371
5.1.7 Execution as a separate process 388
5.1.8 Pattern matching 392
5.1.9 Escape characters 392

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 17

5.1.10 Specifying extended script commands 394
5.1.11 Specifying external commands 394
5.1.12 Specifying UNIX-compatible commands 398
5.1.13 Specifying a shell for running job definition scripts and checking formats 399
5.2 Conditionals 400
5.2.1 Control statements 400
5.2.2 Conditional expressions 401
5.3 Arithmetic operations 408
5.3.1 Arithmetic operators 408
5.3.2 Increment and decrement operators 409
5.3.3 Bitwise logical operators 409
5.3.4 Assignment operators 409
5.4 Priority of conditional and arithmetic operations 411
5.5 Shell variables 412
5.5.1 Shell variables set by JP1/Advanced Shell 412
5.5.2 Shell variables whose values are set by the user 414
5.5.3 Function information arrays 415
5.5.4 Shell variable in which to set the return code of an external command [Windows only] 419
5.6 Shell options 421
5.6.1 Shell options that can be specified with the set command 421
5.6.2 Shell options that can be specified with the adshexec command 423
5.7 Environment variables for job information 424
5.8 Defining jobs, job steps, and commands 425
5.8.1 Declaring job names 425
5.8.2 Defining the job end condition 425
5.8.3 Defining job steps 426
5.8.4 Defining commands that terminate normally 432
5.8.5 Defining shell variables that handle path names 434
5.8.6 Calling an external job definition script file from an executing job definition script 437
5.8.7 Return codes of extended script commands and handling of errors 439
5.8.8 Return codes of jobs, job steps, and commands 441
5.8.9 Job cancellation by the standard shell commands 446
5.8.10 Processing in the event of an error during job execution 447
5.8.11 Notes about output of command execution results 451
5.9 Allocating files and performing postprocessing 454
5.9.1 Allocating regular files and performing postprocessing 454
5.9.2 Allocating temporary files and performing postprocessing 464
5.9.3 Allocating program output data files and performing postprocessing 466
5.10 Converting the value of a shell variable 470
5.10.1 Conversion using a path conversion rule 470
5.10.2 Conversion using a character string 470

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 18

5.10.3 Increase of \ 471
5.10.4 Code conversion of the value of a variable 471
5.11 Example coding of a job definition script file 472

6 Debugging Job Definition Scripts 474
6.1 About the debugger 475
6.1.1 Debugging with the GUI (Windows only) 475
6.1.2 Debugging with the CUI (UNIX only) 477
6.1.3 List of functions of the GUI debugger (Windows only) 479
6.1.4 List of debugger commands (UNIX only) 480
6.1.5 Whether execution can be stopped at the elements of a job definition script 483
6.2 CUI debugger (UNIX only) 486
6.2.1 Terminating the debugger (quit command) 486
6.2.2 Running the job definition script (run command) 487
6.2.3 Terminating the job definition script (kill command) 487
6.2.4 Setting a breakpoint (break command) 488
6.2.5 Setting a watchpoint (watch command) 490
6.2.6 Deleting breakpoints and watchpoints (delete command) 492
6.2.7 Commands for restarting execution of the job definition script 493
6.2.8 Performing sequential execution (step and next commands) 494
6.2.9 Performing continuous execution (continue command) 496
6.2.10 Executing a function (finish command) 497
6.2.11 Terminating a function (return command) 498
6.2.12 Sending a signal (signal command) 499
6.2.13 Displaying breakpoint and watchpoint information (info breakpoints command) 500
6.2.14 Displaying coverage information (info coverage command) 501
6.2.15 Displaying function information (info functions command) 502
6.2.16 Displaying job step information (info jobsteps command) 503
6.2.17 Displays the information of the variable name handling the path (info pathvars command) 503
6.2.18 Displaying signal information (info signals command) 504
6.2.19 Displaying the status (info status command) 505
6.2.20 Displaying shell variable information (info variables command) 506
6.2.21 Enabling and disabling the fault injection mode (joberrmode command) 507
6.2.22 Setting a variable value (set command) 512
6.2.23 Displaying a variable's value (print command) 514
6.2.24 Displaying a backtrace (where command) 514
6.2.25 Displaying the source file (list command) 516
6.2.26 Changing the directory (cd command) 517
6.2.27 Starting the login shell (exec command) 518
6.2.28 Displaying Help (help command) 518

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 19

Part 4: Reference

7 Parameters Specified in the Environment Files 520
7.1 Specification format of environment files 521
7.1.1 Formats of parameters 521
7.1.2 Specification format of comments 522
7.2 Lists of parameters 523
7.2.1 List of environment setting parameters 523
7.2.2 export parameter 528
7.2.3 Conditional parameters 529
7.3 Environment setting parameters 535
7.3.1 ADSHCMD_RC_ERROR parameter (defines the return code to be used when an extended script

command fails) 535
7.3.2 ADSHCMD_RC_SUCCESS parameter (defines the return code to be used when an extended

script command is successful) 535
7.3.3 ASC_FILE parameter (defines a naming rule for accumulation files) 536
7.3.4 BATCH_CVR parameter (enables the coverage auto-acquisition functionality) 537
7.3.5 CHILDJOB_EXT parameter (defines an extension for job definition script files that are to be

executed as child jobs) 537
7.3.6 CHILDJOB_PGM parameter (defines a program path specification that is to be executed as

descendent jobs) 538
7.3.7 CHILDJOB_SHEBANG parameter (defines an executable program path for job definition script

files that are to be executed as child jobs) 541
7.3.8 CMDRC_CMDGRP_CHECK parameter (determines an error of job and job step according to

the return code of the function) 543
7.3.9 CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a command) 543
7.3.10 CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a

UNIX-compatible command) 546
7.3.11 CMDSUB_PROCESS parameter (defines the execution process of command substitution) [only

for Windows] 548
7.3.12 COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition

scripts during command execution) 549
7.3.13 COMPATIBLE_CMD_EXEC parameter (defines the activation method of an external command)

[only for Windows] 552
7.3.14 COMPATIBLE_CMDSUB parameter (defines the behavior of command substitution) [only for

UNIX] 553
7.3.15 ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when

the escape-character option is omitted) 554
7.3.16 ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in

hexadecimal notation are to be interpreted as escape characters) 555
7.3.17 EVENT_COLLECT parameter (specifies whether the operation information acquisition

functionality is to be enabled for job definition scripts) 556
7.3.18 export parameter (defines an environment variable) 557
7.3.19 INIT_SCRIPT_READ parameter (defines whether the initialization script file is to be read and run) 559
7.3.20 HOSTNAME_JP1IM_MANAGER parameter (specifies the operation management server on

which JP1/IM - Manager is running that is to be the destination of JP1 events) 559

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 20

7.3.21 JOBEXECLOG_PRINT parameter (defines the job execution log contents to be output to the
standard error output when a job terminates) 560

7.3.22 JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job
execution logs) 562

7.3.23 KSH_ENV_READ parameter (defines whether the ENV shell variable is to be read) 563
7.3.24 LOG_DIR parameter (defines the path name of the directory to which system execution logs are

to be output) 564
7.3.25 LOG_FILE_CNT parameter (defines the number of files to be used to back up system execution

logs) 565
7.3.26 LOG_FILE_SIZE parameter (defines the size of a file to which system execution logs are to be

output) 565
7.3.27 OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of

a child job) 566
7.3.28 OUTPUT_MODE_ROOT parameter (specifies the method for outputting the execution results

of a root job) 567
7.3.29 OUTPUT_STDOUT parameter (defines the destination for the root job standard output) 569
7.3.30 PATH_CONV parameter (defines the details of path conversion) 569
7.3.31 PATH_CONV_ACCESS parameter (defines path conversion details when files are input and

output) 571
7.3.32 PATH_CONV_ENABLE parameter (enables the path conversion functionality) 572
7.3.33 PATH_CONV_NOVAR parameter (defines the shell variable that does not handle the path name) 573
7.3.34 PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only) 574
7.3.35 PATH_CONV_VAR parameter (defines the shell variable that handles the path name) 580
7.3.36 PERMISSION_SPOOLJOB_DIR parameter (defines permission for the spool job directory)

(UNIX only) 582
7.3.37 PERMISSION_SPOOLJOB_FILE parameter (defines permission for the files under the spool

job directory) (UNIX only) 582
7.3.38 PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe) 584
7.3.39 SPOOL_DIR parameter (defines the spool root directory path name) 586
7.3.40 SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job is to be handled) 587
7.3.41 SPOOLJOB_CREATE parameter (selects whether a spool job is to be created) 589
7.3.42 TEMP_FILE_DIR parameter (defines the path name of the directory for storing temporary files) 590
7.3.43 TRACE_DIR parameter (defines the path name of the directory to which traces are to be output) 590
7.3.44 TRACE_FILE_CNT parameter (defines the number of files to which traces are to be output) 591
7.3.45 TRACE_FILE_SIZE parameter (defines the size of a file to which traces are output) 592
7.3.46 TRACE_LEVEL parameter (defines a trace output level) 593
7.3.47 TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced

termination request is received) 593
7.3.48 UMASK_INHERIT parameter (defines a file mode creation mask when the job definition script

begins to run) [only for UNIX] 595
7.3.49 UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression)

(Windows only) 596
7.3.50 USERREPLY_DEBUG_DESTINATION parameter (specifies the input source and the

destination of event notification and reply-request messages during debug execution) 597
7.3.51 USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1

events are to be issued) 598

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 21

7.3.52 USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum number of concurrent
reply-request messages that can be output for a physical or logical host) 598

7.3.53 VAR_ENV_NAME_LOWERCASE parameter (specifies whether environment variable names in
lowercase letters are supported) (Windows only) 599

7.3.54 VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used) 601
7.3.55 VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of variable values that

are replaced in format ${#variable}) 603
7.4 Conditional parameters 605
7.4.1 lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified

logical host) 605
7.4.2 phost_start and phost_end parameters (define a set of parameters applicable only to the physical

host) 606

8 Commands Used During Operations 607
8.1 Command description format 608
8.1.1 Command description format for shell operation commands and UNIX-compatible command

(script format) (Windows only) 608
8.1.2 Command description format for UNIX-compatible commands 608
8.1.3 File path names 610
8.2 List of commands 611
8.2.1 List of shell operation commands 611
8.2.2 List of UNIX-compatible commands 612
8.3 Shell operation commands 618
8.3.1 adshappagent command (application execution agent start command) [only for Windows

execution environment] 618
8.3.2 adshappexec command (GUI application execution command) [only for Windows execution

environment] 620
8.3.3 adshchmsg command (replies manually to a reply-request message when a failure occurs) 623
8.3.4 adshcvmerg command (merges coverage information) 625
8.3.5 adshcvshow command (displays coverage information) 626
8.3.6 adshevtout command (outputs job definition script operation information) 629
8.3.7 adshexec command (executes a batch job) 637
8.3.8 adshfile command (specifies the allocation and postprocessing of regular files) 642
8.3.9 adshhk command (deletes spool jobs) 645
8.3.10 adshjava command (executes Java batch applications) [only for Windows, Linux, AIX, and HP-UX]647
8.3.11 adshlsmsg command (displays a list of reply-request messages when a failure occurs) 652
8.3.12 adshmdctl command (starts and stops the user-reply functionality management daemon) (UNIX

only) 653
8.3.13 adshmsvcd command (registers the user-reply functionality management service in a

development environment) (Windows only) 655
8.3.14 adshmsvce command (registers the user-reply functionality management service in an execution

environment) (Windows only) 656
8.4 UNIX-compatible commands 657
8.4.1 awk command (performs text processing and pattern matching) 658
8.4.2 basename command (extracts a file name from a path) 683

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 22

8.4.3 cat command (outputs files to the standard output) 685
8.4.4 cmp command (compares binary files) 688
8.4.5 cp command (copies files or directories) 691
8.4.6 cut command (outputs selected parts of lines to the standard output) 693
8.4.7 date command (displays the system date and time) 696
8.4.8 diff command (compares two files) 708
8.4.9 dirname command (retrieves character strings for directory path names from path names) 720
8.4.10 egrep command (searches for characters in files) 722
8.4.11 expand command (replaces tab characters with spaces) 725
8.4.12 expr command (evaluates an expression) 729
8.4.13 find command (searches for files in directories) 732
8.4.14 getopt command (analyzes command line options) 743
8.4.15 grep command (searches for characters in files) 747
8.4.16 gunzip command (decompresses compressed files) 753
8.4.17 gzip command (compresses files or decompresses compressed files) 760
8.4.18 head command (displays the first part of files) 781
8.4.19 hostname command (displays the host name) 782
8.4.20 ln command (creates a link file for a file or directory) 783
8.4.21 ls command (lists the contents of files or directories) 790
8.4.22 mkdir command (creates directories) 803
8.4.23 mv command (moves files or directories) 805
8.4.24 paste command (concatenates multiple files in lines) 807
8.4.25 printf command (converts form arguments according to the form and outputs the results to

the standard output) 816
8.4.26 rm command (removes files or directories) 821
8.4.27 rmdir command (removes empty directories) 822
8.4.28 sed command (replaces character strings in text) 823
8.4.29 sleep command (stops for a specified period of time) 837
8.4.30 sort command (sorts text files) 837
8.4.31 split command (splits a file) 847
8.4.32 stat command (outputs the statuses of files and directories to the standard output) 850
8.4.33 tail command (displays the last part of files) 857
8.4.34 tar command (stores the target path name in the archive and extracts/displays the target path

name) 861
8.4.35 touch command (changes a file's last access date and time or modification date and time) 872
8.4.36 tr command (outputs character strings input from the standard input to the standard output while

replacing or deleting characters on a byte-by-byte basis) 878
8.4.37 uname command (displays information about the OS or hardware) 882
8.4.38 uniq command (removes duplicated lines from a sorted file) 886
8.4.39 wc command (counts the number of bytes, lines, characters, and words in files) 888
8.4.40 which command (obtains the paths of external commands) 890
8.4.41 xargs command (creates and runs a command line) 893

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 23

8.5 UNIX-compatible commands (script format) (Windows only) 902
8.5.1 chmod command (disables the chmod commands specified in job definition scripts) 902
8.5.2 chmod command (changes the file read-only attribute setting (enable or disable)) 903
8.5.3 chmod command (specifies permissions as numeric values) 905
8.5.4 chmod command (specifies permissions as symbols or numeric values) 907
8.5.5 su command (disables the su commands specified in job definition scripts) 911
8.5.6 su command (executes programs with the permissions of the executing user) 912
8.5.7 who command (disables the who commands specified in job definition scripts) 913
8.5.8 who command (outputs login user information to logs) 914

9 Job Definition Script Commands and Control Statements 915
9.1 Command and control statement description formats 916
9.1.1 Standard shell command description format 917
9.1.2 Extended shell command description format 918
9.1.3 Extended script command description format 918
9.1.4 Script control statement description format 920
9.1.5 Reserved script command description format 920
9.2 Lists of commands and control statements 921
9.2.1 List of standard shell commands 921
9.2.2 List of extended shell commands 922
9.2.3 List of extended script commands 923
9.2.4 List of script control statements 923
9.2.5 List of reserved script commands 924
9.3 Standard shell commands 925
9.3.1 . command (executes a shell script) 925
9.3.2 : command (expands arguments) 926
9.3.3 alias command (defines aliases) 928
9.3.4 break command (exits from a loop) 929
9.3.5 builtin command (executes a built-in command) 930
9.3.6 cd command (changes the current directory) 931
9.3.7 command command (executes a command) 932
9.3.8 continue command (interrupts loop processing and returns to the beginning of the loop) 934
9.3.9 echo command (outputs what is specified in arguments to the standard output) 935
9.3.10 eval command (concatenates arguments into a command and executes it) 938
9.3.11 exec command (executes a command and exits) 939
9.3.12 exit command (exits the shell) 940
9.3.13 export command (exports shell variables) 941
9.3.14 false command (returns 1 as the return code) 943
9.3.15 getopts command (parses option arguments) 943
9.3.16 kill command (sends a signal) 945
9.3.17 let command (evaluates the values of arithmetic expressions) 946
9.3.18 print command (outputs to the standard output) 948

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 24

9.3.19 pwd command (outputs the path of the current directory) 949
9.3.20 read command (reads from the standard input and stores the input in variables) 950
9.3.21 readonly command (sets the read-only attribute for variables or displays all read-only variables) 952
9.3.22 return command (returns from a function or an external script) 953
9.3.23 set command (sets shell options, creates an array, or displays variable values) 954
9.3.24 shift command (shifts the run-time parameters) 957
9.3.25 test command (determines the value of a conditional expression) 958
9.3.26 times command (displays the amount of CPU time used by the shell) 959
9.3.27 trap command (specifies the action when signals and forced termination requests are received) 960
9.3.28 true command (returns 0 as the return code) 965
9.3.29 typeset command (declares explicitly the attributes and values of variables and functions) 966
9.3.30 ulimit command (sets limits on system resources) (UNIX only) 970
9.3.31 umask command (sets the access permissions for creating a new file) (UNIX only) 972
9.3.32 unalias command (removes alias definitions) 974
9.3.33 unset command (unsets variable values and attributes) 975
9.3.34 wait command (waits for child processes to complete) 976
9.3.35 whence command (displays how character strings would be interpreted if used as commands) 977
9.4 Extended shell commands 979
9.4.1 adshappexec command (GUI application executable command) (only for Windows execution

environment) 979
9.4.2 adshappexec command (GUI application execution command) [only for Windows development

environment] 979
9.4.3 adshcmdrc command (defining the return code threshold of a command) 982
9.4.4 adshecho command (issues a specified event notification message as a JP1 event) 984
9.4.5 adshjoberr command (reports an error to a job and job step) 986
9.4.6 adshmktemp command (creates a file for which the file name is not duplicated) 987
9.4.7 adshparsecsv command (analyzing CSV data) 989
9.4.8 adshparsejson command (analyzes JSON data) 990
9.4.9 adshread command (issues a specified reply-request message as a reply-waiting event) 992
9.4.10 adshscripttool command (supports creation of job definition scripts) (Windows only) 995
9.4.11 adshvarconv command (converts the value of a variable) 1003
9.5 Extended script commands 1009
9.5.1 #-adsh_file command (specifies assignment and postprocessing of regular files) 1009
9.5.2 #-adsh_file_temp command (assigns and postprocesses a temporary file) 1011
9.5.3 #-adsh_job command (declares a name for a job) 1012
9.5.4 #-adsh_job_stop command (defines termination conditions for a job) 1012
9.5.5 #-adsh_path_var command (defines shell variables for handling path names) 1013
9.5.6 #-adsh_rc_ignore command (defines commands to always terminate normally) 1015
9.5.7 #-adsh_script command (calls an external job definition script file from the job definition script

that is running) 1016
9.5.8 #-adsh_spoolfile command (assigns a program output data file) 1018

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 25

9.5.9 #-adsh_step_start command, #-adsh_step_error command, #-adsh_step_end
command (defines a job step) 1019

9.6 Script control statements 1024
9.6.1 case statement (chooses from multiple processing paths) 1024
9.6.2 for statement (repeats the same processing) 1025
9.6.3 if statement (branches conditionally) 1026
9.6.4 until statement (loops until a condition is true) 1027
9.6.5 while statement (loops while a condition is true) 1028
9.7 Reserved script commands 1029
9.7.1 time command (displays the time used to execute a command) 1029

10 Script development parts 1031
10.1 Description format of script development parts 1032
10.2 List of script development parts 1033
10.3 Script development parts 1035
10.3.1 getArrayIndex (gets an index based on the value of array) 1035
10.3.2 isEmptyVar (evaluates to a null variable) 1037
10.3.3 isInitVar (evaluates initialization of variable) 1038
10.3.4 sortArray (sorts array data) 1039
10.3.5 deleteSpace (gets the character string without space) 1040
10.3.6 getStrLen (gets the number of characters of character string) 1041
10.3.7 getStrPos (gets the position of character string) 1042
10.3.8 isLowerStr (evaluates half-width lowercase character of the character string) 1043
10.3.9 isUpperStr (verifies half-width uppercase character of the character string) 1044
10.3.10 isNumericStr (evaluates numeric characters) 1045
10.3.11 cmpDate (compares date) 1046
10.3.12 getCalcDate (gets the calculated date) 1047
10.3.13 getDate (gets the current date) 1049
10.3.14 getDateDiff (gets the number of elapsed days) 1049
10.3.15 getDay (gets day from date) 1050
10.3.16 getHour (gets hour from time) 1051
10.3.17 getMinute (gets minute from time) 1052
10.3.18 getMonth (gets month from date) 1053
10.3.19 getSecond (gets second from time) 1053
10.3.20 getTime (gets the current time) 1054
10.3.21 getWeekday (gets weekday from date) 1055
10.3.22 getYear (gets year from date) 1056
10.3.23 isLeapYear (evaluates to a leap year) 1057
10.3.24 getFileMTime (gets date and time of file and directory) 1058
10.3.25 getFileSize (gets size of file) 1059
10.3.26 isDir (evaluates existence of directory) 1060
10.3.27 isEmptyDir (evaluates existence of contents of directory) 1060

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 26

10.3.28 isFileOrDir (evaluates existence of File Directory) 1061
10.3.29 isNormalFile (evaluates existence of a regular file) 1062
10.3.30 arrayToCsv (outputs a value of two-dimensional array to CSV data) 1063
10.3.31 convCsvSep (converts the delimiter of CSV data) 1065
10.3.32 csvToArray (stores the two-dimensional array of CSV data) 1066
10.3.33 getCsvColumn (gets a column in consideration of blank line of CSV data) 1067
10.3.34 searchCsvColumn (gets a record with the search for specific column of CSV data) 1069
10.3.35 getJsonValue (gets a value corresponding to the name of JSON data) 1070
10.3.36 getXmlAttrValue (obtains an attribute value of elements of XML data) 1071
10.3.37 getXmlDecl (gets the XML declaration) 1073
10.3.38 getXmlElem (obtains contents of elements of XML data) 1074

Part 5: Troubleshooting

11 Troubleshooting 1077
11.1 Response procedure 1078
11.1.1 Corrective action when using the user-reply functionality 1078
11.1.2 When the root job terminates before its child jobs terminate 1079
11.2 Information needed when a problem occurs 1080
11.2.1 Logs 1080
11.2.2 Error information 1081
11.2.3 Spool information 1081
11.2.4 User-reply functionality's management daemon information (UNIX only) 1081
11.3 How to collect information 1083
11.3.1 adshcollect command (collects information) 1083

12 Messages 1091
12.1 Message format 1092
12.1.1 Message output format 1092
12.1.2 Format of message explanations 1093
12.1.3 Assignment of message numbers 1094
12.2 Message output destinations 1095
12.2.1 Notes about the row numbers that are output in messages 1104
12.3 List of messages 1106
12.4 Details of errors 1353
12.4.1 Details of errors (Windows) 1353
12.4.2 Details of errors (UNIX) 1354
12.4.3 Details of errors (specific to JP1/Advanced Shell) 1356
12.4.4 Handling Error Information Displayed in the User-Reply Functionality 1357

Appendixes 1361
A Coverage Information That Is Acquired 1362

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 27

A.1 Commands for which coverage information is acquired 1362
A.2 Control statements for which coverage information is acquired 1365
A.3 Functions for which coverage information is acquired 1366
A.4 Metacharacters for which coverage information is acquired 1367
A.5 Shell variable operations for which coverage information is acquired 1367
B If you start from the job scheduler other than JP1/AJS (only for UNIX) 1368
B.1 Preparation for starting from the job scheduler other than JP1/AJS (only for UNIX) 1368
B.2 SCHEDULER_SELECT parameter (selects the job scheduler to be used) 1369
B.3 Notes on starting from a job scheduler other than JP1/AJS 1370
C Modifications Made in Each Version 1371
C.1 Changes in 11-01 1371
C.2 Changes in 11-00 1371
C.3 Changes in 10-51 1372
C.4 Changes in 10-50 1373
C.5 Changes in 10-00-01 1376
C.6 Changes in 10-00 1376
C.7 Changes in 09-51-01 1378
C.8 Changes in 09-51 1379
C.9 Changes in 9-50-01 1380
D Glossary 1382

Index 1390

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 28

JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. This
chapter describes the purposes of JP1/Advanced Shell, provides an example of its application to a
business operation, explains the overall system configuration and general procedures, and provides
an overview of the product's functions.

Part 1: Overview

1 Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 29

1.1 Purposes of JP1/Advanced Shell

JP1/Advanced Shell is a product for improving development productivity and the operational efficiency of batch
applications. It enables you to efficiently create and execute job definition scripts (shell scripts) for batch jobs.

JP1/Advanced Shell has the features described below.

1.1.1 Inheriting assets between the OSs of batch applications
• Using existing assets

You can use shell scripts created in a UNIX environment to develop job definition scripts in a Windows environment.
Because the job definition scripts used in JP1/Advanced Shell employ language specifications that have standard
shell compatibility, it is easy to learn the language and migrate from existing shell scripts.

• Cross-platform support
Cross-platform means applicability to multiple OS bases. This feature enables you to use cross-platform functions.

• You can execute job definition scripts developed in a Windows environment in both Windows and UNIX
environments.

• You can use UNIX-compatible commands in both Windows and UNIX environments.

1.1.2 Expediting the configuration of batch applications
• Controlling job execution

JP1/Advanced Shell extends job definition scripts so that you can automate and concisely code processes that are
used repetitiously in batch applications.
You can reduce the volume of coding in job definition scripts and improve readability and maintainability of job
definition scripts by doing the following:

• Specifying job step execution conditions

• Using variables that are valid in job steps

• Outputting error messages and setting return codes when batch jobs terminate with errors

• In the event a batch job terminates with an error, automatically terminating child processes forcibly and deleting
temporary files used by the batch job

• Using an editor to develop job definition scripts (development environment)
In the development environment, you can use the JP1/Advanced Shell Editor (a dedicated editor with debugging
functions) of the Graphical User Interface (GUI) to develop and debug job definition scripts.

• You can execute job definition scripts in job steps, and set breakpoints.

• You can accumulate coverage information for job definition scripts.

The following figure shows the JP1/Advanced Shell Editor window.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 30

Figure 1-1: JP1/Advanced Shell Editor window

• Efficient file allocation and postprocessing
You can automate and concisely code processes, such as checking for regular files, and allocating and deleting
temporary files.

• You can automatically allocate temporary files during batch job execution and delete them once the batch job
has terminated.

• You can check for regular files during batch job execution and perform appropriate postprocessing on files
depending on job step or job processing results.

1.1.3 Improving serviceability and maintainability by central management
of batch job execution results

Maintainability of batch applications can be improved by automatically outputting job execution logs in the event of an
error and managing such logs centrally.

In conventional open systems, management of batch job execution results is complicated because the results are not
stored at one central location. JP1/Advanced Shell enables you to collect batch job execution results on a spool as job
execution logs, and to manage them centrally. By using JP1/AJS - View, you can execute batch jobs on a periodic basis
and reference the results by automatically executing job definition scripts.

Each job's execution results are output to a spool job directory under the spool directory. The following figure illustrates
central management of batch job execution results.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 31

Figure 1-2: Central management of batch job execution results

For details about the output contents of the job execution logs, see 3.5 Job execution log.

Lastly, troubleshooting support enables you to handle problems through collection of various types of data, including
job execution logs, system execution logs, and trace logs. For details, see 11. Troubleshooting.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 32

1.2 Example of application to a business operation

You can apply JP1/Advanced Shell to the following type of business operation.

In the case of an operation that involves many transactions in an online system during the daytime and totaling of the
transactions at night, you can develop and execute batch jobs that obtain totals, including sales figures, number of
products sold, and inventory updates. You can also develop and execute batch jobs for obtaining rolling totals, such as
daily, monthly, and term-end processing, as well as batch jobs that have specific purposes and that are used for special
occasions.

The following figure shows an example of JP1/Advanced Shell operation (for obtaining daily operation totals)

Figure 1-3: Example of JP1/Advanced Shell operation (obtaining daily operation totals)

To run JP1/Advanced Shell:

1. Start daily operation and perform transactions involving products.

2. The open infrastructure product updates the various sales data.

3. Daily operation ends and JP1/AJS issues instructions to execute job definition scripts automatically at specified
times.

4. JP1/Advanced Shell executes job definition scripts to process the various sales data.

5. JP1/Advanced Shell outputs the execution results of the job definition scripts.

6. The manager can obtain information, including totals and changes in product sales, based on the execution results.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 33

1.3 General procedures

JP1/Advanced Shell consists of the execution environment (JP1/Advanced Shell) and the development environment
(JP1/Advanced Shell - Developer). Job definition scripts created in the development environment are executed in the
execution environment. You can also create job definition scripts in a text editor.

The users of JP1/Advanced Shell are classified as system administrators and general users, based on their system
permissions. The following table explains the roles of these two classes of users.

Table 1-1: Classification of JP1/Advanced Shell users

JP1/Advanced Shell user Role

System administrator This user is responsible for system operations. The superuser permission
must have been assigned to this user beforehand.
The system administrator manages an environment that can run JP1/
Advanced Shell and registers the general users who will use JP1/Advanced
Shell.

General user Developer This user's responsibilities include creation and debugging of job definition
scripts.

Operator This user defines and runs JP1/Advanced Shell, checks the execution results,
and handles JP1/Advanced Shell execution errors, if any.
For details about the operator's tasks when JP1/AJS is used, see 3.1.1 
Operator's tasks in JP1/AJS jobs.

The following figure shows the overall system configuration of JP1/Advanced Shell.

Figure 1-4: Overall system configuration of JP1/Advanced Shell

To use a JP1/Advanced Shell system:

1. In the Windows development environment, the developer uses JP1/Advanced Shell Editor or a text editor to prepare
job definition scripts.

2. The job definition scripts are saved from JP1/Advanced Shell Editor or a text editor.

3. The job definition scripts are transferred to the execution environment.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 34

4. In the execution environment, the operator uses the following methods to send instructions to execute the job
definition scripts:

• Automatic execution using JP1/AJS

• Manual execution from the command prompt and UNIX shell

5. The job definition script execution results output by JP1/Advanced Shell are checked.

1.3.1 Procedure for executing batch jobs automatically (working with JP1/
AJS)

When you use JP1/Advanced Shell to run batch jobs, you can call the execution environment from the job scheduler's
JP1/AJS so that the batch jobs can execute automatically. JP1/Advanced Shell provides job controller functions that
manage execution of a user's business applications. The following figure shows the positioning of JP1/Advanced Shell
for business applications.

Figure 1-5: Positioning of JP1/Advanced Shell for business applications

When you link JP1/Advanced Shell to JP1/AJS, you can register batch job execution schedules for executing batch jobs.

A job definition script containing job definitions is analyzed by the job controller. The job controller controls execution
and termination of batch jobs by allocating and releasing input and output devices and various system resources. JP1/
Advanced Shell achieves central management by executing this job definition script and collecting the execution results
on the spool.

The figure below shows the JP1/Advanced Shell operation procedure. In the figure, the processing performed by
JP1/AJS is identified by the number 3, and the processing performed by JP1/Advanced Shell is identified by the numbers
4 through 6.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 35

Figure 1-6: JP1/Advanced Shell operation procedure (working with JP1/AJS)

To run JP1/Advanced Shell:

1. Create job definition scripts.

2. Transfer the job definition scripts to JP1/Advanced Shell's execution environment.

3. The job controller starts according to a schedule registered in JP1/AJS.

4. The job controller executes batch jobs using the procedure shown below according to the contents of a job definition
script created in step 1.
Analyze the job definition script Allocate file resources Execute jobs and job steps Release file resources

5. Collect the batch job execution results on the spool for central management.

6. If necessary, use commands to display coverage information and to output information about the execution results
of the job definition scripts.

1.3.2 Flow of processes when executing Java batch applications by using
a function of JP1/Advanced Shell [only for Windows, Linux(R), AIX,
and HP-UX]

Java batch applications can be executed by using the adshjava command provided by JP1/Advanced Shell. The
following figure shows the flow of processes.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 36

Figure 1-7: Flow of processes when executing Java batch applications by using the adshjava
command provided by JP1/Advanced Shell

1. The adshjava command instructs uCosminexus Application Server to execute the Java batch application.

2. uCosminexus Application Server executes the Java batch application according to the instructions supplied by the
adshjava command.

If you use execute a Java batch application using the adshjava command and then forcibly terminate the job, the
adshjava command executes the cjkilljob command for the Java batch application being executed. This
automatically stops the Java batch application.

For details, see 3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced Shell
[only for Windows, Linux, AIX, and HP-UX].

1.3.3 Procedure for using the user-reply functionality
The user-reply functionality enables the following operations to be performed from job definition scripts:

• Notifying the operator of batch job information

• Enabling the operator to reply to job definition scripts

Linked with JP1/IM, the user-reply functionality issues specified character strings as JP1 events. The following figure
shows the procedure for using the user-reply functionality.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 37

Figure 1-8: Procedure for using the user-reply functionality

To use the user-reply functionality:

1. If a command in which a character string is specified is executed by means of a job definition script, the specified
character string is issued as a JP1 event.

2. The issued JP1 event is transferred by JP1/Base to a specified operation management server.

3. The specified character string is displayed in the JP1/IM - View window.

4. If it's a reply-waiting event, the operator can enter a reply.
The reply entered from the operator is stored in a shell variable specified in the job definition script.

For details, see 3.8 Using the user-reply functionality.

1.3.4 Flow of processes when using the application-execution agent
functionality

The application-execution agent functionality can operate independently from the job controller and perform the
following functions.

• You can execute JP1/AJS jobs to run Excel or original interactive programs created by users in VC++.
<Examples>

1. If you newly start Excel, enter specific information including the date, person in charge, and check boxes for
confirming contents of operation, and close Excel, Excel closes and you can move the file to a specific folder
with the succeeding job.

2. If an original interactive program created by a user in VC++ is executed and then the interactive GUI is ended
by clicking the OK button, the job will continue.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 38

• You can open the GUI window in JP1/AJS and execute programs of other products for which tools for automatic
replies can be used.
<Examples>

1. Specify the program of the other product as well as the arguments of the GUI application execution program of
JP1/AS that was specified in the definition of the PC job for JP1/AJS. (You can also use the custom job of the
application-execution agent functionality.)

2. If you execute the PC job of 1, the GUI window appears in JP1/AJS - Agent, an automatic reply is sent, and the
job ends.

The application-execution agent functionality executes the executable application specified by the user by linking the
application-execution agent program with the GUI application execution program. The following is the flow of processes
when using the application-execution agent functionality:

For details, see 3.12 Using the application-execution agent functionality (only for the Windows execution environment).

(1) When waiting for the executable application to finish [only for the
Windows execution environment]

The following is the flow of processes when waiting for the executable application to finish:

1. Start the application-execution agent program for each running user in advance to start up Windows (1).

2. If you need to run the executable application, specify the -w argument and start the GUI application execution
program (2).

3. The application-execution agent program starts the executable application when the GUI application execution
program starts (3).

4. The GUI application execution program finishes when the executable application finishes (the flow of the dotted
arrows) (4).

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 39

5. The application execution log stores the log when executing the application-execution agent program and GUI
application execution program (5).

(2) When not waiting for the executable application to finish [only for the
Windows execution environment]

The following is the flow of processes when not waiting for the executable application to finish:

1. Start the application-execution agent program for each running user in advance to start up Windows (1).

2. If you need to run the executable application, specify the -n argument and start the GUI application execution program
(2).

3. The application-execution agent program starts the executable application when the GUI application execution
program starts (3).

4. The GUI application execution program finishes when the executable application starts (the flow of the dotted
arrows) (4).

5. The application execution log stores the log when executing the application-execution agent program and GUI
application execution program (5).

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 40

1.4 Overview of operation in a cluster system

A cluster system consists of multiple server systems that are configured in such a manner that if a failure occurs on one
of the servers, applications can continue on another server. In a cluster system, hosts are classified as follows:

• Server running applications (active server)

• Server on standby that can inherit applications if the active server fails (standby server)

If a failure occurs on the active server that is running applications, the applications can be inherited to the standby server.
The function for inheriting applications in the event of a failure is called system switchover. A logical server that is the
unit of failover during system switchover is called a logical host.

In a cluster system, the applications must be run in a logical host environment so that they can continue their processing
even after system switchover. You can run applications that are to be run on a logical host on any server, regardless of
the physical server being used.

A logical host consists of the components explained below. The applications that are run as daemons or services store
data on the shared disk and use a logical IP address to communicate.

Table 1-2: Components of a logical host

Component of logical host Description of component

Daemon or service Daemons and services are the applications that are run in a cluster system, such as JP1/AJS and
JP1/Advanced Shell. If a failure occurs on the active server's logical host, the daemons or
services with the same names are started on the standby server's logical host.

Shared disk This is a disk unit that is connected to both the active server and the standby server. If this disk
stores the information that is to be inherited during system switchover (such as definition
information and execution status), the standby server inherits the connection to the shared disk
in the event of a failure on the active server's logical host.

Logical IP address This is an IP address allocated while a logical host is running. If a failure occurs on the active
server, the standby server inherits the same logical IP address allocation. This enables the client
to use the same IP address as if the same server is always running.

Important
In this manual, a logical server that is the unit of failover during system switchover is called a logical
host. However, some cluster software products and applications use different terms, such as group or
package. Check the appropriate terminology in your system by referencing your cluster software's
documentation.

A logical server that is the unit of failover during system switchover is called a logical host, while the
physical server is called a physical host.

The following figure shows accesses during normal operation and after system switchover.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 41

Figure 1-9: Accesses during normal operation and after system switchover

The following explains the figure.

• Accesses during normal operation
While the active server is running, the shared disk and logical IP address are allocated on the active server where
the daemons or services are running.

• Accesses after system switchover
If a failure occurs on the active server, the standby server inherits the shared disk and logical IP address and starts
the same daemons or services that were running on the active server. Even though the physical server has changed
as a result of system switchover, it looks to the client as if the server with the same IP address is running because
the standby server inherits the shared disk and logical IP address.

To run JP1/Advanced Shell in a logical host environment, you must have a shared disk to store the data that needs to
be inherited during system switchover and a logical IP address. If you will be using the user-reply functionality, you
must also set up the cluster software so that it can control the start, stop, and operation monitoring of the user-reply
functionality's management daemon or service.

A JP1/Advanced Shell that is running in a logical host environment can inherit the job execution environment from the
active server to the standby server during system switchover by using data stored on the shared disk. This means that
JP1/Advanced Shell must store the spool on the shared disk. Note that execution of a job that was executing at the time
system switchover occurred does not continue.

For details about the JP1/Advanced Shell settings required for cluster operations, see 2.9 Running in a cluster
configuration.

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 42

1.5 Overview of functionality

The following table describes the functionality supported by JP1/Advanced Shell.

Table 1-3: Functionality of JP1/Advanced Shell

Functionality Related item Section

Defining a job execution environment Specifying the environment variables required for job execution 2.5 Specifying
environment variables

Specifying environment files. 2.6 Specifying
environment information
for JP1/Advanced Shell,
7. Parameters Specified
in the Environment Files

Creating job definition scripts according
to the syntax for shell scripts

Basic components of job definition scripts 5.1 Basic elements of job
definition scripts

Conditional 5.2 Conditionals, 5.4 
Priority of conditional and
arithmetic operations,
9.6 Script control
statements

Arithmetic operations 5.3 Arithmetic
operations, 5.4 Priority
of conditional and
arithmetic operations

Shell variables 5.1.2 Variables, 5.5 
Shell variables

Shell options 5.6 Shell options

Using files from job definition scripts Regular files 5.9.1 Allocating regular
files and performing
postprocessing, 9.5 
Extended script
commands

Temporary files 5.9.2 Allocating
temporary files and
performing
postprocessing, 9.5 
Extended script
commands

Program output data files 5.9.3 Allocating program
output data files and
performing
postprocessing, 9.5 
Extended script
commands

Controlling job execution Declaring job names 5.8.1 Declaring job
names, 9.5 Extended
script commands

Defining job end conditions 5.8.2 Defining the job
end condition, 9.5 
Extended script
commands

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 43

Functionality Related item Section

Controlling job execution Starting or ending job steps 5.8.3 Defining job steps,
9.5 Extended script
commands

Specifying a definition so that any command is always treated as
having terminated normally

(2) Defining commands
that always terminate
normally, 9.5 Extended
script commands

Defining return codes for extended script commands 2.6.9 Defining the return
codes of extended script
commands, 7.3 
Environment setting
parameters

Calling external scripts 5.8.6 Calling an external
job definition script file
from an executing job
definition script, 9.5 
Extended script
commands

Starting child jobs 2.6.5 Defining files to be
started as child jobs, (1) 
Root jobs and child jobs,
3.2.3 Running job
definition scripts as child
jobs, 5.1.11 Specifying
external commands, 7.3 
Environment setting
parameters

Forcibly terminating jobs 2.6.21 Performing user-
specific postprocessing
when a job is terminated
forcibly, 3.11 Forcibly
terminating jobs, 7.3 
Environment setting
parameters

Acquiring job information within shell
scripts

Using shell variables for which a job step return code has been
specified

5.5.1 Shell variables set
by JP1/Advanced Shell

Using environment variables for which job information has been
specified

2.5 Specifying
environment variables,
5.7 Environment
variables for job
information

Using the editor to create job definition scripts#1 4. Using JP1/Advanced
Shell - Developer
(Windows Only), 5. 
Creating Job Definition
Scripts

Executing commands Shell operation commands 8.3 Shell operation
commands

UNIX-compatible commands 2.6.6 Specifying
definitions for using
UNIX-compatible
commands, 8.4 UNIX-
compatible commands,
8.5 UNIX-compatible

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 44

Functionality Related item Section

Executing commands UNIX-compatible commands commands (script format)
(Windows only)

Standard shell commands 9.3 Standard shell
commands

Extended shell commands 9.4 Extended shell
commands

Extended script commands 9.5 Extended script
commands

Script control statements 9.6 Script control
statements

Reserved script commands 9.7 Reserved script
commands

Registering custom jobs#2 2.7.1 Registering custom
jobs in JP1/AJS - View

Using the user-reply functionality Issuing any character string as a JP1 event 9.4 Extended shell
commands

Issuing any character string as a reply-waiting event 9.4 Extended shell
commands

Starting the user-reply functionality's management daemon or service 8.3 Shell operation
commands

Collecting the operation information of
job definition scripts#2

Accumulating the operation information of job definition scripts 7.3 Environment setting
parameters

Outputting the operation information of job definition scripts 8.3 Shell operation
commands

Using the same job definition scripts on
different platforms

Converting job definition scripts so that they can be used in both
Windows and UNIX

2.6.2 Converting path
names, 2.6.3 Converting
file paths when files are
input and output, 2.6.4 
Converting arguments
during command
execution, 2.6.12 
Migrating job definition
scripts from UNIX to
Windows, 7.3 
Environment setting
parameters

Using the UNIX-compatible commands 2.6.6 Specifying
definitions for using
UNIX-compatible
commands, 8.4 UNIX-
compatible commands,
8.5 UNIX-compatible
commands (script format)
(Windows only)

Deleting spool jobs 3.9 Deleting spool jobs,
8.3 Shell operation
commands

Collecting coverage information Acquiring coverage information 3.10 Acquiring coverage
information, 8.3 Shell
operation commands, A. 

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 45

Functionality Related item Section

Collecting coverage information Acquiring coverage information Coverage Information
That Is Acquired

Displaying coverage information 3.10 Acquiring coverage
information, 8.3 Shell
operation commands

Merging coverage information 3.10 Acquiring coverage
information, 8.3 Shell
operation commands

Always enabling acquisition of coverage information 3.10 Acquiring coverage
information, 8.3 Shell
operation commands

Debugging job definition scripts Using CUI for debugging#3 6.1.2 Debugging with the
CUI (UNIX only), 6.1.4 
List of debugger
commands (UNIX only),
6.1.5 Whether execution
can be stopped at the
elements of a job
definition script, 6.2 CUI
debugger (UNIX only)

Using GUI for debugging#1 4.2.2 Debug mode,
4.4.6 Debugging, 6.1.1 
Debugging with the GUI
(Windows only), 6.1.3 
List of functions of the
GUI debugger (Windows
only), 6.1.5 Whether
execution can be stopped
at the elements of a job
definition script

Outputting job execution logs 1.1.3 Improving
serviceability and
maintainability by central
management of batch job
execution results, 3.5 Job
execution log

Using the application-execution agent functionality# 1 #2 2.11 Setting the
application-execution
agent functionality [only
for the Windows
execution environment]
8.3 Shell operation
commands
9.4 Extended shell
commands

Troubleshooting Collecting data, such as job execution logs, system execution logs, and
trace logs

11. Troubleshooting

Replying to reply-request messages when JP1/IM is not available 8.3 Shell operation
commands, 11. 
Troubleshooting

#1
Available only in the development environment

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 46

#2
Available only in the execution environment

#3
Available only in the UNIX edition

1. Overview of JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 47

This chapter discusses the conditions and requirements for using JP1/Advanced Shell, including
the program installation directory, the main programs, prerequisites, installation, environment
information settings, and custom job registration.

Part 2: Setup

2 Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 48

2.1 Program installation directory

The program installation directory for JP1/Advanced Shell depends on the OS being used. In a Windows environment,
you can change the default installation directory. In a UNIX environment, the program is installed in a fixed directory.

This section explains the organization of JP1/Advanced Shell's program installation directory and the directories used
to store various files that are output and referenced by JP1/Advanced Shell.

2.1.1 Installation folder (Windows only)

(1) Installation folder
In Windows, you can install JP1/Advanced Shell in any folder. The following folders for the environments are created
under the specified installation folder.

Environment to be installed Installation target Remarks

Execution environment installation-folder\JP1ASE We recommend that you install this
environment on a server.

Development environment installation-folder\JP1ASD We recommend that you install this
environment on a client PC.

Custom job definition programs included in the
execution environment (JP1/Advanced Shell -
Custom Job)

installation-folder\JP1ASV Install these programs at the operation
management console on which
JP1/AJS - View is installed.

The organization of the installation folder is shown below. Only folders for the selected environments are created.

Installation folder#1
 |---JP1ASD : Development environment folder
 | |---bin : Program folder
 | |---cmd : UNIX-compatible command folder
 | |---doc : Help folder
 | | |---en : Help (English edition) folder
 | | |---ja : Help (Japanese edition) folder
 | |---maintenance : Folder used that is used when failure
occurs
 | |---parts : Script development parts folder
 | | |---en : Script development parts (English
version) folder
 | | |---ja : Script development parts (Japanese
version) folder
 | |---sample : Sample data folder
 |---JP1ASE : Execution environment folder
 | |---bin : Program folder
 | |---cmd : UNIX-compatible command folder
 | |---doc : Help folder
 | | |---en : Help (English edition) folder
 | | |---ja : Help (Japanese edition) folder
 | |---maintenance : Folder used that is used when failure
occurs
 | |---parts : Script development parts folder
 | | |---en : Script development parts (English
edition) folder
 | | |---ja : Script development parts (Japanese
edition) folder
 | |---sample : Sample data folder

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 49

 | |---util--setup.exe : Installer of custom job defining
program
 |---JP1ASV : Custom job defining program folder
 |---bin : Program folder
 |---doc--ja--help--INDEX.HTM : Help (manual)
 |---image--custom : Custom job icon folder
 | |---CUSTOM_PC_ADSHPC.gif : Custom job icon for PC job
 | |---CUSTOM_PC_ADSHUX.gif : Custom job icon for UNIX job
 | |---CUSTOM_PC_ADSHAPPEXEC.gif : Custom job icon for GUI application
execution job#2
 |---maintenance : Folder that is used when failure
occurs

#1:
Do not use any of the following characters in the installation folder name: & [] { } ^ = ; ! ' + , ` ~ # %. The
product will not function normally if it is installed in a folder whose name contains any of these characters.

#2:
If a version of JP1/AJS3 - View that is earlier than 11-00 is installed and the custom job definition program is to be
installed, the custom job icons must be copied to the following folder:

Installation folder of JP1/AJS - View\image\custom

(2) Trace output folder and folder for creating a system environment file
The trace output folder and the folder for creating the system environment files are created under the Common application
data folder.

Common-application-data-folder
 |---Hitachi--JP1AS--JP1ASD : Development environment folder
 | |---conf : System environment file storage folder
 | |---trace : Trace output folder
 | |---uxpl : Log folder
 |-----JP1ASE : Execution environment folder
 | |---conf : System environment file storage folder
 | |---trace : Trace output folder
 | |---uxpl : Log folder
 |-----JP1ASV : Custom job definition program folder
 | |---trace : Trace output folder
 |-----misc : Folder for libraries common to all products
 |---trace : Trace output folder
 |---uxpl : Log folder

(3) System execution logs, spool, and temporary files
The folders for system execution logs, spool, and temporary files are created in the shared documents folder.

shared-documents-folder
 |---Hitachi--JP1AS--JP1ASD : Development environment folder
 | |---log : Folder for system execution logs
 | |---spool : Spool folder
 | |---temp : Folder for temporary files
 |-----JP1ASE : Execution environment folder
 | |---log : Folder for system execution logs
 | |---appexec: Folder for application-execution
 | | agent function log
 | |---spool : Spool folder
 | |---temp : Folder for temporary files

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 50

 |-----misc : Folder for libraries common to all products
 |---log : Log folder

(4) List of programs
The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced
Shell.

Table 2-1: Main programs used in JP1/Advanced Shell (Windows only)

Storage folder File name Overview of
program
(icon)

Description

installation-folder
\each-
environment's-
folder#1\bin

adshappagent.exe Application-execution
agent program

This is the program that executes the executable application in the
execution environment.
This command registers this program to startup and cancels said
registration.

adshappexec.exe GUI application
execution program
()

This is the program that reports to the application-execution agent
program when using the executable application in the execution
environment.

adshchmsg.exe Manual response to
reply-request
messages when an
error occurs

Command that is used to respond manually to reply-request
messages when an error occurs. This command must be used by
a user with Administrators permissions.

adshctmj.exe JP1/Advanced Shell
execution definition
program ()

Program that defines the JP1/Advanced Shell execution
environment in a custom job definition program.

adshctmjapp.exe GUI application
execution definition
program ()

This is the program that defines the execution environment of the
GUI application with the custom job definition program.

adshctmjapp.bat GUI application
execution definition
program

This is the program that defines the execution environment of the
GUI application with the custom job definition program.

adshctmjpc.bat JP1/Advanced Shell
execution definition
program for PC jobs

Program that defines the JP1/Advanced Shell execution
environment for PC jobs in a custom job definition program.

adshctmjunix.bat JP1/Advanced Shell
execution definition
program for UNIX
jobs

Program that defines the JP1/Advanced Shell execution
environment for UNIX jobs in a custom job definition program.

adshcvmerg.exe Merging coverage
information

Command that merges coverage information. This program can
be used in both environments (execution and development).

adshcvshow.exe Displaying coverage
information from
commands

Command that displays coverage information. This program can
be used in both environments (execution and development).

adshcvview.exe Displaying coverage
information from the
editor

Program that displays coverage information. This program
enables coverage information to be displayed from the editor in
the development environment.

adshedit.exe JP1/Advanced Shell
Editor ()

Editor used to edit job definition scripts in the development
environment. Double-clicking the icon opens the JP1/Advanced
Shell Editor.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 51

Storage folder File name Overview of
program
(icon)

Description

installation-folder
\each-
environment's-
folder#1\bin

adshesub.exe Debugging in the
editor

Program that debugs job definition scripts in the development
environment. This program is started automatically from
adshedit.exe.

adshevtout.exe Outputting job
definition script
operation information

In an execution environment, the command that outputs job
definition script operation information to a CSV file.

adshexec.exe Executing batch jobs Command that starts the job controller that analyzes and controls
execution of job definition scripts.

adshexecsub.exe Command that executes batch jobs in the execution environment.
This command is started automatically from adshexec.exe.

adshfile.exe Registration of file
postprocessing

Command that defines how a specified file is to be processed when
a job step or job is terminated. This program can be used in both
environments (execution and development).

adshhk.exe Deleting spool jobs Command that deletes spool jobs. This command can be used in
both environments (execution and development).

adshlsmsg.exe Displaying a list of
reply-request
messages when an
error has occurred

Command that outputs job definition script operation information
to a CSV file in the execution environment.

adshmsvcd.exe User-reply
functionality's
management service

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
development environment. It must be used by a user with
Administrators permissions.

adshmsvce.exe User-reply
functionality's
management service

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
execution environment. It must be used by a user with
Administrators permissions.

installation-folder
\each-
environment's-
folder#1\cmd

awk.exe,
basename.exe,
cat.exe, cmp.exe,
cp.exe, cut.exe,
date.exe,
diff.exe,
dirname.exe,
egrep.exe,
expand.exe,
expr.exe,
find.exe,
getopt.exe,
grep.exe,
gunzip.exe,
gzip.exe,
head.exe,
hostname.exe,
ln.exe, ls.exe,
mkdir.exe, mv.exe,
paste.exe,
printf.exe,
rm.exe, rmdir.exe,
sed.exe,
sleep.exe,
sort.exe,

UNIX-compatible
commands#2

Commands that are used mainly in UNIX batch applications but
can also be used in a Windows environment. These commands
can be used in both environments (execution and development).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 52

Storage folder File name Overview of
program
(icon)

Description

installation-folder
\each-
environment's-
folder#1\cmd

split.exe,
stat.exe,
tail.exe, tar.exe,
touch.exe, tr.exe,
uname.exe,
uniq.exe, wc.exe,
which.exe,
xargs.exe

UNIX-compatible
commands#2

Commands that are used mainly in UNIX batch applications but
can also be used in a Windows environment. These commands
can be used in both environments (execution and development).

installation-folder
\each-
environment's-
folder#1\maint
enance

adshcollect.bat Collecting data Command that collects troubleshooting data. This program can be
used in both environments (execution and development).

#1
each-environment's-folder is JP1ASD for the development environment and JP1ASE for the execution environment
and JP1ASV for the custom job definition program.

#2
The UNIX-compatible commands also include chmod, su, and who. If you will be using any of these three
commands, edit beforehand each of the applicable sample script files provided by JP1/Advanced Shell using the
procedure described in (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

2.1.2 Installation directory (UNIX only)

(1) Installation directory
The UNIX execution environment is installed in a fixed directory (/opt/jp1as). There is no development
environment for a UNIX environment.

The organization of the installation directory is as follows:

/opt/jp1as
 +-bin : Program directory
 +-cmd : UNIX-compatible command directory
 +-conf : System environment file storage directory
 +-instlog : Installation log information directory
 +-lib : Library directory
 + +-nls : Message catalog storage directory
 +-log : System execution log directory
 +-maintenance : Directory used when a failure occurs
 +-parts : Directory for script development parts
 | +-en : Directory for script development parts
 | | (English version)
 | +-ja : Directory for script development parts
 | (Japanese version)
 +-sample : Sample data directory
 +-sbin : Directory for programs of system administrator
 +-system : Directory the user-reply functionality management
 | daemon uses

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 53

 +-trace : Trace directory
 +-util-setup.exe : Installer of custom job definition program

(2) Spool directory and directory for temporary files
The spool directory and the directory for temporary files are created in the following directories:

/var/opt/jp1as--spool : Spool directory
 +---temp : Directory for temporary files

(3) List of programs
The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced
Shell.

Table 2-2: Main programs used in JP1/Advanced Shell (UNIX only)

Storage
directory

File name Overview of
program

Description

/opt/
jp1as/bin

adshcvmerg Merging coverage
information

Command that merges coverage information.

adshcvshow Displaying
coverage
information

Command that displays coverage information.

adshevtout Outputting job
definition script
operation
information

Command that outputs job definition script operation information to
a CSV file.

adshexec Executing batch
jobs

Command that executes batch jobs.

adshfile Registration of file
postprocessing

Command that defines how a specified file is to be processed when a
job step or job is terminated.

adshhk Deleting spool
jobs

Command that deletes spool jobs.

/opt/
jp1as/cmd

awk, basename, cat,
cmp, cp, cut, date,
diff, dirname,
egrep, expand, expr,
find, getopt, grep,
gunzip, gzip, head,
hostname, ln, ls,
mkdir, mv, paste,
printf, rm, rmdir,
sed, sleep, sort,
split, stat, tail,
tar, touch, tr,
uname, uniq, wc,
which, xargs

UNIX-compatible
commands

UNIX-compatible commands that can be used from job definition
scripts.

/opt/jp1as/
maintenance

adshcollect Collecting data Command that collects troubleshooting data.

/opt/jp1as/
sbin

adshchmsg Manual response
to reply-request

Command that is used to respond manually to reply-request messages
when an error occurs. This command must be used by a user with the
superuser permissions.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 54

Storage
directory

File name Overview of
program

Description

/opt/jp1as/
sbin

adshchmsg messages when an
error occurs

Command that is used to respond manually to reply-request messages
when an error occurs. This command must be used by a user with the
superuser permissions.

adshlsmsg Displaying a list of
reply-request
messages when an
error has occurred

Command that displays a list of reply-request messages when an error
has occurred. This command must be used by a user with the superuser
permissions.

adshmdctl User-reply
functionality's
management
daemon

Command that starts and stops the daemon for managing shared
memory for the user-reply functionality. This command must be used
by a user with the superuser permissions.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 55

2.2 Evaluations prior to installation

This section explains the evaluations that need to be made prior to installation, including the system configuration,
prerequisite programs, related programs, and files to be used.

2.2.1 System configuration
This subsection explains the JP1/Advanced Shell system configuration for each execution mode.

(1) Executing batch jobs from JP1/AJS
The following shows the system configuration for executing batch jobs from JP1/AJS.

Figure 2-1: System configuration for executing batch jobs from JP1/AJS

The following explains the role of each system component.

• Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.

• Batch operation server: Enables manual or automatic execution of job definition scripts.

• Operation management server: Manages jobs that are executed.

• Operation management console: Enables use of JP1/AJS - View for displaying job execution results, and is used to
define the job definition scripts that are to be executed automatically. To perform job definition in JP1/Advanced
Shell, you must have JP1/Advanced Shell - Custom Job (custom job definition program).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 56

(2) Executing batch jobs manually
The following shows the system configuration for executing batch jobs manually.

Figure 2-2: System configuration for executing batch jobs manually

The following explains the role of each system component.

• Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.

• Batch operation server: Enables manual execution of job definition scripts.

(3) When linking with uCosminexus Application Server
The system configuration when linking with uCosminexus Application Server varies as shown in the following figure
depending on whether the job scheduling functionality is used.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 57

Figure 2-3: System configuration when linking with uCosminexus Application Server (when not
using the job scheduling functionality)

Figure 2-4: System configuration when linking with uCosminexus Application Server (when using
the job scheduling functionality)

For details, see 3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced Shell
[only for Windows, Linux, AIX, and HP-UX].

(4) Using the user-reply functionality
The following figure shows the system configuration for using the user-reply functionality.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 58

Figure 2-5: System configuration for using the user-reply functionality

For details, see 3.8 Using the user-reply functionality.

2.2.2 Programs required in each environment
This subsection explains the prerequisite programs for JP1/Advanced Shell and the related programs.

(1) Prerequisite and related programs for the execution environment

(a) Prerequisite programs for the execution environment
The following table lists the prerequisite programs for the execution environment.

Table 2-3: Prerequisite programs for the execution environment

Server type OS

Same batch operation server as for JP1/Advanced Shell (Windows only) Windows

Same batch operation server as for JP1/Advanced Shell (UNIX only) AIX,
HP-UX,
Linux, or
Solaris

(b) Related programs for the execution environment
The following tables list the related programs for each server in the execution environment.

Table 2-4: Related programs in the execution environment (when executing batch jobs from JP1/
AJS)

Server type Processing to be performed Programs

Same batch operation server as for JP1/Advanced Shell Executes job definition scripts from
JP1/AJS

JP1/Base
JP1/AJS - Agent#

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 59

Server type Processing to be performed Programs

Operation management server Manages jobs JP1/Base
JP1/AJS - Manager#

Operation management console (Windows only) Displays job execution results JP1/AJS - View

#
JP1/AJS - Agent is not needed when JP1/AJS - Manager is installed on the same server as JP1/Advanced Shell,
because JP1/AJS - Manager provides the JP1/AJS - Agent functions.

Table 2-5: Related programs for the execution environment (when executing Java batch
applications upon linking with uCosminexus Application Server) [only for Windows,
Linux, AIX, and HP-UX]

Server type Program

Same batch operation server as JP1/Advanced Shell uCosminexus Application Server

Table 2-6: Related programs in the execution environment (when using the user-reply functionality)

Server type Programs

Same batch operation server as for JP1/Advanced Shell JP1/Base

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

Note:
These programs are not required if you debug and run your coding for the user-reply functionality with the standard
output specified as the output destination.

(2) Prerequisite and related programs for the execution environment
(Windows only)

(a) Prerequisite program for the development environment
The following table shows the prerequisite program for the development environment.

Table 2-7: Prerequisite program for the development environment (Windows only)

Server type OS

Same development PC as for JP1/Advanced Shell - Developer Windows

(b) Related programs for the development environment
The following tables list the related programs for the servers in the development environment.

Table 2-8: Related programs in the development environment (when using the user-reply
functionality)

Server type Programs

Same development PC as for JP1/Advanced Shell - Developer JP1/Base

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 60

Server type Programs

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

Note:
These programs are not required if you debug and run your coding for the user-reply functionality with the standard
output specified as the output destination.

(3) Prerequisite and related programs for the custom job definition
program (Windows only)

(a) Prerequisite programs for the custom job definition program
The table below shows the prerequisite programs for the custom job definition program. Although the custom job
definition program is supported only in Windows, you can use it to create both Windows and UNIX job definitions.

Table 2-9: Prerequisite programs for the custom job definition program (Windows only)

Server type OS and Program

Same operation management console as for JP1/Advanced Shell - Custom Job • OS
Windows

• Program
JP1/AJS - View

(b) Related programs for the custom job definition program
Programs related to the custom job definition development environment are shown for each server.

Table 2-10: Programs related to the development environment (when executing forcibly terminating
upon linking with uCosminexus Application Server)

Server type Program

Same PC for development as JP1/Advanced Shell - Developer uCosminexus Application Server

Table 2-11: Programs related to the development environment (when using the user-reply
functionality)

Server type Program

Same PC for development as JP1/Advanced Shell - Developer JP1/Base

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 61

2.2.3 Files used in JP1/Advanced Shell

(1) List of files used in JP1/Advanced Shell
The table below lists and describes the files that are used in JP1/Advanced Shell. To determine whether a file size can
exceed 2 GB, see (2) Handling of files that are larger than 2 GB (large files).

Table 2-12: Files used in JP1/Advanced Shell

File name (icon) Extension File location File contents

Job definition script file () .ash Any location A job definition script. The user can assign
any file name.

Environment file#1 .ase Any location JP1/Advanced Shell environment settings.

System environment file .ase See (1) Specifying the system environment
files.

A file that sets environment information for
JP1/Advanced Shell.

Coverage information file .asc Any location Coverage environment information for JP1/
Advanced Shell.

Debugging information file .asd Same directory as for the job definition
script files#2

Debugging information used by the editor
(development environment)

System execution log#1 .log Directory specified in the LOG_DIR
parameter in the environment file

Log information that provides overall batch
job execution logs for the system
administrator.

Trace information#1 .log • For the adshexec command, the
directory specified in the TRACE_DIR
parameter in the environment file

• In all other cases, the directory specified
by the program

JP1/Advanced Shell's internal trace logs.

Temporary file .tmp • For a temporary file specified in the #-
adsh_file_temp command, the
directory specified in the
TEMP_FILE_DIR parameter in the
environment file

• In all other cases, the directory specified
by the program

A temporary file used by JP1/Advanced
Shell.

Coverage display temporary file .txt Temporary file directory specified by the
system

Temporary file used in displaying coverage
information. The format of file name is as
follows:
adshexec_view_job-definition-script-
file-name_year-month-date_hour-minute-
second.txt

Start log (UNIX only) .log /opt/jp1as/system Log information that is collected when the
user-reply functionality's management
daemon is started and stopped.

pid file (UNIX only) .pid /opt/jp1as/system File used by the user-reply functionality
management daemon and adshmdctl.

Log of the application-
execution agent functionality#1

(Windows execution
environment only)

.log shared-document-folder
\Hitachi\JP1AS\JP1ASE\appexec

Internal log of the application-execution
agent functionality.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 62

#1
You can collect these files by using the adshcollect command. For details about how to collect the files, see
11.3.1 adshcollect command (collects information).

#2
Because a debugging information file cannot be saved, an error is displayed in the following cases:

 The job definition script file being edited is in a directory for which the user does not have write permissions.
 The job definition script file being edited is in a compressed folder.

Notes about specifying files and paths
• As the directory delimiter, you can use a backslash (\)# for Windows or a forward slash (/) for UNIX. If you use

other characters, the operation cannot be guaranteed.
If you use a backslash (\) as the directory delimiter for UNIX, the character will not be recognized as the directory
delimiter and JP1/Advanced Shell will not operate correctly.
If you use a forward slash (/) as the directory delimiter for Windows, the character might be recognized as the
directory delimiter. Note that, depending on how the forward slash is used, the character might not be recognized
as the directory delimiter and JP1/Advanced Shell might not operate correctly.
#:
A backslash (\) specified in a job definition script is considered an escape character. For this reason, you need
to specify two consecutive backslashes (\\) or enclose the character string that includes the backslash in single
quotation marks (').

• Do not use a file name that begins with a dot (.).

• The permitted maximum length for path names must comply with the specifications of the OS being used.

• The maximum file name length is 246 bytes (Windows only).

• Do not use reserved device names (such as CON, AUX, and NUL) for file names (Windows only).

• Do not use NTFS streams for file names (Windows only).

• Do not use the junction functionality (Windows only).

• You can use UNC names for file names and path names (example: \\computer-name\shared-name\file-
name); however, make sure that a path name specified in this format does not end with shared-name (or shared-
name\). The cd standard shell command does not support the UNC format. (Windows only)
UNC formats that can be used:
\\server\share\dir
\\10.111.222.33\share\dir
UNC formats that cannot be used:
\\server\share
\\10.111.222.33\share

• Do not use UNC names for the folder path names for traces, system execution logs, spool, and temporary files
(Windows only).

(2) Handling of files that are larger than 2 GB (large files)
JP1/Advanced Shell supports some of the large files (that are larger than 2 GB). Of the files supported by JP1/Advanced
Shell, the files and commands that correspond to large files are as follows:

• Of the files created in the spool job directories, files STDOUT, STDERR, step-number_step-name_STDOUT, and
step-number_step-name_STDERR to which user data is output

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 63

Note that large files might adversely affect the overall system processing because the jobs executed from JP1/AJS3
transfer the contents of files STDERR and step-number_step-name_STDERR to JP1/AJS3's manager host. For
details, see the JP1/Automatic Job Management System 3 System Design (Configuration) Guide.
Note that when you use the spool job creation suppression functionality, no spool job is created when the job
definition script is run. For details about the spool job creation suppression functionality, see (a) Determining
whether the spool job creation suppression functionality is to be used.

• In redirect specifications, the files specified in >file, < file, >>file, >|file, <>file, n>file, and
n<file

• Files specified in conditional expressions other than -t fd of the conditional expressions that are evaluated with
the test or let command

• Files that are allocated by the extended script commands #-adsh_file, #-adsh_file_temp, and #-
adsh_spoolfile

• Files that are created by using the adshmktemp command out of extended shell commands

• Files handled by UNIX-compatible commands
However, a file cannot be exceed 2 GB if it is used for the following operations:

• Editing and displaying the number of bytes that exceeds 2 GB

• Editing and displaying the number of lines that exceed 2 GB

• Executing UNIX commands (such as diff and sort) that use a large amount of memory when large-sized
files are specified

Whether large files are supported depends on the types of file systems and OS settings (example: ulimit setting).
Before you design your operations, check if your environment supports large files.

(3) Notes on file systems
Be careful when using JP1/Advanced Shell with either of the following file systems:

• NFS
Not supported.

• HSFS
When using HSFS, note the following:

• You cannot install JP1/Advanced Shell on HSFS.

• You cannot create a system execution log or traces on HSFS.

• If you use the user-reply functionality, you cannot specify a directory located on HSFS as the spool job directory.

• If you are using a version earlier than HSFS 07-00 and you want to use a UNIX-compatible command to reference
or update the files and directories on HSFS, you will need to specify NOCACHE for the HSFS system option
CPFS_CACHE_POLICY beforehand.

• If you are using HSFS 07-00 or later and you want to use a UNIX-compatible command to reference or update
the files and directories on HSFS, you will need to specify 0 for the HSFS system option
CPFS_COMPAT_LINKCNT beforehand. By default, 0 is specified for CPFS_COMPAT_LINKCNT.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 64

2.2.4 Encoding used in JP1/Advanced Shell
You must code job definition script files and environment files used in JP1/Advanced Shell using the encoding that
matches the value of the LANG environment variable in the environment in which JP1/Advanced Shell is run. If a
different encoding is used, operation cannot be guaranteed. If you will execute the same job definition script file on
different OSs, use an encoding that is supported by all the OSs to be used.

In UNIX, the language and encoding in which messages are output by JP1/Advanced Shell are determined by the value
of the LANG environment variable.

The following table shows the values of the LANG environment variable and the encodings for job definition script files
and environment files that are specified when JP1/Advanced Shell is used.

Table 2-13: Encodings corresponding to the LANG environment variable values

OS Value of LANG
environment variable

Encoding for job definition script files and environment files

Windows -- Shift-JIS

Linux ja_JP.UTF-8 UTF-8

AIX Ja_JP
ja_JP
JA_JP
JA_JP.UTF-8

Shift-JIS
EUC
UTF-8
UTF-8

HP-UX ja_JP.SJIS
ja_JP.eucJP
ja_JP.utf8

Shift-JIS
EUC
UTF-8

Solaris ja_JP.PCK
ja
ja_JP.UTF-8

Shift-JIS
EUC
UTF-8

Legend:
--: Not applicable

2.2.5 Local time settings
JP1/Advanced Shell obtains and outputs local time information by referencing environment variables. You must specify
the local time settings in the environment variables beforehand.

The commands provided by JP1/Advanced Shell output information according to the OS's time zone setting (Windows)
or the TZ environment variable (UNIX). Use one of the methods listed below to specify the TZ environment variable.
Note that no environment variable can be defined for custom job definition programs.

• JP1/AJS's job definition or environment variable definition

• System profile (/etc/profile)

• User profile ($HOME/.profile)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 65

2.2.6 Notes about standard input
When the commands provided by JP1/Advanced Shell are used to input data from a terminal to the standard input, the
permitted maximum length depends on the language specifications of the OS, terminal, shell, and programming
language.

2.2.7 Using hard links and symbolic links
You can create and use hard links and symbolic links with JP1/Advanced Shell. The following link files can be used
with JP1/Advanced Shell:

• Hard links to files

• Symbolic links to files

• Symbolic links to directories

Hereafter, the UNIX edition and Windows edition are described separately.

(1) UNIX edition
In the UNIX edition of JP1/Advanced Shell, hard links and symbolic links can be created by using the UNIX-compatible
ln command and commands provided by the OS, and these links can be used in the job definition script.

(2) Windows edition

(a) Files and folders that support hard links and symbolic links
In the Windows edition of JP1/Advanced Shell, you can create hard links and symbolic links by using the UNIX-
compatible ln command and commands provided by the OS. The following files and folders support hard links and
symbolic links:

• Files and folders handled by UNIX-compatible commands and standard shell commands

• Files specified for the redirect symbol

• Files and folders specified by using file attributes of conditional expressions

Do not create hard links and symbolic links for the following files and folders.

• Various commands provided by JP1/AS

• Files and folders created when installing JP1/AS

• Job definition script file

• External script file

• Initialization script file

• Script file executed by the child job

• Files and folders under the spool directory

• Files and folders under the temporary file directory

• Files and folders under the trace directory

• Files and folders under the log directory

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 66

• Environment file

(b) Points to be checked before using symbolic links
Check the following points in advance when using symbolic links.

• When creating, deleting, moving or copying a symbolic link, execute the operation as a user having the administrative
role for creating symbolic links. A user who does not have the necessary permissions to create symbolic links cannot
perform operations involving symbolic links. In addition, even users having the administrative role for creating
symbolic links cannot create a symbolic link in an environment where user account control (UAC) has been enabled.
To create a symbolic link in an environment where UAC has been enabled, you need to grant the administrator
privilege to a user having the administrative role for creating symbolic links.

• Before using symbolic links, confirm whether the target machine is permitted to use symbolic links. For details on
how to check whether the use of symbolic links is permitted, see the manual for Windows.

(3) Notes
Note the following when using hard links and symbolic links:

(a) Notes common to all platforms
• In the name of a link file, do not use the same name as a command provided by JP1/Advanced Shell.

• The behavior when the number of times a symbolic link file is nested exceeds the upper limit of the OS will be in
accordance with the specifications of each OS.

• Multiple hard links can be created for a single file. However, the maximum number of hard links that can be created
for a single file depends on the OS or file system. Note that creation of a hard link fails when the maximum number
has been exceeded.

(b) Notes for the UNIX edition
You cannot specify a hard link or symbolic link as the output destination for the coverage information file (asc file). If
a hard link or symbolic link is specified, the behavior is as follows.

• If a symbolic link is specified as the output destination for the asc file, the symbolic link is deleted and a normal file
having the same name is created.

• Coverage information of the asc file is not updated even if the asc file is updated while multiple hard links are created
for a single asc file.

(c) Notes for the Windows edition
• Link files cannot be created in a file system other than NTFS.

• Symbolic links might not work in an environment where a product designed for protecting the file system is installed.
When using symbolic links, make sure the installed product supports symbolic links.

• When starting an executable file by using a symbolic link, the extensions of both the symbolic link and the executable
file must be one of the following: ".bat", ".com", ".cmd", or ".exe". However, as the following formats conform
to specifications of the execution program starting the executable file, determination of the execution role is also
subject to the specifications of the execution program.

• system function of the awk command

• Format of the awk command: command-name | getline [variable name]

• Format of the awk command: print [expression [, ...]] | command-name

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 67

• -exec and -ok primaries of the find command

• xargs command

• When accessing a file or folder by using a symbolic link, the access privilege of the link destination needs to be
followed. When accessing the symbolic link itself, the access privilege of the link destination needs to be followed.

• If the link destination of a symbolic link to a directory is a normal file or the link destination of the symbolic link
to a file is a directory, the link destination cannot be accessed and an error occurs.

• As a result of the support for link files, information related to link files is output. Accordingly, part of the output
format of UNIX-compatible commands including the ls command have been changed. If you want to return the
output format to a version earlier than 11-00 without using link files, specify L0 for the environment variable
ADSH_LINK_SUPPORT.

(4) Environment variable ADSH_LINK_SUPPORT (defining the link
support level of JP1/Advanced Shell)

In JP1/Advanced Shell, hard links and symbolic links can be used from 11-00. However, part of the output format and
output content in addition to the results have changed as a result of the support for hard links and symbolic links. Users
who have been using JP1/Advanced Shell of a version earlier than 11-00 and who will not be using link files will need
to consider the specification of the environment variable ADSH_LINK_SUPPORT.

(a) Values that can be set for environment variable
The following values can be specified for the environment variable ADSH_LINK_SUPPORT:

Table 2-14: Values that can be specified for the environment variable ADSH_LINK_SUPPORT

Value Meaning

L0 Hard links and symbolic links cannot be used.
The main changes when L0 is specified are as follows.
• The number of hard links is not output by the find command, ls command, or stat command.
• Options related to UNIX-compatible commands and standard shell commands are ignored even when they are

specified.
• The -L option of the adshscripttool command is not available.
• If you use the operators -h, -L, and -ef (which determine the file attribute) without specifying the environment

setting parameter UNSUPPORT_TEST, the job ends in an error.

L1 Hard links and symbolic links can be used with the following functions:
• UNIX-compatible commands
• Standard shell commands
• Conditional expressions of file attributes
• Redirects to files

Other than the above Jobs and commands are not executed, and processing ends in an error.

The difference between the output formats when L0 and L1 are specified for the environment variable
ADSH_LINK_SUPPORT is shown below, by using the ls command as an example.It is assumed that the path to the
directory in which the ls command is installed is stored in the environment variable OSCMD_DIR.

• For L0:

C:\TEMP>%OSCMD_DIR%\ls -l
total 439744
-rw------- Administrators 102000 Jul 06 16:26 HARDLINK.txt
-rw------- Administrators 102000 Jul 06 16:20 SYMLINK.txt
drwx------ Administrators Jul 06 16:58 TestLog

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 68

-rw------- Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ Administrators 31744 Jun 12 16:23 uap.exe

• For L1:

C:\TEMP>%OSCMD_DIR%\ls -l
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

(b) Notes
• If the environment variable ADSH_LINK_SUPPORT is not defined, the command is executed by assuming that L1

was specified.

• Specify either L0 or L1 for the environment variable ADSH_LINK_SUPPORT. When a value other than L0 and
L1 is specified, jobs and commands are terminated end in an error with return code 255.

• The environment variable ADSH_LINK_SUPPORT is available with the Windows edition. This environment
variable is not available with the UNIX edition.

• If you prepare settings by using a job definition script file or environment file, such settings will only be valid for
child jobs that start from a job definition script, root jobs, the execution of other processes, and some UNIX-
compatible commands.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 69

2.3 Installing and uninstalling (Windows only)

This section explains how to install and uninstall JP1/Advanced Shell in a Windows environment. You must first install
prerequisite and related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

• For running jobs in JP1/AJS
JP1/AJS - Manager

• For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console.

• For running jobs in JP1/AJS
JP1/AJS - View

• For using the user-reply functionality
JP1/IM - View

3. Install JP1/Advanced Shell - Custom Job on the operation management console.
For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

• For running jobs in JP1/AJS
JP1/AJS - Agent

• For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.
For details about installation of JP1/Advanced Shell in a Windows environment, see 2.3.1 Installing JP1/Advanced
Shell (Windows only).
For details about the setup procedure for using the user-reply functionality, see 2.8.2 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (Windows only).

2.3.1 Installing JP1/Advanced Shell (Windows only)
A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM. You install JP1/Advanced Shell -
Developer in the same manner.

(1) Remote installation using JP1/Software Distribution
JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job Management Partner
1/Software Distribution Administrator's Guide Volume 1 (for Windows systems).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 70

(2) Installation from a CD-ROM
There are three types of installation of JP1/Advanced Shell from a CD-ROM:

• If you are newly deploying JP1/Advanced Shell, perform a new installation.

• If you are upgrading JP1/Advanced Shell, perform an overwrite installation.

• If you are re-installing the same version, perform a recovery installation.

The following subsections explain these three procedures.

(a) New installation
This subsection explains how to perform a new installation of JP1/Advanced Shell. Normally, the execution environment
is installed on a server and the development environment is installed on a client PC. It is also possible to install both
environments (execution and development) on the same PC.

To perform a new installation:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

2. Terminate all programs.

3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Install JP1/Advanced Shell by entering required information as instructed by the installer.
The following information will be requested during installation:

• Product to be installed (JP1/Advanced Shell or JP1/Advanced Shell - Developer)

• Customer Information

• Destination Folder

5. When the Finish dialog box is displayed, click Finish.
Installation is completed.

(b) Overwrite installation for upgrading
You perform an overwrite installation in the same manner as for a new installation.

You can upgrade JP1/Advanced Shell by performing an overwrite installation without having to uninstall the existing
JP1/Advanced Shell.

If the application-execution agent program is running, log on as the user who started the program and stop the program
before uninstalling the program. [Only for the execution environment]

(c) Recovery installation using the same version
To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell:

1. If the application-execution agent program is running, log on as the user who started the program and stop the
program before uninstalling the program. [Only for the execution environment]

2. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

3. Terminate all programs.

4. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

5. Enter required information as instructed by the installer.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 71

6. When the Finish dialog box appears, click Finish.
Recovery installation is completed.

2.3.2 Uninstalling JP1/Advanced Shell (Windows only)

(1) Uninstalling JP1/Advanced Shell manually
This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell - Developer in the
same manner.

To uninstall JP1/Advanced Shell:

1. If the application-execution agent program is running, log on as the user who started the program and stop the
program. If you register the program for startup, cancel registration. [Only for the execution environment]

2. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell has been installed.

3. Terminate all programs. If you are using the user-reply functionality, stop the services of JP1/Advanced Shell and
then unregister them.

4. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

5. Enter required information as instructed by the installer, and then select Maintain Program.

6. In Program Maintenance, select Delete.

7. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

8. If there are any unneeded files, such as spool, trace, and debugging information files, delete them.

If you were using the user-reply functionality, after JP1/Advanced Shell has been installed, delete the adapter command
configuration file used for the user-reply functionality that has been set up for JP1/Base. For details about the storage
folder for the adapter command configuration file used for the user-reply functionality, see (2) Setting up the adapter
command (for the execution environment) or (3) Setting up the adapter command (for the development environment).

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell
For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job
Management Partner 1/Software Distribution Administrator's Guide Volume 1 (for Windows systems).

2.3.3 Installing JP1/Advanced Shell - Custom Job
This subsection explains how to install the custom job definition program on the operation management console on
which JP1/AJS - View is already installed. You install the custom job definition program by transferring it from JP1/
Advanced Shell's installation directory to the operation management console.

Although the custom job definition program can be installed only in a Windows environment, it can be used to create
definitions for both Windows and UNIX jobs. This subsection explains the new, overwrite, and recovery installation
methods.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 72

(1) New installation
To perform a new installation of JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the operation management console on which JP1/Advanced Shell -
Custom Job is to be installed.

2. Obtain the installer for JP1/Advanced Shell - Custom Job.
The installer is stored at the following location:

• To use the Windows edition of JP1/Advanced Shell
JP1/Advanced-Shell-installation-folder\JP1ASE\util\setup.exe

• To use the UNIX edition of JP1/Advanced Shell
/opt/jp1as/util/setup.exe

3. Transfer the installer (setup.exe) for JP1/Advanced Shell - Custom Job to the operation management console.

4. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the
following command:
setup.exe

5. Install JP1/Advanced Shell - Custom Job by entering required information as instructed by the installer.
Select the language of JP1/Advanced Shell - Custom Job to be installed, and then specify the following information:

• Customer Information: Specify requested information, including a user name.

• Destination Folder: Specify the folder in which JP1/Advanced Shell - Custom Job is to be installed.

6. When the Finish dialog box is displayed, click Finish.
Installation is completed.

7. If a version of JP1/AJS3 - View earlier than 11-00 is installed and the custom job definition program is to be installed
when using the application-execution agent functionality, the custom job icon must be copied to the following folder:
JP1/AJS-View-installation-folder\image\custom
For details about the folder and the file names of the custom job icons to be copied, see 2.1.1 Installation folder
(Windows only).

(2) Overwrite installation for upgrading
When you perform an overwrite installation of JP1/Advanced Shell - Custom Job for purposes of upgrading, there is
no need to uninstall the existing JP1/Advanced Shell - Custom Job.

You perform the overwrite installation in the same manner as for a new installation.

If you copied the previous version's custom job icons to the JP1/AJS - View installation folder, there is no need to copy
them again during upgrading.

(3) Recovery installation using the same version
To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
is to be installed.

2. Obtain the installer for JP1/Advanced Shell - Custom Job.
The installer is stored at the following location:

• In Windows: JP1/Advanced-Shell-installation-folder\JP1ASE\util\setup.exe

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 73

• In UNIX: /opt/jp1as/util/setup.exe
3. Transfer the installer (setup.exe) for JP1/Advanced Shell - Custom Job to the operation management console.

4. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the
following command:
setup.exe

5. From Program Maintenance, select Repair.

6. When the Finish dialog box is displayed, click Finish.
Recovery installation is completed.

2.3.4 Uninstalling JP1/Advanced Shell - Custom Job
To uninstall JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
has been installed.

2. Terminate all programs.

3. In cases when a version of JP1/AJS - View earlier than 11-00 has been installed and the icon of the application-
execution agent functionality exists, delete the custom job icon that has been copied to the following folder.
JP1/AJS-View-installation-folder\image\custom

4. On the Control Panel, select the product from Add or Remove Programs.
If you are uninstalling JP1/Advanced Shell - Custom Job in an environment where user account control (UAC) is
enabled, the User Account Control window is displayed. Select Yes in this window.

5. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

6. If there are any unneeded trace files, delete them.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 74

2.4 Installing and uninstalling (UNIX only)

This section explains how to install and uninstall JP1/Advanced Shell in a UNIX environment. In a UNIX environment,
you can install only the execution environment on the batch operation server. You must first install prerequisite and
related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

• For running jobs in JP1/AJS
JP1/AJS - Manager

• For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console in a Windows environment.

• For running jobs in JP1/AJS
JP1/AJS - View

• For using the user-reply functionality
JP1/IM - View

3. Install JP1/Advanced Shell - Custom Job on the operation management console.
For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

• For running jobs in JP1/AJS
JP1/AJS - Agent

• For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.
For details about installation of JP1/Advanced Shell in a UNIX environment, see 2.4.1 Installing JP1/Advanced
Shell (UNIX only).
For details about the setup procedure for using the user-reply functionality, see 2.8.3 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (UNIX only).

2.4.1 Installing JP1/Advanced Shell (UNIX only)
A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM.

(1) Remote installation using JP1/Software Distribution
JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution SubManager (for
UNIX systems).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 75

(2) Installation from a CD-ROM
This subsection explains how to install JP1/Advanced Shell from a CD-ROM.

Note that the directory and file names on the CD-ROM might be different from what is shown here, depending on the
hardware environment. Use the ls command to check the file names and specify file names exactly as displayed.

To install JP1/Advanced Shell:

1. Specify the user permissions.
Log on as a superuser to the server on which JP1/Advanced Shell is to be installed. Alternatively, use the su command
to change the user permissions to superuser.

2. Terminate all programs.
If any existing JP1-series programs and JP1/Advanced Shell program are running, terminate them.

3. Place the medium that contains JP1/Advanced Shell.

4. Mount the CD-ROM device by executing the following command:

/bin/mount -r -o mode=0544 /dev/cdrom /cdrom

/cdrom is the mount point of the CD-ROM device special file. If there is no mount point directory, create one. Note
that the device special file name and mount point might differ depending on the environment.

5. Start the Hitachi Program Product Installer by executing the following command:

In Linux
/cdrom/LINUX/setup /cdrom#

In AIX
/cdrom/AIX/setup /cdrom#

In HP-UX
/cdrom/IPFHPUX/setup /cdrom#

In Solaris
/cdrom/SOLARIS/setup /cdrom#

#: This example assumes /cdrom as the mount point.
The Hitachi Program Product Installer starts and the initial window is displayed.
The following is an example of the Hitachi Program Product Installer's initial window:

 Hitachi PP Installer 05-24

 L) List Installed Software.
 I) Install Software.
 D) Delete Software.
 Q) Quit.

 Select Procedure ===>

 +--+
 CAUTION!
 YOU SHALL INSTALL AND USE THE SOFTWARE PRODUCT LISTED IN THE
 "List Installed Software." UNDER THE TERMS AND CONDITION OF
 THE SOFTWARE LICENSE AGREEMENT ATTACHED TO SUCH SOFTWARE PRODUCT.
 +--+

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 76

 All Rights Reserved. Copyright (C) 1994, 2015, Hitachi, Ltd.

6. In the Hitachi Program Product Installer's initial window, enter I.
A list of programs that can be installed is displayed.

7. Select JP1/Advanced Shell, and then enter I.
JP1/Advanced Shell is installed. To select a program, move the cursor to the desired program, and then press the
space bar to select it.
The following shows an example of the Hitachi Program Product Installer's installation window:

 PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell
:
:
F) Forward B) Backward J) Down K) Up Space) Select/Unselect I) Install Q) Quit

<@> is displayed to the left of the selected program product. If you enter I following <@>, the following message
is displayed on the last line:

Install PP? (y: install, n: cancel) ==>

If you enter y or Y, installation begins. If you enter n or N, installation is cancelled and the program product
installation window is displayed again.

8. When installation is completed successfully, enter Q.
The Hitachi Program Product Installer's initial window is displayed again.

Note that the following files are created during installation as installer's logs:

/opt/jp1as/instlog/ADSH_INST_LOG
/opt/jp1as/instlog/ADSH_INST_USERLOG

If the installer's log files are not created, possible causes are as follows:

• The installer's log files are not regular files.

• The user does not have write permission for the directory in which the installer's log files are to be created.

• A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

• "/opt" is not a directory.

• "/opt/jp1as" is not a directory.

• "/opt/jp1as/instlog" is not a directory.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 77

When installation is completed, the default environment has been set up. To change the default settings, see the applicable
subsections in 2.6 Specifying environment information for JP1/Advanced Shell.

2.4.2 Uninstalling JP1/Advanced Shell (UNIX only)

(1) Uninstalling JP1/Advanced Shell manually
This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell by following the
Hitachi Program Product Installer's instructions.

Before you uninstall JP1/Advanced Shell, terminate all programs provided by JP1/Advanced Shell. If you are using the
user-reply functionality, terminate the user-reply functionality's management daemon. The installer's log files and any
newly created files are not deleted during uninstallation. To completely delete the environment, the user must delete
these files.

To uninstall JP1/Advanced Shell:

1. Start the Hitachi Program Product Installer by executing the following command:

/etc/hitachi_setup

The Hitachi Program Product Installer starts and the initial window is displayed.
The following shows an example of the Hitachi Program Product Installer's initial window:

 Hitachi PP Installer 05-24

 L) List Installed Software.
 I) Install Software.
 D) Delete Software.
 Q) Quit.

 Select Procedure ===>

 +--+
 CAUTION!
 YOU SHALL INSTALL AND USE THE SOFTWARE PRODUCT LISTED IN THE
 "List Installed Software." UNDER THE TERMS AND CONDITION OF
 THE SOFTWARE LICENSE AGREEMENT ATTACHED TO SUCH SOFTWARE PRODUCT.
 +--+

 All Rights Reserved. Copyright (C) 1994, 2015, Hitachi, Ltd.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 78

2. In the Hitachi Program Product Installer's initial window, enter D.
A list of the software programs that can be uninstalled is displayed.

3. Select JP1/Advanced Shell, and then enter D.
JP1/Advanced Shell is uninstalled. To select a program, move the cursor to the target program, and then press the
space bar to select it.
The following shows an example of the uninstallation window:

 PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell
:
:
F) Forward B) Backward J) Down K) Up Space) Select/Unselect D) Delete Q) Quit

<@> is displayed to the left of the selected program product. If you enter D following <@>, the following message
is displayed on the last line:

Delete PP? (y: delete, n: cancel) ==>

If you enter y or Y, uninstallation begins. If you enter n or N, uninstallation is cancelled and the program product
uninstallation window is displayed again.

4. When uninstallation is completed successfully, enter Q.
The Hitachi Program Product Installer's initial window is displayed again.

5. If there are any unneeded files, such as execution log and trace files, delete them.

Note that the following files are created during uninstallation as installer's logs:

 PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell
 002 P-812C-6LBL 1100 JP1/Base
 003 P-9S12-A111 0806/A uCosminexus Batch Job Execution Server
 004 P-CC8112-4KBL 1100 JP1/AJS3 - Manager

If the installer's log files are not created, possible causes are as follows:

• The installer's log files are not regular files.

• The user does not have write permission for the directory in which the installer's log files were created.

• A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

• "/opt" is not a directory.

• "/opt/jp1as" is not a directory.

• "/opt/jp1as/instlog" is not a directory.

Notes:
If the user-reply functionality's management daemon is running, the uninstallation process is cancelled and the
following message is output to /opt/jp1as/instlog/ADSH_INST_LOG:

F) Forward B) Backward J) Down K) Up Space) Select/Unselect D) Delete Q) Quit
Delete PP? (y: delete, n: cancel) ==>

When this message has been output, execute the adshmdctl command to terminate the user-reply functionality's
management daemon, and then perform uninstallation again.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 79

Uninstallation is also cancelled if the user-reply functionality's management daemon does not terminated normally.
In such a case, start the user-reply functionality's management daemon and then terminate it, then perform
uninstallation again.

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell
For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution
SubManager (for UNIX systems).

(3) If you were using the user-reply functionality
If you were using the user-reply functionality, perform the following after uninstallation has been completed:

• Delete the adapter command configuration file used for the user-reply functionality that has been set up for JP1/
Base. For details about the storage directory for the adapter command configuration file used for the user-reply
functionality, see (2) Setting up JP1/Base.

• If the user-reply functionality's management daemon has been set to start and terminate automatically, disable the
automatic start and termination settings.
In AIX:

1. Disable the automatic start setting for the user-reply functionality's management daemon by executing the
following command:
rmitab adshmd

2. If the user-reply functionality's management daemon for the logical host is set to start automatically, execute the
rmitab command specifying the record of the user-reply functionality's management daemon for the logical
host.

3. To disable the automatic termination function at system shutdown, delete the following code from /etc/
rc.shutdown:
test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl stop

4. If the user-reply functionality's management daemon for the logical host is set to terminate automatically, delete
the specification for automatically terminating the user-reply functionality's management daemon for the logical
host from /etc/rc.shutdown.

[For RHEL 6, Oracle Linux 6, CentOS 6, HP-UX and Solaris]

1. Delete from the target directory the jp1_as_md script file that was copied from the /opt/jp1as/sample
directory.

2. If you have created automatic start and termination script files for the logical host, delete them from the target
directory.

3. Delete the symbolic link that was created as a link to the jp1_as_md script file.

4. If you have created symbolic links to the automatic start and termination script files for the logical host, delete
them.

[For RHEL 7, SUSE Linux 12, Oracle Linux 7 and CentOS 7]

1. Execute the following command to disable automatic startup and automatic termination of user-reply
functionality management daemon.
systemctl disable jp1_as_md.service

2. Delete the /usr/lib/systemd/system directory at the copy destination from the copied Unit jp1_as_md.service
from the /opt/jp1as/sample directory.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 80

3. If you set automatic startup and automatic termination of the user-reply functionality management daemon for
logical host, conduct the following actions.
- Substitute the jp1_as_md.service specified at the procedure at 1 with the created Unit file name for logical host
and then execute the systemctl command.
- Delete the Unit file for the logical host that is created in the /etc/systemd/system.

For details about the target directory to which the automatic start and termination script files are to be copied, see
(1) Starting and terminating the user-reply functionality's management daemon automatically. For details about the
target directory to which the automatic start and termination script files for the logical host are to be created and the
target directory to which the symbolic links are to be created, see (2) Automatic startup and termination of the user-
reply functionality's management daemon for the logical host in a non-cluster environment (UNIX only).

2.4.3 Using Hitachi Program Product Installer to display version
information (UNIX only)

Because the Hitachi Program Product Installer installs the UNIX edition of JP1/Advanced Shell, you can display the
JP1/Advanced Shell version information from Hitachi Program Product Installer.

To display the version information:

1. Start the Hitachi Program Product Installer by executing the following command:

/etc/hitachi_setup

2. In the initial window, enter L.
A list of Hitachi products that have been installed is displayed. Check the displayed version information.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 81

2.5 Specifying environment variables

The table below lists and describes the environment variables supported by JP1/Advanced Shell.

Important
JP1/Advanced Shell sets and references shell and environment variables whose names begin with ADSH.
Therefore, do not use a shell variable or an environment variable whose name begins with ADSH for any
purpose other than those described in this manual.

Table 2-15: Environment variables supported by JP1/Advanced Shell

Environment variable
name

Information to be specified Timing of specification
when the value is set
automatically

Whether
a value
can be
specified

ADSH_AJS_APPEXEC
(for Windows execution
environments only)

For indicating the GUI application execution program for
custom jobs

When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_APPNAME
(for Windows execution
environments only)

Path name of the application for executing custom jobs When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_APPARG
(for Windows execution
environments only)

Argument for the application for executing custom jobs When the job starts if the program
has been started with a job

Yes#1

ADSH_AJS_WORKF
(for Windows execution
environments only)

Work folder for custom jobs When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_SHOWN
(for Windows execution
environments only)

Name to be displayed for a custom job When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_AFEXECMV
(for Windows execution
environments only)

Action after executable application for custom jobs When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_MESOUT
(for Windows execution
environments only)

Message output for custom jobs When the job starts if the program
has been started with a custom
job

Yes#1

ADSH_AJS_ENVF Job environment file name for custom jobs When the job starts as a custom
job

Yes#1

ADSH_AJS_GCHE Check option for custom jobs When the job starts as a custom
job

Yes#1

ADSH_AJS_LHOST Logical host name for custom jobs When the job starts as a custom
job

Yes#1

ADSH_AJS_SCRF Job definition script file name for custom jobs When the job starts as a custom
job

Yes#1

ADSH_ENV Job environment file name When the job starts as a custom
job

Yes#2

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 82

Environment variable
name

Information to be specified Timing of specification
when the value is set
automatically

Whether
a value
can be
specified

ADSH_CMD_ARGORDER
#3

Rule for determining the order of the command arguments
specified on the command line. The only permitted value is
seq.
This environment variable has effect in the cp, cut, date,
diff, expand, gunzip, gzip, ln, ls, mv, and stat
commands. It also has effect in the analysis of user-defined
options in the getopt command.

(Not specified automatically.) Yes

ADSH_CMDDATE_FORM
AT

Format specification code of the date command that executes
the common format process unique to JP1/Advanced shell

(Not specified automatically.) Yes

ADSH_CMDEXPR_LENG
TH

Character string length. This environment variable is specified
when the length operator is used in the expr command.
Specify b to acquire the character string length in bytes, and
specify c to acquire the character string length in characters.
If this environment variable is omitted or a value other than b
or c is specified, length is not treated as an operator.

(Not specified automatically.) Yes

ADSH_CMDLN_FOLLOW This command sets whether to follow the link when a symbolic
link for a directory has been specified for the argument target
of the ln command.
Set NO to not follow the symbolic link. Set a value other than
NO to follow the symbolic link.

(Not specified automatically.) Yes

ADSH_CMDLN_OPT_I_
F

Sets the option to be enabled when the -i option and the -f
option are both specified for the ln command.
Set LAST to enable the option specified last.

(Not specified automatically.) Yes

ADSH_CMDTAR_ROOTP
ATH

This command changes the behavior of the root directory of
the tar command. This command stores, extracts, and
displays the root directory without eliminating the root
directory when absolute is specified for the values.

(Not specified automatically.) Yes

ADSH_JOB_NAME Job name When the job starts No

ADSH_JOBID Job ID (fixed 6-digit decimal number with leading zeros added) When the job starts No

ADSH_JOBRC_FATAL Job return code in the event of a fatal error that interrupts job
processing such as syntax errors.
For details about how to specify the environment variable, see
(2) ADSH_JOBRC_FATAL environment variable (specifies
the return code in the event of an unresumable error in jobs).

(Not specified automatically.) Yes#2

ADSH_LANG
(UNIX only)#4#6

The language and encoding in which messages are output by
JP1/Advanced Shell.
Set this environment variable if you want to temporarily
change the messages that the adshexec command for a
specific job outputs.
For details about the specifiable values, see 2.2.4 Encoding
used in JP1/Advanced Shell.
If this environment variable is set within a job definition script
or an environment file, the value of such an environment
variable is valid only for a child job, root job, or shell operation
command (other than the adshexec command) that starts
from a job definition script.

(Not specified automatically.) Yes

ADSH_LANG_JP1EVEN
T

The language of messages output by JP1 events that are
generated by the user-reply functionality. Set this environment

(Not specified automatically.) Yes

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 83

Environment variable
name

Information to be specified Timing of specification
when the value is set
automatically

Whether
a value
can be
specified

(UNIX only)#5 variable if you want JP1 event messages to be output in a
different language, in accordance with the settings of JP1/IM
at the output destination, from the language in which messages
are output by JP1/Advanced Shell.
For details about the specifiable values, see 2.2.4 Encoding
used in JP1/Advanced Shell.
If this environment variable is set within a job definition script
file, the value of such an environment variable is valid only for
a child job, root job, or shell operation command (other than
the adshexec command) that starts from a job definition
script. If this environment variable is set within an environment
file, JP1 event messages from a job definition script are output
in the language that conforms to the value.

(Not specified automatically.) Yes

ADSH_LINK_SUPPORT
[Only for Windows]

This command specifies the link response level of JP1/
Advanced Shell.
For details about how to specify the environment variable, see
(4) Environment variable ADSH_LINK_SUPPORT
(defining the link support level of JP1/Advanced Shell).

(Not specified automatically.) Yes#7

ADSH_STEP_NAME Job step name.
When a command outside the job step is executed or when a
job step name is omitted, the environment variable is not
defined.

When the job step starts No

AJS_BJEX_STOP Interface used for forced termination from JP1/AJS. This
environment variable must be defined when JP1/Advanced
Shell batch jobs are defined in PC or UNIX jobs. Define the
environment variable in PC or UNIX job definitions, not in OS
settings.

When the job starts as a custom
job

Yes (Only
TERM is

permitted.)

BLOCKSIZE Number of bytes per block. This environment variable is used
in the ls and stat commands.
The default is 512.

(Not specified automatically.) Yes

COLUMNS Output width per line of command execution results. This
environment variable is used in the -C option of the ls
command and the l editing command of the sed command.

(Not specified automatically.) Yes

GETOPT_COMPATIBLE Parameter analysis method. This environment variable is used
in the getopt command.
There is no rule for the value to be set. If a value is set, JP1/
Advanced Shell assumes that the getopt command is
specified in format 1 for all arguments to be analyzed.

(Not specified automatically.) Yes

GZIP#8 This environment variable sets the options for the gzip and
gunzip commands. This environment variable is used in the
following commands:
• The gzip command
• The gunzip command
• The tar command (when the -z option is specified)

For the gzip and gunzip commands, the options set in the
arguments take priority. To specify more than one option, use
one or more space or tab characters to delimit the options.

(Not specified automatically.) Yes

POSIXLY_CORRECT#3 Rule for determining the order of the command arguments
specified on the command line.

(Not specified automatically.) Yes

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 84

Environment variable
name

Information to be specified Timing of specification
when the value is set
automatically

Whether
a value
can be
specified

POSIXLY_CORRECT#3 There is no rule for the value to be set. If a value is set, the
handling is the same as when seq is specified in the
ADSH_CMD_ARGORDER environment variable.

(Not specified automatically.) Yes

TMPDIR
(UNIX only)

Directory to which temporary files are output. This
environment variable is used in the diff and sort
commands.

(Not specified automatically.) Yes

#1
These environment variables can be used only in the unit definitions in JP1/AJS's ajsdefine command and in
the job definitions in JP1/AJS - Definition Assistant. Do not use these environment variables in the JP1/Advanced
Shell's job definition scripts or user environments, such as user profiles and system profiles.

#2
If an environment variable is set within a job definition script or an environment file, the value of such an environment
variable is valid only for a child job or root job that is started from a job definition script.

#3
The POSIXLY_CORRECT environment variable has effect in the standard Linux OS commands as well as in the
commands in which the ADSH_CMD_ARGORDER environment variable has effect, but the environment variable
might have additional functionality other than the rule for determining the specification order of the command
arguments. Therefore, if the only thing you want to do is to set a rule for determining the specification order for
command arguments for UNIX-compatible commands, use the ADSH_CMD_ARGORDER environment variable.

#4
The ADSH_LANG environment variable is prioritized over the LANG environment variable. If the ADSH_LANG
environment variable is not specified, messages are output in the language and encoding specified in the LANG
environment variable. If neither the ADSH_LANG environment variable nor the LANG environment variable is
specified, the value C is assumed.

#5
The ADSH_LANG_JP1EVENT environment variable takes priority over both the ADSH_LANG and the LANG
environment variables.
If the ADSH_LANG_JP1EVENT environment variable is not specified, messages are output in the language specified
in the ADSH_LANG environment variable. If neither the ADSH_LANG_JP1EVENT nor the ADSH_LANG
environment variable is specified, messages are output in the language specified in the LANG environment variable.
If the ADSH_LANG environment variable is set to a value other than C, or if the ADSH_LANG environment variable
is not specified and the LANG environment variable is set to a value other than C, messages that are output by JP1
events are output in Japanese. In such a case, if you want JP1 event messages to be output in English, set the
ADSH_LANG_JP1EVENT environment variable to C.

#6
If you execute the adshmdctl command with this environment variable specified, messages to the syslog are also
output in the language and encoding specified in the ADSH_LANG environment variable. Depending on the system,
outputting the character encodings of the language and encoding to the syslog might be impossible. In this case, do
not use the adshmdctl command with this environment variable specified.

#7
If settings are prepared by using the job definition script file or environment file, the specifications will be valid for
child jobs and root jobs started from the job definition script and some of the UNIX-compatible commands.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 85

#8
Note the following when setting an option that has a value for the GZIP environment variable:

• If the value of the option is enclosed in either single quotation marks (') or double quotation marks ("), the
quotation marks (' or ") are handled as part of the value of the option.

• If the value of the option contains any spaces or tab characters, the spaces or tab characters are handled as
delimiter characters and multiple arguments are assumed to be specified.

From job definition scripts, you can reference the default environment variables that are set by the OS and the
environment variables that are specified in the export parameter in the environment files, in addition to the
environment variables listed in the above table. For details about the export parameter, see 7.3.18 export parameter
(defines an environment variable).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 86

2.6 Specifying environment information for JP1/Advanced Shell

Once you have installed JP1/Advanced Shell, you must specify environment information by performing the tasks listed
below. After you have specified the environment information, you will be able to execute batch jobs based on the
specified environment information.

• Specify the JP1/Advanced Shell environment files (environment information) and environment variables, as needed.
For details about the environment files and environment variable settings, see 2.6.1 Specifying the environment
files through 2.6.15 Defining the return code in the event of an unresumable error in a job.
Also, read the following subsections as needed:

• 2.6.16 Setting up the user-reply functionality

• 2.6.17 Checking the JP1 environment (UNIX only)

• 2.6.18 Setting up the shell (UNIX only)

• If you want to change the directories and files used for JP1/Advanced Shell from their default settings, you must
create new directories and files.
For details, see 2.6.19 Creating the directories required for JP1/Advanced Shell.

• Specify the definition files for collecting maintenance information.
For details about collecting maintenance information, see 11.3 How to collect information.

Important
JP1/Advanced Shell sets and references shell and environment variables whose names begin with
ADSH. Therefore, do not use a shell variable or an environment variable whose name begins with ADSH
(in Windows, lower-case representations are included) for any purpose other than those described in
this manual.

2.6.1 Specifying the environment files
The two types of environment files are system environment files and job environment files. The supported parameters
are the same. The following table explains each type of file.

Table 2-16: Types of environment files

Type of environment file Description

System environment file An environment file of this type is common to all systems and is specified by the system administrator. Services
and daemons use the settings in a system environment file. This environment file is used automatically when
it is stored in the predefined directory.

Job environment file This environment file is specified for each job by the developer. It includes the following:
• Environment file specified in the ADSH_ENV environment variable
• Job environment file specified in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box
• Job environment file specified when JP1/Advanced Shell custom jobs are defined

JP1/Advanced Shell services and daemons use the information defined in system environment files. The information
defined in system environment files takes effect at the time a JP1/Advanced Shell service or daemon starts.

Job controllers use the information defined in system environment files and job environment files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 87

For details about the parameters that can be specified in the environment files, see 7. Parameters Specified in the
Environment Files.

All directories specified in parameters in a system environment file must exist. If you wish to change the default
directories, you must create the new directories beforehand.

If you have edited a system environment file in a UNIX environment, check that there are no errors by executing the
adshmdctl command with the conftest option specified.

The following subsections explain how to specify each environment file.

(1) Specifying the system environment files
The system administrator creates and specifies the system environment files. The created system environment files take
effect when they are stored on the file paths specified in the following table.

Table 2-17: File names of system environment files

Environment File name of system environment file

Windows
(development
environment)

common-application-data-folder\HITACHI\JP1AS\JP1ASD\conf\adshrc.ase

Windows
(execution
environment)

common-application-data-folder\HITACHI\JP1AS\JP1ASE\conf\adshrc.ase

UNIX /opt/jp1as/conf/adshrc.ase

(2) Specifying the job environment files
To use a job environment file to execute batch jobs, specify the file path in the ADSH_ENV environment variable. Use
the procedure described below to create and specify a job environment file.

In JP1/Advanced Shell Editor, you can specify the path for a job environment file in the Runtime Environment Settings
dialog box. When you define a JP1/Advanced Shell custom job, you can specify the path for the job environment file
that is to be used.

To create and specify a job environment file:

1. Copy the sample.ase environment file sample data from the following directory to a desired directory and file:#

• Windows execution environment
installation-folder\JP1ASE\sample\sample.ase

• Windows development environment
installation-folder\JP1ASD\sample\sample.ase

• UNIX execution environment
/opt/jp1as/sample/sample.ase

2. Specify the required parameters in the copy of the job environment file.
For details about the parameters that are required in a job environment file, see 7. Parameters Specified in the
Environment Files. Make sure that the encoding of the job environment file matches the value of the LANG
environment variable in the environment in which job definition scripts are to be run. For details about the encoding
of job environment files and the LANG environment variable, see 2.2.4 Encoding used in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 88

3. Specify the path of the created job environment file in the ADSH_ENV environment variable so that the job
environment file can be used during batch job execution.
Use one of the following methods to specify the ADSH_ENV environment variable:

• OS setting (Windows only)

• System profile /etc/profile (UNIX only)

• User profile ($HOME/.profile) (UNIX only)

#
Do not use any of the following characters in a job environment file directory or file name: & () [] { } ^
= ; ! ' + , ` ~ # %. If any of these characters is used, JP1/Advanced Shell will not function normally.

2.6.2 Converting path names
Define the path conversion settings as parameters so that the path names used in job definition scripts can be used in
both Windows and UNIX.

In JP1/Advanced Shell, you can specify paths in job definition scripts according to the platform as shown in the
following.

Table 2-18: Rules for paths supported in Windows and UNIX environments

Item Windows environment UNIX environment

Directory separator \\#1 /

Path separator ; :

Capitalization of path name Case sensitive#2 Case sensitive

Absolute path A path name begins with drive-letter:\
\#1, #3

A path name begins with /

#1
In a Windows environment, use \\ because \ is treated as an escape character. Alternatively, enclose the entire path
name in single quotation marks.

#2
When path names are converted, they are case sensitive also in a Windows environment.

#3
UNC names are also supported. When you define path name conversion in job definition scripts, make sure that the
path obtained after conversion will not end with a shared name (including a name ending with \). If a path name
ends with a shared name, operation is not guaranteed.

To convert paths according to the above rules, the following definitions are required in the parameters:

• If you want to execute job definition scripts in a Windows environment:
Define / and : so that the separators used in the UNIX environment can be interpreted correctly.

• If you want to execute job definition scripts in a UNIX environment:
Define \\ and ; so that the separators used in the Windows environment can be interpreted correctly.

The following explains the parameters used to convert path names.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 89

• PATH_CONV_ENABLE parameter
Enables the path conversion functionality. Specify the path separator and directory separator before conversion. In
a Windows environment, define / and :. In a UNIX environment, define \\ and ;.

• PATH_CONV_RULE parameter (Windows only)
As the path name conversion target, define one of the following:

• The range enclosed in double quotation marks is the conversion target (path conversion setting 1)

• All text excluding the range enclosed in single quotation marks is the conversion target (path conversion setting
2)

If the parameter is omitted or in UNIX, the path conversion setting 1 is applied, in which case only the range enclosed
in double quotation marks is converted.

• PATH_CONV parameter
Defines path name character strings before and after conversion. When job definition scripts are executed, path
names are converted according to the rules defined in the parameter. Only the range in a path name that is defined
by the PATH_CONV_RULE parameter is converted.
If a path name matches the conversion character string defined in the PATH_CONV parameter, path separators and
directory separators are also converted.

(1) Example of file path conversion (path conversion setting 1)
This example shows how job definition scripts before execution are converted according to the information in the
environment file.

• Information in the environment file
The following shows an example environment file for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /home/hitachi/bin "C:\\Program Files" <-1.
#-adsh_conf PATH_CONV /tmp "C:\\temp" <-2.

• Job definition script before execution

#-adsh_path_var DIR,DIR2
"/home/hitachi/bin/myprog1" "/tmp/file" <-1., 2.

DIR="/home/hitachi/bin" <-1.
"$DIR/myprog1" "/tmp/file" <-2.
DIR2=$DIR
"$DIR2/myprog2" "/tmp/file" <-2.

• Job definition script after execution
The following results when paths have been converted:

"C:\\Program Files\\myprog1" "C:\\temp\\file" <-1., 2.

DIR="C:\\Program Files" <-1.
"$DIR\\myprog1" "C:\\temp\\file" <-2.
DIR2=$DIR
"$DIR2\\myprog2" "C:\\temp\\file" <-2.

1. Path /home/hitachi/bin is converted to C:\\Program Files according to the PATH_CON parameter
definition.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 90

Also, the directory separator is converted from / to \\ according to the PATH_CONV_ENABLE parameter
definition.

2. Path /tmp is converted to C:\\temp according to the PATH_CONV parameter definition.
Also, the directory separator is converted from / to \\ according to the PATH_CONV_ENABLE parameter
definition.

(2) Example of file path conversion (path conversion setting 2)
This example shows how job definition scripts before execution are converted according to the information in the
environment file.

• Information in the environment file
The following shows an example environment file for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user01 d:\\home\\user01
#-adsh_conf PATH_CONV BB/AA BB\\AA

• Job definition script before execution

#-adsh_job JOB001
#-adsh_path_var DIR01
echo -E "/home/user01/file"
cat /home/user01/file
DIR01=/home/user01
cat $DIR01/file02 <-1.
PATH=/home/user01/prog:$PATH <-2.
uap01
DIR02=/home/user01
PATH="$DIR02:/home/user01/prog:$PATH"
AA=10
BB=200
let ANS=BB/AA <-3.
echo $ANS
cat BB/AA

• Job definition script after execution
The following results when paths have been converted:

#-adsh_job JOB001
#-adsh_path_var DIR01
echo -E "d:\\home\\user01\\file"
cat "d:\\home\\user01"\\file
DIR01="d:\\home\\user01"
cat "$DIR01"\\file02 <-1.
PATH="d:\\home\\user01"\\prog";""$PATH" <-2.
uap01
DIR02="d:\\home\\user01"
PATH="$DIR02;d:\\home\\user01\\prog;$PATH"
AA=10
BB=200
let ANS="BB\\AA" <-3.
echo $ANS
cat "BB\\AA"

1. Because shell variable DIR01 that handles path names is defined in the job definition script before conversion, shell
variable DIR01 is enclosed in double quotation marks (") and then a directory separator is added after the shell
variable.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 91

2. Because the top of the character string matches the conversion rule, it is enclosed in double quotation marks (").
The path separator is converted to ";". Furthermore, because the character string was converted to the path, variable
name PATH is also enclosed in double quotation marks.

3. Conversion takes place because the arithmetic expression matches the path conversion setting. To suppress this
conversion, the job definition script must be corrected with either of the following methods:

• Enclose the variable in single quotation marks such as let ANS='BB/AA'.

• Add $ at the beginning of the variable name to be referenced such as let ANS=$BB/$AA.

(3) Notes
• If this definition is used to convert path names to obtain Windows path names, the directory separator in path names

becomes \. Therefore, if a path name is displayed by the echo command unconditionally in a job definition script,
\ and the immediately following character are replaced with the escape character.
If you do not want to replace these characters with the escape character, execute the echo command with the -E
option specified. For details, see 9.3.9 echo command (outputs what is specified in arguments to the standard output)
in 9.3 Standard shell commands.

• The metacharacters ~, ~+, and ~- cannot be replaced if they are enclosed in quotation marks, or if they are specified
immediately before an escape character (\) or immediately before a character string enclosed in quotations marks.
For the metacharacters, use the corresponding shell variables by referencing 5.1.6 Metacharacters.

2.6.3 Converting file paths when files are input and output
The file paths specified in job definition scripts are converted to the file paths that are subject to input and output
operations according to the rules defined for file input and output operations. The specified file paths must correspond
exactly to the file paths to be input and output.

(1) File path conversion conditions during file input and output operations
When a file input or output operation occurs, the file path is converted by using the redirect characters (<, >, <>, >>).

Input operations also occur in job definition scripts that are run by using the . (dot) or #-adsh_script command.
However, in these job definition scripts, file paths are not converted during file input and output operations. If you want
to convert such file paths, define conversion rules in the COMMAND_CONV_ARG parameter that converts arguments
during command execution.

File path conversion for file input and output operations applies to job definition scripts that are subject to path
conversion, as described in 2.6.2 Converting path names.

You can perform file path conversion during file input and output operations between the different platforms (UNIX
 Windows or Windows UNIX) as well as between the same platforms (UNIX UNIX or Windows

Windows).

(2) Example of file path conversion during file input and output operations
The following subsections explain how job definition scripts are converted when files are input and output according
to the information (PATH_CONV_ACCESS parameter) in the environment file defined for file input and output
operations.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 92

(a) Information in the environment file
The following shows an example environment file:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp "D:\\tmp"
#-adsh_conf PATH_CONV_ACCESS /dev/null nul

(b) Job definition script before execution
The following shows an example job definition script before execution:

while read LOG
do
 echo $LOG > /dev/null
done < "/tmp/input.txt"

(c) Job definition script during execution
The job definition script is interpreted during execution as follows:

while read LOG
do
 echo $LOG > nul
done < "D:\tmp\input.txt"

(3) Example of combining the PATH_CONV and PATH_CONV_ACCESS
parameters

This subsection presents an example in which the PATH_CONV and PATH_CONV_ACCESS parameters are combined
in the Windows edition. If both parameters are specified, the PATH_CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file
The following example shows the contents of an environment file (with a number assigned to each line):

1. #-adsh_conf PATH_CONV_ENABLE / :
2. #-adsh_conf PATH_CONV /tmp "C:\\temp"
3. #-adsh_conf PATH_CONV_ACCESS /tmp/result.log "C:\\jp1as_tmp\\result3.log"
4. #-adsh_conf PATH_CONV_ACCESS "C:\temp\result.log" "C:\\jp1as_tmp\\result4.log"
5. #-adsh_conf PATH_CONV_RULE 1

(b) Contents of job definition script and the conversion method
If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat data.txt > "/tmp/result.log"

In this example, the range enclosed in double quotation marks (") is converted by the PATH_CONV parameter because
1 is specified in the PATH_CONV_RULE parameter.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 93

Because "/tmp/result.log" specified in the cat command is enclosed in double quotation marks ("), it is
converted to "C:\\temp\\result.log" by the rule on line 2 in the environment file. Therefore, the rule on line
3 does not apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jp1as_tmp\
\result4.log".

cat data2.txt > /tmp/result.log

Because /tmp/result.log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH_CONV parameter on line 2. The rule on line 3 applies and the path is converted to
"C:\\jp1as_tmp\\result3.log".

2.6.4 Converting arguments during command execution
JP1/Advanced Shell converts arguments when commands are executed; this applies to standard shell commands,
extended shell commands, extended script commands, reserved script commands, functions, external commands, and
user programs. You can perform this conversion between the following platforms:

• Between the same platforms: UNIX UNIX or Windows Windows

• Between different platforms: UNIX Windows or Windows UNIX

JP1/Advanced Shell analyzes each line of a job definition script according to the defined rules. If a character string in
a specified argument exactly matches the character string in an argument of a command to be executed, the character
string in the argument is converted to the specified character string. You use the COMMAND_CONV_ARG parameter to
specify conversion rules.

(1) Example of combining the PATH_CONV and COMMAND_CONV_ARG
parameters

This subsection presents an example in which the PATH_CONV and COMMAND_CONV_ARG parameters are combined
in the Windows edition. If both parameters are specified, the PATH_CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file
The following example shows the contents of an environment file (with a number assigned to each line):

1. #-adsh_conf PATH_CONV_ENABLE / :
2. #-adsh_conf PATH_CONV /tmp "C:\\temp"
3. #-adsh_conf COMMAND_CONV_ARG /tmp/data.txt "C:\\jp1as_tmp\\data3.txt"
4. #-adsh_conf COMMAND_CONV_ARG "C:\temp\data.txt" "C:\\jp1as_tmp\\data4.txt"
5. #-adsh_conf PATH_CONV_RULE 1

(b) Contents of job definition script and the conversion method
If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat "/tmp/data.txt" > ./result.log

This example specifies 1 in the PATH_CONV_RULE parameter; therefore, the range enclosed in double quotation marks
(") is converted by the PATH_CONV parameter.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 94

Because "/tmp/data.txt" specified in the cat command is enclosed in double quotation marks ("), it is converted
to "C:\\temp\\data.txt" by the rule on line 2 in the environment file. Therefore, the rule on line 3 does not
apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jp1as_tmp\\data4.txt".

cat /tmp/data.txt > ./result.log

Because /tmp/result.log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH_CONV parameter specified on line 2. The rule on line 3 applies and the path is
converted to "C:\\jp1as_tmp\\data3.txt".

2.6.5 Defining files to be started as child jobs
You can specify a job definition script as a command name in another job definition script. This enables you to run a
job definition script specified in the adshexec command as a JP1/Advanced Shell job. This feature is useful in the
following cases:

• Migrating a user's existing asset shell scripts from a UNIX environment to a Windows environment

• Executing an existing shell script that is run in the OS's shell in a UNIX environment as a JP1/Advanced Shell job
without rewriting its contents

Of the job definition scripts that are executed as descendant processes, those jobs that are executed by using specific
environment setting parameters are called child jobs. For details about root jobs and child jobs, see (1) Root jobs and
child jobs. For details about how to execute job definition scripts as child jobs, see 3.2.3 Running job definition scripts
as child jobs.

If you will be starting job definition script files as child jobs, you must specify in an environment file the conditions for
the files to be used. The following provides an overview of the environment setting parameters.

• CHILDJOB_EXT parameter
Defines the extension for a job definition script file that is to be executed as a child job.

• CHILDJOB_PGM parameter
Defines the path to be replaced so that a job definition script file is executed as a child job.

• CHILDJOB_SHEBANG parameter
Defines the path of the executable program of the job definition script file that is to be executed as a child job.

A job definition script file that you create that satisfies the default definition for the CHILDJOB_SHEBANG parameter
is run as a child job.

For details about the individual parameters, see 7. Parameters Specified in the Environment Files.

Important
If you want to run both root and child jobs by using the same environment file parameters, do not change
the ADSH_ENV environment variable values or the contents of the environment files during job execution.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 95

2.6.6 Specifying definitions for using UNIX-compatible commands

(1) Definitions for using executable UNIX-compatible commands in
existing job definition scripts

If you will be using executable UNIX-compatible commands in existing job definition scripts, set the path to the directory
in which the UNIX-compatible commands are installed in the PATH environment variable. This method eliminates the
need for correcting the existing job definition scripts. If there is a command having the same name as a UNIX-compatible
command, you can always run the UNIX-compatible command in JP1/Advanced Shell's job definition scripts by
specifying the path at the beginning of the PATH environment variable value by using the export parameter in the
environment file.

For details about the export parameter, see 7.3.18 export parameter (defines an environment variable) in 7. 
Parameters Specified in the Environment Files. Before you run your job definition scripts, make sure that the correct
paths have been set in each environment in which the job definition scripts are to be run.

(2) Preparations for using the script-format UNIX-compatible commands
(Windows only)

The script-format UNIX-compatible commands use sample script files provided by JP1/Advanced Shell.

Execute the script-format UNIX-compatible commands (such as chmod and su) according to the sample script file
provided by JP1/Advanced Shell.

To execute script-format UNIX-compatible commands:

1. Copy to a desired folder the files that you will be using of the sample script files stored at the following location:

• Windows execution environment
installation-folder\JP1ASE\sample

• Windows development environment
installation-folder\JP1ASD\sample

For the types of sample script files, see 8.5 UNIX-compatible commands (script format) (Windows only).

2. Rename the copied files to applicable command names.
For example, rename sample script files script_chmod1 and script_su1 as chmod and su, respectively. If
you want to define a command that does nothing, copy sample script file script_0 and then rename it.

3. To specify only the file name of the sample script, not its absolute or relative path, do either of the following:

• Store the sample script to be run in the folder defined in the PATH environment variable.

• Add to the PATH environment variable the path of the folder containing the sample script that is to be run.

4. If necessary, define KNAX6831-I message output suppression.
If you do not want the KNAX6831-I message to be output after the sample script has run, specify the following
coding in the job environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6831-I

If you want to suppress output of the KNAX6831-I message for all job definition scripts in the system, specify the
above coding in the system environment file.

5. Run the job definition scripts.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 96

Run the job definition scripts by using the job environment file created in step 4. If you specified the definition in
the system environment file, the information specified in step 4 is imported automatically.

2.6.7 Defining the handling of unsupported conditional expressions
(Windows only)

The following parameter is used for defining the handling when unsupported conditional expressions are executed in
the test command.

• UNSUPPORT_TEST parameter

In a Windows environment, conditional expressions for evaluating the file attributes that are listed below are not
supported. If any of these conditional expressions is specified, an error will result. However, by specifying the
UNSUPPORT_TEST parameter, you can display a message and handle a specified conditional expression either as an
error or as a normal event. The unsupported conditional expressions are as follows:

• -G file: Verify if the group to which a file belongs matches the group executing the calling process.

• -O file: Verify whether the owner of the file has a valid user ID for the process.

Although JP1/Advanced Shell supports the following conditional expressions, versions earlier than 11-00 do not support
these conditional expressions so that the following conditional expressions can be specified.

• -h file: Verify if the file is a symbolic link.

• -L file: Verify if the file is a symbolic link (same as -h).

• file1 -ef file2: Verify if file1 and file2 exist and the entities of file1 and file2 are the same (if either their symbolic
link or hard link targets are the same).

2.6.8 Defining job execution results and log output information
Job execution results are output to the spool directory. You can reference some of the output information as job execution
logs. In the event of a problem, you can collect logs and investigate the cause of the problem. In the environment file,
define the output destination and contents of these logs.

The following table lists the types of log information that are output while JP1/Advanced Shell is running, and where
each type is stored.

Table 2-19: Log information output while running JP1/Advanced Shell and its storage locations

Log information Information that is output Storage location

Job execution log Log of batch jobs Under the spool root directory

System execution log Comprehensive JP1/Advanced Shell execution
log

Directory specified by the LOG_DIR
parameter#1 in the environment file.

Trace log JP1/Advanced Shell internal trace log Directory specified by the TRACE_DIR
parameter#1 in the environment file.

(UNIX only)
Start log#2

Start and end log of the user-reply functionality's
management daemon

Under /opt/jp1as/system

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 97

#1
If the parameter is omitted, the default value is used.

#2
This log information is collected when the user-reply functionality's management daemon is started and stopped.
This log information is stored under the /opt/jp1as/system directory with the following file names:

 User-reply functionality's management daemon on a physical host: adshmd.log
 User-reply functionality's management daemon on a logical host: adshmd_logical-host-name.log

The following subsections explain the spool output information and how to define output information for each log.

(1) Defining the spool output information
This subsection explains the spool-related parameters for each output information to be defined.

(a) Determining whether the spool job creation suppression functionality is to be
used

The spool job creation suppression functionality enables you to prevent the spool directory's disk space usage from
increasing continually. It also eliminates the need to delete unneeded directories and files from the spool directory.

Use the SPOOLJOB_CREATE parameter to enable the spool job creation suppression functionality. For details, see
7.3.41 SPOOLJOB_CREATE parameter (selects whether a spool job is to be created).

JP1/Advanced Shell always runs with the following settings while the spool job creation suppression functionality is in
effect:

• #-adsh_conf EVENT_COLLECT NO
Disables the operation information acquisition functionality.

• #-adsh_conf OUTPUT_MODE_CHILD MINIMUM
Executes child jobs in the minimum output mode.

• #-adsh_conf OUTPUT_MODE_ROOT MINIMUM
Executes root jobs in the minimum output mode.

• #-adsh_conf SPOOLJOB_CHILDJOB DELETE
Deletes the spool jobs for child jobs when the child jobs are terminated.

• adshexec -m MINIMUM
Executes the specified job in the minimum output mode regardless of the specified -m option.

• adshscripttool -exec -m MINIMUM
Executes the specified child job in the minimum output mode regardless of the specified -m option.

Note that when the spool job creation suppression functionality is used, none of the following functions that use spool
job directories can be used:

• #-adsh_spoolfile command
If this command is used, the KNAX6385-E message is issued and the script is terminated.

• adshfile command
If this command is used, the KNAX1880-E message is issued and the command is terminated.

• Collection of job execution logs

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 98

Job execution logs are not collected.

• Operation results collection functionality
Operation results are not collected.

Even when the spool job creation suppression functionality is in effect, spool directories are still needed.

When the spool job creation suppression functionality is in effect, the following environment setting parameters are
ignored:

• EVENT_COLLECT
• JOBEXECLOG_PRINT
• JOBLOG_SUPPRESS_MSG
• OUTPUT_MODE_CHILD
• OUTPUT_MODE_ROOT
• OUTPUT_STDOUT
• PERMISSION_SPOOLJOB_DIR
• PERMISSION_SPOOLJOB_FILE
• SPOOLJOB_CHILDJOB

During CUI debugging, a DBG file with the name shown below is created. This file is deleted automatically when
debugging is finished. If deletion of this file fails, an error message is output to the standard error output and to the
system execution log.

temporary-file-directory/ADSH_DBG_process-ID_job-ID

• temporary-file-directory
Temporary file directory defined in the TEMP_FILE_DIR parameter

• process-ID
Process ID consisting of five or more digits

• job-ID
Job ID consisting of six digits

(b) Defining the path name of the spool root directory
The following parameter is used for defining the path name of the spool root directory:

• SPOOL_DIR parameter: Defines the path name of the spool root directory.

If you will be using the user-reply functionality, define the SPOOL_DIR parameter only in the system environment file.

(c) Changing the spool job directory or file permissions (UNIX only)
When a job is terminated, its execution results are output to the spool job directory created for that job. You can use the
following parameters to change the permissions for the directory or the files under that directory:

• PERMISSION_SPOOLJOB_DIR parameter
Specify this parameter to change permissions for the spool job directory.
The default is 700.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 99

• PERMISSION_SPOOLJOB_FILE parameter
Specify this parameter to change permissions for the files under the spool job directory.
The default is 600 (in .DBG files, 666).

(d) Defining the standard output and standard error for spool jobs
When a job is executed, information and warning messages for the job controller and job execution logs are output in
addition to the job execution results. The standard output and the standard error output are output to files under the spool
job directory.

You specify the simple output mode or the minimum output mode to suppress output of the standard output and the
standard error output to files under the spool job directory. You use the following parameters and command options for
this specification:

• OUTPUT_MODE_ROOT parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for root jobs.

• OUTPUT_MODE_CHILD parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for child jobs.

• -m option of the adshexec command
Specifies the expansion output mode, simple output mode, or minimum output mode for jobs.

• -m option of the adshscripttool command
Specifies the simple output mode or minimum output mode for child jobs.

If these parameters and option are omitted, expansion output mode is assumed, in which case the standard output and
the standard error are output to files under the spool job directory.

In the simple and minimum output modes, information and warning messages for the job controller are not output to
standard output or standard error output. Also, when jobs are terminated, job execution logs are not output to the standard
error output. In addition, in the minimum output mode, messages whose output is suppressed are not output to the job
execution logs under spool job directories.

For details about the difference in output information among the simple output mode, expansion output mode, and
minimum output mode, see 3.4.4 Suppressing output of information and warning messages to job execution logs.

(2) Defining the information to be output to the job execution log
This subsection explains information related to the job execution log that is to be specified during the environment setup.
For details about the information that is output to the job execution log, see 3.5 Job execution log.

(a) Defining the types of job execution logs to be output to the standard error
When a job is terminated, the information listed below is output as job execution logs to the standard error. The output
job execution logs are displayed on the terminal screen used when the adshexec command is executed, and in
JP1/AJS - View's Execution Results Details dialog box.

• JOBLOG file (Messages indicating the job's execution status, including command execution results and file
allocation results)

• Job definition script

• Contents of the standard error during job execution

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 100

To output only the contents of the standard error during job execution to the standard error, specify the parameter shown
in the following to limit the contents of job execution logs to be output:

• JOBEXECLOG_PRINT parameter

If a job is executed in JP1/Advanced Shell - Developer or the job controller is started in the debugger mode, JOBLOG,
standard output, and standard error are output to the console regardless of the specification of this parameter. When the
job is terminated, the contents of the job execution log are not output to the standard error.

When a job is executed in the simple output mode or the minimum output mode, job execution logs are not output to
the standard error output when the job is terminated regardless of the specification of the JOBEXECLOG_PRINT
parameter.

(b) Merging the job execution logs for a root job and child jobs
The following parameter enables you to choose whether child jobs' spool jobs are to be deleted when the child jobs are
terminated, or to be merged into the root job's spool jobs:

• SPOOLJOB_CHILDJOB parameter

If child jobs' spool jobs are merged into the root jobs spool jobs, the child jobs are output in the order they are terminated
in such a format that the root job can be identified from the child jobs.

(3) Defining the information to be output to the system execution log
The system execution log provides system administrators with a comprehensive execution history of batch jobs.

The log information is output to AdshLog.log under the directory specified by the LOG_DIR parameter in the
environment file. The files are swapped (AdshLog_1.log, AdshLog_2.log, ..., AdshLog_N.log) according
to conditions (such as maximum file size) specified in parameter settings. Because a new system execution log file is
created when log files are swapped, the owner of each file will be the user at the time swapping occurs.

(a) Flow of output to the system execution log
The system execution log is the destination for log information about the batch jobs running in each job controller
process. You can specify in the environment files the output destination for the system execution log, as well as
parameters that control log file swapping (such as maximum file size and number of files). The following figure shows
the flow of output to the system execution log.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 101

Figure 2-6: Flow of output to the system execution log

The system execution log is created as follows.

• Messages to be output to the system execution log are collected and output in CSV format.
For details about the messages that are output, see 12.2 Message output destinations.

• In time, log file swapping is performed and a backup is created.

• Just before it exceeds the file size specified in the LOG_FILE_SIZE parameter in the environment file, the
current system execution log file is renamed so that it becomes a backup file, and a new system execution log
is created and message output continues to it.

• The file name of the backup will be AdshLog_N.log (where N is an integer). N is assigned a number in
ascending order from the newest backup, starting from 1.

• The maximum number of backups to be created is specified in the LOG_FILE_CNT parameter in the
environment file. When the number of backup files exceeds this value, the oldest backup file is deleted.

(b) Parameters required to output the system execution log
The following parameters are used for outputting system execution logs:

• LOG_DIR parameter: Defines the path name of the directory to which system execution logs are to be output.

• LOG_FILE_CNT parameter: Defines the number of files used for backing up system execution logs.

• LOG_FILE_SIZE parameter: Defines the file size for output of system execution logs.

If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE parameter
values specified by the last user who starts output of system execution logs take effect. Therefore, we recommend that
you use the same value for LOG_FILE_CNT and LOG_FILE_SIZE.

(c) Contents of the system execution log
The following shows an example of a message output to the system execution log:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 102

seqnum=1, date=2013-12-06T10:41:19.242+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0004-I, msg="Job ID=000006, JP1NBQSQueueName=, scheduler job ID="
seqnum=2, date=2013-12-06T10:41:19.250+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0091-I, msg="JOB1 The job started."
seqnum=3, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7901-I, msg="The adshexec command will wait for all asynchronous processes
at the end of the job."
seqnum=4, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7902-I, msg="The adshexec command will run in tty stdin mode."
seqnum=5, date=2013-12-06T10:41:19.252+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOB1.STEP1 step started."
seqnum=6, date=2013-12-06T10:41:19.263+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap01.exe (line=5) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s"
seqnum=7, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOB1.STEP1 step succeeded. exit status=0 execution
time=0.022s CPU time=0.015s"
seqnum=8, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOB1.STEP2 step started."
seqnum=9, date=2013-12-06T10:41:19.289+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap02.exe (line=10) finished
successfully. exit status=0 execution time=0.008s CPU time=0.015s"
seqnum=10, date=2013-12-06T10:41:19.290+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOB1.STEP2 step succeeded. exit status=0 execution
time=0.016s CPU time=0.015s"
seqnum=11, date=2013-12-06T10:41:19.290+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0092-I, msg="JOB1.STEP2 step started."
seqnum=12, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap03.exe (line=15) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s"
seqnum=13, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX6597-I, msg="JOB1.STEP2 step succeeded. exit status=0 execution
time=0.009s CPU time=0.000s"
seqnum=14, date=2013-12-06T10:41:19.300+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0098-I, msg="JOB1 The job ended. exit status=0 execution time=0.053s CPU
time=0.030s"

The following table lists and explains the data items that are added in front of the message texts in the system execution
log:

Data items output to the
system execution log

Meaning

seqnum Message's serial number

date Output date and time (in the format yyyy-mm-ddThh:mm:ss.sssTZD)

pgmid Program ID
In a job controller, adshexec is output.

jobid Job ID

pid Process ID

msgid Message ID of the output message

msg Message text of the output message

(4) Defining the information to be output to trace logs
Trace logs are JP1/Advanced Shell's internal trace logs. In the event of a problem in JP1/Advanced Shell, traces are
collected to resolve the problem.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 103

The following table shows the types of trace logs.

Table 2-20: Types of trace logs

No. Type of trace log Trace log output destination (default
value)

Log file
count

File size

1 JP1/Advanced Shell execution environment
trace log (Windows and UNIX)# and JP1/
Advanced Shell's job definition script operation
information output command (adshevtout
command) trace log#

• Windows
common-application-data-folder
\Hitachi\JP1AS\JP1ASE\trace

• UNIX
/opt/jp1as/trace

<<4>>
((1 to 64))

<<2>>
((1 to 16))

2 JP1/Advanced Shell - Developer's non-editor
trace log#

common-application-data-folder\Hitachi
\JP1AS\JP1ASD\trace

<<4>>
((1 to 64))

<<2>>
((1 to 16))

3 JP1/Advanced Shell custom job trace log common-application-data-folder\Hitachi
\JP1AS\JP1ASV\trace

1 1

4 JP1/Advanced Shell - Developer's editor trace
log

common-application-data-folder\Hitachi
\JP1AS\JP1ASD\adshedit\trace

1 1

5 JP1/Advanced Shell and JP1/Advanced Shell -
Developer's shared commands trace log

common-application-data-folder\Hitachi
\JP1AS\misc\trace

4 2

#
Environment setting parameters can be used to change the trace log output destination, number of log files, and file
size.

The following parameters are used for defining trace files:

• TRACE_DIR parameter
Defines the path name of the directory to which traces are to be output. The trace log file names are
AdshTrace_n.log (n: number of files).

• TRACE_FILE_CNT parameter
Defines the number of files to which traces are to be output. The specified number of trace log files are used
sequentially and then overwritten in wraparound fashion once all of the files become full.

• TRACE_FILE_SIZE parameter
Defines the file size for output of traces.

• TRACE_LEVEL parameter
Defines the trace output level.

If multiple users output traces to the same file, the TRACE_FILE_CNT and TRACE_FILE_SIZE parameters are
handled as follows:

• The largest user values specified for the TRACE_FILE_CNT and TRACE_FILE_SIZE parameters take effect.

• If the TRACE_FILE_CNT and TRACE_FILE_SIZE parameter values are changed, the new values are compared
with the existing number of trace files and file size, and the largest user values specified for these parameters take
effect.

To reduce the number of trace files or the file size, you must delete all the files in the trace folder. Before you delete all
files from the trace folder, make sure that no job is outputting traces to the corresponding trace files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 104

2.6.9 Defining the return codes of extended script commands
The following parameters are used to change the default values for the return codes that indicate whether extended script
commands failed or were successful:

• ADSHCMD_RC_ERROR parameter: Defines the return code to be used to indicate that an extended script command
failed.

• ADSHCMD_RC_SUCCESS parameter: Defines the return code to be used to indicate that an extended script command
was successful.

For details, see 5.8.7 Return codes of extended script commands and handling of errors.

2.6.10 Sharing among multiple environments
You can run multiple environments on the same host by using the following environment setting parameters to specify
different directories:

• LOG_DIR parameter

• SPOOL_DIR parameter

• TEMP_FILE_DIR parameter

• TRACE_DIR parameter

To inherit information to a standby server during cluster operation, any directory to be inherited must be shared among
the multiple hosts. In such a case, you must share among the multiple hosts at least the directory specified in the following
parameter:

• SPOOL_DIR parameter

2.6.11 Enabling coverage information collection without having to specify
the option during batch job execution

By specifying the environment setting parameters listed below for collecting coverage information, you eliminate the
need to specify the coverage information collection option (-t option) during batch job execution:

• BATCH_CVR parameter: Uses the coverage auto-acquisition functionality.

• ASC_FILE parameter: Defines the accumulation file naming rules to be used by the coverage auto-acquisition
functionality.

The following subsections show example settings in the environment file and the command to be executed.

(1) Example settings in the environment file
This example specifies the following parameters in the environment file:

#-adsh_conf BATCH_CVR YES
#-adsh_conf ASC_FILE ./cvrg/ver001-*

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 105

The following explains each line of the settings:

1. BATCH_CVR: Uses the coverage auto-acquisition functionality.

2. ASC_FILE: Defines the accumulation file naming rules used by the coverage auto-acquisition functionality.

(2) Command to be executed
This example executes the following command using the above settings in the environment file:

adshexec sample.ash

This command produces the same results as if the adshexec command with adshexec -t -o ./cvrg/ver001-
sample sample.ash specified were executed. However, if the adshexec command with adshexec -t
sample.ash specified (the -t option specified) were executed, the return code would be 1, resulting in an error.

2.6.12 Migrating job definition scripts from UNIX to Windows
This subsection explains how to migrate UNIX job definition scripts to Windows job definition scripts. Before you
perform the procedure, make sure that the encoding of the job definition scripts and environment files matches the value
of the LANG environment variable that is used on the target platform.

To migrate from UNIX job definition scripts to Windows job definition scripts:

1. Enable the path conversion functionality.
To convert the separators used in UNIX job definition scripts to those supported by Windows platforms, specify the
following parameter in the environment file:

#-adsh_conf PATH_CONV_ENABLE / :

2. Specify the setting needed for converting the specified paths.
If program paths are specified explicitly in job definition scripts, specify the parameter shown below to convert the
paths to paths used in the Windows environment. This example converts the paths of UNIX-compatible commands.

#-adsh_conf PATH_CONV /opt/jp1as "C:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"

3. Specify the setting needed for converting the separators around the shell variables that handle paths.
If you describe the path of the program in the job definition script, you need to specify the shell variable that handles
the path to convert the path separator that uses the shell variable. The shell variable that handles the path is specified
with the environment file or job definition script.

• The command is specified as follows in the environment file:

#-adsh_conf PATH_CONV_VAR VAR

• Add the following command in the job definition script:

#-adsh_path_var VAR

4. Select the path conversion setting. (Windows only)
Specify the path conversion setting by using the PATH_CONV_RULE parameter.
If you want to convert a part enclosed in double quotation marks ("), specify path conversion setting 1 as follows:

#-adsh_conf PATH_CONV_RULE 1

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 106

If you want to convert a part that is not enclosed in double quotation marks (") as well as a part enclosed in double
quotation marks, specify path conversion setting 2 as follows:

#-adsh_conf PATH_CONV_RULE 2

5. Verify that conversion is enabled.
In path conversion setting 1, verify that the paths to be converted are enclosed in double quotation marks (") as
shown in the following example:

"$VAR/cmd/ls" -l "/opt/jp1as/sample"

In path conversion setting 2, verify that the path that you do not wish to convert is enclosed in single quotation marks
(').

6. Check the path conversion results.
Perform a syntax check on the job definition script (adshexec -c command) and check the path conversion results
in the generated script image. If the conversion results are not correct, either change the path conversion setting or
edit the job definition script, and then perform a syntax check again.

The following shows examples of path conversion settings 1 and 2.

• Example of conversion using path conversion setting 1
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /opt/jp1as "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -c
sample1.ash

***** D:\home\user001\sample1.ash *****
0001 : #-adsh_job SAMPLE
0002 : #-adsh_path_var VAR
0003 :
0004 : VAR=/opt/jp1as
0005 : "$VAR/cmd/ls" -l "/opt/jp1as/sample"
0006 :

***** Converted lines in "C:\home\user001\sample1.ash" *****
0005 : "$VAR\\cmd\\ls" -l "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\\sample"
KNAX7999-I Advanced Shell ended. exit status=0

D:\home\user001>

• Example of conversion using path conversion setting 2
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /opt/jp1as "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -c
sample1.ash

***** D:\home\user001\sample1.ash *****
0001 : #-adsh_job SAMPLE

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 107

0002 : #-adsh_path_var VAR
0003 :
0004 : VAR=/opt/jp1as
0005 : "$VAR/cmd/ls" -l "/opt/jp1as/sample"
0006 :

***** Converted lines in "D:\home\user001\sample1.ash" *****
0004 : VAR="c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"
0005 : "$VAR\\cmd\\ls" -l "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\\sample"
KNAX7999-I Advanced Shell ended. exit status=0

D:\home\user001>

2.6.13 Loading the files specified in the ENV shell variable
You can use the KSH_ENV_READ environment setting parameter to specify whether the .env files specified in the
ENV environment variable are to be loaded when the job controller starts. If this parameter is omitted, the default value
depends on the OS, as shown in the following:

• Linux and Windows: YES (loads ENV files)

• AIX, HP-UX, and Solaris: NO (does not load ENV files)

2.6.14 Defining the process that will be executing the last command in a
pipe

To define whether the last command in a pipe is to be executed by the current process or another process, specify the
PIPE_CMD_LAST environment setting parameter as follows:

• CURRENT: Executes in the current process.

• OTHER: Executes in another process.

• SEQUENTIAL [Only for Windows]: Execute all commands sequentially by the current process.

If the PIPE_CMD_LAST parameter is omitted, CURRENT is applied in the UNIX edition and SEQUENTIAL is applied
in the Windows edition.

2.6.15 Defining the return code in the event of an unresumable error in a
job

If a job is terminated due to an error, such as a memory shortage or a job definition script parsing error, the job controller's
return code is set to 1. You can change this return code to any value from 1 to 255 by setting a value in the
ADSH_JOBRC_FATAL environment variable.

For details about how to specify the ADSH_JOBRC_FATAL environment variable, see (2) ADSH_JOBRC_FATAL
environment variable (specifies the return code in the event of an unresumable error in jobs).

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 108

(1) Whether the ADSH_JOBRC_FATAL environment variable can be
applied

The following table lists the types of errors that might occur while the job controller is running and whether the return
code defined in the ADSH_JOBRC_FATAL environment variable can be applied.

Table 2-21: Whether the ADSH_JOBRC_FATAL environment variable setting is applied by error
type

No. Timing of error Error type Applicability#1

1 When a job is started by the
adshexec command or a job
definition script is debugged
from the editor

Errors that prevent the OS from starting execution of the adshexec command.
For example, this type of error occurs when the load module that is used by the
adshexec command does not exist.

N

2 Before a job definition script
is run

Parsing errors in the ADSH_JOBRC_FATAL environment variable N#2

3 Event file initialization errors N

4 (UNIX only) Errors that occur during signal reception N#3

5 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

6 All errors other than those listed in 2 to 5 above. The typical errors are as follows:
• Command line parsing errors in the adshexec command
• Invalid status errors in a job definition script file specified in the adshexec

command's argument
• Environment file parsing errors
• Job definition script parsing errors
• Initialization errors in the job execution log, system execution log, and trace

log
• Initialization errors in asc files
• (Windows only) License check errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+C, CTRL+BREAK, CTRL_CLOSE_EVENT)

Y

7 While a job definition script is
running

Errors that do not stop job definition script processing#4 N

8 Errors caused when a job is terminated by using the debugger's command, menu,
or button listed below during debugging:
• (UNIX only) Executing of the kill or quit command or re-execution of

the run command
• (Windows only) Selecting the Quit Debugging menu, clicking the Quit

Debugging button, or closing the editor window to cancel debugging

N

9 (UNIX only) Errors that occur during signal reception N#3

10 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 109

No. Timing of error Error type Applicability#1

11 While a job definition script is
running

This includes all errors other than those listed in 7 to 10 above. The typical errors
are as follows:
• Special built-in command errors (excluding the typeset errors and the

errors in the return command executed within a function or an external
script)

• Assignment operation errors#5

• Errors in variable substitution in a job termination format#6

• Errors caused by the specification of an out-of-range array element (outside
the range from 0 to 65535)

• Resource allocation errors caused by a shortage of memory and disk capacity
• Input/output errors
• Internal conflict errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+C, CTRL+BREAK, CTRL_CLOSE_EVENT)
• (Windows only) Errors resulting from the execution of a conditional

expression containing the operator -h, -G, -L, -O, or -ef (except when a
value other than ERR is specified in the UNSUPPORT_TEST parameter)

Y

12 After execution of a job
definition script

(UNIX only) Errors that occur during signal reception N#3

13 The following errors related to files and directories:
• Parsing errors in the files allocated by an extended script command
• Postprocessing errors in spool job management files
• Postprocessing errors in the root job's spool job directory
• Post processing errors in event files

N

14 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

15 All errors other than those listed in 12 to 14 above. The typical errors are as
follows:
• Postprocessing errors in the asc files
• Child jobs' spool job directory deletion errors
• (UNIX only) DBG file parsing errors
• Internal conflict errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+C, CTRL+BREAK, CTRL_CLOSE_EVENT)

Y

Legend:
Y: The setting of the ADSH_JOBRC_FATAL environment variable takes effect.
N: The setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

#1
The options specified in the adshexec command do not affect whether the setting of the ADSH_JOBRC_FATAL
environment variable takes effect. For example, if the adshexec command with the -c option specified is executed
and a syntax error occurs, the ADSH_JOBRC_FATAL environment variable setting still takes effect.
This applicability depends on the OS as follows:

• In UNIX, the -d option is specified in the adshexec command
For the debugger and the jobs subject to debugging that are executed by the run command, the following items
in the table are checked to determine the applicability:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 110

Debugger: Items 1 to 6 and 12 to 15
Jobs subject to debugging: Items 7 to 15

• In Windows, debugging is executed from the editor
For the jobs to be debugged, items 1 to 15 in the table are checked to determine the applicability.

#2
The return code is 255.

#3
If the job controller receives a signal and the job terminates with an error, the job's return code is 128 + the signal
number.

#4
If an extended script command results in an error while a job definition script is running, the subsequent job steps
and commands listed below are not executed; however, this is not treated as an unresumable error. Therefore, the
setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

• Job steps whose run attribute is omitted or normal
• Instructions outside job steps

#5
This does not apply when an assignment operation is specified in the argument of a regular built-in command.
The table below shows the classification of assignment operation specifications and whether the setting of the
ADSH_JOBRC_FATAL environment variable is applied. The error indicated in this table occurs if an attempt is
made to assign a value to the NUM variable that has been defined as being read-only in readonly NUM.

Classification of assignment operation specification Example of error Applicability

An assignment operation is specified on its own. NUM=100 Y

An assignment operation is specified in the argument of a reserved script command. time NUM=100 Y

An assignment operation is specified in the argument of a special built-in command. export NUM=100 Y

An assignment operation is specified in the argument of a regular built-in command. let NUM=100 N

Legend:
Y: The setting of the ADSH_JOBRC_FATAL environment variable takes effect.
N: The setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

#6
As a result of variable substitution, the job might become unresumable and be terminated with an error depending
on the status of variable. The following shows the status of variable that results in an error for each format:

${variable:?[word]}
If variable has been defined and its value is null (empty character string) or is undefined, an error results.

${variable?[word]}
If variable is undefined, an error results.

(2) ADSH_JOBRC_FATAL environment variable (specifies the return code
in the event of an unresumable error in jobs)

The ADSH_JOBRC_FATAL environment variable is used to specify the job controller's return code in the event a job
becomes unresumable and is terminated with an error. The specified return code is applied to jobs that are executed by
using the adshexec command and to jobs that are executed from JP1/Advanced Shell - Developer's editor.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 111

The following shows how to apply the value of this environment variable globally in the entire system:

• Windows
Define ADSH_JOBRC_FATAL as a system environment variable.

• UNIX
Specify the ADSH_JOBRC_FATAL environment variable setting in /etc/profile.

If this environment variable is not specified and a job terminates with an unresumable error, the controller's return code
is set to 1.

(a) Values permitted in the environment variable

termination-code ~<unsigned integer> ((1 to 255))
Specifies the return code to be set when a job cannot be resumed. If the value is padded with leading zeros such as
001, the leading zeros are deleted and the value is treated as being 1.

(b) Notes
• If the ADSH_JOBRC_FATAL environment variable is defined by using the export parameter in the environment

file or the ADSH_JOBRC_FATAL environment variable is defined or changed within a file or a job definition script
specified in the ENV shell variable, this functionality does not take effect within that job. The functionality takes
effect on another job that is started from that job.

• The ADSH_JOBRC_FATAL environment variable defines the final return codes for jobs. It does not affect the return
codes of individual commands and job steps.

• If any of the following values is set, the job terminates, without being executed, with an error with return code 255:
• Value consisting of four or more characters (example: 1234)

• Value outside the permitted range (example: 500)

• Non-numeric characters (example: 1A4, +8, 8.0)

• Value consisting of no character (null character string)

• Whether the ADSH_JOBRC_FATAL environment variable is applied in the event of an error depends on each job.
If an unresumable error occurs only within a root job or a child job, the ADSH_JOBRC_FATAL environment variable
will not be applied to any other root job or child job to change its return code.

(c) Examples
The following shows an example of a UNIX job that was started with 8 set in the ADSH_JOBRC_FATAL environment
variable and terminated with an unresumable error.

The job could not be resumed because the directory specified in the SPOOL_DIR parameter in the environment
file was not found:

Contents of /etc/profile:

ADSH_JOBRC_FATAL=8
export ADSH_JOBRC_FATAL

Command specification at the job start:

$ /opt/jp1as/bin/adshexec test.sh

The following shows the execution results:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 112

KNAX0441-E The directory specified for the parameter "SPOOL_DIR" does not exist.
line=1
KNAX0410-E An error occurred when parsing the environment file "sample.ase". For
details, see the message output before this one.
KNAX0240-I The setting specified for the environment variable ADSH_JOBRC_FATAL
was applied. value=8 ...1.
KNAX7999-I Advanced Shell ended. exit status=8 ...2.

The following explains execution results 1 and 2:

1. This is a message indicating that the ADSH_JOBRC_FATAL environment variable was applied.

2. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the job controller's return code.

A child job was terminated due to an error in the special built-in command (unset command).
Contents of /etc/profile:

ADSH_JOBRC_FATAL=8
export ADSH_JOBRC_FATAL

Contents of the environment file:

#-adsh_conf CHILDJOB_SHEBANG /bin/sh

Contents of the root job's job definition script (prt.sh):

./cld.sh

./cmdA

Contents of the child job's job definition script (cld.sh):

#!/bin/sh
val=10
unset
./cmdX $val

Command specification at the job start:

$ /opt/jp1as/bin/adshexec prt.sh

The following shows the execution results:

******** JOB CONTROLLER MESSAGE ********
15:02:55 000042 KNAX0091-I ADSH000042 The job started.
15:02:55 000042 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
15:02:55 000042 KNAX7902-I The job controller will run in tty stdin mode.
15:02:55 000042 KNAX6831-I The command definition matched the rule specified by
the environment settings parameter CHILDJOB_SHEBANG. script="./cld.sh"
shebang="/bin/sh"

>>>>>> [JOBLOG] /home/usr/cld.sh
15:02:55 000043 KNAX6571-I The child job ADSH000043 started. parent
job=ADSH000042 parent job ID=000042
15:02:55 000043 KNAX6572-I The child job ADSH000043 will use the job environment
file "/opt/jp1as/conf/adsh.conf".
15:02:55 000043 KNAX7902-I The job controller will run in tty stdin mode.
15:02:55 000043 KNAX6110-I Execution of the command val=10 (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:02:55 000043 KNAX6015-E No argument is specified. filename="/home/usr/cld.sh"
line=3
15:02:55 000043 KNAX6521-E The command unset (line=3) failed. exit status=1
execution time=0.000s CPU time=0.000s
15:02:55 000043 KNAX6584-I A job stopped because a command that terminates

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 113

execution of the script was executed.
15:02:55 000043 KNAX0101-E ADSH000043 An error occurred during execution of the
job.
15:02:55 000043 KNAX6578-I The child job ADSH000043 ended. exit status=8
execution time=0.001s CPU time=0.000s
<<<<<< [JOBLOG] /home/usr/cld.sh

15:02:55 000042 KNAX6521-E The command ./cld.sh (line=1) failed. exit status=8
execution time=0.027s CPU time=0.000s
15:02:55 000042 KNAX6116-I Execution of the command ./cmdA (line=2) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
15:02:55 000042 KNAX0101-E ADSH000042 An error occurred during execution of the
job.
15:02:55 000042 KNAX0098-I ADSH000042 The job ended. exit status=0 execution
time=0.030s CPU time=0.000s

******** Script IMAGE ********

***** /home/usr/prt.sh *****
0001 : ./cld.sh
0002 : ./cmdA
0003 :

***** CONVERSION INFORMATION *****

***** /home/usr/cld.sh *****
0001 : #!/bin/sh
0002 : val=10
0003 : unset
0004 : ./cmdX $val
0005 :

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********

>>>>>> [STDERR] /home/usr/cld.sh
KNAX0726-I The child job ID was assigned. job ID=000043
KNAX0101-E ADSH000043 An error occurred during execution of the job.
KNAX0240-I The setting specified for the environment variable ADSH_JOBRC_FATAL
was applied. value=8
<<<<<< [STDERR] /home/usr/cld.sh

KNAX0101-E ADSH000042 An error occurred during execution of the job.
KNAX0098-I ADSH000042 The job ended. exit status=0 execution time=0.030s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/000042-ADSH000042/"
KNAX7999-I Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:

1. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the child job's return code.

2. This is a message indicating that the ADSH_JOBRC_FATAL environment variable was applied to the child job.

The following shows an example of a Windows job that was started with 16 set in the ADSH_JOBRC_FATAL system
environment variable and terminated with an unresumable error.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 114

The job could not be resumed because the directory specified in the LOG_DIR parameter in the environment
file was not found.

This example specifies the following system environment variable and value:

• Variable: ADSH_JOBRC_FATAL
• Value: 16

Command specification at the job start:

adshexec test.ash

The following shows the execution results:

KNAX0441-E The directory specified for the parameter "LOG_DIR" does not exist.
line=1
KNAX0410-E An error occurred when parsing the environment file "sample.ase". For
details, see the message output before this one.
KNAX0240-I The setting specified for the environment variable ADSH_JOBRC_FATAL
was applied. value=16 ...1.
KNAX7999-I Advanced Shell ended. exit status=16 ...2.

The following explains execution results 1 and 2:

1. This is a message indicating that the ADSH_JOBRC_FATAL system environment variable was applied.

2. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the job's return code.

A child job was terminated due to an error in the special built-in command (unset command)
This example specifies the following system environment variable and value:

• Variable: ADSH_JOBRC_FATAL
• Value: 16

Contents of the environment file:

#-adsh_conf CHILDJOB_SHEBANG /bin/sh

Contents of the root job's job definition script (prt.sh):

./cld.sh

./cmdA

Contents of the child job's job definition script (cld.sh):

#!/bin/sh
val=10
unset
./cmdX $val

Command specification at the job start:

adshexec prt.sh

The following shows the execution results:

******** JOB CONTROLLER MESSAGE ********
17:15:38 000155 KNAX0091-I ADSH000155 The job started.
17:15:38 000155 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
17:15:38 000155 KNAX7902-I The job controller will run in tty stdin mode.
17:15:38 000155 KNAX6832-I The command definition matched the rule specified by
the environment settings parameter CHILDJOB_EXT. script=".\cld.sh"

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 115

>>>>>> [JOBLOG] c:\home\usr\cld.sh
17:15:38 000156 KNAX6571-I The child job ADSH000156 started. parent
job=ADSH000155 parent job ID=000155
17:15:38 000156 KNAX6572-I The child job ADSH000156 will use the job environment
file "c:\jp1as\conf\adsh.conf".
17:15:38 000156 KNAX7902-I The job controller will run in tty stdin mode.
17:15:38 000156 KNAX6110-I Execution of the command val=10 (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
17:15:38 000156 KNAX6015-E No argument is specified. filename="c:\home\usr
\cld.sh" line=3
17:15:38 000156 KNAX6521-E The command unset (line=3) failed. exit status=1
execution time=0.000s CPU time=0.000s
17:15:38 000156 KNAX6584-I A job stopped because a command that terminates
execution of the script was executed.
17:15:38 000156 KNAX0101-E ADSH000156 An error occurred during execution of the
job.
17:15:38 000156 KNAX6578-I The child job ADSH000156 ended. exit status=16
execution time=0.000s CPU time=0.000s
<<<<<< [JOBLOG] c:\home\usr\cld.sh

17:15:38 000155 KNAX6521-E The command .\cld.sh (line=1) failed. exit status=16
execution time=0.062s CPU time=0.015s
17:15:38 000155 KNAX6116-I Execution of the command .\cmdA.exe (line=2) finished
successfully. exit status=0 execution time=0.016s CPU time=0.016s
17:15:38 000155 KNAX0101-E ADSH000155 An error occurred during execution of the
job.
17:15:38 000155 KNAX0098-I ADSH000155 The job ended. exit status=0 execution
time=0.078s CPU time=0.047s

******** Script IMAGE ********

***** c:\home\usr\prt.sh *****
0001 : .\\cld.sh
0002 : .\\cmdA
0003 :

***** CONVERSION INFORMATION *****

***** c:\home\usr\cld.sh *****
0001 : #!/bin/sh
0002 : val=10
0003 : unset
0004 : .\\cmdX $val
0005 :

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********

>>>>>> [STDERR] c:\home\usr\cld.sh
KNAX0726-I The child job ID was assigned. job ID=000156
KNAX0101-E ADSH000156 An error occurred during execution of the job.
KNAX0240-I The setting specified for the environment variable ADSH_JOBRC_FATAL
was applied. value=16
<<<<<< [STDERR] c:\home\usr\cld.sh

KNAX0101-E ADSH000155 An error occurred during execution of the job.
KNAX0098-I ADSH000155 The job ended. exit status=0 execution time=0.078s CPU
time=0.047s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="C:\Users\Public\Documents\Hitachi\JP1AS\JP1ASE\spool\000155

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 116

-ADSH000155\"
KNAX7999-I Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:

1. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the child job's return code.

2. This is a message indicating that the ADSH_JOBRC_FATAL system environment variable was applied to the
child job.

2.6.16 Setting up the user-reply functionality
To use the user-reply functionality, you must set up an appropriate environment in both JP1/Advanced Shell and
JP1/IM. For details about this environment setup, see 2.8 Setting up the user-reply functionality.

2.6.17 Checking the JP1 environment (UNIX only)
The JP1 environment is determined by /etc/opt/jp1base/conf/jp1bs_param.conf. Specify the character
encoding according to the environment being used. For details, see the JP1/Base User's Guide.

2.6.18 Setting up the shell (UNIX only)
The table below shows the login shell used when jobs are started from JP1/AJS. Specify the settings so that the correct
login shell can be used.

OS type Login shell

Linux Bash

AIX Korn (ksh)

HP-UX

Solaris

Notes:
If the adshexec command is run as a child process of the login shell when a job is started from JP1/AJS and then
forced termination occurs, the login shell's processing might terminate before the adshexec command's job
execution results are passed to JP1/AJS. If this happens, the job execution results might not be applied to JP1/AJS
- View.
To avoid this, first (before starting) check the definitions in the login script file to verify that the login shell's process
is overwritten (such as by deleting the trap command specification).
For details about the definitions, see the manual JP1/Automatic Job Management System 3 Configuration Guide or
JP1/Automatic Job Management System 3 Troubleshooting.

2.6.19 Creating the directories required for JP1/Advanced Shell
If you want to change the default settings for the directories required for execution after you have installed JP1/Advanced
Shell, you must create new directories, and then specify them in the environment files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 117

The directories required for JP1/Advanced Shell and the information to be specified are described below. The user who
will be running JP1/Advanced Shell must grant the required permissions to these directories.

• Directory for temporary files
Specify the directory in which the files to be used only within batch jobs are to be created temporarily.

• Directory for the spool
Specify the directory used to store job execution logs and program output data files.

• Directory for system execution logs
Specify the directory used to store batch job logs as system execution logs that are used by the system administrator
for monitoring execution of batch jobs.

• Directory for traces
Specify the directory used to store the statuses for troubleshooting purposes in the event of system failure.

The table below lists the directories required in JP1/Advanced Shell. For details about how to specify the environment
setting parameters, see 7. Parameters Specified in the Environment Files.

Table 2-22: Directories required in JP1/Advanced Shell

Directory Environment setting
parameter

Default directory or path Default permissions

Directory
for
temporary
files

TEMP_FILE_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\temp

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\temp

• Execution environment (UNIX only)
/var/opt/jp1as/temp

CRWD (Windows)
1777 (UNIX)

Directory
for the
spool

SPOOL_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE
\spool

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD
\spool

• Execution environment (UNIX only)
/var/opt/jp1as/spool

CRWD (Windows)
1777 (UNIX)

Directory
for system
execution
logs

LOG_DIR
LOG_FILE_CNT
LOG_FILE_SIZE

• Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\log

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\log

• Execution environment (UNIX only)
/opt/jp1as/log

CRWD (Windows)
0777 (UNIX)

Directory
for traces

TRACE_DIR
TRACE_FILE_CNT
TRACE_FILE_SIZE
TRACE_LEVEL

• Execution environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace

• Development environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASD
\trace

• Custom job definition program (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASV
\trace

• Execution environment (UNIX only)
/opt/jp1as/trace

CRWD (Windows)
1777 (UNIX)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 118

Legend:
The letters shown in the Default permissions column indicate the following Windows permissions:
C: Create, R: Read, W: Write, D: Delete

(1) Required permissions
This subsection describes the permissions required for the users who execute batch jobs.

(a) In Windows
Grant full control to the users who will be executing batch jobs.

(b) In UNIX
Grant to the users who will be executing batch jobs the file permissions shown below for each type of directory.

Table 2-23: File permissions for directories

Directory type Read permission (r) Write permission (w) Execution
permission (x)

Sticky bit (t)

Directory for temporary
files

R R R S

Directory for the spool R R R S

Directory for system
execution logs

R R R N

Directory for traces R R R S

Legend:
R: Specification is required.
S: Specify according to system operation guidelines.
N: Do not specify.

Specify the sticky bit for directories according to the system operation guidelines.

If no sticky bit is specified for a directory for which a user has write permission, that user can delete any file directly
under that directory.

If a sticky bit is specified for a directory, only the owner of the directory or files can delete any file directly under that
directory. No other user can delete these files even if the user has write permission for the directory.

(2) File systems
Because the size of the spool might become large depending on the applications, we recommend that you create and
use a dedicated file system.

2.6.20 Setting up a JP1/AJS environment
To run JP1/Advanced Shell from JP1/AJS, you must set up an execution environment beforehand. This subsection
discusses various aspects of the JP1/AJS environment setup.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 119

(1) Estimating the capacity of JP1/AJS logs
When JP1/Advanced Shell is run from JP1/AJS, the amount of internal job execution log data increase by about 350
bytes per job.

In Windows Server 2008 and Windows Server 2012

%ALLUSERSPROFILE%\Hitachi\JP1\JP1_DEFAULT\JP1AJS2\log\jpqagent\jpqagt_{00|01|02|
03|04|05|06|07}.log

The default value of %ALLUSERSPROFILE% is system-drive\Program Data.

In UNIX

/var/opt/jp1ajs2/log/jpqagent/jpqagt_{00|01|02|03|04|05|06|07}.log

To estimate the total size of logs that are output when JP1/Advanced Shell is run from JP1/AJS, use the formula provided
in the applicable JP1/AJS manual.

2.6.21 Performing user-specific postprocessing when a job is terminated
forcibly

The job controller allows you to perform user-specific post-processing when a forced termination is requested by JP1/
AJS, by the SIGTERM signal in UNIX, or by the taskkill command in Windows (immediate termination of process
by such means as TerminateProcess). This feature enables the user to enhance operational flexibility by performing
user-specific termination processing when a forced termination request is received. You must define the
TRAP_ACTION_SIGTERM environment setting parameter in order to perform user-specific postprocessing when a
forced termination request is received.

Note that the operand supported by the TRAP_ACTION_SIGTERM environment setting parameter is different between
the UNIX edition and the Windows edition. For details about the TRAP_ACTION_SIGTERM environment setting
parameter, see TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced termination
request is received) in 7. Parameters Specified in the Environment Files.

The following shows an example:

Contents of the environment variable

#-adsh_conf TRAP_ACTION_SIGTERM TERM

Contents of the job definition script

#-adsh_job JOB01
trap "UAP_TERM" TERM
UAP01

 If a forced termination request is received while UAP01 is running, the job controller executes UAP_TERM,
performs postprocessing (such as deleting allocated files and forcibly terminating descendant processes), and then
terminates the job.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 120

2.6.22 Preparation for using script development parts
JP1/Advanced Shell provides script development parts so you can improve the productivity of creating job definition
scripts. For details on script development parts, see the 10. Script development parts.

Follow the procedure below to use the script development parts.

1. Script development parts are stored in the following location*. Script development parts can be copied and stored
in a different location.

For the execution environment of Windows:
destination-folder\JP1ASE\parts\en
destination-folder\JP1ASE\parts\ja

For the development environment of Windows:
destination-folder\JP1ASD\parts\en
destination-folder\JP1ASD\parts\ja

For the execution environment of UNIX:
/opt/jp1as/parts/en
/opt/jp1as/parts/ja

*: Script development parts are deleted when JP1/Advanced Shell is uninstalled. In addition, script development
parts are updated when performing an overwrite installation.

2. Specify the FUNCTION for the environment setting parameter CMDRC_CMDGRP_CHECK.

3. Load the script development parts to be used by using one of the following methods.

• Loading the file for script development parts by using the . (dot) command (The file can also be loaded by using
the #-adsh_script command.)
The following is an example of a job definition script for loading the script development part cmpDate in which
Japanese comments are written:

. "${ADSH_DIR_PARTS_JA}cmpDate"

The following is an example of a job definition script for loading the script development part getFileSize in
which English comments are written:

. "${ADSH_DIR_PARTS_EN}getFileSize"

• Loading the file for script development parts by using the function-preload functionality
The following is an example of a job definition script for loading the script development part cmpDate in which
Japanese comments are written:

export FPATH=/opt/jp1as/parts/ja

For details on how to use each function, see the following items.

• "9.3 Standard shell commands" > "9.3.1 . command (executes a shell script)"

• "9.5 Extended script commands" > "9.5.7 #-adsh_script command (calls an external job definition script
file from the job definition script that is running)"

• "(3) Function preload functionality"

4. Call the script development parts in the job definition script.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 121

2.6.23 Running the initialization script file
You can run a specific common script file before the job controller of JP1/Advanced Shell runs the job definition script
file. By running a specific common script file before the job definition script file is run, you can specify the system-
common initial settings, such as substituting values into variables, defining aliases, and moving data to the work
directory.

(1) Overview of the initialization script file
The job controller handles the following files as script files:

Script files handled by the job controller
 |--- Job definition script file
 |--- External scripts
 | |--- External script files for the #-adsh_script command
 | |--- External script files for the . (dot) command
 | |--- Initialization script file
 |
 |--- .env files
 |--- [For Windows only] UNIX-compatible commands (script format)

The initialization script file is assumed to be a kind of external script file. Therefore, the job controller runs the
initialization script file as an external script file, which is part of a job.

(2) Initialization script file
The initialization script file is a script file that the job controller runs for initialization when running the job definition
script. If the INIT_SCRIPT_READ environment setting parameter is specified, the job controller reads and runs an
initialization script file immediately before running the root job. However, the job controller outputs the KNAX6504-
E message and terminates abnormally without running the initialization script in the following cases:

• When the initialization script file does not exist

• When a role required for execution is not granted

The following table describes how the behavior of the job controller changes depending on the specification of the
INIT_SCRIPT_READ environment setting parameter and the status of the initialization script file.

Table 2-24: Specification of INIT_SCRIPT_READ, status of the initialization script file, and behavior
of the job controller

No. Specification of
INIT_SCRIPT_READ

Status of the initialization script file Behavior of the job
controller

Presence Role for reading

1 NO (Alternatively, this parameter is
not specified.)

-- -- Does not run the
initialization script file.

2 YES Not present --

3 Present A role for reading the file
is not granted.

4 A role for reading the file
is granted.

Runs the initialization
script file.

Legend:
--: Not applicable

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 122

The system administrator is responsible for creating and setting up the initialization script file. The created initialization
script file takes effect in only a specific path. The following table shows the valid path of the initialization script file.

Table 2-25: Valid path of the initialization script file

No. Environment Valid path of the initialization script file

1 Windows (development environment) common-application-folder\HITACHI\JP1AS\JP1ASD\conf
\adshinit_root.ash

2 Windows (execution environment) common-application-folder\HITACHI\JP1AS\JP1ASE\conf
\adshinit_root.ash

3 UNIX /opt/jp1as/conf/adshinit_root.ash

The job controller reads files in the order shown in the following table. Therefore, if an environment variable is set in
both the environment file and the initialization script file, the setting specified by the initialization script file overrides
the setting specified by the environment file.

Table 2-26: File read order of the job controller

Order File type Remarks

1 System environment file --

2 Job environment file --

3 .env file This file is read if YES is set for the KSH_ENV_READ environment
setting parameter.

4 Initialization script file This file is read if YES is set for the INIT_SCRIPT_READ environment
setting parameter.

5 Job definition script file --

Legend:
--: Not applicable

In the initialization script file, specify the initialization processing to be performed when the job controller starts. Note
that the following commands must not be used in the initialization script file:

• Shell operation commands other than adshappexec
• The following extended shell commands: adshecho, adshread, and adshjoberr
• Extended script commands

The execution results of the commands specified in the initialization script file are output to the job execution log in the
same way as for the commands specified in the job definition script file. The contents of the initialization script file are
not output to the script image file.

(3) Notes
• Do not change the contents of the initialization script file while jobs are running. Also, in the initialization script

file, do not specify a process that changes the job definition script file.

• Make sure that the following items match: 1) encoding of the initialization script file, 2) encoding of the job definition
script file, and 3) the value of the LANG environment variable of the environment in which the job definition script
is run. If the same setting is not specified in all of these environments, correct operation is not guaranteed.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 123

• If the processing of the initialization script file cannot continue due to an error that occurred in the file, the job
controller abnormally terminates with a return code of 1 or the value set for the ADSH_JOBRC_FATAL environment
variable. In this case, the job controller does not run the job definition script.

• The behavior adopted when the root job is run from the initialization script file is as follows:

• The root job run from the initialization script file does not run the job definition script file, and abnormally
terminates with a return code of 1 or the value set for the ADSH_JOBRC_FATAL environment variable.

• The job controller that is running the initialization script file continues processing.

• The initialization script file does not support link files. Do not replace the initialization script file itself by a link
file.

• The initialization script file cannot be run by a debugger. To debug the initialization script file with the CUI or GUI
debugger, run the file as a job definition script file in an environment in which NO is set for the
INIT_SCRIPT_READ environment setting parameter.

• Coverage information can be collected from only job definition script files. Therefore, to collect the coverage
information of the initialization script file, run the file as a job definition script file.

• The syntax of the initialization script file is not checked in syntax check mode. To check the syntax of the initialization
script file, run the file as a job definition script file.

• Function information arrays cannot be used in the initialization script file.

(4) Preparation for running the initialization script file
To run the initialization script file, use the following procedure:

1. Specify YES for the INIT_SCRIPT_READ environment setting parameter.

#-adsh_conf INIT_SCRIPT_READ YES

2. Place the initialization script file to be run in a valid path shown in Valid path of the initialization script file.

(5) Examples
Case in which the initialization script file terminates normally

• Contents of the initialization script file

ADSH_SPOOL_JOBNAME=$("${ADSH_DIR_CMD}basename" ${AJSJOBNAME})
alias ls='"${ADSH_DIR_CMD}ls" -la'
cd 'C:\ExecUser\init'

• Contents of the job definition script file

#-adsh_step_start S01
 echo "Job step start"
#-adsh_step_end

• Execution result

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-I The job ID was assigned. job ID=000003

 Advanced Shell 11-10

 [Information]
 Job ID : 000003

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 124

 Spool directory : C:\ExecUser\result\spool\000003\
 Date : 2016/08/19
 EnvFile(system) :
 EnvFile(job) : C:\ExecUser\conf.ase
 Host name : HOST0001
 [Environment variable from Automatic Job Management System]
 JP1JobName : adshexec.exe
 JP1JobID : 0000002362
 JP1_USERNAME : jobadmin
 JP1UNCName : HOST0001
 JP1NBQSQueueName: \\HOST0001\@SYSTEM
 JP1Priority : 64
 AJSEXECID : @A665
 AJSJOBNAME : /ExecUser/test/ASinit

******** JOB CONTROLLER MESSAGE ********
14:51:19 000003 KNAX0091-I ADSH000003 The job started.
14:51:19 000003 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
14:51:19 000003 KNAX7902-I The job controller will run in non-tty stdin mode.
14:51:19 000003 KNAX6501-I This job will execute the initialization script file
"C:\ProgramData\HITACHI\JP1AS\JP1ASE\conf\adshinit_root.ash".
14:51:19 000003 KNAX6126-I Execution of the command C:\PROGRA~2\Hitachi\JP1AS
\JP1ASE\cmd\basename.exe for the function command substitution finished
successfully. exit status=0 execution time=0.015s CPU time=0.015s
14:51:19 000003 KNAX6110-I Execution of the command ADSH_SPOOL_JOBNAME=ASinit
(line=1) finished successfully. exit status=0 execution time=0.000s CPU
time=0.000s
14:51:19 000003 KNAX6112-I Execution of the command alias (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:51:19 000003 KNAX6112-I Execution of the command cd (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:51:19 000003 KNAX6502-I Execution of the initialization script finished.
14:51:19 000003 KNAX0092-I ADSH000003.S01 step started.
14:51:19 000003 KNAX6112-I Execution of the command echo (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:51:19 000003 KNAX6597-I ADSH000003.S01 step succeeded. exit status=0 execution
time=0.032s CPU time=0.015s
14:51:19 000003 KNAX0098-I ADSH000003 The job ended. exit status=0 execution
time=0.063s CPU time=0.046s

******** Script IMAGE ********

***** C:\ExecUser\test.ash *****
0001 : #-adsh_step_start S01
0002 : echo "Job step start"
0003 : #-adsh_step_end

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX6597-I ADSH000003.S01 step succeeded. exit status=0 execution time=0.032s CPU
time=0.015s
KNAX0098-I ADSH000003 The job ended. exit status=0 execution time=0.063s CPU
time=0.046s

******** JOBSTEP OUTPUT ********
KNAX0719-I STEP. step number=0001 step name=S01 output destination=STDERR

KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="C:\ExecUser\result\spool\000003-ASinit\"
KNAX7999-I Advanced Shell ended. exit status=0

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 125

2.7 Specifying environment information for JP1/AJS (applicable when
JP1/AJS is used)

This section explains the specification of environment information when JP1/AJS is used.

You automate job execution in JP1/AJS by registering jobs into JP1/AJS - View. In JP1/AJS - View, the commands and
batch files that are used for operations are defined as jobs, and system operations are automated by associating the
execution order of those jobs.

JP1/AJS - View supports definitions for the following types of jobs:

• Custom jobs

• PC jobs (for Windows)

• UNIX jobs (for UNIX)

For details about JP1/AJS - View, see the JP1/Automatic Job Management System 3 Operator's Guide.

2.7.1 Registering custom jobs in JP1/AJS - View
Use of custom jobs makes job definition easier and more accurate compared with directly specifying commands and
batch files in jobs.

Custom jobs are templates for jobs that make job creation easy when jobs that link JP1/AJS - View and other programs
are defined.

With custom jobs, you can use GUI to define jobs for JP1/Advanced Shell.

To register custom jobs into JP1/AJS - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Register Custom Jobs.
The Register Custom Job dialog box is displayed.

2. Click the Add button.
The Set Properties of Custom Job dialog box is displayed.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 126

3. Register a custom job for JP1/Advanced Shell. Register a custom job as follows, respectively, when the execution
environment is Windows, UNIX, or a GUI application execution job.

• In Windows

Name: Specify ADSHPC.
Comment: We recommend that you specify the fixed character string JP1/AS_PC job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.
Defining program: installation-folder\JP1ASV\bin\adshctmjpc.bat. This is the folder on the PC on
which the custom job is installed.
Executing program: installation-folder\JP1ASE\bin\adshexec.exe. This is the folder on the PC on
which the execution environment is installed.
Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHPC.
Job Type: For a job for JP1/Advanced Shell, always select PC.

• In UNIX

Name: Specify ADSHUX.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 127

Comment: We recommend that you specify the fixed character string JP1/AS_UNIX job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.
Defining program: installation-directory\JP1ASV\bin\adshctmjunix.bat. This is the folder on the
PC on which the custom job is installed.
Executing program: /opt/jp1as/bin/adshexec
Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHUX.
Job Type: For a job for JP1/Advanced Shell, always select PC.

• For a GUI application execution job

Name: Specify ADSHAPP.
Comment: We recommend the fixed character string JP1/AS_GUI application execution job.
You can specify any character string up to 40 bytes in length or you can omit this field.
Defining program: installation-folder\JP1ASV\bin\adshctmjapp.bat. This is the folder on the PC in
which the custom job has been installed.
Executing program: installation-folder\JP1ASE\bin\adshappexec.exe.
Version: 0600 This is the version of the interface of JP1/AJS - View.
Class: Specify ADSHAPPEXEC.
Job Type: For a job for JP1/Advanced Shell, always select PC.

4. Click the OK button.
The custom job is registered into JP1/AJS - View.

In cases when a version of JP1/AJS - View earlier than 11-00 has been installed and the application-execution agent
functionality is to be used, the custom job icon needs to be copied to the following folder:

JP1/AJS-View-installation-folder\image\custom

The following table explains the icons used in JP1/AJS.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 128

Table 2-27: Explanation of icons used in JP1/AJS

Icon name File name Description

Job icon for execution in
Windows

CUSTOM_PC_ADSHPC.
gif

This is the Windows custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

Job icon for execution in
UNIX

CUSTOM_PC_ADSHUX.
gif

This is the UNIX custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

GUI application
execution job icon

CUSTOM_PC_ADSHAPP
EXEC.gif

This is the custom job icon of the GUI application execution job used
in the Jobnet Editor of JP1/AJS - View. This icon is displayed in the
Custom Job tab within the [Jobnet Editor] window.

JP1/Advanced Shell
(execution definition)
icon

adshctmj.exe This is the definition program that links JP1/AJS in custom jobs.

GUI application
execution (execution
definition) icon

adshctmjapp.exe This is the definition program that links the GUI application execution
program with the custom job.

Notes:
If JP1/Advanced Shell is installed on multiple machines and their paths differ from one machine to another, specify
the JP1/Advanced Shell installation path in a variable and then specify the variable's name, instead of the full path,
in Executing program during custom job registration. For details about the specification method, see Defining the
work path used during job execution as a variable in the JP1/Automatic Job Management System 3 Configuration
Guide.
The following shows an example specification:

jajs_config -k "[JP1_DEFAULT\JP1NBQAGENT\Variable]" "jp1asebin"="C:\Program Files
\Hitachi\JP1AS\JP1ASE\bin"

You can share multiple paths in JP1/AJS - View by specifying the path of JP1/Advanced Shell as a variable in JP1/
AJS on each machine on which JP1/Advanced Shell is installed and then specifying $jp1asebin$
\adshexec.exe in Executing program during custom job registration in JP1/AJS - View.

2.7.2 Defining and executing a jobnet
To automate job execution in JP1/AJS, you can define registered custom jobs, PC jobs (for Windows), UNIX jobs (for
UNIX), or GUI application execution jobs into a jobnet in JP1/AJS - View, and then execute the jobnet. For details about
JP1/AJS - View, see the description of job definition in the JP1/Automatic Job Management System 3 Operator's Guide.

To define and execute a jobnet in JP1/AJS3 - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Job Management System.
The JP1/AJS3 - View - Login window is displayed.

2. To log in, specify your user name, password, and the host to connect.
The JP1/AJS3 - View window is displayed.

3. Select Edit, New, then Jobnet.
The Define Details -[Jobnet] dialog box is displayed.

4. Specify information including attributes of the jobnet, and then click the OK button.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 129

Specify the appropriate information in Exec-agent according to the operating environment. This information can
be omitted. For details about the JP1/AJS items, see the applicable JP1/AJS manual.

The jobnet is created and displayed in the list area.

5. Double-click the created jobnet.
The Jobnet Editor window is displayed.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 130

6. Select Exclusive edit so that no other user can access the job while you are defining and associating it.

7. Drag the required custom job, PC job, or UNIX job icon from the icon list to the map area.

The Define Details - [Custom Job], Define Details - [PC Job], or Define Details - [UNIX Job] dialog box is
displayed.
The steps below explain the definition method for custom jobs. For details about the settings required to use PC or
UNIX jobs in JP1/Advanced Shell, see 2.7.3 Defining jobs as PC or UNIX jobs.

8. In the Define Details - [Custom Job] dialog box, define information including job attributes.
Specify the appropriate information on the Definition and Attributes pages as described in the applicable JP1/AJS
manual. Also specify the appropriate information in Exec-agent according to the operating environment. This
information can be omitted.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 131

If either of the following is specified with a PC job or UNIX job, an empty file is output when Standard output is
specified in the Definition tab:

• The -s option is specified in the adshexec command or SPOOL is specified in the OUTPUT_STDOUT
parameter in the environment file (the standard output is redirected to spool files).

• EXTENDED is specified in the OUTPUT_MODE_ROOT parameter (the expansion output mode is selected).

This is because the contents of the standard output are output to a separate file by JP1/Advanced Shell's job controller
and nothing is output to the standard output that is returned to JP1/AJS.

9. Select the Definition tab, and then click the Details button.
The Define Execution dialog box corresponding to type of custom job appears. Displays for Windows, UNIX, and
GUI application execution jobs are as follows:

• In Windows

• In UNIX

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 132

• For a GUI application execution job

For more information about steps 9 and 10, also see (2) Supplementary information about the jobnet definition
procedure for custom jobs.

10. In the Define Script Execution dialog box, specify the information required for execution of the JP1/Advanced
Shell job controller, and then click the OK button.
For a PC job or UNIX job
• Job definition script file ~<path name> Windows: ((1 to 247 bytes)), UNIX: ((1 to 1,023 bytes))

Specifies the name of the job definition script file. This item cannot be omitted.

• Runtime parameters ~<ASCII character string>((0 to 1,022 bytes))
Defines the parameters that are to be passed when the job definition script file is executed. If you specify multiple
parameters, use the space as the delimiter.

• Job environment file ~<path name> Windows: ((0 to 247 bytes)), UNIX: ((0 to 1,023 bytes))
Specifies the name of the job environment file. When this item is specified, the system uses the specified job
environment file, even if the ADSH_ENV environment variable is specified in JP1/Advanced Shell's job controller
environment. If this item is omitted but the ADSH_ENV environment variable is defined in JP1/Advanced Shell's
job controller environment, the system uses the specified ADSH_ENV environment variable value during
execution. If this item is omitted and the ADSH_ENV environment variable is not defined in JP1/Advanced
Shell's job controller environment, the system assumes that no job environment file is specified. JP1/Advanced
Shell's job controller that was started by JP1/AJS sets the path of the job environment file that it used in the
ADSH_ENV environment variable and then starts job execution. If another job controller is started as a descendant
process, that job controller uses the value of the ADSH_ENV environment variable.If you start another job
controller or any other command that loads a job environment file as a child process, that job controller or
command will use the value of the ADSH_ENV environment variable. Therefore, if the value of the ADSH_ENV

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 133

environment variable is not set during job execution, the job controller uses the same job environment file that
was used by JP1/Advanced Shell's job controller that was started by JP1/AJS. If the value of the ADSH_ENV
environment variable is set during job execution, the job controller uses the job environment file containing the
new value.

• Logical host
Specifies whether the job is to be executed on a logical host. If the Run on a logical host check box is selected,
the job is executed on the logical host specified in JP1/AJS (value of the JP1_HOSTNAME environment variable).

• Check syntax
Specifies whether the job's contents are to be checked. When the Check job definition script syntax check box
is selected, the contents of the job definition script file are checked but the job definition script file is not executed.

For a GUI application execution job
• Command line ~ <ASCII character string> ((1 to 1,022bytes))

Specifies the file name of the executable application and the specified parameter for execution of the executable
application. This parameter cannot be omitted.

• Path name of the executable application ~ <ASCII character string> ((1 to 247 bytes))
Specifies the path name of the executable application.

• Argument for the executable application ~ <ASCII character string> ((0 to 1,023 bytes))
Specifies the argument for the executable application.

• Work folder ~ <path name>((0 to 247 bytes))
This command specifies the work folder for execution of the executable application.
The work folder can be omitted. When the work folder has been omitted, JP1/AJS-Agent (or JP1/AJS-Manager)
will become the runtime directory (work directory) used when starting the GUI application execution program.
For the runtime directory (work directory) when JP1/AJS-Agent (or JP1/AJS-Manager) starts the job controller
of JP1/AS, see "JP1/Automatic Job Management System 3 Configuration Guide.
Name to be displayed ~ <ASCII character string> (0 to 247 bytes) Specifies the name that appears when you
left-click on the application execution agent icon. The name to be displayed can be omitted. If the name to be
displayed is omitted, the content of the command line will be applied.

• Action after executable application
This command specifies whether the command will wait for the executable application to finish after the
executable application is executed. When an application is executed without placing a check in the Action after
executing app. check box, the command will wait for the executable application to finish after the executable
application has been executed. When an application is executed upon placing a check in the Action after
executing app. check box, the command will not wait for the executable application to finish after the executable
application has been executed.

• Message output
This command specifies whether to suppress message output. When an application is executed upon placing a
check in the Suppress output to stderr check box, output of messages to the standard error output will be
suppressed.

11. Display the Define Details - [Custom Job] dialog box again, and then click the OK button.
The job is defined in the jobnet. If necessary, define another job in the same manner.

12. Associate the jobs according to their execution order.
The jobnet is defined. The following shows an example job definition in JP1/AJS - View.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 134

13. Execute the jobnet by using JP1/AJS.
JP1/Advanced Shell's job controller returns its return code as the job return code to JP1/AJS.

(1) Notes about jobnet definitions
• Specification of coverage

If you want to enable coverage from custom jobs, specify the coverage auto-acquisition functionality in the
environment file.

• Run-time directory to be used when JP1/Advanced Shell's job controller is started from JP1/AJS
When JP1/Advanced Shell's job controller is started from JP1/AJS, the run-time directory is set to the one that is
used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job controller. For details about
the run-time directory that is used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job
controller, see the manual JP1/Automatic Job Management System 3 Configuration Guide. In the JP1/AJS manuals,
the run-time directory is referred to as a work path (work directory).

• Environment variables to be used when JP1/Advanced Shell's job controller is started from JP1/AJS
Normally, when JP1/Advanced Shell's job controller for Windows is started from JP1/AJS, the system environment
variable settings are enabled when the JP1/AJS services are started and no user environment variables are loaded.
For details, see the applicable JP1/AJS manual.

• Connecting to an overseas version of JP1/AJS - Manager whose language is set to English
When connecting to an overseas version of JP1/AJS - Manager whose language is set to English, in the Define Script
Execution dialog box, in the definition information, use only ASCII alphanumeric characters.

• Environment variable that is used when JP1/AJS starts the GUI application execution program
Environment variable of the running user is used when JP1/AJS starts the GUI application execution program starts.

(2) Supplementary information about the jobnet definition procedure for
custom jobs

With respect to the job execution settings in steps 9 and 10 in 2.7.2 Defining and executing a jobnet, you can also specify
the unit definition in the ajsdefine command in JP1/AJS and the job definition in JP1/AJS - Definition Assistant.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 135

For details about the unit definition, see the manual JP1/Automatic Job Management System 3 Command Reference.

For details about JP1/AJS - Definition Assistant, see the manual JP1/Automatic Job Management System 3 - Definition
Assistant Description, Operator's Guide and Reference.

The following provides the details of the environment variables and parameters that are specified in the unit definition
and JP1/AJS - Definition Assistant when custom jobs are used.

(a) For PC jobs and UNIX jobs
• Environment variables configured in the Define Execution dialog box of JP1/Advanced Shell

ADSH_AJS_SCRF: Job definition script file name
ADSH_AJS_ENVF: Job environment file name
ADSH_AJS_LHOST: Logical host
ADSH_AJS_GCHE: Precheck

• Environment variables passed to job controller of JP1/Advanced Shell
Environment variables are defined as env parameters of the unit definition file.
The following table shows the setting items for environment variables passed to the job controller of JP1/Advanced
Shell.

Table 2-28: Setting items for environment variables passed to the job controller of JP1/Advanced
Shell

Item
name

Description

Input
range

Number of bytes that can be specified as the value (character string following "=") of an environment variable (Shift-JIS)

Settings Types of characters that can be defined
• Character string: Characters other than control characters (0x00 to 0x1f, 0x7f)
• Symbol name: Half-width alphanumeric characters, "@", "#", and "_"
• Numeric characters

Initial
value

Value loaded when a custom job is started as a new job

Omission If a required value is omitted, the job controller of JP1/Advanced Shell returns an error.

The following table shows the input range and settings of environment variable items passed to the job controller
of JP1/Advanced Shell.

Table 2-29: Input range and settings of environment variable items passed to the job controller
of JP1/Advanced Shell.

Environment variable Input range Settings Initial
value

Omissio
n

ADSH_AJS_SCRF PC job: 1 to 247 bytes
UNIX job: 1 to 1,023 bytes

Character string Null
character
string

Not
permitted

ADSH_AJS_ENVF PC job: 0 to 247 bytes
UNIX job: 0 to 1,023 bytes

Character string Null
character
string

Permitted

ADSH_AJS_LHOST 0 to 2 bytes • If checked
-h

• If not checked

Null
character
string

Permitted

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 136

Environment variable Input range Settings Initial
value

Omissio
n

ADSH_AJS_LHOST 0 to 2 bytes Null character string Null
character
string

Permitted

ADSH_AJS_GCHE 0 to 2 bytes • If checked
-c

• If not checked
Null character string

Null
character
string

Permitted

AJS_BJEX_STOP 4 bytes "TERM" "TERM" Not
permitted

• Details of parameters passed to the job controller of JP1/Advanced Shell
The field Runtime parameters is defined as the prm parameter in the unit definition file and passed as a parameter
for the job controller of JP1/Advanced Shell. The permitted values are as follows:
Input range: 1 to 1,023 bytes*

Setting: Character string
Initial value: Null character string
Omission: Permitted
To define for run-time parameters in the Define Execution dialog box a value equivalent to the null character string,
define a single-byte space for the prm parameter in the unit definition file.

*:
The maximum length of 1,023 bytes applies only when a character string consisting only of spaces is specified
for the prm parameter. If any non-space characters are specified, the permitted maximum length is 1,022 bytes.
If a character string consisting only of spaces is specified for the prm parameter, the specified character string
minus a one-byte space is displayed in the Runtime parameters text box in the Define Execution dialog box.

Important
Note the following points when deleting definition information in the unit definition file:

- For the env parameter, delete the value specified for the environment variable (character string
following "=") or delete the specification of the env parameter itself.

- For the prm parameter, specify a single-byte space as the value for prm or delete the specification
of the prm parameter itself.

The following is an example of a unit definition:

unit=Unit name,,Running user,;
{
 ty=cpj;
 cty="ADSHUX";
 sc="/opt/jp1as/bin/adshexec";
 env="AJS_BJEX_STOP=TERM"; -->1.
 env="ADSH_AJS_SCRF=/tmp/JP1AS/scr/samplescrfile.ash"; -->2.
 prm="param1 param2"; -->3.
 env="ADSH_AJS_ENVF=/tmp/JP1AS/env/sampleenvfile"; -->4.
 env="ADSH_AJS_LHOST=-h"; -->5.
 env="ADSH_AJS_GCHE=-c"; -->6.
 tho=0;
}

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 137

The following are descriptions corresponding to the numbers shown in the right margin:

1. AJS_BJEX_STOP: Because the AJS_BJEX_STOP environment variable is used by the system, make sure that you
define this environment variable and specify TERM as its value.

2. ADSH_AJS_SCRF: Specifies the name of the job definition script file.
You must define the ADSH_AJS_SCRF environment variable.

3. The prm parameter is specified in the unit definition file.

4. ADSH_AJS_ENVF: Specifies the job environment file name.

5. ADSH_AJS_LHOST: If you want the job to be executed on a logical host, specify -h. In all other cases, do not
specify anything.

6. ADSH_AJS_GCHE: If you want to perform only the precheck, specify -c. If all other cases, do not specify anything.

After creating the unit definition file, you can define the job by using the ajsdefine command of JP1/AJS or JP1/
AJS3 - Definition Assistant.

(b) For the GUI application execution job
• Environment variables configured in the Define Execution dialog box of JP1/Advanced Shell

ADSH_AJS_APPNAME: Application path name
ADSH_AJS_APPARG: Application parameter
ADSH_AJS_WORKF: Work folder
ADSH_AJS_SHOWN: Display name
ADSH_AJS_AFEXECMV: Behavior after executing the executable application
ADSH_AJS_MESOUT: Message output

• Environment variables passed to the GUI application execution program
Environment variables are defined as env parameters of the unit definition file.
The following table shows the setting items for environment variables passed to the GUI application execution
program.

Table 2-30: Setting items for environment variables passed to the job controller of JP1/Advanced
Shell

Item name Description

Input range Number of bytes that can be specified as the value (character string following "=") of an environment variable
(Shift-JIS)

Settings Types of characters that can be defined
• Character string: Characters other than control characters (0x00 to 0x1f, 0x7f)
• Symbol name: Half-width alphanumeric characters, "@", "#", and "_"
• Numeric characters

Initial value Value loaded when a custom job is started as a new job

Omission If the value cannot be omitted, an error will occur in the GUI application execution program.

The following table shows the input range and settings of environment variable items passed to the GUI application
execution program.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 138

Table 2-31: Input range and settings of environment variable items passed to the GUI application
execution program

Environment
variable

Input range Settings Initial value Omission

ADSH_AJS_APPNAM
E

1 to 247 bytes Character string Null character string Not permitted

ADSH_AJS_APPARG 0 to 1,023 bytes Character string Null character string Permitted

ADSH_AJS_WORKF 1 to 247 bytes Character string Null character string Permitted

ADSH_AJS_SHOWN 0 to 247 bytes Character string Null character string Permitted

ADSH_AJS_AFEXEC
MV

0 to 2 bytes • If checked
-n

• If not checked
Null character string

Null character string Permitted

ADSH_AJS_MESOUT 0 to 2 bytes • If checked
-m

• If not checked
Null character string

Null character string Permitted

ADSH_AJS_APPEXEC 7 bytes " APPEXEC " " APPEXEC " Not permitted

Important
If you delete definition information from the unit definition file, delete the value of the environment variable
(character string following "=") or delete the specification of the env parameter itself for the env parameter.

The following is an example of a unit definition:

unit=Unit name,,Running user,;
{
 ty=cpj;
 cty="ADSHAPPEXEC";
 sc=" C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshappexec.exe";
 env="ADSH_AJS_APPEXEC=APPEXEC"; -->1.
 env="ADSH_AJS_APPNAME=C:\ExecApp.exe"; -->2.
 env="ADSH_AJS_APPARG=param1 param2"; -->3.
 env="ADSH_AJS_WORKF=C:\work-folder"; -->4.
 env="ADSH_AJS_SHOWN=ExecApplication"; -->5.
 env="ADSH_AJS_AFEXECMV=-n"; -->6.
 env="ADSH_AJS_MESOUT=-m"; -->7.
 tho=0;
}

The following are descriptions corresponding to the numbers shown in the right margin:

1. Because the ADSH_AJS_APPEXEC environment variable is used by the system, you must define this environment
variable and specify APPEXEC as its value.

2. ADSH_AJS_APPNAME: Specifies the application path name.
You must define the ADSH_AJS_APPNAME.

3. ADSH_AJS_APPARG: Specifies the application parameter.

4. ADSH_AJS_WORKF: Specifies the work folder.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 139

5. ADSH_AJS_SHOWN: Specifies the display name.

6. ADSH_AJS_AFEXECMV: If you want the action performed after the execution of the executable application to
wait for termination, specify -n. In all other cases, do not specify anything.

7. ADSH_AJS_MESOUT: If you want to suppress output to the standard error output, specify -m. In all other cases,
do not specify anything.

After creating the unit definition file, you can define the job by using the ajsdefine command of JP1/AJS or JP1/
AJS3 - Definition Assistant.

2.7.3 Defining jobs as PC or UNIX jobs

(1) Defining jobs as PC jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as PC jobs.

(a) When defining a batch job
• Executable file name

Specify the path of the adshexec command in Executable file name in the Definition tab in the Define Details
- [PC Job] dialog box or in sc="script-file-name" in the unit definition file.

installation-folder\JP1ASE\bin\adshexec.exe

• Parameters
Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters in the Definition tab in the Define Details - [PC Job] dialog box or in prm="parameter" in the unit
definition file.

• Environment variable
Specify the following details in Environment variables in the Definition tab in the Define Details - [PC Job]
dialog box or in env="environment-variable" in the unit definition file.

AJS_BJEX_STOP=TERM

The following figure provides an example specification of a batch job in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 140

Figure 2-7: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

(b) When defining a GUI application execution job
This section explains the items required to define a GUI application execution job of JP1/Advanced Shell as a PC job.

• Executable file name
Specify the path of the adshappexec command in Executable file name in the Definition tab in the Define
Details - [PC Job] dialog box or in sc="script-file-name" in the unit definition file.

installation-folder\JP1ASE\bin\adshappexec.exe

• Parameters
Specify the parameters for the adshappexec command in Parameters in the Definition tab in the Define Details
- [PC Job] dialog box or in env="parameter" in the unit definition file.

• Environment variables and environment variable file name
Environment variables and the environment variable file name are ignored even if they are specified.

The following figure provides an example specification of a batch job in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 141

Figure 2-8: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

(2) Defining jobs as UNIX jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as UNIX jobs.

• Script file name
Specify the path of the adshexec command in Script file name on the Definition tab in the Define Details -
[UNIX Job] dialog box or in sc="script-file-name" in the unit definition file:

/opt/jp1as/bin/adshexec

Alternatively, you can specify the path of the adshexec command following #! on the first line (example:
#!/opt/jp1as/bin/adshexec), and then specify the path of the job definition script file with execution
permissions granted:

Path of job definition script file

• Command statement
You can specify, as part of command text, the path of the adshexec command or path of the job definition script
file in the same way as for the script file name. Specify the path in Command statement on the Definition tab in
the Define Details - [UNIX Job] dialog box, or in te="command-text" in the unit definition file. If a job defined
in the command statement is terminated forcibly in JP1/AJS, the following restrictions apply.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 142

• Depending on the timing at which forced termination is performed, you might not be able to reference the contents
of the job execution log or standard error output for the job from JP1/AJS - View. In this case, you can check
the contents of the job execution log in the spool job directory.

• Jobs with return code 143 are output to the job execution log. However, jobs with return code -1 can be
referenced from JP1/AJS - View.

• Parameters
Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters on the Definition tab in the Define Details - [UNIX Job] dialog box or in prm="parameter" in the
unit definition file.
If you specified a job definition script file name for the script file name, specify only the runtime parameters.

• Environment variables
Specify the following value in Environment variables on the Definition tab in the Define Details - [UNIX Job]
dialog box or in env="environment-variable" in the unit definition file:

AJS_BJEX_STOP=TERM

The following figure shows a specification example of a JP1/Advanced Shell batch job In this example, the adshexec
command is specified for "script file name" and job definition script file path is specified.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 143

Figure 2-9: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying the adshexec command)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 144

Figure 2-10: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying a job definition script file path)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 145

2.8 Setting up the user-reply functionality

2.8.1 Specifying the environment files to use the user-reply functionality
In JP1/Advanced Shell, you can specify the operating environment by using two types of environment files, the system
environment file for applying the same operating environment to multiple jobs, and a job environment file for applying
a different operating environment to each job. If you will be using the user-reply functionality, you must edit the system
environment file as appropriate for the system's environment.

Once you have edited the system environment file, you must restart the daemon or service.

(1) Specifying the spool root directory
Use the SPOOL_DIR parameter to specify the spool root directory to which job execution results are to be output. When
you will be using the user-reply functionality, you must define the SPOOL_DIR parameter only in the system
environment file. Path names cannot contain multibyte characters.

For details about the SPOOL_DIR parameter, see 7.3.39 SPOOL_DIR parameter (defines the spool root directory path
name) in 7. Parameters Specified in the Environment Files.

(2) Specifying the JP1 event destination host
You must use the HOSTNAME_JP1IM_MANAGER parameter in the system environment file to specify the operation
management server on which the JP1/IM - Manager that is the destination of JP1 events is running. If this parameter is
omitted, the host name displayed when the hostname command is executed on the server on which JP1/Advanced
Shell is running is assumed as the destination of JP1 events. Define the HOSTNAME_JP1IM_MANAGER parameter only
in the system environment file. Also, verify that the name of the host on which JP1/Advanced Shell is run can be resolved
on the host specified in this parameter.

For details about the HOSTNAME_JP1IM_MANAGER parameter, see 7.3.20 HOSTNAME_JP1IM_MANAGER
parameter (specifies the operation management server on which JP1/IM - Manager is running that is to be the destination
of JP1 events) in 7. Parameters Specified in the Environment Files.

(3) Specifying JP1 event flow control
When you use the user-reply functionality, the conditions shown in the table below concerning output of JP1 events
must be satisfied. These conditions apply to all JP1 events that are received by the same JP1/IM.

No. Description Output condition

1 JP1 events The number of JP1 events output per second must be less than 2.

2 Reply-waiting events The number of reply-waiting events output per minute must be less than 1.

In the job controller of JP1/Advanced Shell, you can use the USERREPLY_JP1EVENT_INTERVAL parameter to
specify the minimum event-issuing interval at which JP1 events are issued by the adshecho and adshread
commands. If multiple jobs issue events, specify the parameter in such a manner that the frequency of JP1 event issuance
by the adshecho and adshread commands from all jobs satisfies the above conditions.

For details about the USERREPLY_JP1EVENT_INTERVAL parameter, see 7.3.51 
USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1 events are to be issued)
in 7. Parameters Specified in the Environment Files.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 146

(4) Specifying the maximum number of concurrent reply-request
messages that can be output

You use the USERREPLY_WAIT_MAXCOUNT parameter to specify the maximum number of concurrent reply-request
messages that can be output by the user-reply functionality for each physical or logical host. Specify in this parameter
a value that is at least equal to the number of jobs that will execute the adshread command concurrently.

For details about the USERREPLY_WAIT_MAXCOUNT parameter, see 7.3.52 USERREPLY_WAIT_MAXCOUNT
parameter (specifies the maximum number of concurrent reply-request messages that can be output for a physical or
logical host) in 7. Parameters Specified in the Environment Files.

2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (Windows only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality. These settings must be specified by a user with an administrator role.

(1) Setting up the service

(a) Specifying how to start the JP1/Advanced Shell service
To have the JP1/Advanced Shell service start automatically:

1. From the Windows Control Panel, select Administrative Tools, and then Services.

2. From the displayed list of service names, display the properties of the following service:

• To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE
• To use the user-reply functionality from the development environment, service name beginning with

AdshmSvcD
3. On the General page, change Startup Type as follows:

Immediately after JP1/Advanced Shell has been installed, the initial setting is Manual. If you want to have the
service start automatically whenever Windows starts, change this setting to Automatic.

(b) Starting the JP1/Advanced Shell service
This subsection explains how to start the JP1/Advanced Shell service manually. You can skip this procedure if you set
Startup Type to Automatic in (a) Specifying how to start the JP1/Advanced Shell service, and then started Windows.

To start the JP1/Advanced Shell service

1. From the Windows Control Panel, select Administrative Tools, and then Services.

2. From the displayed list of service names, display the properties of the following service:

• To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE
• To use the user-reply functionality from the development environment, service name beginning with AdshmSvc

3. On the General page, click the Start button.

If the service does not start, check the error information output to the event logs.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 147

If the KNAX7552-E message is issued as error information, check and, if necessary, revise the system environment
file, and then restart the service.

(c) Registering a service
If a service (AdshmSvcD or AdshmSvcE) to be registered automatically during installation is deleted, you must re-
register the service to use the user-reply functionality. You can use the adshmsvcd and adshmsvce commands to
register services.

The following explains how to register a service.

• How to re-register a service
If AdshmSvcD or AdshmSvcE are not displayed in Services in Administrative Tools, registration of the service
might have been deleted. You can re-register the service by executing the following command:

• To register the AdshmSvcD service
adshmsvcd -install

• To register the AdshmSvcE service
adshmsvce -install

If the command terminates normally, the registered service is displayed in Services in Administrative Tools.

For details about how to start a registered services, see (b) Starting the JP1/Advanced Shell service.

(2) Setting up the adapter command (for the execution environment)
To use the user-reply functionality in the execution environment, you must specify the adapter command shown below
in JP1/Base. Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed
JP1/Base, you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpath in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.
The adapter command configuration file used for the user-reply functionality is stored at the following location:

Installation-folder\JP1ASE\sample\Adapter_HITACHI_JP1_AS_ASE_USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:

• In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASE_USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe

• In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASE_USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 148

2. Copy the adapter command configuration file used for the user-reply functionality shown in step 1 to the JP1/Base
installation target.
The target folder is as follows:

JP1/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

(3) Setting up the adapter command (for the development environment)
To use the user-reply functionality in the development environment of JP1/Advanced Shell, you must specify the settings
described here. However, if you specify the standard output as the output destination of the user-reply functionality,
there is no need to perform this setup.

Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpath in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.
The adapter command configuration file used for the user-reply functionality is stored at the following location:

JP1/Advanced-Shell-installation-folder\JP1ASD\sample
\Adapter_HITACHI_JP1_AS_ASD_USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:

• In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASD_USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe

• In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASD_USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe

2. Copy the file shown in step 1 to the JP1/Base installation target.
The target folder in JP1/Base is as follows:

JP1/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 149

2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (UNIX only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality.

After you have set up JP1/Advanced Shell, you must enable the function for reply-waiting events in JP1/IM - Manager.
For details, see 2.8.4  Specifying environment information in JP1/IM - Manager.

(1) Starting and terminating the user-reply functionality's management
daemon automatically

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts up and shuts down.

(a) In AIX
• Setting up the automatic start function at system startup

You use the mkitab command to have the user-reply functionality's management daemon start automatically at
the time of system startup. The specified setting takes effect the next time the system starts.
The following shows an example of the mkitab command:

mkitab "adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start"

Set the user-reply functionality's management daemon to start after the services of linked JP1-series products have
started. For example, to have JP1/Base, JP1/IM - Manager, and JP1/Advanced Shell start automatically in this order,
execute the mkitab commands as follows:

mkitab -i hntr2mon "jp1base:2:wait:/etc/opt/jp1base/jbs_start"
mkitab -i jp1base "jp1cons:2:wait:/etc/opt/jp1cons/jco_start"
mkitab -i jp1cons "adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start"

After you have specified the settings, execute the following lsitab command to check the settings:

lsitab -a

The following shows an example of the output after command execution:

init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of
system boot
 :
hntr2mon:2:once:/opt/hitachi/HNTRLib2/etc/D002start
jp1base:2:wait:/etc/opt/jp1base/jbs_start
jp1cons:2:wait:/etc/opt/jp1cons/jco_start
adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start

• Setting up the automatic termination function at system shutdown
To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
you must edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon is terminated before the services of linked JP1-series products are stopped:

test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl stop
 :
termination processing for services of linked JP1-series products
 :

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 150

(b) For RHEL 6, Oracle Linux 6 and CentOS 6
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /etc/rc.d/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /etc/rc.d/init.d. To add
jp1_as_md, specify as follows:

cp /opt/jp1as/sample/jp1_as_md /etc/rc.d/init.d
chmod u=rwx,go=rx /etc/rc.d/init.d/jp1_as_md
chown root:root /etc/rc.d/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /etc/rc.d/init.d/jp1_as_md in the /etc/rc.d/rcN.d directory (N indicates
the execution level at startup). You must name the symbolic link in such a manner that the user-reply functionality's
management daemon is started after the services of linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc.d/
rc3.d and /etc/rc.d/rc5.d directories is S99_JP1_10_BASE and the name of the symbolic link for JP1/
IM - Manager's automatic start script is S99_JP1_20_CONS, the user-reply functionality's management daemon
will be started after JP1/Base and JP1/IM - Manager if you specify as follows, using S99_JP1_70_AS as the name
of the symbolic link so that it falls after S99_JP1_20_CONS:

ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc3.d/S99_JP1_70_AS
ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc5.d/S99_JP1_70_AS
chown -h root:root /etc/rc.d/rc3.d/S99_JP1_70_AS
chown -h root:root /etc/rc.d/rc5.d/S99_JP1_70_AS

• Creating a symbolic link for automatic termination
Create a symbolic link to /etc/rc.d/init.d/jp1_as_md in the /etc/rc.d/rcN.d directory (N indicates
the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the services of the linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc.d/rc0.d and /etc/rc.d/rc6.d directories is K01_JP1_90_BASE and the name of the symbolic link
for JP1/IM - Manager's automatic termination script is K01_JP1_80_CONS, the user-reply functionality's
management daemon will be terminated before JP1/Base and JP1/IM - Manager if you specify as follows, using
K01_JP1_30_AS as the name of symbolic link so that it falls before K01_JP1_80_CONS:

ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc0.d/K01_JP1_30_AS
ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc6.d/K01_JP1_30_AS
chown -h root:root /etc/rc.d/rc0.d/K01_JP1_30_AS
chown -h root:root /etc/rc.d/rc6.d/K01_JP1_30_AS

If you change the _JP1_30_AS part in the name of symbolic link K01_JP1_30_AS, you must also change
_JP1_30_AS on the following lines in the jp1_as_md script file:

touch /var/lock/subsys/_JP1_30_AS
rm -f /var/lock/subsys/_JP1_30_AS

(c) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7
In JP1/Advanced Shell, the Unit file jp1_as_md.service for automatic startup and automatic termination of the user-
reply functionality management daemon is stored in the /opt/jp1as/sample directory. Follow the procedures below to
perform settings by using this Unit file.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 151

• Addition to the /usr/lib/systemd/system directory
Add jp1_as_md.service that is stored in the /opt/jp1as/sample directory to /usr/lib/systemd/system. Specify the
following setting to add jp1_as_md.service.

cp /opt/jp1as/sample/jp1_as_md.service /usr/lib/systemd/system
chmod u=rw,go=r /usr/lib/systemd/system/jp1_as_md.service
chown root:root /usr/lib/systemd/system/jp1_as_md.service

• Setting of automatic startup and automatic termination
Execute setting of automatic startup and automatic termination of the user-reply functionality management daemon
by specifying the systemctl command as follows.
systemctl --system enable jp1_as_md.service
If automatic startup and automated stop of the user-reply functionality management daemon are performed according
to the aforementioned setting, the following actions will occur depending on the timing.

• At the time of automatic startup
Information of the status when the OS accesses the pid file of the user-reply functionality management daemon
may be output to the result of the start of the user-reply functionality management daemon that is output by the
OS, but no action is required.

• At the time of an automatic stop
The OS may send a stop signal to the job that is waiting for a response of the reply-request message when the
system stops. In this case, unanswered reply-request messages are canceled by the job controller.

(d) In HP-UX
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /sbin/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /sbin/init.d. To add jp1_as_md,
specify as follows:

cp /opt/jp1as/sample/jp1_as_md /sbin/init.d
chmod u=rx,go=r /sbin/init.d/jp1_as_md
chown root:sys /sbin/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /sbin/init.d/jp1_as_md in the /sbin/rc2.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is started after the services
of the linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /sbin/rc2.d
directory is S900jp1_base and the name of the symbolic link for JP1/IM - Manager's automatic start script is
S901jp1_cons, the user-reply functionality's management daemon will be started after JP1/Base and JP1/IM -
Manager if you specify as follows, using S905jp1_as_md as the name of the symbolic link so that 905 falls after
901:

ln -s /sbin/init.d/jp1_as_md /sbin/rc2.d/S905jp1_as_md
chown -h root:sys /sbin/rc2.d/S905jp1_as_md

• Creating a symbolic link for automatic termination

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 152

Create a symbolic link to /sbin/init.d/jp1_as_md in the /sbin/rc1.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /sbin/
rc1.d directory is K100jp1_base and the name of the symbolic link for JP1/IM - Manager's automatic
termination script is K099jp1_cons, the user-reply functionality's management daemon will be terminated before
JP1/Base and JP1/IM - Manager if you specify as follows, using K095jp1_as_md as the name of symbolic link
so that 095 falls before 099:

ln -s /sbin/init.d/jp1_as_md /sbin/rc1.d/K095jp1_as_md
chown -h root:sys /sbin/rc1.d/K095jp1_as_md

(e) In Solaris
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /etc/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /etc/init.d. To add jp1_as_md,
specify as follows:

cp /opt/jp1as/sample/jp1_as_md /etc/init.d
chmod u=rwx,go=r /etc/init.d/jp1_as_md
chown root:sys /etc/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /etc/init.d/jp1_as_md in the /etc/rc2.d directory (N indicates the execution
level at startup). You must name the symbolic link in such a manner that the user-reply functionality's management
daemon is started after the services of the linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc2.d
directory is S99_JP1_10_BASE and the name of the symbolic link for JP1/IM - Manager's automatic start script
is S99_JP1_20_CONS, the user-reply functionality's management daemon will be started after JP1/Base and JP1/
IM - Manager if you specify as follows, using S99_JP1_70_AS as the name of the symbolic link so that it falls
after S99_JP1_20_CONS:

ln -s /etc/init.d/jp1_as_md /etc/rc2.d/S99_JP1_70_AS
chown -h root:sys /etc/rc2.d/S99_JP1_70_AS

• Creating a symbolic link for automatic termination
Create a symbolic link to /etc/init.d/jp1_as_md in the /etc/rc0.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc0.d directory is K01_JP1_90_BASE and the name of the symbolic link for JP1/IM - Manager's automatic
termination script is K01_JP1_80_CONS, the user-reply functionality's management daemon will be terminated
before JP1/Base and JP1/IM - Manager if you specify as follows, using K01_JP1_30_AS as the name of symbolic
link so that it falls before K01_JP1_80_CONS:

ln -s /etc/init.d/jp1_as_md /etc/rc0.d/K01_JP1_30_AS
chown -h root:sys /etc/rc0.d/K01_JP1_30_AS

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 153

(2) Setting up JP1/Base
To use the user-reply functionality, you must have first copied the adapter command configuration file that is provided
by JP1/Advanced Shell and used for the user-reply functionality to the corresponding directory in JP1/Base. Copy the
following adapter command configuration file used for the user-reply functionality to the corresponding directory in
JP1/Base:

• Source directory (directory containing the adapter command configuration file that is provided by JP1/Advanced
Shell and used for the user-reply functionality)

/opt/jp1as/sample

Name of the adapter command configuration file that is provided by JP1/Advanced Shell and used for the user-reply
functionality

Adapter_HITACHI_JP1_AS_USERREPLY.conf
• Target directory (corresponding directory in JP1/Base)

/opt/jp1base/plugin/conf

Perform this setup only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

2.8.4  Specifying environment information in JP1/IM - Manager
This subsection explains how to set up JP1/IM - Manager to use the user-reply functionality. You perform this setup in
JP1/IM - Manager on the host that was specified in the HOSTNAME_JP1IM_MANAGER parameter in (2) Specifying
the JP1 event destination host.

(1) Copying the definition file for extended event attributes to JP1/IM -
Manager

Copy the definition file for extended event attributes from the sample directory under the JP1/Advanced Shell
installation directory to JP1/IM - Manager. Perform the following procedure as a user with superuser permissions.

To copy the definition file for extended event attributes and enable it:

1. Copy the definition file for extended event attributes to the machine on which JP1/IM - Manager is installed.

• Source definition file for extended event attributes
The extended attribute definition file to be copied will vary depending on the language of operation.

Languages of operation Definition file for extended event attributes to be copied

Japanese hitachi_jp1_as_base_attr_ja.conf

English hitachi_jp1_as_base_attr_en.conf

Chinese hitachi_jp1_as_base_attr_cn.conf
(However, the display will be in English.)

• Target directory
The following table shows the target directory to which the definition file for extended event attributes is to be
copied on the machine on which JP1/IM - Manager is installed:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 154

Target OS Target directory

Windows JP1/IM-Manager-console-path\conf\console\attribute\
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-folder\jp1cons\conf\console\attribute\

UNIX /etc/opt/jp1cons/conf/console/attribute/
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-directory/jp1cons/conf/console/attribute/

For details about JP1/IM - Manager's console path, see the JP1/Integrated Management - Manager Configuration
Guide.
For details about the shared folder and directory, see the description of cluster systems in the JP1/Integrated
Management - Manager Configuration Guide.

2. Restart JP1/IM - Manager.

(2) Setting up JP1/IM - Manager and JP1/IM - View
The function related to reply-waiting events must be enabled in JP1/IM - Manager and JP1/IM - View. If this function
is not enabled, replies cannot be entered in JP1/IM - View.

For details about how to set up JP1/IM - Manager and JP1/IM - View and the settings for communication between JP1/
Advanced Shell and JP1/IM - Manager, see the description related to linking with JP1/Advanced Shell in the JP1/
Integrated Management - Manager Configuration Guide.

2.8.5 Specifying environment information in JP1/Base
If you will be using the user-reply functionality, the character encoding of JP1/Base that is run on the same host as JP1/
Advanced Shell must match the character encoding used for event notification messages and reply-request messages
that are specified in the adshecho and adshread commands.

For details about the character encoding settings in JP1/Base, see the sections on installation and setup in the JP1/Base
User's Guide.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 155

2.9 Running in a cluster configuration

2.9.1 Prerequisites and scope of support for cluster operations
In a cluster system, JP1/Advanced Shell is run in a logical host environment and can inherit the job execution
environment in the event of system switchover. However, execution of a job that was underway at the time system
switchover occurred cannot continue. If necessary, you must re-execute such a job manually after system switchover is
completed.

When JP1/Advanced Shell is run on a logical host, the cluster software program must manage the logical IP address as
well as allocation, deletion, and operation monitoring of the shared disk. In addition, you must configure the system
and set up the environment so that the following prerequisites are satisfied.

(1) Prerequisites for a logical host environment
When JP1/Advanced Shell is run in a logical host environment, the following prerequisites apply to the logical IP address
and the shared disk.

Table 2-32: Prerequisites for logical host environment

Logical host component Prerequisites

Shared disk • A shared disk that can be inherited from the active server to the standby
server is available.

• The shared disk is allocated before the JP1/Advanced Shell program
starts.

• The shared disk allocation is not released while the user-reply
functionality's management daemon or service are running.

• The shared disk allocation is released after the user-reply functionality's
management daemon or service have stopped.

• The shared disk is locked to prevent illegal access from multiple nodes.
• Files are protected from unexpected events, such as system shutdown, by

using file systems with journal functions.
• When a planned termination is performed on a running program during

system switchover, the file contents are guaranteed and inherited.
• Forced system switchover is available even if a process is using the shared

disk during system switchover.
• In the event of a failure of the shared disk, the cluster software controls

the recovery processing. If it is necessary to start and stop the user-reply
functionality's management daemon or service as an extension of the
recovery processing, the cluster software will issue requests to start and
stop the user-reply functionality's management daemon or service.

Logical IP address • A logical IP address that can be inherited is available for communication.
• A unique logical IP address can be obtained from the logical host name.
• The logical IP address is allocated before the user-reply functionality's

management daemon or service start.
• The logical IP address is not deleted while the user-reply functionality's

management daemon or service is running.
• The correspondence between logical host name and logical IP address

remains unchanged while the user-reply functionality's management
daemon or service is running.

• The logical IP address is deleted after the user-reply functionality's
management daemon or service has stopped.

• In the event of a network failure, the cluster software controls the recovery
processing without having to involve the user-reply functionality's

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 156

Logical host component Prerequisites

Logical IP address management daemon or service in the recovery processing. If it is
necessary to start and stop the user-reply functionality's management
daemon or service as an extension of the recovery processing, the cluster
software is to issue requests to start and stop the user-reply functionality's
management daemon or service.

• If multiple logical hosts are started on the same physical host, one IP
address is allocated to each logical host.

(2) Prerequisites for a physical host environment
In a cluster system that runs JP1/Advanced Shell on a logical host, each server's physical host environment must satisfy
the following prerequisites.

Table 2-33: Prerequisites for physical host environment

Physical host component Prerequisites

Server machine • The cluster configuration consists of at least two server machines.
• Sufficient CPU performance is available for the processing to be performed

(for example, if multiple logical hosts will run concurrently, there will be
sufficient CPU performance).

• There is enough real memory for the processing to be performed (for example,
if multiple logical hosts will run concurrently, there will be enough real memory
capacity).

Disk • Files are protected from unexpected events, such as system shutdown, by using
file systems with journal functions.

Network • If the user-reply functionality's management daemon or service are used in a
physical host environment, the IP address corresponding to the physical host
name (obtained by the hostname command) is supported for
communications (communications will not be disabled by a program such as
the cluster software).#

• The correspondence between host name and IP address remains unchanged
while the user-reply functionality's management daemon or service is running
(the correspondence will not be changed by a program such as the cluster
software or a name server).

• In Windows, a LAN board corresponding to the host name is given priority by
the network binding settings (no other LAN board, such as a heartbeat LAN,
is granted priority).

OS and cluster software • The environment settings of the individual servers are identical so that the same
processing can be performed after system switchover.

• The cluster software and its version are supported by JP1/Advanced Shell.
• Patches and service packs required by JP1/Advanced Shell and cluster software

have been applied.

#
Depending on the cluster software, the IP address corresponding to the physical host name (host name displayed by
the hostname command) might not be supported for communications. In such a case, the user-reply functionality's
management daemon or service cannot run in the physical host environment. Use the user-reply functionality's
management daemon or service in the logical host environment only.

(3) Scope of support by JP1/Advanced Shell
When JP1/Advanced Shell is run in a cluster system, it supports only its own operation. The logical host environment
(shared disk and logical IP address) is controlled by the cluster software.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 157

If the prerequisites for the logical and physical host environments are not satisfied or there is a problem in the control
of the logical host environment, JP1/Advanced Shell might not function normally. In such a case, check the physical
and logical host environments or the cluster software settings and revise the prerequisites as necessary.

(4) Conditions for logical host names
The following conditions apply to logical host names:

• Permitted number of characters
Windows: 1 to 196 bytes (a maximum of 63 bytes is recommended)
UNIX: 1 to 255 bytes (a maximum of 63 bytes is recommended)
If the cluster software or JP1 products being used impose limitations, you must observe those limitations in naming
the logical hosts.

• Permitted characters
Alphanumeric characters and the hyphen (-)

2.9.2 Specifying environment information for cluster operation
This subsection explains the environment settings for JP1/Advanced Shell to support cluster operation.

(1) Installing and setting up the JP1-series products to be linked
Install and set up on the active and standby servers the JP1-series products to be linked. For details about the installation
and setup of the JP1-series products to be linked, see the applicable manuals.

(2) Installing JP1/Advanced Shell
Install JP1/Advanced Shell on the local disk of both the active and standby servers.

Do not install JP1/Advanced Shell on the shared disk.

(3) Specifying environment information for JP1/Advanced Shell
To use JP1/Advanced Shell in a cluster system, perform the tasks described below.

(a) Evaluating the configuration of directories and files
Evaluate according to the system operation guidelines the directory and file configuration items shown in the following
table.

Table 2-34: Directory and file configuration evaluation items

Type of directory or file Creation criterion

Directory for temporary files S or L

Directory for the spool S

Directory for system execution logs S or L

Directory for traces L

System environment file L

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 158

Type of directory or file Creation criterion

Job environment file S or L

Job definition script S or L

File referenced from job definition scripts S or L

Other S or L

Legend:
S: Create on the shared disk.
S or L: Create on the shared disk or logical disk according to the system operation guidelines.
L: Create on the local disk.

(b) Specifying environment information on the physical hosts
Specify the environment information for JP1/Advanced Shell on the physical hosts of the active and standby servers.
For details about the specification of environment information, see 2.6 Specifying environment information for JP1/
Advanced Shell.

(c) Specifying environment information on the logical host
Specify the environment information for JP1/Advanced Shell on the logical host of the active server.

To specify the environment information on the logical host:

1. Create the directories needed for execution.
According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files, create
the following directories required for running JP1/Advanced Shell on the shared disk or logical disk:

• Directory for temporary files

• Directory for the spool

• Directory for system execution logs

• Directory for traces

The following explains how to create directories:

• When creating the directories on the shared disk
Create the directories on the shared disk in such a manner that the active server can access the shared disk.

• When creating the directories on the local disk
Create the directories on the local disks of both the active and standby servers.

2. Specify the environment file.
You must specify the settings required for each logical host in the system environment file of JP1/Advanced Shell.
To do this, specify the environment setting parameters for each logical host between the lhost_start and
lhost_end conditional parameters. For details about the lhost_start and lhost_end conditional
parameters, see 7.4.1 lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified
logical host) in 7.4 Conditional parameters.
To run JP1/Advanced Shell in a logical host environment, specify at least the following parameters in the system
environment file:

• Parameters for the directories required for running JP1/Advanced Shell
According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files,
specify in the system environment file the directories created in step 1. Specify these directories in the system

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 159

environment file only, so that they are swapped when system switchover occurs. Do not specify them in job
environment files. For details about the parameters for directories required for running JP1/Advanced Shell, see
2.6.19 Creating the directories required for JP1/Advanced Shell.

• Parameters for the user-reply functionality
If you will be using the user-reply functionality in a logical host environment, specify in the system environment
file the appropriate parameters for the user-reply functionality for the logical host.
For details about the parameters for the user-reply functionality, see 2.8.1 Specifying the environment files to
use the user-reply functionality.

An example of the settings in the system environment file with physical and logical hosts specified are shown below.
In this example, /shdsk1/lhost001 and /shdsk2/lhost002 are directories on the shared disk, and /
lhost001, /lhost002, and /phost are directories on the local host.

###
Settings common to both physical and logical hosts
###

#-adsh_conf USERREPLY_JP1EVENT_INTERVAL 500

###
Settings for each of the physical and logical hosts
###

specify parameter for only logical host (lhost001).
#-adsh_conf lhost_start lhost001
#-adsh_conf LOG_DIR "/shdsk1/lhost001/log"
#-adsh_conf SPOOL_DIR "/shdsk1/lhost001/spool"
#-adsh_conf TEMP_FILE_DIR "/shdsk1/lhost001/temp"
#-adsh_conf TRACE_DIR "/lhost001/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMlhost001
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 5
#-adsh_conf lhost_end

specify parameter for only logical host (lhost002).
#-adsh_conf lhost_start lhost002
#-adsh_conf LOG_DIR "/shdsk2/lhost002/log"
#-adsh_conf SPOOL_DIR "/shdsk2/lhost002/spool"
#-adsh_conf TEMP_FILE_DIR "/shdsk2/lhost002/temp"
#-adsh_conf TRACE_DIR "/lhost002/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMlhost002
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 5
#-adsh_conf lhost_end

specify parameter for physical host.
#-adsh_conf phost_start
#-adsh_conf LOG_DIR "/phost/log"
#-adsh_conf SPOOL_DIR "/phost/spool"
#-adsh_conf TEMP_FILE_DIR "/phost/temp"
#-adsh_conf TRACE_DIR "/phost/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMphost001
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 10
#-adsh_conf phost_end

3. Register the user-reply functionality's management service for the logical hosts (Windows only).
To use the user-reply functionality in a logical host environment, you must register the user-reply functionality's
management service for the logical hosts on both the active and standby servers. You can use the adshmsvcd and
adshmsvce commands to register the user-reply functionality's management service. To register the service for a
logical host, execute the command with the -install and -lhostname options specified.
When the command terminates normally, the registered service is displayed in the Services administrative tool.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 160

For example, to use lhost001 as a logical host in the execution environment of the active server, execute the
following command:

adshmsvce -install -lhostname lhost001

If the command terminates normally, AdshmSvcE_ lhost001 is displayed in the Services administrative tool.

4. Check the file configuration on the active and standby servers.
According to the file configuration evaluated in (a) Evaluating the configuration of directories and files, perform
the following tasks:

• For the files to be created on the local disk
The configuration of the files to be referenced and the file contents must be identical between the active and
standby servers. Copy the files created on the local disk of the active server, such as the system environment file
created in step 2. Specify the environment file, to the same path on the standby server.

• For the files to be created on the shared disk
Create the files so that the active server can access them on the shared disk.

Important
For the created files, set the permissions so that they can be accessed from both the active and standby
servers. If access permissions are granted to a specific user or group, you must specify the same
user name and user ID (UID) or the same group name and group ID (GID) on both the active and
standby servers.

(4) Registering into the cluster software (Windows)
Register the user-reply functionality's management service on the logical host into the cluster software so that it can be
started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host environment,
skip this task.

(a) Registering into the cluster software
In Windows, register into the cluster software the service with the name shown in the following that has been registered
as a service for the logical host:

Name Service name

AdshmSvcE_logical-host-name User-reply functionality's management service

For details about how to register the service, see the applicable cluster software's documentation. After you have
registered the user-reply functionality's management service into the cluster software, use the cluster software to start
and stop the service.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management service on the logical host, the shared disk and logical IP address must
be available. The start and stop sequence depends on the linked JP1-series products.

• When the logical host is started

1. Allocate the shared disk and logical IP address and enable them.

2. Start the services of the linked JP1-series products (except JP1/AJS).#

3. Start the user-reply functionality's management service.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 161

4. Start the services of JP1/AJS.

• When the logical host is terminated

1. Stop the services of JP1/AJS.

2. Stop the user-reply functionality's management service.

3. Stop the services of the linked JP1-series products (except JP1/AJS).#

4. Release the allocation of the shared disk and the logical IP address.

#
For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

(5) Registering into the cluster software (UNIX)
Register into the cluster software the user-reply functionality's management daemon on the logical host so that it can
be started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host
environment, skip this task.

(a) Registering into the cluster software
The following table provides the information needed for registering the user-reply functionality's management daemon
into the cluster software.

Table 2-35: Functions to be registered in to the cluster software and the commands used by each
function

Function to be registered Description

Start Starts the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name start

Checking the result of starting the daemon
Use the operation monitoring described below to check the result of starting the user-reply
functionality's management daemon; do not use the return code.

Stop Stops the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name stop

Checking the result of stopping the daemon
Use the operation monitoring described below to check the result of stopping the user-reply
functionality's management daemon; do not use the return code.

Operation monitoring Monitors the user-reply functionality's management daemon to check if it is running normally.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name status

Checking the result of operation monitoring
The following explains the return code:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 162

Function to be registered Description

Operation monitoring Return code = 0 (running)
The user-reply functionality's management daemon is running normally.
Return code = 1 (stopped)
The user-reply functionality's management daemon is stopped for some reason. Treat this status
as an error.

For details about the adshmdctl command, see 8.3.12 adshmdctl command (starts and stops the user-reply
functionality management daemon) (UNIX only) in 8. Commands Used During Operations.

Important
If the user-reply functionality's management daemon is terminated without releasing the shared memory
due to some error, the next startup will fail. If this occurs, take appropriate action according to the
information provided in Syntax in 8.3.12 adshmdctl command (starts and stops the user-reply functionality
management daemon) (UNIX only) in 8. Commands Used During Operations.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management daemon on the logical host, the shared disk and logical IP address
must be available. The start and stop sequence depends on the linked JP1-series products.

• When the logical host is started

1. Allocate the shared disk and logical IP address and enable them.

2. Start the daemons and services of the linked JP1-series products (except JP1/AJS).#

3. Start the user-reply functionality's management daemon.

4. Start the services of JP1/AJS.

• When the logical host is terminated

1. Stop the services of JP1/AJS.

2. Stop the user-reply functionality's management daemon.

3. Stop the daemons and services of the linked JP1-series products (except JP1/AJS).#

4. Release the allocation of the shared disk and the logical IP address.

#
For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

2.9.3 How to specify commands during cluster operation
To execute a command on a logical host, you must specify the logical host name in the command. A command in which
no logical host name is specified is executed on the physical host. Specify the logical host in commands as shown in
the following.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 163

(1) adshexec command (executes a batch job)

(a) Executing from a JP1/AJS custom job
To execute the command from a custom job, select the Logical host check box in Define detailed info in the Define
Details - [Custom Job] dialog box to execute the command on the logical host.

Note that the JP1/AJS Exec-agent that executes the custom job must be running on the logical host. If the JP1/AJS Exec-
agent is running on the physical host, the command will not function normally.

For details about custom jobs, see 2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is
used).

(b) Executing from a program other than a JP1/AJS custom job
To execute the command from a program other than a custom job, specify the command as follows:

adshexec -h "" path-name-of-job-definition-script-file

If the command is executed from JP1/AJS - Agent running on the logical host, the logical host name is set in the
JP1_HOSTNAME environment variable. If the null character string (which is two double-quotation marks, "") is
specified in the -h option, the adshexec command acquires the logical host name from the JP1_HOSTNAME
environment variable. For details about the JP1_HOSTNAME environment variable, see the JP1/Base User's Guide.

Note that the executing JP1/AJS Exec-agent must be running on the logical host. If the JP1/AJS Exec-agent is running
on the physical host, see Executing from a program other than JP1/AJS below.

(c) Executing from a program other than JP1/AJS
Execute the command with the logical host name specified in the -h option, as shown in the following:

adshexec -h logical-host-name path-name-of-job-definition-script-file

(2) Commands other than adshexec
Execute the command with the logical host name specified in the -h option, as shown in the following:

command -h logical-host-name

This example executes adshlsmsg as a logical host:

adshlsmsg -h logical-host-name

If the user-reply functionality is used, the logical host name specified in the user-reply functionality's management
daemon or service must the same as the logical host name specified in the adshexec command. For details about the
individual commands that can be executed as a logical host, see 8.3 Shell operation commands.

2.9.4 Notes about cluster operation
This subsection provides additional information about use of JP1/Advanced Shell in a cluster operation.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 164

• (Windows only) UNC names can be used as file and path names. However, the path names ending with a shared
name (including names ending with \) are not supported.

• JP1/Advanced Shell does not support some file systems. For details, see (2) File systems.

• When multiple logical hosts are configured and multiple copies of JP1/Advanced Shell are run, the user-reply
functionality is still executed for each logical host. Information cannot be referenced from the user-reply functionality
running on one logical host by the user-reply functionality running on another logical host.

• If system switchover occurs while a job using reply-request messages of the user-reply functionality is running,
reply-request events might remain in JP1/IM - View. If this occurs, use JP1/IM - View to release the reply-request
events manually.

• (UNIX only) If the shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error by signal.

• (Windows only) If the shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error when it attempts to access a file on the shared disk.

• If you run JP1/Advanced Shell in a cluster environment, do not collect coverage information.

2.9.5 Settings for running a logical host in a non-cluster environment
This subsection provides an overview of the configuration and operations of logical hosts in a non-cluster environment.
In the case of logical hosts that run in a non-cluster environment, you specify the same environment information as for
logical hosts that run in a normal cluster system.

(1) Specifying environment information to run logical hosts in a non-
cluster system

This subsection explains how to run JP1/Advanced Shell on a logical host in a non-cluster environment without linking
JP1/Advanced Shell to cluster software.

(a) Preparing the logical host environment
Provide a disk area and IP address for the logical host to create a logical host environment.

• Disk area for the logical host
Create storage directories on the local disk for the files that will be used by JP1/Advanced Shell separately from the
directories used by the physical host and the JP1-series products on other logical hosts.

• IP address for the logical host
Allocate in the OS the IP address that will be used by JP1/Advanced Shell for the logical host. It can be a real IP
address or an alias IP address. Make sure that the IP address can be uniquely identified from the logical host.
The prerequisites for these tasks are the same as for operation in a cluster system. However, the conditions related
to cluster software do not apply because JP1/Advanced Shell is not run in a cluster environment.

In 2.9 Running in a cluster configuration, replace the information about shared disk and logical IP address with the disk
area and IP address allocated above for the logical host.

• Estimating performance
When you estimate performance, determine whether JP1/Advanced Shell can be run as a system in terms of the
following:

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 165

• Determine whether there are enough resources to run multiple JP1-series products in the system. If there are not
enough resources, the system might not function correctly or adequate performance might not be realized.

(b) Specifying environment information for the logical host
Specify environment information for the logical host using the same procedure as for the active server in a cluster system.
For details about the specification of environment information for cluster operation, see 2.9.2 Specifying environment
information for cluster operation. Note that in a cluster system, the environment information must be specified on both
servers involved in system switchover, but for a logical host that is run in a non-cluster environment, specify the
environment information only on the server on which JP1/Advanced Shell will be run.

(2) Automatic startup and termination of the user-reply functionality's
management daemon for the logical host in a non-cluster environment
(UNIX only)

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts and shuts down.

(a) In AIX
• Setting up the automatic start function at system startup

You use the following mkitab command to have the user-reply functionality's management daemon start
automatically at the time of system startup:

mkitab "record-of-user-reply-functionality-management-daemon-for-logical host:
2:wait:/opt/jp1as/sbin/adshmdctl -h logical-host-name start"

Set the user-reply functionality's management daemon for the logical host to start after the logical host services of
linked JP1-series products have started. For example, to have JP1/Base and JP1/IM - Manager on the logical host
start automatically in this order, execute mkitab commands as follows:

mkitab -i record-of-JP1-Base-for-logical-host "record-of-JP1/IM-Manager-for-
logical-host:2:wait:/etc/opt/jp1cons/jco_start.cluster logical-host-name"
mkitab -i record-of-JP1/IM-Manager-for-logical-host "record-of-user-reply-
functionality-management-daemon-for-logical host:2:wait:/opt/jp1as/sbin/adshmdctl
-h logical-host-name start"

• Setting up the automatic termination function at system shutdown
To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
you must edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon for the logical host stops before any of the logical host services of linked JP1-series products are stopped:

test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl -h logical-host-
name stop
 :
termination processing for services of linked JP1-series products
 :

(b) For RHEL 6, Oracle Linux 6 and CentOS 6
• Creating automatic start and stop scripts

Create automatic start and stop scripts for the logical host in the /etc/rc.d/init.d directory. The following
shows an example:

#!/bin/sh

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 166

JP1_HOSTNAME=logical-host-name

case $1 in
'start')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 touch /var/lock/subsys/lock-file-name
 fi
 ;;
'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 rm -f /var/lock/subsys/lock-file-name
 fi
 ;;
esac

exit 0

Specify for the lock file name the symbolic link name created for automatic stop without the leading numeric part
(KXX part). For example, if the symbolic link name for automatic stop is K01_JP1_AS_CLUSTER, specify
_JP1_AS_CLUSTER.

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN.d directory (N
indicates the execution level at startup). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is started after the logical host services of the linked JP1-series products have
been started. For details about how to create symbolic links, see (1) Starting and terminating the user-reply
functionality's management daemon automatically.

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN.d directory (N
indicates the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the logical host services of the linked JP1-series products
are stopped. For details about how to create symbolic links, see (1) Starting and terminating the user-reply
functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(c) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7
• Creation of the Unit file of the user-reply functionality management daemon for logical host

Create the Unit file of the user-reply functionality management daemon for logical host in the /etc/systemd/
system directory. For the name of the Unit file service to be created, use .service as the extension such as in
jp1_as_md_logical host name.service.
An example of the Unit file to be created is as follows. Refer to the document of JP1/Base for "Unit file name of
JP1/Base for logical host".

[Unit]
Service name
Description=Advanced Shell - adshmd logical-host-name

Depecdencies

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 167

Requires=unit-file-name-of-JP1/Base-for-logical-host
After=unit-file-name-of-JP1/Base-for-logical-host
ConditionFileIsExecutable=/opt/jp1as/sbin/adshmdctl

[Service]
Service type
Type=forking
PIDFile=/opt/jp1as/system/adshmd_logical-host-name.pid

Service operations
ExecStart=/opt/jp1as/sbin/adshmdctl -h logical-host-name start
ExecStop=/opt/jp1as/sbin/adshmdctl -h logical-host-name stop

KillMode=none

[Install]
WantedBy=multi-user.target graphical.target

Set the owner of the created Unit file, belonging group, and permission in /etc/systemd/system.
chmod u=rw,go=r /etc/systemd/system/Unit file name of the user-reply functionality management
daemon for logical host
chown root:root /etc/systemd/system/Unit file name of the user-reply functionality management
daemon for logical host

• Setting of automatic startup and automatic termination
Execute the setting of automatic startup and automatic termination of the user-reply functionality management
daemon for the logical host by specifying the systemctl command as follows.
systemctl --system enable the Unit file name of the user-reply functionality management daemon for
logical host

For actions that occur at the timing when the user-reply functionality management daemon is automatically started or
terminated according to the aforementioned setting, see (1) Starting and terminating the user-reply functionality's
management daemon automatically - (c) For RHEL 7, SUSE Linux 12, Oracle Linux 7, and CentOS 7.

(d) In HP-UX
• Creating automatic start and stop scripts

Create the automatic start and stop scripts for the logical host in the /sbin/init.d directory. The following
shows an example:

#!/bin/sh

Set Environment-variables
PATH=/sbin:/bin:/usr/bin:/opt/jp1as/sbin
export PATH
JP1_HOSTNAME=logical-host-name

case $1 in
start_msg)
 echo "Start Advanced Shell - adshmd $JP1_HOSTNAME"
 ;;
stop_msg)
 echo "Stop Advanced Shell - adshmd $JP1_HOSTNAME"
 ;;
'start')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 fi
 ;;

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 168

'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 fi
 ;;
esac

exit 0

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /sbin/rc2.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
logical host services of the linked JP1-series products have been started. For details about how to create symbolic
links, see (1) Starting and terminating the user-reply functionality's management daemon automatically.

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /sbin/rc1.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is terminated before
the logical host services of the linked JP1-series products are stopped. For details about how to create symbolic
links, see (1) Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(e) In Solaris
• Creating automatic start and stop scripts

Create the automatic start and stop scripts for the logical host in the /etc/init.d directory. The following shows
an example:

#!/bin/sh

JP1_HOSTNAME=logical-host-name

case $1 in
'start')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 fi
 ;;
'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 fi
 ;;
esac

exit 0

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc2.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see (1) 
Starting and terminating the user-reply functionality's management daemon automatically.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 169

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc0.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see (1) 
Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(3) How to specify logical hosts
You specify commands that are to execute on a logical host in the same manner as for commands that are used on the
logical host in a cluster system. For details about how to specify commands for the logical host in a cluster system, see
2.9.3 How to specify commands during cluster operation.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 170

2.10 Installing the HTML manual

You can use the HTML manual for JP1/Advanced Shell's custom job programs and JP1/Advanced Shell Editor by
copying the HTML manual to a specified folder.

To install the HTML manual:

1. Locate the manual CD-ROM supplied as a standard with the program product.

2. From the manual CD-ROM, copy all of the JP1/Advanced Shell HTML and CSS files and the GRAPHICS folder
to the following folders:

• To view Help from JP1/Advanced Shell:
installation-directory\JP1ASE\doc\en\help

• To view Help from JP1/Advanced Shell Editor:
installation-directory\JP1ASD\doc\en\help

• To view Help from JP1/Advanced Shell's custom job definition programs:
installation-directory\JP1ASV\doc\en\help

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 171

2.11 Setting the application-execution agent functionality [only for the
Windows execution environment]

We recommend that you configure settings as follows when using the application-execution agent functionality.

1. Log on as the user who will be using the application-execution agent functionality.
The user who will be using the application-execution agent functionality must be assigned rights by using the
administration tool of Windows under Local security policy > Local policy > Assign user rights > Create global
object.
If the right to "create a global object" cannot be enabled due to security problems, a user who can enable the rights
to "create a global object" must use the application execution agent function.

2. Select All Programs > Advanced Shell > Application Execution Agent from the Start menu of Windows.
The Application Execution Agent icon appears in the notification area of the Task bar.

3. Right-click the Application Execution Agent icon and select Add Startup.

The application execution agent automatically starts automatically from the next log on.

Notes on registering startup
When uninstalling JP1/Advanced Shell, if the application execution agent is registered to startup, right-click the
Application Execution Agent icon and select Delete startup to delete the application execution agent from startup.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 172

2.12 Setting the file mode creation mask used when execution of a job
definition script starts [for UNIX only]

The file mode creation mask that is to be used when execution of a job definition script starts differs depending on the
specification of the UMASK_INHERIT environment setting parameter, as shown in the following table.

Environment setting parameter File mode creation mask used when
execution of a job definition script
starts#

Remarks

UMASK_INHERIT NO 0 Default

UMASK_INHERIT YES File mode creation mask of the parent process --

Legend:
--: Not applicable

#
Child jobs are included.

Notes
If the UMASK_INHERIT NO environment setting parameter is specified when a child job is started, the child job
does not inherit any changes made to the file mode creation mask by using the umask command in the root job.
Therefore, the child job is run with a file mode creation mask of 0.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 173

2.13 Required memory amount and occupied disk amount

2.13.1 Virtual memory requirements
The formula for estimating the used virtual memory space is as follows:

(1) Job controller
Environment OS Process Formula for estimating

1 Execution environment Linux adshexec 12000KB + (S × 1KB) + (J × 2KB) + (F × 3KB)
+ (FS × 5KB)

2 AIX adshexec 2000KB + (S × 1KB) + (J × 2KB) + (F × 2KB) +
(FS × 5KB)

3 HP-UX adshexec 12000KB + (S × 1KB) + (J × 2KB) + (F × 3KB)
+ (FS × 5KB)

4 Solaris adshexec 10000KB + (S × 1KB) + (J × 3KB) + (F × 3KB)
+ (FS × 6KB)

5 Windows adshexec
+ adshexecsub

17000KB + (S × 2KB) + (J × 4KB) + (F × 5KB)
+ (FS × 7KB)

6 Development
environment

Windows adshedit
+ adshesub

40000KB + (S × 2KB) + (J × 4KB) + (F × 5KB)
+ (FS × 14KB)

S: Number of commands called in the job definition script

J: Number of job step definitions

F: Number of allocated files

FS: File size (in KB) of the job definition script

(2) User-reply functionality management daemon and service
Environment OS Process Formula for estimating

1 Execution environment Linux adshmd 10MB × Number of user-reply function
management daemons started

2 AIX adshmd 2MB × Number of user-reply function management
daemons started

3 HP-UX adshmd 10MB × Number of user-reply function
management daemons started

4 Solaris adshmd 8MB × Number of user-reply function management
daemons started

5 Windows adshmsvce 9MB × Number of user-reply function management
services started

6 Development
environment

Windows adshmsvcd 9MB × Number of user-reply function management
services started

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 174

(3) Shared memory used by user-reply function management daemons
and service

Environment OS Formula for estimating

1 Execution environment Linux 1MB × Number of user-reply function management daemons started

2 AIX 1MB × Number of user-reply function management daemons started

3 HP-UX 1MB × Number of user-reply function management daemons started

4 Solaris 1MB × Number of user-reply function management daemons started

5 Windows 1MB × Number of user-reply function management services started

6 Development
environment

Windows 1MB × Number of user-reply function management services started

(4) Shared memory used by application-execution agent program
(Windows only)

12KB × Number of users that execute the GUI application execution program

2.13.2 Disk space requirements

(1) Amount of disk space required for execution modules and libraries
Environment OS Formula for estimating

1 Execution environment Linux 34 MB

2 AIX 32 MB

3 HP-UX 50MB

4 Solaris 31 MB

5 Windows 34 MB#1

6 Development environment Windows 17 MB#2

#1
Depending on the type of Windows OS, the actual value might be smaller than this value. During installation, a
maximum of an additional 112 MB of disk space will be temporarily used.

#2
Depending on the type of Windows OS, the actual value might be smaller than this value. During installation, a
maximum of an additional 62 MB of disk space will be temporarily used.

(2) Amount of disk space required for each directory

(a) System execution log
The default is as follows, but you can change it via the environment file.

• Location

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 175

Environment OS Location

1 Execution environment Linux /opt/jp1as/log (LOG_DIR parameter)

2 AIX /opt/jp1as/log (LOG_DIR parameter)

3 HP-UX /opt/jp1as/log (LOG_DIR parameter)

4 Solaris /opt/jp1as/log (LOG_DIR parameter)

5 Windows shared-documents-folder\Hitachi\JP1AS\JP1ASE\log
(LOG_DIR parameter)

6 Development environment Windows shared-documents-folder\Hitachi\JP1AS\JP1ASD\log
(LOG_DIR parameter)

• Size

Environment OS Size

1 Execution environment Linux 2MB × 5 (LOG_FILE_CNT
parameter)

2 AIX 2MB × 5 (LOG_FILE_CNT
parameter)

3 HP-UX 2MB × 5 (LOG_FILE_CNT
parameter)

4 Solaris 2MB × 5 (LOG_FILE_CNT
parameter)

5 Windows 2MB × 5 (LOG_FILE_CNT
parameter)

6 Development environment Windows 2MB × 5 (LOG_FILE_CNT
parameter)

(b) Trace log
The default is as follows, but you can change it via the environment file.

• Location

Environment OS Location

1 Execution environment Linux /opt/jp1as/trace (TRACE_DIR parameter)

2 AIX /opt/jp1as/trace (TRACE_DIR parameter)

3 HP-UX /opt/jp1as/trace (TRACE_DIR parameter)

4 Solaris /opt/jp1as/trace (TRACE_DIR parameter)

5 Windows common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace (TRACE_DIR parameter)

6 Development
environment

Windows common-application-data-folder\Hitachi\JP1AS\JP1ASD
\trace (TRACE_DIR parameter)

• Size

Environment OS Size

1 Execution environment Linux 2MB × 4 (TRACE_FILE_CNT parameter)

2 AIX 2MB × 4 (TRACE_FILE_CNT parameter)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 176

Environment OS Size

3 Execution environment HP-UX 2MB × 4 (TRACE_FILE_CNT parameter)

4 Solaris 2MB × 4 (TRACE_FILE_CNT parameter)

5 Windows 2MB × 4 (TRACE_FILE_CNT parameter)

6 Development environment Windows 2MB × 4 (TRACE_FILE_CNT parameter)

(c) Spool
Default is as follows, but the location can be changed via the environment file.

• Location

Environment OS Location

1 Execution environment Linux /var/opt/jp1as/spool (SPOOL_DIR parameter)

2 AIX /var/opt/jp1as/spool (SPOOL_DIR parameter)

3 HP-UX /var/opt/jp1as/spool (SPOOL_DIR parameter)

4 Solaris /var/opt/jp1as/spool (SPOOL_DIR parameter)

5 Windows shared-documents-folder\Hitachi\JP1AS\JP1ASE\spool
(SPOOL_DIR parameter)

6 Development environment Windows shared-documents-folder\Hitachi\JP1AS\JP1ASD\spool
(SPOOL_DIR parameter)

• Size
Calculate the disk space (in KB) required for each job to be executed, by totaling the calculation results of the
formulas in the File size column in the table below.
Note that the total of the calculation results of the following formulas will be larger than the disk space required for
a typical job. This is to tolerate the variation of the disk space required for the spool because the required space
varies due to various causes (for example, the length of the path name of the job definition script file and the number
of environment variables).

Output Information File Information File Size

1 Fixed information (such as the
header information)

- 500.0KB

2 Log information for each step
to be executed(#)

Job execution log
(JOBLOG)

Count of execution of the command or control statement of
the script to be executed × 0.2KB
+
Number of #-adsh_step_start commands × 0.4KB

3 Information about the script to
be executed

File in which SCRIPT is
included in File Name

The size of the job definition script file

4 Information stored in the
program output data file

File assigned by the #-
adsh_spoolfile command

The amount of data to be output to the file assigned by the
#-adsh_spoolfile command

#:As for this data, you can restrain the output of the specified information message to the job execution log by using
the environment setting parameter JOBLOG_SUPPRESS_MSG.
In execution environment, the value calculated according to the formula in the File size column in the table below
must be added to the required disk space in the table above.

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 177

Output Information File Information File Size

1 Information about the standard
output and standard error
output

Files for which names contain
STDOUT and STDERR

The amount of data output by commands and
user applications

2 Operation information (#) File for which the name contains
EVENTFILE

Number-of-commands-and-control-statements-
of-the-script-to-be-executed * 2.5 KB

#:As for this data, you can restrain creation of operation information by setting the environment setting parameter
EVENT_COLLECT to NO.
Calculate the estimated disk space required for the spool for one operation by multiplying the value (in KB) calculated
from the above formulas and the number of jobs to be executed.

• Concept of the number of commands and control statements
The number of commands and control statements means the number of commands or instructions that are executed
when the job definition script is actually executed. The following shows examples.
Example 1:

commandA
commandB
varA="paramA"
commandC $varA

For the aforementioned script, the count of the execution of the command or control statement will be as follows.

• commandA

• commandB

• Assignment expression (varA="paramA")

• commandC

Therefore, the number of commands and control statements is 4.
Example 2:

lop=1
while [$lop -le 5] ; do
 echo "Loop count: $lop"
 ((lop+=1))
done

The commands and control statements for the above script are as follows:

• Assignment expression (lop=1)

• Condition evaluation ([$lop -le 5]) <--+

• echo command <--+-- Equivalent to 15 steps,

• Arithmetic operation (((lop+=1))) <--+ because 5 loops are repeated.

• Condition evaluation ([$lop -le 5]) <----- Final determination processing to break out of the loop

Therefore, the number of commands and control statements is 17.
For loop processing such as in example 2, the number of loops might be dynamically determined depending on the
operational status. We recommend that you allow a margin for values, based on the possible maximum.

(d) User-reply function management daemon start-up log (UNIX only)
The size and location of user-reply function management daemon start-up log is as follows:

• Location

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 178

/opt/jp1as/system

• Size
maximum of 1 MB (usually under 1 KB)
To activate the user-reply function management daemon of the logical host, multiply the size by the number of user-
reply function management daemons that are running. The size decreases to 0 when the user-reply function
management daemon restarts.
While the user-reply function management daemon is stopped, if a reply-request message that is awaiting a reply is
canceled, the size increases. If an error occurs, the size increases.

(e) Log of the application-execution agent functionality (Windows only)
The size and location of log of the application-execution agent functionality is as follows:

• Location

shared-documents-folder\Hitachi\JP1AS\JP1ASE\appexec

• Size
maximum of 6MB+1KB(CONF file)

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 179

2.14 Note on running antivirus software

If a virus check is run during execution of JP1/Advanced Shell, the virus check might not run properly. In addition,
execution of the job definition script might be delayed. To avoid these problems, if you run a virus check during execution
of JP1/Advanced Shell, exclude the following files and directories from the check targets.

Files and folders for JP1/Advanced Shell (in Windows):

• installation-folder and all its contents

• common-application-folder\Hitachi\JP1AS and all its contents

• shared-document-folder\Hitachi\JP1AS and all its contents

• Folder specified for the LOG_DIR environment setting parameter and all its contents

• Folder specified for the SPOOL_DIR environment setting parameter and all its contents

• Folder specified for the TEMP_FILE_DIR environment setting parameter and all its contents

• Folder specified for the TRACE_DIR environment setting parameter and all its contents

• All job environment files

• All script files

Files and folders for JP1/Advanced Shell (in UNIX):

• /opt/jp1as directory and all its contents

• /var/opt/jp1as directory and all its contents

• Directory specified for the LOG_DIR environment setting parameter and all its contents

• Directory specified for the SPOOL_DIR environment setting parameter and all its contents

• Directory specified for the TEMP_FILE_DIR environment setting parameter and all its contents

• Directory specified for the TRACE_DIR environment setting parameter and all its contents

• All job environment files

• All script files

2. Preparations for Using JP1/Advanced Shell

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 180

This chapter explains how to execute batch jobs and the batch job processing in JP1/Advanced
Shell (execution environment).

Part 3: Operation

3 Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 181

3.1 Structure of jobs

This section explains the structure of jobs.

3.1.1 Operator's tasks in JP1/AJS jobs
This subsection explains the general procedure for the operator's tasks when JP1/AJS is used to execute jobs.

(1) Defining jobs
To use JP1/AJS to execute jobs, you must define the jobs according to the procedure explained in 2.7.2 Defining and
executing a jobnet.

(2) Executing jobs
The three methods for using JP1/AJS to execute jobs are planned execution, fixed execution, and immediate execution.
For details about these three execution methods, see the JP1/Automatic Job Management System 3 Operator's Guide.

If you do not use JP1/AJS, you can execute jobs (job definition scripts) by entering commands from the command
prompt or shell.

(3) Monitoring a jobnet
In JP1/AJS, you start the jobnet monitor to check job execution status.

(4) Re-executing jobs
If you need to re-execute jobs, re-execute them from the JP1/AJS - View window.

3.1.2 Jobs
Any request to start the job controller from a JP1/AJS or Windows command prompt or a UNIX shell is accepted as a
job. A general user who will be using the job passes the job definition script containing a collection of instructions to
the job controller.

The job controller analyzes the instructions to determine what is being requested by the user and executes the job in a
manner that makes efficient use of system resources.

(1) Root jobs and child jobs
In general, a job is the unit in which the system is requested to perform a single integrated task prepared by a general
user. Individual tasks that are requested are treated as being mutually independent.

A job consists of a series of processing programs. To execute these processing programs, you must define their execution
order, execution conditions, and the files that will be required for them to execute.

Jobs are classified into root jobs and child jobs.

• Root job

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 182

Of the jobs to be executed from programs, such as JP1/AJS and login shell, all jobs other than child jobs are root
jobs.

• Child job
In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of
the parameters listed below or its default definition are child jobs:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

The following figure shows an example procedure for starting root jobs and child jobs.

(2) Job input modes
Jobs are executed in one of the following modes according to the status of the standard input:

• Terminal input mode
If the standard input is associated with the terminal when a job starts, the job is executed in this mode. The following
is an example of starting a job in this mode:

• In the login shell, executing the adshexec command with the standard input associated with the terminal

• Non-terminal input mode
If the standard input is not associated with the terminal when a job starts, the job is executed in this mode.
The following are examples of starting a job in this mode:

• Starting a job from JP1/AJS

• In the login shell, executing the adshexec command by redirecting the standard input from a file

• In the login shell, executing the adshexec command in a middle of or at the end of a pipe

When a job starts, the KNAX7902-I message indicating the mode used to execute the job is displayed.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 183

In UNIX, how a job is forcibly terminated depends on the job input mode. For details, see 3.11 Forcibly terminating jobs.

In Windows, the job input mode has no effect on the job processing.

(3) Relationship between jobs
Root jobs are mutually independent. This means that jobs processed concurrently do not influence each other, nor can
an executed root job influence root jobs that are executed later. Also, information cannot be inherited from one root job
to another (except for the information in files).

However, there might be relationships between jobs, such as the following:

• Depending on the scheduling by JP1/AJS, root jobs are associated with each other in terms of their execution order.

• If multiple jobs use the same regular file concurrently, those jobs are associated with each other. A schedule must
be designed in JP1/AJS so that the jobs are executed in the appropriate order.

• There might be a relationship between a root job and child jobs and between child jobs.

(4) Relationship between jobs and environment files
Both root and child jobs load the system environment file and a job environment file when the jobs start. Therefore, a
root job and its child jobs use parameters in different environment files in the following cases:

• After a root job loaded the environment files at the start, the value of the ADSH_ENV environment variable is changed
to a different job environment file path before a child job loads the environment files when it starts.

• After a root job loaded the environment files at the start, the contents of the system environment file or job
environment file is changed before a child job loads the environment files when it starts.

If you want to run a root job and its child jobs using the same environment file parameters, do not change the value of
the ADSH_ENV environment variable or the contents of the environment files while the jobs are executing.

If the export parameter is defined in the environment files, its value takes precedence over the value of the environment
variable that the job inherits from its parent process. The following shows an example.

• Root job root.ash
export ENV1=SCRIPTFILE
childjob.ash #start the child job

• Child job childjob.ash
echo $ENV1

• Contents of environment file adshrc.ase that are loaded by root job root.ash and child job childjob.ash
export ENV1=ENVFILE

• echo output results of child job childjob.ash
export ENV1=ENVFILE

In this example, the jobs are run in the following procedure:

1. Root job root.ash starts and ENVFILE is set in ENV1 by the export parameter in environment file
adshrc.ase.

2. Root job root.ash sets SCRIPTFILE in environment variable ENV1 before its child job childjob.ash starts.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 184

3. Child job childjob.ash starts and inherits environment variable ENV1 from root job root.ash. Immediately
after the process of child job childjob.ash started, the value of ENV1 was SCRIPTFILE.

4. Child job childjob.ash loads environment file adshrc.ase at the start. ENVFILE is set in ENV1 by the
export parameter.

5. The result of echo by child job childjob.ash is ENVFILE, which was set in step 4.

(5) Temporary files and regular files
Batch jobs perform processing by referencing data, such as the information provided by open base products, as temporary
files or regular files.

(a) Temporary files
Temporary files are used temporarily during job execution. They are created automatically by jobs and job steps and
deleted automatically when the jobs terminate. Temporary files are created in a directory defined in the environment
files.

We recommend that you manage the temporary files for batch jobs separately from the temporary files for applications.
The directory for storing temporary files in the job controller of JP1/Advanced Shell is specified in the
TEMP_FILE_DIR parameter. Normally, the temporary files are deleted, but they might remain if a failure occurs. For
this reason, make sure that you delete temporary files periodically.

(b) Regular files
Regular files are used to input and output job definition scripts and can be placed in any directory. These files are retained
as job results after jobs have terminated, but you can delete them during job execution.

(6) Asynchronously executed processes
The job controller of JP1/Advanced Shell does not terminate a job until all the related root jobs, child jobs, and commands
have terminated.

(a) Asynchronous execution by using & and |&
A job is not terminated until all the processes executed with & and |& specified are completed.

Note that if an asynchronously executed process is terminated due to receipt of a signal such as SIGSTOP at the time
the job terminates, the job might be terminated without waiting for that process to terminate. If you want to terminate
a job without waiting for termination of asynchronously executed processes, create the job definition script in such a
manner that the OS shell is used only for the parts that you want to execute asynchronously.

The following shows an example.

• Example for the UNIX edition

Example of a job definition script waiting for the termination of an asynchronously executed process

#!/opt/jp1as/bin/adshexec
mycommand A &

If you execute this script in the job controller, the job waits for mycommand to complete before terminating. If you
want to terminate this job without waiting for the completion of mycommand, prepare the job definition script as
shown below. This example uses /bin/ksh as the OS shell.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 185

Example of a job definition script that ends without waiting for an asynchronously executed process to finish

#!/opt/jp1as/bin/adshexec
/bin/ksh exec_cmdA.sh

Message of exec_cmdA.sh

mycommand A &

• Example for the Windows edition

Example of a job definition script waiting for the termination of an asynchronously executed process

mycommand A &

If you execute this script in the job controller, the job waits for mycommand to complete before terminating. If you
want to terminate this job without waiting for the completion of mycommand, prepare the job definition script as
shown below.

Example of a job definition script that ends without waiting for an asynchronously executed process to finish

cmd.exe "/c start exec_cmdA.bat"

Contents of exec_cmdA.bat
mycommand A

(b) Using the exec command to execute external commands
If an external command is specified in the argument of the exec command, the adshexec command executes the
external command as a child process and waits for its completion. When the external command is completed, no
commands following the exec command will be executed. In such a case, the return code of the completed external
command becomes the return code of the job definition script.

(c) Message notifying that the command is to wait for completion of asynchronously
executed process

When the adshexec command starts, it outputs the KNAX7901-I message notifying that the command is to wait for
completion of asynchronously executed process when the job terminates. This message is normally output to the job
execution logs, system execution logs, and standard error. During debugging, this message is output to the standard
error output.

(d) Job processing when an asynchronously executed process is stopped (UNIX
only)

If an asynchronously executed process is stopped due to receipt of a signal such as SIGSTOP, JP1/Advanced Shell
sends SIGHUP and SIGCONT to child processes or descendant processes when the job terminates. When this
transmission is completed, JP1/Advanced Shell waits for one second and then performs job postprocessing.

How SIGHUP and SIGCONT are transmitted depends on the job input mode, as described in the following:

• Terminal input mode
SIGHUP and SIGCONT are sent only to the child processes of the adshexec command. SIGHUP and SIGCONT
are not sent to any of the descendant processes of the adshexec command, including grandchild processes. If
grandchild processes remain, use the ps command to obtain the process IDs of the remaining processes, and then
manually terminate them with the kill command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 186

• Non-terminal input mode
SIGHUP and SIGCONT are sent to the descendant processes of the adshexec command.

3.1.3 Job steps
The job step is a unit of job execution and is a part of a job definition script consisting of a group of commands. When
you allocate regular files and temporary files, you can define the files that are valid only within one job step. Such files
are postprocessed when the job step in which the files were allocated terminates.

Several job steps are mutually related. If one job step is not processed correctly, execution of the next job step might be
meaningless. In such a case, you can specify job step execution conditions so that subsequent processing is skipped.

Jobs steps are used for the following purposes:

• Automating command and program error processing

• Controlling shell script execution in units of job steps

(1) Automating termination processing and log output in the event of a
command error

Conventional scripts require the return code to be checked, error messages output, temporary files deleted, and other
error handling procedures to be performed for each command that is executed.

A job step enables you to monitor the return code of a command executed within the job step, output an error message,
delete temporary files, and perform predefined processing (such as an error handling procedure).

The following shows an example script that uses job steps to automate termination processing and output a log in the
event of an error.

Comparison based on whether job steps are used

When job steps are not used

01 progA
02 ret=$?
03 if [[$ret != 0]]; then --- (1)
04 echo "progA error" --- (1)
05 exit $ret --- (1)
06 fi --- (1)
07
08 TEMP="/tmp/tempfile"
09
10 progB ${INFILE_B} ${TEMP}
11 ret=$?
12 if [[$ret != 0]]; then
13 echo "progB error"
14 rm ${TEMP} --- (2)
15 exit $ret
16 fi
17
18 progC ${TEMP} ${OUTFILE_C}
19 ret=$?
20 if [[$ret != 0]]; then
21 echo "progC error"
22 fi
23

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 187

24 rm ${TEMP} --- (2)
25 exit $ret

When job steps are used

01 #-adsh_job J01
02
03 #-adsh_step_start S01 --- (1)
04 progA
05 #-adsh_step_end
06
07 #-adsh_step_start S02
08 #-adsh_file_temp TEMP --- (2)
09 progB ${INFILE_B} ${TEMP}
10 progC ${TEMP} ${OUTFILE_C}
11 #-adsh_step_end

The following explains (1) and (2) in the example script.

About (1)
If you do not use job steps, you must check for an error each time a command is executed, and then code error
message output processing and script cancellation processing.
On the other hand, if you define a group of commands as a job step, you can output an error message automatically
in the event of an error, and then terminate the job step without executing the subsequent commands.

About (2)
If no job step is used, the user must code each and every process for deleting the created temporary files.
If a job step is used, the temporary files allocated for the job step by JP1/Advanced Shell's temporary file function
are deleted automatically when the job step terminates.

When you use job steps, processes such as in (1) and (2) above can be automated. The following shows the log output
results in the case where progB results in an error.

Job execution logs (excerpt)

******** JOB CONTROLLER MESSAGE ********
17:05:25 000515 KNAX0091-I J01 The job started.
17:05:25 000515 KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
17:05:25 000515 KNAX7902-I The adshexec command will run in tty stdin mode.
17:05:25 000515 KNAX0092-I J01.S01 step started.
17:05:25 000515 KNAX6116-I Execution of the command ./progA (line=4) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
17:05:25 000515 KNAX6597-I J01.S01 step succeeded. exit status=0 execution
time=0.001s CPU time=0.000s
17:05:25 000515 KNAX0092-I J01.S02 step started.
17:05:25 000515 KNAX1601-I J01.S02 Allocation of file(s) for a step started.
17:05:25 000515 KNAX6409-I The file TEMP was allocated as "create". path=/var/opt/
jp1as/temp/TEMP_000515_J01_CGNCtb
17:05:25 000515 KNAX6521-E The command ./progB (line=9) failed. exit status=1
execution time=0.000s CPU time=0.000s ... (1)
17:05:25 000515 KNAX6410-I The file TEMP was deallocated as "del". path=/var/opt/
jp1as/temp/TEMP_000515_J01_CGNCtb
17:05:25 000515 KNAX1604-I The file /var/opt/jp1as/temp/TEMP_000515_J01_CGNCtb
was deleted. ... (2)
17:05:25 000515 KNAX6596-E J01.S02 step failed. exit status=1 execution
time=0.002s CPU time=0.000s
17:05:25 000515 KNAX0101-E J01 An error occurred during execution of the job.
17:05:25 000515 KNAX0098-I J01 The job ended. exit status=1 execution time=0.006s
CPU time=0.000s ... (3)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 188

The following explains job execution logs (1) through (3):

About (1)
The command resulted in an error, so the subsequent commands were not executed.

About (2)
A temporary file allocated by JP1/Advanced Shell's temporary file function was deleted automatically.

About (3)
The job terminated with the return code specified in the error handling procedure.

(2) Controlling execution in units of job steps
You can define a group of related commands as a job step and control job execution according to the results of the job
step's processing. JP1/Advanced Shell provides various functions for controlling execution in units of job steps.

The following shows an example script that controls execution in units of job steps.

Comparison based on whether job steps are used

When job steps are not used

01 retmax=0
02 VAR=`progA`
03 export VAR
04 progB
05
06 tempVAR=$VAR --- (1)
07 VAR=`progC`
08 progD
09 retD=$? --- (2)
10 if [[$retmax -lt $retD]]; then
11 retmax=$retD --- (3)
12 fi
13 VAR=$tempVAR --- (1)
14
15 if [[$retD -ge 16]]; then --- (4)
16 exit $retD
17 fi
18
19 if [[$retD -ne 0]]; then --- (5)
20 if [[$retD -eq 4]]; then --- (2)
21 result="progD: warning"
22 else
23 result="progD: error"
24 fi
25 progE $result
26 retE=$?
27 if [[$retmax -lt $retE]]; then
28 retmax=$retE --- (3)
29 fi
30 if [[$retE -ge 16]]; then --- (4)
31 exit $retE
32 fi
33 fi
34
35 progF --- (6)
36 exit $retmax --- (3)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 189

When job steps are used

01 #-adsh_job_stop 16: --- (4)
02 VAR=`progA`
03 export VAR
04 progB
05
06 #-adsh_step_start S01 -stepVar VAR --- (1)
07 VAR=`progC`
08 export VAR
09 progD
10 #-adsh_step_end
11
12 #-adsh_step_start S02 -run abnormal --- (5)
13 if [[$ADSH_STEPRC_S01 -eq 4]]; then --- (2)
14 result="STEP01: warning"
15 else
16 result="STEP01: error"
17 fi
18 progE $result
19 #-adsh_step_end
20
21 #-adsh_step_start S03 -run always --- (6)
22 progF
23 exit $ADSH_RC_STEPMAX --- (3)
24 #-adsh_step_end

The following explains (1) through (6) in the example script.

About (1)
If you do not use job steps, using a shell variable with a duplicated name for another purpose requires a separate
process (such as saving its value temporarily in another variable).
If you use a job step, you can use shell variables that are valid only within the job step by using the stepVar
attribute of the #-adsh_step_start extended script command to declare the variable names.

About (2)
If you do not use job steps, to branch processing based on the return code of a specific command, you must store
the command's return code in a separate shell variable.
If you use job steps, you can reference the return code of each job step, which is set automatically by the job
controller.

About (3)
If you do not use job steps, to reference the maximum value of a command's return code, you must update the
maximum value each time the command is executed.
If you use job steps, you can reference the maximum value of the return code of each job step, which is set
automatically by the job controller.

About (4)
If you do not use job steps, to terminate a script when a command's return code exceeds a threshold value, you
must check the threshold value each time a command is executed.
If you use job steps, you can monitor each job step's return code automatically by using the #-adsh_job_stop
extended script command to declare the threshold value.

About (5)
If you do not use job steps, you must control execution by determining whether the subsequent processing is to
be executed based on a command's return code.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 190

If you use job steps, you can define that a job step is to be executed only when the preceding process results in
an error. You do this by specifying abnormal in the run attribute of the #-adsh_step_start extended
script command.

About (6)
If you use job steps, you can define a job step to always execute, regardless of whether the preceding process
was successful. You do this by specifying always in the run attribute of the #-adsh_step_start extended
script command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 191

3.2 Starting batch jobs

This section explains for each execution method how to start batch jobs. It also explains the job controller processing
after batch jobs have started.

3.2.1 Starting jobs by using JP1/AJS from the execution environment
This subsection explains how to start JP1/Advanced Shell's batch job applications by using JP1/AJS from the execution
environment.

For details about using JP1/AJS for automation of batch job applications, see the applicable JP1/AJS manual. For details
about how to define and execute JP1/Advanced Shell jobs in jobnets, see 2.7.2 Defining and executing a jobnet.

When you automate batch job applications, you can reduce costs as well as run your system more securely with a smaller
staff. JP1/AJS is a product for automating standard batch job applications. JP1/AJS can also automate a combination
of complex batch job applications. Using JP1/Advanced Shell together with JP1/AJS operations provides the following
advantages:

• You can use the temporary file function to allocate files that are used temporarily and delete them when the job or
job step terminates.

• You can share job definitions among multiple applications by calling external scripts.

• You can achieve flexible job definitions by changing, adding, and deleting coding in job definition scripts.

To use JP1/AJS to execute batch job applications automatically, you must define the following:

• Content and processing order of the batch job applications

• Schedule for executing the batch job applications or registration of events that trigger execution of the batch job
applications

The following figure provides an overview of using JP1/AJS to automate batch job applications. The numbers in the
figure correspond to the numbers in the explanation that follows.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 192

Figure 3-1: Overview of using JP1/AJS to automate batch job applications

1. Registers the batch job application content and execution order, and the application schedule.

2. The batch application is executed automatically according to the registered schedule.

(1) Defining batch job applications and their execution order
Many applications are executed at a specified time in a specified order.

For example, totaling of sales slips is executed in the following order:

1. Extract data from the database.

2. Sort data.

3. Output to printer.

Steps 1 through 3 can be automated as a job controller's job step by defining these steps in a job definition script file,
but the task of extracting data from the database at 12:00 cannot be automated. To define batch job applications and
their execution order in JP1/Advanced Shell and JP1/AJS, define in the job controller the series of steps that make up
the applications and then define the relationships among the definitions of the individual batch job applications and their
execution order as the JP1/AJS execution order or execution time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 193

If batch job applications are broken up into task units, such as commands, application programs, or job definition scripts,
JP1/AJS alone can achieve jobs equivalent to those that can be achieved by JP1/Advanced Shell. They are also called
jobs in JP1/AJS.

When batch job applications and execution orders are defined in JP1/Advanced Shell and JP1/AJS, the batch job
execution orders are defined by using jobnets in JP1/AJS.

The following figure shows a jobnet used when batch job applications and their execution order are defined in JP1/
Advanced Shell and JP1/AJS.

Figure 3-2: Jobnet used to define batch job applications and their execution order in JP1/Advanced
Shell and JP1/AJS

Explanation
The following explains the execution order of the batch jobs that are defined by using JP1/AJS jobnet.

• When batch job A terminates, batch job E is executed.

• When batch jobs A and B terminate, batch job C is executed.

• When batch job C terminates, batch jobs D and G are executed.

• When batch job B terminates, batch job F is executed.

(2) Defining the definition schedule of batch job applications and their
execution order

To automatically define a definition schedule for multiple batch job applications and their execution order, you need a
schedule definition that determines when this definition is to be executed.

JP1/AJS's schedule definition contains such information as a calendar that specifies the company's business days and
holidays, the date and time execution is to begin, and an execution interval. Based on this definition, JP1/AJS determines
the execution schedule and automatically starts JP1/Advanced Shell's job execution on the specified date and time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 194

(3) Registering the timing of starting batch job applications
You can register an event, such as when a file is created or when some specific event occurs, as the timing for starting
a batch job application. If you have registered the required information, you can start a batch job application at a specified
time as well as whenever some specified event (such as creation of a file) occurs.

3.2.2 Starting batch jobs by using commands from the execution
environment

(1) Specifying job definition scripts in the argument of the adshexec
command

To start batch jobs by using commands from the execution environment, you use the adshexec command shown
below. In Windows, enter the command from the command prompt; in UNIX, enter the command from the shell.

adshexec batchjob1.ash

You can also use the -r option of the adshexec command to directly specify the contents of a job definition script.
To specify multiple commands, use the adshexec command as follows:

adshexec -r "export DATA=file01 ; pgm001"

In UNIX, you can also debug batch jobs by specifying the -d option in the adshexec command. For details about
the adshexec command, see 8.3.7 adshexec command (executes a batch job) in 8.3 Shell operation commands.

(2) Specifying job definition scripts as commands
In UNIX, you can start a batch job by simply entering the name of the job definition script (assuming that execution
permissions have been granted to that job definition script) by specifying the path of the adshexec command beginning
with #! on the first line (example: #! /opt/jp1as/bin/adshexec).

Job definition script file (file name: /home/user1/scripts/batchjob2.ash):

#! /opt/jp1as/bin/adshexec
#-adsh_job SAMPLE
(followed by the body of the job definition script)

Execution example of batch job start:

/home/user1/scripts/batchjob2.ash

Notes
In Windows, a batch job cannot be started by a method such as specifying from the command prompt the path of
the adshexec command beginning with #! on the first line, and then entering the file name of the job definition
script.
However, if you provide a job definition script in which #! followed by /opt/jp1as/bin/adshexec
or /opt/jp1as/bin/adshexec -mMINIMUM is specified on the first line, and then enter its file name from
another job definition script, you can start child jobs in Window as well as in UNIX. Therefore, we recommend that
you specify #! followed by /opt/jp1as/bin/adshexec or /opt/jp1as/bin/adshexec -
mMINIMUM on the first line of new job definition scripts even in Windows.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 195

If the first line already contains #!/bin/sh, such as when existing shell scripts have been migrated, you can also
run the shell scripts as child jobs without editing the scripts.
For details about child jobs, see 3.2.3 Running job definition scripts as child jobs.

3.2.3 Running job definition scripts as child jobs
This subsection explains how to run job definition scripts as child jobs and the operation of child jobs. For details about
priority, see (3) Priority of command execution methods and (4) Priority of child jobs or external commands that have
the same name as the function.

(1) How to execute child jobs

(a) Executing child jobs by specifying parameters in environment files
In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of the
parameters listed below or its default definition are called child jobs:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

The following figure shows an example operation for starting a child job by specifying the CHILDJOB_SHEBANG
parameter.

Figure 3-3: Example operation for starting a child job

This example specifies another job definition script childjob.ash in the job definition script of the root job. Because
childjob.ash satisfies the CHILDJOB_SHEBANG parameter definition, the job controller starts the JP1/Advanced
Shell job as a child process, and executes childjob.ash as a child job.

If the root job that starts the child job is executed on a logical host, the child job is also executed on the logical host.

(b) Executing child jobs by using a default definition for the parameter
By using a default definition for the CHILDJOB_SHEBANG parameter, you can start child jobs without having to specify
the parameter in environment files.

The following two values have been defined as defaults for the CHILDJOB_SHEBANG parameter:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 196

Default definition Output mode when the child job is started

/opt/jp1as/bin/adshexec Operation is performed according to the specified OUTPUT_MODE_CHILD
parameter.

/opt/jp1as/bin/adshexec -mMINIMUM Operation is performed in the minimum output mode.

If you specify a job definition script whose first line is #! /opt/jp1as/bin/adshexec in another job definition
script, the former can be run as a child job. If you want to execute only a specific child job in the minimum output mode,
specify #! /opt/jp1as/bin/adshexec -mMINIMUM on the first line of that job definition script.

The operation of a child job executed by a default definition is the same as for a child job started by the method described
in (a) Executing child jobs by specifying parameters in environment files.

Note that the CHILDJOB_SHEBANG parameter specified in the environment file takes precedence over the
CHILDJOB_SHEBANG parameter's default definitions. If a value that is the same as a default definition is specified in
the CHILDJOB_SHEBANG parameter in the environment file, the following takes effect:

• Contents of the environment variable

#-adsh_conf CHILDJOB_SHEBANG "/opt/jp1as/bin/adshexec -mMINIMUM"

• Job definition script that is started by the child job

#! /opt/jp1as/bin/adshexec -mMINIMUM
 :

In this example, /opt/jp1as/bin/adshexec -mMINIMUM specified in the job definition script satisfies the
definition of the CHILDJOB_SHEBANG parameter in the environment file. Therefore, the output mode for the child
job depends on the specified OUTPUT_MODE_CHILD parameter.

(2) Functional comparison with root jobs and external scripts
The following table compares the functions of root jobs, child jobs, and external scripts:

Function Type of job External script

Root job Child job External script of .
(dot) command

External script of #-
adsh_script

Relationship of processes
with the calling job

Runs in the child process
of the calling job.

Runs in the child process
of the calling job.

Runs in the same process
as the calling job.

Runs in the same process
as the calling job.

Job controller to be
started

• In UNIX
adshexec
command

• In Windows
adshexec.exe
command +
adshexecsub.ex
e command

• In UNIX
adshexec
command

• In Windows
adshexecsub.ex
e command

None None

Spool job directory Created Created in the root job's
spool job directory and
deleted when the job
terminates.
The user selects one of the
following about the job
execution log:

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
outputs script images to
the calling job's
SCRIPT).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 197

Function Type of job External script

Root job Child job External script of .
(dot) command

External script of #-
adsh_script

Spool job directory Created • Output only JOBLOG
to stderr.

• Merge into the root
job's job execution
log.

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
outputs script images to
the calling job's
SCRIPT).

Job start and termination
messages

Provided
(KNAX0091-I and
KNAX0098-I)

Provided
(KNAX6571-I and
KNAX6578-I)

None None

Loading of environment
files

Loaded Loaded Not loaded.
(depends on the calling
job's processing).

Not loaded.
(depends on the calling
job's processing).

Whether standard input
can be used

Can be used. Can be used. Can be used. Can be used.

Destination of standard
output

Depends on the
specification of the -s
option, the -m option, the
OUTPUT_STDOUT
parameter, and the
OUTPUT_MODE_ROOT
parameter.

Output destination
inherited from its parent
process.

Depends on the calling
job's processing.

Depends on the calling
job's processing.

(3) Behavior of child jobs when signals are received
This subsection explains the behavior of descendant jobs when signals are received.

The following example jobs are used to explain the behavior of descendant jobs when termination request signals are
sent to the root job, descendant jobs, and an external command:

adshexec(1)-adshexec(2)-adshexec(3)-sleep

The following table describes the behaviors when forced termination is performed from JP1/AJS (by sending SIGTERM
from JP1/AJS to adshexec(1)) and SIGTERM is sent from the login shell to adshexec(1), adshexec(2),
adshexec(3), and sleep.

Timing adshexec(1) adshexec(2) adshexec(3) sleep

Forced termination from
JP1/AJS

Terminates with error
rc=143.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(1)

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(2)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 198

Timing adshexec(1) adshexec(2) adshexec(3) sleep

Sending SIGTERM from
the login shell to
adshexec(2)

following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(3)

Depends on the result of
adshexec(2)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to sleep

Depends on the result of
adshexec(2)

Depends on the result of
adshexec(3)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

(4) Notes about child jobs that are executed from another child job
If a descendant job that was executed from another descendant job is terminated abruptly through the intermediate job
by a means such as SIGKILL in UNIX or TerminateProcess in Windows, the root job might terminate without
waiting for all its descendant jobs to finish. To prevent such an outcome, do not execute an abrupt termination of this
type. However, should such occur, check the execution results of the relevant root job and its descendant jobs.

For the descendant jobs other than the abruptly terminated job, the spool job directory might have been deleted or it
might remain after a failed attempt to delete it. Even if it has been deleted, the logs will still be preserved, because the
contents of JOBLOG will have been output to the standard error output.

Example:
This example illustrates the case where a descendant job is executed from another descendant job (the chain of one
job calling the next is indicated by):
[root job] [descendant job (child)] [descendant job (grandchild)]
In this case, if [descendant job (child)] terminates abruptly, [root job] might terminate earlier than [descendant job
(grandchild)]. In such a case, the behavior of each job and the status of the spool job directory are as follows:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 199

Item Type of job

Root job Descendant
job (child)

Descendant job (grandchild)

Behavior of the
job

The job behaves as though the descendant job
(child) had terminated with an error.
The behavior is the same as when a user program
terminates abruptly due to an error.

The job is
terminated
abruptly.

The job terminates normally.
However, in Windows, it might behave as if it
was forcibly terminated, depending on the status
of other, related jobs.

Status of the spool
job directory

In Windows, if the descendant job (grandchild)
has already opened the job execution log, the
renaming of the spool job directory will fail.
Otherwise, or in the case of UNIX, the spool job
directory will be renamed as per normal.

Directory remains
without being
deleted.

If the root job has successfully renamed its spool
job directory, the renaming of this spool job
directory will fail.
Otherwise, the contents of JOBLOG will be
output to stderr and will be deleted as per
normal.

3.2.4 Specifying what is to be executed by a job from the command line
If you use the -r option of the adshexec command to specify on the command line any commands that can be
described in a job definition script file, such as standard shell commands and UNIX-compatible commands, you can
execute the commands without having to create a job definition script file. To specify the pwd command, which is a
standard shell command, on the command line, execute the following adshexec command:

adshexec -r pwd

You can specify on the command line any contents that can be described in a job definition script file, such as multiple
commands delimited by the command separator. The following adshexec command specifies multiple commands on
the command line:

adshexec -r "export DATA=file01 ; pgm001"

If you specify any spaces on the command line, you must enclose the command line specification in single or double
quotation marks (' or "). Because metacharacters, such as $, *, and the semicolon (;), are expanded, depending on the
shell used to execute the adshexec command, you must enclose them in single or double quotation marks (' or ") or
use an escape character (\). To specify metacharacters, execute the adshexec command as follows:

In UNIX:
 When an escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo \${A[@]}"

 Output results:

1 2 3

 When no escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo ${A[@]}"

 Output results:
Nothing is output.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 200

 Output of positional parameter $0 (when an escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo \$0"

 Output results:

adshexec

 Output of positional parameter $0 (when no escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo $0"

 Output results:

-bash

adshexec receives the contents obtained by converting positional parameter $0 by the login shell. If the login
shell is bash, -bash is output.

In Windows:
 When an escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo \${A[@]}"

 Output results:

${A[@]}

 When no escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo ${A[@]}"

 Output results:

1 2 3

 Output of positional parameter $0 (when an escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo \$0"

 Output results:

$0

 Output of positional parameter $0 (when no escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo $0"

 Output results:

adshexec

Note the following about executing the adshexec command with the -r option specified:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 201

• If you want to use the execution results of the command line in other programs or output the execution results of
the command line to the console or files, also specify -m SIMPLE or -m MINIMUM at the same time.

• Collection of coverage information by the -t or BATCH_CVR parameter is not supported.

• -r CMDLINE is output for the following part of a path that indicates the path name of the job definition script file:

• Path name of the job definition script file that is output to the script image file

• Path name of the job definition script file that is output to the operation information for the job definition script

• Path name of the job definition script file that is displayed in message text output by the job controller

• The $0 positional parameter stores executable program name adshexec.

• Spool directories are created when a command is executed with the -r option specified. Spool job directories are
created only when the -r option is specified as the root job. Note that frequent execution of a command with the
-r option specified increases the number of spool jobs in the spool.

3.2.5 Job controller processing after batch jobs have started
Batch jobs are executed as job controller processes. The job controller is started in the following manner:

• In the execution environment, the job controller is started from JP1/AJS - Agent according to JP1/AJS's schedule.

• In the execution environment, the user enters a command to start a process called a job controller.

• On the development PC, the user runs a text while editing the development environment.

To process a job after starting it:

1. The job controller analyzes the options for starting a batch job and JP1/Advanced Shell's environment files.

2. The job controller analyzes the entered job definition script file at the initial stage. During this analysis process, the
job controller analyzes syntax and creates a table for storing job information without executing commands.

3. The job controller's job execution control analyzes and executes the job definition script file.

4. The file management function used in extended script commands allocates and releases regular files, temporary
files, and program output data files.

5. The shell variables and environment variables in extended script commands store job step return codes in shell
variables and set job information in environment variables so that this information can be referenced by user
programs.

In both the Windows and the UNIX execution environment, the job controller analyzes and executes job definition
scripts. For details about creating job definition scripts, see 4. Using JP1/Advanced Shell - Developer (Windows Only)
and 5. Creating Job Definition Scripts.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 202

3.3 Executing Java batch applications by using the adshjava command
provided by JP1/Advanced Shell [only for Windows, Linux, AIX, and
HP-UX]

The following describes the prerequisites and the execution method for executing Java batch applications by using the
adshjava command provided by JP1/Advanced Shell.

• Prerequisites
Install uCosminexus Application Server in the same host as JP1/Advanced Shell. Start the batch server after setting
the batch server. For details on the required programs, see 2.2.2 Programs required in each environment.

• Execution methods
The following describes the procedure for executing Java batch applications.

1. Create a Java batch application.
For notes on creating Java batch applications, see uCosminexus Application Server Expansion Guide.

2. Execute the Java batch application by using the adshjava command provided by JP1/Advanced Shell. Specify
the argument to pass to the cjexecjob command (execution of the Java batch application) of uCosminexus
Application Server for the adshjava command.
For details on the execution role and execution methods of the adshjava command, see 8.3.10 adshjava
command (executes Java batch applications) [only for Windows, Linux, AIX, and HP-UX].

3. For the adshjava command, specify the argument specified for the cjexecjob command and execute the
command.
For details on the cjexecjob command, see the manual uCosminexus Application Server Command Reference
Guide.

4. The adshjava command returns the results of the cjexecjob command of uCosminexus Application Server.
To confirm the results of the cjexecjob command, check the return code of the adshjava command.
If the job controller detects a forced termination during job execution, it automatically executes the cjkilljob
command (to stop the batch application) for uCosminexus Application Server. As a result, the job is terminated
after the Java batch application being executed is forcibly terminated.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 203

3.4 Outputting job execution results

Job execution results are output as spool job directories under the spool root directory. The contents of some directories
in the spool job directory are output as job execution logs that can be used to check messages during job execution.

You can suppress output to the job execution log of some types of messages.

3.4.1 Specifying the destinations of the standard output and the standard
error output

The destinations of the standard output and the standard error output for jobs executed in JP1/Advanced Shell depend
on specified options and the job execution mode, as described in the following table:

Item Standard error output Standard output

Root job Child job Root job Child job

SPOOL specified
in the OUTPUT_
STDOUT
parameter#1

PARENT
specified in the
OUTPUT_
STDOUT
parameter#1

Normal
execution

Expansion
output
mode#2

Spool files
(standard error
output of job
execution log)#3

Output destination
at the time the
process starts

Spool files
(standard output of
job execution log)

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Simple
output
mode or
minimum
output
mode#2

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Debug execution Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

#1
In addition to the OUTPUT_STDOUT parameter, the adshexec command's -s option can be used to specify the
value.

#2
Use the following commands or parameters to specify the expansion, simple, or minimum output mode:

• -m option in the adshexec command

• -m option in the adshscripttool command

• OUTPUT_MODE_ROOT parameter (for root jobs)

• OUTPUT_MODE_CHILD parameter (for child jobs)

#3
When the job finishes executing, output is to the standard error output in effect when the job controller started.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 204

3.4.2 Outputting job execution results to spool
In the spool root directory specified in the environment file, create a directory for each job and output job execution
results to that directory. Job execution logs and the files output by programs in job steps are output to the directory for
each job.

The following shows the structure of the spool directory:

spool-root-directory
|-lock-file
+-spool-job-directory
 +-.adshallocfile or adshallocfile#1
 +-.joborder or adsh.joborder#1
 +-.sysout or sysout.ini#1
 +-EVENTFILE_ROOT_INF_000000_000000_000001
 +-EVENTFILE_execution-start-date-and-time_job-ID
 :
 +-EVENTFILE_execution-start-date-and-time_job-ID
 +-JOBLOG#2
 +-JOBLOG_job-ID_sequence-number
 +-JOBLOG_number-giving-the-order-in-which-a-child-job-starts#1
 +-SCRIPT#2
 +-SCRIPT_number-giving-the-order-in-which-a-child-job-starts#1
 +-STDERR#2
 +-STDOUT#2
 +-step-number_step-name_STDOUT#2
 +-step-number_step-name_STDERR#2
 +-0000_job-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name#3
 +-Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-name_sequence-
number-of-file-environment-variable-definition-name_file-environment-variable-
definition-name#3
 +-step-number_step-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name#3
 :
 +-step-number_step-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name
 |-Cnumber-giving-the-order-in-which-a-child-job-starts_step-number_step-
name_sequence-number-of-file-environment-variable-definition-name_file-environment-
variable-definition-name#3

#1
This is a temporary file created during job execution. The following explains the contents of such temporary files:

File name Description

.adshallocfile or adshallocfile Allocation management file

.joborder or adsh.joborder File that manages the start order of child
jobs

.sysout or sysout.ini Spool job management file

JOBLOG_number-giving-the-order-in-which-a-child-job-starts Job execution log for a child job for
merging that is output when MERGE
(merging the child job's spool job into the
root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in
the environment file

SCRIPT_number-giving-the-order-in-which-a-child-job-starts

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 205

If a job is terminated immediately by SIGKILL in UNIX or TerminateProcess in Windows, these files might
remain in the spool job directory. When you delete spool directories, also delete these files.

#2
The contents of this file are also output to the job execution log. For details about what is output to the job execution
log, see 3.5 Job execution log.

#3
This is a program output data file that is allocated by the #-adsh_spoolfile command. For details about
program output data files, see 5.9.3 Allocating program output data files and performing postprocessing.

Important
• In Windows, all output files except EVENTFILE are appended with the extension .sysout.

• Do not place under the spool directory any user-specific file that is not a file or directory created by
JP1/Advanced Shell.

The following subsections explain the files and directories that are not temporary files.

(1) spool-root-directory
The directory name is specified in the SPOOL_DIR parameter in the environment file.

(2) lock-file
This file is used to lock each spool directory so that the same event file is not used by multiple commands at the same
time. This file is created when the adshevtout and adshhk commands are executed.

The name of the lock file is as shown below. Do not delete a created lock file.

• In UNIX: .spool.lck
• In Windows: spool.lck

(3) spool-job-directory
A spool job directory is created for each job, with the job ID as its name. When the job terminates, the directory is
renamed to job-ID-spool-job-name. The spool-job-name in the file name is the job name in JP1/Advanced Shell.
You can also use the ADSH_SPOOL_JOBNAME shell variable to specify an arbitrary character string in spool-job-name.

You can use the adshhk command to delete accumulated spool jobs. For details about the adshhk command, see
3.9 Deleting spool jobs.

When a job terminates, the spool job directory named with the job ID is renamed. If a directory exists with the same
name as the new directory, renaming will fail and the name of the spool job directory will remain as the job ID. Because
the job execution has been completed and the succeeding job can be executed, the job returns 0 as the return code. While
a directory named with the job ID remains, that job ID cannot be used and the directory cannot be deleted by using the
adshhk command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 206

(4) EVENTFILE_ROOT_INF_000000_000000_000001
This is a root job search event file. It contains the information used to determine whether the condition specified in the
adshevtout command (output job definition script operation information) is satisfied. This file is created for each
root job. This file is not created in the following cases:

• JP1/Advanced Shell - Developer is used

• The job is executed in the debugger mode.

• The adshexec command terminated before the KNAX0091-I message was issued.

(5) EVENTFILE_execution-start-date-and-time_job-ID
This is an event file. While the event file is being created, _making is appended to the file name. This file is created
for each root job and each child job.

Example of event file name:
EVENTFILE_20120422_193502_123456

This file is not created in the following cases:

• JP1/Advanced Shell - Developer is used

• The job is executed in the debugger mode.

• The adshexec command terminated before the KNAX0091-I message was issued.

execution-start-date-and-time
The root or child job's execution start date and time (UTC) are output in the following format:

YYYYMMDD_hhmmss_dddddd

YYYY: Four-digit decimal number indicating the calendar year (1970 through 2038)
MM: Two-digit decimal number indicating the month (01 through 12)
DD: Two-digit decimal number indicating the date (01 through 31)
hh: Two-digit decimal number indicating the hour (00 through 23)
mm: Two-digit decimal number indicating the minute (00 through 59)
ss: Two-digit decimal number indicating the second (00 through 59)
dddddd: Six-digit decimal number indicating the microsecond (000000 through 999999)

job-ID
A six-digit decimal number is assigned to each root job or child job.

(6) JOBLOG
This is for job execution messages. Messages indicating the job's execution status, including command execution results
and file allocation results, are output to this directory.

(7) JOBLOG_job-ID_sequence-number
This is the job execution log for a child job.

This file is created when the child job starts, but only if one of the following methods was used to specify that the child
job is to be run in the simple output mode or the minimum output mode:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 207

• Specifying SIMPLE or MINIMUM with the -m option in the adshexec command

• Specifying SIMPLE or MINIMUM with the -m option in the adshscripttool command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_CHILD parameter

This file is not created when MERGE (merging the child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter.

(8) SCRIPT
This is for script image files. The contents of the first job definition script started and the contents of external job
definition script files specified in the #-adsh_script command are output to this directory. External job definition
script files specified using other methods, such as the . (dot) command, are not output to this directory. When you want
to output the contents of job definition scripts as logs, you must use the #-adsh_script command.

If MERGE is specified in the SPOOLJOB_CHILDJOB parameter when the root job is run in the expansion output mode
and the child job is run in the minimum output mode, the child job's SCRIPT is not merged into the root job's SCRIPT.
For details, see (c) When the output mode of the root job differs from that of the child job.

(9) STDERR
This is the standard error output for the job. This file is not created when either of the following methods was used when
the root job started to specify that the root job is to be run in the simple output mode or the minimum output mode:

• Specifying SIMPLE or MINIMUM with the -m option in the adshexec command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

The following header is output at the beginning of the file:

******** JOB SCOPE STDERR ********

(10) STDOUT
This is the standard output for the job. It is created when the -s option is specified in the adshexec command or
SPOOL is specified in the OUTPUT_STDOUT parameter in the environment file. This file is not created when either of
the following methods was used when the root job started to specify that the root job is to be run in the simple output
mode or the minimum output mode:

• Specifying SIMPLE or MINIMUM with the -m option in the adshexec command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

The following header is output at the beginning of the file:

******** JOB SCOPE STDOUT ********

(11) step-number_step-name_STDOUT
If job steps are defined, this is the standard output within the corresponding job step. If the job step name consists of
more than eight bytes, only the first eight bytes of the job step name are used for step-name.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 208

This standard output is created when the -s option is specified in the adshexec command or SPOOL is specified in
the OUTPUT_STDOUT parameter in the environment file. This file is not created when either of the following methods
was used when the root job started to specify that the root job is to be run in the simple output mode or the minimum
output mode:

• Specifying SIMPLE or MINIMUM with the -m option in the adshexec command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

(12) step-number_step-name_STDERR
If job steps are defined, this is the standard error output within the corresponding job step. If the job step name consists
of more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This file is not created when either of the following methods was used when the root job started to specify that the root
job is to be run in the simple output mode or the minimum output mode:

• Specifying SIMPLE with the -m option in the adshexec command

• Specifying SIMPLE in the OUTPUT_MODE_ROOT parameter

(13) 0000_job-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command outside the job step.

(14) Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-
name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command outside the child job's job step.

This file is created only when MERGE (merging a child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in the environment file.

(15) step-number_step-name_sequence-number-of-file-environment-
variable-definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command inside the job step.

(16) Cnumber-giving-the-order-in-which-a-child-job-starts_step-
number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command inside the child job's job step.

This file is created only when MERGE (merging a child job's spool job to the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in the environment file.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 209

3.4.3 Suppressing output of specific information messages to job
execution logs

You can limit the size of the job execution log file by suppressing output to the job execution log file of specific
information messages. You specify the JOBLOG_SUPPRESS_MSG parameter in the environment file to use this
function.

For the messages whose output can be suppressed and the details of the JOBLOG_SUPPRESS_MSG parameter, see
7.3.22 JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job execution logs) in 7. 
Parameters Specified in the Environment Files.

3.4.4 Suppressing output of information and warning messages to job
execution logs

If you intend to use job execution results with other programs, you might want to suppress the following types of output:

• Output of files under the spool job directory to the standard output and the standard error output

• Output of information and warning messages (excluding some exception messages) to the standard output and the
standard error output

• Output to the standard error output of job execution logs at the time of job termination

To suppress these outputs, use one the following methods to specify the simple output mode or the minimum output
mode:

• Specifying the OUTPUT_MODE_ROOT parameter (for a root job) or the OUTPUT_MODE_CHILD parameter (for a
child job) when you specify environment settings
For details about the OUTPUT_MODE_ROOT parameter, see 7.3.28 OUTPUT_MODE_ROOT parameter (specifies
the method for outputting the execution results of a root job). For details about the OUTPUT_MODE_CHILD
parameter, see 7.3.27 OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results
of a child job).

• Specifying the -m option in the adshexec command during job execution
For details about the adshexec command, see 8.3.7 adshexec command (executes a batch job).

• Specifying the -m option in the adshscripttool command
For details about the adshscripttool command, see 9.4.10 adshscripttool command (supports creation of job
definition scripts) (Windows only).

If both are specified, the adshexec command specification takes effect. If neither is specified, the expansion output
mode is assumed.

(1) Differences in output contents among the expansion output mode, the
simple output mode, and the minimum output mode

The following table describes the differences in the output contents among the expansion output mode, the simple output
mode, and the minimum output mode.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 210

Table 3-1: Differences in output contents among the expansion, the simple, and the minimum output
modes

Output timing Expansion output mode Simple output mode Minimum output
mode

Job execution The contents of the standard
output and the standard error
output depend on the type of
job:
• Root jobs

The contents of the
standard output and the
standard error output are
output to the spool job
directory.

• Child jobs
Output to their output
destinations at the time
the process started.

The contents of the standard output
and the standard error output are
output to their output destinations
at the time the process started.
The job controller messages output
to standard output and standard
error output are limited to error
messages.#1

Standard output and
standard error output
are the same as the
output destination
when the process starts.
Job controller messages
output to standard
output and standard
error output are limited
to error messages, with
some excluded.#1, #3

Job termination Job execution logs are output
to the standard error output
(for child jobs, the output is
to the root-job's standard
error output#2).

Job execution logs are not output
to the standard error output.
However, error messages to be
output only to JOBLOG are also
output to the standard error output
during job execution in order to
report errors.
A child job's JOBLOG is created
under the root job's spool job
directory and is retained even after
the job has terminated.#2

This handling is in effect
regardless of the specification of
the JOBEXECLOG_PRINT
parameter.

Same as at the left

Debug execution JOBLOG is output to the
standard error output at
suitable times.
Job controller messages that
are to be output to standard
output and standard error
output are output to the
standard output and standard
error output that were in
effect when debug execution
started.

JOBLOG is not output to the
standard error output.
Job controller messages that are to
be output to standard output and
standard error output are output to
the standard output and standard
error output that were in effect
when debug execution started.
When debugging is terminated,
only error messages are output.
However, a child job that is not
subject to debugging is run in the
same manner as in normal
execution.

JOBLOG is not output
to the standard error
output.
Job controller messages
that are to be output to
standard output and
standard error output
are output to the
standard output and
standard error output
that were in effect when
debug execution
started.
When debugging
terminates, only
messages that are not
subject to output
suppression are output.
However, a child job
that is not subject to
debugging is run in the
same manner as in
normal execution.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 211

#1
In addition to error messages, some messages are output as exceptions. For details about such exception messages
and the destinations by message type, see 12.2 Message output destinations.

#2
Not output when a child job's job execution log is merged into the root job's job execution log (MERGE is specified
in the SPOOLJOB_CHILDJOB parameter).

#3
For details on the error messages whose output is suppressed in minimum output mode, see 3.5.1 Outputting the
contents of the job execution log by job type.

If you start a job definition script from another job definition script in the simple output mode or the minimum output
mode, use child jobs. If a root job is started in the simple output mode or the minimum output mode, error messages
are displayed in the standard error output.

(2) How to locate the spool job directory of a job that was executed in the
simple output mode or the minimum output mode

When the simple output mode or the minimum output mode is selected, messages that display job IDs and spool job
directory names are no longer output. The following describes how to locate the spool job directory of a job that was
executed in the simple output mode or the minimum output mode:

• Specify unique job names with the #-adsh_job command (declares a name for a job). You can also use the
ADSH_SPOOL_JOBNAME shell variable to specify a unique spool job name.

• When the job starts, output the values of the following environment variables or shell variable to standard error
output or to a specific file so that they can be referenced later:

• ADSH_JOBID environment variable (stores a job ID)

• ADSH_JOB_NAME (stores a job name)

• ADSH_SPOOL_JOBNAME shell variable (stores a spool job name)

• Locate the spool job directory based on the job execution date and time.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 212

3.5 Job execution log

The purpose of a job execution log is to notify users of the results of executing batch jobs. This log information, excluding
the contents for the standard output for user programs, is output to the files under the spool job directory and to the
standard error output when a job terminates. You can use JP1/AJS - View, among other methods, to view job execution
logs.

The following information is output to the job execution log:

• Start and end messages for batch jobs

• Start and end messages for job steps

• Contents of job definition scripts

• Results of executing commands

• Status and postprocessing results of files that have been prepared

• Standard output from user programs (stdout)#1

• Standard error output from user programs (stderr)#2

• Messages related to acquiring coverage information

#1
Output while the job is running to the standard output in effect at the time the job started if either of the conditions
listed below is satisfied.

• The -s option is specified in the adshexec command or PARENT is specified in the OUTPUT_STDOUT
parameter in the environment file.

• The root job is in the simple output mode or the minimum output mode.

#2
Not output to the files under the spool job directory if the root job is in the simple output mode or the minimum
output mode. However, while the job is running, the user program's standard error output is output to the standard
error output in effect at the time the job started.

If you are not using JP1/AJS, refer to the JOBLOG file in the batch job's directory under the spool root directory specified
in the SPOOL_DIR parameter in the environment file.

The JOBLOG_SUPPRESS_MSG parameter can be set to suppress output to the JOBLOG file of some information
messages. For details, such as the messages whose output can be suppressed, see 7.3.22 JOBLOG_SUPPRESS_MSG
parameter (defines a message that is not to be output to job execution logs) in 7. Parameters Specified in the Environment
Files.

3.5.1 Outputting the contents of the job execution log by job type
What is output to the job execution log depends on the type of job that is executed, as described in the following
subsections.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 213

(1) Destination and output contents of the job execution log when root
jobs are executed

This subsection explains the destination and output contents of the job execution log when root jobs are executed in the
expansion output mode, the simple output mode, or the minimum output mode (as specified in the
OUTPUT_MODE_ROOT parameter).

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Output to spool files.
During debug execution, JOBLOG is also output to the standard error output during job execution.

Script image Output to spool files.

Destination of the standard output Output to the destination specified by either of the following methods:
• -s option in the adshexec command
• OUTPUT_STDOUT parameter in the environment file

During debug execution, this information is also output to the standard error output in effect at the time
debug execution started.

Destination of the standard error
output

Output to spool files.
During debug execution, this information is output to the standard error output in effect at the time
debug execution started.

A spool job directory is created for each job.

After job execution, the contents of the job execution log, excluding the contents for the standard output, are output to
the standard error output.

During debug execution, the contents of the job execution log after job execution are not output to the standard error
output.

(b) When the simple output mode is selected
The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description

JOBLOG Output to spool files.

Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.
Error messages for the standard error output and the standard output are output (during debug execution,
messages other than error messages are also output).
Also, error messages for JOBLOG are output to the standard error output.
During normal execution, output of any message whose type is W or I (excluding signal reception and
event reception messages) is suppressed.

Destination of the standard error
output

Note that the job execution log is not output to the standard error output when the job terminates.

(c) When the minimum output mode is selected
The following table describes the output contents of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 214

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to spool files.

Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.
Messages for the standard error output and the standard output that are not subject to output suppression
are output (during debug execution, messages that are not subject to output suppression are also output).
Also, messages for JOBLOG that are not subject to output suppression are output to the standard error
output.

Destination of the standard error
output

Note that the job execution log is not output to the standard error output when the job terminates.

Messages that are suppressed are as follows: However, there are messages that are output as exceptions regardless of
the output mode. For messages that are exceptions, see 12.2 Message output destinations.

Timing Message whose output is suppressed

During normal
execution

• Messages of message type W and I (excluding signal reception messages and event reception messages other than
KNAX7893-I and KNAX7896-I)

• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

• The following messages whose type is I:
KNAX7893-I, KNAX7896-I

During debug
execution

• Messages whose type is W or I (excluding signal reception and event reception messages)
• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

(2) Destination and output contents of the job execution log when child
jobs are executed

This subsection explains the destination and output contents of the job execution log when child jobs are executed in
the expansion output mode, the simple output mode, or the minimum output mode (as specified in the
OUTPUT_MODE_CHILD parameter). For the output contents when a child job's spool job is to be merged into the root
job's spool job, see (3) Merging a child job's spool job into the root job's spool job.

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Temporarily output to spool files.
When the child job terminates, this file is deleted from the spool after JOBLOG has been output to the
standard error output in effect when the process started.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.

Destination of the standard error
output

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 215

A spool job directory is created during job execution, but this directory is deleted after the job has executed. Because
the program output data file allocated in the spool job directory is also deleted, the KNAX6380-I message indicating
successful renaming of the spool job directory is not output.

After job execution, the contents of JOBLOG are output to the standard error output. However, the following header
lines are not output:

 Advanced Shell version-number

 [Information]
 Job ID : job-ID
 Spool directory : spool-job-directory-path
 Date : execution-date
 EnvFile(system) : environment-file-path (System environment file)
 EnvFile(job) : environment-file-path (Job environment file)
 Host name : host-name
 [Environment variable from Automatic Job Management System]
 environment-variables-passed-from-JP1/AJS

******** JOB CONTROLLER MESSAGE ********

Because no job execution log other than JOBLOG is output, the job execution log cannot be referenced from other
programs, such as JP1/AJS or the login shell.

Because the job return code is output to JOBLOG for the parent process's job, the KNAX7999-I message indicating
termination of adshexec command execution is not output to the standard error output.

(b) When the simple output mode is selected
The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description

JOBLOG Output to spool files for each child job in the root job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.
Error messages for the standard error output and the standard output are output. Error messages for
JOBLOG are also output to the standard error output.
Only error messages are output.
Output of messages whose type is W or I (excluding signal reception and event reception messages) is
suppressed.

Destination of the standard error
output

Messages are output to JOBLOG during job execution. Error messages among these messages are also output to the
standard error output.

The job execution log is output to spool files for each child job under the root job's spool job directory. The job execution
log is not output to the standard error output even after the job has executed.

(c) When the minimum output mode is selected
The following table describes the output destination of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 216

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to files for each child job in the root
job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.
Messages for the standard error output and the standard output that are not subject to output suppression
are output. Also, messages for JOBLOG that are not subject to output suppression are output to the
standard error output.
Messages whose output is suppressed are not output.

Destination of the standard error
output

Messages whose output is suppressed are as follows. However, there are messages that are output as exceptions
regardless of the output mode. For messages that are exceptions, see 12.2 Message output destinations.

• Messages of message type W and I (excluding signal reception messages and event reception messages other than
KNAX7893-I and KNAX7896-I)

• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

• The following messages whose type is I:
KNAX7893-I, KNAX7896-I

(3) Merging a child job's spool job into the root job's spool job
If MERGE is specified in the SPOOLJOB_CHILDJOB parameter, the child job's spool job is merged into the root job's
spool job. An overview of the job execution log contents is provided below. For an example of job execution log output,
see 3.5.3 Examples of job execution log output(if you delete the spool job of a child job).

(a) During normal operation
• JOBLOG
JOBLOG for a child job is output between a message indicating that the rule for replacing the child job's execution
was satisfied and a message indicating that the command used to execute the child job has terminated.
The symbols indicating the start and end of the child job's JOBLOG are displayed before and after JOBLOG, as
shown in the following figure:

• SCRIPT
A child job's SCRIPT is displayed before its root job's SCRIPT. The header (******** Script IMAGE
********) is not displayed in the child job output section.

• STDERR

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 217

The symbols indicating the start and end of the child job's STDERR are displayed before and after the child job's
standard error output as shown below.
These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

• STDOUT
STDOUT is not merged.

(b) During debug execution
• JOBLOG
JOBLOG is merged in the same format as during normal execution. For the standard error output, the same contents
are also displayed immediately after termination of the child job.

• SCRIPT
SCRIPT is merged in the same format as during normal execution. The contents of SCRIPT are not output to the
standard error output.

• STDERR, STDOUT
The symbols indicating the start and end of a set of a child job's STDERR and STDOUT are displayed before and
after the child job's standard error output, as shown below. The text [STDERR,STDOUT] is displayed in the standard
error output even when the child job's standard error output and standard output are redirected.
These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 218

(c) When the output mode of the root job differs from that of the child job
When MERGE is specified in the SPOOLJOB_CHILDJOB environment setting parameter and the root job is run in the
expansion output mode and the child job is run in the minimum output mode, the results of merging JOBLOG and
SCRIPT are as follows:

• JOBLOG
• If no message has been output to JOBLOG of the child job running in the minimum output mode

This child job's JOBLOG is not merged into the root job's JOBLOG. Therefore, the strings indicating the beginning
and end of output of the child job's JOBLOG are also not output.

• If messages have been output to JOBLOG of the child job running in the minimum output mode
This child job's JOBLOG is merged into the root job's JOBLOG. The strings indicating the beginning and end of
output of the child job's JOBLOG are also output.

During both normal execution and debug execution, the strings that indicate the beginning and end of output of the
child job's JOBLOG are >>>>>> [JOBLOG] path-name and <<<<<< [JOBLOG] path-name, respectively.

• SCRIPT
The child job's SCRIPT is not merged into the root job's SCRIPT.
When the child job is run in the minimum output mode and its grandchild job is run in the expansion output mode
or the simple output mode, the child job's SCRIPT is not merged either. Therefore, the grandchild job's SCRIPT
merged into the child job's SCRIPT is not output.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 219

The same applies when the root job is run in the simple output mode or the minimum output mode. However, in this
case, SCRIPT is not output to the standard error output.

3.5.2 Output example of the job execution log (when the spool job of a
child job is merged to the spool job of the root job)

The following is an output example of the job execution log when MERGE is specified for the environment setting
parameter SPOOLJOB_CHILDJOB (when the spool job of a child job is merged to the spool job of the root job).

(1) Example 1 (defining ch1.sh and ch2.sh)
As shown below, this example defines the child job ch1.sh, which is to start from the root job, and the child job ch2.sh,
which is to start from a job step of the root job.

The following describes the configuration and provides an output example of the job execution log of the root job that
is output to the standard error output.

(a) Configuration of the job execution log
The following describes the configuration of the job execution log and the output locations of the execution results of
child jobs ch1.sh and ch2.sh. The execution results of the child jobs are output to JOBLOG and SCRIPT.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 220

(b) Output example of the job execution log
The following is an output example of the job execution log.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 221

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 222

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 223

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)
As shown below, this example defines child jobs child1.sh and child2.sh, and the job grandchild.sh, which starts from
the child job child2.sh.

The following describes the configuration and provides an output example of the job execution log of the root job that
is output to the standard error output.

(a) Configuration of the job execution log
The following describes the configuration of the job execution log and the output locations of the execution results of
child jobs child1.sh, child2.sh, and grandchild.sh. The execution results of the child jobs are output to JOBLOG and
SCRIPT.

• Job execution log that can be referred from JP1/AJS

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 224

• Job execution log when debugging

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 225

(b) Output example of the job execution log
The following is an output example of the job execution log.

• Job execution log that can be referred from JP1/AJS

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 226

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 227

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 228

• Job execution log when debugging

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 229

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 230

3.5.3 Examples of job execution log output(if you delete the spool job of
a child job)

The following examples illustrate the job execution log information that is output when a root job and child jobs are
executed.

(1) Example 1 (defining ch1.sh and ch2.sh)
As shown below, this example defines child job ch1.sh that is started from the root job and child job ch2.sh that is
started from within the root job's job step.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 231

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
jobs ch1.sh and ch2.sh are output. The execution results of ch1.sh are output within the job scope, and the
execution results of ch2.sh are output within the step scope.

(b) Example of job execution log output
The following shows an example of job execution log output:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 232

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 233

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)
As shown below, this example defines child job child1.sh, child job child2.sh, and grandchild.sh that is
started from child job child2.sh.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 234

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
job child1.sh, child job child2.sh, and grandchild.sh are output. The execution results of
grandchild.sh are output within the execution results of child job child2.sh.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 235

(b) Example of job execution log output
The following shows an example of job execution log output:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 236

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 237

3.5.4 Examples of job execution log output (when the simple output mode
or the minimum output mode is selected)

This subsection presents examples of the job execution log when the simple output mode or the minimum output mode
is selected with the OUTPUT_MODE_ROOT or OUTPUT_MODE_CHILD environment setting parameter. Note that the
error messages output in the simple output mode differ from those output in the minimum output mode.

(1) Configuration of job execution log
The following shows the configuration of the job execution logs.

• Job execution log that can be referenced from other programs (such as JP1/AJS)

• Job execution log during debug execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 238

(2) Examples of job execution log output
The following are examples of job execution log output:

• Job execution log that can be referenced from other programs (such as JP1/AJS)
 Environment setting parameters

#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE
#-adsh_conf CHILDJOB_EXT ash

 Job definition script: logroot.ash
#-adsh_job SampleJobRoot
#-adsh_file_temp WORK01
#-adsh_file_temp WORK02
./logsub.ash data tokyo 2>$WORK01
./logsub.ash data fukuoka 2>$WORK02
echo -E "***WORK01*****" >&2
cat $WORK01 >&2
echo -E "***WORK02*****" >&2
cat $WORK02 >&2

 Job definition script: logsub.ash
#-adsh_job SampleSub
cat $1 | grep $2 >&2

 Input data: data
aichi nagoya 052
fukuoka kurume 0942
fukushima iwaki 0246
tokyo machida 042
tokyo tachikawa 042

 Execution example

• Job execution log during debug execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 239

3.5.5 Examples of job execution log output (when only the standard error
output is output)

This subsection presents an example of the job execution log when STDERR (output only the standard error output to
the job execution log) is selected with the JOBEXECLOG_PRINT environment setting parameter.

This example assumes that job definition scripts sample.ash, samplesub1.ash, and samplesub2.ash have
been defined as shown in the following.

• Job definition script sample.ash
#-adsh_job SAMPLEJOB
echo JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxx
cd /home/user001
#-adsh_step_start S1 -run always -onError cont
echo STEP_STDERR_001 >&2
cd /home/user001/dir

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 240

cd xxx
cd /home/user001
#-adsh_step_end
echo JOB_STDERR_002 >&2
#-adsh_step_start S2 -run always -onError cont
echo STEP_STDERR_002 >&2
./samplesub1.ash
#-adsh_step_end
cd /home/user001/dir
cd xxx
cd /home/user001
echo JOB_STDERR_003 >&2
./samplesub2.ash

• Job definition script samplesub1.ash
#-adsh_job SAMPLE_SUB1
echo SUB1_JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
#-adsh_step_start SUB1_S1 -run always -onError cont
echo SUB1_STEP_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
#-adsh_step_end
echo SUB1_JOB_STDERR_002 >&2
#-adsh_step_start SUB1_S2 -run always -onError cont
echo SUB1_STEP_STDERR_002 >&2
#-adsh_step_end
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
echo SUB1_JOB_STDERR_003 >&2

• Job definition script samplesub2.ash
#-adsh_job SAMPLE_SUB2
echo SUB2_JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB2
cd /home/user001
#-adsh_step_start SUB2_S1 -run always -onError cont
echo SUB2_STEP_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB2
cd /home/user001
#-adsh_step_end
echo SUB2_JOB_STDERR_002 >&2
#-adsh_step_start SUB2_S2 -run always -onError cont
echo SUB2_STEP_STDERR_002 >&2
#-adsh_step_end
cd /home/user001/dir
cd xxxSUB2
cd /home/user001
echo SUB2_JOB_STDERR_003 >&2

The following shows an example of the job execution log output:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 241

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 242

3.6 Outputting the executed commands and their arguments

When the xtrace shell option is enabled, the executed commands and their arguments are output to the standard error
output as trace information.

There are three ways to enable the xtrace shell option:

• Executing the set command with the -x or -o xtrace option specified in job definition scripts

• Executing the adshexec command with the -x option specified during job execution

• Selecting Enable xtrace in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box

The trace information is output in the following format:

• The value of the PS4 shell variable is added at the beginning of the trace information.

• If the values of variables are referenced, the variable substitution results are output.

• If command arguments contain wildcard characters, the results of the wildcard replacement are output.

Example of trace information output
This example shows an executed job definition script and the trace information that is output.

Contents of the job definition script

0001 : set -o xtrace
0002 : typeset -i cnt=1
0003 : if [$cnt -eq 1]
0004 : then
0005 : echo "--- JOB START ---"
0006 : fi
0007 : date

Standard error output results

+ typeset -i cnt=1
+ [1 -eq 1]
+ echo --- JOB START ---
+ date

Notes about trace information
Even when the xtrace shell option is enabled, the following commands and their arguments are not output:

• Commands in the [[]] format that is the abbreviated form of the test command

• Extended script commands

Commands in the (()) format that is the abbreviated form of the let command are replaced with the let
command in the trace information. The following shows an example of a command in the (()) format and the
output information:

Contents of the job definition script

0001 : set -o xtrace
0002 : typeset -i a=0
0003 : ((a=(2+3)*9))
0004 : echo $a

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 243

Standard error output results

+ typeset -i a=0
+ let a=(2+3)*9
+ echo 45

Trace information for functions themselves are output, but trace information for commands within the functions is
not output. To output trace information for commands within a function, execute the typeset command to enable
the function's trace mode. The following shows an example of the typeset command's specification and the output
information:

Contents of the job definition script

0001 : set -o xtrace
0002 : fn1(){
0003 : echo "call $1 $2"
0004 : echo $LINENO
0005 : }
0006 : echo "in main"
0007 : fn1 "function" "1"
0008 : typeset -ft fn1
0009 : fn1 "function" "2"

Standard error output results

+ echo in main
+ fn1 function 1
+ typeset -ft fn1
+ fn1 function 2
+ echo call function 2
+ echo 4

When the xtrace shell option is enabled, trace information for the job definition script executed by the child job
is output, but trace information for the commands within the child job is not output. To output trace information for
a job definition script that is executed by a child job, also enable the xtrace shell option within the child job's job
definition script.
The input contents of here documents are not output as trace information even when the xtrace shell option is
enabled.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 244

3.7 Outputting job definition script operation information

Job definition script operation information includes the execution time of each command executed by the job, the CPU
time, any output messages, and job step execution results. You can use this information to obtain the job execution status
and investigate the causes of delays in job execution.

The following figure shows the general procedure for collecting and outputting job definition script operation
information.

Figure 3-4: Collection and output of job definition script operation information

1. When the user uses the adshexec command to execute a job, the adshexec command collects the job definition
script operation information for the job and then outputs it to the event file on the spool.

2. The adshevtout command outputs the job definition script operation information that is contained in the event
file to a CSV file.
You can use a program such as a spreadsheet to analyze a CSV file that contains job definition script operation
information.

3.7.1 Collecting job definition script operation information
The following table shows when job definition script operation information can be collected:

Environment Execution status Collection of job definition script operation information

Execution
environment

Normal Y

Debugger mode N

Development
environment

(Not applicable) N

Legend:
Y: Can be collected
N: Cannot be collected

In the normal status, when the adshexec command is used to execute a job, the adshexec command collects the
job definition script operation information for the job and outputs it to the event file on the spool.

However, if the following specification is made in the environment file, the adshexec command does not output job
definition script operation information to the event file:

 #-adsh_conf EVENT_COLLECT NO

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 245

3.7.2 Outputting job definition script operation information
You use the adshevtout command to output job definition script operation information from the event file on the
spool to a CSV file.

For details about how to specify the adshevtout command and an example output of job definition script operation
information, see 8.3.6 adshevtout command (outputs job definition script operation information) in 8. Commands
Used During Operations.

(1) Specifying a job whose job definition script operation information is
to be output

You use the adshevtout command to specify a job whose job definition script operation information is to be output.

The following job information can be specified to select the job definition script operation information that is to be
output:

• Range of job's execution start date and time

• JP1/AJS job name, job execution ID, and job number

• JP1/Advanced Shell job name, job ID, and path name of the job definition script file

If multiple conditions are specified, the information that satisfies all the specified conditions is output.

If no conditions are specified, the job definition script operation information for all jobs on the spool is output (except
that job definition script operation information located in inaccessible event files will not be output).

(2) Controlling the job definition script operation information that is to be
output

You can use the adshevtout command to control which information will be output, such as the following:

• Suppress output of header information

• Output only the header information (do not output the job definition script operation information itself)

• Output only the messages contained in the job definition script operation information

• Do not output information about environment variables in the job definition script operation information

(3) Spool to be referenced
The adshevtout command references the event files on the spool to output job definition script operation information.

The spool to be referenced by the adshevtout command is determined by the specified environment file in the same
manner as for the adshexec command.

If a logical host is specified in the adshevtout command, the command uses the spool corresponding to the specified
logical host in the same manner as for the adshexec command.

(4) Output destination of the job definition script operation information
The job definition script operation information is output to the adshevtout command's standard output (stdout).

If you use the redirect function, you can also output the operation information to a file.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 246

3.7.3 Relationship between dates and times and time zones in the
operation information

The adshevtout command interprets and outputs the date and the time in the formats year-month-date and hour-
minute-second for the time zone in effect when the command is executed. Use the TZ environment variable to specify
the time zone.

As shown in the three sets of examples in the following table, a given date and time (in the year-month-date and hour-
minute-second formats) will be represented differently depending on the time zone:

Time zone Date and time example 1 Date and time example 2 Date and time example 3

UTC-2 2012-06-10 08:00:00 2012-06-10 23:00:00 2012-06-11 15:00:00

UTC 2012-06-10 10:00:00 2012-06-11 01:00:00 2012-06-11 17:00:00

UTC+3 2012-06-10 13:00:00 2012-06-11 04:00:00 2012-06-11 20:00:00

UTC+9 2012-06-10 19:00:00 2012-06-11 10:00:00 2012-06-12 02:00:00

Remarks:
UTC+9 indicates the time zone that is nine hours ahead of coordinated universal time (UTC). The sign differs from
when the value is set in the TZ environment variable.

3.7.4 Using multiple OR conditions for output of job definition script
operation information

The adshevtout command outputs the job definition script operation information for the job that satisfies all the
conditions specified in the arguments.

If you want to output the information that satisfies any one of multiple conditions, execute as many adshevtout
commands as there are OR conditions, and then output the concatenated job definition script operation information to
a single CSV file.

The following example outputs concatenated job definition script operation information to the outfile file.

adshevtout -d > outfile
adshevtout -t option-specifying-condition-1 >> outfile
adshevtout -t option-specifying-condition-2 >> outfile
 :
adshevtout -t option-specifying-condition-n >> outfile

• The first adshevtout command outputs only the header line (-d suppresses output of job definition script
operation information).

• The second adshevtout command outputs the operation information for the job that satisfies condition-1 without
a header line (by specifying -t).

• The third adshevtout command outputs the operation information for the job that satisfies condition-2 without
a header line (by specifying -t).

• The adshevtout command n + 1 outputs the operation information for the job that satisfies condition-n without
a header line (by specifying -t).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 247

You output operation information that satisfies multiple OR conditions by executing the adshevtout command in
this manner.

3.7.5 Outputting job definition script operation information from different
spools

The job definition script operation information that can be output by executing the adshevtout command typically
is for the job located on the spool that was specified in the environment file when the adshevtout command was
executed. To output the job definition script operation information for a job located on another spool, you must use the
corresponding environment file.

An example is shown below. In this example, a different spool root directory is specified in each environment file.

Example:
Environment file envfile1: Specifies spool root directory spooldir1.
Environment file envfile2: Specifies spool root directory spooldir2.
Environment file envfile3: Specifies spool root directory spooldir3.

To output the job definition script operation information for a job in each of these spool root directories, execute the
adshevtout command with the correct environment file specified as follows:

export ADSH_ENV=envfile1
adshevtout

export ADSH_ENV=envfile2
adshevtout

export ADSH_ENV=envfile3
adshevtout

3.7.6 Format of operation information
The adshevtout command outputs operation information to a CSV file.

(1) Types of operation information
The operation information that is output by the adshevtout command consists mainly of the items listed below. Each
item forms one record.

• When the adshexec command's execution began

• Environment variables

• Commands

• Messages

• Start of job step execution

• End of job step execution

• Skipped job step execution

• End of job execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 248

(2) Configuration of operation information
The operation information items are output in the following order for each job:

Order Output item Remarks

1 Header information --

2 Start of the adshexec command's execution --

3 Environment variables Output if there are any environment variables

4 Commands
Messages
Start of job step execution
End of job step execution
Skipped job step execution
End of job execution

Output according to the execution of the job definition script

Legend:
--: Not applicable

The order in which messages and the following records are output might differ:

• Commands

• Start of job step execution

• End of job step execution

• Skipped job step execution

• End of job execution

The order in which the following operation information items are output is not predefined:

• Output order among spool jobs

• Output order of the root and child jobs in a spool job

(3) Configuration of operation information records
The operation information records consist of multiple items.

Each item value is enclosed in double quotation marks ("). If an item value contains a double quotation mark, that
double quotation mark is represented as two consecutive double quotation marks.

The items are delimited by the comma (,).

3.7.7 Operation information records in CSV format and output items
The following table shows the relationship between the operation information records in CSV format and the output
items.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 249

Table 3-2: Operation information records and output items

No. Item name Job
start

Env
var

Cmd Func
tion

Extd
Cmd

Msg Job
step
start

Job
step
end

Job
step
skipd

Job
end

1 EvtName Y Y Y Y Y Y Y Y Y Y

2 RecTZ Y Y Y Y Y Y Y Y Y Y

3 RecTime Y Y Y Y Y Y Y Y Y Y

4 PhysicalHostName Y Y Y Y Y Y Y Y Y Y

5 LogicalHostName YN YN YN YN YN YN YN YN YN YN

6 OsName Y Y Y Y Y Y Y Y Y Y

7 Jp1ajsService YN YN YN YN YN YN YN YN YN YN

8 Jp1ajsRootJobnet YN YN YN YN YN YN YN YN YN YN

9 Jp1ajsJobName YN YN YN YN YN YN YN YN YN YN

10 Jp1ajsExecId YN YN YN YN YN YN YN YN YN YN

11 Jp1ajsJobId YN YN YN YN YN YN YN YN YN YN

12 Jp1asJobName Y Y Y Y Y Y Y Y Y Y

13 Jp1asJobId Y Y Y Y Y Y Y Y Y Y

14 Jp1asJobTime Y Y Y Y Y Y Y Y Y Y

15 Jp1asJobPid Y Y Y Y Y Y Y Y Y Y

16 Jp1asUid Y Y Y Y Y Y Y Y Y Y

17 Jp1asGid Y Y Y Y Y Y Y Y Y Y

18 Jp1asUserName Y Y Y Y Y Y Y Y Y Y

19 Jp1asGroupName Y Y Y Y Y Y Y Y Y Y

20 Jp1asScriptPath Y Y Y Y Y Y Y Y Y Y

21 Jp1asEnvPath Y Y Y Y Y Y Y Y Y Y

22 Jp1asSpoolPath Y Y Y Y Y Y Y Y Y Y

23 Jp1asJobLang Y Y Y Y Y Y Y Y Y Y

24 Jp1asJobEncode Y Y Y Y Y Y Y Y Y Y

25 RecTZExec Y Y Y Y Y Y Y Y Y Y

26 Jp1asJobParentJobName YN YN YN YN YN YN YN YN YN YN

27 Jp1asJobParentJobId YN YN YN YN YN YN YN YN YN YN

28 Jp1asJobParentJobTime YN YN YN YN YN YN YN YN YN YN

29 Jp1asJobParentJobPid YN YN YN YN YN YN YN YN YN YN

30 Jp1asJobRc N N N N N N N N N Y

31 Jp1asJobSig N N N N N N N N N Y

32 EnvVar N Y N N N N N N N N

33 Jp1asScriptLineNo N N Y Y Y N Y Y Y N

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 250

No. Item name Job
start

Env
var

Cmd Func
tion

Extd
Cmd

Msg Job
step
start

Job
step
end

Job
step
skipd

Job
end

34 Jp1asStepSeq N N Y Y N N Y Y Y N

35 Jp1asStepName N N YN YN N N YN YN YN N

36 Jp1asStepSkip N N N N N N N N Y N

37 Jp1asStepRc N N N N N N N Y N Y

38 Jp1asStepSig N N N N N N N Y N Y

39 Jp1asCmdExec N N Y Y Y N N N N N

40 Jp1asCmdType N N Y Y Y N N N N N

41 Jp1asCmdPath N N YN YN Y N N N N N

42 Jp1asCmdArg N N YN YN YN N N N N N

43 Jp1asLang N N Y Y Y N N N N N

44 Jp1asCharEncode N N Y Y Y N N N N N

45 Jp1asCmdStart N N Y Y N N N N N N

46 Jp1asCmdEnd N N Y Y N N N N N N

47 Jp1asCmdElaps N N Y Y N N N N N N

48 Jp1asCmdRc N N Y Y N N N N N N

49 Jp1asCmdSig N N Y Y N N N N N N

50 Jp1asCmdPid N N YN YN N N N N N N

51 Jp1asCmdCpuUser N N YN YN N N N N N N

52 Jp1asCmdCpuSys N N YN YN N N N N N N

53 Reserved1 N N N N N N N N N N

54 Reserved2 N N N N N N N N N N

55 Jp1asMsgId N N N N N Y N N N N

56 Jp1asMsgText N N N N N Y N N N N

57 Jp1asMsgLang N N N N N Y N N N N

58 Jp1asMsgEncode N N N N N Y N N N N

Legend:
Job start: Start of adshexec command execution
Env var: Environment variables
Cmd: Commands
Extd cmd: Commands (extended script commands)
Msg: Messages
Job step start: Start of job step execution
Job step end: End of job step execution
Job step skipd: Skipped job step execution
Job end: End of job execution

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 251

Y: Information is output.
YN: Information is output, but if there is no information to be output, the null character string is set.
N: There is no information to be output (the null character string is set).

3.7.8 Output items for operation information in CSV format
The following table lists and describes the output items (columns) for operation information in CSV format.

Table 3-3: Output items (columns) for operation information

No. Item name Description

1 EvtName Name indicating the type of operation information (record):
• adshStart: Start of adshexec command execution
• envVar: Environment variable
• command: Command
• function: Function
• message: Message
• stepStart: Start of job step execution
• stepEnd: End of job step execution
• stepSkip: Skipped job step execution
• jobEnd: End of job execution

2 RecTZ Time zone in effect when the adshevtout command was executed.#

This is the time zone that is used to represent the date and time information in the operation
information.

3 RecTime Date and time the operation information was recorded#

4 PhysicalHostName Physical host name

5 LogicalHostName Logical host name.
If a logical host is not used, the null character string is set.

6 OsName OS name.
One of the following character strings:
• Windows
• Linux
• AIX
• HP-UX
• Solaris

7 Jp1ajsService JP1/AJS scheduler service name.
This is the value set in the AJS_AJSCONF environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

8 Jp1ajsRootJobnet JP1/AJS's root jobnet name.
This is the value set in the AJSNETNAME environment variable by JP1/AJS.
This information is output if the job was started from JP1/AJS.

9 Jp1ajsJobName JP1/AJS's job name.
This is the value set in the AJSJOBNAME environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

10 Jp1ajsExecId JP1/AJS's job execution ID.
This is the value set in the AJSEXECID environment variable by JP1/AJS.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 252

No. Item name Description

10 Jp1ajsExecId This information is output when the job was started from JP1/AJS.

11 Jp1ajsJobId JP1/AJS's job number.
This is the value set in the JP1JobID environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

12 Jp1asJobName JP1/Advanced Shell's job name

13 Jp1asJobId JP1/Advanced Shell's job ID

14 Jp1asJobTime adshexec command execution start date and time#

15 Jp1asJobPid Process ID of the adshexec command

16 Jp1asUid User ID of the adshexec command's process.
In Windows, the null character string is set.

17 Jp1asGid Group ID of the adshexec command's process.
In Windows, the null character string is set.

18 Jp1asUserName User name of the adshexec command's process.

19 Jp1asGroupName Group name of the adshexec command's process.
In Windows, the null character string is set.

20 Jp1asScriptPath Path name of the job definition script#

21 Jp1asEnvPath Path name of the environment file#

22 Jp1asSpoolPath Path name of spool directory.#

Although the directory name of a spool job after the job has terminated is job-ID-spool-job-
name, this item will output the directory name as job-ID.

23 Jp1asJobLang Value of the LANG environment variable when the adshexec command's execution started.

24 Jp1asJobEncode Character encoding when the adshexec command's execution started.#

25 RecTZExec Time zone in effect when the adshexec command was executing.#

This time zone is not used to represent the date and time information in the operation
information.

26 Jp1asJobParentJobName Name of the parent job.
For a root job, the null character string is set.

27 Jp1asJobParentJobId Job ID of the parent job.
For a root job, the null character string is set.

28 Jp1asJobParentJobTime Parent job execution start date and time.#

For a root job, the null character string is set.

29 Jp1asJobParentJobPid Process ID of the parent job.
For a root job, the null character string is placed.

30 Jp1asJobRc adshexec command's return code

31 Jp1asJobSig Signal number if the adshexec command terminated with a signal.
If the command did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

32 EnvVar Environment variables used when the adshexec command started.
The format is environment-variable-name=value.
For details, see (1) Environment variables in the EnvVar item below.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 253

No. Item name Description

33 Jp1asScriptLineNo Line number in the job definition script.
For details, see (2) Line number in the Jp1asScriptLineNo item below.

34 Jp1asStepSeq Job step number.
If this is not a step, the null character string is set.

35 Jp1asStepName Job step name.
If the job step name is omitted or this is not a step, the null character string is set.

36 Jp1asStepSkip The preceding command or job step's status when the job step was skipped:
• normal: Skipped because the status was normal.
• abnormal: Skipped because an error resulting in termination occurred.

37 Jp1asStepRc Job step's return code.

38 Jp1asStepSig Signal number if the job step terminated with a signal.
If the job step did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

39 Jp1asCmdExec Command execution mode:
• null-character-string: Foreground execution.
• back: Background execution.

For details, see (3) Command execution mode in the Jp1asCmdExec item below.

40 Jp1asCmdType Command type:
• assign: Standard shell command that updates a shell variable.
• embStd: Standard shell command or extended shell command.
• embAdsh: Extended script command.
• extCmd: External command.
• function: function

41 Jp1asCmdPath Command name.
For an external command, the command's path name.#

For details, see (4) Command name and command's path name in the Jp1asCmdPath item
below.

42 Jp1asCmdArg Command arguments.
The arguments are delimited by the space.
These are not the arguments as specified on the command line or in the job definition script,
rather they are the character strings obtained by evaluating (expanding) the arguments specified
on the command line or in the job definition script and that are passed to the command.

43 Jp1asLang Value of the LANG environment variable during command execution

44 Jp1asCharEncode Character encoding during command execution#

45 Jp1asCmdStart Command execution start date and time#

46 Jp1asCmdEnd Command execution termination date and time#

47 Jp1asCmdElaps Duration of command execution.
This is the difference between the command's execution start date and time and its termination
date and time (microseconds).

48 Jp1asCmdRc Command's return code

49 Jp1asCmdSig Signal number if the command terminated with a signal.
If the command did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

50 Jp1asCmdPid Process ID of an external command

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 254

No. Item name Description

51 Jp1asCmdCpuUser Command's user CPU time# (microseconds)

52 Jp1asCmdCpuSys Command's system CPU time# (microseconds)

53 Reserved1 Reserved item (null character string)

54 Reserved2 Reserved item (null character string)

55 Jp1asMsgId Message ID

56 Jp1asMsgText Message text

57 Jp1asMsgLang Value of the LANG environment variable when the message was output

58 Jp1asMsgEncode Character encoding when the message was output#

#
The following table explains the output items.

Item Output contents

End-of-line code An end-of-line code contained in the value of an item is replaced with a space.
Specifically, each of the character encodings LF(0x0A) and CR(0x0D) is replaced with a
space (0x20).
For a new line in Windows, a pair of CR(0x0D) and LF(0x0A) is replaced with two bytes
of spaces (0x20).

Date and time The date and time are represented in the following format
YYYY-MM-DD hh:mm:ss.nnn
YYYY: Calendar year
MM: Month
DD: Date
hh: Hour
mm: Minute
ss: Second
nnn: Millisecond
The date and time when the adshevtout command is executed are represented based on
the time zone specified in the TZ environment variable.
If acquisition of date and time information failed due to an error in the time acquisition function
at the time the operation information was collected by the adshexec command, the date and
time are represented as follows:
EEEE-EE-EE ee:ee:ee.eee

Time zone The difference from UTC is indicated in one of the formats shown below. The sign differs
from the setting of the TZ environment variable.
+hh:mm:ss
-hh:mm:ss
hh: Hour
mm: Minute
ss: Second
If the time difference is 0, the value is +00:00:00.

Example:
The time zone that is nine hours ahead of coordinated universal time (UTC) is
+09:00:00.

If the time zone cannot be converted to the format shown above, the value in this item is
+EE:EE:EE.

Character encoding • In Windows

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 255

Item Output contents

Character encoding This is always SJIS regardless of the actual character string encoding used.
• In Linux, AIX, HP-UX, and Solaris

In Japanese, the character encoding determined from the value of the LANG environment
variable is set as follows:
SJIS: Shift JIS code
EUC: Extended UNIX Code
UTF8: UTF-8
In all other cases, the following value is set:
OTHER(value of the LANG environment variable)

Path name Any number of consecutive directory separators in path names are output as is.
Consecutive directory separators are not replaced with a single directory separator.
For example, if the specified path name is "C:\\dir", "C:\\dir" is output.

CPU time For external commands:
CPU time of the process that executed the external command

For other commands:
The CPU time of the process of adshexec that executed the command.
This is not the CPU time when each command was executed.

(1) Environment variables in the EnvVar item
The following environment variables are output

• The environment variables that were specified at the time the job started are output.

• If environment variables are specified in the environment file, the environment variables to which the settings in
the environment file have been applied are output.

• The environment variables set by the adshexec command are output.

• The environment variables deleted by the adshexec command are not output.

• Value of the ADSH_JOB_NAME environment variable is the standard job name ADSHxxxxxx (xxxxxx: job ID). This
is not the job name specified in #-adsh_job.

• The above also apply to child jobs.

(2) Line number in the Jp1asScriptLineNo item
The value of this item is the null character string in the following cases:

• A command whose action was specified in the trap command was executed.

• The #-adsh_script command was executed.

• A command specified by command substitution was executed.

If a function is executed, the line number assigned to the command that is defined in the body of the function is output.

(3) Command execution mode in the Jp1asCmdExec item
If cmd1 | cmd2 | cmd3 is executed, the item value is back because cmd1 and cmd2 are executed in separate
processes.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 256

(4) Command name and command's path name in the Jp1asCmdPath item

(a) If the command is executed in another process
If the command is executed in another process, the item value is Another process script as shown in the following
example:

Example:

(echo1 a ; echo2 b)
(echo1 a) &
(echo1 a ; echo2 b) &
{ echo1 a ; echo2 b ; } &
{ echo1 a ; echo2 b ; } |&

In the following example, the value of the part { echo1 a ; echo2 b ; } becomes Another process script.

{ echo1 a ; echo2 b ; } | echo3 c

(b) If the command is executed by using a pipe
If cmd1 | cmd2 | cmd3 is executed and cmd1, cmd2, and cmd3 are all external commands, the item values become
as follows:

• cmd1: command-name(file-name)
• cmd2: command-name(file-name)
• cmd3: path-name

3.7.9 Job definition script operation information that is output
An example of job definition script operation information that is output is shown below. In this example, the header line
is output on the first line.

"EvtName","RecTZ","RecTime","PhysicalHostName","LogicalHostName", ---
"adshStart","+09:00:00","2012-07-12 12:23:15.381","HOST01","", ---
"envVar","+09:00:00","2012-07-12 12:23:15.382","HOST01","", ---
 : (job definition script operation information that is output)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 257

3.8 Using the user-reply functionality

The user-reply functionality notifies JP1/IM of batch job information by issuing JP1 events and enables replies to be
sent. By using this functionality, you can notify the operator by issuing character strings even in an environment where
a window used as the standard input and output is not available, such as when batch jobs are started from JP1/AJS.

The operator can monitor the JP1 events issued during command execution from a JP1/IM - View that is connected to
JP1/IM - Manager. Because JP1/IM - View's integrated console can display multiple servers' JP1 events, the operator
can monitor several servers from a single location.

3.8.1 Prerequisites
For details about the required programs, including JP1/IM, see 2.2.2 Programs required in each environment. You must
also perform the environment setup described in 2.8 Setting up the user-reply functionality.

3.8.2 Execution method
You use the commands shown below to specify character strings that are to be issued as JP1 events by the user-reply
functionality. You specify these commands in job definition scripts.

Command name Usage Section describing how to specify the command

adshecho Issues an event notification
message as a JP1 event.

9.4.4 adshecho command (issues a specified event notification message as a
JP1 event) in 9.4 Extended shell commands

adshread Issues a reply-request message as
a reply-waiting event.

9.4.9 adshread command (issues a specified reply-request message as a reply-
waiting event) in 9.4 Extended shell commands

An issued JP1 event is displayed in the JP1/IM - View window. The operator can enter a reply to a reply-request event
from JP1/IM - View.

3.8.3 Relationship with JP1/IM - View
When the user-reply functionality is used, the event notification messages and reply-request messages specified in job
definition scripts are output as JP1 events. You use JP1/IM - View to view event notification messages and reply-request
messages output as JP1 events.

A reply-request message specified in the adshread command is treated as a reply-request event by JP1/IM - Manager.
The reply-request events are accumulated and displayed in JP1/IM - View and the operator can enter replies to them
from JP1/IM - View.

For details about how to enter replies, see the applicable JP1/IM manual. The following table lists and describes the
statuses that are displayed in the Enter Replies window when replies are entered from JP1/IM - View.

Table 3-4: Statuses displayed in JP1/IM - View's Enter Replies window

Status Meaning Whether a reply can be
entered from JP1/IM - View

READY TO RESPOND A reply can be entered. Y

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 258

Status Meaning Whether a reply can be
entered from JP1/IM - View

NO LONGER MANAGED BY JP1/AS A reply cannot be entered because the reply-request message is
not managed by JP1/Advanced Shell.

N

RESPONDED SUCCESSFULLY A reply entered to the reply-request message was successful. N

ALREADY RESPONDED A reply to the reply-request message has already been entered. N

INTERNAL ERROR A reply cannot be entered because an internal error has occurred
in JP1/Advanced Shell.

N

Legend:
Y: A reply can be entered.
N: A reply cannot be entered.

3.8.4 How to specify the standard input and output as the input source
and output destination of the user-reply functionality

Because the adshecho and adshread commands issue JP1 events, these commands terminate with an error if they
are used in an environment that does not have JP1/Base or JP1/IM, such as when job definition scripts are debugged.
To enable the user to debug job definition scripts in such cases, the user-reply functionality provides the following
functions:

• Function to output character strings to the standard output, rather than to JP1/IM - View

• Function to enable replies to be entered from the standard input, rather than from JP1/IM - View

You use the USERREPLY_DEBUG_DESTINATION parameter to specify whether JP1 events are to be issued or the
standard input and output are to be used when the adshecho and adshread commands are used. Specify the
USERREPLY_DEBUG_DESTINATION parameter in the system environment file or the job environment file. You can
also set the input source and output destination of character strings to the standard input and output by specifying the
-d option in the adshecho and adshread commands.

The function for setting the input source and output destination for the user-reply functionality to the standard input and
output is enabled only during debugging (performed by using adshexec -d in UNIX and in the development
environment in Windows). When you use this function, the JP1/Base, JP1/Integrated Management - Manager, and JP1/
Integrated Management - View programs that are related to the user-reply functionality are not needed. There is also no
need to start the user-reply functionality's management daemon or service.

Note that the following parameters are ignored:

• HOSTNAME_JP1IM_MANAGER parameter

• USERREPLY_JP1EVENT_INTERVAL parameter

• USERREPLY_WAIT_MAXCOUNT parameter

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 259

3.8.5 How to handle adshecho and adshread commands that terminate
with an error

If the adshecho or adshread command terminates with an error, its re-execution might result in successful command
processing. To re-execute the adshecho or adshread command, create a job definition script for re-executing the
command by referencing the following example:

#! /opt/jp1as/bin/adshexec

###
#Function executing the adshread command
#Argument: Reply-request message
#Return code: 0 (normal termination)
1 (terminated with a retryable error)
2 (terminated with a non-retryable error)
###

func_adshread()
{
 adshread ans "$1"

 case "$?" in
 # Normal termination
 0) return 0 ;;
 # When terminated with a retryable error
 3 | 4 | 6 | 8) return 1 ;;
 # When terminated with any other error
 *) return 2 ;;
 esac
}

###
Body of script
###

#
Specify a process that is to be executed as a job
#

###
Wait for the operator's reply before resuming processing
###

 while :
 do

 #Call the function that executes the adshread command
 func_adshread "Do you want to resume processing?(Y/N) [host name: $HOSTNAME,
script name: $0]"

 if [$? = 0]; then #The adshread command terminated normally
 break #Exit the loop
 elif [$? = 1] ; then #The adshread command terminated with a retryable error
 continue #Re-execute the adshread command
 else #The adshread command terminated with a non-retryable
error
 echo "The adshread command terminated with an error."
 exit 1 #Terminate the script
 fi
 done

###

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 260

Perform processing according to the reply received by adshread
###

 if ["$ans" = "Y"] ; then
 adshecho "Y was entered. The processing will be resumed."
 elif ["$ans" = "N"] ; then
 adshecho "N was entered. The processing will be terminated."
 exit 1 #Terminate the script
 else
 adshecho "An invalid reply was entered. The processing will be terminated."
 exit 1 #Terminate the script
 fi

3.8.6 Notes
• You can enter replies only from a JP1/IM - View that is connected to the JP1/IM - Manager specified in the
HOSTNAME_JP1IM_MANAGER parameter.

• Because there is a limit to the number of reply-waiting events that can be accumulated by JP1/IM - Manager, design
your operations in such a manner that this limitation is observed.

• The character encodings that can be entered from JP1/IM - View are those within the range of the ASCII character
encodings (excluding the control characters). If a character encoding outside this range is entered, an error message
will be displayed. In such a case, re-enter a character encodings within the permitted range.

• When the adshecho and adshread commands are executed, JP1/Base closes a TCP/IP connection with the host
specified in the HOSTNAME_JP1IM_MANAGER parameter and then establishes connection using a new port.
The port that was being used becomes unavailable for a period equal to the OS's maximum segment lifetime (MSL)

 2 (seconds). If the value of MSL is large or there are only a few ports, a shortage of ports might occur.
For this reason, set MSL, the number of JP1 events to be output during a period of MSL 2 (seconds), and the
number of ports to satisfy the following condition:
n MSL 2 3 < number-of-ports
n: Number of JP1 events that can be output by the user-reply functionality during a period of MSL 2 (seconds)

• In UNIX, when the user-reply functionality's management daemon starts, a file with the following name is created
in the spool directory to manage reply-request messages in the shared memory:

• .adsh_mqueue
• .adsh_mqueue_logical-host-name (applicable when the user-reply functionality's management daemon is

started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. When the user-reply
functionality's management daemon terminates, this file remains and can be reused the next time the user-reply
functionality's management daemon starts.
In HP-UX, in addition to the above file, a file with the following name is also created in the spool directory:

• .adsh_mqueueS
• .adsh_mqueue_logical-host-nameS (applicable when the user-reply functionality's management daemon is

started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. The file is deleted when
the user-reply functionality's management daemon terminates.

• Before you shut down the OS, terminate the user-reply functionality's management daemon or service. If there are
reply-request messages still waiting for replies when the user-reply functionality's management daemon or service
stops, the daemon or service will cancel these reply-request messages and then stop. If OS shutdown processing is

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 261

performed, the OS might be shut down before the reply-request messages are cancelled. If this happens, the
accumulated reply-waiting events will remain in JP1/IM - View.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 262

3.9 Deleting spool jobs

Spool jobs stored on a spool increase in size while they are stored in a spool directory. Therefore, make sure that you
periodically delete old spool jobs to free up disk space.

• How to delete spool jobs
To delete spool jobs, enter the adshhk command below. For details about how to specify the adshhk command,
see 8.3.9 adshhk command (deletes spool jobs).

adshhk target-list-file-name report-file-name log-file-name [number-of-days]

Before you execute the adshhk command, specify in the file indicated as target-list-file-name the necessary
information, including the name of the spool directory that contains the spool jobs to be deleted.
The adshhk command's execution results are output to the file whose name is specified in report-file-name. The
execution results are also output to trace logs.
Error messages are output to the file whose name is specified in log-file-name.
Spool jobs that have existed for more than the number of days specified in number-of-days are deleted. For example,
if you specify 2, spool jobs that have existed for 2 or more days are deleted.

• Report file created by the adshhk command
When the adshhk command has executed, the execution results are output to a report file. In the following example
report file, the header information is output on the first line:

"jobid","jobname","rc","start date","end date","act","info","spool","target
days","execute date"
"000056","JOB001","1","2011/06/13 09:03:31","2011/06/13 09:03:31","delete","","C:
\Documents and Settings\All Users\Documents\Hitachi\jp1as\jp1ase
\spool","15","2011/06/30 18:19:58"
 :

Legend:
The first line of the execution results contains the headers listed below. The subsequent lines display the values
corresponding to the header items.

Header Meaning

jobid Job ID

jobname The job name in JP1/Advanced Shell
If the command cannot determine the job name in JP1/Advanced Shell, it outputs the spool job name.

rc Job's return code

start date Job's execution start date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the debugging start date and time are output.

end date Job's termination date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the job termination date and time are not output.

act Applied action (keep: save, delete: delete, error: an error occurred during deletion processing)

info Detailed error information

spool Spool directory

target days Target days

execute date Command execution start date and time (in the format yyyy/mm/dd hh:mm:ss)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 263

Important
If the spool directory contains any user-specified file or directory that was not created by JP1/
Advanced Shell, the adshhk command outputs a message such as KNAX4419-E, and then
terminates.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 264

3.10 Acquiring coverage information

If the user specifies during job execution that coverage information is to be acquired, JP1/Advanced Shell records in a
coverage information file (asc file) such information as whether commands in the job definition script were executed.

You can use the coverage information manipulation commands to merge and display coverage information.

3.10.1 Overview of coverage information
Coverage information consists of indicators used to determine the coverage of tests of programs. The two types of
coverage information indicators are the C0 information and the C1 information.

(1) C0 information and C1 information
The following explains the C0 and C1 information.

• C0 (statement coverage information): Command coverage
This indicator determines the percentage of the commands in the tested job definition script that were executed. It
is calculated as follows:
C0 = number of executed commands total number of commands 100 (%)

• C1 (branch coverage information): Branch coverage
This indicator determines the percentage of the branches in the tested job definition script that were executed. It is
calculated as follows:
C1 = number of executed branches total number of branches that could be executed 100 (%)

(2) Usage of coverage information
You can use the coverage information as reference data when you test your job definition scripts. You can also
accumulate, display, and merge coverage information. For details about the coverage information that is acquired, see
A. Coverage Information That Is Acquired.

The differences between Windows and UNIX in how coverage information is collected, displayed, and merged, are
described in the following table.

Table 3-5: Differences between Windows and UNIX in how coverage information is collected,
displayed, and merged

Environment Collecting coverage information Displaying coverage
information

Merging coverage
information

Windows development
environment

Use JP1/Advanced Shell Editor's debugging function to
collect coverage information. The collected coverage
information is accumulated in a coverage information
file.
Coverage information is not collected unless
Accumulate coverage information is selected during
execution environment setup.
The coverage auto-acquisition functionality is not
available.

Either of the following
methods can be used:
• adshcvshow

command
• JP1/Advanced Shell

Editor

The adshcvmerg
command# is used to
merge coverage
information.
An editor cannot be used
to merge coverage
information.

Windows execution
environment

When a job definition script is run, use the adshexec
command with the coverage accumulation option (-t)
specified to collect coverage information. The collected

The adshcvshow
command is used to

The adshcvmerg
command# is used to

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 265

Environment Collecting coverage information Displaying coverage
information

Merging coverage
information

Windows execution
environment

coverage information is accumulated in a coverage
information file.
The debugging function is not available.

display coverage
information.

merge coverage
information.

UNIX execution
environment

Specify in the adshexec command one or both of the
following options:
• Coverage accumulation option (-t) to collect

coverage information in a coverage information file.
• Debugging option (-d) to collect coverage

information in memory.

• If the coverage
information was
collected in a
coverage information
file, the
adshcvshow
command is used to
display it.

• If the coverage
information was
collected in memory,
the info
coverage
command is used to
display it.

The adshcvmerg
command# is used to
merge coverage
information.

Note
The following notes apply to sharing coverage information between different platforms:
- Do not transfer coverage information between different platforms.
- A coverage information file created in one OS cannot be processed with the commands of a different OS.

#
You can use the adshcvmerg command to merge coverage information from two coverage information files at a
time. To merge coverage information from three or more coverage information files, execute this command multiple
times.

3.10.2 Managing coverage information
The coverage information files (asc files) are used to manage coverage information.

(1) File name and storage directory for coverage information files

(a) File name
Coverage information is collected for each job definition script and each user. Therefore, the default asc file name
consists of a job definition script name and a user name.

In the execution environment, you can specify any asc file name by using a command option.

In the editor, the default asc file names are used. Non-default asc file names cannot be specified.

The following shows the default asc file name:

job-definition-script-name(without-the-extension)_user-name.asc

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 266

If the length of an asc file name exceeds the maximum length supported by the OS being used, collection of coverage
information will fail. For this reason, you must pay attention to the number of characters in the file name of each job
definition script that is to be executed.

(b) Storage directory
In the execution environment, the default asc files are created in the current directory during command execution.

In the development environment, if coverage information is accumulated from a Windows's editor, the asc files are
created in the directory that contains the job definition script file.

(2) Updating asc files
The asc files are updated whenever coverage information is accumulated or merged.

An asc file cannot be shared among multiple users at the same time. If an attempt is made to use an asc file that is in
use by another user, the command issues the KNAX6211-E message and results in an error.

(3) asc file output processing
If a coverage information write operation on an asc file fails for a reason such as insufficient disk capacity, that coverage
information is lost.

If the asc file already exists when obtaining coverage information, the asc file is updated as follows to prevent loss
of the previously obtained coverage information. The existing asc file is not directly updated.

• Outputs new coverage information to a temporary asc file.

• Renames the existing asc file to be the backup asc file.

• Renames the temporary asc file to be the specified asc file (including a file with the default asc file name when
specification is omitted).

• Deletes the backup asc file.

Therefore, if a process to output coverage information to an asc file terminates prematurely and the command is re-
executed, JP1/Advanced Shell recovers the coverage information and then resumes command processing.

When command processing terminates successfully, there will be no temporary asc file or backup asc file. If a process
to output coverage information to an asc file terminates prematurely, the temporary and backup asc files might remain.
These files will be deleted if the command is re-executed or when the command is processed and terminates normally.

You can delete temporary asc files manually. Do not delete any backup asc file. If a backup asc file is deleted, the
coverage information accumulated up to the point of a command's error termination will be lost.

Normally, when you use the coverage functionality, you need not know the above details.

You can determine whether a specified asc file (including a file with the default asc file name when specification is
omitted) has been updated by new coverage information because the KNAX6242-I message will have been output
during the previous command execution.

If the KNAX6242-I has been output, the contents of the specified asc file (including a file with the default asc file
name when specification is omitted) have been updated by new coverage information.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 267

(4) File names associated with asc files
When coverage information is collected in an asc file, a temporary file is created. This file is called a temporary
coverage information file (temporary asc file). The file name, which always begins with a fixed character string, is as
shown in the following:

Name of a temporary asc file
The file name always begins with a fixed character string as follows:

• For the adshexec command: adshexec_temp_any-character-string

Name of a backup asc file
When an asc file is renamed temporarily (backup asc file), the following file name is used:

• For the adshexec command: adshexec_backup_any-character-string

When you specify an asc file name (including the default asc file name) in an argument of a command, you must
make sure that the specified file name does not exceed the maximum length (in bytes) permitted for a path name by the
OS being used.

If processing is cancelled during command execution, temporary and backup asc files might remain. The remaining
files are handled as follows:

• You can re-execute the command with the temporary asc file remaining in the system. Alternatively, you can
manually delete the temporary asc file and then re-execute the command.

• If a backup asc file remains in the system, do not delete it. The adshexec command automatically restores the
original asc file name from the remaining backup asc file name and then collects coverage information.
Alternatively, you can manually restore the original asc file name and then re-execute the command.

Do not create a user file that has the same name as a temporary asc file or backup asc file. If a file with the same
name as a temporary asc file for an asc file exists in the same directory, that user file will be deleted. If a file with the
same name as a backup asc file for an asc file exists in the same directory, that user file might be treated as an asc
file and deleted.

(5) Using temporary and backup asc files
In the execution environment, whether temporary and backup asc files are used depends on the specification of the -
t and -d options in the adshexec command. The following table shows whether temporary and backup asc files
are used in the execution environment.

Table 3-6: Whether temporary and backup asc files are used in the execution environment

adshexec command's option Windows UNIX

-t -d Temporary asc
file

Backup asc file Temporary asc
file

Backup asc file

Omitted Omitted N N N N

Omitted Specified -- -- Y N

Specified Omitted Y Y Y Y

Specified Specified -- -- Y Y

Legend:
Y: File is used.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 268

N: File is not used.
--: The debugging option is not supported in Windows.

In the Windows development environment, whether temporary and backup asc files are used depends on the
specification of Coverage information in the Runtime Environment Settings dialog box. The following table shows
whether temporary and backup asc files are used in the development environment.

Table 3-7: Whether temporary and backup asc files are used in the development environment

Specification of Coverage information Windows development environment (editor)

Temporary asc file Backup asc file

Do not accumulate N N

Accumulate Y Y

Accumulate (and overwrite on update) Y Y

Legend:
Y: File is used.
N: File is not used.

(6) Commands and temporary asc files
Temporary asc files are used as work files during command execution. If a file with the same name as a temporary
asc file exists before command execution, that file will be deleted.

(7) Processing of asc files during execution of the adshexec command
The following table explains how asc files are processed during execution of the adshexec command.

Table 3-8: Processing of asc files during execution of the adshexec command

Status when the command starts Command processing

job.asc adshexec_bac
kup_job.asc

job.asc adshexec_bac
kup_job.asc

Status of asc file and how it is processed

N N Created None There is neither a new nor an old asc file.
An asc file is created.

N Y None Renamed to
job.asc

The old asc file job.asc has been renamed as
backup file adshexec_backup_job.asc.
The asc file job.asc is restored from backup asc
file adshexec_backup_job.asc.

Y N Used None job.asc is either the old or the new asc file.
If job.asc is the new asc file, the KNAX6242-I
message was issued during the previous execution.

Y Y Used Deleted job.asc is the new asc file and
adshexec_backup_job.asc is the old asc file.
The old asc file adshexec_backup_job.asc is
deleted.
The new asc file job.asc is used.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 269

Legend:
Y: The file exists.
N: The file does not exist.
job.asc: Name of asc file
adshexec_backup_job.asc: Name of backup asc file

3.10.3 Accumulating coverage information

(1) How to accumulate coverage information and the format of coverage
information

When you execute a job definition script, you use an option of the execution command to specify that coverage
information is to be accumulated. When this specification is made, coverage information will be accumulated in an asc
file.

The option for accumulating coverage information is the -t option. You can also use the -o option to rename the asc
file to a name of your choosing. The format of the execution command with the option for accumulating coverage
information specified is shown below. If there is conflicting information in the job definition script that is to be executed,
an error will result. However, if the -f option is specified, the coverage information will be overwritten without resulting
in an error.

adshexec [other-options...] [-t [-f][-o path-name-of-asc-file]]
path-name-of-job-definition-script-file [run-time-parameters]

In UNIX, if the adshexec command is executed with the -d option specified (and not the -t option), coverage
information is collected only in memory. In this case, you can use the debugger's info coverage command to display
the coverage information. If you exit the debugger by entering the debugger's quit command, the collected coverage
information will be discarded and the memory released.

(2) Accumulation methods
The two coverage information accumulation methods are initial accumulation, which is the first accumulation, and
continued accumulation, which is any subsequent accumulation. The accumulation method that is used (initial or
continued) is determined by whether there is already an asc file.

If a change is made to a job definition script, the changed information will no longer have the same line numbers.
Therefore, a backup of the job definition script is stored in the asc file. If there is a difference between the job definition
script file and the backup asc file, the command terminates with an error without executing the job definition script.

In the initial accumulation, the command creates an asc file and writes the coverage information into it during execution.
In a continued accumulation, the command reads the contents of the asc file and updates it by adding coverage
information for the current execution.

(a) Examples of initial accumulation
The following are examples of initial accumulation.

Example 1:
This example collects coverage information when there is no coverage information file (asc file).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 270

Example 2:
If all the following conditions are satisfied, the command performs initial accumulation:

• There is a coverage information file (asc file).

• The job definition script file differs from that used when coverage information was collected in the existing
coverage information file.

• A different job definition script file is used and the option for initializing the coverage information file (-f option
in the adshexec command) is specified.

(b) Examples of continued accumulation
If all the following conditions are all satisfied, the command performs a continued accumulation:

• A coverage information file (asc file) already exists.

• The job definition script file is the same as the one used when coverage information was collected in the existing
coverage information file.

One of the conditions for performing continued accumulation is that the job definition script is the same as the previous
one used to collect coverage information. The command determines that job definition scripts are identical in the
following manner:

• A binary comparison that is performed on the job definition scripts shows that their sizes and contents are the same.

When these conditions are satisfied, the command treats the job definition scripts as being identical even if their file
names and paths differ.

(3) File names of job definition scripts that are registered in coverage
information files

In a continued accumulation, the file name of the job definition script that was used the first time coverage information
was collected takes effect.

Example:
The following files are treated as being the same job definition scripts although their file names differ:

• /dir1/file1
• /dir2/file2

If a continued accumulation is performed by using an output asc file named out.asc and the above job definition
scripts, the scrip file name in the out.asc will be as follows:

1. If adshexec -t -o out.asc /dir1/file1 is executed, the script file name in out.asc is /dir1/
file1.

2. If adshexec -t -o out.asc /dir2/file2 is executed, the script file name in out.asc is /dir2/
file2.

3. If adshexec -t -o out.asc /dir1/file1 is re-executed, the script file name in out.asc is /dir1/
file1.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 271

(4) Extension of coverage information files
The default extension for coverage information files (asc files) is .asc. The extension for coverage information files
does not have to be .asc. When coverage information is collected, the command treats a file with any extension that
was specified as coverage information as an asc file.

(5) Size of a job definition script
The size of a job definition script file must not exceed 2 gigabytes.

(6) Initializing accumulated coverage information
To initialize accumulated coverage information, delete the corresponding asc file with a command such as rm, and
then collect coverage information using the initial accumulation method.

3.10.4 Displaying coverage information
The following figure shows the general procedure from executing a job definition script to displaying the coverage
information.

Figure 3-5: General procedure for displaying coverage information

You can also use an editor to display coverage information in the development environment. For details about how to
use an editor to display coverage information, see 4.4.7 Displaying coverage information.

(1) How to display and command format
The adshcvshow coverage information display command is used to display coverage information. This command
displays the contents of a specified asc file. If you wish to display only a desired range of a job definition script's
coverage information, you can do so by specifying the range in the -l option.

If the -s option is specified, the command displays only the contents of a job definition script that has been backed up.
You use the -s option to check the contents of a job definition script that has been backed up and to determine if there
is any differential information between job definition scripts.

The following shows the format of the coverage information display command:

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 272

adshcvshow {[-l n1[-[n2]][,n3[-[n4]]]...]|-s} path-name-of-asc-file

To specify lines, use the comma (,) to separate individual line numbers and the hyphen (-) to specify a range of lines
numbers. For example, to specify lines 1 through 10, line 15, and lines 21 through 30, specify the command as follows:

adshcvshow -l 1-10,15,21-30 path-name-of-asc-file

If no number follows a hyphen, the command assumes a range from the specified line number through the last line. For
example, to specify lines 21 through the last line, specify the command as follows:

adshcvshow -l 21- path-name-of-asc-file

(2) Coverage information display format
The following table explains the coverage information display format.

Table 3-9: Explanation of the coverage information display format

Item Description

Title line (Advanced Shell Coverage
Information)

Main title line indicating that this is coverage information acquired by JP1/Advanced
Shell.

Date and time (top right) Displays the date and time the adshcvshow command was executed, in the format
yyyy-mm-dd hh:mm:ss. If the month, day, hour, minute, or second value consists
of one digit, a leading zero is added.

Header section (Header Information) Section title line indicating display of header information.

Job definition script name (Shellscript Name) Displays the absolute path name of the job definition script.

Version of asc file (Asc version) Displays the asc file's version number.

Coverage information collection start time
(Coverage Start Time)

Displays the time collection of coverage information started. The format is the same
as for the date and time.

Coverage information collection end time (Coverage
End Time)

Displays the time collection of coverage information ended. The format is the same
as for the date and time.

Number of times coverage information was collected
(Test Count)

Displays the number of times coverage information was collected.
If the coverage information collection count exceeds 9,999, 9999+ is displayed.
How the collection count is obtained depends on an option specified in the batch job
execution command (adshexec).
adshexec command with -t and -d specified
• For coverage information in memory

 Initial value
If there is an asc file, the coverage information collection count for the asc file
is used.
If there is no asc file, the collection count is 0.

 Updating
The coverage information collection count is incremented by one each time the
debugger's run command is executed.

• For an asc file
When the adshexec command terminates, the coverage information collection
count is increased by the number of times the debugger's run command
executed.

adshexec command with -t only specified

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 273

Item Description

Number of times coverage information was collected
(Test Count)

When the adshexec command terminates, the coverage information collection
count is increased by one.
adshexec command with -d only specified
• Coverage information in memory

 Initial value
The initial value for the coverage information collection count is 0.

 Updating
The coverage information collection count is incremented by one each time the
debugger's run command is executed.

• For an asc file
asc files are not updated.

Main information section (Main Information) Section title line indicating display of coverage information (C0 and C1 information).

Line number (Line) The line numbers begin with 1.
A line number exceeding 9999 is displayed as 9999+

Additional information (Info) This is the header for C0 and C1 information. The coverage information is displayed
in units of lines. If a command spans multiple lines, the C0 and C1 information is
displayed on the lines containing the command name.
If the numbers of C0 and C1 information items are both 32 or fewer, the coverage
information can be recorded and this item is blank. The character strings that are
displayed when the coverage information cannot be recorded are explained below:
overC0: The number of C0 information items exceeds 32.
overC1: The number of C1 information items exceeds 32.
over: The numbers of C0 and C1 information items both exceed 32.

C0 information (C0) Displays the C0 information:
@: Command was executed.
-: Command was not executed.
If a line contains multiple commands, the C0 information for a maximum of the first
four commands is displayed as four characters.

C1 information (C1) Displays the C1 information:
@: Execution path was executed.
-: Execution path was not executed.
If a line contains multiple execution paths, the C1 information for a maximum of the
first four execution paths is displayed as four characters.

Job definition script (<Shellscript Image>) Displays the contents of the job definition script in units of lines. If a range is
specified, only the lines in the specified range are displayed.

Totals section (Total Information) Section title line indicating display of totals of the C0 and C1 information. If a range
is specified, the Total Information line and lines subsequent to it are not
displayed. If the count exceeds 99,999,999, 99999999+ is displayed.

Totals subject to C0 and C1 targets (Target Total) <C0> displays the total number of target commands, and <C1> displays the total
number of execution paths.

<C0> Includes the total number of commands subject to C0 in the job definition script. All
target commands are counted even if there is a line that contains more than 32
commands subject to C0.

<C1> Includes the total number of execution paths subject to C1 in the job definition script.
All execution paths are counted even if there is a line that contains more than 32
execution paths subject to C1.

Totals subject to C0 and C1 that were executed
(Executed Total)

<C0> displays the total number of commands executed, and <C1> displays the total
number of execution paths executed.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 274

Item Description

<C0> Execution is recorded as coverage information for a maximum of the first 32
commands subject to C0 in each line. Of these 32 commands, the commands that
were executed are counted.

<C1> Execution is recorded as coverage information for a maximum of the first 32
execution paths subject to C1 in each line. Of these 32 execution paths, the execution
paths that were executed are counted.

Totals subject to C0 and C1 that were not executed
(Unexecuted Total)

<C0> displays the total number commands that were not executed, and <C1>
displays the total number of execution paths that were not executed.

<C0> This is the total number subject to C0 (Target Total) - total number subject to
C0 that were executed (Executed Total).

<C1> This is the total number subject to C1 (Target Total) - total number subject to
C1 that were executed (Executed Total).

Execution percentage rate (Coverage Rate) Displays the execution percentages of C0 and C1 (%). The values are rounded off to
the first decimal place.

<C0> This is the total subject to C0 that were executed (Executed Total)/total subject
to C0 (Target Total).
If there was a line containing more than 32 commands subject to C0, this value would
be less than 100%, even if all commands were executed.

<C1> This is the total subject to C1 that were executed (Executed Total)/total subject
to C1 (Target Total).
If there was a line containing more than 32 execution paths subject to C1, this value
would be less than 100%, even if all execution paths were executed.

The following subsections presents example coverage information displays. One is for when a maximum of one C0 and
one C1 information item is displayed per line. The second display is for when a maximum of four information items
are displayed per line.

(a) Example display of commands for which coverage information is displayed
(maximum of one C0 and one C1 information item displayed per line)

In this example, a single @ and a single - in Main Information indicate that C0 and C1 were acquired.

 * Advanced Shell Coverage Information *

 2013-12-06 12:22:50
**** Header Information **
Shellscript Name : /home/testuser/sample
Asc version : 1.0
Coverage Start Time : 2013-12-06 12:21:38
Coverage End Time : 2013-12-06 12:21:39
Test Count : 1

**** Main Information **
Line Info C0 C1 <Shellscript Image>
 1
 2 @ echo 1
 3
 4 @ @ if true
 5 then
 6 @ echo 2
 7 - fi
 8
 9 @ echo 3

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 275

 10
 11 @ - if false
 12 then
 13 - echo 4
 14 @ fi
 15
 16 @ echo 5
 17
 18 @ @ if true
 19 then
 20 @ echo 6
 21 - else
 22 - echo 7
 23 fi
 24
 25 @ echo 8
 26
 27 @ - if false
 28 then
 29 - echo 9
 30 @ else
 31 @ echo 10
 32 fi
 33
 34 @ echo 11
 35
 36

**** Total Information **
 <C0> <C1>
 Target Total 15 8
 Executed Total 12 4
 Unexecuted Total 3 4
--
 <C0> <C1>
 Coverage Rate 80.0 % 50.0 %

(b) Example display of commands for which coverage information is displayed
(maximum of four C0 and C1 information items displayed per line)

In this example, lines 13 and 37 in Main Information indicate that multiple C0 and C1 information items were
acquired.

• Line 13 displays the contents of lines 3 through 7.
@@@@ in the C0 column indicates that the commands echo 1, echo 2, echo 3, and echo 4 were executed in this
order.
@@@@ in the C0 column does not indicate whether command echo 5 was executed.

• Line 37 displays the contents of lines 20 through 31.

• Each character in @@-- in the C0 column corresponds to a command from the top.
The first character @ indicates that the command true was executed.
The second character @ indicates that the command echo 1 was executed.
The third character - indicates that the command true that follows the first elif was not executed.
The fourth character - indicates that the command echo 2 was not executed.
The characters @@-- in the C0 column show only whether the first four commands above were executed; whether
the commands starting with true that follows the second elif were executed is not indicated.

• Each character in @--- in the C1 column corresponds to each command from the beginning.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 276

The first character @ indicates that the execution path of the first then of if was executed.
The second character - indicates that the execution path of then for the first elif was not executed.
The third character - indicates that the execution path of then for the second elif was not executed.
The fourth character - indicates that the execution path of else was not executed.

• Line 73 displays the contents of lines 43 through 67.
The meaning of each character in @@-- in the C0 column and in @--- in the C1 column is the same as for line 37.
@--- in the C1 column does not indicate whether the execution paths that follow the execution path of then for
if (the fifth execution path from the top) were executed.

 * Advanced Shell Coverage Information *

 2013-12-06 12:24:27
**** Header Information **
Shellscript Name : /home/testuser/sample1.ash
Asc version : 1.0
Coverage Start Time : 2013-12-06 12:21:49
Coverage End Time : 2013-12-06 12:21:50
Test Count : 1

**** Main Information **
Line Info C0 C1 <Shellscript Image>
 1
 2
 3 @ echo 1
 4 @ echo 2
 5 @ echo 3
 6 @ echo 4
 7 @ echo 5
 8
 9
 10
 11
 12
 13 @@@@ echo 1;echo 2;echo 3;echo 4;echo 5
 14
 15
 16
 17
 18
 19
 20 @ @ if true
 21 then
 22 @ echo 1
 23 - - elif true
 24 then
 25 - echo 2
 26 - - elif true
 27 then
 28 - echo 3
 29 - else
 30 - echo 4
 31 fi
 32
 33
 34
 35
 36
 37 @@-- @--- if true ;then echo 1 ;elif true ;then echo 2 ;elif
true ;then echo 3 ;else echo 4 ;fi
 38

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 277

 39
 40
 41
 42
 43 @ @ if true
 44 then
 45 @ echo 1
 46 - - elif true
 47 then
 48 - echo 2
 49 - - elif true
 50 then
 51 - echo 3
 52 - else
 53 - echo 4
 54 fi
 55
 56 @ @ if true
 57 then
 58 @ echo 5
 59 - - elif true
 60 then
 61 - echo 6
 62 - - elif true
 63 then
 64 - echo 7
 65 - else
 66 - echo 8
 67 fi
 68
 69
 70
 71
 72
 73 @@-- @--- if true ;then echo 1 ;elif true ;then echo 2 ;elif
true ;then echo 3 ;else echo 4 ;fi; if true ;then echo 5 ;elif true ;then echo
6 ;elif true ;then echo 7 ;else echo 8 ;fi
 74

**** Total Information **
 <C0> <C1>
 Target Total 52 24
 Executed Total 22 6
 Unexecuted Total 30 18
--
 <C0> <C1>
 Coverage Rate 42.3 % 25.0 %

(3) How to display C0 and C1 information
The target subject to collection of coverage information varies depending on how script control statements are executed
in a job definition script. When coverage information is displayed, an at mark (@) is displayed for a target that was
executed, and a hyphen (-) is displayed for a target that was not executed.

(a) if statements
• When there is no else

• If a path of then was executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 278

@ true <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
@ cmd3 <-- C0 is acquired
 - fi <-- C1 is not acquired

• If a path of then was not executed, the following information is displayed:

C0 C1 Job definition script
 - if <-- C1 is not acquired
@ false <-- C0 is acquired
 then
- cmd2 <-- C0 is not acquired
- cmd3 <-- C0 is not acquired
 @ fi <-- C1 is acquired

• If a path of then and a path that is not then were both executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ false <- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
@ cmd3 <-- C0 is acquired
 @ fi <-- C1 is acquired

• When there is else
• If then was executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ true <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
 - else <-- C1 is not acquired
- cmd3 <-- C0 is not acquired
 fi <-- None

• If else was executed, the following information is displayed:

C0 C1 Job definition script
 - if <-- C1 is not acquired
@ false <-- C0 is acquired
 then
- cmd2 <-- C0 is not acquired
 @ else <-- C1 is acquired
@ cmd3 <-- C0 is acquired
 fi <-- None

• If then and else were both executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ false <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
 @ else <-- C1 is acquired
@ cmd3 <-- C0 is acquired
 fi <-- None

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 279

(b) for statements
• If a loop was executed, the following information is displayed:

C0 C1 Job definition script
 @ for <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 - done <-- C1 is not acquired

• If a loop was not executed, the following information is displayed:

C0 C1 Job definition script
 - for <-- C1 is not acquired
 do
- cmd1 <-- C0 is not acquired
 @ done <-- C1 is acquired

• If execution involved executing a loop and then skipping a loop, the following information is displayed:

C0 C1 Job definition script
 @ for <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 @ done <-- C1 is acquired

(c) while and until statements
This subsection describes how while statements are displayed. until statements are displayed in the same manner.

• If a loop was executed, the following information is displayed:

C0 C1 Job definition script
 @ while <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 - done <-- C1 is not acquired

• If a loop was not executed, the following information is displayed:

C0 C1 Job definition script
 - while <-- C1 is not acquired
 do
- cmd1 <-- C0 is not acquired
 @ done <-- C1 is acquired

• If execution involved executing a loop and then skipping a loop, the following information is displayed:

C0 C1 Job definition script
 @ while <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 @ done <-- C1 is acquired

(d) case statements
Whether an * pattern is used determines how the C1 information is displayed. An * pattern means that none of the
patterns was a match in the case statement.

• If there is an * pattern
The C1 information is displayed for esac.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 280

• If there is no * pattern
The C1 information is displayed for esac.

• Display method when there is an * pattern

• If case 1 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - *) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 esac <-- None

• If an * pattern was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 - 1) <-- C1 is not acquired
 echo "abc"
 ;;
 @ *) <-- C1 is acquired
@ echo "efg" <-- C0 is acquired
 ;;
 esac <-- None

• If case 1 and an * pattern were both executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - *) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 esac <-- None

• Display method when there is no * pattern

• If case 1 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - 2) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 - esac <-- C1 is not acquired

• If case 2 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 - 1) <-- C1 is not acquired
- echo "abc" <-- C0 is not acquired
 ;;
 @ 2) <-- C1 is acquired

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 281

@ echo "efg" <-- C0 is acquired
 ;;
 - esac <-- C1 is not acquired

• If an * pattern was executed, the following information is displayed:

C0 C1 Job definition script
@ case $A in <-- C0 is acquired
 - 1) <-- C1 is not acquired
- echo "abc" <-- C0 is not acquired
 ;;
 - 2) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 @ esac <-- C1 is acquired

(e) #-adsh_step_start command
Specification of the argument shown below in the #-adsh_step_start command sets whether a job step's execution
is to be determined by the preceding job step and the status of the extended script command in the job definition script.

[-run {normal | abnormal | always}]

The following information is displayed in the C1 information to indicate whether a job step was executed:

• --: Execution did not reach the #-adsh_step_start command.

• N-: The preceding job step or job definition script is normal.

• -A: The preceding job step or job definition script is erroneous.

• NA: Cases N- and -A were both executed.

(f) #-adsh_step_error command
If an error occurs in a job step, the job definition script following the #-adsh_step_error command is executed.
To indicate whether the error was handled, the following information is displayed in the C1 information.

• --: Execution did not reach the step containing the #-adsh_step_error command.

• N-: No error handling procedure executed because no error occurred in a job step.

• -E: An error handling procedure was executed because an error occurred in a job step.

• NE: Cases N- and -E were both executed.

(g) Functions
The following shows an example of function execution:

C0 C1 Job definition script
 funcAAA(){ --> 1.
@ echo "start funcAAA" --> 2.
 @ if true --> 2.
 then --> 2.
@ echo true --> 2.
 - else --> 2.
- echo false --> 2.
 fi --> 2.
 }

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 282

 :
@ funcAAA --> 3.

1. When a function is executed, neither C0 nor C1 information is displayed at the location where the function is defined.

2. In the body of the function, C0 and C1 information is displayed for the commands and execution paths that executed

3. When a function has executed, the C0 information is displayed at the location where the function was called.

(h) (cmd1; cmd 2)
Commands enclosed in parentheses are executed as a separate process. In this case, coverage information is not collected
either for the entire command group or for the individual commands in the command group.

(i) {cmd1; cmd2}
Commands enclosed in curly brackets are executed in the same process as the adshexec command. In this case,
coverage information is collected for each command in the command group.

(j) cmd1 &
A separate process is generated, and the command is executed in the background in parallel with execution of the job
definition script by the adshexec command. No coverage information is collected for job definition scripts that are
executed in the background.

(k) trap actions
No coverage information is collected for trap actions.

• Example

trap "date; echo xxx" INT

(l) Command substitution
No coverage information is collected for a command or a script control statement that is executed by command
substitution.

• Example

ls `which adshexec`

(m) Arguments of the time command
No coverage information is collected for a command that is executed as an argument of the time command.

• Example

time adshexec script1

(n) Arguments of the eval command
No coverage information is collected for a command that is executed as an argument of the eval command.

• Example

eval ls dir1

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 283

(o) Pipe function
No coverage information is collected for a command that is executed by using the pipe function.

• Example

ls | cat

(p) External scripts
Coverage information is not collected for called external scripts. Coverage information is collected for a process that
calls an external script. An external script call is subject to collection of C0 information, but is not subject to collection
of C1 information.

(4) Displaying coverage information collected in memory (UNIX only)
If you have used the info coverage command for debugging, you can display coverage information collected in
memory.

The coverage information to be displayed depends on the accumulation type (initial or continued accumulation). For
the initial accumulation, the coverage information up to the breakpoint is displayed. For a continued accumulation, the
accumulated coverage information plus the coverage information up to the breakpoint is displayed. If accumulation is
not specified, the coverage information up to the breakpoint is displayed in the same manner as for initial accumulation.

The types and format of the information that is displayed are the same as when the adshcvshow command is used to
display coverage information.

(5) Case where the C1 execution percentage rate is not 100%
If the #-adsh_step_start command is used and no job step or command precedes the job step of #-
adsh_step_start, the C1 execution percentage rate will never be 100%, even if all the execution paths are executed.
#-adsh_step_start collects C1 information in the cases described below. However, if no job step or command
precedes the job step of #-adsh_step_start, C1 information cannot be collected for case 2 below:

1. All the preceding job steps and commands terminated normally.

2. At least one of the preceding job steps or commands did not terminate normally.

In this case, you can enable the fault injection mode during debugging to simulate errors at the corresponding locations.
This method enables you to collect CI information and improve the CI execution percentage rate to 100%. The following
explains how to simulate errors.

• Debugging in GUI (Windows only)
You can simulate errors by using JP1/Advanced Shell Editor's Fault Injection Mode menu. For details about the
procedure, see (4) Simulating errors.

• Debugging in CUI (started with the -d option of the adshexec command) (UNIX only)
You can simulate errors by using the joberrmode command. For details about the joberrmode command, see
6.2.21 Enabling and disabling the fault injection mode (joberrmode command).
You can use the info status command to check whether the fault injection mode is enabled. For details about
the info status command, see 6.2.19 Displaying the status (info status command).

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 284

3.10.5 Merging coverage information
The purpose of merging coverage information is to combine the results obtained from testing by multiple users of the
same job definition script. If different test cases were performed on a specific job definition script by different users,
you can merge the separate pieces of coverage information into a single entity.

(1) How to merge
You use the adshcvmerg command to merge coverage information. This command merges two specified asc files.
The following shows the command's format:

adshcvmerg -o output-file asc-file-1 asc-file-2

The command merges the information in asc-file-1 and asc-file-2 and outputs the results to the specified output file in
asc file format.

(2) Types of information to be merged
The information to be merged includes the test counts and coverage information. For example, if the command
adshcvmerg -o out c1 c2 is entered to perform merge processing, the information is changed as follows:

• Full path name of job definition script: Full path name of c1
• Test count: Test count for c1 + test count for c2
• Coverage information collection start date and time: The start date and time for c1 or c2, whichever was earlier

• Coverage information collection end date and time: The end date and time for c1 or c2, whichever was later

3.10.6 Coverage auto-acquisition functionality
The coverage auto-acquisition functionality enables you to collect coverage information without having to change
parameters in the adshexec command.

If you use the environment setting parameters listed below to set the coverage information to be collected, there is no
need to specify the -t option for collecting coverage information when you execute batch jobs with the adshexec
command.

• BATCH_CVR parameter: Specifies that the coverage auto-acquisition functionality is to be used.

• ASC_FILE parameter: Defines the naming rules for accumulation files used by the coverage auto-acquisition
functionality.

The following shows an example of specifying the adshexec command:

adshexec job-definition-script-name.ash

This command executes the specified job definition script without having to specify the options (-t and -o) for
collecting coverage information.

When the coverage auto-acquisition functionality is used, the -t option cannot be specified in the adshexec command.
If the adshexec command is executed with the -t option specified in such a case (such as adshexec -t
sample.ash), it will terminate with an error and set return code 1.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 285

You collect the coverage information by specifying #-adsh_conf BATCH_CVR YES in the environment file.

When the coverage function is enabled by the coverage auto-acquisition functionality, the asc files (coverage
information files) are output to the current directory in which each command was executed.

If #-adsh_conf ASC_FILE cvr/ver001-* is specified in the environment file, the above command produces
the same results as when adshexec -t -o cvr/ver001-job-definition-script-name job-definition-script-
name.ash is executed.

If the current directory differs for each command, the asc files are created in various directories. By specifying #-
adsh_conf ASC_FILE, you can designate a specific directory to which the asc files are to be output. You can also
standardize the asc file names.

For details about the settings in the environment files, see 2.6.11 Enabling coverage information collection without
having to specify the option during batch job execution.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 286

3.11 Forcibly terminating jobs

This section explains forced termination of jobs.

3.11.1 How to forcibly terminate jobs

(1) How to forcibly terminate a job
There are two ways to forcibly terminate a job:

• If the job was started from JP1/AJS, use JP1/AJS's forced termination procedure.
To be able to forcibly terminate from JP1/AJS a job for a job icon that was executed in Windows or UNIX, you must
have specified the AJS_BJEX_STOP=TERM environment variable beforehand. For details about jobs for job icons
that are run in Windows or UNIX, see 2.7.2 Defining and executing a jobnet.

• Send a termination request signal to the adshexec command's process. In Windows, you can use a command such
as taskkill to terminate the adshexec process.

When a job is forcibly terminated, the job controller forcibly terminates its child or descendant process that are executing.
For details, see (2) Forcibly terminating child or descendant processes.

After forcibly terminating the child or descendant process, the job controller performs postprocessing on the allocated
files, and then terminates the job without executing any subsequent job steps or commands. The job controller does not
execute a subsequent job step even if abnormal or always is specified in its run attribute. In UNIX, when a job is
forcibly terminated, the adshexec command terminates with an error by signal. For details about the job processing
in UNIX when SIGTERM is received, see 3.11.2 Processing when signals are received (UNIX only). For details about
the job processing in Windows when jobs are forcibly terminated, see 3.11.3 Job processing during forced termination
(Windows only).

Important
In Windows, when the adshexec command is started, the adshexecsub command is also started, and
when the adshexec command is forcibly terminated, the adshexecsub command is also terminated.
Therefore, do not forcibly terminate the adshexecsub command. If an attempt is made to forcibly
terminate the adshexecsub command, the following events might occur:

• A descendant process that is executing might not terminate.

• Temporary files might remain in the system.

If these events occur, use the taskkill command or the task manager to forcibly terminate the descendant
process and delete the temporary files manually.

Important
Because the job controller of JP1/Advanced Shell in a Windows environment uses job objects to forcibly
terminate descendant processes, note the following:

• A child process generated by the job controller cannot be associated with a job object.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 287

• If a job controller process has already been associated with a job object, forcibly terminating the job
will not terminate processes generated by child processes of the job controller.

Important
In Windows, if a job that executes an external command and generates a child process is terminated forcibly
and more than 255 processes that are at its grandchild or lower levels exist concurrently, the KNAX6381-
E message might be issued and renaming of the spool job directory might fail. Note the following three
points about this:

• To reference a spool job directory that has failed, use the directory name displayed in the immediately
following KNAX6382-I message that is issued.

• A spool job directory whose renaming has failed cannot be deleted by the adshhk command. If
necessary, delete it manually.

• In the case of a job that has failed in renaming a spool job directory in the execution environment, job
definition script operation information is not output by the adshevtout command.

(2) Forcibly terminating child or descendant processes
If a job is forcibly terminated, the job controller forcibly terminates its child or descendant processes, and then terminates
the job.

(a) In UNIX
How child or descendant processes are forcibly terminated depends on the job input mode, as described in the following:

• Terminal input mode
SIGTERM is sent only to the child processes of the adshexec command. SIGTERM is not sent to any of the
descendant processes of the adshexec command, including grandchild processes. If you want to perform
postprocessing on these processes, use one of the following methods to create and execute a job:

• If the user creates external commands, design the external commands to perform postprocessing on the
descendant processes, for example, by automatically sending SIGTERM also to the descendant processes after
SIGTERM is received.

• When a job is forcibly terminated in the terminal input mode, not only the adshexec command but all the
descendant processes, including grandchild processes, are subject to operations such as Ctrl+C and Ctrl+\.

If grandchild processes remain after forced termination, use the ps command to obtain the process IDs of the
remaining processes, and then manually terminate them with the kill command.

• Non-terminal input mode
SIGTERM is sent to the descendant processes of the adshexec command.

(b) In Windows
The TerminateProcess and TerminateJobObject functions are used to forcibly terminate the descendant
processes of the adshexec command. The forced termination method is the same regardless of the job input mode.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 288

(3) Notes about operations including Ctrl+C (UNIX only)
If a job is executed in the non-terminal input mode, operation such as Ctrl+C and Ctrl+\ might not be able to terminate
simultaneously the root job, child jobs, and other external commands that were started.# If you wish to forcibly terminate
these jobs and commands all at once, use the kill command to send a termination request signal such as SIGTERM
to the root job immediately under the login shell.

#
If a job is executed in the non-terminal input mode, the adshexec command's process and its child processes
belong to separate process groups. Therefore, if an operation such as Ctrl+C or Ctrl+\ is performed from the login
shell while the job is executing, SIGINT or SIGQUIT is sent only to the process group currently running in the
foreground.
The jobs and external commands running as descendant processes of the job that received the signal are forcibly
terminated, but those jobs and external commands running as higher processes, including the parent process, are not
forcibly terminated.

3.11.2 Processing when signals are received (UNIX only)
This subsection explains the processing that occurs when the job controller has received signals during normal execution
and during debug execution.

(1) During normal execution
This subsection explains for the SIGTERM signal and for other signals the processing that occurs when the job controller
has received signals during normal execution.

(a) SIGTERM
The processing that occurs when SIGTERM has been received depends on the specified TRAP_ACTION_SIGTERM
environment setting parameter.

Table 3-10: When DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting
parameter#1

When an operation is not defined with the trap command When an operation is
defined with the trap
command

• If the root job received SIGTERM
First time: Outputs a message, performs postprocessing, and then terminates without performing any
subsequent processing. If the root job was not started from JP1/AJS, the root job sends SIGTERM to
itself and then terminates with the signal.
Second time: Terminates immediately.

• If a child job received SIGTERM
The child job that received SIGTERM outputs a message, performs postprocessing, and then terminates
itself without performing any subsequent processing. In this case, the child job sends SIGTERM to itself
and then terminates with the signal.#2

Operation cannot be defined
with the trap command.#3

#1
This includes when the TRAP_ACTION_SIGTERM environment setting parameter is not specified.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 289

#2
For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received.

#3
When the action for SIGTERM is specified by the trap command, the job terminates with a trap command error.

Table 3-11: When TERM is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

When an operation is not defined with the trap command When an operation is defined the trap
command

• If the root job received SIGTERM
First time: Outputs a message, performs postprocessing, and then terminates
without performing any subsequent processing. If the root job was not started from
JP1/AJS, the root job sends SIGTERM to itself and then terminates with the signal.
Second time: Terminates immediately.

• If a child job received SIGTERM
The child job that received SIGTERM outputs a message, performs postprocessing,
and then terminates itself without performing any subsequent processing. In this
case, the child job sends SIGTERM to itself and then terminates with the signal.
The parent job of the child job performs subsequent processing according to the
results of the child process that terminated with termination code 128 + signal
number of SIGTERM.#

• If the root job received SIGTERM
Outputs a message and then executes the action
defined for SIGTERM with the trap command.
After executing the action, the root job terminates
without performing any subsequent processing. If
the root job was not started from JP1/AJS, the root
job sends SIGTERM to itself and then terminates
with the signal.

• If a child job received SIGTERM
Outputs a message and then executes the action
defined for SIGTERM with the trap command.
After executing the action, the child job
terminates without performing any subsequent
processing.
The parent job of the child job performs
subsequent processing according to the results of
the child process that received SIGTERM.#

#
For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received.

Table 3-12: When CONT is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

Job start method When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Started from JP1/AJS
(Started from a custom job or with TERM set in the
AJS_BJEX_STOP environment variable)

The job definition script is not run and the job terminates with an error (error during
environment file analysis).

Started using a method that does not involve
JP1/AJS
(Started with a method other than the above)

• If the root job received SIGTERM
First time: Outputs a message,
performs postprocessing, and then
terminates without performing any
subsequent processing. The root
job sends SIGTERM to itself and
then terminates with the signal.
Second time: Terminates
immediately.

• If a child job received SIGTERM
The behavior of a child job that has
received SIGTERM is the same as
that of the root job.

• If the root job received SIGTERM
Outputs a message and then executes the
action defined for SIGTERM with the
trap command. After executing the
action, the root job performs any
subsequent processing in the job
definition script.

• If a child job received SIGTERM
The behavior of a child job that has
received SIGTERM is the same as that of
the root job.
The parent job of the child job performs
subsequent processing according to the

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 290

Job start method When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Started using a method that does not involve
JP1/AJS
(Started with a method other than the above)

The parent job of the child job
performs subsequent processing
according to the results of the child
process that terminated with
termination code 128 + signal
number of SIGTERM.#

results of the child process that received
SIGTERM.#

#
For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received..

Table 3-13: When AUTO is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

Job start method When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Started from JP1/AJS
(Started from a custom job or with TERM set in the
AJS_BJEX_STOP environment variable)

Same processing as when TERM is specified

Started using a method that does not involve
JP1/AJS
(Started with a method other than the above)

Same processing as when CONT is specified

(b) Other than SIGTERM
Table 3-14: Processing when signals are received

Type of signal When an operation is not defined
with the trap command

When an operation is defined the trap
command

Termination
request signal

SIGHUP, SIGINT,
SIGXCPU, SIGXFSZ,
SIGQUIT, SIGUSR1,
SIGUSR2, SIGPIPE,
SIGALRM, SIGVTALRM,
SIGPROF

• If the root job received the signal
Performs postprocessing, such as
termination of descendant processes and
deletion of temporary files, and then
terminates with an error by signal
without executing any subsequent
instruction.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

SIGMSG, SIGDANGER,
SIGMIGRATE, SIGPRE,
SIGVIRT, SIGALRM1,
SIGRECONFIG,
SIGCPUFAIL, SIGGRANT,
SIGRETRACT, SIGSOUND

Same as above.
(AIX only)

Same as above.
(AIX only)

SIGLOST Same as above.
(HP-UX and Solaris only)

Same as above.
(HP-UX and Solaris only)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 291

Type of signal When an operation is not defined
with the trap command

When an operation is defined the trap
command

Error
notification
signal

SIGILL, SIGTRAP,
SIGABRT, SIGFPE,
SIGBUS, SIGSEGV,
SIGSYS

• If the root job received the signal
Terminates the program according to the
default OS processing for the
corresponding signal.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

SIGIOT, SIGEMT Same as above.
(AIX, HP-UX, and Solaris only)

Same as above.
(AIX, HP-UX, and Solaris only)

SIGLOST Same as above.
(AIX only)

Same as above.
(AIX only)

Other • If the root job received the signal
Depends on the default OS processing
for the corresponding signal.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.#2

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

#1

• For details about the behavior of child jobs when signals are received, see (3) Behavior of child jobs when signals
are received.

#2

• For SIGKILL and SIGSTOP, the trap command cannot be used to define an operation.

• For SIGWAITING, the trap command cannot be used to define an operation (AIX only).

Important
If you set - for the operation when you are using the trap command, the operation to be performed when
signals are received is reset to the default.

With some signals, the operation during debug execution differs from that described in the tables. For details
about the differences in signal processing depending on whether an operation is defined with the trap
command, see (2) During debug execution.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 292

(2) During debug execution
Table 3-15: Processing when signals are received during debug execution

Type of signal When an operation is not defined
with the trap command

When an operation is defined with the
trap command

SIGINT The debugger terminates execution of
the job definition script and then waits
for entry of a command.#

The debugger terminates execution of the job
definition script and then waits for entry of a
command.#

The processing depends on the operation
defined by the trap command.

SIGCHLD, SIGTSTP, SIGTTOU, SIGURG,
SIGWINCH, SIGIO, SIGPWR

Performs the next processing. The processing depends on the operation
defined by the trap command.

SIGSTKFLT
(Linux only)

SIGWAITING, SIGLWP, SIGFREEZE,
SIGTHAW, SIGCANCEL, SIGXRES, SIGJVM1,
SIGJVM2
(Solaris only)

Real-time signal
(HP-UX, Linux, and Solaris only)

#
For details about terminating a job definition script, see 6.2 CUI debugger (UNIX only).

3.11.3 Job processing during forced termination (Windows only)
The following table describes job processing in Windows during forced termination.

If you use the trap command to define processing for immediate termination of a process by using a function such as
TerminateProcess, specify TERM in the TRAP_ACTION_SIGTERM parameter.

Table 3-16: Job processing during forced termination

Forced termination method When an operation is not
defined with the trap
command

When an operation is
defined with the trap
command

Control signal CTRL + C
CTRL + BREAK
CTRL_CLOSE_EVENT

The control signal is sent to all
process groups that are running
as the root job, child jobs, and
commands.
• Processing of the root job

(adshexec.exe) that
received the control signal
Child process
adshexecsub.exe
performs postprocessing,
and then terminates
without executing
subsequent scripts.
adshexec.exe that
received the control signal
waits for termination of the

Operation cannot be defined
with the trap command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 293

Forced termination method When an operation is not
defined with the trap
command

When an operation is
defined with the trap
command

Control signal CTRL + C
CTRL + BREAK
CTRL_CLOSE_EVENT

child process, and then
terminates itself.

• Processing of the root job
(adshexecsub.exe)
that received the control
signal and its child jobs
adshexecsub.exe that
received the control signal
outputs the KNAX7896-I
message, performs
postprocessing, and then
terminates without
executing subsequent
scripts.

Operation cannot be defined
with the trap command.

CTRL_LOGOFF_EVENT Terminates immediately
without performing
postprocessing because OS
logoff and shutdown
processing take precedence.

Operation cannot be defined
with the trap command.

CTRL_SHUTDOWN_EVENT

Immediate termination of process by a means such as
TerminateProcess

• If the root job
(adshexec.exe) is
subject to immediate
termination
The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of its child processes and
the child jobs perform
postprocessing, and then
terminate without
executing subsequent
scripts.

• If the root job
(adshexecsub.exe) is
subject to immediate
termination
The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

• If a child job is subject to
immediate termination
The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing

• If the root job
(adshexec.exe) is
subject to immediate
termination
The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of its child processes and
the child jobs perform the
operation defined with the
trap command, perform
postprocessing, and then
terminate.

• If the root job
(adshexecsub.exe) is
subject to immediate
termination
The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

• If a child job is subject to
immediate termination
The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 294

Forced termination method When an operation is not
defined with the trap
command

When an operation is
defined with the trap
command

Immediate termination of process by a means such as
TerminateProcess

that occurs when a child
process is terminated with
an error and return code 1.

that occurs when a child
process is terminated with
an error and return code 1.

Note
When the trap command is used and - is set for the operation, the command resets the previously specified action
setting for the specified method so that the method is not associated with any action setting.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 295

3.12 Using the application-execution agent functionality (only for the
Windows execution environment)

The application-execution agent functionality enables the application to be operated in the logon area (console
application, batch program and choice command, etc.) as the execution application.

JP1/AJS displays the GUI by using this function and enables the executable application that is waiting for input to be
executed as a job.

3.12.1 Prerequisites
Log in as the user who will be executing the job.

3.12.2 Execution methods
The execution method is as follows for an example where notepad.exe, a standard Windows application, is used as
the executable application that is executed from a PC job of JP1/AJS.

1. Define the PC job of JP1/AJS.

• When waiting for the executable application to finish:
Specify the GUI application execution program (installation folder\JP1ASE\bin\adshappexec.exe) of
JP1/Advanced Shell for the name of the executable file.
Specify the -w and executable application name for the parameter. In this example, "-w notepad.exe" is
specified.

• When not waiting for the executable application to finish:
Specify the GUI application execution program (installation folder\JP1ASE\bin\adshappexec.exe) of
JP1/Advanced Shell for the name of the executable file.
Specify the -n and executable application name for the parameter. In this example, "-n notepad.exe" is
specified.

2. Start up the application execution agent.
Log in as the user who will be executing the job of JP1/AJS and conduct the following actions.
If you select All Programs > Advanced Shell > Application Execution Agent from Start menu of Windows, the
Application Execution Agent icon appears in the notification area of the Task bar.

If the application execution agent has been registered as a startup, this operation is not required.

3. Execute the job of JP1/AJS.

• When waiting for the executable application to finish:
When the job of JP1/AJS is executed, notepad.exe starts.
When notepad.exe is closed, the job finishes.

• When not waiting for the executable application to finish:
The job finishes without waiting for notepad.exe to close.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 296

3.12.3 Operation of the application execution agent
Operation of the application execution agent is as follows:

(1) Left-click menu of icon
If you left-click the Application Execution Agent icon, the currently running executable application appears in the
Pop-Up Menu.

The Pop-Up menu appears in the following format:

Execution status [Execution ID of job of JP1/AJS] Name to be displayed

If the entry outputting the executable application information is selected, the Task bar of the selected executable
application blinks for 5 seconds and runs in the foreground.

If the window had been minimized, the window will stay minimized.

Some executable applications might not run in the foreground, including executable applications without a GUI.

Messages that are displayed in pop-ups are as follows:

Execution status If nothing appears, the executable application is starting properly.

An entry that displays " " indicates that the job has been terminated by such as forced termination
from JP1/AJS while the executable application is starting.

We recommend terminating executable applications for which " " is displayed.

Due to being subject to the number of the adshappexec commands to be executed concurrently, a
waiting status will occur with the start of the adshappexec command if the number of number of
commands to be executed concurrently increases.

Execution ID of the job of JP1/AJS The execution ID of the JP1/AJS job starting the executable application is displayed. If the
adshappexec command has not been started from JP1/AJS or the execution ID of the job of JP1/
AJS has not been requested, "-----" is displayed.
If the adshappexec command is executed from JP1/AJS, the execution ID of the JP1/AJS job is
displayed even if the command has been started from a job definition script.

Name to be displayed The name of the running executable application to be displayed (the content specified with the -v
argument of the adshappexec command) appears.
If the -v argument has been omitted in the adshappexec command, the executable application
name will appear.

Termination Select this option if not using the application-execution agent functionality. Terminates the application
execution agent and deletes the [Application Execution Agent] icon from the notification area of the
task bar.

While the displayed order is the order of storage in the shared memory, this order might vary as registrations are made
upon searching for free space.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 297

If the entry displaying the executable application information is selected, the selected executable application can be run
in the foreground. Some executable applications may not be able to run in the foreground including executable
applications without a GUI.

(2) Right-click menu of the icon
If you right-click the Application Execution Agent icon, the following pop-up menu is displayed.

Contents that are displayed in the pop-up menu are as follows:

Startup registration Register the application execution agent for startup. If the startup is not registered, "Startup Registration" is
activated and the application execution agent can be registered in startup.
If the application execution agent has already been registered for startup, "Startup Registration" is deactivated
and the application execution agent cannot be registered in startup.

Startup cancellation Delete the application execution agent from startup. If the startup is registered, "Startup Registration" is
deactivated and the application execution agent can be deleted from startup.
If the startup is not registered, "Startup Registration" is deactivated and startup cannot be canceled.

Termination Select this option if not using the application-execution agent functionality. Terminate the application
execution agent and delete the Application Execution Agent icon from the notification area of the Task bar.

3.12.4 Notes
• When uninstalling, finish the application execution agent, log in as the user who registered the application execution

agent in startup and then delete the application execution agent registered in startup.
If you uninstall without deleting the application execution agent registered in startup, install JP1/Advanced Shell
again, log in as the user that startup remains and then delete the application execution agent remains in startup.

• If a user manually adds the application execution agent to startup, it is unnecessary to newly add the application
execution agent to startup. If the application execution agent is added, the application execution agent starts doubly
at the time of login.

• For the following cases, the executable application might not blink or run in the foreground even if the Application
Execution Agent icon is left-clicked.

1. Executable application that does not have GUI

2. Items that took time to initialize the executable application (5 seconds or longer)

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 298

3.13 Specifying a spool job name

When a job ends, the spool job directory is renamed to job-ID-spool-job-name. The spool job name used in the new
spool job directory name is a job name of JP1/Advanced Shell. However, you can use the ADSH_SPOOL_JOBNAME
shell variable to specify a desired character string as a spool job name.

Shell variable name Value to be specified

ADSH_SPOOL_JOBNAME Specify the spool job name that is to be used for renaming the spool job directory.
If the shell variable is used as a local variable in a function, the specified value is not used for renaming
the spool job directory.

When the spool job directory is renamed at the end of a job, the value specified in this shell variable is used as the spool
job name. If this shell variable is not specified, the job name of JP1/Advanced Shell is used to rename the directory.

The spool job name must consist of only characters that can be used in a directory name. Also, specify the spool job
name so that the path name of each file in the spool directory must not be longer than the maximum length. If these
rules are violated, the spool job directory cannot be renamed. Note that if the spool job name specified in the
ADSH_SPOOL_JOBNAME shell variable includes the following characters, they are replaced by underscores (_) when
the spool job directory is renamed.

Characters replaced by underscores Forward slashes (/), backslashes (\), and periods (.)

If invalid multibyte characters are included, they are replaced by underscores (_) on a byte-by-byte basis when the spool
job directory is renamed.

3.13.1 Examples
The following shows an example of specifying a spool job name in the initialization script.

In the initialization script, a part of the JP1/AJS job name specified in the AJSJOBNAME environment variable is
extracted, and is specified for the ADSH_SPOOL_JOBNAME shell variable as a spool job name. If the job is not run
from JP1/AJS or if the extracted part is longer than 100 bytes, the job execution date and time is used as a spool job
name. Note that this behavior applies if BYTE is specified for the VAR_SHELL_GETLENGTH environment setting
parameter. If CHARACTER is specified, the 100-byte limit changes to the 100-character limit.

• Example of the initialization script that extracts the last one of the elements separated by forward slashes (/)
If the value of the AJSJOBNAME environment variable is /user01/AJS-unit-name/PCjob, the spool job
directory name is job-ID-PCjob.

WK="$("${ADSH_DIR_CMD}basename" "$AJSJOBNAME")"
if [[${#WK} -le 100]] && [[${#WK} -ge 1]]
then
 ADSH_SPOOL_JOBNAME="${WK}"
else
 ADSH_SPOOL_JOBNAME="$("${ADSH_DIR_CMD}date" "+%Y%m%d_%H%M%S")"
fi

• Example of the initialization script that extracts the last two elements separated by forward slashes (/), and combines
them with an underscore (_)
If the value of the AJSJOBNAME environment variable is /user01/AJS-unit-name/PCjob, the spool job
directory name is job-ID-AJS-unit-name_PCjob.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 299

SV_IFS="$IFS"
IFS="/"
WK=($AJSJOBNAME)
IFS="$SV_IFS"
i=${#WK[*]}
if [[i -gt 1]] && [["((${#WK[i-1]} + ${#WK[i-2]}))" -le 99]] && [[$
{#WK[i-1]} -ge 1]] && [[${#WK[i-2]} -ge 1]]
then
 ADSH_SPOOL_JOBNAME="${WK[i-2]}_${WK[i-1]}"
else
 ADSH_SPOOL_JOBNAME="$("${ADSH_DIR_CMD}date" "+%Y%m%d_%H%M%S")"
fi

3.13.2 Notes
• You can use the ADSH_SPOOL_JOBNAME shell variable to change the spool job name that is used in the spool job

directory name. However, you cannot use the shell variable to change any JP1/Advanced Shell job names.

• You can use either of the following two methods to change the spool job name of the CUI debugger:

• Specify the new name for the ADSH_SPOOL_JOBNAME environment variable before starting the CUI debugger.

• Use the export environment setting parameter to specify the new name for the ADSH_SPOOL_JOBNAME
environment variable.

• Do not specify the ADSH_SPOOL_JOBNAME shell variable for the -stepVar option of the #-
adsh_step_start extended script command.

3. Executing Batch Jobs

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 300

This chapter explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/
Advanced Shell Editor to develop job definition scripts in a Windows environment. The chapter also
explains how to use the editor to debug job definition script files.

4 Using JP1/Advanced Shell - Developer (Windows
Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 301

4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows
only)

You can create and debug job definition script files in JP1/Advanced Shell's development environment. This section
explains how to start and terminate JP1/Advanced Shell's development environment.

4.1.1 Starting JP1/Advanced Shell - Developer
This subsection explains how to start JP1/Advanced Shell - Developer. You start the editor to create and edit job definition
scripts files. There are two ways to start the editor.

(1) Starting from the Start menu
1. From the Start menu, select All Programs, and then Advanced Shell - Developer.

2. From the Advanced Shell - Developer group, select the Editor icon.

(2) Starting from the right-click menu
1. From Explorer, right-click the job definition script file.

2. Select Edit.

4.1.2 Terminating JP1/Advanced Shell - Developer
To terminate JP1/Advanced Shell - Developer, do one of the following:

• Select File, and then Exit.
• Click the Exit button on the toolbar.

The editor function terminates.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 302

4.2 JP1/Advanced Shell Editor modes (Windows only)

The editor has two modes, the edit mode and the debug mode.

4.2.1 Edit mode
The edit mode is used to create and edit job definition script files. The editor is in this mode when it starts.

4.2.2 Debug mode
The debug mode is used to debug created job definition script files. In this mode, the editor's edit window is grayed-out
and the job definition script cannot be edited. The debug mode supports two functions:

• Syntax checking
Selecting the Check Syntax menu from the Debug menu or clicking the Check Syntax button on the toolbar starts
syntax checking.

• Debug execution
Making the following menu item selection or clicking the following button executes debugging:

• Selecting the Run to Breakpoint item from the Debug menu or clicking the Run to Breakpoint button on the
toolbar

• Selecting the Step In, Step Over, or Step Out item from the Debug menu, or clicking the Step In, Step
Over, or Step Out button on the toolbar

For details about syntax checking, see 4.4.4 Checking syntax. For details about debugging, see 4.4.6 Debugging.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 303

4.3 JP1/Advanced Shell Editor operation (Windows only)

The editor is a program you use to create job definition scripts and to edit existing job definition scripts. This section
explains the JP1/Advanced Shell Editor window that is displayed when the editor starts. The section also explains the
editor's functions by menu item.

The following lists the operations available in the JP1/Advanced Shell Editor window (the applicable section or
subsection number is enclosed in parentheses):

• Creating job definition scripts (4.4.1 Creating job definition scripts)

• Setting up an operating environment for the editor (4.4.2 Setting up an operating environment for the editor)

• Setting up an execution environment for job definition scripts (4.4.3 Setting up an execution environment for job
definition scripts)

• Checking syntax (4.4.4 Checking syntax)

• Searching for and replacing character strings (4.4.5 Searching for and replacing character strings)

• Setting and releasing the breakpoint upon execution of debugging ("4.4.6 Debugging" > "(1) Setting and releasing
breakpoints during debugging")

• Executing and stopping the debugging ("4.4.6 Debugging" > "(2) Performing and canceling debugging")

• Setting and releasing the breakpoint upon execution of debugging ("4.4.6 Debugging" > "(3) Referencing and
updating variable values while debugging")

• Simulating errors ("4.4.6 Debugging" > "(4) Simulating errors")

• Executing the action of the trap command ("4.4.6 Debugging" > "(5) Executing the trap command's action")

• Changing the message output mode#

• Displaying coverage information (4.4.7 Displaying coverage information)

• Editing existing job definition scripts (4.5 Editing existing job definition scripts (Windows only))

• Saving job definition scripts (4.6 Saving job definition scripts (Windows only))

• Printing the contents of job definition script files#

• Undoing the previous operation#

• Redoing the previous operation#

• Cutting a selected character string and saving it on the clipboard#

• Copying a selected character string onto the clipboard#

• Pasting the character string from the clipboard to a specified location#

• Selecting all character strings#

• Jumping to the execution-point line#

• Changing toolbar view/hide settings#

• Switching the appearance of the application#

• Changing the status bar view/hide setting#

• Changing the ruler view/hide setting#

• Changing the vertical scroll bar view/hide setting#

• Changing the horizontal scroll bar view/hide setting#

• Changing the line numbers view/hide setting#

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 304

• Displaying the beginning of the file#

• Displaying the end of the file#

• Displaying Help#

• Using the input support function

#
These operations are not explained in this manual (they are implemented by the standard Windows operating
procedures or by selecting the corresponding items from the applicable menu lists).

4.3.1 JP1/Advanced Shell Editor window
The following figure shows the JP1/Advanced Shell Editor window and the names of the window's components.

Figure 4-1: JP1/Advanced Shell Editor window

(1) Toolbars
The toolbars display buttons for the most frequently used of the commands that can be selected from the menu bar. You
can execute a command by clicking its button on a toolbar. You can also use the View menu to hide the toolbars. Hovering
the mouse cursor over a button displays a description of the button's function.

The following table lists the buttons on the Standard Toolbar and describes their functions.

Button Function

New button Creates a new job definition script file.

Open button Opens an existing job definition script file.

Save button Saves the job definition script file being edited.

Print button Prints the job definition script file being edited.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 305

Button Function

Exit button Terminates JP1/Advanced Shell Editor and enables you to select
whether to save the file.

Help button Displays online help for JP1/Advanced Shell.

Undo button Undo the previous operation.

Redo button Redo the previous operation.

Cut button Cuts a selection and saves it to the clipboard.

Copy button Copies a selection and saves it to the clipboard.

Paste button Pastes the contents of the clipboard to the selected location.

Select All button Selects the entire file.

Option button Enables the operating environment for the editor to be set up.

Check Syntax button Checks the syntax of the entered job definition script.

Run to Breakpoint button Starts and restarts execution up to a breakpoint.

Stop Script button Stops the job definition script. Continues the command whose
execution is underway when the Stop Script button is clicked and
stops the job definition script before the next command is executed.

Quit Debugging button Continues the command whose execution is underway when the Quit
Debugging button is clicked stops the job definition script before the
next command is executed. After this, the job definition script is
stopped to quit debugging.

Step In button Executes the next command or statement one at a time. If a function
is called, this button also executes one line at a time in the function
and then stops execution.

Step Over button Executes the next command or statement one at a time. If a function
is called, this button does not stop after executing one line at a time in
the function but stops when a breakpoint is reached.

Step Out button Executes the script up to the end of a function call. Stops on the line
immediately following the function call or at a breakpoint.

Set/Remove Breakpoint button Sets or releases a breakpoint.

Remove All Breakpoints button Releases all breakpoints that have been set.

Runtime Environment Settings button Sets up the script file execution environment.

View Coverage Information button Displays coverage information during debugging.

Search button Used to enter a character string to be searched or replaced.

Find Previous button Searches up for the character string or replaces it.

Find Next button Searches down for the character string or replaces it.

(2) Ruler
This is a tick-marked bar that displays the horizontally-arranged columns.

(3) Line number area
This area displays the line numbers in a job definition script.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 306

(4) Breakpoint area
This area displays the following symbols: a symbol at the line where a breakpoint is set (), a symbol that indicates
the line that is to execute next (), and a symbol that indicates the line where the debugger process ends ().

(5) Status bar
The status bar displays messages related to the current processing being executed by JP1/Advanced Shell Editor and
messages related to the status after processing has terminated. The following table describes the status bar functions in
the JP1/Advanced Shell Editor window.

Table 4-1: Functions of the status bar in the JP1/Advanced Shell Editor window

Status bar Description

Job ID Displays the job ID of the job that is being debugged.

Position Displays the location of the cursor.

Total lines Displays the total number of lines in the job definition script file being edited.

INS or OVR Displays the overwrite mode that can be switched by toggling the Insert key. The two modes
are the following (where the Insert mode is the default):
• OVR:Overwrite mode
• INS:Insert mode

(6) Client area
The client area displays the job definition script file you are working on.

(7) Message output window
Error messages that are generated while debugging are displayed in the Message output window.

(8) Variable window
Variable names and variable values are displayed in the Variable window while debugging.

4.3.2 Menus in the JP1/Advanced Shell Editor window
This subsection explains the menus displayed on the menu bar and the pop-up menus that are displayed in the JP1/
Advanced Shell Editor window.

(1) Menus on the menu bars
This subsection explains the menus that are displayed in the editor window. The following table lists the menus in the
JP1/Advanced Shell Editor window and describes the functions of the items you can select on these menus.

Table 4-2: Menus in the JP1/Advanced Shell Editor window and their functions

Menu Description

File New Creates a job definition script file.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 307

Menu Description

File Open Enables an existing job definition script file to be opened.

Save Saves the job definition script file being edited.

Save As Saves the job definition script file being edited as a new job definition script file
under a specified name.

Print Prints the job definition script file being edited.

Exit Exits the editor and enables you to select whether the file is to be saved.

(file-name) Opens the file whose name is displayed.
The names of the most recent job definition script files that were saved are
displayed (maximum of nine).

Edit Undo Undoes the previous operation.

Redo Re-executes the previous operation.

Cut Cuts a selection and saves it on the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes the contents of the clipboard to the selected location.

Select All Selects the entire file.

Options Enables an operating environment for the editor to be set up.

Debug Check Syntax Checks the syntax of the job definition script.

Run to Breakpoint Starts and restarts execution up to a breakpoint in the debug mode.

Stop Script Stops execution of the job definition script at the next line. Completes the
command whose execution is underway when Stop Script is selected and stops
the job definition script before the next command executes.

Quit Debugging Completes the command whose execution is underway when Quit Debugging is
selected, stops execution before the next command executes, then stops the job
definition script and cancels debugging.

Step In Executes the next command or statement in the debug mode. If a function is called,
this menu item also executes one line in the function and then stops execution.

Step Over Executes the next command or statement in the debug mode. If a function is called,
this menu item does not stop after executing one line in the function, but stops
only when a breakpoint is reached.

Step Out Executes through the end of a function call and stops on the line immediately
following the function call or at a breakpoint.

Set or Remove Breakpoint Sets a breakpoint or releases the selected breakpoint.

Remove All Breakpoints Releases all breakpoints that have been set.

Runtime Environment
Settings

Sets up a script file execution environment.

Add Variable to Watch List Adds a specified variable to the Watch List window.

Fault Injection Mode Enables or disables the fault injection mode while execution of the job definition
script is stopped.

Execute a trap action Executes the trap command's action and continues processing up to a
breakpoint.

Message output mode You can switch the message output mode of the script that is being executed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 308

Menu Description

Debug Jump to the currently
executing line

Jumps to the line that is executing currently.

View Toolbar and docking window
> Toolbar

You can display/hide the toolbar.

Toolbar and docking window
> Message output

You can display/hide the Message output window.

Toolbar and docking window
> Variable name and variable
value

You can display/hide the Variable window.

Status Bar Changes the view/hide setting for the status bar.

Appearance of application You can change the appearance of the window.

Ruler Changes the view/hide setting for the ruler.

Vertical Scrollbar Changes the view/hide setting for the vertical scrollbar.

Horizontal Scrollbar Changes the view/hide setting for the horizontal scrollbar.

Show Line Numbers Changes the view/hide settings for the line number.

Show First Line Displays the first line of the job definition script file.

Show Last Line Displays the last line of the job definition script file.

View Coverage Information Displays coverage information during debugging.

Search Search for Enables entry of a character string to be searched for.

Replace with Enables entry of a character string that is to be searched for and a character string
that is to replace the retrieved character string.

Find Previous Searches for the search character string in the up direction.

Find Next Searches for the search character string in the down direction.

Help Open Help Displays Help for JP1/Advanced Shell.

Display usage example Usage examples are displayed as input support functions.

About Displays program information, version, and copyright information.

(2) Pop-up menus
Clicking the mouse's right button while the cursor is in the client area of the JP1/Advanced Shell Editor window displays
a pop-up menu. The pop-up menu's contents depend on whether the mode is the edit mode or the debug mode.

• Pop-up menu in the edit mode
The following table lists and describes the pop-up menu items that are displayed in the edit mode.

Pop-up menu item Description

New Creates a job definition script file.

Open Enables an existing job definition script file to be opened.

Save Saves the job definition script file being edited.

Undo Undoes the previous operation.

Redo Re-executes the previous operation.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 309

Pop-up menu item Description

Cut Cuts a selection and saves it on the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes the contents of the clipboard to the selected location.

Select All Selects the entire file.

• Pop-up menu in the debug mode
The following table lists and describes the pop-up menu items that are displayed in the debug mode.

Pop-up menu item Description

Copy Copies a selection to the clipboard.

Set/Remove Breakpoint Sets a breakpoint or releases the selected breakpoint.

4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window
This subsection explains the mouse and key operations in the JP1/Advanced Shell Editor window.

(1) Mouse operations
The following table describes the mouse operations in the client area of the JP1/Advanced Shell Editor window.

Table 4-3: Mouse operations in the JP1/Advanced Shell Editor window

Operation Description

Click Selects a target for an operation or releases an existing selection.

Double-click Selects a character string.

Right-click Displays a pop-up menu.

(2) Key operations
The following table describes the key operations while the cursor is positioned in the client area of the JP1/Advanced
Shell Editor window and indicates the modes in which each operation is applicable.

Table 4-4: Key operations in the JP1/Advanced Shell Editor window

Operation Edit mode Debug mode Description

Ctrl+A Y Y Selects the entire file.

Ctrl+C Y Y Copies a selection.

Ctrl+E Y N Sets up a script file execution environment.

Ctrl+F Y P Enables entry of a character string to be searched for.

Ctrl+H Y N Enables entry of a character string to be searched for and a
character string that is to replace the retrieved character string.

Ctrl+K
Ctrl+F1

Y Y Usage examples are displayed as input support functions.

Ctrl+N Y N Creates a job definition script file.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 310

Operation Edit mode Debug mode Description

Ctrl+O Y N Enables an existing job definition script file to be opened.

Ctrl+P Y N Prints the job definition script file being edited.

Ctrl+S Y N Saves the job definition script file being edited.

Ctrl+V Y N Pastes the contents of the clipboard to the selected location.

Ctrl+X Y N Cuts a selection.

Ctrl+Z Y N Undoes the previous operation.

Ctrl+Home Y Y Displays the first line of the job definition script file.

Ctrl+End Y Y Displays the last line of the job definition script file.

F1 Y Y Displays Help for JP1/Advanced Shell.

F3 Y P Searches for a character string in the down direction.

F5 Y Y Starts and restarts execution up to a breakpoint.

F7 Y N Checks the syntax of the job definition script.

F9 Y Y Sets a breakpoint or releases the selected breakpoint.

F11 Y Y Executes the next command or statement. If a function is called,
this key also executes one line in the function and then stops
execution.

Alt+F4 Y Y Exits JP1/Advanced Shell Editor and enables whether the file is to
be saved to be specified.

Shift+F3 Y P Searches for a character string in the up direction.

Shift+F5 N Y Terminates the job definition script and cancels debugging.

Shift+F9 Y Y Releases all breakpoints that have been set.

Shift+F11 Y Y Executes through the end of a function call and stops on the line
immediately following the function call or at a breakpoint.

Shift+Ctrl+F11 Y Y Executes the next command or statement. If a function is called,
this key does not stop after executing one line in the function, but
stops only when a breakpoint is reached.

Shift+Ctrl+Z Y N Re-executes the previous operation.

Enter Y N Creates a new line by copying the spaces and tabs from the
beginning of the selected line. If an end-of-line code is entered after
{, this key adds a tab to the next line and } on the following line.

Legend:
Y: Applicable
P: Partially applicable
N: Not applicable

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 311

4.4 Creating job definition scripts (Windows only)

This section explains how to create job definition scripts in JP1/Advanced Shell Editor.

4.4.1 Creating job definition scripts
To create a job definition script:

1. From the File menu, select New.
A new JP1/Advanced Shell Editor window is displayed.

4.4.2 Setting up an operating environment for the editor
To set up an operating environment for the editor:

1. From the Edit menu, select Options.
The Options (Format) dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.1 Options (Format) dialog box.

2. Specify the format-related settings.

3. Click the Colors tab.
The Options (Colors) dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 312

4. Specify the display color information.
To reset the display colors to the defaults, click the Reset to Default button.
For details about how to specify settings in this dialog box, see 4.7.2 Options (Colors) dialog box.

5. Click the OK button.
An operating environment is now set up for the editor, and the dialog box closes.

4.4.3 Setting up an execution environment for job definition scripts
You can specify for each job definition script file run-time parameters, a run-time directory, a job environment file, and
a logical host. The specified information is stored in the debugging information file.

To set up an execution environment for a job definition script:

1. From the Debug menu, select Runtime Environment Settings.
The Runtime Environment Settings dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 313

For details about how to specify settings in this dialog box, see 4.7.3 Runtime Environment Settings dialog box.

2. Click the OK button.
An execution environment is now set up, and the dialog box closes.
If Do not accumulate is selected in Coverage information, coverage information will not be collected.

4.4.4 Checking syntax
You can check the syntax of a job definition script file. The editor checks for any syntax errors, but does not execute
the script. Coverage information is not collected even if the option for accumulating coverage information is specified
(this corresponds to the -c option in the adshexec command).

The console is not displayed. Errors are displayed in the Error List window.

To check syntax:

1. From the Debug menu, select Check Syntax.
The editor is placed in the debug mode and starts syntax checking.
The window will be grayed out while syntax checking is underway.

• Display during syntax checking

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 314

• Display when syntax checking has been completed
If any syntax errors are detected, information about the errors is displayed in the Message output window.

2. Check the information displayed in the Message output window.
For details about the Message output window, see 4.7.5 Message output window.

Notes:

• In the debug mode, the menus are grayed out and Check Syntax cannot be selected from the Debug menu.

• If you attempt to perform a syntax check on a job definition script file that does not yet have a name, the Save
As dialog box for specifying a name for the file and saving it will be displayed. A syntax check cannot be
performed for such a file until it is saved with a new job definition script file name (.ash).

• If the contents of the job definition script file have changed, a message asking whether the file is to be updated
is displayed. To update the file, save it, and then perform the syntax check.

4.4.5 Searching for and replacing character strings
This subsection explains how to search for and replace character strings in job definition script files.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 315

(1) Searching for character strings
To search a job definition script file for a character string:

1. From the Search menu, select Search.
The Search dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.4 Search dialog box.

2. Make sure that the Replace check box is not selected.
If the Replace check box is selected, clear it.

3. In Search for, enter the character string to be searched for. If necessary, select the Match case and Find whole
words only check boxes.

4. Click the Find Previous or Find Next button.
The specified character string is searched for. If there is no matching character string, the editor sounds a beep tone.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 316

5. To end the search, click the Cancel button.
The Search dialog box closes.

(2) Replacing character strings
To replace a character string in a job definition script file:

1. From the Search menu, select Replace.
The Search dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.4 Search dialog box.

2. Make sure that the Replace check box is selected.
If the Replace check box is not selected, select it.

3. In Search for, enter the character string to be searched for and replaced. If necessary, select the Match case and
Find whole words only check boxes.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 317

4. In Replace with, enter the character string that is to replace the specified Search for character string.

5. Click the Find Previous or Find Next button.
The editor starts searching for the specified Search for character string and replacing it with the specified Replace
with character string. If there is no character string to be replaced, the editor sounds a beep tone.

6. To end the replace operation, click the Cancel button.
The Search dialog box closes.

4.4.6 Debugging
Checking the behavior of a job definition script file is called debugging.

This is equivalent to the adshexec command with the -d option specified. The console is displayed while debugging
is being performed. Error messages are displayed in the Error List window.

There are two ways to perform debugging:

Method Operation Overview

Execution From the Debug menu, select Run to Breakpoint. Starts and restarts execution up to a
breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 318

Method Operation Overview

Step-by-step execution From the Debug menu, select Step In. Executes one line of the job definition script,
and then stops execution. If a function is
called, the editor also executes one line in the
function and stops execution.

From the Debug menu, select Step Over. Executes one line of the job definition script
and then stops execution. If a function is
called, the editor does not stop after executing
a single line in the function, but stops only
when a breakpoint is reached.

From the Debug menu, select Step Out. Stops on the line immediately following a
function call or at a breakpoint.

Notes:

• If you attempt to debug a job definition script file that does not yet have a name, the Save As dialog box for
specifying a name for the file and saving it will be displayed. A file cannot be debugged until it is saved with a
new job definition script file name (.ash).

• If the contents of the job definition script file have changed, a message asking whether the file is to be updated
is displayed. If you update the file, you can then debug it.

• If the editor is forcibly terminated during debugging (because, for example, End now is selected in the Exit the
Program dialog box), the debugger's adshesub.exe process might keep running and the console might remain
displayed. If this happens, terminate the adshesub.exe process with the taskkill command or from the
task manager.

(1) Setting and releasing breakpoints during debugging
You set breakpoints at locations where you want execution to stop temporarily during debugging. You can also release
breakpoints that have been set.

Because JP1/Advanced Shell Editor sets a breakpoint at the line where the cursor is located, breakpoints cannot be set
in external scripts. Even if breakpoints have already been set in an external script, execution will not stop at such
breakpoints. You can set a maximum of 999 breakpoints.

(a) Setting breakpoints
To set a breakpoint:

1. Move the cursor to the line where you want to set a breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 319

2. From the Debug menu, select Set Breakpoint.
A breakpoint is set at the line where the cursor is located. The symbol is displayed on the left end of the line
to indicate that a breakpoint has been set. The job definition script executes up to, but not including, the line where
the breakpoint is set and then stops.

(b) Removing a breakpoint
To remove a breakpoint:

1. Move the cursor to the line where a breakpoint is to be removed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 320

2. From the Debug menu, select Remove Breakpoint.
The breakpoint is removed from the line where the cursor is located.

(c) Removing all breakpoints
To remove all breakpoints:

1. Display a job definition script in which breakpoints are set.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 321

2. From the Debug menu, select Remove All Breakpoints.
All breakpoints are removed from the displayed job definition script file.

Notes:

• You can set a breakpoint at any line while you are in the edit mode. In the debug mode, a breakpoint can be set
only on a line for a command or a statement that is to be executed.

• If a breakpoint is set on a non-execution line, the editor searches downwards in the script file for an appropriate
location for a breakpoint and sets a breakpoint on that line when the debug mode begins.

• You can set a maximum of 999 breakpoints.

(2) Performing and canceling debugging

(a) Debugging up to a breakpoint
To debug up to a breakpoint:

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 322

1. From the Debug menu, select Run to Breakpoint, or on the toolbar, click the Run to Breakpoint button.

JP1/Advanced Shell Editor is placed in the debug mode and begins debugging. A symbol () indicating the next
location to be executed is displayed to the left of the corresponding line. Comment lines and lines containing only
spaces are ignored.
Execution stops temporarily when the script has executed through the line preceding a line on which a breakpoint
() is set.

For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

When executing the last line of the job definition script, the symbol () indicating completion of debugging
process appears.

2. To stop the job definition script that is being executed, select Debug > Stop Script menu or click the Stop Script
button on the tool bar.
Continues the command whose execution is underway when the Stop Script button is clicked and stops the job
definition script before the next command is executed.

3. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 323

(b) Executing one line at a time (performing step-by-step execution in functions)
To execute one line at time and perform step-by-step execution in functions:

1. From the Debug menu, select Step In, or on the toolbar, click the Step In button.
The editor is placed in the debug mode and begins debugging.
Unlike CUI, when an external script is executed, execution does not stop within the external script. Execution stops
when it reaches the next command in the job definition script being displayed by the editor.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 324

2. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

(c) Executing one line at a time (not performing step-by-step execution in functions)
To execute one line at a time and not perform step-by-step execution in functions:

1. From the Debug menu, select Step Over, or on the toolbar, click the Step Over button.
The editor is placed in the debug mode and begins debugging.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 325

2. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

(d) Executing through the end of a function
To execute through the end of a function:

1. From the Debug menu, select Step Out, or on the toolbar, click the Step Out button.
The editor is placed in the debug mode and begins debugging.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 326

(3) Referencing and updating variable values while debugging
The variable name and value of the variable are updated and displayed in the Variable window when the job definition
script stops.

You can change the field value by selecting the variable range. You can return a field value to the value before editing
by pressing the Esc key while editing the value.

For a variable of the read only attribute, the variable name and value of the variable are displayed in a light color. In
this case, the value of variable cannot be changed.

If you attempt to set a value other than an integer value to a variable that is declared as an integer type, the value will
return to the previous value. In addition, 0 is set when you specify null character.

(4) Simulating errors
The C1 execution percentage rate might not be 100%, even when all execution paths have executed. This situation
occurs when no job step or command that results in an error precedes the job step of the #-adsh_step_start
command.

In such a case, if you simulate an error at a location preceding the #-adsh_step_start command, the C1
information indicating errors in the preceding job steps or job definition scripts can be acquired, thus achieving a 100%
C1 execution percentage rate. For details about the behavior of a job definition script when the fault injection mode is
enabled, see 6.2.21 Enabling and disabling the fault injection mode (joberrmode command).

To simulate an error:

1. Move the cursor to a row in which you want to simulate an error and set a breakpoint.
For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

2. Perform debugging up to the line in which you intend to simulate an error.
Perform debugging up to the breakpoint set in step 1. Debugging stops temporarily at the breakpoint. For details
about how to perform debugging up to a breakpoint, see (2) Performing and canceling debugging.

3. From the Debug menu, select Fault Injection Mode.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 327

The Fault Injection Mode menu item can be selected only when the job definition script is stopped for a reason
such as a breakpoint.
Fault Injection Mode is enabled with this.
If you restart debugging in this status, an error is simulated and C1 information is acquired.
To release the fault injection mode, select the Fault Injection Mode item again before you restart debugging.

4. Restart debugging.
By stepping in, stepping over, stepping out, or executing up to the breakpoint, the editor is placed in the debug mode
and debugging resumes.
When debugging is completed through the last line of the job definition script, the fault injection mode is released.

Cautions
• If you specify FUNCTION for the CMDRC_CMDGRP_CHECK parameter, the fault injection mode cannot be

disabled in the function even by selecting Debug > Fault Injection Mode while the function is stopped.

(5) Executing the trap command's action
You use the trap command's action to define an operation that is to be performed when the job controller has received
a forced termination request.

To execute the trap command's action during debug execution:

1. Stop the job definition script at a desired line by using a method such as breakpoints.
For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

2. From the Debug menu, select Execute a trap action.
The Execute a trap action menu item can be selected only when the job definition script is stopped by a means
such as breakpoints.
Once the menu item is selected, the job definition script is run up to the breakpoint. In this case, the commands are
executed in the following order:
1) Current command located on the line where execution is stopped
2) Commands in the action part
3) Commands following the command in step 1
If DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting parameter or no action by the trap
command has been defined and this menu is selected, JP1/Advanced Shell runs the job definition script up to the
next breakpoint without executing the trap command's action.

Notes

• The job definition script cannot be stopped while the trap command's action is executing.

• If the job is terminated while the action by this function is underway, the termination code of the last command
executed is applied as the job's termination code, unlike when the job is terminated forcibly. For example, if
action exit 2 is executed by using this function, the job is terminated with termination code 2. On the other
hand, if the job is terminated forcibly and then action exit 2 is executed, the job is terminated with error and
termination code 1.

• After this menu is selected, if execution of the command that immediately follows is skipped, the action will
not be executed.#1

#1
For example, execution of a command is skipped in the following cases:
- The fault injection mode is enabled.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 328

- A command inside a job step for which stop was specified for the onError attribute terminates with an
error.

4.4.7 Displaying coverage information
If coverage information has been collected, it can be displayed for the job definition script that is currently open in the
editor or that is being debugged. Coverage information being collected is displayed during debugging. After debugging
is completed, the last coverage information collected is displayed. The coverage information is output to a temporary
file and can be displayed using Notepad (notepad.exe).

The View Coverage Information menu item used to display coverage information is enabled if coverage information
is set to Accumulate in Runtime Environment Settings. If Accumulate is not selected, the View Coverage
Information menu item is grayed out and cannot be selected.

Notepad remains displayed when the editor and debugger have terminated. Coverage information that is being displayed
is not refreshed even when the coverage information is changed during debugging.

To display the coverage information and then cancel display of coverage information:

1. From the View menu, select View Coverage Information, or on the toolbar, click the View Coverage Information
button.
Notepad opens and the coverage information is displayed. You can save the displayed coverage information under
a desired file name.

2. To close the display of coverage information, exit Notepad.
The display of coverage information is closed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 329

4.5 Editing existing job definition scripts (Windows only)

This section explains how to edit an existing job definition script in JP1/Advanced Shell Editor. There are three ways
to start editing a job definition script file, as described in the following.

Starting from the right-click menu
1. From Explorer, find and right-click the desired job definition script file.

2. Select Edit.

Starting by using a drag-and-drop operation
1. From Explorer, drag the desired job definition script file.

2. Drop the dragged job definition script file onto the Editor icon or in an active editor window.

For details about the editor window, see 4.3 JP1/Advanced Shell Editor operation (Windows only).

Starting from the editor's menu
1. From the File menu, select Open, or from the File menu, select an edit history to start editing.

2. Select the existing job definition script file that is to be edited.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 330

4.6 Saving job definition scripts (Windows only)

To save the job definition script in JP1/Advanced Shell Editor:

1. To save (overwrite) the job definition script file, from the File menu, select Save.
The job definition script file is saved (overwritten).

2. To save the job definition script file under a new name, from the File menu, select Save As.
The job definition script file is saved under the new name that you specify.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 331

4.7 Details of the JP1/Advanced Shell Editor window (Windows only)

While you use the JP1/Advanced Shell Editor window, the following dialog boxes and windows are displayed:

• Options (Format) dialog box

• Options (Colors) dialog box

• Runtime Environment Settings dialog box

• Message output window

• Search dialog box

• Variable window

• Console

4.7.1 Options (Format) dialog box
In the JP1/Advanced Shell Editor window, from the Edit menu, selecting Options displays the Options dialog box.

The Options dialog box contains the Format tab and the Colors tab.

Selecting the Format tab displays the Options (Format) dialog box.

(1) Items in the dialog box
Font

Displays the name of the font currently being used. To change the font, click the Select Font button.
By default, FixedSys is selected.

Font size
Specifies the current font size for characters. To change the font size, click the Select Font button.
By default, 14 is selected.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 332

Word wrap
Selects the word wrap method.
By default, Wrap at window border is selected.

Wrap at window border
Select this item to wrap text at the window border.

Wrap by No. of characters
Select this item to wrap text at a specified number of characters.

No. of characters
Specifies the number of characters for wrapping text.
This item is enabled only when Wrap by No. of characters is selected.
Specify a value in the range from 20 through 512 (bytes).
By default, this is set to 100.

Spaces per tab
Selects the number of spaces (bytes) for setting tabs.
By default, 4 is selected.

Show tabs
Specifies the view/hide setting for tabs.
By default, this item is selected.

Show line breaks
Specifies the view/hide setting for line breaks.
By default, this item is selected.

Show multibyte spaces
Specifies the view/hide setting for the symbol that indicates double-byte spaces.
By default, this item is selected.

Max undo count
Specifies the maximum permitted number of undo operations (for when Undo is selected from the Edit menu).
Specify a value in the range from 10 through 999. By default, 100 is set.

(2) Operations in the dialog box
• Clicking the OK button applies the specified format settings and then closes the dialog box.

• Clicking the Cancel button closes the dialog box without changing any format settings.

4.7.2 Options (Colors) dialog box
In the JP1/Advanced Shell Editor window, from the Edit menu, selecting Options displays the Options dialog box.

The Options dialog box contains the Format tab and the Colors tab.

Selecting the Colors tab displays the Options (Colors) dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 333

(1) Items in the dialog box
Text

Specifies a color for text.
The default is the system color.

Edit background
Specifies the background color in the edit mode.
The default is the system color.

Debug background
Specifies the background color in the debug mode.
The default is gray.

Comments
Specifies a color for comment lines.
The default is green.

Line breaks
Specifies a color for line breaks.
The default is red

Built-in commands
Specifies a color for built-in commands.
The default is blue.

Reserved words
Specifies a color for reserved words and]].
The default is blue.

Extended commands
Specifies a color for extended commands.
The default is blue.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 334

Strings
Specifies a color for character strings.
The default is dark purple.

Updated line No.
Specifies a color for updated line numbers.
The default is yellow.

Cursors
Specifies a color for the cursor that indicates the current location.
The default is blue.

Reset to Default
Resets the color settings for all items to the defaults.

(2) Operations in the dialog box
• Selecting any button other than Reset to Default opens the Set Colors dialog box where you can select a desired

color. In the Set Colors dialog box, clicking the Create Colors button displays the Create Colors dialog box in which
you can create a desired color.

• Clicking the OK button applies the specified color settings and then closes the dialog box.

• Clicking the Cancel button closes the dialog box without changing any color settings.

4.7.3 Runtime Environment Settings dialog box
In the JP1/Advanced Shell Editor window, from the Debug menu, selecting Runtime Environment Settings displays
the Runtime Environment Settings dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 335

(1) Items in the dialog box
Runtime parameters

Specifies run-time parameter to be passed to the job definition script.

Example:
If the name of the job definition script to be used is a.ash and ABC is specified for a run-time parameter, ABC
is used as the first argument for a.ash.

Runtime directory
Specifies the current drive or folder in which the job definition script is to be executed.
If this information is omitted, the editor's current folder is assumed.
The editor's current folder is one of the following:

• Folder containing the job definition script file

• Program folder

• Program's current folder

• Shortcut work folder

Example:
In this example, job definition script pwd is specified in the job definition script named a.ash. Specifying C:
\ for the run-time directory produces the same results as when the following specification is made in a Windows
directory:

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 336

 C:\> a.ash
 C:\
 C:\>

Job environment file
Specifies the job environment file to be used during debugging. The specified file is used by the job to be debugged.
If this information is omitted, the file specified in the ADSH_ENV environment variable is used. If no file is specified
in the ADSH_ENV environment variable, the default value is assumed.

Logical host
Specifies the logical host to be used by the user-reply functionality. The user-reply functionality used by the job
subject to debugging is run on the specified logical host.
If this information is omitted, the user-reply functionality is run on the physical host.

Coverage information
Specifies whether coverage information is to be accumulated:

• Do not accumulate
Does not accumulate coverage information. This is equivalent to omitting the -t option in the adshexec
command. The function for displaying coverage information during debugging is disabled.

• Accumulate
Accumulates coverage information. If the job definition script file has been modified, the job is terminated
without executing the job definition script. This is equivalent to specifying the -t option in the adshexec
command. The coverage information can be displayed from the editor.

• Accumulate (and overwrite on update)
Accumulates coverage information. If the job definition script file has been modified, the editor discards the
accumulated coverage information and then starts accumulating the new coverage information. This is equivalent
to specifying both the -t and -f options in the adshexec command. The coverage information can be
displayed from the editor.

By default, Do not accumulate is selected.
Coverage information is saved in a coverage information file (asc file). The asc file is created in the directory
where the job definition script file is located. If there is already an asc file in the directory where the job definition
script file is located, the editor uses that asc file.
To display the coverage information accumulated in the coverage information file, select View Coverage
Information from the editor's View menu or use the adshcvshow command. To merge coverage information
contained in two separate coverage information files, use the adshcvmerg command. For details about coverage
information, see 3.10 Acquiring coverage information.

Shell option
Specifies whether the xtrace shell option is to be set.

• Disable xtrace
Does not set the xtrace shell option when debugging starts. This is the same as the adshexec command
with the -x option omitted.

• Enable xtrace
Sets the xtrace shell option when debugging starts. This is the same as the adshexec command with the -
x option specified.
When this item is selected, executed commands and their arguments are output to the standard error output as
trace information. For details, see 3.6 Outputting the executed commands and their arguments.

The default is that Disable xtrace is selected.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 337

The shell options also include the option for limiting available functions and the option for switching the execution
mode. For details about the shell options, see 5.6 Shell options.

(2) Operations in the dialog box
• Clicking the OK button creates an execution environment file containing the information specified in the dialog

box.

• Clicking the Cancel button closes the dialog box without creating an execution environment file.

4.7.4 Search dialog box
In the JP1/Advanced Shell Editor window, from the Search menu, selecting Search displays the Search dialog box.

This Search dialog box is also displayed when Find Previous or Find Next is selected from the Search menu.

(1) Items in the dialog box
Replace

Select this check box to replace the character string that is to be searched for.
By default, this check box is cleared.

Search for
Specifies the character string to be searched for.

Replace with
Specifies the character string that is to replace the character string specified in Search for. This field is enabled only
when the Replace check box is selected.

Match case
Select this check box to conduct a case-sensitive search (when a character string to be retrieved must exactly match
the character string specified in Search for in terms of case).
By default, this check box is cleared.

Find whole words only
Select this check box if only whole words are to be retrieved.
By default, this check box is cleared.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 338

(2) Operations in the dialog box
• Clicking the Find Previous button searches for the specified character string upwards.

• Clicking the Find Next button searches for the specified character string downwards.

• Clicking the Replace All button replaces all occurrences of the character string in the job definition script file with
the character string specified in Replace with.

• Clicking the Cancel button closes the dialog box.

(3) Notes
• The character strings specified most recently in Replace with and in Search for are stored in drop-down lists (up

to 10 such character strings in each drop-down list).

• If the specified character string is not found, the editor sounds a beep tone.

4.7.5 Message output window
The Error List window displays the errors that have occurred during debugging. This window is displayed while the
job definition script is not running.

(1) Client area
Contents

Contents of an error are displayed.

(2) Operations in the Error List window
• In the case of an error that has occurred with the job definition script file that is currently being edited, double-

clicking the line on which the error message is displayed moves the cursor to the beginning of the corresponding
line where the error has occurred.

• In the case of an error that has occurred with the job definition script file that is currently being edited, right-clicking
the line on which the error message is displayed opens the Jump pop-up menu that allows you to move the cursor
to the location of the corresponding error.

• You can select multiple lines by left-clicking while holding down the Ctrl key. You can select consecutive lines by
left-clicking while holding down the Shift key. You can copy the selected lines to the clipboard by using the Copy
pop-up menu that appears when right-clicking or by pressing Ctrl+C.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 339

4.7.6 Variable window
The variable name and variable value are displayed.

(1) Variable name area
The variable name that is defined by the currently running job definition script is displayed.

(2) Variable value area
The variable value is displayed. Read-only attributes are displayed in gray.

(3) Category area
The category of the variable is displayed. The following character string is displayed:

• Shell variable
Variables other than "Variables (environment variables) and arrays with the export attribute" are displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 340

• Array
The array is displayed. The array name is displayed as a category name under the array category.

• Environment variables
Variables (environment variables) with the export attribute are displayed.

(4) Description area
Attribute of the selected variable is displayed. The following character string is displayed:

Italic character string is variable character string.

• Variable name: Variable name
For array, array name and array subscript are displayed. Variable other than array is displayed as it is.

• Environment variables
The exported variable is displayed.

• Integer type
Variable specified with typeset -i is displayed. Other than integer cannot be specified in the variable value area.

• Character string type
Variable that is not specified with typeset -i is displayed.

• Step local attribute
The shell variable that is specified for stepVar attribute of the #-adsh_step_start command for the extended
script command.

• Read-only attribute
Read-only attribute is displayed.

• Path conversion attribute
The variable that is available for path conversion is displayed if path conversion is available.

(5) Operation of the Variable window
The value of a variable can be edited by double-clicking the variable value.

4.7.7 Console
During debugging, the console displays information equivalent to the standard output, standard error output, and job
execution logs.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 341

(1) Console operation
• The console is closed when the job being debugged terminates. If an environment file or the job definition script

contains any errors, including syntax errors, check the execution results output to the spool on the basis of the job
ID and the information displayed in the Error List window, and then take appropriate action.

• The method for specifying properties is the same as when the command prompt is used.

4. Using JP1/Advanced Shell - Developer (Windows Only)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 342

This chapter explains the syntax for job definition scripts.

5 Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 343

5.1 Basic elements of job definition scripts

This section explains the basic elements of job definition scripts.

Important
Note the following about coding job definition scripts:

• A line of a job definition script cannot exceed 8,191 bytes. If a line's length exceeds 8,191 bytes, the
job definition script terminates with an error. A continuation line is treated as a separate line for purposes
of line length. For details about continuation lines, see (3) Line continuation.

• For a line using an extended script command, the maximum length including the continuation lines is
8,191 bytes according to the limitations for extended script commands. For details about the limitations
of extended script commands, see (1) Limitations.

• If a file path is converted during a file input or output operation, the number of bytes changes depending
on the timing of the file input or output operation. In such a case, even if the maximum length of a line
is exceeded due to conversion, processing continues and no error occurs.

5.1.1 Reserved words
In JP1/Advanced Shell, special words and phrases that are used in control statements in job definition scripts are
registered as reserved words. A reserved word has a special meaning when it is used as the first word of a command
and is always recognized as a reserved word (unless it is not enclosed in quotation marks). A reserved word used as the
second or any subsequent word is treated as a normal variable. Therefore, special attention is important when you use
the reserved words.

To use reserved words, use the standard shell commands command -V and whence -v. For details about the command
and whence commands, see 9.3.7 command command (executes a command) and 9.3.35 whence command (displays
how character strings would be interpreted if used as commands) in 9.3 Standard shell commands.

The following are the reserved words:

! [[{ } case do done elif else esac fi for function if in select then time
until while

5.1.2 Variables
Variables are placeholders that are replaced by values in job definition scripts. You can create variables and reference
their values. Variables can be inherited as environment variables to child processes by exporting them. The variables
are also referred to as shell variables.

(1) Naming conventions for variables
You can assign to a created variable any name that observes the naming conventions. Alphabetic characters are always
case sensitive. Therefore, two variables with the same name but with differences in case will be treated as different
variables.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 344

In a Windows environment, if you attempt to export a variable that name includes lowercase letters and use it as an
environment variable, an error might result depending on the specification of the VAR_ENV_NAME_LOWERCASE
parameter.

The naming conventions for variables are described below. For details about the naming conventions for environment
variables, see (a) Naming conventions for environment variables (Windows only).

• The only permitted characters are alphanumeric characters and the underscore (_).

• A variable must being with a non-numeric character.

• There is no limit to the length of a variable name. However, there is a limit to the length of an input line, and the
CUI debugger imposes a limit to the length of a command (number of characters). We recommend that you observe
these limitations for variables that are used in job definition scripts.
For details about the maximum length of an input line, see 5.1 Basic elements of job definition scripts. For details
about the maximum length of a command entry in the CUI debugger, see 6.1.4 List of debugger commands (UNIX
only).

(a) Naming conventions for environment variables (Windows only)
The supported environment variable names depend on the specification of the VAR_ENV_NAME_LOWERCASE
parameter, as described in the following:

• When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Environment variable names that include lowercase letters are not supported.
An attempt to export a variable name that includes lowercase letters results in an error.

• When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Environment variable names that include lowercase letters are supported, except that you must not use lowercase
letters in an environment variable name that begins with ADSH.
Following are notes about specification:

• If a shell variable name consisting of lowercase letters is exported by a job definition script, the environment
variable name that includes lowercase letters is passed as is to an external command that is called subsequently.
Because environment variable names are not case-sensitive in Windows, environment variable names with the
same spelling are treated as the same name and the last value exported is passed as the environment variable.
However, shell variables are case-sensitive and they represent different values.
For example, in the following specification, lowercase is set first as the environment variable value and
uppercase is set last as the environment variable value because environment variable names ABC and abc
are not distinguished:
export abc=lowercase
export ABC=uppercase

• If a shell variable is exported, the export attribute of shell variables with the same spelling within the scope
of that shell variable becomes invalid. For arrays also, the export attribute of all elements becomes invalid.
However, the export attribute does not become invalid if the exported variable is local to a function and has
the same spelling as a variable exported outside the scope.

The setting of the VAR_ENV_NAME_LOWERCASE parameter determines whether lowercase letters are supported by
commands and parameters, as described in the following:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 345

Command or parameter VAR_ENV_NAME_LOWERCASE parameter setting

DISABLE ENABLE

export parameter (environment setting parameter) Uppercase and lowercase letters are
permitted, but they are not
distinguished.

Same as at the left

export command,
typeset -x command

Shell variable names in lowercase
letters are not supported.

Shell variable names in lowercase
letters are supported, but
environment variable names are
not case sensitive.
Shell variables are case sensitive
and treated as different shell
variables.

set command
(-a option)

All shell variables following the set
command are exported, but an
attempt to set values in shell variables
consisting of lowercase letters results
in an error.

All shell variables following the
set command are exported. If
values are set in shell variables
consisting of lowercase letters,
those shell variables are also
exported.
However, environment variable
names are not case sensitive.

unset command,
readonly command,
read command

Lowercase letters are supported
because they specify shell variable
names.

Same as at the left

#-adsh_file command,
#-adsh_file_temp command,
#-adsh_spoolfile command

Lowercase letters are not supported in
file environment variable definition
names.

Lowercase letters are supported in
file environment variable
definition names.
However, environment variable
names are not case sensitive.

#-adsh_step_start command Job step names are used as shell
variable names for storing step return
values, but lowercase letters are
supported.
Lowercase letters are not supported in
shell variable names that are specified
in -stepVar.

Same as at the left

#-adsh_path_var command Lowercase letters are supported in
variable names.

Same as at the left

Substitution by {environment-variable-name} of extended
script commands

Lowercase letters are supported in
environment variable names.

Same as at the left

Shell variables watched by the GUI debugger Lowercase letters are supported in
shell variable names.

Same as at the left

adshread command
adshvarconv command

Lowercase letters are supported in
shell variable names.

Same as at the left

for shell-variable Lowercase letters are supported in
shell variable names.

Same as at the left

ENVIRON built-in variable in the awk command Environment variable names can be
specified for subscripts, but
lowercase letters are also supported.

Same as at the left

Arguments passed to the adshjava command's batch
applications

Environment variable names can be
specified in system properties, but the

Same as at the left

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 346

Command or parameter VAR_ENV_NAME_LOWERCASE parameter setting

DISABLE ENABLE

Arguments passed to the adshjava command's batch
applications

adshjava command does not check
character types.

Same as at the left

Environment variables collected by the operation information
acquisition functionality

Environment variable names and
values are collected, but the
environment variable names are not
checked for character types.

Same as at the left

PATH_CONV_VAR parameter
PATH_CONV_NOVAR parameter

Lowercase letters can be specified in
the shell variable name.

Same as on the left.

(2) Creating variables and assigning values to them
The following shows the format used to create a variable and to assign a value to it:

variable-name=value

You create a variable by specifying a variable name followed by an equal sign (=). You can use your created variables
to write and to read values. To assign a value to the variable, specify the value to the right of the equal sign (=). Note
the following about creating variables:

• If a variable has the read-only attribute, an attempt to assign a value to the variable will result in an error and the
job will terminate. You use the readonly standard shell command to change a variable's attribute to read-only
(for details about the readonly command, see 9.3.21 readonly command (sets the read-only attribute for variables
or displays all read-only variables) in 9.3 Standard shell commands).

• If you specify the name of a variable that has not been created, the variable will be created and the specified value
will be assigned to it. When the value to be assigned is a character string, its length can consist of any number of
characters.
When numeric values are assigned to variables defined by the typeset command as the integer type, or numeric
values are assigned to variables used in arithmetic operations, the variable values and the results of the arithmetic
operations must be within the range of -2147483648 to 2147483647. If a value outside this range is specified,
correct results cannot be obtained.

• Do not enter any spaces before or after the equal sign. If there is such a space, the variable will not be created.

• To assign to a variable a character string that contains spaces or metacharacters, you must enclose the character
string in quotation marks (' or "), which will disable the metacharacters or cause space characters to be recognized
correctly as spaces. For details about metacharacters and disabling metacharacters, see 5.1.6 Metacharacters.

(3) Referencing the values of variables

(a) Referencing method
The following shows the formats used to reference the value of a variable:

$variable-name
or
${variable-name}

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 347

You reference the value assigned to a variable by specifying a dollar sign ($) before the variable name. The variable
with the matching variable name is referenced. If the variable name you specify contains an invalid character, only the
characters up to that invalid character will be recognized as a variable name.

Example in which an invalid character is specified in the name of a variable to be referenced

abc=xxx
echo $abc@zzz
-->xxx@zzz is output to the standard output.

To explicitly specify a variable to be referenced, enclose the variable name in curly brackets ({}). When a variable
name is enclosed in curly brackets and characters that are not permitted for a variable name are used, those characters
are processed as part of the variable name.

Example for explicitly specifying variable abc and referencing its value

abc=xxx
abcdef=yyy
echo ${abc}def
-->xxxdef is output to the standard output.

(b) Referencing method using offset (start point for referencing) and length (length
to be referenced)

The following shows the formats used to reference a variable value by specifying offset (start point for referencing) and
length (length to be referenced):

${variable-name:offset}

or

${variable-name:offset:length}

or

${variable-name::length}

To reference a specific part of the value assigned to the variable to be referenced, specify :offset or :offset:length
following variable-name.

Only those characters and numeric values permitted by the variable naming rules can be specified for offset and
length. You must observe the following rules in specifying variable names and numeric values for offset and length:

Specification value Specification rules

Numeric value (unsigned) Space and tab cannot be specified before or after the value.

Numeric value (signed) There must be a space immediately before a sign. Space and tab cannot be specified before or after any
other value.

Variable Space and tab cannot be specified before or after the value.

Default for offset Spaces are permitted, but tabs are not permitted.

If the specification spans multiple lines, enter a slash (\) at the end of each line that is to be continued.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 348

The following table describes the value ranges permitted for offset and length:

Type Value range (in
characters)#

Specification example

offset -65535 to 65535 If 0 is specified, the character string is output from the beginning.
If a positive value is specified, the start point at which the character string is output
is determined by counting the specified number of characters from the beginning of
the character string + 1.
If a negative value is specified, the start point is determined by counting the specified
number of characters from the end of the character string.

Example:
The following shows the reference target when 0, 3, or -1 is specified for offset
for data consisting of 10 characters:

length 0 to 65536 Example:
The portion of the character string enclosed in the highlighted box indicates the
range of characters to be output when offset=3 and length=3 are specified for
data consisting of 10 characters:

#
You can use either of the following methods to specify a numeric value:

• As an octal, decimal, or hexadecimal value
The specified numeric value is identified automatically as follows:

 Any character string beginning with 0x is assumed to be a hexadecimal number (for example, 0xa).
 Any character string beginning with 0 is assumed to be an octal number (for example, 012.
 Any numeric value that is neither octal nor hexadecimal is assumed to be a decimal number.
 -0 is treated as being the same as 0.
 If a numeric value has a sign (- or +), you must specify at least one space between the colon (:) and the sign.

• As a variable names to which a numeric value is assigned
If no variable with the specified variable name exists or no value has been assigned to the specified variable, 0
is assumed as the variable value.
An error results if the specified variable references multiple variables recursively and the recursion count for
offset exceeds 1,024 or the recursion count for length exceeds 1,025.

The notes below apply to specifying offset and length.

• The following specifications result in a syntax error:

• The character string specified for offset or length is not a numeric value or a variable name.
echo ${ABC:123D}

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 349

 An error results because 123D is not a numeric value or a variable name.

• A character string that is not a numeric value or a variable name is specified as a value to set to an offset or length
variable name.
CNT=123D
echo ${ABC:CNT}

 An error results because the specified variable value 123D is not a numeric value or a variable name.

• offset is omitted illegally.
echo ${ABC:}

 An error results because offset is not specified.

• An arithmetic expression is specified for offset or length.
echo ${ABC:10-2}

 An error results because an arithmetic expression is specified.

• The variable specified for offset or length contains $ or ${}.
ABC=abcdefghijklmn
AA=1
echo ${ABC:$AA}

 An error results because the variable specified for offset or length contains $ or ${}.

• A tab is specified immediately before offset or length.
(The following example specifies a tab immediately before offset, where indicates a tab:)
ABC=abcdefghijklmn
AA=1
BB=1
echo ${ABC: AA:BB}

 An error results because a tab is specified immediately before offset.

• If the value specified for offset or for variable exceeds the length of the character string set in variable, the character
string set in variable is not retrieved.

ABC=abcdefghijklmn
echo ${ABC:20}

 The character string set in variable ABC cannot be retrieved because the length of that character string is only 14
characters.

• If the variable name specified for offset or length is undefined or the variable value is null, 0 is assumed as the value
of offset or length.

• If the attribute of the variable value that is specified for offset or length is changed by executing the typeset
command, the number base might change depending on the method used (if zeros padding is specified with the -Z
option, the value is treated as being in octal), resulting in a change to the reference range. Furthermore, the specified
value might become invalid due to the change to the number base.
The example below uses the typeset command to change the attribute and specify zeros padding. As a result, the
value 12 specified for variable L1 is interpreted as being an octal value.

ABC=abcdefghijklmnopqrstuvwxyz
typeset -Z3 D1=4
typeset -Z3 L1=12
echo ${ABC:D1:L1}

 012 (octal) is interpreted as 10 (decimal) and efghijklmn (10 characters) is output to STDOUT.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 350

The example below uses the typeset command to change the attribute and specify zeros padding. As a result, 8
specified for variable D1 becomes 008 and is interpreted as an octal value. However, an error results because octal
numbers must be in the range from 0 to 7.

ABC=abcdefghijklmnopqrstuvwxyz
typeset -Z3 D1=8
typeset -Z3 L1=12
echo ${ABC:D1:L1}

 An error results because 8 is specified as an octal number.
If the variable specified for offset or length is a recursive reference specification or circular reference specification,
an error results. Examples are shown in the following:

• Example of recursive reference specification
ABC=abcdefghijklmnopqrstuvwxyz
D1=D1
echo ${ABC:D1}

• Example of circular reference specification
ABC=abcdefghijklmnopqrstuvwxyz
D1=D2
D2=D1
echo ${ABC:D1}

The following are examples of specifying offset and length.

• Specifying offset(5)
ABC=abcdefghijklmn
echo ${ABC:5}

-->fghijklmn is output to the standard output.

• Specifying offset(5) and length(4)
ABC=abcdefghijklmn
echo ${ABC:5:4}

-->fghi is output to the standard output.

• Specifying offset(-1)
ABC=abcdefghijklmn
echo ${ABC: -1}

-->n is output to the standard output.

• Specifying the name of a variable that defines offset

DEF=abcdefghijklmn
CNT=5
echo ${DEF:CNT}

-->fghijklmn is output to the standard output.

• Specifying the names of variables that define offset and length

DEF=abcdefghijklmn
CNT=5

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 351

LEN=4
echo ${DEF:CNT:LEN}

--> fghi is output to the standard output.

• Specifying the name of a variable that defines offset

DEF=abcdefghijklmn
CNT=-1
echo ${DEF:CNT}

-->n is output to the standard output.

• Specifying variable xyz explicitly and referencing three characters of the value specified for the variable beginning
with character 5, where variable xyz contains multibyte characters and the values of offset and length are assigned
to variables CNT and LEN.

xyz= abcdefgh
CNT=4
LEN=3
echo ${xyz: CNT: LEN}

--> is output to the standard output.

• Specifying variable xyz explicitly and referencing 14 characters of the value specified for the variable beginning
with character -17, where variable xyz contains multibyte characters and the values of offset and length are assigned
to variables CNT and LEN.

xyz= abcdefgh
CNT=-17
LEN=14
echo ${xyz: CNT: LEN}

--> abcdefgh is output to the standard output.

(4) Formats and attributes permitted for variables
In JP1/Advanced Shell, you can specify formats and attributes for variables. The following tables describe the formats
and attributes that can be specified for variables.

Table 5-1: Formats that can be specified for variables

Format Description

Left-justified Left-justifies the value assigned to the variable.

Right-justified Right-justifies the value assigned to the variable.

Zero-padded Right-justifies the value assigned to the variable; if the value is a numeric value, pads any leading spaces with zeros.

Lowercase
conversion

Converts all uppercase letters in the value assigned to the variable to lowercase letters.

Uppercase conversion Converts all lowercase letters in the value assigned to the variable to uppercase letters.

Table 5-2: Attributes that can be specified for variables

Attribute Description

Integer-type attribute Treats the value assigned to the variable as an integer.
This attribute enables a base number used during output to be defined.

Read-only attribute Sets the variable as being read-only.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 352

Attribute Description

Export attribute Exports the variable.

You use the typeset command to specify formats and attributes. For details about the typeset command, see
9.3.29 typeset command (declares explicitly the attributes and values of variables and functions).

Examples of specifying formats for variables are shown below. These examples assume that each of the variables shown
has been defined (indicates a space). Each line of code is followed by an explanation of the coding.

 STRn=" AbCdeFgHiJk "
 NUMn="12345"

• Contents of job definition script

typeset -L STR1 # Change STR1 to left-justified format
echo $STR1 # Outputs STR1
typeset -L5 STR2 # Change STR2 to left-justified format
 # with an area length of 5 bytes
echo $STR2 # Outputs STR2
typeset -R STR3 # Change STR3 to right-justified format
echo $STR3 # Outputs STR3
typeset -R4 NUM1 # Change NUM1 to right-justified format
 # with an area length of 4 bytes
echo $NUM1 # Outputs NUM1
typeset -Z9 STR4 # Change STR4 to zero-padded format with
 # an area length of 9 bytes
echo $STR4 # Outputs STR4
typeset -Z9 NUM2 # Change NUM2 to zero-padded format with
 # an area length of 9 bytes
echo $NUM2 # Outputs NUM2
typeset -l STR5 # Change STR5 to lowercase conversion
 # format
echo $STR5 # Outputs STR5
typeset -u STR6 # Change STR6 to uppercase conversion
 # format
echo $STR6 # Outputs STR6
typeset -i16 NUM3 # Change NUM3 to integer-type attribute
 # with hexadecimal representation
echo $NUM3 # Outputs NUM3

• STDOUT file contents of the executed job

******** JOB SCOPE STDOUT ********
AbCdeFgHiJk <-- Output result of STR1
AbCde <-- Output result of STR2
AbCdeFgHiJk <-- Output result of STR3
2345 <-- Output result of NUM1
CdeFgHiJk <-- Output result of STR4
000012345 <-- Output result of NUM2
abcdefghijk <-- Output result of STR5
ABCDEFGHIJK <-- Output result of STR6
16#3039 <-- Output result of NUM3

5.1.3 Arrays
In JP1/Advanced Shell, you can create and reference an array as a type of variable.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 353

You can create a one-dimensional array that can hold a maximum of 65,536 elements with element numbers from 0 to
65,535. In addition, you can create a two-dimensional array that can hold a maximum of 65,536 x 256 elements with
arrays consisting of 2 element numbers. If no element is specified, no array is set.

(1) Creating arrays
The following explains how to create an array.

• If you create multiple elements at one time (using the set command)
One-dimensional array

set -A array-name value value ...
set +A array-name value value ...

Two-dimensional array

set -D array-name { value value ... } { value value ... } ...
set +D array-name { value value ... } { value value ... } ...

In one-dimensional array, specify one or more half-width space as a delimiter for the array name to be created and
elements registered for the array.

set ∆-A∆array name∆value∆value∆...

Specify one or more half-width space for ∆.
Usage examples (one-dimensional array)

set -A abc 1 2 3
echo ${abc[1]}

-->2 is output to the standard output.
In two-dimensional array, specify one or more half-width space as a delimiter for the array name to be created, "{"
and "}" enclosing elements of array and elements registered for the array.

set∆-D∆array-name∆{∆value∆value∆...∆}∆{∆value∆value∆...∆}∆...

Specify one or more half-width space for ∆.
Usage examples (two-dimensional array)

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[1][1]}

-->5 is output to the standard output.
This method can create multiple elements at a time. For details about the set -A command and set -D command,
see 9.3 Standard shell commands > set command (sets shell option, creates an array or displays variable values).

• If you create one element
One-dimensional array

array-name[element-number]=value

Two-dimensional array

array-name[element-number-1][element-number-2]=value

Usage examples (one-dimensional array)

abc[0]=1
abc[1]=2

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 354

abc[2]=3
echo ${abc[1]}

-->2 is output to the standard output.
Usage examples (two-dimensional array)

abc[0][0]=1
abc[0][1]=2
abc[0][2]=3
echo ${abc[0][1]}

-->2 is output to the standard output.
This method creates one element at a time. To create multiple elements, perform the step as many times as there are
elements to be created. In addition, an array with element number 0 (abc[0] or abc[0][0]) is handled in the same
manner as variables.

• If you multiple elements at the same time (without using the set command)
One-dimensional array

array-name=(value value ...)

Two-dimensional array

array-name []=({ value value ... } { value value ... } ...)

In one-dimensional array, specify one or more half-width space as a delimiter for the array name to be created.

array-name=(value∆value∆...)

Specify one or more half-width space for ∆.
Usage examples (one-dimensional array)

abc=(1 2 3)
echo ${abc[1]}

-->2 is output to the standard output.
In two-dimensional array, specify one or more half-width space as a delimiter for the array name to be created, "{"
and "}" enclosing elements and elements registered for the array.

array-name[]=({∆value∆value∆...∆}∆{∆value∆value∆...∆}∆...

Specify one or more half-width space for ∆.
Usage examples (two-dimensional array)

abc[]=({ 1 2 3 } { 4 5 6 })
echo ${abc[1][2]}

-> 6 is output to the standard output.
This method can create multiple elements at a time. For details about creation method, see (2) Creating arrays by
using array-name=(value value ...).

(2) Creating arrays by using array-name=(value value ...)
The one-dimensional array that is defined in the syntax of "syntax name=(value value ...)" is registered in the syntax
of "set -A array-name value value ...".

The two-dimensional array that is defined in the syntax of "array-name[]=({ value value ... } { value value ... } ...)"
is registered in the syntax of "set -D syntax-name { value value ... } { value value ... }".

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 355

Execution of the "set command" is output to the JOBLOG instead of the syntax of "array-name=(value value ...)"
and "array-name []=({ valuevalue ... } { value value ... } ...)".

How to manage the array element is the same as other arrays even if the array is created in the syntax of "array-
name=(value value ...)". For example, the one-dimensional array is the same array as the array that is created in the
format of "set -A ARRAY x1 x2 x3 x4 x5".

Array elements for an array defined as ARRAY=(x1 x2 x3 x4 x5)

ARRAY[0]=x1
ARRAY[1]=x2
ARRAY[2]=x3
ARRAY[3]=x4
ARRAY[4]=x5

n# Elements

0 x1

1 x2

2 x3

3 x4

4 x5

#:
n indicates two-dimensional array element.

For the two-dimensional array, how to manage the array element is the same as that of the array that is created by using
the set-D command if the array is created in the syntax of "array-name[]=({ value value ... } { valuevalue ... } ...)".
For example, the two-dimensional array is the same array as the array that is created in the format of "set -D ARRAY
{ x1 x2 x3 } { x4 x5 x6 }".

Element of array if defined as ARRAY[]=({ x1 x2 x3 } { x4 x5 x6 })

ARRAY[0][0]=x1
ARRAY[0][1]=x2
ARRAY[0][2]=x3
ARRAY[1][0]=x4
ARRAY[1][1]=x5
ARRAY[1][2]=x6

n#1 m#2

0 1 2

0 x1 x2 x3

1 x4 x5 x6

#1:
n indicates two-dimensional array element.

#2:
m indicates two-dimensional array element.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 356

Therefore, output to JOBLOG, coverage collection, and output of the xtrace shell option all have the same result as
when the set command is used to define arrays.

If array-name=() is defined, a shell variable whose name is array-name and value is the null string is created. This is
the same as when array-name= is defined.

(a) Examples of array creation
The table below shows examples of creating array elements that contain shell variables by using the following variables:

A=a
B=b
C=c
MA=' a b c' #
MB=d

#
The single quotation mark (') is used to indicate a space. It is not part of the actual variable value.

Table 5-3: Example of array element creation

Array definition Array elements that are created Number of array elements created

(a b c) [0]=a [1]=b [2]=c 3

($A $B $C) [0]=a [1]=b [2]=c 3

(${A}${B}${C}) [0]=a [1]=b [2]=c 3

($A $B `echo 1`) [0]=a [1]=b [2]=1 3

(AB $C) [0]=ab [1]=c 2

(${A}xyz ${B}stu) [0]=axyx [1]=bstu 2

($MA $MB) [0]=a [1]=b [2]=c [3]=d 4

(MAMB) [0]=a [1]=b [1]=cd 3

(b) Example of JOBLOG output when arrays are used
Examples of array definition and the resulting JOBLOG output are shown in the following:

• Set an array with three elements (x1 x2 x3) for the one-dimensional array SEQ1.

SEQ1=(x1 x2 x3)
echo ${SEQ1[@]}

-->x1 x2 x3 is output to the standard output.
The following shows an example of the JOBLOG output when array SEQ1 is used:

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-I The job ID was assigned. job ID=046188

 Advanced Shell 11-00

 [Information]
 Job ID : 046188
 Spool directory : /var/opt/jp1as/spool/046188/
 Date : 2015/10/29

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 357

 EnvFile(system) :
 EnvFile(job) :
 Host name : host01
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
14:52:48 046188 KNAX0091-I ADSH046188 The job started.
14:52:48 046188 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
14:52:48 046188 KNAX7902-I The job controller will run in tty stdin mode.
14:52:48 046188 KNAX6112-I Execution of the command set (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:52:48 046188 KNAX6112-I Execution of the command echo (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:52:48 046188 KNAX0098-I ADSH046188 The job ended. exit status=0 execution
time=0.001s CPU time=0.000s

******** Script IMAGE ********

***** /home/user001/SAMPLE_JOB6.ash *****
0001 : SEQ1=(x1 x2 x3)
0002 : echo ${SEQ1[@]}
0003 :

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH046188 The job ended. exit status=0 execution time=0.001s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046188-ADSH046188/"
KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3

• Set an array with 3 x 2 elements ({ x1 x2 x3 } { x4 x5 x6 }) for the two-dimensional array SEQ2.

SEQ2[]=({ x1 x2 x3 }{ x4 x5 x6 })
echo ${SEQ2[@]}

--> "x1 x2 x3 x4 x5 x6" is output to the standard output.
The following is an example of the output of JOBLOG using the array SEQ2:

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-I The job ID was assigned. job ID=046190

 Advanced Shell 11-00

 [Information]
 Job ID : 046190
 Spool directory : /var/opt/jp1as/spool/046190/
 Date : 2015/10/29
 EnvFile(system) :
 EnvFile(job) :
 Host name : host01
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
15:01:51 046190 KNAX0091-I ADSH046190 The job started.
15:01:51 046190 KNAX7901-I The job controller will wait for all asynchronous

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 358

processes at the end of the job.
15:01:51 046190 KNAX7902-I The job controller will run in tty stdin mode.
15:01:51 046190 KNAX6112-I Execution of the command set (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:01:51 046190 KNAX6112-I Execution of the command echo (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:01:51 046190 KNAX0098-I ADSH046190 The job ended. exit status=0 execution
time=0.001s CPU time=0.000s

******** Script IMAGE ********

***** /home/user001/SAMPLE_JOB7.ash *****
0001 : SEQ2[]=({ x1 x2 x3 } { x4 x5 x6 })
0002 : echo ${SEQ2[@]}

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH046190 The job ended. exit status=0 execution time=0.001s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046190-ADSH046190/"
KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3 x4 x5 x6

• Define the variables with which the array elements are to be substituted and sets the number of elements of the one-
dimensional array SEQ1 to 3, as follows.

ARR1=x1
ARR2=x2
ARR3=x3
SEQ1=($ARR1 $ARR2 $ARR3)
echo ${SEQ1[@]}

-->x1 x2 x3 is output to the standard output.
The following shows an example of the JOBLOG output when array SEQ1 is used:

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-I The job ID was assigned. job ID=046192

 Advanced Shell 11-00

 [Information]
 Job ID : 046192
 Spool directory : /var/opt/jp1as/spool/046192/
 Date : 2015/10/29
 EnvFile(system) :
 EnvFile(job) :
 Host name : host01
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
15:10:25 046192 KNAX0091-I ADSH046192 The job started.
15:10:25 046192 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
15:10:25 046192 KNAX7902-I The job controller will run in tty stdin mode.
15:10:25 046192 KNAX6110-I Execution of the command ARR1=x1 (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:10:25 046192 KNAX6110-I Execution of the command ARR2=x2 (line=2) finished

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 359

successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:10:25 046192 KNAX6110-I Execution of the command ARR3=x3 (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:10:25 046192 KNAX6112-I Execution of the command set (line=4) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:10:25 046192 KNAX6112-I Execution of the command echo (line=5) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:10:25 046192 KNAX0098-I ADSH046192 The job ended. exit status=0 execution
time=0.002s CPU time=0.000s

******** Script IMAGE ********

***** /home/user001/SAMPLE_JOB8.ash *****
0001 : ARR1=x1
0002 : ARR2=x2
0003 : ARR3=x3
0004 : SEQ1=($ARR1 $ARR2 $ARR3)
0005 : echo ${SEQ1[@]}

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH046192 The job ended. exit status=0 execution time=0.002s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046192-ADSH046192/"
KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3

• Define the variables with which the array elements are to be substituted and set the number of elements of the two-
dimensional array SEQ2 to 3 x 2, as follows.

ARR1=x1
ARR2=x2
ARR3=x3
ARR4=x4
ARR5=x5
ARR6=x6
SEQ2[]=({ $ARR1 $ARR2 $ARR3 } { $ARR4 $ARR5 $ARR6 })
echo ${SEQ2[@]}

--> "x1 x2 x3 x4 x5 x6" is output to the standard output.
The following is an example of the output of JOBLOG using the array SEQ2:

KNAX7901-I The job controller will wait for all asynchronous processes at the end
of the job.
KNAX0724-I The job ID was assigned. job ID=046194

 Advanced Shell 11-00

 [Information]
 Job ID : 046194
 Spool directory : /var/opt/jp1as/spool/046194/
 Date : 2015/10/29
 EnvFile(system) :
 EnvFile(job) :
 Host name : host01
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 360

15:18:07 046194 KNAX0091-I ADSH046194 The job started.
15:18:07 046194 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
15:18:07 046194 KNAX7902-I The job controller will run in tty stdin mode.
15:18:07 046194 KNAX6110-I Execution of the command ARR1=x1 (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6110-I Execution of the command ARR2=x2 (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6110-I Execution of the command ARR3=x3 (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6110-I Execution of the command ARR4=x4 (line=4) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6110-I Execution of the command ARR5=x5 (line=5) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6110-I Execution of the command ARR6=x6 (line=6) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6112-I Execution of the command set (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX6112-I Execution of the command echo (line=8) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:18:07 046194 KNAX0098-I ADSH046194 The job ended. exit status=0 execution
time=0.003s CPU time=0.000s

******** Script IMAGE ********

***** /home/user001/SAMPLE_JOB9.ash *****
0001 : ARR1=x1
0002 : ARR2=x2
0003 : ARR3=x3
0004 : ARR4=x4
0005 : ARR5=x5
0006 : ARR6=x6
0007 : SEQ2[]=({ $ARR1 $ARR2 $ARR3 } { $ARR4 $ARR5 $ARR6 })
0008 : echo ${SEQ2[@]}

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH046194 The job ended. exit status=0 execution time=0.003s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046194-ADSH046194/"
KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3 x4 x5 x6

(c) Notes
A maximum of 8,192 bytes can be specified per line. If an array whose array element numbers have been extended is
defined and the maximum number of arrays are specified all on one command line, an error will result. If the specification
exceeds 8,192 bytes, use the continuation line specification (\) to continue specification onto the next line so that no
line exceeds 8,192 bytes.

Definition examples that use the continuation line specification (\) are shown in the following.

Example of definition using the set command

set -A ARRAY x0\
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ... x1000 \

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 361

x1001 x1002 x1003 x1004 x1005 x1006 x1007 x1008 x1009 x1010 x1011 ... x2000 \
 :
x65001 x65002 x65003 x65004 x65005 x65006 x65007 x65008 x65009 ... x65535

Example of definition using an assignment expression

ARRAY=(x0\
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ... x1000 \
x1001 x1002 x1003 x1004 x1005 x1006 x1007 x1008 x1009 x1010 x1011 ... x2000 \
 :
x65001 x65002 x65003 x65004 x65005 x65006 x65007 x65008 x65009 ... x65535)

(3) Referencing the values of arrays
The following explains how to reference the values in an array.

• If you reference a value of one element of one-dimensional array

${array-name[element-number]}

Example:
set -A abc 1 2 3
echo ${abc[1]}
--> 2 is output to the standard output.

• If you reference a value of one element of two-dimensional array

${array-name[element-number-1][element-number-2]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[1][2]}

-->6 is output to the standard output.
In two-dimensional array, the same as for a one-dimensional array, if you specify either @ or * for the array element
number, all elements of values defined for the array are referenced. Unlike one-dimensional array, there are 2
specified array element numbers so that you can specify each symbol and array number. If you specify either @ or
*, all array elements are not specified for reference. The reference range if you specify ${array[n][m]} is as follows:

Table 5-4: Reference range if ${array[n][m]} is specified

n m

Not specified [] [m] [@] [*]

[] Value of array[0][0] Value of array[0][0] Value of array[0]
[m]

All arrays All arrays

[n] Value of array[n][0] Value of array[n][0] Value of array[n]
[m]

All of the n line All of the n line

[@] All arrays All arrays All of the m column All arrays All arrays

[*] All arrays All arrays All of the m column All arrays All arrays

If you specify @ and *, the symbol specified for the element number 1 is prioritized.
If you specify array[@][*], array[@][@] is considered to be set. If you specify array[*][@], array[*][*] is considered
to be set.

• If you reference a value of element of array

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 362

• If you reference a value of element of one-dimensional array
Reference method 1

${array-name[*]}

Usage examples

set -A abc 1 2 3
echo ${abc[*]}

-->1 2 3 is output to the standard output.
Reference method 2

${array-name[@]}

Usage examples

set -A abc 1 2 3
echo ${abc[@]}

-->1 2 3 is output to the standard output.
Reference method 3

"${array-name[*]}"

Note: When this method is used, each value is separated by the value of the IFS shell variable.
Usage examples

set -A abc 1 2 3
IFS=:
echo "${abc[*]}"

-->1 2 3 is output to the standard output.
Reference method 4

"${array-name[@]}"

Usage examples

set -A abc 1 2 3
echo "${abc[@]}"

-->1 2 3 is output to the standard output.

• If you reference a value of element of two-dimensional array
Reference method 1

${array-name[*][*]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[*][*]}

-->1 2 3 4 5 6 is output to the standard output.
Reference method 2

${array-name[@][@]}

Usage examples

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 363

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[@][@]}

-->1 2 3 4 5 6 is output to the standard output.
Reference method 3

${array-name[1][*]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[1][*]}

-->4 5 6 is output to the standard output.
Reference method 4

${array-name[1][@]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[1][@]}

-->4 5 6 is output to the standard output.
Reference method 5

${array-name[*][1]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[*][1]}

-->2 5 is output to the standard output.
Reference method 6

${array-name[@][1]}

Usage examples

set -D abc { 1 2 3 } { 4 5 6 }
echo ${abc[@][1]}

-->2 5 is output to the standard output.
For other specification combinations, see Table 5-4: Reference range if ${array[n][m]} is specified.

The following shows an example of referencing the values of an array:

Contents of job definition script

set -A myArray a01 a02 a03 # Define myArray as an array
for myElement in ${myArray[*]} # Expand all elements of myArray to wordlists in
the for statement
do
 echo $myElement
done

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 364

Results output to the standard output

a01
a02
a03

(4) Regarding the necessary amount of memory for securing a large
amount of an element of the array

You can create a maximum of 65,536x64 elements of array in a two-dimensional array.

The maximum number of elements of array may not be ensured depending on the amount of available memory that is
granted to the process that creates the two-dimensional array.

The formula for estimating the memory amount that is required for creating a two-dimensional array is as follows:

(324+x) × y
x: Average array element data (specified by rounding up the value in units of
multiples of 8)
y: Maximum number of array elements to be created (1 to 65,536×64).

Confirm that the total of the aforementioned necessary memory amount and required amount of memory that is used
by other syntax does not exceed the memory amount that is available in the process.

5.1.4 Functions
You can use functions by defining them in the same job definition script files and external files. The following shows
the formats used to define functions.

Syntax 1

function-name() {
 command
 :
 (omitted)
}

Syntax 2

function function-name {
 command
 :
 (omitted)
}

The naming conventions for functions are the same as for variables.In addition, a function cannot have the same name
as any standard shell command, extended shell command, or the following commands:

• bg

• bind

• fc

• fg

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 365

A function cannot have the same name as any standard shell command or extended shell command. For details about
the naming conventions for variables, see (1) Naming conventions for variables.

If you define a function in a job definition script that is not the job definition script in which the function is to be executed,
you must use the . (dot) command or the #-adsh_script command to call the job definition script in which the
function is defined before the function executes.

The formats are shown below. For details about the . (dot) command, see 9.3.1 . command (executes a shell script) in
9.3 Standard shell commands. For details about the #-adsh_script command, see 9.5.7 #-adsh_script
command (calls an external job definition script file from the job definition script that is running) in 9.5 Extended script
commands.

. name-of-file-defining-the-function

or

#-adsh_script name-of-file-defining-the-function

If a function defined in a job definition script has the same name as another function in the same job definition script,
in a job definition script called by the . (dot) command, or in a job definition script called by the #-adsh_script
command, the function defined immediately before the execution location of the identically named function is executed.

The format used to execute a function is shown below. You can specify arguments in a function. The specified arguments
are stored after the positional parameter $1 within the function.

function-name [args]

In the positional parameter $0 in the function, the following information is stored according to the format used:

• For a function defined in format 1, its shell script name is stored.

• For a function defined in format 2, its function name is specified.

The following table explains the relationship between positional parameters and whether function arguments are
specified.

Table 5-5: Relationship between positional parameters and whether function arguments are
specified

Positional parameter in the
program calling the function

Function
argument

Positional parameter
when the function begins

Positional parameter when control
returns from the function

Specified Specified Value specified in the argument Value of the positional parameter in the program
calling the function

Specified Omitted No value Value of the positional parameter in the program
calling the function

Omitted Specified Value specified in the argument No value (value of the positional parameter in
the program calling the function)

Omitted Omitted No value No value (value of the positional parameter in
the program calling the function)

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 366

(1) Local variables in functions
In JP1/Advanced Shell, you can use the typeset command in a function to define local variables that are valid within
the function. When the function is completed, the defined variables are restored to their status before the function was
executed. The following shows an execution example of local variables in a function.

Contents of job definition script:

0001 : myfunc(){ # Define the myfunc function
0002 : typeset -r var=abc # Define the var local variable with the read-only
attribute in the function
0003 : echo $var # Output the value of the var variable
0004 : readonly -p # Output the variable with the read-only attribute
0005 : return 0
0006 : }
0007 : typeset -i var=123 # Define the var variable with the integer-type
attribute
0008 : typeset | grep var # Output the attribute of the var variable
0009 : myfunc # Execute the myfunc function
0010 : echo $var # Output the value of the var variable after
function execution
0011 : readonly -p # Output the variable with the read-only attribute
0012 : typeset | grep var # Output the attribute of the var variable
0013 : exit 0
0014 :

Contents of the STDOUT file of execution job:

******** Contents of the STDOUT file of the executable job ********
typeset -i var <- Result of the 8th line. Already defined the
variable var with the integer type
abc <- Result of the third line. Updated the variable var
with abc
readonly var=abc <- Result of the fourth line. Variable var is read-
only attribute
readonly ADSH_DIR_BIN=/opt/jp1as/bin/
readonly ADSH_DIR_CMD=/opt/jp1as/cmd/
readonly ADSH_DIR_PARTS_EN=/opt/jp1as/parts/en/
readonly ADSH_DIR_PARTS_JA=/opt/jp1as/parts/ja/
123 <- Result of the 10th line. Variable var is recovered
after completion of function.
readonly ADSH_DIR_BIN=/opt/jp1as/bin/
readonly ADSH_DIR_CMD=/opt/jp1as/cmd/
readonly ADSH_DIR_PARTS_EN=/opt/jp1as/parts/en/
readonly ADSH_DIR_PARTS_JA=/opt/jp1as/parts/ja/
typeset -i var <- Result of the 12th line. Same as the output result
of the 8th line.

(2) Trace mode
By enabling the trace mode for a function, you can execute the commands specified in the function at the same time
that the contents of the commands are output to the standard error output.

You use the typeset standard shell command to place a function in the trace mode. For details about the typeset
command, see 9.3.29 typeset command (declares explicitly the attributes and values of variables and functions) in
9.3 Standard shell commands.

The following shows an example of a typeset command specification and its standard error output results:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 367

Contents of job definition script

0001 : fn(){
0002 : echo "--- `date`"
0003 : }
0004 : typeset -ft fn
0005 : fn

Standard error output results of the function in the trace mode

+ date
+ echo --- Thu Oct 29 15:41:17 JST 2015

(3) Function preload functionality
The function preload functionality enables you to define only the code functions used in the shell script to be defined
during execution. When the function preload functionality is used, batch job execution performance improves compared
with when this functionality is not used because you can avoid executing common code functions regardless of the
execution.

The following explains how to use the function preload functionality.

1. Create a file containing function definitions (function definition file) and save it using the function name as the file
name.
If you define multiple functions in the function definition file, all the specified functions are defined. Note that if a
function name defined in the function definition file already exists, that function definition is overwritten.
If information other than function definitions, such as commands, is specified in the function definition file, that
information functions in the same manner as external scripts.

2. In the job definition script, specify the following command to enable the function preload functionality:

typeset -fu function-name [function-name-2...]

For function-name, specify the name of the function with the same name as the function definition file name.
JP1/Advanced Shell provides autoload as an alias of the typeset -fu command. The format of autoload
is as follows:

autoload function-name [function-name-2...]

For details about the typeset command, see 9.3.29 typeset command (declares explicitly the attributes and
values of variables and functions) in 9.3 Standard shell commands.
For details about autoload, see 5.1.5 Command alias definitions.

3. In the FPATH shell variable, specify the directory that contains the function definition file.
If a function with the preload functionality enabled is not defined in the specified function definition file, the contents
of the function definition file with the specified function name are loaded from the directory specified in the FPATH
shell variable and then all the functions specified in the file are defined. You can specify the FPATH shell variable
in job definition scripts and environment files.

(a) Example of using the preload functionality (using the typeset -fu commands)
The example below shows how to use the function-preload functionality by using the typeset -fu command. JP1/
Advanced Shell provides autoload as an alias of the typeset -fu command. In this example, the preload functionality
is executed for functions auto1, auto2, and auto3.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 368

Contents of the function definition file (/home/jp1as/autoload/auto1):

0001 : function auto1 { # Defines the auto1 function
0002 : echo "start auto1 in FPATH file"
0003 : return 11
0004 : }

Contents of the function definition file (/home/jp1as/autoload/auto2):

0001 : autoxx() { # Defines the autoxx function (auto2 is not defined)
0002 : echo "start autoxx in FPATH file"
0003 : return 255
0004 : }

Function definition files in the /home/jp1as/autoload directory:
auto1
auto2
(Function definition file auto3 does not exist)

Contents of the job definition script (/home/jp1as/test.ash):

0001 : export FPATH="/home/jp1as/autoload" # Specify FPATH
0002 :
0003 : typeset -fu auto1 auto2 # Apply the preload functionality to the auto1
and auto2 functions
0004 : autoload auto3 # Apply the preload functionality to the auto3
function
0005 :
0006 : auto1 # Execute the auto1 function
0007 : auto2 # Execute the auto2 function
0008 : auto3 # Execute the auto3 function

Execution results:

******** JOB CONTROLLER MESSAGE ********
14:40:37 152263 KNAX0091-I ADSH152263 The job started.
14:40:37 152263 KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
14:40:37 152263 KNAX7902-I The adshexec command will run in tty stdin mode.
14:40:37 152263 KNAX6112-I Execution of the command export (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command typeset (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command typeset (line=4) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command echo (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command return (line=3) finished
successfully. exit status=11 execution time=0.000s CPU time=0.000s#1
14:40:37 152263 KNAX6046-E The function "auto2" is not defined in the function
definition file "/home/jp1as/autoload/auto2". filename="/home/jp1as/test.ash"
line=7#2
14:40:37 152263 KNAX6044-E The function definition file "auto3" was not found in
the FPATH directory. filename="/home/jp1as/test.ash" line=8#3
14:40:37 152263 KNAX0101-E ADSH152263 An error occurred during execution of the
job.
14:40:37 152263 KNAX0098-I ADSH152263 The job ended. exit status=127 execution
time=0.004s CPU time=0.000s

#1
Indicates that the execution result of the auto1 function is normal termination.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 369

#2
The auto2 function already exists in the function definition file with the same name in the directory specified
in FPATH. Because that function definition file does not contain a definition of the auto2 function, the
KNAX6046-E message is issued and the function terminates with an error.

#3
For the auto3 function, the directory specified in FPATH does not contain a function definition file with the
function name. Therefore, the KNAX6044-E message is issued and the function terminates with an error.

(b) Notes
• Once a function is defined by loading its function definition file by using the preload functionality, no function

definition file with the same file name will be loaded again. However, if the function is invalidated by the unset
command and then is re-executed, the function definition file with the same name will be loaded again.

• If the function preload functionality is enabled for a function but the function has already been defined in the same
shell script, in a shell script called by the . (dot) command, or in a shell script called by the #-adsh_script
extended script command, the function definition file is not loaded.

• If the same function is defined in multiple function definition files, the last function defined takes effect. If you
define multiple functions in a single function definition file, make sure that there is no duplication of function names.
The following shows an example definition of the fn1 function in multiple function definition files and the output
results.

Contents of the function definition file /home/jp1as/autoload/fn1:
0001 : fn1(){ # fn1 function definition 1
0002 : echo "start fn1"
0003 : return 1
0004 : }

Contents of the function definition file /home/jp1as/autoload/fn2:
0001 : fn2(){ # fn2 function definition
0002 : echo "start fn2"
0003 : return 2
0004 : }
0005 : fn1(){ # fn1 function definition 2
0006 : echo "start fn1 in fn2"
0007 : return 21
0008 : }

Contents of the job definition script /home/jp1as/test.ash:
0001 : export FPATH="/home/jp1as/autoload" # Specify FPATH
0002 : typeset -fu fn1 fn2 # Enable the preload functionality for the fn1
and fn2 functions
0003 : fn1 # Execute the fn1 function
0004 : fn2 # Execute the fn2 function
0005 : fn1 # Re-execute the fn1 function

Results output to the standard output
start fn1 fn1 of definition 1 is executed.
start fn2
start fn1 in fn2 fn1 of definition 2 is executed.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 370

• If the function preload functionality is enabled for an undefined function, the job definition script is placed in
undefined status until a function definition file is loaded. Therefore, nothing is displayed by using the CUI debugger's
info functions command.

5.1.5 Command alias definitions
In JP1/Advanced Shell, you can define an alias for a command. You use the alias command for the alias definition.
The following shows the format:

Format:

alias alias-name=value

If you specify for value a character string that contains a space, you must enclose the entire value in quotation marks.

You can specify for alias-name a built-in command to redefine the command, but no reserved word can be redefined
as an alias. The following shows an example.

Redefining a built-in command:

alias read="read STR" # Define "read STR" for the alias name read
uname | read # read is executed as "read STR"
echo $STR # The result of uname set in the STR variable is output

Specifying a reserved word as an alias:

alias while="echo JP1/AS" # Define an alias for the reserved word while
while # while is interpreted as a reserved word and
 # the while statement is terminated with a format error

You use the alias command to define aliases or to output a list of aliases. To invalidate a defined alias definition, you
use the unalias command. For details about these commands, see 9.3.3 alias command (defines aliases) and 9.3.32 
unalias command (removes alias definitions) in 9. Job Definition Script Commands and Control Statements.

In JP1/Advanced Shell, the following aliases are defined:

Alias Definition

autoload typeset -fu

functions typeset -f

integer typeset -i

local typeset

type whence -v

5.1.6 Metacharacters
Metacharacters are characters that have special meaning in job definition scripts. If you include any of the following
characters in a job definition script, the job controller interprets it as a metacharacter:

|, &, ;, <, >, (,), $, `, ', \, ", ~, #, *, [,], ?

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 371

If you want to use a metacharacter as a normal character, you must invalidate its metacharacter usage. The following
table explains how to invalidate metacharacters.

Table 5-6: How to invalidate metacharacters

Invalidation method Description

'str' The character string str processes all characters other than the single quotation mark (') as normal characters.

"str" The character string str processes all characters other than the dollar sign ($), backslash (\), and grave accent
mark (`) as normal characters.
However, if \ is immediately followed by $, \, `, or ", then \ is treated as a metacharacter. To include \ as a
normal character in the character string str, specify \\.

\char Invalidates (escapes) the special meaning of the characters char.

When invalidated metacharacters are output, the output processing depends on the specifications of the built-in command
used, such as the echo and print commands.

Contents of job definition script:

echo 'JP1/AS\n' # 1.
echo "JP1/AS\n" # 2.
echo JP1/AS\\n # 3.
echo 'JP1/AS\\n' # 4.
echo "JP1/AS\\n" # 5.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
JP1/AS As a result of 1, the echo command outputs \n as a line break.

JP1/AS Result of 2

JP1/AS Result of 3

JP1/AS\n As a result of 4, \ is treated as an escape character and \n is
output as distinct characters.
JP1/AS Result of 5

In 4, because the characters are enclosed by single quotation marks ('), \\n is passed to the echo command. As
a result, the echo command interprets \\ as the character \, and outputs the characters \ and n.
In 5, because the characters are enclosed by double quotation marks ("), \\ is interpreted as the character \, and
\n is passed to the echo command. As a result, the echo command outputs \n as a linefeed code.

The following subsections explain functions using metacharacters.

(1) Positional parameters
When you execute a job definition script, you can pass parameters to the job definition script as arguments by specifying
run-time parameters following the job definition script file name. JP1/Advanced Shell assigns these arguments to special
variables called positional parameters. There are 10 positional parameters, $0 through $9. The file name of the executed
job definition script is assigned to $0, and arguments are assigned to $1 through $9 in the order specified. The following
table lists and describes the positional parameters of JP1/Advanced Shell and the related special characters.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 372

Table 5-7: Positional parameters of JP1/Advanced Shell and the related special characters

Positional parameter or
special character

Description

Positional
parameters

$0 File name of the job definition script.

$n Value of argument n specified in the job definition script (n: 1 through 9)

Related special
characters

$# Number of arguments specified in the job definition script

$* All arguments specified in the job definition script

$@ All arguments specified in the job definition script

"$*" Handles all arguments specified in the job definition script as a group.
Example: "$1 $2 $3 ... "
If the value of the IFS shell variable has been changed, the values are delimited by the new value of the
IFS shell variable.

"$@" Handles the arguments specified in the job definition script individually.
Example: "$1" "$2" ... "
If the IFS shell variable has been changed, the values are delimited by the space.

You use the set standard shell command to change the positional parameters in a job definition script. For details about
the set command, see 9.3.23 set command (sets shell options, creates an array, or displays variable values) in 9.3 
Standard shell commands.

(2) String separators
In JP1/Advanced Shell, the characters specified in the IFS shell variable are treated as string separators. The space and
tab characters are treated as string separators because the initial values of the IFS shell variable are the space, tab, and
end-of-line characters. Any number of consecutive spaces and tab characters are treated as a single separator. For details
about the IFS shell variable, see 5.5 Shell variables.

To use space or tab characters in character strings, you must enclose the character string containing the space or tab
character in quotation marks (' or ").

(3) Line continuation
The following explains how to specify a command over multiple lines:

1. Specify a backslash (\) at the end of a line that is to continue onto the next line.

2. Enclose the entire multi-line specification in a single set of quotation marks (but do not specify a quotation mark at
the end of each line that is continued onto the next line).

JP1/Advanced Shell treats such a set of lines as continued lines and processes them as a single line.

(4) Comments
You can specify comments in job definition scripts. When a hash mark (#) is specified in a line, the rest of the line from
the hash mark through the end of the line is treated as a comment. However, if a hash mark is followed by -adsh, the
line is processed as follows:

• Line that begins with #-adsh
This line is treated as an extended script command.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 373

• Specification of #-adsh continues onto the next line
The continuation line is treated as a comment line. The following shows an example:

echo ABC \
#-adsh

However, anytime #-adsh is not continued from the previous line or is not at the beginning of a line, an error
results.

• Coding other than #-adsh is specified
The line is treated as a comment line.

Note that a comment cannot be specified on a line that contains an extended script command.

(5) Wildcards
You can use wildcard characters to obtain file names and directory names that satisfy specified conditions and to compare
such names with desired character strings.

The following table describes the wildcard characters supported in JP1/Advanced Shell.

Table 5-8: Wildcard characters supported in JP1/Advanced Shell

Wildcard character Description

? Matches any single character, except the dot (.) in dot files.

* Matches a character string consisting of any number of characters, except the dot (.) in dot files.

[...] Match is based on the character string enclosed in the square brackets ([]). When ! is specified at the beginning
of the character string enclosed in the square brackets, the wildcard matches any character string other than the
character string that is enclosed in the square brackets. To specify] as a character, specify it at the beginning
of the character string.
If two characters are separated by a hyphen (-), the match is of any character between those two characters
(including the two characters themselves). To specify the hyphen (-) as a character, specify it at the beginning
or end of the character string. The following table shows an example.

{str,...} Expands the str strings delimited by the comma by using brace expansion. This expansion is not performed in
the following cases:
• The braceexpand shell option is invalid.
• The noglob shell option is valid.

The following table shows example specifications of the square brackets wildcard ([]).

Table 5-9: Specification examples using the square brackets wildcard

Specification example Description

[]a] Matches the character string]a.

[!abc] Matches any character string other than abc.

[0-9] Matches one of the numbers from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

[-abc] Matches the character string -abc.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 374

Specification example Description

[!-abc] Matches any character string other than -abc.

(6) Substitution
The following three substitution functions are available:

• Variable substitution
Replaces a variable's status, the length (in bytes) of a character string constituting the value of a variable, the number
of elements in an array variable, or the value of a variable expanded by matching the variable value and a specified
pattern.

• Command substitution
Treats a command's standard output as a variable value.

• File name substitution
Expands a file name that matches a specified condition by using wildcard characters, such as * and ?. Note that if
the noglob shell option is enabled, file names are not replaced. For details about the noglob shell option, see
5.6.1 Shell options that can be specified with the set command.

(a) Variable substitution
Variable substitution includes substitution of a variable based on the status of the variable, substitution of a variable for
the length of a character string constituting the value of a variable or for the number of elements in an array, substitution
of a variable based on the result of pattern matching, and substring expansion.

• Variable substitution depending on the status of the variable
The table below lists and describes the formats used to perform variable substitution depending on the status of the
variable. In these formats, variable represents a variable name and word represents the variable that is expanded
according to the status of variable. In the examples and results, a indicates an undefined variable, b=NULL, and c=1.

Table 5-10: Formats used to perform variable substitution depending on the status of the variable

Format Description Examples Results

${variable:-word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined but its value is NULL or undefined,
the expansion result of word is returned. The value of
variable remains unchanged.

cnt=${a:-7} 7 is assigned to cnt.

cnt=${b:-8} 8 is assigned to cnt.

cnt=${c:-9} Value of c is assigned to
cnt.

${variable-word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL, the value of
variable (NULL) is returned. If variable is undefined,
the expansion result of word is returned. The value of
variable remains unchanged.

cnt=${a-7} 7 is assigned to cnt.

cnt=${b-8} NULL is assigned to cnt.

cnt=${c-9} Value of c is assigned to
cnt.

${variable:=word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL or undefined,
the expansion result of word is assigned to variable, and
then the value of variable is returned. Note that this
format is applicable only to variables, not to positional
parameters.

cnt=${a:=7} 7 is assigned to a and the
value of a is assigned to
cnt.

cnt=${b:=8} 8 is assigned to b and the
value of b is assigned to
cnt.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 375

Format Description Examples Results

${variable:=word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL or undefined,
the expansion result of word is assigned to variable, and
then the value of variable is returned. Note that this
format is applicable only to variables, not to positional
parameters.

cnt=${c:=9} Value of c is assigned to
cnt.

${variable=word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL, the value of
variable (NULL) is returned. If variable is undefined,
the expansion result of word is assigned to variable, and
then the value of variable is returned. Note that this
format is applicable only to variables, not to positional
parameters.

cnt=${a=7} 7 is assigned to cnt.

cnt=${b=8} NULL is assigned to cnt.

cnt=${c=9} Value of c is assigned to
cnt.

${variable:?[word]} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned.
If word is specified and variable is defined and its value
is NULL or undefined, the expansion result of word is
output to the standard error output, and then the job
definition script is terminated.
If word is omitted and variable is defined and its value
is NULL or undefined, the KNAX6050-E message
indicating that variable is undefined is issued, and then
the job definition script is terminated.
The value of variable remains unchanged.

cnt=${a:?7} The expansion result is
output to the standard
error output, and then the
shell is terminated.

cnt=${a:?} A message is output, and
then the shell is
terminated.

cnt=${b:?8} The expansion result is
output to the standard
error output, and then the
shell is terminated.

cnt=${c:?9} Value of c is assigned to
cnt.

${variable?[word]} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned.
If word is specified and variable is undefined, the
expansion result of word is output to the standard error
output, and then the job definition script is terminated.
If word is omitted and variable is undefined, the
KNAX6050-E message indicating that variable is
undefined is issued, and then the job definition script is
terminated.
The value of variable remains unchanged.

cnt=${a?7} The expansion result is
output to the standard
error output, and then the
shell is terminated.

cnt=${a?} A message is output, and
then the shell is
terminated.

cnt=${b?8} NULL is assigned to cnt

cnt=${c?9} Value of c is assigned to
cnt. Value of c is
assigned to cnt.

${variable:+word} If variable is defined as a variable and a value is
assigned to it, the expansion result of word is returned.
Otherwise, NULL is returned. The value of variable
remains unchanged.

cnt=${a:+7} NULL is assigned to cnt.

cnt=${b:+8} NULL is assigned to cnt.

cnt=${c:+9} 9 is assigned to cnt.

${variable+word} If variable is defined as a variable and a value is
assigned to it or the value is NULL, the expansion result
of word is returned. Otherwise, NULL is returned. The
value of variable remains unchanged.

cnt=${a+7} NULL is assigned to cnt.

cnt=${b+8} 8 is assigned to cnt.

cnt=${c+9} 9 is assigned to cnt.

• Variable substitution to the length of the character string constituting the value of the variable or to the number of
array elements

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 376

The table below lists and describes the formats used to perform variable substitution to the length of the character
string constituting the value of the variable or to the number of array elements. In these formats, variable represents
a variable name and array represents an array name.

Table 5-11: Formats used to perform variable substitution to the length of the character string
constituting the value of the variable or to the number of array elements

Format Description

${#variable} If variable is * or @, the variable is replaced with the number of positional parameters. Otherwise, the
variable is replaced according to the setting specified for the VAR_SHELL_GETLENGTH environment
setting parameter:
• BYTE

Replaces the length of the value stored in variable with the number of bytes.
• CHARACTER

Replaces the length of the value stored in variable with the number of characters.

If the VAR_SHELL_GETLENGTH environment setting parameter is not specified, the operation is the
same as when BYTE is specified in the VAR_SHELL_GETLENGTH environment setting parameter.

${#array[*]} The value is replaced with the number of elements of the array specified by array.

${#array[@]}

${#array[n][*]} Replace with the number of elements of the line of the array specified with array[n][*].

${#array[n][@]} Replace with the number of elements of the line of the array specified with array[n][@].

${#array[*][m]} Replace with the number of elements of the column of the array specified with array[*][m].

${#array[@][m]} Replace with the number of elements of the column of the array specified with array[@][m].

${#array[*][*]} Replace with the number of elements of the array specified with array.

${#array[@][@]}

${?MAX:array} Replace with the maximum number of lines of the array (one-dimensional array) and the maximum number
of columns of the array (two-dimensional array) specified with array.

• Usage example of the ${#array[*]} format

ARRAY=(a b c d e f g h i j k l m n o)
echo ${#ARRAY[*]}

-->15

• Usage example of the ${#array[n][*]} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o })
echo ${#ARRAY[1][*]}

-->5

• Usage example of the ${#array[*][m]} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o })
echo ${#ARRAY[*][1]}

-->3

• Usage example of the ${#array[*][*]} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o })
echo ${#ARRAY[*][*]}

-->15

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 377

• Usage example of the ${?MAX:array} format

ARRAY[]=({ a1 a2 a3 a4 a5 } { b1 b2 b3 b4 b5 } { c1 c2 c3 c4 c5 } \
 { d1 d2 d3 d4 d5 } { e1 e2 e3 e4 e5 } { f1 f2 f3 f4 f5 } \
 { g1 g2 g3 g4 g5 } { h1 h2 h3 } { i1 i2 i3 i4 })

unset ARRAY[2][3]
ARRAY[2][5]=c6
echo ${?MAX:ARRAY}

-->9 6

n#1 m#2

0 1 2 3 4 5

0 a1 a2 a3 a4 a5 -

1 b1 b2 b3 b4 b5 -

2 c1 c2 - c4 c5 c6

3 d1 d2 d3 d4 d5 -

4 e1 e2 e3 e4 e5 -

5 f1 f2 f3 f4 f5 -

6 g1 g2 g3 g4 g5 -

7 h1 h2 h3 - - -

8 i1 i2 i3 - - -

#1:
This value indicates a one-dimensional array element.
#2:
This value indicates a two-dimensional array element.

• Variable substitution based on the result of pattern matching
The table below lists and describes the formats used to perform variable substitution based on the result of pattern
matching. In these formats, variable represents a variable name and pattern represents a character string used to
perform pattern matching with variable. Wildcard characters can be used in pattern.

Table 5-12: Formats used to perform variable substitution based on the result of pattern matching

Classification Format Description

Leading match ${variable#pattern } If pattern matches the leading part of the variable value, the value in
variable is replaced with its value less the shortest matching part (the
shortest-matching part is deleted). Otherwise, the variable is replaced with
the value of variable.

${variable##pattern } If pattern matches the leading part of the variable value, the variable is
replaced with its value less the longest matching part (the longest-
matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

Trailing match ${variable%pattern } If pattern matches the trailing part of the variable value, the variable is
replaced with its value less the shortest matching part (the shortest-
matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

${variable%%pattern } If pattern matches the trailing part of the variable value, the variable is
replaced with its value less the longest matching part (the longest-

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 378

Classification Format Description

Trailing match ${variable%%pattern } matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

The following shows an example of outputting a variable value with deletion of a specified character string (leading
match).
Contents of the job definition script:

abc=abcd1234xyz987abcd1234efg
echo ${abc#abcd} # 1.
echo ${abc#a*2} # 2.
echo ${abc##a*2} # 3.
echo ${abc#*1234} # 4.
echo ${abc##*1234} # 5.
echo ${abc#1234} # 6.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
1234xyz987abcd1234efg Result of 1: The leading character string abcd is
deleted.
34xyz987abcd1234efg Result of 2: The string of characters from a
through 2 is deleted (shortest match).
34efg Result of 3: The string of characters from a
through 2 is deleted (longest match).
xyz987abcd1234efg Result of 4: The string of characters from the
beginning through 1234 is deleted (shortest match).
efg Result of 5: The string of characters from the
beginning through 1234 is deleted (longest match).
abcd1234xyz987abcd1234efg Result of 6:The value of abc is output because
there is no leading match.

The following shows an example of outputting a variable value with deletion of a specified character string (trailing
match).
Contents of the job definition script:

abc=abcd1234xyz987abcd1234
echo ${abc%1234} # 1.
echo ${abc%d*4} # 2.
echo ${abc%%d*4} # 3.
echo ${abc%34*} # 4.
echo ${abc%%34*} # 5.
echo ${abc%abcd} # 6.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
abcd1234xyz987abcd Result of 1: The trailing character string 1234
is deleted.
abcd1234xyz987abc Result of 2: The trailing character string from
d through 4 is deleted (shortest match).
abc Result of 3: The trailing character string from
d through 4 is deleted (longest match).
abcd1234xyz987abcd12 Result of 4: The character string beginning
with 34 is deleted (shortest match).
abcd12 Result of 5: The character string beginning
with 34 is deleted (longest match).
abcd1234xyz987abcd1234 Result of 6: The value of abc is output because
there is no trailing match.

• Substring expansion

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 379

The following table lists and describes the formats for variable substitution that is performed based on the result of
substring expansion.

Table 5-13: Formats for substring expansion

Format Description

${variable:offset} Retrieves characters from the expansion result of variable. offset specifies the start
position of the characters to be retrieved.

${variable:offset:length} Retrieves as many characters as there are in maximum length from the expansion result
of variable. offset specifies the start position of the characters to be retrieved.

${array[*]:offset} Retrieves elements that begin with ${array[offset]} of the array.

${array[*]:offset:length} Retrieves as many elements as there are in length that begin with ${array[offset]} of
the array.

${array[@]:offset} Retrieves elements that begin with ${array[offset]} of the array.

${array[@]:offset:length} Retrieves as many elements as there are in length that begin with ${array[offset]} of
the array.

${array[*][m]:offset} Extract the element of column m beginning with the ${array[offset][m]} of the
array.

${array[*][m]:offset:length} Extract the element of column m beginning with ${array[offset][m]} of the array
for the number of length.

${array[n][*]:offset} Extract the element of the line beginning with ${array[n][offset]} of the array.

${array[n][*]:offset:length} Extract the element of the line beginning with ${array[n][offset]} of the array for
the number of length.

${array[@][m]:offset} Extract the element of column m beginning with the ${array[offset][m]} of the
array.

${array[@][m]:offset:length} Extract the element of column m beginning with ${array[offset][m]} of the array
for the number of length.

${array[n][@]:offset} Extract the element of the line beginning with ${array[n][offset]} of the array.

${array[n][@]:offset:length} Extract the element of the line beginning with ${array[n][offset]} of the array for
the number of length.

${array[*][*]:offset} Extract the element beginning with ${array[offset]} of the array.

${array[*][*]:offset:length} Extract the element beginning with ${array[offset]} of the array for the number
of length.

${array[@][@]:offset} Extract the element beginning with ${array[offset]} of the array.

${array[@][@]:offset:length} Extract the element beginning with ${array[offset]} of the array for the number
of length.

Legend:
variable: Specifies a variable name.
array: Specifies an array name.
offset: Specifies the start position in the character string or array element subject to partial expansion.
length: Specifies the number of characters or array elements to be expanded.
n: This letter specifies the line of a two-dimensional array.
m: This letter specifies the column of a two-dimensional array.

• Usage example of the ${array[*]:offset} format

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 380

ARRAY=(a b c d e f g h i j k l m n o)
echo ${ARRAY[*]:3}

-->d e f g h i j k l m n o

• Usage example of the ${array[*]:offset:length} format

ARRAY=(a b c d e f g h i j k l m n o)
echo ${ARRAY[*]:3:3}

-->d e f

• Usage example of the ${array[*][m]:offset} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[*][1]:1}

-->g l q

• Usage example of the ${array[*][m]:offset:length} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[*][1]:1:2}

-->g l

• Usage example of the ${array[n][*]:offset} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[1][*]:1}

-->g h i j

• Usage example of the ${array[n][*]:offset:length} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[1][*]:1:2}

-->g h

• Usage example of the ${array[*][*]:offset} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[*][*]:3}

-->d e f g h i j k l m n o p q r s t

• Usage example of the ${array[*][*]:offset:length} format

ARRAY[]=({ a b c d e } { f g h i j } { k l m n o } { p q r s t })
echo ${ARRAY[*][*]:3:3}

-->d e f

(b) Command substitution
The table below lists and describes the formats used to perform command substitution. In these formats, command
represents the name of the command and the arguments to be executed.

In Windows, command substitution is executed by the current process excluding external commands when CURRENT
is specified for the CMDSUB_PROCESS parameter (the default value is CURRENT).

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 381

Table 5-14: Formats used to perform command substitution

Format name Format Description

$() format $(command) If the character string of command contains a backslash (\), \ has no special
meaning.

Grave character format `command` If the character string of command contains \, \ has a special meaning.
To specify one command substitution within another, specify \ immediately
before the inner grave accent mark character string such as `command
\`command\``.

In the grave character format, a backslash (\) in the character string of command is treated as a metacharacter. Therefore,
if the character string of command contains \, the execution results differ between the $() and the grave character
formats. We recommend that you use the $() format.

The following shows example specifications and execution results.

• $() format
Specification example:

VAL=$(echo '\$x')

Result (value substituted in result)

\$x

• Grave character format
Specification example:

VAL=`echo '\$x'`

Result (value substituted in result)

$x

Command substitution uses a temporary file for exchanging data under the following conditions:

• In Windows
If CURRENT is specified for the CMDSUB_PROCESS parameter (default value).

• In UNIX
If command substitution is executed for only a single command group connected with a pipe (|) in an environment
where CURRENT has been specified for the COMPATIBLE_CMDSUB parameter and the PIPE_CMD_LAST
parameter at the same time.
Example:

• For the following process, data that is output to the standard output with cmd2 is output to a temporary file and
then loaded into the job definition script as a character string:

`cmd1 | cmd2`

• For the following process, a temporary file is not created as there are two command groups:

`cmd1 | cmd2; cmd3 | cmd4`

The temporary file is created in the location specified with the TEMP_FILE_DIR environment setting parameter.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 382

For details regarding the CMDSUB_PROCESS parameter, see 7. Parameters Specified in the Environment Files >
7.3.11 CMDSUB_PROCESS parameter (defines the execution process of command substitution) [only for Windows].

For details regarding the COMPATIBLE_CMDSUB parameter, see 7. Parameters Specified in the Environment Files
>7.3.14 COMPATIBLE_CMDSUB parameter (defines the behavior of command substitution) [only for UNIX].

(c) File name substitution
The table below lists and describes the formats used to perform file name substitution. In these formats, pattern represents
a character string used for pattern matching. Wildcard characters can be used in pattern.

Table 5-15: Formats used to perform file name substitution with multiple patterns

Format Description Example Matching character
string

?(pattern|pattern ...) Matches one of the character strings specified
as pattern.

?(h) Null character string, h

*(pattern|pattern ...) Matches none or any number of the character
strings specified as pattern.

*(h) Null character string, h, h,
hh, hhh, ...

+(pattern|pattern ...) Matches at least one of the character strings
specified as pattern.

+(h) h, hh, hhh, ...

@(pattern|pattern ..) Matches only one of the character strings
specified as pattern.

@(h) h

!(pattern|pattern ...) Matches all but one of the character strings
specified as pattern.

!(h) Any character string without
h

You can replace file names by specifying multiple patterns delimited by the vertical bar (|). Do not specify any spaces
before or after the vertical bar delimiter. If there is such a space, it will be regarded as part of the pattern.

The following shows examples.

Example of file name substitution

Contents of job definition script:

ls -C # 1. Display the file in the current directory
ls -C ?(*.sh|*.exe|*.dot) # 2. Display the file names whose extension is
sh,exec, or dot
ls -C *(*.sh|*.exe) # 3. Display the file names whose extension is either
sh or exe
ls -C +(*.jhs|*h) # 4. Display the file names whose extension is jhs or
that end with h
ls -C @(*.c|*.jhs) # 5. Display the file names whose extension is c or
jhs
ls -C !(*.c|*.jhs) # 6. Display the file names whose extension is
neither c nor jhs

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
a.jhs a.sh a.txt func.c Execution result of 1
a.sh Execution result of 2
a.sh Execution result of 3
a.jhs a.sh Execution result of 4
a.jhs func.c Execution result of 5
a.sh a.txt Execution result of 6

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 383

File names beginning with a dot (.) are excluded as targets of pattern matching. To include file names beginning with
a dot as targets of pattern matching, you must specify the dot explicitly.

(7) Arithmetic expansion
Arithmetic expansion involves performing an arithmetic operation and then assigning the result to a variable. The
following shows the format and an example of arithmetic expansion.

$((arithmetic-expression))

Example of arithmetic expansion:

Contents of job definition script:

x=100 # 1. Value 100 is assigned to variable x
x=$((x-1)) # 2. Perform the arithmetic operation and then assign the result
to x
echo $x # 3. Output the value of x to the standard output

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
99 ... Value 99 is assigned to x.

(8) Input and output redirection
In job definition scripts, you can change the output destination of command execution results and the input source of
information needed for command execution before commands are executed. These capabilities are called input and
output redirection. This subsection explains input and output redirection as supported by JP1/Advanced Shell.

(a) Redirection
The table below describes the redirection methods supported by JP1/Advanced Shell. A redirection is interpreted from
left to right.

Table 5-16: Redirection available in JP1/Advanced Shell

Redirection Description

> file Uses file as the standard output. If file does not exist, the file is created. If file already exists, the existing file is
overwritten.#1

< file Uses file as the standard input.#1

command_1 |
command_2

This is a pipe. It uses the standard output of command_1 as the standard input for command_2.

>>file Uses file as the standard output. If file does not exist, the file is created. If file already exists, new data is added
to the existing file.#1

>|file Uses file as the standard output. If file does not exist, the file is created. If file already exists, the existing file is
overwritten.#1

<>file Opens file as the standard input for read and write operations.#1

<<label This is a here document.

n>file Redirects the output destination of file descriptor n to file.#1

n<file Inputs file descriptor n from file.#1

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 384

Redirection Description

>&n Copies the standard output to file descriptor n.

<&n Copies the standard input from file descriptor n.

>&- Closes the standard output.

<&- Closes the standard input.

| Start the background process accompanying input and output from the parent process.

>&p#3 Output destination of command is redirected to the background process.

<&p#3 Input into the command is redirected to the background process.

#1:
If symbolic link is specified for file, link destination becomes target of input and output. If you specify the symbolic
link without the link destination for redirection (>, >>, >|, <>) for output, behavior varies between UNIX edition
and Windows edition.

UNIX edition A file is created in the link destination.

Windows edition For the symbolic link for file, a file is created in the link destination. For the symbolic link for directory,
creation of a file fails.

#2:
If |& is used to start multiple background processes that involve input and output operations from parent processes,
the KNAX6029-E message might be issued and the job definition script might terminate with an error. Therefore,
when you use |&, use a command such as wait to prevent multiple background processes from being started
concurrently.

#3:
In the UNIX edition, multiple background processes can be started by reassigning input into the background process
to a different file descriptor. In the Windows edition, not less than 2 background processes cannot be started even
if input into the background process to a different file descriptor.

(b) File descriptors
The following table lists and describes the file descriptors used by the job controller of JP1/Advanced Shell by input
and output type.

Table 5-17: File descriptors in JP1/Advanced Shell by type of input and output

Input or output
type

File descriptor Remarks

Standard input 0 --

Standard output 1 In the following circumstances, a job inherits the standard output that was in effect when
the job controller process started:
• When operating in simple output mode or minimum output mode
• When PARENT is specified for the OUTPUT_STDOUT parameter in the environment

file (this is the default behavior)
• When PARENT is specified in the -s option of the adshexec command

In all other circumstances, a terminal is not opened by this file descriptor because the
job controller uses standard output for output from the spool to STDOUT (stdout).

Standard error 2 In the following circumstance, a job inherits the standard error output that was in effect
when the job controller process started:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 385

Input or output
type

File descriptor Remarks

Standard error 2 • When operating in simple output mode or minimum output mode

In all other circumstances, a terminal is not opened by this file descriptor because the
job controller uses standard output for output from the spool to STDERR (stderr).

Other 3 through 9 The user can use these file descriptors in job definition scripts.

Legend:
--: None

(c) Here document
A here document refers to creation of the standard input within the job definition script. The following table lists and
describes the formats related to here documents.

Table 5-18: Formats related to here documents

Format Description

<< label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
replaced and spaces and tab characters are passed as is to the standard input.

<<- label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
replaced and spaces are passed as is to the standard input. The tab character at the beginning of each line is deleted.

<< \label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
not replaced.

<< 'label'
document
label

(d) Pipes
When you want to connect multiple commands and use the standard output from one command as the standard input
to another, you can use pipes to connect the commands. A set of commands connected by a pipe is called a pipeline.

Processing of a pipeline is executed from left to right. The PIPE_CMD_LAST parameter can be sued to define whether
the last command is to be executed in the current process# or as a separate process. The default setting is for execution
in the current process.

#
This is not applicable to commands executed as a separate processes (external commands, child jobs, UNIX-
compatible commands, shell operation commands, sub-shells, background-specified commands, and background
process-specified commands).

• In Windows
The commands in a pipeline are executed sequentially, and temporary files are used to transfer data between
commands. Also, the temporary files are created in the directory that is specified with the TEMP_FILE_DIR
environment setting parameter. The PIPE_CMD_LAST parameter can be used to define whether the commands of
the pipeline are to be executed as separate processes.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 386

If the output command outputs data to the pipe in a state where the input command has ended and there are no
processes, the output command will end in an error.

• In UNIX
Commands in a pipeline will be executed as separate processes.
Also in UNIX, if multiple commands are connected by a pipe and then the output command outputs data to the pipe
after the input command has terminated and while there is no process, the output command might receive SIGPIPE.
In the job controller, the command issues the message KNAX6522-E and terminates with an error, except when
handling SIGPIPE.

For details regarding the PIP_CMD_LAST parameter, see 7. Parameters Specified in the Environment Files > 7.3.38 
PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe).

(9) Command separators
Command separators enable you to specify multiple commands on a single line of a job definition script. The following
table lists and describes the formats for command separators.

Table 5-19: Formats for command separators

Format Description

command; The specification up to the semicolon (;) is interpreted as a command and its
arguments.

command_1 0&& 0command_2 This is the AND control operator. If the left-hand command terminates with return
code 0, the right-hand command is executed.

command_1 0|| 0command_2 This is the OR control operator. If the left-hand command terminates with any non-
zero return code, the right-hand command is executed.

The command separators can be used to handle and execute a group of commands as a single command group.

(10) Grouping commands
You can execute multiple commands in a batch by grouping them. You can also group multiple command groups. The
following table lists and describes the formats for grouping commands.

Table 5-20: Formats for grouping commands

Format Description

(command _1; 0command _2; ...) Execute the command that is grouped in another process. A change made by
another process is not inherited to the current process. The commands to be
grouped are delimited by semicolons or line breaks.(command_1 (end-of-line)

command_2 (end-of-line)
...)

{ 1command_1; 0command _2; ...;} Execute the command that is grouped in the current process. If you change the
environment while you execute the command, a change is inherited after the
command finishes. The commands to be grouped are delimited by semicolons or
line breaks.
For this format, insert at least one space after a left angle bracket ({) and insert a
semicolon (;) or line break after the last command.

{ 1command_1 (end-of-line)
command_2 (end-of-line)
...(end-of-line)
}

(11) Other metacharacters
The following table lists and describes the other metacharacters that are supported.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 387

Table 5-21: Supported metacharacters

Metacharacter Description

~#1 Replaced with the HOME shell variable.#2

~any-character-string (UNIX only)
Checks whether the user name matching the character string up to / or an argument delimiter is registered
in the /etc/passwd file.
If the user name is registered, this metacharacter is replaced with the corresponding user's login directory.
If the user name is not registered, the specified character string is interpreted as a character string as is.

~+#1 Replaced with the PWD shell variable.

~-#1 Replaced with the OLDPWD shell variable.

& Executes the job definition script or function in the background.

#1
The characters ~, ~+, and ~- are not replaced with the corresponding shell variables if they are enclosed in quotation
marks or specified immediately before an escape character (\) or a character string enclosed in quotation marks. If
such a case, you must use the shell variables themselves.

#2
The HOME shell variable is not specified automatically. You must define it as an environment variable.

5.1.7 Execution as a separate process
If the following formats appear in a job definition script, execution takes place in a different process from the current
process. A change made by another process is not inherited to the current process.

Format Location where details are described

command_1 | command_2 (d) Pipes

$(command) , ` command ` (b) Command substitution

(command) (10) Grouping commands

command & (11) Other metacharacters

command |& (a) Redirection

An example of execution in another process is shown in the following.

Executing a separate process by using a pipe (|):
The handling of execution in a separate process using a pipe (|) depends on the PIPE_CMD_LAST parameter
specification.

Example:

hostname | read STR

- When CURRENT is specified in the PIPE_CMD_LAST parameter
The hostname command is executed in a separate process, but the read command is executed in the current
process.
- When OTHER is specified in the PIPE_CMD_LAST parameter

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 388

The hostname and read commands are both executed in a separate process. Therefore, the result of the
hostname command is not assigned to the STR variable.

Executing a separate process by using command substitution ($(), ``):

Example:

$(date '+%Y%m%d') # Execute a command whose name is the output result of the
date command
`date '+%Y%m%d'` # Execute a command whose name is the output result of the
date command

Executing a background process by using |&:

Example:

echo abc |& # Output the character string abc by a background process
sleep 1
read -p STR # Read the data that was output by the background process
echo $STR

Executing grouped commands in a subshell:

Example:

(TZ=GMT; export TZ; date) # Convert the TZ environment variable temporarily
 # to GMT and then output the time

Background execution by using &:

Example:

sleep 10 &

Replacement of character strings is performed in a separate process. Therefore, if the character string assigned to a
variable by using one of the above formats is executed as a command, the variable name before substitution is output
to the command execution results in the job execution log file. However, for aliases, the command name obtained after
the alias was resolved is output because the alias is resolved in the current process before it is executed.

Contents of the job definition script:

ls="ls -lt" # Assign "ls -lt" to variable ls
alias gt="grep test" # Define "grep test" for alias gt
$ls | gt # Execute ls -lt | grep test

Contents of the job execution log file for the executed job

******** JOB CONTROLLER MESSAGE ********
16:01:11 152286 KNAX0091-I ADSH152286 The job started.
16:01:11 152286 KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
16:01:11 152286 KNAX7902-I The adshexec command will run in tty stdin mode.
16:01:11 152286 KNAX6110-I Execution of the command ls=ls -lt (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
16:01:11 152286 KNAX6112-I Execution of the command alias (line=2) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
16:01:11 152286 KNAX6116-I Execution of the command $ls (line=3) finished
successfully. exit status=0 execution time=0.002s CPU time=0.000s
16:01:11 152286 KNAX6116-I Execution of the command /opt/jp1as/cmd/grep (line=3)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
16:01:11 152286 KNAX0098-I ADSH152286 The job ended. exit status=0 execution
time=0.007s CPU time=0.000s

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 389

To enable specification of the #-adsh_rc_ignore command for a command specified in the above format, you
must specify the base name of the character string before replacement as the command name in the argument of the #-
adsh_rc_ignore command.

Do not execute the following commands as a separate process:

Type Command

Shell operation command adshfile

adshmsvcd [only for Windows]

adshmsvce [only for Windows]

adshmdctl [only for UNIX]

Extended shell command adshecho

adshread

adshjoberr

adshcmdrc

Extended script command All

Difference between Windows version and UNIX version

When using the following command as a different process, execution of process varies between the Windows version
and the UNIX version.

• Standard shell commands

• Script control statement

• Extended shell command

• Reserved script command

• Substitution expression

• Function

• Command including command substitution (example: cmdA $(cmdB) (making cmdA and cmdB as external
commands))

• In the following cases, the defined alias will be used in other processes.
If you do not want to substitute arguments with the defined alias, enclose the command name in quotation marks ('
or ").
Case 1
When all of the following conditions are met:

1. A script that was read before the alias was defined is executed in another process.

2. The alias is defined.

3. The defined alias is to be used to replace an argument of a command executed in another process.

For example:

fn(){
 (ahost) #Condition 3
}

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 390

alias ahost='hostname' #Condition 2
fn #Condition 1

Case 2
When all of the following conditions are met:

1. The alias is defined in another process.

2. The defined alias is to be used to replace an argument of a command executed in the process described in condition
1.

For example:

(alias ahost='hostname' #Condition 1
 ahost) #Condition 2

Differences between the execution of different processes of the UNIX version and the Windows version are as follows:

• If an error occurs in a different process while the root job is in the extended output mode, error information is output
to the standard error output. The file name and line number are not output to the error information.

• When executing a child job as a different process, behavior of the child job may become the same as when DELETE
is specified for the SPOOLJOB_CHILDJOB parameter.

• Different processes use the settings of the environment file. Therefore, if you start a different process when specifying
the relative path name for the environment variable ADSH_ENV while the current directory is being moved, the
different process will terminate with an error because the environment file cannot be read.

• When executing a function as a different process, the array of the function call line number array of later function
information arrays becomes the line number where the function is executed as a different process.

• The file descriptor is not inherited to the different process and the different process will close. For example, an error
will occur if, in the script being executed as a different process, an input or output is performed without the different
process reopening the parent process in relation to the file descriptor in which the parent process is being opened.
Standard output and standard error output are open again.

• The different processes operate in the minimum output mode. For the reason, the different processes do not display
the information message and output destination of error messages is in accordance with the minimum output mode.

• Different processes operate while NO is specified for the SPOOLJOB_CREATE parameter. For the behavior while
NO is specified for the SPOOLJOB_CREATE parameter, see (a) Determining whether the spool job creation
suppression functionality is to be used.

• The variable that is specified by the #-adsh_path_var command is not defined as the variable handling the path
in the different process. If you define the variable handling the path in the different process, specify the variable by
using the PATH_CONV_VAR parameter and the PATH_CONV_NOVAR parameter.

Important
When the following standard shell commands are executed in a separate process, whether execution of the
command results in normal termination or error termination differs from when these commands are executed
in the current process, as described in the following:

• let command
If this command is executed in a separate process without an arithmetic expression specified, it
terminates normally with return code 1.

• exit and return commands

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 391

If either of these commands is executed in a separate process with a non-numeric value specified in its
argument, it terminates normally with return code 1.

• getopts command
If this command is executed in a separate process and the end of options is detected, the command
terminates with an error with return code 1. Use the successRC attribute of the #-
adsh_step_start command or the #-adsh_rc_ignore command to make sure that the
getopts command will not terminated with an error.

• read command
If this command is executed in a separate process and detects an end-of-file (EOF), it terminates with
an error with return code 1. You can prevent such a termination with an error by using the successRC
attribute of the #-adsh_step_start or #-adsh_rc_ignore command.

In the UNIX edition, if this command is executed as a separate process and that process receives a
termination request signal, execution of the command might continue in the separate process depending on
the type of signal. To forcibly terminate processing of the command as a separate process, send SIGTERM
to that process.

5.1.8 Pattern matching
In JP1/Advanced Shell, you can compare patterns in some of the standard commands and script control statements. For
example, if the format ${variable#pattern} is used, the shortest part of the variable value that matches the pattern
pattern is deleted and then the remainder of the value is set in variable. The following shows an example.

Example:

$ var=abcd
$ echo ${var#a[b]}
cd

Whether a variable value can be compared with a specified pattern depends on the function. If the format of the pattern
is invalid, the pattern is treated as a normal character string during comparison. For example, [a*(b] treats all [,
*(, and], which normally have a special meaning as a pattern, as normal characters. The following shows an example.

Example:

$ var='[a*(b])cd'
$ echo ${var#[a*(b])}
cd

5.1.9 Escape characters

(1) List of escape characters
The echo and print commands interpret the characters listed in the following table as escape characters:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 392

Escape
character

Meaning echo
command

print
command

\a Alert character (bell) Y Y

\b Backspace character Y Y

\c Suppresses the linefeed character at the end of a line (characters following \c
are not output)

Y Y

\f Formfeed character (page break) Y Y

\n Linefeed character Y Y

\r Carriage return character Y Y

\t Tab character Y Y

\v Vertical tab character Y Y

\0nnn#1 ASCII character represented by one, two, or three octal digits (0 to 7) Y Y

\xnn#2 ASCII character represented by one or two hexadecimal digits (0 to 9, a to f, A
to F)

Y N

\\ A single backslash character Y Y

Legend:
Y: Can be specified.
N: Cannot be specified.

#1
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to
make it three digits, the ASCII character will still be treated as consisting of only one or two digits. For example,
the following three specifications are all interpreted as being the same, in which case the alert character (bell) is
output three times:
echo -e "\07"
echo -e "\007"
echo -e "\0007"

#2
Enabled only when YES is specified in the ESCAPE_SEQ_ECHO_HEX environment setting parameter. For details
about the ESCAPE_SEQ_ECHO_HEX parameter, see 7.3.16 ESCAPE_SEQ_ECHO_HEX parameter (specifies
whether ASCII code characters in hexadecimal notation are to be interpreted as escape characters) in 7. Parameters
Specified in the Environment Files.
If a specified ASCII character consists of one digit and a leading zero is added to make it two digits, the ASCII
character will still be treated as consisting of only one digit. For example, the following two specifications are
interpreted as being the same, in which case the linefeed character is output twice:
echo -e "\xA"
echo -e "\x0A"

(2) Handling of the echo command with neither -e nor -E option specified
If neither the -e option (interprets escape characters) nor the -E option (does not interpret escape characters) is specified
in the echo command, the handling of escape characters depends on the setting in the ESCAPE_SEQ_ECHO_DEFAULT
environment parameter. For details about the ESCAPE_SEQ_ECHO_DEFAULT environment parameter, see 7.3.15 
ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when the escape-character
option is omitted) in 7. Parameters Specified in the Environment Files.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 393

5.1.10 Specifying extended script commands
In job definition scripts, a line beginning with #-adsh is treated as a request to an extended script command and the
corresponding extended script command is executed.

For details about extended script commands, see 9.5 Extended script commands.

5.1.11 Specifying external commands
Programs that are not built-in commands in job definition scripts are referred to collectively as external commands.
External commands include UNIX-compatible commands, OS-provided commands, and user-created programs. You
can execute external commands by specifying their command names in the job definition scripts.

The following show how to specify an external command:

$ path-of-external-command

(1) Executing external commands in Windows

(a) Defining the extensions of external commands
In Windows, you can execute executable files with the extensions .com, .exe, .cmd, and .bat from job definition
scripts. If you register these extensions in the PATHEXT shell variable, you can execute such executable files from job
definition scripts without having to specify their extensions.

External commands are executed from a job definition script in the order that the extensions are registered in the
PATHEXT environment variable. For example, if the value of the PATHEXT environment variable is .COM;.EXE;,
and ls.com and ls.exe are stored at the locations indicated by the PATH shell variable, ls.com is executed first.

An example search for an external command is shown below. In this example, the value of the PATHEXT environment
variable is .COM;.EXE;.

ls <-- Because no extension is specified, the extensions .com and .exe are
added in this order to locate and execute the corresponding external command.
ls.exe <-- ls.exe is executed because the extension is specified.

When executing executable files by using symbolic links, perform a search by assigning an extension to symbolic links
only. Specify one of the following extensions for the executable files referred to by symbolic links: ".com", ".exe",
".cmd", or ".bat".

(b) Skipping processes before executing external commands
The following process is executed for the path of the external command and its argument before the external command
is executed. If these processes are not required, specify the -w option for the command command and execute the
external command.

• Converts a backslash (\) preceding a double quotation mark (") to \\.

• Adds a backslash \ in front of a double quotation mark (").

• Process for enclosing with double quotation marks (when V10 is specified for the COMPATIBLE_CMD_EXEC
parameter)

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 394

For details about the -w option of the command command, see 9.3.7 command command (executes a command) in
9.3 Standard shell commands.

Example:

command -w ."\\prog.exe" "ABC"

(c) Limitations on batch file execution
The restrictions below apply when a batch file for which the file path or an argument includes a space character or one
of the following symbols is executed: & () [] { } ^ = ; ! ' + , ` ~

• Execute the batch file as follows.

<cmd.exe path> /c <batch file path> [<argument 1> <argument 2>...<argument n>]

• If the batch file path includes any of the following symbols, use "'\ as the escape character: & () [] { } ^ = ; ! ' + ,
` ~

• In an argument includes a space character or any of the following symbols, use "'\ as the escape character: & () []
{ } ^ = ; ! ' + , ` ~

• When executing commands in an environment where V10 is specified for the environment setting parameter
COMPATIBLE_CMD_EXEC, arguments enclosed in double quotation marks (") are passed to the batch file. The
last argument has a double quotation mark (") only at the beginning. To reference arguments from a batch file, use
the syntax %~1, %~2, ...%~n to automatically remove double quotation marks (").

(2) Executing external commands in UNIX
You can execute an executable binary file with execution permissions granted from a job definition script.

You can also execute a text file with execution permissions granted from a job definition script by specifying #!
executable-program-path at the beginning of the file. In this case, the executable program is executed according to the
specification of #!.

(3) Priority of command execution methods
When the job controller executes a file specified in a job definition script, it checks the conditions listed below in the
order shown here.

Windows only
1. If the file satisfies the CHILDJOB_PGM parameter condition, the job controller executes the file as a child job.

2. If the file satisfies the CHILDJOB_SHEBANG parameter, the job controller executes the file as a child job.

3. If the file satisfies the default definition for the CHILDJOB_SHEBANG parameter, the job controller executes
the file as a child job.

4. If the file satisfies the CHILDJOB_EXT parameter, the job controller executes the file as a child job.

5. If the file has the extension exe, bat, cmd, or com, the job controller executes the file as a command.

6. If none of the above conditions is satisfied, startup of the command fails. However, job execution continues.

UNIX only
1. If the file satisfies the CHILDJOB_PGM parameter condition, the job controller executes the file as a child job.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 395

2. If file execution permissions have been granted, the job controller performs the checks beginning with 3. If
execution permissions have not been granted, startup of the command fails and the command terminates with
an error. However, job execution continues.

3. If the file satisfies the CHILDJOB_SHEBANG parameter condition, the job controller executes the file as a child
job.

4. If the file satisfies the default definition for the CHILDJOB_SHEBANG parameter, the job controller executes
the file as a child job.

5. If the file satisfies the CHILDJOB_EXT parameter condition, the job controller executes the file as a child job.

6. If the file is a binary file, the job controller executes the file as a command.

7. If the file is a text file, the job controller executes the file as a script. If #! is specified, the job controller executes
the executable program specified in #!. If #! is not specified, the job controller executes the file with /bin/sh.

The following examples use parameters related to child jobs (test.sh exists and execution permissions have been
granted).

Example 1:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

/bin/sh ./test.sh

 The CHILDJOB_PGM parameter is applied and test.sh is executed as a child job.

Example 2:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

Contents of the job definition script

./test.sh

 The CHILDJOB_SHEBANG parameter is applied and test.sh is executed as a child job.

Example 3:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 396

 Contents of test.sh
#!/bin/sh
echo JP1AS

 Contents of the job definition script

./test.sh

 The CHILDJOB_EXT parameter is applied and test.sh is executed as a child job.

Example 4:

 Contents of the environment variable

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#! /opt/jp1as/bin/adshexec
echo JP1AS

 Contents of the job definition script

./test.sh

 test.sh is executed as a child job because it satisfies the default definition for the CHILDJOB_SHEBANG
parameter.

Example 5:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

/bin/ksh ./test.sh

 Because none of the CHILDJOB_EXT, CHILDJOB_PGM, CHILDJOB_SHEBANG, and
CHILDJOB_SHEBANG parameters' default definitions apply, test.sh is executed with /bin/ksh, not as a
child job.

Example 6:

 Contents of the environment variable

#-adsh_conf CHILDJOB_PGM /opt/jp1as/bin/adshexec
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 397

 Contents of the job definition script

/opt/jp1as/bin/adshexec ./test.sh

 The CHILDJOB_PGM parameter is applied and test.sh is executed as a child job.

Example 7:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM ./test.sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

./test.sh

 According to the order or condition check, the CHILDJOB_PGM parameter is checked. Because the
CHILDJOB_PGM parameter definition is satisfied, the corresponding replacement is performed. However,
because the file to be executed as a child job is not specified, an execution error results.

(4) Priority of child jobs or external commands that have the same name
as the function

The following is the priority of child jobs or external commands that have the same name as the function:

• If the function has already been defined in the main script or the function definition file has been loaded by #-
adsh_script or a . (dot) command, the function always takes effect.

• If the function has the automatic loading attribute and the directory specified in the FPATH shell variable contains
a function definition file with the same name as the function, the function takes effect.

• If the function does not have the automatic loading attribute but the directory specified in the FPATH shell variable
contains a function definition file with the same name as the function, the following conditions are checked in this
order:

1. If the directory specified in the FPATH shell variable contains a job definition script with the same name as the
function or an external command, the child job or the external command is executed.

2. If the directory specified in the FPATH shell variable does not contain a corresponding job definition script or
external command, the function is executed.

• If neither the directory specified in the PATH environment variable nor the directory specified in the FPATH shell
variable contains a corresponding file, the processing terminates with an error because there is no command to be
executed.

5.1.12 Specifying UNIX-compatible commands
You can enter UNIX-compatible commands from the Window's command prompt or a UNIX shell. You can also use
UNIX-compatible commands in a job definition script and then execute the script in Windows or UNIX. The UNIX-
compatible commands enable you to use functions such as displaying, creating, and searching files and directories.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 398

You can share in Windows and in UNIX job definition scripts that use executable UNIX-compatible commands if you
use the ADSH_DIR_CMD shell variable to define the UNIX-compatible commands. For details about the
ADSH_DIR_CMD shell variable, see 5.5.1 Shell variables set by JP1/Advanced Shell.

The following is an example of the ADSH_DIR_CMD shell variable that defines a UNIX-compatible command (date
command) in a job definition script:

"${ADSH_DIR_CMD}date"

5.1.13 Specifying a shell for running job definition scripts and checking
formats

(1) Specifying a shell
In UNIX, you can specify a shell to be used to execute a job definition script on the first line of the job definition script
file. The following shows how to specify a shell:

#!executable-file-path

The command shown below executes a job definition script by using the shell with the executable file path specified
on the first line of the job definition script (if the executable file path is omitted, /bin/sh is used):

$ job-definition-script-file-path

The command shown below that specifies the path of the adshexec command at the beginning executes a job definition
script on the path of the adshexec command, regardless of the information specified on the first line of the job
definition script:

$ path-of-adshexec-command job-definition-script-file-path

(2) Checking the lexical format
When the adshexec command is used to execute a job definition script file, the command checks the lexical format
used in the job definition script file and then executes the file. Note that the command does not check the format of an
external file that is read by a . (dot) command within the job definition script file.

If you want to only check the lexical format without executing the job definition script, execute the adshexec command
with the -c option specified.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 399

5.2 Conditionals

In job definition scripts, the processing to be executed is controlled based on the results of conditional expressions
specified in control statements. This section explains control statements and conditional expressions as conditionals.

5.2.1 Control statements
JP1/Advanced Shell supports the control statements listed below. For details, see 9.6 Script control statements.

• case
Executes one of the processes depending on the contents of character strings.

• for
Executes the same processing repeatedly by changing the value sequentially.

• if
Executes the processing that satisfies each condition by branching out the processing depending on conditions.

• until
Executes the same processing repeatedly until the condition is satisfied.

• while
Executes the same processing repeatedly while the condition is satisfied.

You can specify command substitution and any commands other than extended script commands at the following
locations in the control statements.

Locations where command substitution can be specified

• Expressions and patterns in case statements

• wordlist in for statements

Locations where command substitution and any commands other than extended script commands can be specified:

• Condition 1 (condition that follows if) and condition 2 (condition that follows elif) in if statements

• Conditions in until statements

• Conditions in while statements

The return code of a specified command is not applied as the return code of the job and job step. When execution of
control statements is completed, the return code of the last command executed within the block of control statements
becomes the return code of the job and job step.

However, if any of the conditions listed below is satisfied, the return code of a specified command is applied as the
return code of the job and job step. When a job step is completed, the return code of the specified command becomes
the return code for the job and job step.

1. The specified command is the exit or return command, not a command substitution.

2. The specified command is a special built-in command, not a command substitution, and it resulted in an error.

3. The specified command, which is neither 1 nor 2 above, resulted in an error and the control statement was in a job
step for which stop was specified for the onError attribute.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 400

If you want to apply the return code of a command resulting in an error as the job's return code, such as when a job is
to result in an error in JP1/AJS, specify the control statement in a job step for which stop is specified for the onError
attribute.

The following shows examples of the if statement:

Example 1:

if `cmdA true` <-- cmdA is a nonexistent command name.
then
 echo "true"
else
 echo "false" <-- The else clause is executed.
fi
At this point, the return code of the job is 0.

In example 1, if cmdA for command substitution specified in condition 1 of the if statement is a nonexistent command
name, the condition is determined to be false, in which case echo "false" in the else clause is executed. At the
point where the if statement is completed, the return code of the job is 0.

Example 2:

#-adsh_step_start S1 -onError stop
if `cmdA true` <-- cmdA is a nonexistent command name.
then
 echo "true"
else
 echo "false"
fi
#-adsh_step_end <-- The job step is cancelled without executing the then or else
clauses.
The return code of job step S1 and the job at this point is 127.

In example 2, if cmdA for command substitution specified in condition 1 of the if statement is a nonexistent command
name, the job step is cancelled without executing either the then or the else clause of the if statement. When the
job step is completed, the return code of the job is 127, which indicates that the specified command does not exist. For
details about the definitions of job steps and the onError attribute, see 9.5.9 #-adsh_step_start command,
#-adsh_step_error command, #-adsh_step_end command (defines a job step) in 9.5 Extended script
commands.

5.2.2 Conditional expressions
Numeric value comparisons, character string comparisons, file attributes, logical operators, and ternary operators are
used in conditional expressions. The following explains the specifications common to all conditional expressions.

• The test or let command is used to evaluate conditions.
The test command includes the [[]] substitution format. The let command includes the (()) substitution
format.

• When you use the test command to evaluate conditions, insert a space between a variable and an operator. When
you use [[]] instead of the test command, insert a space immediately after [[and immediately before]].
The following shows an example of a conditional using [[]].

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 401

if [[$arg1 -eq $args]]; then
 echo TRUE
fi

• If an argument of the test command (such as -eq) is specified as an argument of the let command, the let
command interprets that argument of the test command as a variable.

(1) Numeric value comparison
The following table lists and describes the operators used for comparing numeric values. Numeric value 1 and numeric
value 2 need to be specified within the range of 2147483648 to 2147483647.

Table 5-22: Operators that are used for comparing values with the test command

Conditional expression using an
operator

Evaluation

numeric-value-1 -eq numeric-value-2 True if numeric-value-1 is equal to numeric-value-2.

numeric-value-1 -ne numeric-value-2 True if numeric-value-1 is not equal to numeric-value-2.

numeric-value-1 -ge numeric-value-2 True if numeric-value-1 is equal to or greater than numeric value-2.

numeric-value-1 -gt numeric-value-2 True if numeric-value-1 is greater than numeric-value-2.

numeric-value-1 -le numeric-value-2 True if numeric-value-1 is equal to or less than numeric-value-2.

numeric-value-1 -lt numeric-value-2 True if numeric-value-1 is less than numeric-value-2.

Table 5-23: Operators that are used for comparing values with the let command

Conditional expression using an
operator

Evaluation

numeric-value-1 == numeric-value-2 True if numeric-value-1 is equal to numeric-value-2.

numeric-value-1 != numeric-value-2 True if numeric-value-1 is not equal to numeric-value-2.

numeric-value-1 >= numeric-value-2 True if numeric-value-1 is equal to or greater than numeric value-2.

numeric-value-1 > numeric-value-2 True if numeric-value-1 is greater than numeric-value-2.

numeric-value-1 < numeric-value-2 True if numeric-value-1 is less than numeric-value-2.

numeric-value-1 <= numeric-value-2 True if numeric-value-1 is equal to or less than numeric-value-2.

The following shows an example of numeric value comparison.

a=1
b=2
if [[$a -lt $b]]; then
 echo TRUE
else
 echo FALSE
fi

while (($a != $b)); do
 echo LOOP
 ((a+=1))
done

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 402

(2) Character string comparison
The following table lists and describes the operators used for comparing character strings.Operators for comparing
character string can be used with the test command [[]] and []. Operators cannot be used with the let command,
(()).

Table 5-24: Operators used for comparing character strings

Conditional expression using an
operator

Evaluation

Character string True if the length of character string is one or more characters. This operator cannot be used in [[]]
commands.

-n character string True if the length of character string is one or more characters.
If the length of character-string is 0, the command outputs the KNAX6041-E message and
terminates with an error with return code 2. If no character-string is specified in the [[]] command,
a format error results, in which case the command outputs the KNAX6041-E message and
terminates with an error with return code 1.

-z character string True if the length of character string is 0.

-o character string True if character string matches the character string of the shell option that is currently valid.
For details about the character string of the shell option, see 5.6.1 Shell options that can be specified
with the set command.

character string = pattern True if the character string matches pattern.

character string == pattern True if the character string matches pattern.

character string != pattern True if the character string does not match pattern.

character string 1 < character string 2# character string 1 and character string 2 are compared in the order of ASCII codes. True if character
string 2 is greater than character string 1.

character string 1 > character string 2# character string 1 and character string 2 are compared in the order of ASCII codes. True if character
string 1 is greater than character string 2.

#
Can be used only in [[]]; cannot be used in any other format.

Because any character string to be compared might contain one or more spaces, we recommend that you always enclose
the entire character string in double quotation marks ("). The following shows examples.

str1="aaa"
str2="bbb"
test "$str1" == "$str2"
[["$str1" == "$str2"]]

You can specify the *, ?, and [...] wildcard characters in character strings to be compared. Note that wildcards can
be specified only in [[]], not in any other format. Note that when a character string containing a wildcard character
is enclosed in double quotation marks ("), the use of the wildcard character as a wildcard character becomes invalid.
The following shows an example.

str1="adsh"
str2="ads?"
str3="ad*"
[["$str1" == "$str2"]] The wildcard character is invalid. The character string
"ads?" is compared.
[[$str1 != $str3]] The wildcard character is valid.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 403

The following shows an example of character string comparison using [[]]. The *, ?, and [...]wildcard characters
can be used.

if [[abc == ab*]]; then
 echo TRUE
fi

For details about wildcard characters, see (5) Wildcards.

(3) File attributes
The following table lists and describes the operators used for evaluating file attributes, such as file formats and
permissions.Operators for file attribute evaluation can be used with the test command, [[]], and []. Operators cannot
be used with the let command, (()).

Table 5-25: Operators used for evaluating file attributes, such as file formats and permissions

Conditional expression using
an operator

Evaluation

-a file True if file exists.

-b file True if file exists and it is a block type device.

-c file True if file exists and it is a character type device.

-d file True if file exists and it is a directory.

-e file True if file exists.

-f file True if file exists and it is a regular file.

-g file True if file exists and the setgid bit is set.

-h file True if file exists and it is a symbolic link.

-k file True if file exists and the sticky bit is set.

-p file True if file exists and it is a pipe file.

-r file In Windows, the result is true if file exists.
In UNIX, the result is true if file exists and it can be read from the current process.

-s file True if the following conditions are all satisfied:
[In Windows]
• file exists
• file is not a folder
• The file size is at least 1 byte

[In UNIX]
• file exists
• The file size is at least 1 byte or file is a directory

As the conditions for true differ between UNIX and Windows for -s, use -d to check if file is a directory
or folder.

-t fd True if this is fd whose terminal is open.

-u file True if file exists and the setuid bit is set.

-w file In Windows, the result is true if the read-only attribute is not set or this is a directory.
In UNIX, the result is true if file exists and it can be written from the current process.

-x file [In Windows]

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 404

Conditional expression using
an operator

Evaluation

-x file In Windows, the result is true if one of the following is true:
• True if file is other than a symbolic link

- The extension is ".com", ".exe", ".cmd", or ".bat"
- This is a directory
The file satisfies the condition specified in the CHILDJOB_EXT or CHILDJOB_SHEBANG
parameter (including the default definition) of the environment file.#

• True if file is a symbolic link
- The extension of the symbolic link and link destination file is ".com", ".exe", ".cmd", or ".bat"
file is a symbolic link for a directory and the reference destination is a directory.

[In UNIX]
The result is true if file exists and it can be executed from the current process.

-G file True if file exists and the group to which file belongs matches the ID of the group executing the calling
process.

-L file True if file exists and it is a symbolic link.

-O file True if file exists and its owner has a valid user ID for the process.

-S file True if file exists and it is a socket.

file1 -ef file2 True if file1 and file2 exist and the entities of file1 and file2 are the same (their symbolic link or hard
link targets are the same).

file1 -nt file2 True if file1 and file2 exist and the last modified date and time of file1 is more recent than the last modified
date and time of file2. Also true if file1 exists and file2 does not exist.

file1 -ot file2 True if file1 and file2 exist and the last modified date and time of file1 is earlier than the last modified
date and time of file2. Also true if file2 exists and file1 does not exist.

-H file Always false.

#:
For details on the CHILDJOB_SHEBANG parameter, see 7.3.7 CHILDJOB_SHEBANG parameter (defines an
executable program path for job definition script files that are to be executed as child jobs).
For details on the CHILDJOB_EXT parameter, see 7.3.5 CHILDJOB_EXT parameter (defines an extension for
job definition script files that are to be executed as child jobs).

Notes when using an operator of the file attribute are as follows:

• If a symbolic link is specified for file, the link destination is evaluated. However, the subject of evaluation is different
for the following operators:

• For -h and -L, the symbolic link is evaluated.

• For -x, both the symbolic link and the link destination are evaluated [Windows edition].

• In a Windows environment, the result is always false because this is determined for nonexistent file types and flags
[Windows edition].
-b, -c, -g, -k, -p, -u, -S

• However, the following operator can issue a message and result in an error or be treated as normal by specifying
the UNSUPPORT_TEST parameter. For details of the parameter, see 7.3 Environment setting parameters > 7.3.49 
UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression) (Windows only)
[Windows edition].
-G, -O

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 405

• The following operator returns the result according to the specification of the parameter if the UNSUPPORT_TEST
parameter is specified. Do not use the UNSUPPORT_TEST parameter for the following operators when executing
the check as an operator [Windows edition].
-h, -L, -ef

• Do not specify a value of 10 or above for the argument of the operator -t. If a value of 10 or above is specified, the
value cannot be guaranteed.

The following shows an example of evaluating a file attribute.

FILE="$HOME/script/test.ash"
if [[-a $FILE]];
then
 echo "$FILE exists."
else
 echo "$FILE does not exist."
fi

(4) Logical operations
The following table lists and describes the operators used for evaluation in logical operations.

Table 5-26: Operators used for evaluation in logical operations

Conditional expression
using an operator

Evaluation Usage in test
command or [[]]

Usage in let
command or
(())

expr1 -a expr2 True if the results of expr1 and expr2 are both true Y# N

expr1 -o expr2 True if the result of either expr1 or expr2 is true Y# N

expr1 && expr2 True if the results of expr1 and expr2 are both true Y Y

expr1 || expr2 True if the result of either expr1 or expr2 is true Y Y

! expr True if the result of expr is false Y Y

Legend:
Y: Permitted
N: Not permitted

#
Cannot be used in [[]].

The following shows an example of a logical operation.

DIR="/tmp"
FILE="/tmp/test.ash"
a=2
b=4
if test -d $DIR -a -a $FILE
then
 echo "$DIR is directory and $FILE exists."
else
 echo "$DIR is not directory or $FILE does not exist."
fi

while ((a*0 || b-3)); do

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 406

 echo LOOP
 let b-=1
done

If you use && and || in the test command, specify them as follows:

a=1
b=2
c=3
if test "$a" == 1 && test "$b" == 2; then
 echo "True"
else
 echo "False"
fi
if test "$a" != "$b" || test "$a" != "$c"; then
 echo "True"
else
 echo "False"
fi

(5) Ternary operator
You can use the ternary operator, which is an abbreviated notation of if-else. The following table explains the ternary
operator supported by JP1/Advanced Shell.Ternary operator can be used with the let command (()).

Table 5-27: Ternary operator that can be used by JP1/Advanced Shell

Conditional expression using an operator Evaluation

expr1?expr2: expr3 If the result of expr1 is true, the result of expr2 is returned. If the result of expr1 is
false, the result of expr3 is returned.

The following shows an example of the ternary operator.

VAR1=3
VAR2=2
ANSWER=0

((ANSWER=VAR1>VAR2?8+VAR1:8*VAR2))
echo $ANSWER

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 407

5.3 Arithmetic operations

In job definition scripts, a variable value is treated as characters unless it is declared explicitly in the -i option of the
typeset command as the integer type. However, if you specify an operator used for an arithmetic operation in the
let command or in (()), the values assigned to variables are treated as numeric values during the arithmetic operation.

JP1/Advanced Shell supports arithmetic operators, increment and decrement operators, bitwise logical operators, and
assignment operators. The following describes the specifications common to all operators:

• When you use the let command to perform arithmetic operations, do not place any spaces between a variable and
an operator. If there is a space between a variable and an operator, the operation terminates with an error because
of invalid format. If you need to place a space between a variable and an operator, either use (()) (abbreviation
of the let command) or enclose the entire arithmetic expression in quotation marks.
Examples

let NUM = 100 - 99 # Terminates with an error because the arithmetic
expression is not enclosed in quotation marks
let " NUM = 100 - 99 " # Arithmetic expression is executed because it is
enclosed in quotations marks
((NUM = 100 - 99)) # Arithmetic expression is executed because the
abbreviation (()) is used

• In arithmetic expressions, you can specify variables to which numeric values or numbers are assigned. A base number
notation (base-number#value) can be used to specify numeric values.
If the base number notation is omitted, the value is interpreted as a decimal number during operation.

• If a non-numeric character is assigned to a specified variable, the operation terminates with an error.

5.3.1 Arithmetic operators
Arithmetic operators are used in job definition scripts to perform arithmetic operations on the values of variables. The
following table lists and describes the arithmetic operators supported by JP1/Advanced Shell.

Table 5-28: Arithmetic operators supported by JP1/Advanced Shell

Arithmetic operator Description

-num This is a unary minus operator. It changes num to a negative value.

num1*num2 Returns the results obtained by multiplying num1 by num2.

num1/num2 Returns the results obtained by dividing num1 by num2.

num1%num2 Returns the remainder obtained when num1 is divided by num2.

num1+num2 Returns the results obtained by adding num1 and num2.

num1-num2 Returns the results obtained by subtracting num2 from num1.

num1**num2 Returns the results obtained by exponentiating the value num1 to the power num2.
If a value smaller than 0 is specified for num2, the command outputs the KNAX6068-E message and terminates
with an error with return code 2.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 408

5.3.2 Increment and decrement operators
The increment and decrement operators are used to represent succinctly incremental and decremental processing on the
same variable. The following table lists and describes the increment and decrement operators supported by JP1/
Advanced Shell.

Table 5-29: Increment and decrement operators supported by JP1/Advanced Shell

Increment or
decrement operator

Description

num++ References num, and then adds 1 to num.

num-- References num, and then subtracts 1 from num.

++num Adds 1 to num, and then references the value of num.

--num Subtracts 1 from num, and then references the value of num.

5.3.3 Bitwise logical operators
The bitwise logical operators are used to perform logical operations on variable values in bits. The following table lists
and describes the bitwise logical operators supported by JP1/Advanced Shell.

Table 5-30: Bitwise logical operators supported by JP1/Advanced Shell.

Bitwise logical
operator

Description

num1&num2 Returns the result of bitwise AND operation on num1 and num2.

num1|num2 Returns the result of bitwise OR operation on num1 and num2.

num1^num2 Returns the result of bitwise EXCLUSIVE-OR operation on num1 and num2.

num1<<num2 Returns the result obtained by shifting num1 by num2 bits to the left.

num1>>num2 Returns the result obtained by shifting num1 by num2 bits to the right.

~num This is the result of bitwise negation of num. It returns a complement of 1.

5.3.4 Assignment operators
The assignment operators are used to assign values to variables. They can assign the results of arithmetic operations
and bitwise logical operations on variables. The following table lists and describes the assignment operators supported
by JP1/Advanced Shell.

Table 5-31: Assignment operators supported by JP1/Advanced Shell

Assignment operator Description

num1=num2 Assigns num2 to num1.

num1*=num2 Assigns to num1 the result obtained by multiplying num1 by num2.

num1/=num2 Assigns to num1 the result obtained by dividing num1 by num2.

num1%=num2 Assigns to num1 the remainder obtained by dividing num1 by num2.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 409

Assignment operator Description

num1+=num2 Assigns to num1 the result obtained by adding num1 and num2.

num1-=num2 Assigns to num1 the result obtained by subtracting num2 from num1.

num1<<=num2 Assigns to num1 the result obtained by shifting num1 to the left by num2 bits.

num1>>=num2 Assigns to num1 the result obtained by shifting num1 to the right by num2 bits.

num1&=num2 Assigns to num1 the result obtained by performing bitwise AND operation on num1 and num2.

num1|=num2 Assigns to num1 the result obtained by performing bitwise OR operation on num1 and num2.

num1^=num2 Assigns to num1 the result obtained by performing bitwise EXCLUSIVE-OR operation on num1 and num2.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 410

5.4 Priority of conditional and arithmetic operations

Priority applies to the following operators that can be used in the let command:

• Numeric value comparisons

• Logical operators

• Ternary operator

• Arithmetic operations

The table below shows the priority of conditional expressions and arithmetic operations in descending order of priority
level, where 1 is the highest priority. Operations are performed in descending order of the priority, starting from the
highest.

Table 5-32: Priority of operators

Priority Operator

1 - (unary minus operator), !, ++, --, ~

2 **

3 *, /, %

4 +, -

5 <<, >>

6 <, <=, >, >=

7 ==, !=

8 &

9 ^

10 |

11 &&

12 ||

13 ?: (ternary operator)

14 =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=

In the example shown below, 3**3 is calculated first because ** has a higher priority than *. As a result, the value 54
is assigned to a and 54 is output to the standard output.

let a=2*3**3 <-- 3 to the power of 3 is multiplied by 2
echo $a <-- 54 is output as the value of a to the standard output

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 411

5.5 Shell variables

Shell variables are variables whose values are inheritable once they are defined until a job definition script terminates.
JP1/Advanced Shell enables you to specify and use shell variables. You can customize an environment for executing
job definition scripts by referencing and changing the values of shell variables.

In Windows, the names of environment variables set when the job controller starts, such as environment variables
specified as system properties, are converted to uppercase, and then the environment variables are imported as shell
variables if the VAR_ENV_NAME_LOWERCASE parameter is specified as described in the following:

VAR_ENV_NAME_LOWERCASE parameter value Conversion of environment variable names set when the job
controller starts

ENABLE Only environment variable names HOME, PATH, and SHELL are converted to
uppercase; all other environment variable names are imported as is as shell
variables.

DISABLE All environment variable names are converted to uppercase and then imported as
shell variables.

If the name of an environment variable set when the job controller starts is not consistent with the naming conventions
for variables supported by JP1/Advanced Shell, that environment variable is imported but cannot be used. For details
about the naming conventions for variables, see (1) Naming conventions for variables.

5.5.1 Shell variables set by JP1/Advanced Shell
The table below lists and describes the shell variables set by JP1/Advanced Shell. Do not set values for, change attributes
of, or release settings of these shell variables.

Table 5-33: Shell variables that are set by JP1/Advanced Shell

Shell variable name Value that is set

Number of arguments passed to the current job definition script or function.

- An abbreviated character string of a shell option set in the shell.
A shell option that does not have an abbreviation is not set in this variable.

? Return code of the immediately preceding command that was executed.

$ The process ID of the following program is set as the shell's process ID:

(Windows only)
Process ID of adshexecsub.exe or adshesub.exe

(UNIX only)
Process ID of adshexec

_ Value at the time the adshexec command starts. If no value exists, the contents of argv[0]
at the time the adshexec command starts are set.
When an external command or child job is started as a child process, the contents of argv[0]
are set.

! Process ID of the last command that executed in the background.

ADSH_DIR_BIN#1 Path name of the JP1/Advanced Shell program folder (bin).#2

ADSH_DIR_CMD#1 Path name of the folder for JP1/Advanced Shell's UNIX-compatible commands (cmd).#3

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 412

Shell variable name Value that is set

ADSH_DIR_PARTS_JA#1 The path name of the Japanese folder (ja) in the script development parts folder (parts) of
JP1/Advanced Shell is set.

ADSH_DIR_PARTS_EN#1 The path name of the English folder (en) in the script development parts folder (parts) of JP1/
Advanced Shell is set.

ADSH_RC_EXTERNAL (Windows only) The return code of the external command executed last is set. For details, see 5.5.4 Shell variable
in which to set the return code of an external command [Windows only].

ADSH_RC_STEPLAST#1 Return code of the most recent job step to have executed.
If no job steps have executed, the shell variable is undefined.

ADSH_RC_STEPMAX#1 Maximum value among the return codes of all job steps that have executed in the past.
If no job steps have executed, the shell variable is undefined.

ADSH_RC_STEPMIN#1 Minimum value among the return codes of all job steps that have executed in the past.
If no job steps have executed, the shell variable is undefined.

ADSH_STEPRC_job-step-name#1 Return code of the job step whose name is indicated. If the job step with the indicated job-step-
name has not executed, the shell variable is undefined.
If there are duplicate job step names, the return code of the last job step executed is stored.

LINENO Line number in the job definition script of the line that is executing currently.

OLDPWD Immediately preceding work directory that was set by the cd command.

OPTARG Value of the last option argument that was processed by the getopts command.

OPTIND Index of the last option argument that was processed by the getopts command.

PPID In Windows, the value is always 0.
In UNIX, the number of the shell's parent process is set.

PWD Current work directory.

RANDOM A random integer in the range from 0 through 32767 (= 0x7FFF).

REPLY The data read by the read command with no arguments specified.

SECONDS Number of seconds that have elapsed since the shell started.

Function information arrays#1 One-dimensional arrays of information about the function being executed by the adshexec
command. The following arrays are supported:
• Called function name array
• Function call line number array
• Function definition script file name array

For details about the function information arrays, see 5.5.3 Function information arrays.

#1
These shells that have a special meaning are referred to collectively as the extended shell variables.

#2
The following is a definition example that uses the adshfile command in job definition scripts:

"${ADSH_DIR_BIN}adshfile" -s job -n keep -a del ${VAL01}

#3
The following is a definition example that uses the expr command in job definition scripts:

num=`"${ADSH_DIR_CMD}expr" $NUM - 1`

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 413

The following shows usage examples of these shell variables.

This example checks conditions by using the if script control statement and controls the execution of a job step based
on the execution results of the preceding job step:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP01
 uap01
#-adsh_step_end
if [[$ADSH_STEPRC_STEP01 -eq 0]]; then <-- Execute STEP02 only if the return
code of STEP01 is 0.
 #-adsh_step_start STEP02
 uap02
 #-adsh_step_end
fi

This example terminates the job definition script with the maximum job step return code value when the exit command
is used to terminate the job definition script:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

#-adsh_step_start STEP01
 uap01
#-adsh_step_end

#-adsh_step_start STEP02 -run always
 uap02
#-adsh_step_end

#-adsh_step_start STEP03 -run always
 exit $ADSH_RC_STEPMAX <-- Use the maximum job step return code value as
the job's return code.
#-adsh_step_end

5.5.2 Shell variables whose values are set by the user
The following table lists and describes the shell variables whose values can be set by the user in JP1/Advanced Shell.

Table 5-34: Shell variables that can be used in JP1/Advanced Shell

Shell variable name Value set by the user

CDPATH Specifies a candidate path for a search when the target directory specified in the cd command does not exist under
the work directory.

ENV • Windows and Linux only
If YES is specified in the KSH_ENV_READ parameter or the parameter is omitted, this variable specifies the
name of the .env file to be loaded when the shell starts.

• AIX, HP-UX, and Solaris only
If YES is specified in the KSH_ENV_READ parameter, this variable specifies the name of the .env file to be
loaded when the shell starts.

FPATH Specifies the directory that stores the function definition file. The specified directory is searched when the preload
functionality is enabled for a referenced function or the function to be executed is undefined. The variable reads the
contents of the file with the same name as the function name, defines the function in the current environment, and
then executes it.

HOME Specifies the home directory.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 414

Shell variable name Value set by the user

IFS Abbreviation of Internal Field Separator. The specified characters are used as string separators. The first characters
in IFS, $*, are used to separate arguments for substitution. The initial values are the space, tab, and end-of-line
characters.

PATH Specifies a command search path.

PS4 Specifies the prompt character string placed at the beginning of each line when the xtrace shell option is enabled.
The initial value is +.

SHELL Specifies the path name of a shell that is retained during shell execution.

TMPDIR Changing this shell variable has no effect on temporary files because all temporary files are created in the directory
specified in the TEMP_FILE_DIR environment setting parameter.

ADSH_PARSER_LAN
G

If you input JSON data for encoding that has a different value from the environment variable LANG of the environment
where JP1/Advanced Shell operates, unified encoding can be operated while the adshparsejson command is
executed by setting a value for the shell variable.

ADSH_SPOOL_JOBN
AME

Specifies the spool job name to use when renaming the spool job directory.
If the shell variable is a local variable in a function, the specified value is not used to rename the spool job directory.

Other than the above, if you use the PATH_CONV_VAR parameter or #-adsh_path_var command, you can define
and use the shell variable that converts the path of directory between Windows and UNIX. For definition of the shell
variable, see 5.8.5 Defining shell variables that handle path names.

5.5.3 Function information arrays
Information about the functions that are executed by the adshexec command is stored in single-dimensional function
information arrays.

Whether function information arrays are used is defined with the VAR_SHELL_FUNCINFO environment setting
parameter. The array names are also determined by the specification of the VAR_SHELL_FUNCINFO environment
setting parameter. For details about the VAR_SHELL_FUNCINFO environment setting parameter, see 7.3.54 
VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used).

Following are the characteristics of function information arrays:

• Arrays of function information exist from the time a job definition script is executed to the time the job definition
script is terminated. However, when functions are executed within a .env file or initialization script file, there will
be no function information arrays.

• The range of the number of elements is from 0 to 65,535.

• Attributes can be changed to the character string format attribute. Attributes cannot be changed to local variables in
a function.

• Because function information arrays have the read-only attribute, the values in arrays can be referenced only; values
cannot be set nor can the arrays be disabled.

(1) Types of function information arrays
The following table lists and describes the types of function information arrays.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 415

Table 5-35: Types and names of function information arrays

Type of array Description Array name

When TYPE_A is
specified in
VAR_SHELL_FUNCI
NFO

When TYPE_B is
specified in
VAR_SHELL_FUNCI
NFO

Called function name
array

This array stores the names of all functions that are in
the call stack.
Element number 0 stores the name of the currently
executing function. The lowest element stores main.
If an external script was called with the . (dot)
command (standard shell command) or the #-
adsh_script extended script command, the array
stores source.

ADSH_FUNCNAME FUNCNAME

Function call line number
array#1

This array stores the line numbers of the script files for
which all functions in the call stack were called.
Element number 0 stores the line number that called the
currently executing function. The lowest element stores
0.
For an external script, the array stores the line number
that executed the . (dot) command (standard shell
command) and the #-adsh_script extended script
command.
The attribute can be changed to the integer type.

ADSH_LINENO BASH_LINENO

Function definition script
file name array#2

This array stores the names of the script files in which
the functions in the call stack have been defined.
Element number 0 stores the name of the script file that
defines the currently executing function. The lowest
element stores the absolute path of the job definition
script name.
For an external script, this array stores the absolute path
of the external script file.

ADSH_SOURCE BASH_SOURCE

#1
If a function is called within a trap action after a signal or a forced termination request has been received, the
function call line number array stores the line number of the processing that called the trap action, not the processing
within the trap action.
For example, in the definition below, function fn1 is called on line number 4. Because line number 4 is within the
trap action, line number 6 is stored in the array.

1 fn1(){
2 echo ${ADSH_LINENO[*]}
3 }
4 trap fn1 INT
5
6 kill -INT $$
7 pwd

#2
If the adshexec command is executed with the -r option specified, -r CMDLINE is stored as the script file name
in the function definition script file name array. The following shows an example:

C:\tmp>adshexec -m SIMPLE -r "echo ${ADSH_SOURCE[*]}"
-r CMDLINE

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 416

C:\tmp>

(2) Structures of function information arrays
This subsection explains the transitions among the arrays based on the example of the following job definition script
(file name: func.ash):

1 fn3(){
2 echo "JP1/AS"
3 }
4 fn2(){
5 fn3
6 }
7 fn1(){
8 fn2
9 }
10 fn1

When this job definition script is run, the array status changes as shown in the following by the execution of function fn3:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 417

(3) Notes about function information arrays
• Because function information arrays cannot be changed within job definition scripts, during debugging using CUI

or GUI, the user can reference values (by using the watch, print, and info variables commands), but cannot
update the values (with the set command).

• Arrays of function information are exported as follows:

• The contents of element 0 are inherited as variables, not as an array. However, for child jobs, function information
arrays are overwritten because they are reset when a job starts.

• For the operation information for a child job, the exported values before being overwritten are output.

• The name of afunction information array cannot be specified for the stepVar attribute in the #-
adsh_step_start command. If the name of a function information array is specified, the command issues the
KNAX6312-E message and terminates with an error.

• (Windows only) The absolute path of the script file (including \ characters) is stored in the function definition script
file name array. The echo and print commands handle this character (\) whenever it is encountered after shell
variable expansion as an escape character. For this reason, if you output values from a function definition script file
name array by using the echo and print commands, you must execute the commands as follows:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 418

• If you use the echo command to output values, either specify the -E option or specify NO in the
ESCAPE_SEQ_ECHO_DEFAULT environment setting parameter.

• If you use the print command to output values, specify the -r option.

5.5.4 Shell variable in which to set the return code of an external command
[Windows only]

In JP1/Advanced Shell, the return code of an external command run by the job controller is set in the
ADSH_RC_EXTERNAL shell variable.

(1) ADSH_RC_EXTERNAL shell variable
We recommend that you use a number from 0 to 255 for the return code of an external command run by the job controller
of JP1/Advanced Shell. However, in a case where a batch file or program ends with a return code outside the range from
0 to 255, judge the execution result from the return code by using the ADSH_RC_EXTERNAL shell variable. The
following table describes the ADSH_RC_EXTERNAL shell variable, and shows the range of values that can be set in
the shell variable.

Table 5-36: Description and value range of the ADSH_RC_EXTERNAL shell variable

Shell variable
name

Description Value range

ADSH_RC_EXTERN
AL

The return code of the last run external command is set. When one of the
following commands is run in the job definition script, the job controller
updates the value of the ADSH_RC_EXTERNAL shell variable.
• External command
• UNIX-compatible command
• Shell operation command
• Child job

The value of the shell variable is also updated when a command is run by
another process (by using a pipe, command replacement, |&, or &). This
shell variable is a read-only integer type, with an initial value of 0.

-2147483648 to 2147483647

(2) Examples
The following shows examples of using the ADSH_RC_EXTERNAL shell variable.

In the following example, the shell variable stores a value returned by an external command that is outside the range
from 0 to 255.

"D:\\bin\\uap01.exe" ... User program that ends with a return code of 800
echo $? ... 32 is output to the standard output.#
echo $ADSH_RC_EXTERNAL ... 800 is output to the standard output.

#: 800 = 0x320 The ? shell variable handles the low-order eight bits of the value returned by an external command
as the return code.

In the following example, if an external command returns 512, the job ends with a return code of 2.

"D:\\bin\\uap02.exe"
if [$ADSH_RC_EXTERNAL -eq 512]
then

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 419

 exit 2
fi

(3) Notes
• You cannot change the value and attribute of the ADSH_RC_EXTERNAL shell variable, and you cannot disable the

shell variable.

• You cannot specify the ADSH_RC_EXTERNAL shell variable for the stepVar attribute of the #-
adsh_step_start extended script command. If you do so, the command abnormally terminates with a
KNAX6312-E message.

• The job controller updates the value of the ADSH_RC_EXTERNAL shell variable not only when running a job
definition script, but also when running a command in an .env file, an initialization script, or an external script.

• The job controller initializes the ADSH_RC_EXTERNAL shell variable to 0 immediately before running the job
definition script. Therefore, even if you define the ADSH_RC_EXTERNAL shell variable as an environment variable
in the parent process, the job controller cannot receive the value of the ADSH_RC_EXTERNAL environment variable.
The job controller cannot receive the value, either, even by defining ADSH_RC_EXTERNAL with the export
parameter in the environment file.

• The ADSH_RC_EXTERNAL shell variable does not affect the result of judging whether an external command
terminated normally or abnormally.

• In the job controller, whether the execution process of a command run via a pipe or command replacement is the
current process or another process differs depending on the specification of the following environment setting
parameters. Therefore, the time when the value of the ADSH_RC_EXTERNAL shell variable is updated might differ
depending on the specification of the environment setting parameters even in the same job definition script.

• PIPE_CMD_LAST parameter

• CMDSUB_PROCESS parameter

• If a command is run by another process, the low-order eight bits of the value returned by the command might be set
for the ADSH_RC_EXTERNAL shell variable. Do not use the ADSH_RC_EXTERNAL shell variable to obtain the
result of a command run by another process.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 420

5.6 Shell options

Shell options can be used to place limitations on the available functions and to switch execution modes. There are two
ways to specify these shell options:

• Execute the set command in a job definition script.

• Specify the shell options as options of the adshexec command.

5.6.1 Shell options that can be specified with the set command
The following table lists and describes the shell options that can be specified with the set command. For details about
the set command, see 9.3.23 set command (sets shell options, creates an array, or displays variable values) in 9.3 
Standard shell commands.

Table 5-37: Shell options that can be specified with the set command

Name Specification
method

Meaning when the shell option is specified Default value

allexport#1 -a
-o allexport

Automatically exports all variables. Disabled

braceexpand -o braceexpand Enables brace expansion. Brace expansion means expanding to
multiple words the portion enclosed in curly brackets ({}).
Each of the comma-separated words enclosed in curly brackets
is expanded as a single variable by adding to it the characters
that precede and follow the curly brackets. For example,
a{1,2,3} is expanded to a1, a2, and a3.

Enabled

bgnice#2 -o bgnice Lowers the priority for background jobs. Disabled

noglob -f
-o noglob

Prohibits file name substitution. For details about file name
substitution, see (6) Substitution.
This shell option also prohibits brace expansion. To enable
brace expansion, disable the noglob shell option. For details
about how to disable the shell options, see 9.3.23 set command
(sets shell options, creates an array, or displays variable values)
in 9.3 Standard shell commands.

Disabled

nounset -u
-o nounset

If no value is set in a variable subject to substitution, the job
terminates with an error and the shell terminates.

Disabled

verbose#3 -v
-o verbose

Reads the shell input lines and outputs them to the standard error
output. The input lines are output before they are analyzed or
executed.

Disabled

xtrace -x
-o xtrace

Sets the value of shell variable PS4 at the beginning of the line
and then outputs the executed command and its arguments to
the standard error output. Note that this shell option does not
output the [[]] command, extended script commands, or their
arguments. An arithmetic operation using (()) is replaced
with the let command and then is output.

Disabled

#1
If the VAR_ENV_NAME_LOWERCASE DISABLE environment setting parameter is specified in the Windows
edition, any variable whose name contains lowercase letters cannot be exported. If shell variables containing

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 421

lowercase letters are defined or their values are updated after the allexport shell option has been enabled, an
error message is output and the batch job terminates.

#2
In the Windows edition, the priority of the adshjava command does not change. In addition, when specifying
V10 for the COMPATIBLE_CMD_EXEC parameter, the priority of external commands including UAP does not
change either.
For the Windows version, set Lower than normal for priority of the background job if the priority of the parent
process is Normal. If the priority of the parent process is higher than Normal, the priority of the background job
becomes Normal. If the priority of the parent process is lower than Normal, the priority of the background job
becomes equal to that of the parent process.

#3
When you specify the verbose option in the set command, the output destination for the input lines of a job step
definition command is changed.

• #-adsh_step_start command
When the #-adsh_step_start command is executed, the input lines for #-adsh_step_start itself are
output to STDERR for the job because STDERR is switched from job to job step.

• #-adsh_step_end command
When the #-adsh_step_end command is executed, the input lines for #-adsh_step_end itself are output
to STDERR for the job step because STDERR is switched from job step to job.

The following shows an example.

Job definition script

 set -o verbose <-- Or set -v.

 #-adsh_step_start S1
 cmdA
 #-adsh_step_error
 cmdB
 #-adsh_step_end
 cmdC

STDERR for job

 #-adsh_step_start S1
 cmdC
 :

STDERR for job step S1
 cmdA
 #-adsh_step_error
 cmdB
 #-adsh_step_end

Notes:
When run-time parameters and JP1/Advanced Shell Editor are used to debug job definition scripts, the command
execution results are output to the standard error output. If the set command with the verbose option specified
is used, a message containing the command execution results is output after the contents of the next line have been
output. The following shows an example.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 422

Job definition script

 001: set -o verbose
 002: echo "Line 002"
 003: echo "Line 003"

The following shows an output example during debugging:

KNAX7018-I Breakpoint "1": filename="test.ash" line=1
KNAX7032-I The script "test.ash" stopped running.
1: set -o verbose
Current: set
(adshdb) step <-- Execute the set command on line 001 of the job definition
script.
echo "Line 002" <-- Output the contents of line 002 of the job definition
script.
KNAX6112-I Execution of the command set (line=1) finished successfully. exit
status=0 execution time=0.000s CPU time=0.000s <-- Output the results of the
set command on line 001 of the job definition script.
KNAX7032-I The script "test.ash" stopped running.
2: echo "Line 002"
Current: echo
(adshdb) step
Line 002
 :

5.6.2 Shell options that can be specified with the adshexec command
The following table shows the shell option that is specified with the adshexec command. For details about the
adshexec command, see 8.3.7 adshexec command (executes a batch job) in 8.3 Shell operation commands.

Table 5-38: Shell option that is specified with the adshexec command

Name Specification
method

Meaning when the shell option is specified

noexec -c Reads commands and checks for syntax errors, but does not execute the commands.

xtrace -x Same processing as when the xtrace shell option is enabled. For details, see 3.6 
Outputting the executed commands and their arguments.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 423

5.7 Environment variables for job information

When you start a job or job step, you can specify the job name, job ID, and job step name in environment variables so
that this information can be referenced by the job definition script files and user programs.

• ADSH_JOB_NAME (job name is specified when the job starts)

• ADSH_JOBID (job ID is specified when the job starts)

• ADSH_STEP_NAME (job step name is specified when the job step starts)

For details about these environment variables, see 2.5 Specifying environment variables.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 424

5.8 Defining jobs, job steps, and commands

You can use extended script commands to declare job names and define jobs, job steps, and commands. For details about
the extended script commands, see 9.5 Extended script commands.

5.8.1 Declaring job names
You use the #-adsh_job command to declare the job name of a job definition script.

The specification methods are shown below. Use either method 1 or method 2.

Specification method 1:

Line 1: #!any-character-string
Line 2: 0#-adsh_job job-name

Specification method 2:

Line 1: 0#-adsh_job job-name

If the #-adsh_job command is omitted, the default attribute value shown in the following table is used.

Attribute Default value when omitted or undeclared Example

Job name ADSHjob-ID If the job ID is 000010: ADSH000010

5.8.2 Defining the job end condition
You use the #-adsh_job_stop command to define the condition to be used to determine whether the job is to be
cancelled when a job step terminates.

(1) Timing of evaluation
Each time a job step terminates, JP1/Advanced Shell checks if the return code for this attribute is defined. If such a
return code is defined, JP1/Advanced Shell terminates the job without executing the subsequent job definition scripts.

(2) Scope
The end condition applies to execution of job definition scripts starting at the location immediately following where it
is specified. If this command is specified in the preceding job definition script, that specification is reset and only the
new condition specified takes effect.

The following shows an example.

01: #!/opt/jp1as/bin/adshexec
02: #-adsh_job JOB0001
03:
04: #-adsh_step_start STEP1
05: #-adsh_step_end
06:
07: #-adsh_job_stop 4: The scope of this definition is from line 09 through 13.
08:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 425

09: #-adsh_step_start STEP2
10: #-adsh_step_end
11:
12: #-adsh_step_start STEP3
13: #-adsh_step_end
14:
15: #-adsh_job_stop 8:16,24:32 The scope of this definition is from line 17
through 18.
16:
17: #-adsh_step_start STEP4
18: #-adsh_step_end

(3) Example of job end condition definition
If the #-adsh_job_stop command is used to define a job end condition, the following occurs:

• Even if a job step terminates with the return code specified in the #-adsh_job_stop command, commands
outside the job step do not cancel the job.

• If a job step terminates with the return code specified in the #-adsh_job_stop command, the job step cancels
the job.

• If a job is cancelled by executing the #-adsh_job_stop command, any subsequent commands outside the job
step are not executed. The subsequent job steps are not executed either, regardless of the specification of the run
attribute.

The following shows an execution example.

#-adsh_job JOB_STOP
#-adsh_rc_ignore CBLRTN
#-adsh_job_stop 4 Specifies that the job is to be
cancelled at rc=4.

echo "Job start."
CBLRTN 004 # Command that succeeds at rc=4 The job is not canceled although a
command outside the job step results in rc=4.

#-adsh_step_start STEP01
echo "Step start."
CBLRTN 004 # Command that succeeds at rc=4
#-adsh_step_end The job step terminates with rc=4
and the job is cancelled.

#-adsh_step_start STEP03 -run always Does not execute any subsequent job
steps regardless of the run attribute.
 echo "command in step"
#-adsh_step_end

echo "Job end." Does not execute any subsequent
commands.

5.8.3 Defining job steps
The job step definition commands whose names begin with #-adsh_step are used to group a portion of a job
definition script as a job step. A job step consists of a group of commands.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 426

(1) How to group commands
A group of commands normally executed as a job step is specified in a block from the #-adsh_step_start
command to the #-adsh_step_error or #-adsh_step_end command. This block is called a job step normal
block.

A group of commands that is executed only if the last command in the job step normal block terminates with an error
is specified in a block from the #-adsh_step_error command to the #-adsh_step_end command. This block
is called a job step error block.

(2) Flow of job step execution
The following describes the flow of job step execution.

1. Whether the job step is to be skipped is determined based on the preceding job step having terminated with an error,
based on whether any commands terminated with an error, or based on the run attribute's specification. For details
about the run attribute, see 9.5.9 #-adsh_step_start command, #-adsh_step_error command, #-
adsh_step_end command (defines a job step) in 9.5 Extended script commands.

2. The commands in the job step normal block are executed sequentially. If any of the commands terminates with an
error and the onError attribute is stop, JP1/Advanced Shell exits the job step normal block without executing
the subsequent commands. If the onError attribute is cont, JP1/Advanced Shell executes the subsequent
commands and then exits the job step normal block.

3. If #-adsh_step_error is defined and the last command in the job step normal block terminates with an error,
the commands in the job step error block are executed sequentially by JP1/Advanced Shell.

(3) Declaring shell variables that are valid only within a job step
You can declare shell variables that are to be valid only within the current job step by specifying the stepVar attribute.
When the declared shell variables are exported, they are placed in exported status only within the job step.

When the job step begins, the job controller automatically places the shell variables in undefined status. However, if
the PATH shell variable is defined to be valid only within the job step, the values before the job step started are inherited.

When the job step terminates, the job controller automatically resets the shell variables to their status when the job step
started.

You can declare shell variables with the same names as shell variables outside the job step. The following notes apply
when you declare such shell variables:

• A declared shell variable is treated as different from other shell variable with the same name outside the job step.

• When the job step starts, a declared shell variable is placed in undefined status. The value of a shell variable with
the same name outside the job step is not inherited because it is treated as a separate shell variable.

• A shell variable with the same name outside the job step cannot be referenced or updated within the current job step.

• After the job step has terminated, a shell variable with the same name outside the job step can be referenced and
updated again.

The following shows a usage example.

Usage example of a job definition script file:

01: VAL1=AAA
02: echo "Before starting the step (outside the step)"
03: echo "beforeStepVar1="$VAL1

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 427

04: echo "beforeStepVar2="$VAL2
05:
06: #-adsh_step_start S1 -stepVar VAL1,VAL2
07: echo "The step has started"
08: echo "startStepVar1="$VAL1
09: echo "startStepVar2="$VAL2
10: VAL1=XXX
11: VAL2=YYY
12: echo "endStepVar1="$VAL1
13: echo "endStepVar2="$VAL2
14: #-adsh_step_end
15:
16: echo "The step was terminated"
17: echo "afterStepVar1="$VAL1
18: echo "afterStepVar2="$VAL2

This example declares VAL1 that has a shell variable with the same name outside the job step and VAL2 that does not
have a shell variable with the same name outside the job step.

The following shows the execution results:

Before starting the step (outside the step)
beforeStepVar1=AAA <-- References VAL1 outside the job step. This is a different
variable from VAL1 inside the job step.
beforeStepVar2= <-- References VAL2 outside the job step, but a nonexistent step was
started.
startStepVar1= <-- References VAL1 inside the job step. This is a different variable
from VAL1 outside the job step.
startStepVar2=
endStepVar1=XXX
endStepVar2=YYY
The step was terminated
afterStepVar1=AAA <-- References VAL1 outside the job step. This is a different
variable from VAL1 inside the job step.
afterStepVar2= <-- References VAL2 outside the job step, but it does not exist.

If you specify PATH in a shell variable that is valid only within the job step, you can add a path to the PATH shell
variable that is valid only in that job step. The initial value of the PATH shell variable is the value in effect before the
job step starts.

The following example shows how to add paths to the PATH shell variable that are valid only within the current job
step. This example assumes that the value of the PATH shell variable is a:b when execution of the job definition script
begins.

#-adsh_job J1 --> 1.
cmdA
PATH=x:$PATH --> 2.
cmdB
#-adsh_step_start S1 -stepVar PATH --> 3.
 cmdC
 PATH=y:$PATH --> 4.
 cmdD
#-adsh_step_end --> 5.

The numbers in this example correspond to the numbers in the following explanation:

1. The initial value of PATH is a:b.

2. Valid inside the job step. The value of PATH becomes x:a:b.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 428

3. Specifies PATH for stepVar. The shell variable remains undeleted and the value remains as x:a:b.

4. Valid inside the job step. The value of PATH becomes y:x:a:b.

5. Resets PATH to the value in effect when the job step started. The value of PATH becomes x:a:b.

If you use the PATH_CONV_VAR parameter or #-adsh_path_var command, you can define and use the shell
variable that converts the path of directory between Windows and UNIX. For details of this function, see 5.8.5 Defining
shell variables that handle path names.

(4) Specifying the job step return code in the event of a job step error
You can set a desired return code for a job step in the event of a job step error. To do this, execute the exit command
with the desired return code specified in its argument inside the job step error block. In this case, the value specified in
the argument of the exit command is also set as the job's return code because the job is terminated by the exit
command.

The value specified in the argument of the exit command also becomes the return code of job step when a . (dot)
command or #-adsh_script command is used within the job step error block to call an external script and then the
exit command with the argument specified is executed inside the called external script.

The following example executes the exit command with the argument specified inside the job step error block:

#-adsh_step_start STEP1
 cmdA
 cmdB <-- Terminated in an error with return code 1.
 cmdC
#-adsh_step_error
 exit 4 <-- The job step terminates with an error and the exit command's argument
4 becomes the return code of the job step.
#-adsh_step_end

If the exit command with no argument specified is executed inside the job step error block, the return code of the last
command executed within the job step normal block becomes the job step's return code.

The following example executes the exit command with no argument specified inside the job step error block:

#-adsh_step_start STEP1
 cmdA
 cmdB <-- Error termination with return code 1.
 cmdC
#-adsh_step_error
 exit <-- The job step terminates with an error. Because the exit
command has no arguments, the return code of cmdB becomes the return code of the job
step.
#-adsh_step_end

(5) Job step execution examples
The following shows example job definition script file executions in which all commands terminate normally and in
which an intermediate command terminates with an error.

• Example execution in which all commands terminate normally

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 429

 command1 <-- Executed.
 command2 <-- Executed.
 command3 <-- Executed.
#-adsh_step_error
 command4 <-- Not executed.
 command5 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

• Example execution in which command2 terminates with an error (onError attribute is stop)

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001 -onError stop
 command1 <-- Executed.
 command2 <-- Executed (error termination).
 command3 <-- Not executed.
#-adsh_step_error
 command4 <-- Executed.
 command5 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

• Example execution in which command2 terminates with an error (onError attribute is cont)

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001 -onError cont
 command1 <-- Executed.
 command2 <-- Executed (error termination).
 command3 <-- Executed.
#-adsh_step_error
 command4 <-- Not executed.
 command5 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

If a command outside the job step results in an error, the subsequent job definition script is handled as follows:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 430

• The subsequent commands outside the job step are executed.

• The subsequent commands whose run attribute is normal are not executed.

• The subsequent job steps whose run attribute is abnormal or always are executed.

The following shows an execution example:

#-adsh_job CMD_ERROR

echo "Job start."
cd -x #Command that results in an error <--This command results in an error.
echo "Job end." <--Commands outside the job step execute.

#-adsh_step_start STEP01 -run normal <--Does not execute a job step for which run
normal is specified.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP02 -run abnormal <--Executes a job step for which run
abnormal is specified.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP03 -run always <--Executes a job step for which run always is
specified.
 echo "command in step"
#-adsh_step_end

If a job step results in an error, whether the subsequent job step is to be executed is determined by the run attribute of
the subsequent job step. Commands outside the subsequent job step will not be executed. The following shows an
execution example:

#-adsh_job STEP_ERROR

#-adsh_step_start STEP01
 echo "Step start."
 cd -x #Command that results in an error
 echo "Step end."
#-adsh_step_end <--The job step terminates with an error.

echo "Job end." <--If the preceding job step resulted in an error, commands
outside the subsequent job step do not execute.

The return code of a command executed inside the job step error block has no effect on the return code of the job step.
The return code of the last command executed inside the job step normal block becomes the return code of the job step.
The following shows an execution example:

#-adsh_job STEP_ERRBLK_RC

#-adsh_step_start STEP01
 echo "Step start."
 cd -x #Command that results in an error with rc=1 <--The result of this
command becomes the return code of the job step.
 echo "Step end."
#-adsh_step_error
 echo "step error block" #Command that results in rc=0 <--No effect on the job
step's rc.
#-adsh_step_end <--The error result of the cd command is applied and the job step
terminates with rc=1.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 431

(6) The relationship of shell functions and the trap command
Regardless of where a shell function or action of a trap command was defined, whether the shell function or action is
executed inside or outside of a job step is determined by where the shell function or action was executed.

5.8.4 Defining commands that terminate normally

(1) Defining commands that terminate normally, even when the return
code is not 0

You can specify a return code threshold for normal termination so that nonzero values as a command's return code will
be treated as a normal termination. Any return code that does not exceed the specified threshold will cause the command
to be treated as having terminated normally.

You can use the following environment setting parameters to specify a return code threshold.

• CMDRC_THRESHOLD_USE_PRESET parameter
This parameter specifies a return code threshold for all UNIX-compatible commands. The permitted threshold
specifications are 0 and 1.

• cmp command

• diff command

• egrep command

• expr command

• grep command

• sort command

For details, see 7.3.10 CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code
of a UNIX-compatible command).

• CMDRC_THRESHOLD_DEFINE parameter
This parameter specifies target commands and a return code threshold. You can specify the following commands:

• External commands

• UNIX-compatible commands

• Shell scripts

• Shell operation command

• child jobs

For details, see 7.3.9 CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a
command).

(2) Defining commands that always terminate normally
When the #-adsh_rc_ignore command is used, a command whose name is defined always terminates normally
regardless of its return code. In such a case, the return code of the target command has no effect on the evaluation of
the result of the job step (success or fail).

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 432

However, if the command is terminated by signal, the command always terminates with an error regardless of this
specification.

The commands shown below will not result in an error even if their return code is not zero, which means that the return
code is ignored regardless of the specification of this command:

• true and false commands

The #-adsh_rc_ignore command definition takes effect on the execution of a job definition script starting at the
location immediately following where this definition is specified. If this definition is specified outside a job step, it takes
effect on the entire job definition script. If the definition is specified inside a job step, it takes effect only inside that job
step. When the definition is specified inside a job step, it takes effect from the location immediately following the
location of its specification through the end of the job step, and any value specified outside the job step becomes invalid
temporarily. Until a value is specified inside the job step, a value specified outside the job step becomes valid.

The following shows an example specification:

01: #!/opt/jp1as/bin/adshexec
02: #-adsh_job JOB0001
03:
04: uap01
05: uap02
06: #-adsh_rc_ignore uap03,uap04 <--1. Specified outside the job step.
07: uap03 <--Scope of 1 is from line 07 through 14.
08:
09: #-adsh_step_start STEP1
10: uap04
11: #-adsh_step_end
12:
13: #-adsh_step_start STEP2
14: uap05
15: #-adsh_rc_ignore uap06,uap07 <--2. Specified inside the job step.
16: uap06 <--Scope of 2 is from line 16 through 17.
17: uap07
18: #-adsh_step_end
19:
20: #-adsh_step_start STEP4 <--Scope of 1 is from line 20 through 22.
21: uap08
22: #-adsh_step_end

(3) Priority of functions that normally terminate even if the return code is
other than 0

The priority when specifying the CMDRC_THRESHOLD_DEFINE parameter, the #-adsh_rc_ignore command,
the successRC attribute of #-adsh_step_start, and the adshcmdrc command simultaneously is shown below.
The smaller number indicates higher priority. If the command that is the target of the
CMDRC_THRESHOLD_USE_PRESET parameter, the priority of the CMDRC_THRESHOLD_USE_PRESET
becomes "7".

1. #-adsh_rc_ignore command defined in the job step
2. #-adsh_rc_ignore command defined outside the job step
3. adshcmdrc command defined in the job step
4. successRC attribute of #-adsh_step_start
5. Adshcmdrc command defined outside the job step
6. CMDRC_THRESHOLD_DEFINE parameter
7. CMDRC_THRESHOLD_USE_PRESET parameter

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 433

The example if each function that normally terminates even if the return code is other than 0 is defined for command
of command name is as follows:

Job definition script

#-adsh_rc_ignore Command name ...2
adshcmdrc Command name 1 ...5

#-adsh_step_start STEP1 -successRC 2 ...4
 #-adsh_rc_ignore Command name ...1
 adshcmdrc Command name 3 ...3
 Command name
#-adsh_step_end

Environment file

#-adsh_conf CMDRC_THRESHOLD_DEFINE Command name 10 ...6

5.8.5 Defining shell variables that handle path names
You can define the shell variable that handles the path name by using the PATH_CONV_NOVAR parameter or #-
adsh_path_var command. If you use the shell variable that handles the path name, you can convert the path separator
and directory separator containing the shell variable according to environment of Windows and UNIX.

You can define the shell variable that does not handle the path name by using the PATH_CONV_NOVAR parameter.
Complicate specification is possible by combining with the specification of PATH_CONV_VAR.

The job controller converts the path and directory separators in character strings that satisfy all of the following
conditions. For details about path conversion settings 1 and 2, see 7.3.34 PATH_CONV_RULE parameter (defines a
rule for converting file paths) (Windows only).

• Character string enclosed in double quotation marks (") (applicable to path conversion setting 1)

• Character string not enclosed in single quotation marks (') (applicable to path conversion setting 2)

• Character string separated by the path separator defined in the PATH_CONV_ENABLE parameter in the environment
file, whose leading part matches the character string $name-of-shell-variable-that-handles-paths or ${name-of-
shell-variable-that-handles-paths}

You can use the #-adsh_path_var command only in either of the following cases:

• Line following #!any-character-string on the first line

• Line following a line containing the #-adsh_job command

You can specify a continuation line as shown below. Note that no shell variable name can be specified after the #-
adsh_path_var command on the first line.

 Line 1: #-adsh_path_var
 Line 2: #-adsh var001,var002,var003,var004

(1) Examples
The example that the shell variable variables "PATH", "DIR" and "DIR3" are defined for the #-adsh_path_var
command and PATH_CONV_VAR parameter is as follows:

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 434

(a) In Windows
• Specification of the environment file

#-adsh_conf PATH_CONV_ENABLE / : <--Enable path conversion.
#-adsh_conf PATH_CONV_RULE 1 <--Select path conversion
setting 1.
#-adsh_conf PATH_CONV /home/hitachi "C:\\hitachi" <--Path string substitution 1.
#-adsh_conf PATH_CONV /tmp/jp1as "D:\\jp1as_tmp" <--Path string substitution 2.
#-adsh_conf PATH_CONV /tmp "C:\\temp" <--Path string substitution 3.
#-adsh_conf PATH_CONV_ACCESS /dev/null nul <--Convert file paths during file
input and output.
#-adsh_conf PATH_CONV_VAR DIR3 <-- Shell variable definition
1

• Specification of the job definition script

#-adsh_path_var PATH,DIR <-- Shell variable definition 2

DIR="/home/hitachi/bin" <--Convert to DIR="C:\\hitachi\\bin" by path string
substitution 1.

"$DIR/myprog" <--Convert to "$DIR\\myprog" by shell variable definition 2.

"${DIR}/myprog" <--Convert to "${DIR}\\myprog" by shell variable definition 2.

DIR2=$DIR
"$DIR2/myprog" <--$DIR2 is not converted because it is not in shell variable
definition 1, 2.

$DIR/myprog <--Not converted because this is not enclosed in double quotation
marks (").

FILE1="/tmp/jp1as/file" <--Convert to "D:\\jp1as_tmp\\file" by path string
substitution 2.

DIR3=""
ls "$DIR3../bin" <--Convert to "..\\bin" by shell variable definition 1.
Relative paths are also converted.

DIR4="/home/hitachi/sbin:$DIR2" <--Convert to C:\\hitachi\\sbin;$DIR2 by path
string substitution 1. Path separators are also converted.

PATH="../bin/:$DIR" <--Convert to ..\\bin\\;$DIR by shell variable definition
2. Path separators are also converted.

"$DIR2/myprog" > /dev/null <--Convert to nul by file path conversion during
file input and output.

(b) In UNIX
• Specification of the environment file

#-adsh_conf PATH_CONV_ENABLE \\ ; <--Enable path conversion.
#-adsh_conf PATH_CONV "C:\\hitachi" /home/hitachi <--Path string substitution 1.
#-adsh_conf PATH_CONV "D:\\jp1as_tmp" /tmp/jp1as <--Path string substitution 2.
#-adsh_conf PATH_CONV "C:\\temp" /tmp <--Path string substitution 3.
#-adsh_conf PATH_CONV_ACCESS nul /dev/null <--Convert file paths during file
input and output.
#-adsh_conf PATH_CONV_VAR DIR3 <-- Shell variable definition
1

• Specification of the job definition script

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 435

#-adsh_path_var PATH,DIR <-- Shell variable definition 2
DIR="C:\\hitachi\\bin" <--Convert to DIR="/home/hitachi/bin" by path string
substitution 1.
"$DIR\\myprog" <--Convert to "$DIR/myprog" by shell variable definition 2.

"${DIR}\\myprog" <--Convert to "${DIR}/myprog" by shell variable definition 2.

DIR2=$DIR
"$DIR2\\myprog" <--$DIR2 is not converted because it is not in shell variable
definition 1, 2.

$DIR\\myprog <--Not converted because this is not enclosed in double quotation
marks (").

FILE1="D:\\jp1as_tmp\\file" <--Convert to "/tmp/jp1as/file" by path string
substitution 2.

DIR3=""
ls "$DIR3..\\bin" <--Convert to "../bin" by shell variable definition 1.
Relative paths are also converted.

DIR4="C:\\hitachi\\sbin;$DIR2" <--Convert to /home/hitachi/sbin:$DIR2 by path
string substitution 1. Path separators are also converted.

PATH="..\\bin\\;$DIR" <--Convert to ../bin/:$DIR by shell variable definition
2. Path separators are also converted.

"$DIR2\\myprog" > nul <--Convert to /dev/null by file path conversion during
file input and output.

(c) Example of use of PATH_CONV_VAR parameter and PATH_CONV_NOVAR
parameter

• Specification of the environment file

#-adsh_conf PATH_CONV_VAR DIR* <-- Definition 1 of shell variable
#-adsh_conf PATH_CONV_NOVAR DIRNO* <-- Definition 2 of shell variable

For definition 1 of shell variable, the shell variable in which the beginning of the name is DIR is defined as the shell
variable that handles the path name. For definition 2 of shell variable, the shell variable in which the beginning of
the name is DIR is defined as the shell variable that does not handle the path name. The subsequent specification is
prioritized so that the shell variable in which the beginning of the name is defined as the shell variable handling the
path name except for the shell variable in which the beginning of the name is DIRNO.

• Specification of the job definition script

#-adsh_path_var DIRNORTH <-- Definition 3 of shell variable

DIRNORTH is defined as the shell variable handling the path name.# Definition of the -adsh_path_var
command is prioritized over the definition of the environment file. Therefore, DIRNOTH is the variable even if the
beginning of the name is DIRNO.

(2) Example output to job definition script images
JP1/Advanced Shell outputs a job definition script before path conversion and the lines after conversion to job execution
logs. JP1/Advanced Shell also outputs as messages the conversion rules that were satisfied in the job definition script,
job definition script name, and line numbers.

******** JOB CONTROLLER MESSAGE ********
(omitted)

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 436

10:48:48 000007 KNAX6803-I The access path matched the conversion rule. filename="D:
\home\user001\path_conv.ash" line=4 path converted="./local.log":".\\mylog"
(omitted)

******** Script IMAGE ********

***** D:\home\user001\path_conv.ash *****
0001 : #-adsh_job JOB001
0002 : #-adsh_path_var DIR
0003 : DIR="/home/hitachi/bin"; DIR2="/tmp/tmpfile"
0004 : "$DIR/myprog" > ./local.log
0005 : exit

***** Converted lines in "D:\home\user001\path_conv.ash" *****
0003 : DIR="c:\\Program Files"; DIR2="c:\\temp\\tmpfile"
0004 : "$DIR\\myprog" > ./local.log

***** CONVERSION INFORMATION *****
KNAX6800-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=3 path converted="/home/hitachi/bin":"c:\\Program Files"
KNAX6800-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=3 path converted="/tmp":"c:\\temp"
KNAX6801-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=4 shell variable handling path="DIR"

5.8.6 Calling an external job definition script file from an executing job
definition script

You can use the #-adsh_script command to insert into a currently executing job definition script file the contents
of an external job definition script file as they are when the job controller starts.

Unlike the . (dot) standard shell command, this command expands into the calling job definition script the contents of
a specified external script as they are when the job controller starts. JP1/Advanced Shell treats the calling job definition
script containing the expanded job definition script as a single job definition script and performs syntax analyses on it.

The following shows an example of an external script definition and a calling job definition script.

• /scripts/exScript.ash (contents when the job starts)

#-adsh_step_start exS1
 exUap01
#-adsh_step_end
exUap02

• script.ash
#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

uap01
#-adsh_step_start S2 -run normal
 uap2
#-adsh_step_end

The contents of script.ash are equivalent to the following job definition script:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 437

uap01
#-adsh_step_start exS1 <-- The following four lines constitute the expanded
exScript.ash
 exUap01
#-adsh_step_end
exUap02
#-adsh_step_start S2 -run normal
 uap2
#-adsh_step_end

If exUap02 in the external script /scripts/exScript.ash terminates with an error (a return code other than
0), because normal is specified for the run attribute of the succeeding job step S2, the job will terminate without the
step being executed.

The following table describes the differences between the . (dot) command and the #-adsh_script command.

Table 5-39: Differences between the . (dot) command and the #-adsh_script command

No. Comparison item . (dot) command #-adsh_script command

1 Handling of extended script commands
inside the external job definition script

Handled as comments. Handled as extended script commands.

2 Output to script images Not output. Output

3 Operation when relative paths are
specified

Allows specification of relative
paths.
However, this command resolves
the paths by referencing the value of
the PATH environment variable.

Allows specification of relative paths.
However, this command interprets the specified
paths as being relative to the current directory
used when adshexec started; it does not
reference the value of the PATH environment
variable.

4 Maximum number of commands
permitted in a job

No limit Maximum of 4,095

5 Command execution from within the
external job definition script

Executable Executable.
However, the command cannot be executed by
calling the same external job definition script
recursively.

6 Specification of arguments for the
external job definition script

Permitted Not permitted

7 CUI
debugger

Setting breakpoints in the
external job definition
script by using the
break command

Cannot set breakpoints. Can set breakpoints.

8 Displaying information
about the functions
defined in the external job
definition script by using
the info functions
command

Cannot display information.
However, the information can be
displayed once the function
definition is completed within the
external job definition script.

Can display information.

9 Displaying the contents
of the external job
definition script by using
the list command

Cannot display the contents. Can display the contents.

10 Information displayed
when execution of the job

Line numbers: Can be displayed.
Lines in the source file: Cannot be
displayed.

Line numbers: Can be displayed.
Lines in the source file: Can be displayed.
Command strings: Can be displayed.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 438

No. Comparison item . (dot) command #-adsh_script command

10 CUI
debugger

definition script is
stopped

Command strings: Can be
displayed.

Line numbers: Can be displayed.
Lines in the source file: Can be displayed.
Command strings: Can be displayed.

(1) Specifying relative paths
If the relative path of an external script is specified, JP1/Advanced Shell assumes the current directory used when
adshexec started, regardless of the processing of the previous job definition script.

A path relative to any other directory cannot be specified. To use such a path, you must specify its absolute path.

The following show a specification example:

Current directory when the adshexec command starts: /scripts
#/opt/jp1as/bin/adshexec
cd /work
#-adsh_script ex_script.ash <-- /scripts/ex_script.ash is executed.

This example uses the #-adsh_script command to execute the external script file /scripts/
ex_script.ash. The current directory was changed by the cd command on the immediately preceding line, but this
change has no effect on the path of the external script file that is called.

(2) Specifying absolute paths
If you want to execute /work/ex_script.ash, specify an absolute path as shown in the following.

Current directory when the adshexec command starts: /scripts
#/opt/jp1as/bin/adshexec
cd /work
#-adsh_script /work/ex_script.ash <-- /work/ex_script.ash is executed.

5.8.7 Return codes of extended script commands and handling of errors
The table below lists and describes the return codes for the extended script commands. You can define these return codes
by using the environment setting parameters.

Table 5-40: Return codes of the extended script commands

Extended script commands Execution result Default value
for return code

Environment setting parameter for
specifying return codes

#-adsh_file
#-adsh_file_temp
#-adsh_job
#-adsh_job_stop
#-adsh_path_var
#-adsh_rc_ignore
#-adsh_spoolfile
#-adsh_step_start
#-adsh_step_error

Normal termination 0 ADSHCMD_RC_SUCCESS

Error termination 1 ADSHCMD_RC_ERROR

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 439

Extended script commands Execution result Default value
for return code

Environment setting parameter for
specifying return codes

#-adsh_step_end Job step normal termination Return code of the
last command
executed in the
job step normal
block

--

Job step error termination

The job step was terminated by
executing the exit command
with arguments specified inside
the job step error block.

Argument of the
exit command

--

Error termination of #-
adsh_step_end

1 ADSHCMD_RC_ERROR

#-adsh_script Normal termination Return code of the
last command
executed in the
called external
script

--

Error termination 1 ADSHCMD_RC_ERROR

Legend:
--: Not applicable

If execution of an extended script command results in error termination or job step error termination, the following
occurs:

• If abnormal or always is specified in the run attribute, the job step is executed.

• If the run attribute is omitted or normal is specified in the run attribute, the job step is not executed.

• None of the commands outside the job step is executed.

The following shows an execution example:

#-adsh_job EXCMD_ERROR

echo "Job start."

#-adsh_file ERRFILE file01 -chk exist <-- This extended script command results in
an error.

#-adsh_step_start STEP01 -run normal <-- Do not execute a job step for which
normal is specified in the run attribute.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP02 -run abnormal <-- Execute a job step for which abnormal is
specified in the run attribute.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP03 -run always <-- Execute a job step for which always is
specified in the run attribute.
 echo "command in step"
#-adsh_step_end

echo "Job end." <-- Do not execute any command outside the
job step.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 440

5.8.8 Return codes of jobs, job steps, and commands
This subsection explains the return codes and the normal and abnormal execution results.

(1) Return codes of jobs
The return code of a job is the return code of the last job definition script that executed.

JP1/Advanced Shell does not identify whether job execution results are normal or abnormal. It returns the return codes
to other programs such as JP1/AJS as is.

If a job is executed from JP1/AJS, the JP1/AJS job's return code that can be checked by using a program such as
JP1/AJS - View might be the JP1/AJS-defined return code, not the adshexec command's return code. In such a case,
the JP1/AJS job's return code might differ from the JP1/Advanced Shell job's return code that is output to job execution
logs.

Example:
If the adshexec command of a UNIX edition started from JP1/AJS receives SIGINT, JP1/Advanced Shell job's
return code is 130, but JP1/AJS job's return code is -1.

If an error occurs in a job, an error message is output.

(2) Return codes of job steps
The return code of a job step is the return code of the last command executed in the job step normal block. If you execute
the exit command with the argument specified in the job step error block, you can set the argument of the exit
command as the job step's return code. The return codes of other commands executed in the job step error block have
no effect on the job step's return code. The following explains normal termination and error termination of job steps:

• Job step normal termination
The last command that executed in the job step normal block terminated normally.

• Job step error termination
The last command that executed in the job step normal block terminated with an error.

(3) Return codes of external commands
The return codes are predefined for each external command.

Although the range of values that the external commands can return depends on the platform and the programming
language specifications used for the external commands, we recommend that you use a range from 0 through 255. If
the value is outside this range, the job controller uses the following values as the return code of the external command:

UNIX
The trailing eight bits of the value returned by the external command

Windows

• If the value returned by the external command is 0 or greater: the trailing eight bits of the value

• If the value returned by the external command is less than 0: 255
• If the external command terminated due to an exception:# the trailing eight bits of the exception code

#
The following table explains the exception codes that are treated as exceptions.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 441

Table 5-41: Exception codes treated as exceptions and their meaning

N
o
.

Excep
tion
code

R
et
u
r
n
c
o
d
e
s
of
e
xt
er
n
al
c
o
m
m
a
n
d
w
h
e
n
e
x
c
e
pt
io
n
o
c
c
u
rs

Meaning

1 0xC0
0000
05

5 The thread attempted to access a virtual address for which access permissions are not granted.

2 0x80
0000
03

3 A breakpoint has been reached.

3 0x80
0000
02

2 An attempt was made to access misaligned data on hardware with memory access-related alignment rules (for example, a
16-bit value spanning a two-byte boundary and a 32-bit value spanning a four-byte boundary are not permitted).

4 0x80
0000
04

4 This indicates execution of a single instruction at a time by using a trace or single-step method.

5 0xC0
0000
8C

1
4
0

Hardware detected an attempt made by the thread to access data outside the range of an array.

6 0xC0
0000
8D

1
4
1

In a floating-point operation, at least one of the operands is an unnormalized number (the value is too small to express in
the normal floating-point format).

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 442

N
o
.

Excep
tion
code

R
et
u
r
n
c
o
d
e
s
of
e
xt
er
n
al
c
o
m
m
a
n
d
w
h
e
n
e
x
c
e
pt
io
n
o
c
c
u
rs

Meaning

7 0xC0
0000
8E

1
4
2

The thread attempted to perform division by zero during a floating-point operation.

8 0xC0
0000
8F

1
4
3

The accurate value could not be obtained from a floating-point operation.

9 0xC0
0000
30

4
8

An exception of to a floating-point operation other than an exception listed in this table occurred.

1
0

0xC0
0000
91

1
4
5

As a result of a floating-point operation, the value of the exponent part was above the permitted range.

1
1

0xC0
0000
32

5
0

As a result of a floating-point operation, a stack resulted in overflow or underflow.

1
2

0xC0
0000
33

5
1

As a result of a floating-point operation, the value of the exponent part was below the permitted range.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 443

N
o
.

Excep
tion
code

R
et
u
r
n
c
o
d
e
s
of
e
xt
er
n
al
c
o
m
m
a
n
d
w
h
e
n
e
x
c
e
pt
io
n
o
c
c
u
rs

Meaning

1
3

0xC0
0000
94

1
4
8

The thread attempted to perform division by zero during an integer arithmetic operation.

1
4

0xC0
0000
35

5
3

An integer arithmetic operation resulted in overflow.

1
5

0xC0
0000
96

1
5
0

An attempt was made to execute an instruction (privileged instruction) that cannot be executed in the current machine mode.

1
6

0xC0
0000
25

3
7

An attempt was made to re-execute a command that resulted in an unresumable exception.

For example, if the external command returns 512, the return code of the external command will be 0. In this case, the
job controller will assume that the external command has terminated normally.

'E:\bin\uap01.exe' <-- The value returned by uap01.exe is 512
if [$? -ne 0] <-- Because the lower 8 bits are handled as the return
code, the return code is 0
then

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 444

 exit 2 <-- Because the return code is 0, exit2 is not executed
fi

If the value returned by the external command is outside the range from 0 to 255, use the ADSH_RC_EXTERNAL shell
variable to obtain the result of the external command.

'E:\bin\uap01.exe' <-- The return value of uap01.exe is 512
if [$ADSH_RC_EXTERNAL -ne 0] <-- The value returned by the external command is
assigned to the ADSH_RC_EXTERNAL shell variable
then
 exit 2 <-- Because the value of ADSH_RC_EXTERNAL is 512,
exit 2 is executed
fi

For details, see 5.5.4 Shell variable in which to set the return code of an external command [Windows only].

If the external command execution result is any of the ones listed in the following table, JP1/Advanced Shell assumes
that the corresponding external command terminated with an error.

External command execution result Return code

If the return code of an external command is not 0 (a value can be changed with the successRC
attribute, CMDRC_THRESHOLD_USE_PRESET parameter, CMDRC_THRESHOLD_DEFINE
parameter and adshcmdrc command)

External command's return code

The external command was terminated by signal. Return code for signal termination that is
predefined by the external command

The specified external command could not be executed due to a lack of execution permissions. 126

The specified external command could not be executed because it did not exist. 127

The external commands specified in the #-adsh_rc_ignore command will not result in an error regardless of the
return code.

(4) Termination codes of built-in commands
The termination codes of built-in commands depend on the command. Whether a built-in command terminated normally
or resulted in an error is determined based on any error event that occurred during command execution, not on the value
of the termination code. Note that a built-in command specified in the #-adsh_rc_ignore command always
terminates normally regardless of the command's execution results.

For details about the conditions that determine whether each command has terminated normally or resulted in an error,
see the termination codes for each command described in 9. Job Definition Script Commands and Control Statements.

(5) Return codes of functions
With functions, the return code of the command that is last executed in the function is treated as the return code of the
function. You can evaluate an error of a job and job step according to the return code of the function by specifying
FUNCTION for the CMDRC_CMDGRP_CHECK parameter and executing the parameter.

For details on the CMDRC_CMDGRP_CHECK parameter, see 7.3.8 CMDRC_CMDGRP_CHECK parameter
(determines an error of job and job step according to the return code of the function). For details on functions, see 5.1.4 
Functions.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 445

(6) Notes
The return code of UNIX-compatible commands and user-created commands might not be 0 even if they terminate
normally. For example, the diff command terminates with code 1 when the compared files differ.

To correctly determine whether such commands terminated normally or with an error, use the methods described below
to code your job definition scripts. For details about the return codes of UNIX-compatible commands, see 8.4 UNIX-
compatible commands.

(a) Specifying in the environment setting parameters
• To correctly determine whether UNIX-compatible commands terminated normally or with an error, specify ENABLE

in the CMDRC_THRESHOLD_USE_PRESET parameter.

• To correctly determine whether OS-provided commands or user-created commands terminated normally or with an
error, specify the CMDRC_THRESHOLD_DEFINE parameter.

(b) Specifying in job definition scripts
• To set a command to always terminate normally, specify the name of that command in the argument of the #-
adsh_rc_ignore command.

• To determine whether a command terminated normally or with an error according to the command specifications,
define the corresponding command in a job step and specify the return code for normal termination with the
successRC attribute. The specified successRC attribute takes effect on all commands that are executed within
the corresponding job step.

• To check whether the target command specified inside or outside of a job step ended normally or ended in an error
according to command specifications, for the argument of the adshcmdrc command, specify the target command
and the threshold value for the return code to be interpreted as a normal termination.

5.8.9 Job cancellation by the standard shell commands
When a standard shell command is executed, job execution might be canceled depending on the type of standard shell
command and the execution result of the standard shell command. If this happens, the KNAX6584-I message is issued
and the subsequent job steps and job definition scripts are not executed. Also, the job steps whose run attribute is
bnormal or always are not executed.

In this case, the specification of the #-adsh_rc_ignore command and the successRC attribute of the #-
adsh_step_start command do not take effect on the executed commands.

(1) Executing a command that immediately terminates a job definition
script

If a standard shell command that immediately terminates a job definition script is executed, job execution is canceled.
The following commands immediately terminate a job definition script:

• exit command

• return command#

• exec command with an executable command specified in its argument

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 446

#
A job definition script is not terminated in the following cases:

• The command was executed within a function.

• The command was executed within an external script.

(2) Unresumable errors
If a standard shell command is executed, an error (such as a syntax error) that disables operation of the job definition
script itself might occur. If this happens, job execution is canceled. Syntax errors occur in the following cases:

• Executing the unset command with no argument specified

• Specifying a character string in the argument of the return command that is specified outside the function as well
as outside an external script#

• In the Windows edition, executing an unsupported conditional expression while ERR is set in the
UNSUPPORT_TEST parameter

#
Job execution is not cancelled in the following cases:

• The command was executed within a function.

• The command was executed within an external script.

5.8.10 Processing in the event of an error during job execution
This subsection explains how commands and control statements are handled when an error occurs during job execution.
The following types of errors can occur:

• Errors in extended script commands
This type of error occurs when file allocation by the #-adsh_file command fails.

• Errors in standard shell commands

• If the processing is resumable
This type of error occurs when a specified command name cannot be found or a regular built-in command results
in an error.

• If the processing is not resumable
This type of error occurs when a special built-in command results in an error.

(1) Errors outside job steps
The following table explains the processing in the event of an error outside the job step.

Table 5-42: Processing in the event of an error outside the job step

Type of error Processing of subsequent commands and control statements

Error in an extended script command • Executes a job step if its run attribute is abnormal or always.
• Does not execute any commands or control statements other than the above.

Error in a standard shell command
(resumable)

• Does not execute a job step if its run attribute is normal.
• Executes all commands and control statements other than the above.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 447

Type of error Processing of subsequent commands and control statements

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

The following table provides examples of errors outside job steps.

Table 5-43: Examples of errors outside job steps

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

#-adsh_file JOBFILE jobfile E -- --

cmdA N E --

shift $n N Y E

cmdB N Y N

-- -- --

#-adsh_step_start NO -run normal N N N

echo "run normal step" N N N

cmdNormal N N N

#-adsh_step_end N N N

-- -- --

#-adsh_step_start AB -run abnormal Y Y N

echo "run abnormal step" Y Y N

cmdAbnormal Y Y N

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start AL -run always Y Y N

echo "run always step" Y Y N

cmdAlways Y Y N

#-adsh_step_end Y Y N

Legend:
Y: Executed.
N: Not executed.
E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(2) Errors inside the job step normal block
The following table explains the processing in the event of an error inside the job step normal block.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 448

Table 5-44: Processing in the event of an error inside the job step normal block

Type of error Processing of subsequent commands and control statements

Error in an extended script command
Error in a standard shell command
(resumable)#

• Does not execute any commands or control statement inside the job step normal block.
• Executes the job step error block, if defined.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

#
If the onError attribute is cont and the error (resumable) resulted from the last standard shell command inside
the job step, JP1/Advanced Shell assumes that an error occurred inside the job step normal block.

The following table provides examples of errors inside the job step normal block.

Table 5-45: Examples of errors inside the job step normal block

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Resumable (onError
attribute is cont)

Not
resumable

#-adsh_step_start S1 -onError stop -- -- -- --

#-adsh_file JOBFILE jobfile E -- -- --

cmdA N E E --

shift $n N N Y E

cmdB N N Y N

#-adsh_step_error Y Y N N

echo "step error block" Y Y N N

#-adsh_step_end Y Y Y N

-- -- -- --

#-adsh_step_start NO -run normal N N Y N

echo "run normal step" N N Y N

cmdNormal N N Y N

#-adsh_step_end N N Y N

-- -- -- --

#-adsh_step_start AB -run abnormal Y Y N N

echo "run abnormal step" Y Y N N

cmdAbnormal Y Y N N

#-adsh_step_end Y Y N N

-- -- -- --

#-adsh_step_start AL -run always Y Y Y N

echo "run always step" Y Y Y N

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 449

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Resumable (onError
attribute is cont)

Not
resumable

cmdAlways Y Y Y N

#-adsh_step_end Y Y Y N

Legend:
Y: Executed.
N: Not executed.
E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(3) Errors inside the job step error block
The following table explains the processing of subsequent commands and control statements in the event of an error in
the job step error block.

Table 5-46: Processing in the event of an error inside the job step error block

Type of error Processing of subsequent commands and control statements

Error in an extended script command • Does not execute any command or control statement inside the job step error block.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

Error in a standard shell command
(resumable)

• Executes all commands and control statements inside the job step error block.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

The following table shows examples of errors inside the job step error block.

Table 5-47: Examples of errors inside the job step error block

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

#-adsh_step_start S1 -onError stop -- -- --

echo "step normal block" -- -- --

#-adsh_step_error -- -- --

#-adsh_file JOBFILE jobfile E -- --

cmdA N E --

shift $n N Y E

cmdB N Y N

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 450

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start NO -run normal N N N

echo "run normal step" N N N

cmdNormal N N N

#-adsh_step_end N N N

-- -- --

#-adsh_step_start AB -run abnormal Y Y N

echo "run abnormal step" Y Y N

cmdAbnormal Y Y N

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start AL -run always Y Y N

echo "run always step" Y Y N

cmdAlways Y Y N

#-adsh_step_end Y Y N

Legend:
Y: Executed.
N: Not executed.
E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(4) Notes
If a resumable error occurs in a standard shell command outside the job step, all subsequent commands and control
statements are executed except for a job step whose run attribute is normal. In this case, the job's return code is
overwritten by the return codes of the subsequent commands and control statements. If you want to apply as the job's
return code the return code that caused the error (to treat the job as having resulted in an error in JP1/AJS), specify the
commands and control statements in the job step with stop as the onError attribute.

5.8.11 Notes about output of command execution results
The following notes apply to checking command execution results that are output to a job execution log file.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 451

(1) Output of command execution results when commands are grouped
by a separate program

A group of commands enclosed in parentheses ((and)) is executed as a single job definition script in a separate process.
For the command execution results, one of the following messages is output as the execution result of a single job
definition script:

KNAX6540-I, KNAX6541-E, KNAX6542-E, KNAX6560-I, KNAX6561-E, KNAX6562-E

(2) Notes about background execution
The following notes apply to output of the termination message for a command that is executed in the background by
specifying & or |&:

• A termination message is always output because the job terminates after all the commands executed in the
background have terminated.

• A command started within a job step might not terminate until after the job step has terminated. In such a case, the
termination message for the command is output after the termination message for the job step that started the
command. The return code of a command executed in the background by specifying & or |& has no effect on the
return code of the job step and job.

• The order in which information about commands executed in the background is output to the job execution logs is
undefined regardless of the actual order in which the processes started and terminated. The same applies to a group
of commands linked with the vertical bar (|).

• The execution time of the command that is executed in the background is measured when the job controller detects
the completion of the command. If the command that is executed in the background while the job controller is
stopped while waiting for input, the execution time to be output may become longer than the actual execution time.

(3) Notes about the builtin, command, eval, time, . (dot), and exec
commands

The following notes apply to the execution results of the builtin, command, eval, time, . (dot), and exec
commands.

• Built-in builtin, command, eval, time, and exec commands
JP1/Advanced Shell outputs only the execution results of commands executed as arguments. The execution results
of the builtin, command, eval, time, and exec commands are not actually output. The execution results of
these commands are not used to evaluate whether the job or job step resulted in normal termination or error
termination.
If an option that is not supported by the platform being used is specified for the command command, JP1/Advanced
Shell outputs the execution results of the command command and then evaluates whether the job and job step
resulted in normal termination or error termination.

• Built-in . (dot) command
JP1/Advanced Shell outputs only the execution results of each command in a specified external script.
The . (dot) command itself terminates normally, but its execution results are not output. The termination results of
the . (dot) command are not used to evaluate whether the job or job step resulted in normal termination or error
termination.
If the specified external script did not exist and the . (dot) command terminated with an error, JP1/Advanced Shell
outputs the execution results of the . (dot) command and then evaluates whether the job or job step resulted in
normal termination or error termination.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 452

(4) Differences in the output of command execution results depending on
the command format

If you execute commands using the following formats, the command names before conversion are output to the command
execution results:

• Execution of separate processes by using pipes (|)

• Execution of separate processes by using command substitution ($(), ``)

• Execution of background processes by using |&
• Subshell execution by using command grouping

• Background execution by using &

The following shows examples.

• If a variable is executed as a command, the character string before the variable is expanded is output as the command
name.

Definition in the job definition script:
01: $CMD &

Output execution results:
KNAX6116-I Execution of the command $CMD (line=1) finished successfully.
exit status=0 execution time=0.001s CPU time=0.000s

• If a character string that satisfies the rule defined in the CHILDJOB_PGM parameter in the environment file is
executed as a command, the character string before it was replaced by the CHILDJOB_PGM parameter is output as
the command name.

Definition in the environment file:
#-adsh_conf CHILDJOB_PGM /bin/sh

Definition in the job definition script:
01: /bin/sh ./test.ash &

Output execution results:
KNAX6116-I Execution of the command /bin/sh (line=1) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 453

5.9 Allocating files and performing postprocessing

You can use extended script commands or the adshfile command to allocate regular files, temporary files, and
program output data files and to perform postprocessing.

File allocation is an operation that occurs each time a command executes. It includes registering the handling of each
file when job steps and jobs terminate and creating file names and file entities.

Postprocessing is an operation that occurs when job steps and jobs terminate. It includes deleting and retaining each file
according to the definition specified during file allocation.

For details about the extended script commands, see 9.5 Extended script commands. For details about the adshfile
command, see 8.3.8 adshfile command (specifies the allocation and postprocessing of regular files).

5.9.1 Allocating regular files and performing postprocessing
Use the #-adsh_file command (extended script command) or the adshfile command (shell operation command)
to do the following:

• Performing postprocessing on the allocated files according to the results of the corresponding job step or job.

• If the #-adsh_file command is used, assigning to shell variables and environment variables the file paths of
regular files that will be used in the job or job step and the commands that will be started.

The table below describes the functional differences between the #-adsh_file and adshfile commands. For
details about the #-adsh_file command, see 9.5.1 #-adsh_file command (specifies assignment and postprocessing
of regular files). For details about the adshfile command, see 8.3.8 adshfile command (specifies the allocation and
postprocessing of regular files).

Item #-adsh_file command adshfile command

Specifying file paths in environment
variables

Y N

Timing of file postprocessing • Outside the step
When the job terminates

• Inside the step
When the step terminates

Specifies either job termination or step
termination.

Whether specification is permitted in
external scripts specified in . (dot)
commands

N Y

Whether specification is permitted within
iteration processing

N Y

Whether specification is permitted within
functions

N Y

Postprocessing of allocated regular files in
the event of a file allocation error

Assumes keep and does not delete files.
For details, see (a) #-adsh_file command.

Depends on the specification of the -a
argument.
For details, see (b) adshfile command.

Legend:
Y: Supported.
N: Not supported.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 454

Important
Regular files allocated with the adshfile command are managed separately from regular files allocated
with the #-adsh_file command. Postprocessing is performed on regular files allocated by the
adshfile command before it is performed on regular files allocated by the #-adsh_file command.
If the same file is allocated with both commands, it will be postprocessed twice, which might result in an
error.

(1) Allocating regular files
The #-adsh_file command assigns the file path of a regular file to a shell variable and an environment variable that
have the same name as the file environment variable definition name.

The #-adsh_file and adshfile commands do not create the entities of the specified regular files.

To check whether a file exists when the file is to be allocated, specify exist for -chk in the #-adsh_file command
and for -c in the adshfile command. When exist is specified and the specified file does not exist at the time of
allocation, an error results.

To allocate a file regardless of whether the file exists, specify no for -chk in the #-adsh_file command and for
-c in the adshfile command. When no is specified, the command allocates the specified file, even if the file does
not exist without treating it as an error.

The following examples allocate regular file test1 to FILE by using the #-adsh_file command:

• Windows

#-adsh_file FILE 'C:\home\test\test1' -chk exist -normal keep -abnormal keep

• UNIX

#-adsh_file FILE /home/test/test1 -chk exist -normal keep -abnormal keep

The following shows a usage example of the chk attribute in UNIX:

#-adsh_job FILE_CHK
#-adsh_step_start STEP01
 #-adsh_file FILE01 /home/test/test1 -chk no -normal keep -abnormal keep
 #-adsh_file FILE02 /home/test/test2 -chk exist -normal keep -abnormal keep
 cmdA ${FILE01} ${FILE02}
#-adsh_step_end

When it allocates FILE01, the command does not check whether the file exists. Therefore, the file is always allocated
even if /home/test/test1 does not exist.

When it allocates FILE02, the command checks whether the file exists. Therefore, if /home/test/test2 does not
exist, the file allocation processing results in an error.

(2) Postprocessing regular files
Regular files are postprocessed when the job step or job that allocated the files terminates. Postprocessing by the #-
adsh_file command includes resetting the shell and environment variables in which the file paths are set to their

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 455

previous values before the file paths were set. The processing described below is also performed according to the
termination status of the job step or job and values specified in the command.

If the job step and job terminated normally, the #-adsh_file command performs postprocessing according to the
value specified for -normal, and the adshfile command performs postprocessing according to the value specified
for -n. The following explains the postprocessing of regular files, depending on the specified value:

• If del is specified, a regular file is deleted when the job step or job terminates.

• If keep is specified, a regular file is not deleted when the job step or job terminates.

If the job step or job terminates with an error, postprocessing is performed according to the value specified for -
abnormal in the #-adsh_file command, or the value specified for -a in the -adshfile command. The
following explains the postprocessing of regular files, depending on the specified value.

• If del is specified, a regular file is deleted when the job step or job terminates.

• If keep is specified, a regular file is not deleted when the job step or job terminates.

The following table explains postprocessing when -abnormal is specified in the #-adsh_file command or the -
a option is specified in the adshfile command:

Cause of an error in the job step or job Postprocessing of regular files
allocated with the #-adsh_file
command

Postprocessing of regular files
allocated with the adshfile
command

An error occurred while a regular file was being
allocated by the subsequent #-adsh_file
command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

An error occurred while a regular file was being
allocated by the subsequent adshfile command

Depends on the -abnormal option of
each #-adsh_file command.

Depends on the -a option of the
adshfile command.

An error occurred while a temporary file was being
allocated by the subsequent #-adsh_temp
command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

An error occurred while a program output data file
was being allocated by the subsequent #-
adsh_spoolfile command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

Error in a subsequent command or program other
than the above

Depends on the -abnormal option of
each #-adsh_file command.

Depends on the -a option of the
adshfile command.

#
If you want to retain files unconditionally in the event of an allocation error, use the #-adsh_file command.

Because the actual file is not created when a regular file is allocated, any file that does not exist when postprocessing
is performed remains nonexistent.

(a) #-adsh_file command
The following shows an example of postprocessing in Windows:

#-adsh_job JOB
#-adsh_file FILE01 'C:\user\file01' -chk exist -normal keep -abnormal del

#-adsh_step_start STEP

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 456

 #-adsh_file FILE02 'C:\user\file02' -chk exist -normal del -abnormal del
 #-adsh_file FILE03 'C:\user\file03' -chk exist -normal keep -abnormal del
 uap
#-adsh_step_end

#-adsh_file FILE04 'C:\user\file04' -chk exist -normal del -abnormal del

Example 1:
Allocation of FILE03 resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The regular file is deleted
according to the specified abnormal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command assumes
keep regardless of the specified normal and abnormal attributes and does not delete the regular file.

• The regular file whose allocation to FILE03 was attempted is not postprocessed because allocation is not
completed.

• Allocation of FILE04 is not performed.

Example 2:
Allocation of FILE04 resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The command assumes keep
regardless of the specified normal and abnormal attributes and does not delete the regular file.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified normal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command does not
delete the regular file according to the specified normal attribute.

• The regular file whose allocation to FILE04 was attempted is not postprocessed because allocation is not
completed.

Example 3:
UAP resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The regular file is deleted
according to the specified abnormal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified abnormal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified abnormal attribute.

• Allocation of FILE04 is not performed.

Example 4:
File allocation terminated normally.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The command does not delete
the regular file according to the specified normal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified normal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command does not
delete the regular file according to the specified normal attribute.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 457

• The regular file allocated to FILE04 is postprocessed when the job terminates. The command deletes the regular
file according to the specified normal attribute.

(b) adshfile command
The following shows an example of postprocessing. In this example, the names of the regular files are
file01_execution-date and file02_execution-date, where execution-date is replaced with the execution time of
the job.

#-adsh_job JOB

VAL01=file01_`date +%y%m%d`
VAL02=file02_`date +%y%m%d`
VAL03=file03_`date +%y%m%d`
VAL04=file04_`date +%y%m%d`
VAL05=file05_`date +%y%m%d`

adshfile -s job -n keep -a del ${VAL01}

#-adsh_step_start STEP
 adshfile -s step -n del -a del ${VAL02}
 adshfile -s step -n keep -a keep ${VAL03}
 adshfile -s step -n keep -a del ${VAL04}
 uap
#-adsh_step_end

adshfile -s job -n del -a del ${VAL05}

Example 1:
Allocation of VAL04 resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option (unlike the #-adsh_file command, postprocessing is performed
according to the specified -a option; keep is not assumed).

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -a option.

• VAL04 results in a command error, and the regular file whose allocation to VAL04 was attempted is not
postprocessed because allocation was not completed.

• Allocation of VAL05 is not performed.

Example 2:
Allocation of VAL05 resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option (unlike the #-adsh_file command, postprocessing is performed
according to the specified -a option; keep is not assumed).

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified -n option.

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 458

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• VAL05 results in a command error, and the regular file whose allocation to VAL05 was attempted is not
postprocessed because allocation was not completed.

Example 3:
uap resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -a option.

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option.

• Allocation of VAL05 is not performed.

Example 4:
File allocation terminated normally.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified -n option.

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL05 is postprocessed when the job terminates. The command deletes the regular
file according to the specified -n option.

(3) Example of adshfile command specification (within iteration
processing)

The following example specifies the adshfile command within iteration processing in UNIX:

KNAX7901-I The job controller will wait for all asynchronous processes at the end of
the job.
KNAX0724-I The job ID was assigned. job ID=046258

 Advanced Shell 11-00

 [Information]
 Job ID : 046258
 Spool directory : /var/opt/jp1as/spool/046258/
 Date : 2015/10/30
 EnvFile(system) :
 EnvFile(job) : sample.ase
 Host name : host01
 [Environment variable from Automatic Job Management System]

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 459

******** JOB CONTROLLER MESSAGE ********
10:17:49 046258 KNAX0091-I LOOP The job started.
10:17:49 046258 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
10:17:49 046258 KNAX7902-I The job controller will run in tty stdin mode.
10:17:49 046258 KNAX6112-I Execution of the command echo (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /bin/ls (line=4) finished
successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=8)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=9)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /bin/cat (line=12) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=9)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /bin/cat (line=12) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.010s
10:17:49 046258 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=9)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:17:49 046258 KNAX6116-I Execution of the command /bin/cat (line=12) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:17:49 046258 KNAX1890-I The file was deallocated as "keep". path=/home/user001/
test.txt
10:17:49 046258 KNAX1890-I The file was deallocated as "del". path=/home/user001/
output_test.txt
10:17:49 046258 KNAX1604-I The file /home/user001/output_test.txt was deleted.
10:17:49 046258 KNAX1890-I The file was deallocated as "keep". path=/home/user001/
test01.txt
10:17:49 046258 KNAX1890-I The file was deallocated as "del". path=/home/user001/
output_test01.txt
10:17:49 046258 KNAX1604-I The file /home/user001/output_test01.txt was deleted.
10:17:49 046258 KNAX1890-I The file was deallocated as "keep". path=/home/user001/
test02.txt
10:17:49 046258 KNAX1890-I The file was deallocated as "del". path=/home/user001/
output_test02.txt
10:17:49 046258 KNAX1604-I The file /home/user001/output_test02.txt was deleted.
10:17:49 046258 KNAX0098-I LOOP The job ended. exit status=0 execution time=0.025s
CPU time=0.010s

******** Script IMAGE ********

***** /home/user001/Tloop.ash *****
0001 : #-adsh_job LOOP
0002 :
0003 : echo -E "<<< list >>>" >&2
0004 : ls test* >&2

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 460

0005 :
0006 : for MEMBER in test*
0007 : do
0008 : ${ADSH_DIR_BIN}adshfile -s job -n keep -a keep $MEMBER
0009 : ${ADSH_DIR_BIN}adshfile -s job -n del -a del output_$MEMBER
0010 : echo -E "MEMBER=$MEMBER" >output_$MEMBER
0011 : echo -E "<<< output_$MEMBER >>>" >&2
0012 : cat output_$MEMBER >&2
0013 : done

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
<<< list >>>
test.txt
test01.txt
test02.txt
<<< output_test.txt >>>
MEMBER=test.txt
<<< output_test01.txt >>>
MEMBER=test01.txt
<<< output_test02.txt >>>
MEMBER=test02.txt
KNAX0098-I LOOP The job ended. exit status=0 execution time=0.025s CPU time=0.010s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046258-LOOP/"
KNAX7999-I Advanced Shell ended. exit status=0

(4) Example of adshfile command specification (within a function)
The following example specifies the adshfile command within a function in UNIX:

KNAX7901-I The job controller will wait for all asynchronous processes at the end of
the job.
KNAX0724-I The job ID was assigned. job ID=046261

 Advanced Shell 11-00

 [Information]
 Job ID : 046261
 Spool directory : /var/opt/jp1as/spool/046261/
 Date : 2015/10/30
 EnvFile(system) :
 EnvFile(job) : sample.ase
 Host name : host01
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
10:31:46 046261 KNAX0091-I FUNCTION The job started.
10:31:46 046261 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
10:31:46 046261 KNAX7902-I The job controller will run in tty stdin mode.
10:31:46 046261 KNAX0092-I FUNCTION.STEP001 step started.
10:31:46 046261 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=4)
finished successfully. exit status=0 execution time=0.003s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=5)
finished successfully. exit status=0 execution time=0.003s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp (line=6)

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 461

finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=4)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=5)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp (line=6)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.010s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=4)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=5)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp (line=6)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=4)
finished successfully. exit status=0 execution time=0.002s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile (line=5)
finished successfully. exit status=0 execution time=0.002s CPU time=0.010s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp (line=6)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat (line=8)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
infile1
10:31:46 046261 KNAX1604-I The file /home/user001/infile1 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
outfile1
10:31:46 046261 KNAX1604-I The file /home/user001/outfile1 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
infile2
10:31:46 046261 KNAX1604-I The file /home/user001/infile2 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
outfile2
10:31:46 046261 KNAX1604-I The file /home/user001/outfile2 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
infile3
10:31:46 046261 KNAX1604-I The file /home/user001/infile3 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
outfile3
10:31:46 046261 KNAX1604-I The file /home/user001/outfile3 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
infile4
10:31:46 046261 KNAX1604-I The file /home/user001/infile4 was deleted.
10:31:46 046261 KNAX1890-I The file was deallocated as "del". path=/home/user001/
outfile4

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 462

10:31:46 046261 KNAX1604-I The file /home/user001/outfile4 was deleted.
10:31:46 046261 KNAX6597-I FUNCTION.STEP001 step succeeded. exit status=0 execution
time=0.051s CPU time=0.040s
10:31:46 046261 KNAX6112-I Execution of the command echo (line=21) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
10:31:46 046261 KNAX0098-I FUNCTION The job ended. exit status=0 execution
time=0.054s CPU time=0.050s

******** Script IMAGE ********

***** /home/user001/Tfunction.ash *****
0001 : #-adsh_job FUNCTION
0002 :
0003 : myfunc(){
0004 : ${ADSH_DIR_BIN}adshfile -s step -n del -a del -c exist $1
0005 : ${ADSH_DIR_BIN}adshfile -s step -n del -a del $2
0006 : ${ADSH_DIR_CMD}cp $1 $2
0007 : echo -E "<<< $2 >>>" >&2
0008 : ${ADSH_DIR_CMD}cat $2 >&2
0009 : }
0010 :
0011 : #-adsh_step_start STEP001
0012 :
0013 : for CNT in 1 2 3 4
0014 : do
0015 : echo -E "dddd$CNT" >infile$CNT
0016 : myfunc infile$CNT outfile$CNT
0017 : done
0018 :
0019 : #-adsh_step_end
0020 :
0021 : echo -E "JOB_FUNCTION_END" >&2

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX6597-I FUNCTION.STEP001 step succeeded. exit status=0 execution time=0.051s CPU
time=0.040s
JOB_FUNCTION_END
KNAX0098-I FUNCTION The job ended. exit status=0 execution time=0.054s CPU
time=0.050s

******** JOBSTEP OUTPUT ********
KNAX0719-I STEP. step number=0001 step name=STEP001 output destination=STDERR
<<< outfile1 >>>
dddd1
<<< outfile2 >>>
dddd2
<<< outfile3 >>>
dddd3
<<< outfile4 >>>
dddd4

KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/var/opt/jp1as/spool/046261-FUNCTION/"
KNAX7999-I Advanced Shell ended. exit status=0

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 463

5.9.2 Allocating temporary files and performing postprocessing
You use the #-adsh_file_temp command to create a file that will be used temporarily within the job definition
script and then assign its file path to a shell variable or environment variable. The allocated temporary file is deleted
when the job terminates.

(1) Allocating temporary files
Create a file that will be used temporarily within the job definition script and then allocate its file path to a shell variable
or environment variable that has the same name as the specified file environment variable definition name.

There are two ways to allocate temporary files:

• Creating and allocating temporary files

• Allocating existing temporary files

(a) Creating and allocating temporary files
Specify create for the chk attribute. The size of the file to be created is zero bytes. In UNIX, the permission for a
created temporary file depends on the umask value for the file owner (creator) part and is always 0 for the group and
other users' access permission part. In Windows, no file permission is specified.

To use a temporary file allocated within a job step also in subsequent job steps, specify a temporary file identifier and
keep for the normal attribute.

If a temporary file allocated within a job step is not to be used in subsequent job steps or is to be specified outside the
job step, specify del for the normal attribute.

To allocate a temporary file outside the job step, neither a temporary file identifier nor normal keep can be specified.

(b) Allocating existing temporary files
Specify exist in the chk attribute and the temporary file identifier specified in the earlier job step.

It is not permissible to specify the name of a temporary file that was not created in a preceding job step or a temporary
file that was deleted during postprocessing of the preceding job step.

To use an allocated temporary file in a subsequent job step, specify keep for the normal attribute.

To not use an allocated temporary file in subsequent job steps, specify del for the normal attribute.

(2) Postprocessing of temporary files
Temporary files are postprocessed when the job step or job that allocated the files terminates. Postprocessing involves
resetting the shell and environment variables in which the file path is set to their previous values before the file path
was set. Also, the processing described below is performed according to the termination status of the job step or job and
the normal attribute value.

If the job step and job terminated normally:

• If keep is specified for the normal attribute, the temporary files are not deleted when the job step terminates.
If keep is specified for the normal attribute, but the temporary files were not used in subsequent job steps,
the temporary files are deleted when the job terminates.

• If del is specified for the normal attribute, the temporary files are deleted when the job step or job terminates.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 464

If the job step and job terminated with an error:

• If keep is specified for the normal attribute, the temporary files are deleted when the job terminates, not when
the job step terminates.

• If del is specified for the normal attribute, the temporary files are deleted when the job step or job terminates.

(3) Names of temporary files
The names of temporary files are different in Windows and in UNIX. The following shows the file names used in these
OSs.

In Windows
The name of a temporary file consists of the system-specific character string ASH and a name unique in the directory.

ASHunique-name.tmp

In UNIX
The name of a temporary file consists of the character string TEMP indicating a temporary file, the job name, a
temporary file identifier, and a name unique in the directory.

• Temporary file name with a temporary file identifier specified
TEMP_job-sequence-number_job-name_temporary-file-identifier_unique-name

• Temporary file name with a temporary file identifier omitted
TEMP_job-sequence-number_job-name_unique-name

(4) Storage directory
You use the TEMP_FILE_DIR environment setting parameter to specify the directory in which temporary files are to
be created. If the environment setting parameter is omitted, the default value for the TEMP_FILE_DIR parameter is
used. For details about the TEMP_FILE_DIR parameter, see 7.3.42 TEMP_FILE_DIR parameter (defines the path
name of the directory for storing temporary files) in 7. Parameters Specified in the Environment Files.

(5) Examples of usage of temporary files
The following presents examples of the usage of temporary files when temporary files are allocated.

• This example does not use a temporary file allocated within a job step in subsequent job steps, nor does it allocate
a temporary file outside the job step

#-adsh_file_temp TEMP1 -chk create -normal del
 echo "test" > ${TEMP1}

• These examples use temporary files created in a preceding job step also in subsequent job steps

#-adsh_step_start STEP1
#-adsh_file_temp TEMP1 -id TEST1 -chk create -normal keep -->1.
echo "test1" > ${TEMP1}
#-adsh_step_end

#-adsh_step_start STEP2
#-adsh_file_temp TEMP2 -id TEST1 -chk exist -normal keep -->2.
echo "test2" >> ${TEMP2}
#-adsh_step_end

#-adsh_step_start STEP3
#-adsh_file_temp TEMP3 -id TEST2 -chk create -normal keep -->3.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 465

echo "test3" >> ${TEMP3}
#-adsh_step_end

#-adsh_step_start STEP4
#-adsh_file_temp TEMP4 -id TEST1 -chk exist -normal del -->4.
echo "test4" >> ${TEMP4}
#-adsh_step_end

#-adsh_step_start STEP5
#-adsh_file_temp TEMP5 -id TEST2 -chk exist -normal del -->5.
echo "test5" >> ${TEMP5}
#-adsh_step_end

1. Creates and allocates a temporary file that can be used in subsequent job steps. This example specifies TEST1
as the temporary file identifier.

2. Allocates the temporary file created in step 1 (identifier: TEST1). This example sets the allocated temporary
file to be available to subsequent job steps.

3. Creates and allocates a temporary file that can be used in subsequent job steps. This example specifies TEST2
as the temporary file identifier.

4. Allocates the temporary file used in step 2 (identifier: TEST2). This example deletes the allocated temporary
file when the job step (job step name: STEP4) terminates.

5. Allocates the temporary file created in step 3 (identifier: TEST2). This example deletes the allocated temporary
file when the job step (job step name: STEP5) terminates.

(6) Using temporary files to code input files for a program in a job
definition script

If you specify a user program's parameters in a temporary file and use the temporary file as the standard input, you can
directly specify the parameters in the job definition script and automatically create and delete the temporary file. The
following shows an example:

#-adsh_step_start
#-adsh_file_temp SYSIN -id parmfile -chk create -normal keep
cat << @@@ > ${SYSIN}
-in /files/indata
-out /files/outdata
-work /tmp
@@@
uap ${SYSIN}
#-adsh_step_end

This example creates a temporary file and loads multiple lines of character strings specified in the job definition script
by using a here document. The user program uses the temporary file as the standard input during execution and deletes
the temporary file once execution is completed.

5.9.3 Allocating program output data files and performing postprocessing
The job controller automatically creates execution results output files for the purpose of providing centralized
management of the output results from user programs in the same way as job execution logs. These files are called
program output data files.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 466

The #-adsh_spoolfile command automatically generates the file paths of the program output data files that acquire
the execution results output by user programs, and assigns the required shell variables and environment variables.

(1) Allocating program output data files
Automatically create the file path of a program output data file and then allocate it to the shell variable or environment
variable that has the same name as the specified file environment variable definition name. These variables are reset to
their initial values when the job step or job terminates. No file entity is created.

(2) Names of program output data files
The name of a program output data file consists of such elements as the job name or job step name, a number, and a file
environment variable definition name specified in the #-adsh_spoolfile command. Such a name is unique for
each file definition in the job definition script.

An allocated program output data file is stored in the directory for the corresponding job in the spool root directory
specified in the SPOOL_DIR environment setting parameter. If no spool root directory is specified in the environment
setting parameter, the default value of the SPOOL_DIR parameter is used as the spool root directory. For details about
the SPOOL_DIR parameter, see 7. Parameters Specified in the Environment Files.

The format of program output data file names is shown below. In Windows, the file name is appended with the
extension .sysout.

• Name of a program output data file that is allocated outside the job step

0000_job-name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name

• Name of a program output data file that is allocated inside the job step

step-number_step-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name

If the child job was executed with MERGE (merging a child job's spool job into the root job's spool job) specified in the
SPOOLJOB_CHILDJOB parameter in the root job's environment file, the following file name is used:

• When allocated outside the job step

Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-name_sequence-
number-of-file-environment-variable-definition-name_file-environment-variable-
definition-name

• When allocated within the job step

Cnumber-giving-the-order-in-which-a-child-job-starts_step-number_step-
name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name

The variable parts of the program output data file name are replaced with the following information:

step-number
Four-digit decimal number assigned sequentially to each job step. The step number of the first job step is 1.
Examples: 0001, 0034, 4095

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 467

job-name
Job name specified with the #-adsh_job command. The length of a job name is variable with a maximum length
of eight bytes. If a specified character string exceeds eight bytes, the first eight bytes are used as the job name.

step-name
Job step name specified with the #-adsh_step_start command. The length of a job step name is variable with
a maximum length of eight bytes. If a specified character string exceeds eight bytes, the first eight bytes are used
as the job step name.

sequence-number-of-file-environment-variable-definition-name
Sequential number of a program output data file that was allocated outside the job step or that was allocated inside
each job step. The sequence number of a file environment variable definition name is a three-digit decimal number.
The value range is from 1 through 255 outside the job step and inside each job step.
Examples: 001, 034, 255

file-environment-variable-definition-name
File environment variable definition name specified with the #-adsh_spoolfile command.

number-giving-the-order-in-which-a-child-job-starts
Sequential number indicating the order in which a child job started within the root job. It consists of seven decimal
digits in the range of 0000001 to 9999999.

(3) Example of usage of program output data files
This subsection explains the results of program output data file creation when the following job definition script is
executed.

#-adsh_job JOBSAMPLE001

#-adsh_spoolfile SYS001 -->1.
#-adsh_spoolfile SYS002 -->2.
echo "----- job01 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

#-adsh_step_start STEP01
 #-adsh_spoolfile SYS001 -->3.
 #-adsh_spoolfile SYS002 -->4.
 echo "----- Step001 --------" 1>&2
 echo "SYS001" > $SYS001
 echo "SYS002" > $SYS002
#-adsh_step_end

#-adsh_spoolfile SYS001 -->5.
#-adsh_spoolfile SYS002 -->6.
echo "----- job02 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

#-adsh_step_start STEP02
 #-adsh_spoolfile SYS001 -->7.
 #-adsh_spoolfile SYS002 -->8.
 echo "----- Step002 --------" 1>&2
 echo "SYS001" > $SYS001
 echo "SYS002" > $SYS002
#-adsh_step_end

#-adsh_spoolfile SYS001 -->9.
#-adsh_spoolfile SYS002 -->10.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 468

echo "----- job03 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

When this job definition script is executed, the program output data files with the file names shown below are created.
The numbers at the right end of the job definition script lines correspond to the numbers assigned to the program output
data files that are created.

In Windows

1. 0000_JOBSAMPL_001_SYS001.sysout
2. 0000_JOBSAMPL_002_SYS002.sysout
3. 0001_STEP01_001_SYS001.sysout
4. 0001_STEP01_002_SYS002.sysout
5. 0000_JOBSAMPL_003_SYS001.sysout
6. 0000_JOBSAMPL_004_SYS002.sysout
7. 0002_STEP02_001_SYS001.sysout
8. 0002_STEP02_002_SYS002.sysout
9. 0000_JOBSAMPL_005_SYS001.sysout
10. 0000_JOBSAMPL_006_SYS002.sysout

In UNIX

1. 0000_JOBSAMPL_001_SYS001
2. 0000_JOBSAMPL_002_SYS002
3. 0001_STEP01_001_SYS001
4. 0001_STEP01_002_SYS002
5. 0000_JOBSAMPL_003_SYS001
6. 0000_JOBSAMPL_004_SYS002
7. 0002_STEP02_001_SYS001
8. 0002_STEP02_002_SYS002
9. 0000_JOBSAMPL_005_SYS001
10. 0000_JOBSAMPL_006_SYS002

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 469

5.10 Converting the value of a shell variable

You can convert the value of a shell variable by using the adshvarconv command.

5.10.1 Conversion using a path conversion rule
Values of shell variables are converted according to the PATH_CONV_ENABLE parameter and the PATH_CONV
parameter. For conversion, it is possible to convert the path name set for the environment variable in advance and the
path name stored in the argument of the job definition script.

• Environment file

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /home d:\\home

• Job definition script (script.ash)

infile=$1
adshvarconv -p infile
“${ADSH_DIR_CMD}cat” ${infile}

• File (d:\home\user001\test.txt)

This is test data.

• Examples

D:\home\user01> adshexec -m MINIMUM script.ash /home/user001/test.txt
This is test data.

5.10.2 Conversion using a character string
You can substitute the value of shell variable with a character string. You can replace path names that are difficult to
define the conversion rule for in advance.

• Job definition script (script.ash)

while read LINE
do
 adshvarconv -b "/home/user1" -a "$1" LINE
 adshvarconv -b "/" -a "\\" LINE
 echo -E "$LINE" >&2
done < input.txt

• File (input.txt)

/home/user1/data001
/home/user1/data002

• Examples

D:\home\user001>adshexec -m MINIMUM script.ash D:\home\winuser001
D:\home\winuser001\data001
D:\home\winuser001\data002

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 470

5.10.3 Increase of \
You can increase the number of \ contained in the value of a shell variable. With this, you can easily respond to multiple
deletions of the \ of values that are passed to the awk command.

• Job definition script (script.ash)

aa=d:\\g1234z\\azzzz
echo -E 'hitachi' | "${ADSH_DIR_CMD}awk" -v VVV1=$aa '/hitachi/ { \
print "VVV1=" VVV1 ; \
}' >&2
adshvarconv -i 1 aa
echo -E 'hitachi' | "${ADSH_DIR_CMD}awk" -v VVV1=$aa '/hitachi/ { \
print "VVV1=" VVV1 ; \
}' >&2

• Examples

D:\home\user001>adshexec -m MINIMUM script.ash
VVV1=d:g1234zzzzz
VVV1=d:\g1234z\azzzz

5.10.4 Code conversion of the value of a variable
You can convert the code for the value of a shell variable. With this, you can store the variable that is described with
UTF-8, execute the code conversion, and use the code within the script.

• Job definition script described with Shift-JIS (script.ash)

"${ADSH_DIR_CMD}rm" -f outfile.txt
while read LINE
do
 adshvarconv -e UTF8 SJIS LINE
 LINE='Station name='$LINE
 adshvarconv -e SJIS UTF8 LINE
 echo -E "$LINE" >>outfile.txt
done < input.txt

• File described with UTF-8 (input.txt)

Tokyo
Kyoto

• Examples

D:\home\user001>adshexec -m MINIMUM script.ash

• File created with UTF-8 (outfile.txt)

Station name = Tokyo
Station name = Kyoto

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 471

5.11 Example coding of a job definition script file

The following shows an example coding of a job definition script file.

#!/opt/jp1as/bin/adshexec # Control of the entire job # -->1.
#-adsh_job SAMPLE_JOB
####################
If the job step return code is 8 or greater, cancel the job
#-adsh_job_stop 8:
Temporary file used inside the job
#-adsh_file_temp JOBTEMP
###################
Job step 1 # -->2.
###################
#-adsh_step_start S1
Definition of input and output files
#-adsh_file INFILE /files/infile -chk exist
#-adsh_file OUTFILE /files/outfile
#-adsh -chk no -normal keep -abnormal del
Definition of parameter files
#-adsh_file_temp PARMFILE -id param
cat<<@@@>${PARMFILE}
-in ${INFILE}
-out ${OUTFILE}
-work /tmp
@@@
User program execution
s1uap ${PARMFILE}
#-adsh_step_error
Program error handling procedure
recovery_uap ${JTMP}
#-adsh_step_end
###################
Job step 2 # -->3.
###################
if [[$ADSH_STEPRC_S1= -eq 0]]; then
Execute only if the preceding job step terminates normally
#-adsh_step_start S2 -onError cont -stepVar PATH
PATH=/s2bin:$PATH
#-adsh_rc_ignore s2uap
echo "s2uap1"
echo "s2uap2 parm1"
#-adsh_step_end
fi
###################
Job step 3 # -->4.
###################
#-adsh_step_start Java_STEP -run normal
adshjava -grp GROUPA -java javaAP prm1
#-adsh_step_end

The numbers shown at the right in the above example correspond to the numbers in the following explanation:

1. Control of the entire job
Performs processing such as passing control to job steps and terminating the job.

2. Processing of job step 1

• Definition of input and output files

• Definition of parameter files

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 472

• Execution of user program

• Error handling procedure

3. Processing of job step 2
Performed only if job step 1 terminates normally.

5. Creating Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 473

This chapter explains the debugger functions of JP1/Advanced Shell.

6 Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 474

6.1 About the debugger

A debugger is a tool that supports debugging of programs. JP1/Advanced Shell provides a debugger for job definition
script files. A GUI is provided for running the debugger in a Windows development environment, and a CUI is provided
for running the debugger in a UNIX execution environment. You can debug your job definition script files interactively
by using the buttons, menus, and shortcut keys provided by JP1/Advanced Shell Editor with the GUI and by obtaining
replies from the debugger by using the debugger's commands with the CUI.

The debugger enables the following:

• Starting the debugger

• Terminating the debugger

• Running job definition scripts

• Terminating job definition scripts

• Stopping execution of job definition scripts

• Restarting execution of job definition scripts

• Displaying information about job definition scripts#

• Specifying and displaying variables

• Displaying back traces#

• Displaying source files

• Moving directories#

• Starting the login shell#

• Injecting errors

• Displaying Help

#
Available in the CUI debugger.

6.1.1 Debugging with the GUI (Windows only)
You can use GUI operations from the JP1/Advanced Shell Editor to debug job definition script files.

The following figure provides an overview of debugging.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 475

Figure 6-1: Overview of debugging (GUI)

1. Debugging of a job definition script from the editor is started.

2. A breakpoint is set.

3. When the job definition script is run, it stops at the breakpoint.

4. Debugging stops.

(1) Output
To run job definition scripts interactively, JP1/Advanced Shell displays the standard output and standard error output
on the console at suitable times during debugging execution, unlike during normal execution where the standard output
and standard error output are output after execution has completed. However, error messages are also displayed in the
Error List window. For details about the Error List window, see 4.7.5 Message output window. The files for the standard
output and the standard error output are not created in the spool job directory.

During normal execution, job execution logs are output to the standard error output after job definition scripts have been
completed. During debugging, information equivalent to the job execution logs is output to the standard error output.

(2) Initialization of information
When a job definition script is run after already having been run once, information about the shell variables and
environment variables that were specified during the previous execution is initialized.

(3) Spool
Each time debug execution is performed on a job definition script, JP1/Advanced Shell creates a spool job folder and
stores the following files:

• Script image: Contents of the script that was run

• Job execution logs: Job controller messages

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 476

• Output files: Files created by executing the #-adsh_spoolfile command

• sysout management file (.sysout)

(4) Notes
If [[conditional-expression]] is used for conditional, the E-Time entry in an execution result message might be the
debugger's processing time.

6.1.2 Debugging with the CUI (UNIX only)
If you execute the adshexec command with the -d option specified, the job controller starts in the debugger mode,
enabling you to use CUI operations to debug job definition scripts. To use commands in the execution environment to
debug batch jobs, you enter the adshexec command as shown below. Enter the command from the UNIX shell.

adshexec -d /script/batchjob2.ash

For details about the adshexec command, see 8.3.7 adshexec command (executes a batch job) in 8.3 Shell
operation commands.

The following figure provides an overview of debugging.

Figure 6-2: Overview of debugging (CUI)

1. The adshexec command with the -d option specified is entered to start the debugger.

2. The break command is entered to set a breakpoint.

3. The run command is entered to run the job definition script, which stops at the breakpoint.

4. The continue command is entered to continue execution from the breakpoint.

5. The kill command is entered to terminate the job definition script.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 477

6. The quit command is entered to terminate the debugger.

(1) Output
To run job definition scripts interactively, JP1/Advanced Shell displays the standard output and standard error output
on the console at suitable times during debugging execution, unlike during normal execution where the standard output
and standard error output are output after execution has completed. The files for the standard output and the standard
error output are not created in the spool job directory.

During normal execution, job execution logs are output to the standard error output after job definition scripts have been
completed. During debugging, information equivalent to the job execution logs is output to the standard error output.

(2) Initialization of information
When a job definition script is run by entering the run command after already having been run once from execution
of the run command, the following information that was specified during the previous execution is initialized:

• Shell variables

• Environment variables

• Fault injection mode

The following information is inherited until the debugger terminates:

• Information about breakpoints and watchpoints

• Debugger's work directory path

• Files#

#
Files created by using extended script commands are postprocessed appropriately.

(3) Spool
During CUI debugging, JP1/Advanced Shell creates two types of spool job directories, one type for the debugger and
one type for the job definition scripts executed as a result of entering the run command. In each debugging execution,
JP1/Advanced Shell creates one spool job directory for the debugger and one spool job directory each time the run
command is executed. This subsection explains the spool job directories for the debugger and for job definition scripts.

(a) Debugger
Job definition scripts are not executed in the spool job directory for the debugger. JP1/Advanced Shell creates a spool
job directory that stores in a management file the number of job definition scripts executed during a single debug
execution and that stores files containing the debugger's internal data.

The following are the files that JP1/Advanced Shell stores in the spool job directory for the debugger:

• Script images: Contents of the scripts that were run

• Job execution logs: Debugger messages (including the pids of created processes)

• Breakpoint information (.DBG): Debugger internal data

• sysout management file (.sysout)

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 478

(b) Job definition scripts
JP1/Advanced Shell creates a spool job directory each time the run command is executed in which it stores the following
files:

• Script image: Contents of the script image that was run

• Job execution logs: Job controller messages

• Output files: Files created by executing the #-adsh_spoolfile command

• sysout management file (.sysout)

(4) Notes
If [[conditional-expression]] is used for conditional or if multiple commands are joined by a pipe, the E-Time entry
in an execution result message might be the debugger's processing time.

6.1.3 List of functions of the GUI debugger (Windows only)
The following table lists the functions of the GUI debugger and the subsections in this manual to be referenced for
details.

Table 6-1: Functions of the GUI debugger

Function Subsection

Executing job definition scripts 4.4.6 Debugging

Canceling debugging (2) Performing and canceling
debugging

Stopping a job definition script (d) Executing through the end
of a function

Setting breakpoints (1) Setting and releasing
breakpoints during debugging

Releasing breakpoints (1) Setting and releasing
breakpoints during debugging

Performing sequential execution (b) Executing one line at a
time (performing step-by-step
execution in functions), (c) 
Executing one line at a time
(not performing step-by-step
execution in functions)

Performing continuous execution (a) Debugging up to a
breakpoint

Executing functions (d) Executing through the end
of a function

Specifying and displaying the values of variables 4.7.6 Variable window

Displaying the status (1) Toolbars

Changing the fault injection mode (1) Toolbars

Executing a trap action (5) Executing the trap
command's action

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 479

6.1.4 List of debugger commands (UNIX only)
The table below lists and describes the debugger commands in alphabetical order. The table also shows the abbreviated
form for each command the subsection in this manual to be referenced for details.

Table 6-2: List of debugger commands

Command name Command execution Abbreviation Subsection

break Sets a breakpoint. b 6.2.4 Setting a
breakpoint
(break
command)

cd Changes the directory. cd 6.2.26 
Changing the
directory (cd
command)

continue Performs continuous execution. c 6.2.9 
Performing
continuous
execution
(continue
command)

delete Deletes breakpoints and watchpoints. d 6.2.6 Deleting
breakpoints and
watchpoints
(delete
command)

exec Starts the login shell. ex 6.2.27 Starting
the login shell
(exec
command)

finish Executes a function. f 6.2.10 
Executing a
function (finish
command)

help Displays Help. h 6.2.28 
Displaying Help
(help command)

info
breakpoints

Displays information about breakpoints and watchpoints. i b 6.2.13 
Displaying
breakpoint and
watchpoint
information
(info
breakpoints
command)

info coverage Displays coverage information during debugging. i c 6.2.14 
Displaying
coverage
information
(info coverage
command)

info functions Displays information about functions. i f 6.2.15 
Displaying
function
information

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 480

Command name Command execution Abbreviation Subsection

info functions Displays information about functions. i f (info functions
command)

info jobsteps Displays information about job steps. i j 6.2.16 
Displaying job
step information
(info jobsteps
command)

info pathvars Whether the variable name is the variable that handles the path name
appears.

i p 6.2.17 Displays
the information
of the variable
name handling
the path (info
pathvars
command)

info signals Displays information about signals. i si 6.2.18 
Displaying
signal
information
(info signals
command)

info status Displays the status. i st 6.2.19 
Displaying the
status (info
status
command)

info variables Displays information about variables. i v 6.2.20 
Displaying shell
variable
information
(info variables
command)

joberrmode Enables or disables the fault injection mode. jem 6.2.21 
Enabling and
disabling the
fault injection
mode
(joberrmode
command)

kill Terminates the job definition script. k 6.2.3 
Terminating the
job definition
script (kill
command)

list Displays the source file. l 6.2.25 
Displaying the
source file (list
command)

next Performs sequential execution without stopping within a function. n 6.2.8 
Performing
sequential
execution (step
and next
commands)

print Displays the value of a variable. p 6.2.23 
Displaying a

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 481

Command name Command execution Abbreviation Subsection

print Displays the value of a variable. p variable's value
(print
command)

quit Terminates the debugger. q 6.2.1 
Terminating the
debugger (quit
command)

return Terminates a function. ret 6.2.11 
Terminating a
function (return
command)

run Executes the job definition script. r 6.2.2 Running
the job
definition script
(run command)

set Specifies a value for a variable. set 6.2.22 Setting a
variable value
(set command)

signal Sends a signal. si 6.2.12 Sending
a signal (signal
command)

step Performs sequential execution, including sequential execution within a
function.

s 6.2.8 
Performing
sequential
execution (step
and next
commands)

watch Sets a watchpoint. wa 6.2.5 Setting a
watchpoint
(watch
command)

where Displays a backtrace. whe 6.2.24 
Displaying a
backtrace
(where
command)

The following notes apply to using debugger commands:

• Do not enter for a command any command name or command abbreviation that is not listed in the table above.

• In the case of a command that allows argument values to be specified, check that the number of argument values
specified does not exceed the permitted maximum.

• Do not specify an argument in a command that does not allow arguments.

• The maximum number of characters that can be entered to the debugger's standard input is 4,094 bytes. Make sure
that the number characters entered does not exceed this limit.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 482

6.1.5 Whether execution can be stopped at the elements of a job definition
script

The table below shows whether execution can be stopped at each element of a job definition script. For the elements
listed below at which execution can be stopped, you use a breakpoint or sequential execution to stop execution.

Table 6-3: Whether execution can be stopped at each element of a job definition script

Element of a job definition script Description Whether stoppable

for statement Indicates a for statement. Y

case statement Indicates a case statement. Y

if statement Indicates an if statement. Y

while statement Indicates a while statement. Y

until statement Indicates an until statement. Y

elif statement Indicates an elif statement. Y

else statement Indicates an else statement. N

case pattern statement Indicates a pattern statement specified in a case statement. This does
not apply to the internal processing of the pattern statement.

N

Termination of a conditional statement Indicates the termination of a conditional statement, such as then for
the if and elif statements or do for the for, while, and until
statements.

N

Termination of a block Indicates the termination of a block, such as done for the for,
while, and until statements, esac for the case statement, or fi
for the if statement.

N

Start of function definition Indicates the start of a function definition. N

End of function definition Indicates the end of a function definition. N

Start of function execution Indicates that a function begins. Y

End of function execution Indicates that a function ends. N

Extended script command Indicates an extended script command beginning with #-adsh. Y

Standard shell command Indicates a command provided by the shell. Y

Extended shell command Indicates an extended shell command. Y

External command Indicates an executable external command. Y

Assignment and arithmetic operations Indicates an assignment or arithmetic operation. Y

End of job definition script (EOF) Indicates the end of the main job definition script. Y

Comment and space Indicates a comment or space. N

Legend:
Y: Execution can be stopped.
N: Execution cannot be stopped.

Notes:
• Execution is not stopped at a command that is executed by another process.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 483

Example:

 1: funcA(){
 2: a=100
 3: echo $a
 4: }
 5: funcA &
 6: pwd

In this example job definition script, if the step command is executed while execution is stopped before funcA
& at line 5, execution stops before pwd at line 6. Execution does not stop within the funcA function because its
internal commands are executed by another process according to the specification of &.

• Execution is not stopped at a command specified in an argument of a shell command.

• In Windows, if you specify a command substitution in the argument of a shell command, you can stop execution
once before the argument part is executed and again before the actual command is executed. You can also stop
execution twice in this manner when you execute a command substitution as a command, rather than as an argument.
In UNIX, if you specify a command substitution in the argument of a shell command, you can stop execution once
before the entire command is executed. The following shows examples.
Examples:
In Windows:
echo `pwd` Execution can be stopped once before `pwd` is executed and once before echo executed.
`echo pwd` Execution can be stopped twice before `echo pwd` is executed.
In UNIX:
echo `pwd` Execution can be stopped once before echo `pwd` is executed.
`echo pwd` Execution can be stopped once before `echo pwd` is executed.

• If you specify an extended script command onto a continuation line, you can stop execution on each line. Note that
the extended script command itself executes when the last continuation line is executed.

• If you specify a command after an assignment operator delimited by a space, use the debugger's set command to
set values in variables when execution is stopped at the first assignment operator. When execution is stopped at each
command, the character string obtained after variables have been expanded is displayed as the command name.

• A breakpoint cannot be set at the end of a job definition script (EOF). Note that execution can be stopped at the EOF
by using a watchpoint or in sequential execution, as well as by receiving a stop signal.

• Execution will not stop at a breakpoint while action of the trap shell command is running. In UNIX, note that
execution can be stopped in such a case by using a watchpoint or in sequential execution, as well as by receiving a
stop signal.

• If the time command is executed with a function call specified in its argument and the stop evaluation condition
is satisfied by a watchpoint or by receipt of a stop signal, execution stops before the first command following the
time command that allows execution to be stopped.

• If commands are grouped (executed in child processes), execution can be stopped at the location of the right
parenthesis ()). The command group will not execute while execution is stopped at the right parenthesis. You set
the breakpoint at the lines that contains the right parenthesis. If you attempt to set a breakpoint at a line that does
not contain the right parenthesis, the breakpoint is set automatically at the line where the right parenthesis is located.
The following shows an example.
Example:
1: (Cannot be stopped.
2: pwd Cannot be stopped.
3: date Cannot be stopped.
4:) Can be stopped.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 484

• If you group multiple commands by enclosing them in curly brackets ({}) and you specify their execution in separate
processes by means such as adding an ampersand (&), specify the grouping on a single line in order to set a breakpoint.
If the grouping is specified over multiple lines, execution cannot be stopped at breakpoints that might be set. The
following shows an example.
Example:
Specifying on a single line

 1: { pwd; date;} &

Execution cannot be stopped at the set breakpoints

 1: echo "test"
 2: { Cannot be set or execution cannot be stopped.
 3: pwd Can be set, but execution cannot be stopped.
 4: date Can be set, but execution cannot be stopped.
 5: } & Cannot be set, but execution can be stopped.

In the above example, breakpoints can be set on lines 3 and 4, but execution cannot be stopped at those locations.
Execution can actually be stopped on line 5. For example, if sequential execution is performed from the command
immediately preceding the group of commands (in this example, echo on line 1), execution can be stopped on line
5. When execution is stopped at the location of the right curly bracket, the group of commands will not have executed
yet.

• If only a command substitution is specified as a command, execution can be stopped at the line containing the
termination symbol for the command substitution. When execution is stopped at the location of the termination
symbol, the command substitution will not have executed yet. You set a breakpoint at the lines that contains the
termination symbol. If you attempt to set a breakpoint at a line that does not contain the termination symbol, the
breakpoint is set automatically at the line where the termination symbol is located. The following shows examples.
Example 1:

 1: $(Cannot be stopped.
 2: echo pwd Cannot be stopped.
 3:) Can be stopped.

Example 2:

 1: `echo pwd` Can be stopped.

• If you specify only a command substitution as a command or in the argument of the builtin, command, or time
command and you want to stop execution before execution of the command immediately following the command
substitution, make sure that the result of the command substitution is not NULL, spaces, or a comment.

• If a group of commands connected by pipes is stopped while executing or a command running in the background
is stopped, multiple consecutive prompt character strings (adshdb) might be displayed.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 485

6.2 CUI debugger (UNIX only)

In a UNIX execution environment, you use commands to run the debugger. The following shows the command
specification format for the CUI debugger:

0-command-name[1-option]...[1-option][1-operand]

• First specify options, and then specify operands. Operands includes option names, option values, and any arguments
that can be specified in the command. If an operand is specified before an option, the command assumes that all
items specified are operands.

• Specify an option in the format -option-name[1-value]. Multiple options can be specified in any order.

• Options with no value can be specified consecutively (example: -a -b -c and -abc are treated as being the same).
If you specify options consecutively, you can specify a value for the last option (example: in -abc xyz, xyz is
the value of the -c option).

• If an invalid option is specified or a specified value is outside the permitted range of values, an error results.

Starting the debugger
You start the debugger by specifying the -d option and the path name of a job definition script file in the command
for executing batch jobs (adshexec command).
The started debugger outputs a prompt character string (adshdb) and then goes onto input wait status. When the
debugger accepts a command entered by the user, it executes that command's processing. When the command's
processing terminates, the debugger outputs the prompt character string and again goes onto input wait status. The
debugger repeats this process until the debugger is terminated.
The debugger also outputs a prompt character string (adshdb) when it goes back into input wait status after
receiving a signal while in input wait status.
The format used to start the debugger is shown below. For details about the command for executing batch jobs, see
8.3.7 adshexec command (executes a batch job) in 8.3 Shell operation commands.

adshexec -d path-name-of-job-definition-script-file

Pausing a job definition script
You can pause a job definition script by entering the Ctrl+C keys. This method of stopping a job definition script
is useful when the job definition script has entered an infinite loop.

Notes:
- If the Ctrl+C keys are used during execution of an extended script command, extended shell command, standard
shell command, or reserved script command, execution stops before the next stoppable instruction after execution
of the current command has been completed.
- If the Ctrl+C keys are used while an external command is executing in the foreground, execution depends on
the external command's processing.

6.2.1 Terminating the debugger (quit command)
The quit command terminates the debugger. The abbreviation for the quit command is q. The following shows the
format of the quit command:

quit

The following describes the quit command's processing.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 486

When no argument is specified in the quit command
When the quit command is executed while the job definition script is running, a confirmation message is output
asking whether the debugger is to be terminated. To terminate the debugger, enter y or Y.
If no job definition script is running, the command terminates the debugger.

When an argument is specified in the quit command
Executing the command results in an error.

Notes:
A job definition script terminated by the quit command results in termination with an error. The return code for
the job and job step is 128.

6.2.2 Running the job definition script (run command)
The run command executes the job definition script to be debugged. The run command imports environment variables
when the adshexec command starts, and then starts running the job definition script. The abbreviation for the run
command is r. The following shows the format of the run command:

run[arguments]

When the run command is executed while the job definition script is running, a confirmation message is output asking
whether the job definition script is to be re-executed.

When the run command argument is omitted
Enter y or Y to re-execute the executing job definition script.
If the job definition script is not running, the command outputs an execution start message and then executes the
job definition script.

When the run command argument is specified
Enter y or Y to define the specified arguments as run-time parameters and re-execute the executing job definition
script.
If job definition script is not running, the command outputs an execution start message, defines the specified
arguments as run-time parameters, and then executes the job definition script.

Notes:

• When the job definition script is re-executed by the run command, the instance of the job definition script that
was already running terminates with an error. The return code for the job and job step is 128.

6.2.3 Terminating the job definition script (kill command)
The kill command terminates the job definition script that is being debugged. The debugger itself does not terminate
when the job definition script is terminated. The abbreviation for the kill command is k. The following shows the
format of the kill command:

kill

When the kill command is executed while the job definition script is running, a confirmation message is output asking
whether the job definition script is to be terminated. Enter y or Y to terminate the job definition script.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 487

If the job definition script is not running or if an argument is specified in the kill command, an error message is output.

Notes:
The job definition script terminated by the kill command results in termination with an error. The return code for
the job and job step is 128.

6.2.4 Setting a breakpoint (break command)
The break command sets a breakpoint. The abbreviation for the break command is b.

Numbers are assigned sequentially to the breakpoints as they are set, beginning with 1. Watchpoints that are set are
numbered in the same sequence (that is, point number n could be a breakpoint or a watchpoint). When a running job
definition script reaches a breakpoint, the command displays information about the breakpoint at the stop location. The
following shows the format of the break command:

Specifying a line number

break[[job-definition-script-file-name:]line-number]

When a line number is specified in the argument, the break command sets a breakpoint at the specified line.

Specifying a function name

break function-name

When a function name is specified in the argument, the break command sets a breakpoint at the specified function.

Specifying a job step name

break -s [job-definition-script-file-name:]job-step-name

When a job step name is specified in the -s option, the command sets a breakpoint at the line on which the specified
job step name is defined.

By using a colon (:) in the argument, you can specify a job definition script file name for setting a breakpoint. If you
specify a function name, there is no need to specify a file name because only one function that is enabled at that point
becomes the target.

The following describes the break command's processing.

When the break command argument is omitted
The command sets a breakpoint at the line at which execution is currently stopped. If the job definition script is not
running, the command sets a breakpoint at the first line after line 1 at which execution can stop. The command
displays information about the set breakpoint.

When the break command argument is specified
The command processing depends on the specification of the argument. The following provides the details.

• line-number
The command sets a breakpoint at the line specified in the argument. The command displays information about
the set breakpoint. If the specified line does not exist, an error results.

• function-name

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 488

The command sets a breakpoint at the function specified in the argument. The command displays information
about the set breakpoint. The location of the breakpoint is the first line in the function definition at which
execution can stop. If the specified function does not exist, an error results.

• -s job-step-name
The command sets a breakpoint at the job step specified in the argument. The command displays information
about the set breakpoint. If the specified job step does not exist, an error results.

• job-definition-script-file-name
The file name you specify must be the name of a file specified in the command used to execute the batch job or
of a file specified in the #-adsh_script extended script command. The command treats the specified file
as the target for setting a breakpoint. If no file name is specified, the command assumes that the current file is
the target for setting a breakpoint.

Notes:

• The character string up to the last colon (:) is treated as a job definition script file name.

• A line number must be specified as 0 or a greater integer. Do not specify a plus sign (+) at the beginning.

• If the specified line number is outside the permitted range for the int type, the command rounds it to the
maximum value for the int type.

• If there are multiple job steps with the same name, the command sets a breakpoint at all those job steps.

• The total number of breakpoints and watchpoints combined cannot exceed 999. If this limit has been reached
and you want to set a new breakpoint or watchpoint, terminate and restart the debugger. Once the maximum
value has been reached, no new breakpoint or watchpoint can be set even if you use the delete command to
delete existing breakpoints or watchpoints.

• You can set a breakpoint at any line that contains at least one command at which execution can stop. If a line
contains multiple commands at which execution can stop, execution stops for each command (before each
command is executed).

• If the line specified by its line number contains only commands at which execution cannot be stopped, the break
command outputs a warning message and sets a breakpoint at the next line that contains a command at which
execution can stop.
If there is no such line at which execution can stop, the command outputs an error message.

• If a function name is specified but the specified function contains no command at which execution can stop, the
command sets a breakpoint at the first line following the end of the function definition at which execution can
stop. If the line containing the function definition also contains a command at which execution can stop, the
break command sets a breakpoint at the line containing the function definition, regardless of whether that
command is inside the function.

• If an extended script command defining a job step consists of multiple lines and the job step name is specified
for setting a breakpoint, the break command sets a breakpoint at the line number where the first extended script
command is specified.

• You can set a breakpoint in an external script only if the external script is specified in the #-adsh_script
extended script command in the job definition script that calls the external script. Execution cannot be stopped
within an external script that is not specified in #-adsh_script.

• Only one breakpoint can be set on any one line. Once a breakpoint is set, no more breakpoints can be set on the
same line.

• If the job definition script that is under debug execution is in one of the following statuses, do not execute the
break command without an argument specified:

 Execution is stopped at the end of the job definition script (EOF)
 Execution is stopped while action of the trap command is executing

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 489

Example
This example sets a breakpoint on line 8 in the job definition script and then executes the job definition script.
Execution stops before funcA on line 8 is executed.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

KNAX7018-I Breakpoint "1": filename="test.ash" line=8
(adshdb) run
KNAX7007-I Execution of the following script will now start: /home/test/test.ash
...
KNAX7018-I Breakpoint "1": filename="test.ash" line=8
KNAX7032-I The script "test.ash" stopped running.
8: funcA
Current: funcA
(adshdb)

6.2.5 Setting a watchpoint (watch command)
The watch command sets a watchpoint. The abbreviation for the watch command is wa.

Numbers are assigned sequentially to the watchpoints as they are set, beginning with 1. Breakpoints that are set are
numbered in the same sequence (that is, point number n could be a watchpoint or a breakpoint). The following shows
the format of the watch command:

watch variable-name

You specify a variable name as the argument of the watch command. Whenever the value of the specified variable is
updated, execution of the job definition script stops at the next command where execution can be stopped and watchpoint
information is displayed.

The following describes the watch command's processing.

When the watch command argument is specified
The command sets a watchpoint at the specified variable. The command also displays information about the set
watchpoint.

When the watch command argument is omitted
The command outputs an error message.

When execution of a job definition script is stopped by a watchpoint, the watch command displays as the watchpoint
information the pre-update value, the post-update value, and the line number of the line that updated the variable. The
following shows the display format:

Old value = pre-update-value
New value = post-update-value
Line = line-number

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 490

• pre-update-value: This is the watched variable's value before updating. If there is no value, <No value> is
displayed.

• post-update-value: This is the watched variable's value after updating. If there is no value, <No value> is displayed.

• line-number: This is the line number of the line that updated the variable. If the trap command's action is
running, <Trap action> is displayed. If the line is the end of the job definition script, <EOF> is displayed.

Notes:

• To specify an array for the variable name, you must specify an array element.
Examples:
Normal variable specification: aaa
Array specification: aaa[1] or aaa[0][1]

• A variable and its array 0 (example: aaa, aaa[0] and aaa[0][0]) are the same. However, you can set a watchpoint
for each of them.

• A variable name with a dollar sign ($) attached is not recognized as a variable name.

• The command does not check at the time the watch command is entered whether the specified variable actually
exists.

• If the variable name specification violates a naming convention, the command outputs an error message.

• Execution stops at the watchpoint even if the new value assigned to the variable is the same as its pre-update
value.

• When the typeset standard shell command is used to change the value of the variable from character string
type to integer type, or vice versa, execution stops at the location as a watchpoint.

• Because the same naming conventions apply to both functions and variables, you can set a watchpoint by
specifying a function name as the argument. However, execution of the job definition script will not stop unless
the value of the variable whose name is the same as the specified function name is updated.

• If one line contains multiple commands and the value of a watched variable is updated, execution stops before
the next command at which execution can be stopped even on the same line.

• The total number of breakpoints and watchpoints combined cannot exceed 999. If this limit has been reached
and you want to set a new breakpoint or watchpoint, terminate and restart the debugger. Once the maximum
value has been reached, no new breakpoint or watchpoint can be set even if you use the delete command to
delete existing breakpoints or watchpoints.

• If the set command is used to change the value of a watched variable while the job definition script is stopped
and then execution of the job definition script is restarted, execution will stop before the next command at which
execution can be stopped.

• Only one watchpoint can be set for the same variable. Once a watchpoint is set for a variable, no more watchpoints
can be set for that variable.

• Execution of a job definition script does not stop when the value of a watched variable is changed by any of the
following commands:

 Commands executed in the background (& or |&)
 Commands joined by a pipe
 Group of commands enclosed in parentheses (())
 Commands that are executed as separate processes, such as external commands

Example:
1: a=1 &
2: b=2

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 491

3: c=3
In the above example, if a watchpoint is set for variable a and then the job definition script is executed, execution
of the job definition script does not stop because the assignment expression a=1 is executed in the background.

Example
In the following job definition script, specifying watch b will set a watchpoint for variable b:

1: echo "start"
2: a=1
3: b=5
4: c=10
5: echo "end"

When the job definition script is executed and then the assignment expression b=5 is executed, the watchpoint
information will be displayed and execution will stop before execution of c=10 on line 4:

KNAX7023-I Watchpoint "1": variable="b"
Old value = <No value>
New value = 5
Line = 3
KNAX7032-I The script "test.ash" stopped running.
4: c=10
Current: c=10
(adshdb)

6.2.6 Deleting breakpoints and watchpoints (delete command)
The delete command deletes breakpoints and watchpoints. The abbreviation for the delete command is d. The
following shows the format of the delete command:

delete[breakpoint-or-watchpoint-number[-breakpoint-or-watchpoint-number]]

You can delete any desired breakpoint or watchpoint by specifying its number in the argument of the delete command.
You can use the hyphen (-) to specify a range of numbers. For example, to delete point numbers 1 through 5, specify
1-5. If the argument is omitted, the command deletes all breakpoints and watchpoints.

The following describes the delete command processing.

When the delete command argument is omitted
If at least one breakpoint or watchpoint has been set, the command displays a confirmation message asking whether
all breakpoints and watchpoints are to be deleted. To delete all breakpoints and watchpoints, enter y or Y.
If no breakpoint or watchpoint has been set, the command outputs an error message.

When the delete command argument is specified
• breakpoint-or-watchpoint-number

The command deletes the breakpoint or watchpoint with the specified number. If the specified number does not
exist, the command outputs an error message.

• number-number
The command deletes the breakpoints and watchpoints whose numbers are in the range from the value specified
to the left of the hyphen (-) to the value specified to the right of the hyphen. If the specified range contains no
breakpoints or watchpoints, the command outputs an error message.

• Other

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 492

The command outputs an error message.

Notes:

• A number must be specified in the argument as 0 or a greater integer. Do not specify a plus sign (+) at the
beginning.

• When a range of numbers is specified and the beginning number is the same as the ending number, the command
deletes only the breakpoint or watchpoint with the specified number.

• When a range of numbers is specified and the ending number is smaller than the beginning number, the command
outputs an error message.

• If a specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

6.2.7 Commands for restarting execution of the job definition script
There are three different ways to restart execution of the job definition script:

• Sequential execution
This method executes one command from the location at which the job definition script is stopped. The step and
next commands are used to perform sequential execution.

• Continuous execution
This method resumes execution of a job definition script that is stopped. The continue command is used to
perform continuous execution.

• Executing a function
When execution of a job definition script is stopped within a function, this method executes the job definition script
until the function returns control. The finish command is used to execute a function.

The return command is used to terminate a function. The signal command is used to send a signal to the job
definition script.

When execution of the job definition script stops after execution of a command, a message, the line number of the next
line that is scheduled to be executed, and the line in the source file are displayed in one of the formats shown in the
following.

For a job definition script that is specified in the command for executing a batch job or a job definition script
that is specified in the #-adsh_script extended script command

line-number: line-contents-in-source-file
Current: command-string

• line-number: Line number of the next command to be executed

• line-contents-in-source-file: Contents of the line in the source file that correspond to the line number

• command-string: Next command string to be executed

For an external script that is not specified in the #-adsh_script extended script command

Line: line-number
Current: command-string

• line-number: Line number of the next command to be executed

• command-string: Command string of the next command to be executed

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 493

Notes:

• In the case of a job definition script that is executed in another process, <Another process script> is
displayed as the command string.

• If the job definition script being debugged is executing the trap command's action, the following is
displayed:

 Line: <Trap action>
 Current: command-string

• If the end-of-job definition script (EOF) has been reached, the following is displayed:

 Current: <EOF>

Example of output
This example displays the next line number to be executed and the contents of the line in the source file.

• For a job definition script that is specified in the command for executing a batch job or a job definition
script that is specified in the #-adsh_script extended script command
100: echo "aaa" The next process to be performed is echo "aaa" on line 100.
Current: echo The command to be executed then is echo.

• For an external script that is not specified in the #-adsh_script extended script command
Line: 50 The next process to be performed is line 50 in the external script.
Current: num=1 The process to be performed then is num=1.

6.2.8 Performing sequential execution (step and next commands)
The step and next commands are used to execute the first command from the location at which execution of the job
definition script is stopped. If a function is called by the command where execution has stopped, the step command
enters the function (performs sequential execution within the function), while the next command executes the
processing without stopping inside the function. The abbreviations for the step and next commands are s and n,
respectively.

(1) step command
The following shows the format of the step command:

step

The following describes the step command's processing.

When no argument is specified in the step command
When the step command is executed while execution of the job definition script is stopped, the step command
executes the first command from the location where execution of the job definition script has stopped. If a function
is called, the step command enters the function (and performs sequential execution within the function).
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the step command
Executing the command results in an error.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 494

Notes:
If a function call is specified in the argument of the eval standard shell command and sequential execution is
performed on the eval command, the stop location after execution of the function call depends on the step
command's processing.

Example
If the step command is executed while execution is stopped before val=1 on line 6, execution stops before num=2
on line 7.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

6: val=1
Current: val=1
(adshdb) step
...
KNAX7032-I The script "test.ash" stopped running.
7: num=2
Current: num=2
(adshdb)

If the step command is executed while execution is stopped before funcA on line 8, execution stops before echo
on line 2.

8: funcA
Current: funcA
(adshdb) step
KNAX7032-I The script "test.ash" stopped running.
2: echo "funcA"
Current: echo
(adshdb)

(2) next command
The following shows the format of the next command:

next

The following describes the next command's processing.

When no argument is specified in the next command
When the next command is executed while execution of the job definition script is stopped, the next command
executes the first command from the location where execution of the job definition script has stopped. If a function
is called, the next command does not stop execution inside the function.
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the next command
Executing the command results in an error.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 495

Notes:

• When the next command is executed and a function is called by the subsequent command, execution of the
job definition script is stopped if a stop evaluation condition is satisfied by a breakpoint, a watchpoint, or a signal
within that function.

• If a function call is specified in the argument of the eval standard shell command and sequential execution is
performed on the eval command, the stop location after execution of the function call depends on the next
command's processing.

Example
If the next command is executed while execution is stopped before val=1 on line 6, execution stops before num=2
on line 7.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

6: val=1
Current: val=1
(adshdb) next
...
KNAX7032-I The script "test.ash" stopped running.
7: num=2
Current: num=2
(adshdb)

If the next command is executed while execution is stopped before funcA on line 8, execution stops before echo
on line 9.

8: funcA
Current: funcA
(adshdb) next
funcA
...
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6.2.9 Performing continuous execution (continue command)
The continue command continues (resumes) execution of the job definition script from where it is stopped. The
abbreviation for the continue command is c. The following shows the format of the continue command:

continue

The following describes the continue command's processing.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 496

When no argument is specified in the continue command
When the continue command is executed while execution of the job definition script is stopped, the command
outputs a message indicating resumption of execution and restarts execution of the job definition script.
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the continue command
Executing the command results in an error.

6.2.10 Executing a function (finish command)
The finish command executes the job definition script until control is returned from a function. The abbreviation for
the finish command is f. The following shows the format of the finish command:

finish

The following describes the finish command's processing.

When no argument is specified in the finish command
When execution is stopped within a function, this command outputs a message indicating that execution will resume
through the end of the current function, and then resumes execution of the job definition script through the end of
the function. When execution of the job definition script stops, the command displays the frame information for the
stop location, and then displays the next line number scheduled to be executed and the line in the source file. The
following shows the display format for the frame information at the stop location.

Frame information at the stop location

Num Function File:Line
frame-number function-name file-name:line-number

- frame-number: Indicates the frame number (0 is always displayed).
- function-name: Indicates the name of the function corresponding to the frame information to which the name
of the job definition script calling the function is attached. If no function has been called, <main> is displayed
as the function name. A maximum of 63 bytes can be displayed.
- file-name: Indicates the name of the file in which execution is currently stopped.
- line-number: Indicates the line number at which execution is currently stopped.
If execution is stopped at the end of the job definition script, <EOF> is displayed. If execution is stopped while
the trap command's action is executing, <Trap action> is displayed.

If execution is stopped without having entered a function or if the job definition script is not running, the command
outputs an error message.

When an argument is specified in the finish command
Executing the command results in an error.

Notes:
If a stop evaluation condition is satisfied by a breakpoint, a watchpoint, or a signal at a subsequent line in the function,
the command stops execution of the job definition script.

Example
If the finish command is executed while execution is stopped before echo on line 2, the command stops execution
before echo on line 9 and displays the frame information.

1: funcA(){
2: echo "funcA"

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 497

3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

2: echo "funcA"
Current: echo
(adshdb) finish
KNAX7036-I Execution will continue until the end of the current function.
...
Num Function File:Line
0 <main> test.ash:9
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6.2.11 Terminating a function (return command)
The return command terminates commands. The return command returns control to the source of a function call
without executing the lines following the current location in the function. The abbreviation for the return command
is ret. The following shows the format of the return command:

return

The following describes the return command's processing.

When no argument is specified in the return command
When execution is stopped within a function, the command outputs a confirmation message asking whether the
current function is to be terminated. To terminate the current function and return to the source of the function call,
enter y or Y. The command displays the frame information for the source of the function call, the next line number
scheduled to be executed, and the line in the source file. The following shows the display format for the frame
information for the source of the function call.

Frame information for the source of the function call

Num Function File:Line
frame-number function-name file-name:line-number

- frame-number: Indicates the frame number (0 is always displayed).
- function-name: Indicates the name of the function corresponding to the frame information to which the name
of the job definition script calling the function is attached. If no function has been called, <main> is displayed
as the function name. A maximum of 6 bytes can be displayed.
- file-name: Indicates the name of the file in which execution is currently stopped.
- line-number: Indicates the line number at which execution is currently stopped.
If execution is stopped at the end of the job definition script, <EOF> is displayed. If execution is stopped while
the trap command's action is executing, <Trap action> is displayed.

If execution is stopped without having entered a function or if the job definition script is not running, the command
outputs an error message.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 498

When an argument is specified in the return command
Executing the command results in an error.

Notes:
The command terminates the function without stopping execution of the job definition script even if a stop evaluation
condition is satisfied by a breakpoint, a watchpoint, or a signal on a subsequent line in the function.

Example
If the return command is executed while execution is stopped before echo on line 2, the command stops execution
before echo on line 9 and displays the frame information. The command skips num=10 on line 3.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

2: echo "funcA"
Current: echo
(adshdb) return
KNAX7037-I Are you sure you want to exit the current function? (y or n)
y
KNAX7068-I Commands will be skipped until the end of the function.
...
Num Function File:Line
0 <main> test.ash:9
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6.2.12 Sending a signal (signal command)
The signal command sends a signal to the job definition script. The abbreviation for the signal command is si.
The following shows the format of the signal command:

signal {signal-name|signal-number}

When a signal name or a signal number is specified in the argument, the signal command sends the corresponding
signal and then executes the job definition script continuously. You use the info signals command to display
information about the signals that can be specified in the argument. For details about the processing when a signal is
received, see 3.11.2 Processing when signals are received (UNIX only).

The following describes the signal command's processing.

When the signal command argument is specified
When the signal command is executed while the job definition script is running, the following occurs:

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 499

Signal number or signal name
The command outputs a message indicating that the specified signal will be sent, sends the specified signal to
the job definition script, and then executes the job definition script continuously.

If the specified signal does not exist or the job definition script is not running, the command outputs an error message.

When the signal command argument is omitted
When the signal command is executed while the running job definition script is stopped, an error message is
output.
The command also outputs an error message if the job definition script is not running.

Notes:

• A signal number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+)
at the beginning.

• If the specified number is outside the permitted value range for the int type, the command rounds it up to the
maximum value for the int type.

• To send any of the following signals in AIX, specify the signal number or another signal name with the same
signal number:
To send SIGLOST or SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 23 or SIGIO.

• To send any of the following signals in HP-UX, specify the signal number or another signal name with the same
signal number:
To send SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 22 or SIGIO.

• To send any of the following signals in Solaris, specify the signal number or another signal name with the same
signal number:
To send SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 22 or SIGIO.

6.2.13 Displaying breakpoint and watchpoint information (info
breakpoints command)

The info breakpoints command displays information about the breakpoints and watchpoints that have been set.
The abbreviation for the info breakpoints command is i b. The following shows the format of the info
breakpoints command:

info breakpoints[breakpoint-or-watchpoint-number]

The info breakpoints command with a breakpoint or watchpoint number specified in the argument displays
information about the specified breakpoint or watchpoint. If the argument is omitted, the command displays information
about all breakpoints and watchpoints. The following shows the display format:

Num Type What
number breakpoint/watchpoint file-name:line-number/variable-name
...

• number: Sequence number of the breakpoint or watchpoint. The command displays a maximum of three digits left-
justified.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 500

• file-name: File name of the job definition script.

• line-number: For a breakpoint, the line number at which the breakpoint is set.

• variable-name: For a watchpoint, the variable name specified in the watch command.

The following describes the info breakpoints command's processing.

When the info breakpoints command argument is omitted
If at least one breakpoint or watchpoint has been set, the command displays information about all breakpoints and
watchpoints.
If no breakpoint or watchpoint has been set, the command outputs a message.

When the info breakpoints command argument is specified
• breakpoint-or-watchpoint-number

If the specified number exists, the command displays information about the breakpoint or watchpoint
corresponding to the specified number.
If the specified number does not exist, the command outputs an error message.

• Other
The command outputs an error message.

Notes:

• A number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+) at the
beginning.

• If the specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

Example of output
This example displays a breakpoint and a watchpoint.

Num Type What
1 breakpoint sample.ash:100
2 watchpoint rc

6.2.14 Displaying coverage information (info coverage command)
The info coverage command displays coverage information during debugging. The abbreviation for the info
coverage command is i c. The following shows the format of the info coverage command:

info coverage[n1[-[n2]]
 [,n3[-[n4]]]...]

Specify line numbers in the arguments n1, n2, n3, n4, and so on. The command displays coverage information for the
range of lines specified in the arguments. If the argument is not specified, the command displays all coverage information.

Example
This example displays coverage information for lines 1 through 10, 15, and 21 through the end.

info coverage 1-10,15,21-

For details about the display of coverage information, see 3.10 Acquiring coverage information.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 501

6.2.15 Displaying function information (info functions command)
The info functions command displays information about functions. The abbreviation for the info functions
command is i f. The following shows the format of the info functions command:

info functions[function-name]

When a function name is specified in the argument, the command displays that function name and the corresponding
file name and line number. If the argument is not specified, the command displays all function names and their file
names and line numbers. The following shows the display format:

Function File:Line
function-name file-name:line-number
...

• function-name: Name of a defined function. When all functions are displayed, this information is displayed in ASCII
code order of the function names. A maximum of 31 bytes can be displayed for each function name. If a function
name consists of more than 31 byes, only the first 31 bytes are displayed. The command adjusts the column based
on the length of the function names.

• file-name: Name of the job definition script file in which the function is defined.

• line-number: Line number at which the function is displayed.

The following describes the info functions command's processing.

When the info functions command argument is omitted
The command displays all function names and the corresponding file names and line numbers.

When the info functions command argument is specified
• Name of an existing function

The command displays the specified function's name and the corresponding file name and line number.

• Other
The command outputs an error message.

Notes:
Information about functions specified in the job definition script or in an external script specified in the #-
adsh_script extended script command can be referenced even before the job definition script executes because
this information is loaded automatically when the adshexec command starts. However, information about
functions that are not specified in the #-adsh_script extended script command is not displayed while the job
definition script is being run by the run command and until the processing defining that function is completed.

Example of output
This example displays function names and the corresponding file names and line numbers:

Function File:Line
funcA script1.ash:100
funcB script2.ash:10
funcXXX script1.ash:50

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 502

6.2.16 Displaying job step information (info jobsteps command)
The info jobsteps command displays job step information. The abbreviation for the info jobsteps command
is i j. The following shows the format of the info jobsteps command:

info jobsteps[job-step-name]

When a job step name is specified in the argument, the command displays that job step name and the corresponding file
name and line number. If the argument is not specified, the command displays all job step names and the corresponding
file names and line numbers. The following shows the display format:

Jobstep File:Line
job-step-name file-name:line-number
...

• job-step-name: Name of a defined job step. When all job steps are displayed, the command displays this information
in ASCII code order of the job step names. A maximum of 31 bytes can be displayed for each job step name. The
command adjusts the column based on the length of the job step names. If a job step name was omitted, the command
displays <No name> for that job step.

• file-name: Name of the job definition script file in which the job step is defined.

• line-number: Line number at which the job step is displayed.

The following describes the info jobsteps command's processing.

When the info jobsteps command argument is omitted
The command displays all job step names and the corresponding file names and line numbers.

When the info jobsteps command argument is specified
If the specified job step name exists, the command displays the specified job step name and the corresponding file
name and line number.
If a nonexistent job step name is specified, the command outputs an error message.

Notes:
You can display job step information regardless of whether run has been executed because this information is loaded
when the adshexec command starts.

Example of output
This example displays job step names and the corresponding file names and line numbers:

Jobstep File:Line
step1 script1.ash:10
step2 script1.ash:30
step3 script2.ash:10

6.2.17 Displays the information of the variable name handling the path
(info pathvars command)

The info pathvars command outputs the following information to the standard error output:

• Whether the variable name indicates a "shell variable that handles the path name" or a "shell variable that does not
handle the path name" is displayed.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 503

The format of the info pathvars command is as follows:

info pathvars shell-variable-name

Behavior of the info pathvars command is as follows:

Arguments Description of behavior

Existing variable name Displays whether the specified shell variable is of the name of a
variable that handles the path name (display format 1).

Other than the above Similarly displayed as a variable that does not handle the path name.

Display format 1

Type: Shell-variable-name

• Type: Displays whether the shell variable is a "shell variable that handles the path name" or a "shell variable
that does not handle the path name".
var: "Shell variable that handles the path name"
novar: "Shell variable that does not handle the path name"

• Shell variable name: This is the shell variable name specified by the command.

6.2.18 Displaying signal information (info signals command)
The info signals command displays signal information. The abbreviation for the info signals command is I
si. The following shows the format of the info signals command:

info signals[signal-name| signal-number]

When a signal name or signal number is specified in the argument, the command displays information about the
corresponding signal. If the argument is not specified, the command displays information about all signals. The following
shows the display format:

Num Signal Stop Print
signal-number signal-name Yes/No Yes/No
...

• signal-number: Number of a signal. The command displays the signal numbers in ascending order. A maximum of
two digits can be displayed left-justified.

• signal-name: The signal's name. A maximum of 11 bytes can be displayed left-justified.

The following describes the info signals command's processing.

When the info signals command argument is omitted
The command displays information about all signals.

When the info signals command argument is specified
• signal-number

If the specified signal number exists, the command displays information about the signal with the specified signal
number.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 504

If a nonexistent signal number is specified, the command outputs an error message.

• signal-name
If the specified signal name exists, the command displays information about the specified signal.
If a nonexistent signal name is specified, the command outputs an error message.

• Stop
Yes: Indicates that when the signal indicated by Signal is received, the command stops the job definition
script that is running.
No: Indicates that the command does not stop the job definition script that is running when the signal indicated
by Signal is received.
For details about the processing when signals are received, see 3.11.2 Processing when signals are received
(UNIX only).

• Print
Yes: Indicates that when the signal indicated by Signal is received, the command displays a signal received
message.
No: Indicates that the command does not display a signal received message when the signal shown indicated by
Signal is received.

Notes:

• A number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+) at the
beginning. If any other value is entered, the command outputs an error message.

• If the specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

Example of output
This example displays signal information:

Num Signal Stop Print
1 SIGHUP No No
2 SIGINT Yes Yes

6.2.19 Displaying the status (info status command)
The info status command displays the status of the job definition script that is being debugged. The abbreviation
of the info status command is i st. The following shows the format of the info status command:

info status[joberrmode]

If joberrmode or nothing is specified as the argument, the command displays the job definition script's fault injection
mode. The abbreviation of joberrmode is jem.

Example of output
This example displays the status of the job definition script (when the fault injection mode is enabled):

joberrmode:on

This example displays the status of the job definition script (when the fault injection mode is disabled):

joberrmode:off

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 505

6.2.20 Displaying shell variable information (info variables command)
The info variables command displays information about all types of shell variables. The abbreviation for the
info variables command is i v. The following shows the format of the info variables command:

info variables[variable-name]

When a variable name is specified in the argument, the command displays information about the specified shell variable.
If the argument is not specified, the command displays information about all shell variables. The following shows the
display format:

variable-name = variable-value [(Step local)]
...

• variable-name: Name of a shell variable. When all shell variables are displayed, the command displays the
information in ASCII code order of the shell variable names.

• variable-value: Value of the shell variable. For a shell variable that is valid only within a job step, the command
adds the supplementary information Step local. A shell variable that is valid only within a job step is one that
is specified in the stepVar attribute of the #-adsh_step_start extended script command.

For a variable that has no value, the command displays neither the equal sign (=) nor a variable value. The following
shows the display format:

variable-name[(Step local)]

The following describes the info variables command's processing.

When the info variables command argument is omitted
The command displays information about all shell variables.

When the info variables command argument is specified
If the specified variable name exists, the command displays information about the specified shell variable.
If a nonexistent variable name is specified, the command outputs an error message.

Notes:

• If the job definition script is not being run by the run command, variables cannot be displayed because the
variables are not defined.

• If you specify an array for the variable name, specify an array element.

• A variable and its array 0 (example: aaa, aaa[0] and aaa[0][0]) are the same. If a variable is an array within the
job definition script, the variable is represented with a subscript; if a variable is not an array, it is represented
without a subscript.

• When an array is created in the shell, array element zero is created automatically. Therefore, when information
about all shell variables is displayed, information about element zero is also included.

Example of output
This example displays information about all shell variables:

SHELL = /bin/sh
TEMPFILE = /tmp/file01
num = 1 (Step local variable)
val = 100

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 506

6.2.21 Enabling and disabling the fault injection mode (joberrmode
command)

You execute the joberrmode command to enable and disable the fault injection mode for the job definition script
being debugged. The abbreviation of joberrmode is jem. The following shows the format of the joberrmode
command:

joberrmode{on|off}

When on is selected:
The fault injection mode is enabled, which enables you to test cases where errors have occurred in the job. This
mode is used to simulate errors when the C1 execution percentage rate is not 100% even though all execution paths
have executed. For details about the case where the C1 execution percentage rate is not 100%, see (5) Case where
the C1 execution percentage rate is not 100%.
When the fault injection mode is enabled, the debugger behaves as described in the following (the return code is
not changed):

• When abnormal or always is specified in the run attribute, the debugger executes the job step.

• When the run attribute is omitted or normal is specified, the debugger does not execute the job step.

• The debugger does not execute a command outside the job step.

• If an error is injected within a step normal block, the debugger executes the commands within that step's step
error block. The debugger executes the step error block without executing any subsequent command in that step
even if cont is specified in the onError attribute.

When the run command is executed while the fault injection mode is on, the fault injection mode is reset to off.
When specifying FUNCTION for the CMDRC_CMDGRP_CHECK parameter, the fault injection mode cannot be
enabled even when joberrmode on is executed while the function is ended.

When off is selected:
The fault injection mode is disabled.

Execution example 1
This example executes the job definition script shown in the following (the line numbers on the left correspond to
the line numbers displayed in the execution results):

001 #!/bin/sh
002
003 #-adsh_step_start STEP001 <--Start of STEP001
004
005 ./cmd1 <--Step normal block
006
007 #-adsh_step_error <--Step error block
008
009 ./cmd2
010
011 #-adsh_step_end
012
013 ./cmd3
014
015 #-adsh_step_start STEP002 -run abnormal <--Start of STEP002 (executed in
the event of an error)
016
017 ./cmd4 <--Step normal block
018
019 #-adsh_step_error <--Step error block
020

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 507

021 ./cmd5
022
023 #-adsh_step_end
024
025 ./cmd6
026
027 echo JOB01-ended

Execution results 1
This example stops execution outside the step and uses the joberrmode command to enable the fault injection
mode (the numbers at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d joberrmode.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous processes at the
end of the job.
KNAX0724-I The job ID was assigned. job ID=000037
(adshdb) b 2 <- 2.
KNAX7015-W The breakpoint cannot be set at line "2". The breakpoint will be set
at the next available line.
KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=3
(adshdb) b 17 <- 3.
KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17
(adshdb) run <- 4.
KNAX7007-I Execution of the following script will now start: /home/jobuser1/
joberrmode/joberrmode.ash

KNAX0724-I The job ID was assigned. job ID=000038
KNAX0091-I ADSH000038 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.

KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=3 <- 5.
KNAX7032-I The script "joberrmode.ash" stopped running.
3: #-adsh_step_start STEP001
Current: #-adsh_step_start STEP001
(adshdb) info status <- 6.
joberrmode:off <- 7.
(adshdb) joberrmode on <- 8.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 9.
joberrmode:on <- 10.
(adshdb) c <- 11.
KNAX7034-I The script will continue.
KNAX6508-I ADSH000038.STEP001 step was skipped because a previous step or
command ended abnormally.
KNAX0092-I ADSH000038.STEP002 step started.

KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17 <- 12.
KNAX7032-I The script "joberrmode.ash" stopped running.
17: ./cmd4
Current: ./cmd4
(adshdb) joberrmode off
KNAX7127-E Fault injection mode could not be modified. <- 13.
(adshdb) c <- 14.
KNAX7034-I The script will continue.
cmd4 start
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=17) finished successfully.
exit status=0 execution time=0.001s CPU time=0.000s
KNAX6597-I ADSH000038.STEP002 step succeeded. exit status=0 execution
time=3.081s CPU time=0.000s
KNAX0101-E ADSH000038 An error occurred during execution of the job.
KNAX0098-I ADSH000038 The job ended. exit status=0 execution time=12.162s CPU
time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the root job.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 508

spool job directory="/home/jobuser1/test6/spool/000038-ADSH000038/"

(adshdb) quit
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/home/jobuser1/test6/spool/000037-ADSH000037/"
KNAX7999-I Advanced Shell ended. exit status=0

The numbers below correspond to the numbers added at the right in the execution results above:
1. Starts debugging.
2. Stops execution inside the script.
3. Stops execution inside the step that is executed in the event of an error.
4. Executes the script.
5. Stops at the first breakpoint.
6. Displays the status.
7. The fault injection mode is disabled.
8. Enables the fault injection mode.
9. Displays the status.
10. The fault injection mode is enabled.
11. Restarts debugging.
12. Stops execution inside the step that is executed in the event of an error.
13. The fault injection mode could not be changed.
14. Restarts debugging.

Execution results 2
This example stops execution inside the step and uses the joberrmode command to enable the fault injection
mode (the numbers added at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d joberrmode.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous processes at the
end of the job.
KNAX0724-I The job ID was assigned. job ID=000043
(adshdb) b 5 <- 2.
KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=5
(adshdb) b 17 <- 3.
KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17
(adshdb) run <- 4.
KNAX7007-I Execution of the following script will now start: /home/jobuser1/
joberrmode/joberrmode.ash

KNAX0724-I The job ID was assigned. job ID=000044
KNAX0091-I ADSH000044 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.
KNAX0092-I ADSH000044.STEP001 step started.

KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=5 <- 5.
KNAX7032-I The script "joberrmode.ash" stopped running.
5: ./cmd1
Current: ./cmd1
(adshdb) info status <- 6.
joberrmode:off <- 7.
(adshdb) joberrmode on <- 8.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 9.
joberrmode:on <- 10.
(adshdb) c <- 11.
KNAX7034-I The script will continue.
cmd2 start
cmd2 end

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 509

KNAX6116-I Execution of the command ./cmd2 (line=9) finished successfully. exit
status=0 execution time=0.001s CPU time=0.000s
KNAX6596-E ADSH000044.STEP001 step failed. exit status=0 execution time=62.384s
CPU time=0.000s
KNAX0092-I ADSH000044.STEP002 step started.

KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17 <- 12.
KNAX7032-I The script "joberrmode.ash" stopped running.
17: ./cmd4
Current: ./cmd4
(adshdb) joberrmode off
KNAX7127-E Fault injection mode could not be modified. <- 13.
(adshdb) c <- 14.
KNAX7034-I The script will continue.
cmd4 start
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=17) finished successfully.
exit status=0 execution time=0.001s CPU time=0.000s
KNAX6597-I ADSH000044.STEP002 step succeeded. exit status=0 execution
time=11.865s CPU time=0.000s
KNAX0101-E ADSH000044 An error occurred during execution of the job.
KNAX0098-I ADSH000044 The job ended. exit status=0 execution time=74.272s CPU
time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/home/jobuser1/test6/spool/000044-ADSH000044/"

The numbers below correspond to the numbers added at the right in the execution results above:
1. Starts debugging.
2. Stops execution inside the script within the step.
3. Stops execution inside the step that is executed in the event of an error.
4. Executes the script.
5. Stops at the first breakpoint.
6. Displays the status.
7. The fault injection mode is disabled.
8. Enables the fault injection mode.
9. Displays the status.
10. The fault injection mode is enabled.
11. Restarts debugging.
12. Stops execution inside the step that is executed in the event of an error.
13. The fault injection mode could not be changed.
14. Restarts debugging.

Execution example 2
This example executes the job definition script shown in the following (the line numbers on the left correspond to
the line numbers displayed in the execution results):

001 #-adsh_job JOB001
002 #-adsh_step_start STEP001 -onError cont <--Start of STEP001 with -onError
cont specified
003 ./cmd1 <--Step normal block
004 ./cmd2
005 ./cmd3
006 #-adsh_step_error
007 ./cmd4 <--Step error block
008 ./cmd5
009 #-adsh_step_end
010 ./cmd6 <--Command outside the step

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 510

Execution results
This example stops execution within the step (line 4) and then enters the joberrmode command (the numbers
added at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d test_cont.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous processes at the
end of the job.
KNAX0724-I The job ID was assigned. job ID=000045
(adshdb) b 4 <- 2.
KNAX7018-I Breakpoint "1": filename="test_cont.ash" line=4
(adshdb) r <- 3.
KNAX7007-I Execution of the following script will now start: /home/jobuser1/
joberrmode/test_cont.ash

KNAX0724-I The job ID was assigned. job ID=000046
KNAX0091-I JOB001 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.
KNAX0092-I JOB001.STEP001 step started.
cmd1 start
cmd1 end
KNAX6116-I Execution of the command ./cmd1 (line=3) finished successfully. exit
status=0 execution time=0.001s CPU time=0.000s

KNAX7018-I Breakpoint "1": filename="test_cont.ash" line=4 <- 4.
KNAX7032-I The script "test_cont.ash" stopped running.
4: ./cmd2
Current: ./cmd2
(adshdb) info status <- 5.
joberrmode:off <- 6.
(adshdb) jem on <- 7.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 8.
joberrmode:on <- 9.
(adshdb) c <- 10.
KNAX7034-I The script will continue.
cmd4 start <- 11.
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=7) finished successfully. exit
status=0 execution time=0.001s CPU time=0.000s
cmd5 start
cmd5 end
KNAX6116-I Execution of the command ./cmd5 (line=8) finished successfully. exit
status=0 execution time=0.001s CPU time=0.000s
KNAX6596-E JOB001.STEP001 step failed. exit status=0 execution time=42.531s CPU
time=0.000s
KNAX0101-E JOB001 An error occurred during execution of the job.
KNAX0098-I JOB001 The job ended. exit status=0 execution time=42.533s CPU
time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the root job.
spool job directory="/home/jobuser1/test6/spool/000046-JOB001/"

The numbers below correspond to the numbers added at the right in the execution results above:
1. Starts debugging.
2. Stops execution inside the script within the step.
3. Executes the script.
4. Stops at the first breakpoint.
5. Displays the status.
6. The fault injection mode is disabled.
7. Enables the fault injection mode.
8. Displays the status.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 511

9. The fault injection mode is enabled.
10. Restarts debugging.
11. Executes the command in the step error block.

6.2.22 Setting a variable value (set command)
The set command sets a value for a shell variable. By specifying an assignment expression in the argument, you can
evaluate the expression and then set a value in the variable. There is no abbreviation for the set command. The following
shows the format of the set command:

set assignment-expression

The following shows the format of assignment expression:

variable-name={variable-name|numeric-value|"character-string"}

• variable-name (left-hand term): Specifies the name of a shell variable. The value of the right-hand term is assigned
to the specified variable.

• variable-name (right-hand term): Specifies the name of a shell variable. The value of this specified variable is
assigned to the variable of the left-hand term.

• numeric-value: Specifies an integer value. The specified integer value is assigned to the variable of the left-hand
term.

• character-string: Specifies a character string. The specified character string is assigned to the variable of the left-
hand term.

The following describes the set command's processing.

When the set command argument is specified
• Assignment expression

The command sets a variable value according to the specified assignment expression.

• Assignment expression containing a variable name that has not been created
The command outputs an error message.

• Other than an assignment expression
The command outputs an error message.

When the set command argument is omitted
The command outputs an error message.

Notes:

• If the job definition script is not being run by the run command, an error results because variable information
has not been specified.

• If you specify a character string, you must enclose it in double quotation marks ("). To use a double quotation
mark as part of the character string, specify it as a backslash followed by a double quotation mark (\"). To
specify \", specify \\\".

• The command processes the argument following the first equal sign (=) in the assignment expression as a variable
name and a numeric value or a character string.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 512

• If you specify an array for the variable name, specify an array element.

• Do not attach a dollar sign ($) to a variable name.

• If a specified numeric value is outside the permitted value range for the signed long type, it is rounded to
the maximum or minimum value permitted for the signed long type.

• If execution is stopped before a for script control statement, a variable specified in wordlists in the for
statement has a fixed value. If you want to change the value of the variable that is assigned by the for statement,
use the set command at the first stop location following do in the for statement to change the variable value,
or use the set command before execution reaches the for statement to change the value of the variable in
wordlists. The following shows examples.

Example 1:

 1: a=1
 2: b=2
 3: date
 4: for num in $a $b
 5: do
 6: echo $num <--To change the value of num, execute the set command before
line 6 executes.
 7: pwd
 8: done

Example 2:

 1: a=1
 2: b=2
 3: date <--To apply the values of $a and $b to the variable that is
assigned by the for statement, execute the set command before line 3 executes.
 4: for num in $a $b
 5: do
 6: echo $num
 7: pwd
 8: done

• The command assigns to the left-hand term a numeric value stored in the variable specified in the right-hand
term of an assignment expression as is (without rounding).

Examples
To assign a numeric value, you must use the -i attribute of the typeset command to declare the variable's type
as integer.

Assign numeric value 10 to variable a

(adshdb) set a=10

Assign character string test to variable b

(adshdb) set b="test"

Assign the value of variable a to variable c

(adshdb) set c=a

Assign numeric value 1 to variable d[5](array)

(adshdb) set d[5]=1

If the value "2" is substituted in "e[5][1]" (array)

(adshdb) set e[5][1]=2

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 513

6.2.23 Displaying a variable's value (print command)
The print command displays the value of a variable in the job definition script. You display a variable's value by
specifying its variable name in the argument. The abbreviation for the print command is p. The following shows the
format of the print command:

print variable-name

The following describes the print command's processing.

When the print command argument is specified
If the specified variable is defined, the command displays its value. The following shows the display format:

variable-value

• variable-value: Value of the specified variable. If there is no value, <No value> is displayed.

If the variable is undefined, the command outputs an error message.

When the print command argument is omitted
The command outputs an error message.

Notes:

• If the job definition script is not being run by the run command, an error results because variable information
has not been specified.

• If you specify an array for the variable name, specify an array element.

• Do not attach a dollar sign ($) to a variable name.

Examples
Display the value of variable a

(adshdb) print a

Display the value of variable b[1] (array)

(adshdb) print b[1]

If the value of variable "c[0][1]" (two-dimensional array) is displayed

(adshdb) print c[0][1]

6.2.24 Displaying a backtrace (where command)
A backtrace consists of information that shows how the executing job definition script reached the current location
where execution has stopped. A backtrace is represented by frames. A frame is data related to a single call to a function.
When a function is called, one frame is added. When a function terminates, its frame is deleted. A sequential number,
beginning with zero, is assigned to each frame starting from the innermost frame. The innermost frame indicates the
currently executing function. The where command displays a backtrace. The abbreviation for the where command
is whe. The following shows the format of the where command:

where[frame-number]

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 514

When a frame number is specified in the argument, the where command displays information about the innermost
frame through the frame with the specified number. If the argument is omitted, the command displays information about
all frames in order starting from the innermost frame. The following shows the display format:

Num Function File:Line
frame-number function-name file-name:line-number
...

• frame-number: Number assigned to a frame. The frame numbers are displayed in ascending order starting with 0.
Up to three left-justified digits can be displayed.

• function-name: Name of the function corresponding to the frame to which the name of the job definition script that
called the function is attached. If no function has been called, <main> is displayed as the function name. A maximum
of 63 bytes can be displayed.

• file-name: Name of the job definition script file corresponding to the frame. If the frame number is zero, this is the
name of the current file whose execution is stopped. If the frame number is 1 or greater, this is the file name used
when a new function was called.

• line-number: Line number corresponding to the frame. If the frame number is zero, this is the current line number
at which execution has stopped. If the frame number is 1 or greater, this is the line number used to call a new function.
If execution has stopped at the end of the job definition script, <EOF> is displayed. If execution has stopped while
the trap command's action is executing, <Trap action> is displayed.

The following describes the where command's processing.

When the where command argument is omitted
If the where command is executed while execution of the job definition script is stopped, the command displays
information about all frames in order starting from the innermost frame.
If the job definition script is not running, the command outputs an error message.

When the where command argument is specified
If the where command is executed while the job definition script is running and a valid frame number is specified,
the command displays information about the innermost frame through the frame with the specified frame number.
If a non-numeric value is specified or the job definition script is not running, the command outputs an error message.

Notes:

• Specify 0 or a greater integer for a frame number. Do not specify a plus sign (+) at the beginning.

• If the specified frame number is outside the permitted value range for the int type, it is rounded to the maximum
value permitted for the int type.

• A maximum of 255 frames can be displayed (frame numbers 0 through 254). Specifying 255 or a greater value
in the argument does not display a frame with the specified number. If there are more than 255 frames, a message
is displayed following the frame information.

Example
This example executes the where command when funcA was called on line 12 of sample.ash, funcB was
called on line 9, and then execution stopped on line 12 of test.ash.
sample.ash
5: #-adsh_script test.ash
6:
7: funcA(){
8: num=10
9: funcB
10: }

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 515

11:
12: funcA

test.ash
10: funcB(){
11: val=5
12: num=20
13: }

Num Function File:Line
0 funcB (in sample.ash) test.ash:12
1 funcA (in sample.ash) sample.ash:9
2 <main> sample.ash:12

6.2.25 Displaying the source file (list command)
The list command displays the source file. The abbreviation for the list command is l. The following shows the
format of the list command:

When no file name is specified

list[line-number]

When this is the first list command executed since execution stopped on the current line and no argument is
specified in the command, the command displays a total of 11 numbered lines starting with the fifth line preceding
the current line where execution has stopped. If this is the second or a subsequent list command entered since
execution stopped, the command displays a total of 11 numbered lines starting from the line immediately following
the last line displayed by the previous list command.

When a file name is specified

list job-definition-script-file-name:line-number

You can specify a job definition script file name by using a colon (:) in the argument.
If a line number is specified, the command displays 11 numbered lines starting with the fifth line preceding the
specified line. The following shows the display format:

line-number: line-contents-in-source-file
...

• line-number: Line number in the source file.

• Line-contents-in-source-file: Contents of the indicated line in the source file.

The following describes the list command's processing.

When the list command argument is omitted
When this is the first list command executed since execution stopped on the current line, the command displays
a total of 11 numbered lines in the source file starting with the fifth line preceding the current line where execution
has stopped.
When this is the second or subsequent list command entered since execution stopped, the command displays a
total of 11 numbered lines starting with the line immediately following the last line displayed by the previous list
command.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 516

When the list command argument is specified
If an existing line number is specified, the command displays 11 numbered lines starting with the fifth line preceding
the specified line.
If a nonexistent line number or any other type of value is specified, the command outputs an error message.

Notes:

• If you specify a file name, make sure that you specify a file that was specified in the command for executing
batch jobs or in the #-adsh_script extended script command.

• The command treats the entire character string up to the colon (:) as a file name.

• If the source file display range would include a line with a line number less than 1, the command displays lines
1 through 11, regardless of whether the argument was specified.

• If the source file display range would include a line beyond the last line, the command displays the last 11 lines
starting with the tenth line preceding the last line, regardless of whether the argument was specified.

• Specify 0 or a greater integer for a line number. Do not specify a plus sign (+) at the beginning.

• If the specified line number is outside the permitted value range for int type, it is rounded to the maximum
value permitted for the int type.

• If the job definition script under debug execution is in either of the statuses listed below and the list command
is executed with the argument omitted, an error results. However, once you execute the list command with
the argument specified, you can display the remaining lines.

 Execution has stopped at the end of the job definition script (EOF).
 Execution has stopped while the trap command's action is executing.

Example of output
This example executes the list command with the argument omitted while execution is stopped on line 20.

15: echo "start"
16:
17: a=1
18: while [[$a -ne 10]]
19: do
20: echo $a
21: let a+=1
22: done
23:
24: pwd
25: echo "end"

6.2.26 Changing the directory (cd command)
The cd command changes the debugger's work directory. There is no abbreviation for the cd command. The following
shows the format of the cd command:

cd directory-path-name

You change the work directory by specifying a directory path name in the argument.

The following describes the cd command's processing.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 517

When the cd command argument is specified
The command changes the debugger's work directory to the specified directory. The command displays the absolute
path of the new directory.
If the job definition script is executing, the cd command changes only the debugger's work directory; it does not
change the current directory of the executing job definition script.
If the cd command is not able to change the debugger's work directory because a directory path name without
execution permissions or a nonexistent directory path name is specified, the command outputs an error message.

When the cd command argument is omitted
The command outputs an error message.

Example
This example uses the cd command to change the work directory. The example then uses the exec command to
execute an external command and outputs the contents of a file located at the destination directory.

(adshdb) cd work
KNAX7048-I Working directory: /home/xxx/work
(adshdb) exec cat test.txt
aaa bbb ccc
(adshdb)

6.2.27 Starting the login shell (exec command)
The exec command starts the login shell during debugging. The login shell is the shell specified in the SHELL shell
variable. The abbreviation for the exec command is ex. The following shows the format of the exec command:

exec[arguments-to-be-passed-to-login-shell]...

If arguments to be passed to the login shell are specified in the argument, the exec command passes the specified
arguments to the login shell and then starts the login shell. If the argument is omitted, the exec command starts the
login shell.

Notes:

• If the argument contains an ampersand (&), the command outputs an error message.

• To use an ampersand (&) for other purposes than background execution, specify \&.

• There is no limit to the number of arguments.

Example
This example uses the exec command to execute the ls shell command.

(adshdb) exec ls
aaa.txt bbb.log bin

6.2.28 Displaying Help (help command)
The help command displays the debugger's commands Help. The abbreviation for the help command is h. The
following shows the format of the help command:

help[command-name]

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 518

When a command name is specified in the argument, the help command displays a description of that command. If
the argument is omitted, the help command displays the names of all commands. You can specify in the argument a
command's full name or its abbreviation.

The following describes the help command's processing.

When the help command argument is omitted
The command displays the names of all commands. The following shows the display format:

Available commands:
break cd continue delete exec
finish help info joberrmode kill
list next print quit return
run set signal step watch
where

When the help command argument is specified
When a command name is specified, the help command displays the usage of the specified command.
If a nonexistent command name is specified, the help command outputs an error message.

6. Debugging Job Definition Scripts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 519

You define in environment files various information such as return codes, coverage, system
execution logs, directory paths, and environment variables. You use parameters to specify this
information.This chapter explains the formats of the parameters and provides the details of the
parameters.

Part 4: Reference

7 Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 520

7.1 Specification format of environment files

This section explains the specification formats of parameters that are specified in the environment files.

There are three types of parameters:

Parameter type Definition contents

Environment setting parameters Define items such as return codes, coverage, system execution logs, and directory paths.

export parameter Defines environment variables.

Conditional parameters Specify environment setting parameters that are effective only at physical hosts or specific logical hosts
or the export parameter.

The maximum length of one line in an environment file is 4,092 bytes including comments and separators. If a line
exceeds 4,092 bytes, a parsing error will occur. You must not specify the ampersand (&) in an environment file, including
within a comment.

The following notes apply to the parameters that are specified in the environment files:

• If a line contains NULL (0x00, or \0 in C language), the job controller treats everything on the line from the
beginning of the line up to that NULL character as the line, and ignores all characters following that NULL character.
To prevent invalid execution results and run-time errors, do not specify NULL.

• Make sure that the encoding used for environment files is consistent with the value of the LANG environment variable
in the environment in which job definition scripts are to be run.

• Text to the right of a hash mark (#) not followed by -adsh_conf 1 is treated as a comment.

7.1.1 Formats of parameters

(1) Format of environment setting parameters
The following shows the format of environment setting parameters:

0#-adsh_conf 1parameter 1value

• Specify a parameter following #-adsh_conf on one line.

• Specify nothing after the parameter value.

• If a parameter value contains a space, enclose the entire value in double quotation marks ("). No other escape
character is permitted.

(2) Format of the export parameter
The following shows the format of the export parameter:

0export 1environment-variable-name=environment-variable-value

• In the export parameter, specify one environment variable per line.

• The only environment variable that can be referenced is PATH.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 521

For example, the following specification sets in the NEWHOME environment variable the character string ${HOME}
as is, not the contents of the HOME environment variable,:

 export NEWHOME=${HOME}

• To specify a value containing a space, enclose the value in double quotation marks (") or single quotation marks (').

• A backslash (\) is treated as an escape character (a backslash enclosed in single quotation marks (') is treated as a
normal character).

(3) Format of conditional parameters
The following shows the format of the conditional parameters:

0#-adsh_conf 1 [phost_start | lhost_start 1 host-name]
environment-setting-parameter-or-export-parameter
 :
0#-adsh_conf 1 [phost_end | lhost_end]

• You can specify multiple environment setting parameters or export parameters.

• To specify export and environment setting parameters that are to be valid only on the physical host or only on a
specified logical host, you must enclose them within conditional parameters specified on the preceding and following
lines.

• Specify nothing after a parameter value.

• You can specify multiple conditional parameters. However, nesting conditional parameters is not permitted (see
example 2).

Example 1: Specifying multiple conditional parameters

#-adsh_conf phost_start
export HOME=/home/phost
#-adsh_conf phost_end

#-adsh_conf phost_start
export TEMP=/tmp
#-adsh_conf phost_end

Example 2: Nesting conditional parameters (results in an error)

#-adsh_conf phost_start
export HOME=/home/phost
#-adsh_conf phost_start
export TEMP=/tmp
#-adsh_conf phost_end
#-adsh_conf phost_end

7.1.2 Specification format of comments
The following shows the specification format of a comment:

0#any-character-string-not-beginning-with--adsh_conf

• Any character string that does not begin with -adsh_conf 1 that is specified following a hash mark (#) is treated
as a comment (through the end of the line).

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 522

7.2 Lists of parameters

7.2.1 List of environment setting parameters

(1) Defining the environment setting parameters
You define the environment setting parameters in system environment files and job environment files. For details about
these files, see 2.6.1 Specifying the environment files.

The parameters that can be specified in a system environment files and a job environment file are the same. The following
table shows the specification values that take effect depending on whether the system environment file and job
environment file are specified:

System
environment file

Job environment file

Omitted Specified

Omitted Each parameter's default value Values specified in the job environment file

Specified Values specified in the system environment file Depends on the parameter specifications#

#
If the same parameter is specified in both, it is handled as described in the following:

• Environment setting parameters that can be specified only once in a file
The specification in the job environment file takes effect.

• Environment setting parameters that can be specified more than once in a file
JP1/Advanced Shell merges all the specifications of the parameter beginning with the specifications in the job
environment file.

Example:
Specifications in the system environment file
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\abc
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def

Specifications in the job environment file
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\ghi
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\kkk

The analysis results are equivalent to the following:
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\ghi <--1.
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def <--1.
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\kkk <--1.
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\abc <--2.
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def <--2.

Notes:
1. Specified in the job environment file
2. Specified in the system environment file

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 523

(2) List of environment setting parameters
The following table lists and describes the environment setting parameters that are specified in the environment files of
JP1/Advanced Shell. Specification of these parameters is optional.

Table 7-1: Environment setting parameters specified in the environment files of JP1/Advanced Shell

Parameter name Definition Maximum
number of
times
parameter can
be specified#1

Changeability at the
start of child jobs

ADSHCMD_RC_ERROR Defines the return code to be used when an
extended script command fails.

1 Y

ADSHCMD_RC_SUCCESS Defines the return code to be used when an
extended script command is successful.

1 Y

ASC_FILE Defines a naming rule for accumulation files
used in the coverage auto-acquisition
functionality.

1 --

BATCH_CVR Enables the coverage auto-acquisition
functionality.

1 --

CHILDJOB_EXT Defines an extension for job definition script
files that are to be executed as child jobs.

255 Y

CHILDJOB_PGM Defines a program path specification that is to
be executed as child jobs.

255 Y

CHILDJOB_SHEBANG Defines an executable program path for job
definition script files that are to be executed as
child jobs.

255 Y

CMDRC_CMDGRP_CHECK This parameter defines whether to determine
errors of a job or job step according to the return
code of the function.

1 Y

CMDRC_THRESHOLD_DEFINE Defines a return code threshold for a command.
This parameter can also be defined for return
codes of shell scripts and child jobs.

No limit#3 Y

CMDRC_THRESHOLD_USE_PRESET Defines a return code threshold for UNIX-
compatible commands.

1 Y

CMDSUB_PROCESS
[Only for Windows]

This command defines the behavior of
command substitution.

1 Y

COMMAND_CONV_ARG Defines a rule for converting an argument in job
definition scripts during command execution.

255 Y

COMPATIBLE_CMD_EXEC This command defines how to activate the
external command.

1 Y

COMPATIBLE_CMDSUB
[Only for UNIX]

This command defines the behavior of
command substitution.

1 Y

ESCAPE_SEQ_ECHO_DEFAULT Defines the action of the echo command when
the escape-character option is omitted.

1 Y

ESCAPE_SEQ_ECHO_HEX Specifies whether ASCII code characters in
hexadecimal notation are to be interpreted as
escape characters.

1 Y

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 524

Parameter name Definition Maximum
number of
times
parameter can
be specified#1

Changeability at the
start of child jobs

EVENT_COLLECT Specifies whether the operation information
acquisition functionality is to be enabled for job
definition scripts.

1 Y

HOSTNAME_JP1IM_MANAGER#2 Specifies for the user-reply functionality the
operation management server on which JP1/IM
- Manager is running that is to be the destination
of JP1 events.

1 DN

INIT_SCRIPT_READ Specifies whether to read and execute the
initialization script file when the job controller
starts.

1 −

JOBEXECLOG_PRINT Defines the job execution log contents to be
output to the standard error output when a job
terminates.

1 --

JOBLOG_SUPPRESS_MSG Defines a message whose output to job
execution logs is to be suppressed.

No limit#3 Y

KSH_ENV_READ Defines whether the ENV shell variable is to be
read.

1 Y

LOG_DIR#4 Defines the path name of the directory to which
system execution logs are to be output.

1 Y

LOG_FILE_CNT#5 Defines the number of files to be used to back
up system execution logs.

1 Y

LOG_FILE_SIZE#5 Defines the size of a file to which system
execution logs are to be output.

1 Y

OUTPUT_MODE_CHILD Specifies whether a job execution log is to be
output to the standard error output when a child
job terminates.

1 Y

OUTPUT_MODE_ROOT Specifies whether a job execution log is to be
output to the standard error output when a root
job terminates.

1 --

OUTPUT_STDOUT Defines the destination for the root job standard
output.

1 --

PATH_CONV Defines a rule for converting absolute path
names.

255 Y

PATH_CONV_ACCESS Defines a rule for converting file path names in
job definition scripts when files are input and
output.

255 Y

PATH_CONV_ENABLE Enables the path conversion functionality. 1 Y

PATH_CONV_NOVAR This command defines the shell variables that
do not handle path names.

No limit#3 Y

PATH_CONV_RULE
(Windows only)

Defines a rule for converting file paths. 1 Y

PATH_CONV_VAR This command defines the shell variables that
handle path names.

No limit#3 Y

PERMISSION_SPOOLJOB_DIR Defines permission for the spool job directory. 1 --

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 525

Parameter name Definition Maximum
number of
times
parameter can
be specified#1

Changeability at the
start of child jobs

(UNIX only) Defines permission for the spool job directory. 1 --

PERMISSION_SPOOLJOB_FILE
(UNIX only)

Defines permission for the files under the spool
job directory.

1 --

PIPE_CMD_LAST Defines execution processing for the last
command in a pipe.

1 Y

SPOOL_DIR#2, #4, #6 Defines the spool root directory path name. 1 DN

SPOOLJOB_CHILDJOB Specifies whether a child job's spool job is to be
deleted or is to be merged into the spool job of
the root job when the child job terminates.

1 N

SPOOLJOB_CREATE Defines whether a spool job is to be created
when a job definition script is run.

1 N

TEMP_FILE_DIR#4 Defines the path name of the directory for
storing temporary files.

1 Y

TRACE_DIR#4 Defines the path name of the directory to which
traces are to be output.

1 Y

TRACE_FILE_CNT#7 Defines the number of files to which traces are
to be output.

1 Y

TRACE_FILE_SIZE#7 Defines the size of a file to which traces are to
be output.

1 Y

TRACE_LEVEL Defines a trace output level. 1 Y

TRAP_ACTION_SIGTERM Defines the job controller's action when a forced
termination request is received.

1 Y

UMASK_INHERIT Specifies whether to inherit the file mode
creation mask of the parent process when
execution of the job definition script starts.

1 Y

UNSUPPORT_TEST
(Windows only)

Defines the handling of an unsupported
conditional expression.

1 for each
condition

Y

USERREPLY_DEBUG_DESTINATIO
N

Defines the input source and the destination of
event notification and reply-request messages
during debug execution when the user-reply
functionality is used.

1 DN

USERREPLY_JP1EVENT_INTERVA
L#2

Defines the minimum interval at which JP1
events are to be issued by the adshecho and
adshread command in the user-reply
functionality.

1 DN

USERREPLY_WAIT_MAXCOUNT#2 Defines the maximum number of concurrent
reply-request messages that can be output by the
user-reply functionality per physical or logical
host.

1 DN

VAR_ENV_NAME_LOWERCASE
(Windows only)

Defines whether environment variable names in
lowercase letters are supported.

1 Y

VAR_SHELL_FUNCINFO Defines arrays for managing information about
shell functions.

1 Y

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 526

Parameter name Definition Maximum
number of
times
parameter can
be specified#1

Changeability at the
start of child jobs

VAR_SHELL_GETLENGTH Defines the unit for lengths when the lengths of
variable values are referenced.

1 Y

Legend:
Y: If a change is made when a child job starts to the setting in effect when its root job started, that change will be
effective (but making such a change is not recommended).
N: If a change is made when a child job starts to the setting in effect when its root job started, that change will be
ignored.
DN: When a child job starts, do not make any change to the setting in effect when its root job started. If a change
is made, JP1/Advanced Shell might not operate correctly.
--: Not applicable to child jobs.

#1
For a parameter that can be specified in both the system environment file and the job environment file, make sure
that the total number of specifications of the parameter in both files combined does not exceed the maximum value
shown in this column.
To determine whether a parameter can be specified in both the system environment file and the job environment
file, see the explanations for the individual parameters.

#2
To use the user-reply functionality, you must specify these parameters in the system environment file. When you
make a change to these parameters in the system environment file, you must restart the user-reply functionality's
management daemon or service.
Also note the following regarding the specification of these parameters:

• Do not specify these parameters in a job environment file. If they are specified in a job environment file, the
following problems might occur:
HOSTNAME_JP1IM_MANAGER: When a reply is entered or canceled with the adshchmsg command, the
reply-waiting events accumulated in JP1/IM - View are not released while the user-reply functionality
management's daemon or service is stopped.
USERREPLY_WAIT_MAXCOUNT: The information specified in the job environment file is ignored.
USERREPLY_JP1EVENT_INTERVAL: JP1/IM - View's processing load increases.

• If different values are specified in the system environment file and the job environment file for the parameter
shown below, the problem described below might occur. If you use the user-reply functionality, do not specify
the following parameter in the job environment file:
SPOOL_DIR: Output of reply-request messages fails.

#3
Limited by the available memory size.

#4
You can use multiple environments on the same host by specifying different directories in these parameters.

#5
If multiple users output system execution logs to the same file, the values of LOG_FILE_CNT and
LOG_FILE_SIZE specified by the last user that started output of system execution logs become effective.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 527

#6
To inherit information to a host in a standby system during cluster operation, you must share the directory to be
inherited among the multiple hosts. In this case, share at least the directory specified in this parameter among the
hosts.

#7
If multiple users output trace logs to the same file, the largest values specified for TRACE_FILE_CNT and
TRACE_FILE_SIZE by the users become effective.
If the values of TRACE_FILE_CNT and TRACE_FILE_SIZE are changed in the environment file, the specified
values are compared with the existing values for the number of trace files and file size, and whichever are larger
become effective.
To reduce the number of trace files and the file size, you must delete all files from the trace folder (do not delete
files from the trace folder while a job is outputting traces to those trace files).

7.2.2 export parameter

(1) Defining the export parameter
You can define export parameters in both the system environment file and the job environment file. For details about
these files, see 2.6.1 Specifying the environment files.

If export parameters are specified in both the system environment file and the job environment file, they are handled
as follows:

• Because the environment files are also analyzed whenever a child job starts, the values specified in export
parameters at the start of the child job are set in the environment variables again.

• Both the system environment file specifications and the job environment file specifications are effective and these
files are executed in this order.

Example:

System environment file

export A=s1
export B=s2
export A=s3

Job environment file

export C=j1
export B=j2

Order of execution

export A=s1
export B=s2
export A=s3
export C=j1
export B=j2

• The following are examples of adding paths to the PATH environment variable:

export PATH='d:\user\prg;${PATH}'
export PATH='/user/prg:${PATH}'

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 528

When adding a path to the PATH environment variable, the value may exceed the upper limit for specification in
the environment variable. The value of the PATH environment variable becomes longer because the path is added
when starting the root job and also added when starting the child job. For this reason, you must be careful so that
the size of the PATH environment variable does not exceed the upper limit when being used together with a child
job function. The upper limit of the character string length that can be stored in the environment variable is 32,766
bytes.
In Windows, when a long character string is stored in the PATH environment variable, an error may occur with the
API of the OS even when the character string has not exceeded the upper limit. For this reason, refrain from storing
a character string that is close to the upper limit.
If the character string exceeds the upper limit, separate the environment file of the root job and the environment file
of the child job and add the path of PATH environment variable only to the environment file of the root job.

(2) List of export parameter
The following describes the export parameter definition conditions. Specification of this parameter is optional. Only
the job controller uses this parameter.

Parameter name Definition Maximum number of times
parameter can be specified

export Defines an environment variable that is to take effect when the job
controller that uses the environment file is started.

No limit

7.2.3 Conditional parameters

(1) Defining the conditional parameters
You use conditional parameters to enclose the definitions of environment setting parameters and export parameters
that are to apply only to a logical host or to the physical host.

Parameters specified outside the conditional parameters apply to all hosts. Specifications of the same parameter inside
and outside conditional parameters are treated as duplicates, and if the total number of such parameters causes the
permitted maximum number of specifications to be exceeded, an error results.

An example definition of conditional parameter is explained below.

(parameter group A)
#-adsh_conf lhost_start HOST01
(parameter group B)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group C)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group D)
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
(parameter group E)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group F)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group G)

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 529

#-adsh_conf phost_end
(parameter group H)

Based on this definition, the following parameter groups are executed on the specified hosts:

Parameter groups executed on logical host HOST01:

(parameter group A)
(parameter group B)
(parameter group E)
(parameter group H)

Parameter groups executed on logical host HOST02:

(parameter group A)
(parameter group C)
(parameter group F)
(parameter group H)

Parameter groups executed on the physical host:

(parameter group A)
(parameter group D)
(parameter group G)
(parameter group H)

You can define conditional parameters in both the system environment file and the job environment file. For details
about these files, see 2.6.1 Specifying the environment files.

The same parameters can be specified in the system environment file and the job environment file. Parameters specified
in both the system environment file and the job environment file are handled as follows:

• The parameter specifications in both the system environment file and the job environment file take effect.

• The rules for individual parameters apply to those parameters that are determined to be valid because they satisfied
the conditions.

Example:

System environment file

#-adsh_conf lhost_start host01
#-adsh_conf TEMP_FILE_DIR /jp1as/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\sys1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\sys2
#-adsh_conf lhost_end

Job environment file

#-adsh_conf lhost_start host01
#-adsh_conf TEMP_FILE_DIR /home/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\job1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\job2
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\job3
#-adsh_conf lhost_end

The results of executing the job on logical host host01 are equivalent to the following:

#-adsh_conf TEMP_FILE_DIR /home/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\job1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\job2
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\job3

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 530

#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\sys1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\sys2

(2) List of conditional parameters
The following table lists and describes the conditional parameters. Specification of these parameters is optional.

Table 7-2: Conditional parameters specified in the environment files of JP1/Advanced Shell

Parameter name Definition Maximum number of times
parameter can be specified

lhost_start Starts a set of environment setting parameters or export parameters that
are to take effect only on a specified logical host.
This parameter also specifies the target logical host.

No limit

lhost_end Ends the definition of a set of environment setting parameters or export
parameters started by lhost_start. This parameter must always be
paired with an lhost_start parameter.

phost_start Starts a set of environment setting parameters or export parameters that
are to take effect only on the physical host.

phost_end Ends the definition of a set of environment setting parameters or export
parameters started by phost_start. This parameter must always be
paired with a phost_start parameter.

(3) Examples of definitions of conditional parameters
This subsection presents definition examples of parameters that are specified in the environment files.

(a) Example definitions of a system environment file and a job environment file
This subsection explains the relationship between the system environment file and the job environment file by way of
examples.

• Running a single host
This example defines a system environment file as the system default. The example defines the following
information:

• The name of the host to which JP1 events are issued is HostJp1IM.

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for each logical host, and you can define
for each job the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in the job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp

• Running logical hosts HOST01 and HOST02 at the same time

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 531

This example defines a system environment file as the system default. The example defines the following
information:

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

• So that the logical hosts can use different execution environments, the SPOOL_DIR, LOG_DIR, TRACE_DIR,
TEMP_FILE_DIR, and HOSTNAME_JP1IM_MANAGER parameters are defined separately for each host.

• The value of the ABC environment variable is specified for each logical host.

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf lhost_start HOST01
#-adsh_conf SPOOL_DIR /jp1as/host01/spool
#-adsh_conf LOG_DIR /jp1as/host01/log
#-adsh_conf TRACE_DIR /jp1as/host01/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host01/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
#-adsh_conf SPOOL_DIR /jp1as/host02/spool
#-adsh_conf LOG_DIR /jp1as/host02/log
#-adsh_conf TRACE_DIR /jp1as/host02/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host02/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM02
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST01
export ABC=/jp1as/host01/abc
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
export ABC=/jp1as/host02/abc
#-adsh_conf lhost_end

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for each logical host, and you can define
for each job the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in a job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf lhost_start HOST01
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp01
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp02
#-adsh_conf lhost_end

• Running logical host HOST01 during normal operation and temporarily running the physical host
This example defines a system environment file as the system default. The example defines the following
information:

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

• The SPOOL_DIR, LOG_DIR, TRACE_DIR, TEMP_FILE_DIR, and HOSTNAME_JP1IM_MANAGER
parameters are defined separately for the logical host and for the physical host so that they can use different
execution environments.

• The default directory is used for the SPOOL_DIR, LOG_DIR, TRACE_DIR, and TEMP_FILE_DIR parameters
for the physical host.

• Different values are used for the ABC environment variable in the logical host and the physical host.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 532

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf lhost_start HOST01
#-adsh_conf SPOOL_DIR /jp1as/host01/spool
#-adsh_conf LOG_DIR /jp1as/host01/log
#-adsh_conf TRACE_DIR /jp1as/host01/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host01/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01
#-adsh_conf lhost_end
#-adsh_conf phost_start
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
export ABC=/jp1as/host01/abc
#-adsh_conf lhost_end
#-adsh_conf phost_start
export ABC=/jp1as/abc
#-adsh_conf phost_end

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for the logical host and the physical host,
and you can define for each the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in a job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf lhost_start HOST01
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp01
#-adsh_conf lhost_end
#-adsh_conf phost_start
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp00
#-adsh_conf phost_end

(b) Example definitions of conditional parameters
This subsection explains by way of an example the definition of conditional parameters and parameters that are applied
to different hosts.

This example defines the conditional parameters as follows:

(parameter group A)
#-adsh_conf lhost_start HOST01
(parameter group B)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group C)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group D)
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
(parameter group E)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group F)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group G)
#-adsh_conf phost_end
(parameter group H)

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 533

Based on these definitions, the following parameter groups are executed on each host:

Parameter groups executed on logical host HOST01:

(parameter group A)
(parameter group B)
(parameter group E)
(parameter group H)

Parameter groups executed on logical host HOST02:

(parameter group A)
(parameter group C)
(parameter group F)
(parameter group H)

Parameter groups executed on the physical host:

(parameter group A)
(parameter group D)
(parameter group G)
(parameter group H)

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 534

7.3 Environment setting parameters

This section explains the parameters that are specified in JP1/Advanced Shell's environment files.

7.3.1 ADSHCMD_RC_ERROR parameter (defines the return code to be
used when an extended script command fails)

Syntax

#-adsh_conf ADSHCMD_RC_ERROR return-code

Description
This parameter defines the return code to be used when an extended script command fails.

Operands

return-code ~<unsigned integer>((0 to 255))<<1>>
Specifies the return code to be used when an extended script command fails.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.2 ADSHCMD_RC_SUCCESS parameter (defines the return code to be
used when an extended script command is successful)

Syntax

#-adsh_conf ADSHCMD_RC_SUCCESS return-code

Description
This parameter defines the return code to be used when an extended script command is successful.

Operands

return-code ~<unsigned integer>((0 to 255))<<0>>
Specifies the return code to be used when an extended script command is successful.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 535

7.3.3 ASC_FILE parameter (defines a naming rule for accumulation files)

Syntax

#-adsh_conf ASC_FILE file-naming-rule

Description
This parameter defines a naming rule for accumulation files used in the coverage auto-acquisition functionality.

Operands

file-naming-rule
Windows: ~<any character string>((1 to 247 bytes))
UNIX: ~<any character string>((1 to 1,023 bytes))
Specifies a path name with a substitution position.
The asterisk (*) specifies the substitution position. The location where the asterisk is specified is replaced with the
job definition script name (without the file extension). The search begins at the beginning and substitution occurs
at the location of the first asterisk that is detected. Any subsequent asterisks that are specified are not subject to
substitution.
If no substitution position is specified, the specified name is used as is as the file name, and no substitution occurs.
If the resulting value is invalid as a path name regardless of whether substitution occurred, an error results. If this
parameter is omitted, the file name is determined according to the rules used when the -o option is omitted in the
adshexec command.
You must specify the file naming rule in such a manner that the file name obtained after conversion does not exceed
the maximum length permitted for the path name of an asc file in the adshexec command. If this maximum
length is exceeded, an error will occur during execution of the adshexec command.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• This parameter is ignored when the BATCH_CVR parameter's operand value is not YES.

• Do not use a file name that begins with a dot (.).

• Do not use reserved device names (such as CON, AUX, and NUL) as file names. (Windows only)

• Do not use NTFS streams for file names. (Windows only)

Example
• This example enables the coverage auto-acquisition functionality and defines a naming rule for accumulation files.

#-adsh_conf BATCH_CVR YES
#-adsh_conf ASC_FILE ./cvrg/ver001-*

In this example, execution of adshexec sample.ash will be the same as execution of adshexec -t -o ./
cvrg/ver001-sample sample.ash.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 536

7.3.4 BATCH_CVR parameter (enables the coverage auto-acquisition
functionality)

Syntax

#-adsh_conf BATCH_CVR YES

Description
This parameter enables the coverage auto-acquisition functionality.

Operands

YES
Enables the coverage auto-acquisition functionality. Enabling this functionality results in the same effects as when
the -t option is specified in the adshexec command.
As is the case when the -f option is omitted in the adshexec command, if there is any difference between the job
definition script file and backup information, JP1/Advanced Shell does not collect coverage information.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• The coverage auto-acquisition functionality is disabled in the following cases:

• The -v or -c option is specified in the adshexec command

• JP1/Advanced Shell - Developer is used

• For the ASC_FILE parameter to take effect, this parameter must be specified.

• If the -t option is specified in the adshexec command, the command outputs an error message and terminates
with RC=1.

• If the job definition script file is changed while there is already a coverage information file, coverage information
can no longer be collected. In such a case, take one of the following actions:

• Delete the asc file used to change the job definition script.

• Use the environment variable to change the directory in which the asc files are created.

7.3.5 CHILDJOB_EXT parameter (defines an extension for job definition
script files that are to be executed as child jobs)

Syntax

#-adsh_conf CHILDJOB_EXT extension

Description
This parameter defines an extension for job definition script files that are to be executed as child jobs. When a job
definition script file with the extension specified in this parameter is specified as a command name in another job

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 537

definition script, the command outputs the KNAX6832-I message to the job execution logs, interprets the file as a job
definition script for JP1/Advanced Shell, and then executes the file as a child job. You can use the
JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6832-I message to the job execution logs.

Operands

extension ~<path name>((1 to 245 bytes))
Specifies an extension for job definition script files that are to be executed as child jobs. Specifying as the value
only the null character enclosed in double quotation marks (") is not permitted.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• Do not include a dot (.) in the extension specified in the operand.

• If only a forward slash (/) is specified as the extension in the operand, the command will terminate with an error
during parameter analysis.

• Do not specify exe, bat, cmd, or com, which are executable extensions in Windows, as an extension in this operand.
If these extensions are specified, the corresponding files will be executed as child jobs in the same manner as when
other extensions are specified. (Windows only)

• The command name output to the job execution logs is the path of the script file that was executed as a child job.

• If a file that can be executed by using this parameter is evaluated by using the operator -x for evaluating file attributes,
the result will be true. (Windows only)

• Specifying the same extension more than once does not result in an error.

• Execution of a file specified in the argument of the exec, command, or eval standard shell command or the time
reserved script command is also subject to this parameter.

• This parameter is not case sensitive in the Windows edition, but it is case sensitive in the UNIX edition.

• To execute a file with no extension as a child job, use the CHILDJOB_PGM or CHILDJOB_SHEBANG parameter.

• This parameter is applied to a command name following variable substitution or alias resolution.

Example
In this example, any file with the extension ash or sh specified as a command name is executed as a child job.

#-adsh_conf CHILDJOB_EXT ash
#-adsh_conf CHILDJOB_EXT sh

7.3.6 CHILDJOB_PGM parameter (defines a program path specification
that is to be executed as descendent jobs)

Syntax

#-adsh_conf CHILDJOB_PGM program-path-name [arguments-of-executable-program]

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 538

Description
This parameter specifies that when the file specification program-path-name [arguments-of-executable-program]
appears in a job definition script, the KNAX6830-I message is to be output to the job execution logs, the file is to be
interpreted as a job definition script, and then the file is to be executed as a child job. You can use the
JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6830-I message to the job execution logs.

The following shows an example:

Example specification of parameter:

#-adsh_conf CHILDJOB_PGM sh -x

Contents of job definition script:

sh -x $HOME/script/test.ash

This example interprets $HOME/script/test.ash as a job definition script and executes it as a child job.

The total number of program-path-name and arguments-of-executable-program operands combined that can be
specified is 64. If more than 64 operands are specified, the command will terminate with an error during parameter
analysis.

In the Windows edition, even if the CHILDJOB_PGM parameter is omitted from the environment file, a
CHILDJOB_PGM parameter with adshscripttool -exec specified for the program path is defined. For details
about the adshscripttool command, see 9.4.10 adshscripttool command (supports creation of job definition
scripts) (Windows only).

Operands

program-path-name ~<path name>((1 to 1,023 bytes))
Defines a program path that is to be converted to a program to be executed as a child job. Specifying as a value only
the null character enclosed in double quotation marks (") is not permitted. The backslash (\) is not handled as an
escape character.

arguments-of-executable-program ~<any character string>((1 to 1,023 bytes))
Defines arguments of the program path that is to be converted to a program to be executed as a child job. You can
specify multiple arguments by delimiting them with the space or tab character. The backslash (\) is not handled as
an escape character.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• If the same operand is defined in this parameter and the PATH_CONV parameter, conversion by the PATH_CONV
parameter is performed first. An example follows:
Contents of environment file

#-adsh_conf PATH_CONV_ENABLE / : <- 1.
#-adsh_conf PATH_CONV /usr/bin C:\\usr\\bin <- 2.
#-adsh_conf CHILDJOB_PGM /usr/bin/ksh <- 3.

Contents of job definition script

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 539

"/usr/bin/ksh" C:\\script\\test.ash

In this example, steps 1 and 2 are executed first to convert /usr/bin/ksh into C:\\usr\\bin\\ksh. In step
3, /usr/bin/ksh is interpreted to be the program path for executing a child job. However, because no matching
character string is found in the job definition script whose path has been converted, C:\\script\\test.ash
is not executed as a child job.

• If the same operand is specified in this parameter and the COMMAND_CONV_ARG parameter, conversion by the
COMMAND_CONV_ARG parameter is performed first.

• This parameter is applied to a character string following variable substitution or alias resolution. An example of
variable substitution follows:
Contents of environment file

#-adsh_conf CHILDJOB_PGM /usr/bin/ksh

Contents of job definition script (the value of the variable SHELL is assumed to be /usr/bin/ksh)

$SHELL /home/usr/test.ash

In this example, because $SHELL is first resolved as /usr/bin/ksh and is then loaded according to the parameter
definition, /home/usr/test.ash is executed as a child job.

• If this parameter is used to execute a child job, the command name output to the job execution logs is the JP1/
Advanced Shell command (adshexec or adshexecsub).
However, if the command is executed in any of the manners listed below, the program path name existing before
this parameter is applied is output as the command name to the job execution logs:

• Execution of a separate process by using a pipe (|)

• Execution of a separate process by using a command substitution ($(), ``)

• Execution of a background process by using |&
• Execution of a subshell by grouping a single command

• Background execution by using &
• A program path specified in the argument of the exec, command, or eval standard shell command or the time

reserved script command is also subject to this parameter.

• This parameter is applied to the standard shell commands, extended shell commands, functions, and external
commands in job definition scripts.

• Specify a path name and the arguments for the executable program within the permitted maximum line length for
the environment file.

Example
These examples execute $HOME/script/test.ash in the job definition script as a child job. The contents of the
job definition script and environment file are shown below. The information specified in the CHILDJOB_PGM parameter
is underlined.

• Example 1

Contents of environment file:

#-adsh_conf CHILDJOB_PGM /bin/sh

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 540

Contents of job definition script:

/bin/sh $HOME/script/test.ash

• Example 2

Contents of environment file:

#-adsh_conf CHILDJOB_PGM /opt/jp1as/bin/adshexec

Contents of job definition script:

/opt/jp1as/bin/adshexec $HOME/script/test.ash

• Example 3

Contents of environment file:

#-adsh_conf CHILDJOB_PGM sh -x

Contents of job definition script:

sh -x $HOME/script/test.ash

• Example 4

Contents of environment file:

#-adsh_conf CHILDJOB_PGM /usr/bin/env ksh

Contents of job definition script:

/usr/bin/env ksh $HOME/script/test.ash

7.3.7 CHILDJOB_SHEBANG parameter (defines an executable program
path for job definition script files that are to be executed as child
jobs)

Syntax

#-adsh_conf CHILDJOB_SHEBANG path-name

Description
This parameter defines an executable program path that is specified, following #!, as a job definition script file to be
run as a child job. The character string immediately following #! through the end of the line is treated as the comparison
path name.

When a job definition script file is specified as a command name in another job definition script and the path name
specified in this parameter appears on the first line of the job definition script file in the format #!path-name, the
command outputs the KNAX6831-I message to the job execution logs and executes the job definition script file as a
child job. You can use the JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6831-I message to
the job execution logs.

The CHILDJOB_SHEBANG parameter has the following two default definitions:

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 541

Default definition Output mode when the child job starts

/opt/jp1as/bin/adshexec Operation is performed according to the specification of the
OUTPUT_MODE_CHILD parameter.

/opt/jp1as/bin/adshexec -mMINIMUM Operation is performed in the minimum output mode.

For details about the default definitions for the CHILDJOB_SHEBANG parameter, see (b) Executing child jobs by using
a default definition for the parameter.

Operands

path-name ~<any character string>((1 to 1,023 bytes))
Defines an executable program path that, when specified beginning with #! in a job definition script file, is to be
executed as a child job.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and job
environment file combined exceeds 255, an error occurs.

• Do not include the leading characters #! in the path name specification in this operand.

• If only a forward slash (/) is specified in this operand as the path name, the command will terminate with an error
during parameter analysis.

• The command name output to the job execution logs becomes the path of the directly specified script file.

• If a file that can be executed by using this parameter is evaluated by using the operator -x for evaluating file attributes,
the result will be true. (Windows only)

• Specifying the same executable program path more than once does not result in an error.

• A file that is specified in the argument of the exec, command, or eval standard shell commands or the time
reserved script command is also subject to this parameter.

Example
The following examples execute a job definition script file that contains a specific code at the beginning as a child job:

• Executing a file that begins with #!/bin/sh or #!/bin/ksh as a child job

#-adsh_conf CHILDJOB_SHEBANG /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh

• Executing a file that begins with #!/bin/ksh -x as a child job

#-adsh_conf CHILDJOB_SHEBANG "/bin/ksh -x"

• Executing a file that begins with #!/usr/bin/env ksh as a child job

#-adsh_conf CHILDJOB_SHEBANG "/usr/bin/env ksh"

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 542

7.3.8 CMDRC_CMDGRP_CHECK parameter (determines an error of job
and job step according to the return code of the function)

Syntax

#-adsh_conf CMDRC_CMDGRP_CHECK {FUNCTION|NONE}

Description
This parameter defines whether an error of job and job step is determined according to the return code of the function.

Operands

FUNCTION
An error of job and job step is determined according to the return code of the function and an error of job and job
step is not determined according to the return code of the command in the function. You can change the threshold
of the return code of the function by using the CMDRC_THRESHOLD_DEFINE parameter, the #-
adsh_rc_ignore command, the adshcmdrc command, and the -successRC attribute of #-
adsh_step_start command.

NONE
An error of the job and job step to which the function is defined is determined according to the return code of the
command in the function. Determining error of job and job step according to the return code of the function is not
executed.

Notes
• If you specify this parameter for both the system environment file and job environment file, definition of the job

environment file is enabled.

• If you specify Function for the operand, the message of the command in the function is not output.

• The action of the trap command that is executed after receiving the signal or forced termination request while the
function is being executed is considered to be executed in the function. The action of the trap command that is
executed in the function becomes the target of change of error judgment for job and job step according to the value
of operand.

• Even when the command that is executed in the background while the function is being executed is executed in the
function, this command is not recognized as the command in the function.

7.3.9 CMDRC_THRESHOLD_DEFINE parameter (defines a return code
threshold for a command)

Syntax

#-adsh_conf CMDRC_THRESHOLD_DEFINE command-name threshold

Description
This parameter defines a threshold value for the return code for a command executed from a job definition script. Normal
termination will be considered to have occurred whenever the command's return code is equal to or smaller than the

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 543

specified threshold value. You use this parameter when you want normal termination to be considered to have occurred
even though the actual return code of the command was not 0.

If the command terminates by receiving a signal, an error termination will be considered to have occurred regardless of
the specification of this parameter.

The CMDRC_THRESHOLD_DEFINE parameter can also be used to change the threshold for a UNIX-compatible
command for which a threshold has been defined by specification of ENABLE in the
CMDRC_THRESHOLD_USE_PRESET parameter.

Operands

command-name ~<command name>((1 to 255 bytes))
Specifies the name of the command for which the threshold of the return code is to be defined. In Windows, a
command name with an extension can also be specified. A command path cannot be specified.
The command types that can be specified are listed below. Other commands are also affected by this parameter if
they are executed in a separate process (using a pipe, command substitution, |& or &).

• External command

• UNIX-compatible command

• Shell operation command

• Script that is executed as a command (executed with #!)

• Shell script

• Child job

If specification of a command extension is omitted in Windows, commands and batch files having the same name
as the specified name become the targets for threshold control regardless of their extension.
To specify a command name containing a space in Windows, enclose the entire command name in double quotation
marks (").

threshold ~<integer>((-1 to 255))
Specifies the threshold to be used for determining that the return code represents a normal termination. If the return
code is greater than the value specified here, it will be assumed that an error termination has occurred.
If -1 is specified, execution of the command will always result in an error termination.
If 255 is specified, the execution result will always be regarded as a normal termination.

Notes
• This parameter applies to the specified command following variable substitution or alias resolution.

• The setting for the successRC attribute of the #-adsh_rc_ignore and #-adsh_step_start commands
of the job definition script takes precedence for the command action based on the command threshold specified by
this parameter and the return code of the executed command.

• If this parameter is defined in both the system environment file and the job environment file, both definitions take
effect. However, if different thresholds are defined for the same command, the last one defined in the job environment
file takes effect.

• Although there is no limit to the number of times this parameter can be specified, do not define it for unnecessary
commands because specifying it too many times will affect adversely the execution performance of job definition
scripts.

• To define a return code threshold for a job definition script to be executed as a child job, use the CHILDJOB_EXT
or CHILDJOB_SHEBANG parameter for the child job definition.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 544

If you use the CHILDJOB_PGM parameter to define a child job, the specified return code threshold will not be
applied to the child job.

• In Windows, you can specify the command name with or without an extension.
However, if you specify a command name with an extension and the same command name without an extension,
they will be not considered to be the same command.

• If you use this parameter to specify a threshold for a command name with an extension and another threshold
for the same command name without an extension, the first one specified takes effect.

• The command names that are assumed when ENABLE is specified in the CMDRC_THRESHOLD_USE_PRESET
parameter are the names with an extension. Therefore, to use this parameter to change a threshold, you must
specify an extension. If the extension is omitted, the command will be registered as a different command.

• Regardless of their specification order, the CMDRC_THRESHOLD_USE_PRESET parameter is always processed
first when both it and the CMDRC_THRESHOLD_DEFINE parameter are specified.

• If you specify FUNCTION for the CMDRC_CMDGRP_CHECK parameter, you can define the return code threshold
that is considered to be normal termination by specifying the function name for the command name of operand. If
you do not specify the CMDRC_CMDGRP_CHECK parameter or specify NONE for the
CMDRC_CMDGRP_CHECK parameter, the parameter is processed as the command name having the same name
even if a function name is specified for the command name of operand.

Example
• In this example, 10 is defined as the return code threshold for the CHILD_EXEC1.sh child job (normal termination

whenever the return code is 10 or smaller):

#-adsh_conf CHILDJOB_EXT sh
#-adsh_conf CMDRC_THRESHOLD_DEFINE CHILD_EXEC1.sh 10

• In this example, 1 is generally defined as the return code threshold for UNIX-compatible commands; for certain
other UNIX-compatible commands (acmd, bcmd, ccmd), 20 is defined as the threshold:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE bcmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE ccmd 20

• (Windows only) In this example, 10 is defined as the return code threshold for the acmd.exe command, and 20
is defined as the threshold for the generic command name acmd:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20

In this definition sequence, 10 is applied as the threshold for the acmd.exe command, and 20 is applied as the
threshold for acmd commands whose extension is not .exe (such as acmd.bat).

• (Windows only) In this example, 20 is defined as the threshold for the generic command name acmd, and 10 is
defined as the return code threshold for the acmd.exe command.
20 is applied as the return code threshold for commands whose name is acmd (such as acmd.exe and acmd.bat):

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10

In this definition sequence, the definition for the acmd generic command name, which is described first, is also
preferentially applied to the acmd.exe command. Therefore, the threshold for the acmd.exe command also
becomes 20.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 545

• In this example, the acmd.exe command is specified twice in the same parameter, with 30 and 20 defined as the
thresholds:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 30
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 20

In this case, the threshold for the last parameter specified, which is 20, is applied.

• In this example, the acmd.exe command is specified with a threshold of 10 in the system environment file and
with a threshold of 20 in the job environment file:
System environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10

Job environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 20

In this case, the threshold of 20 specified in the job environment file is applied.

• (Windows only) In this example, 1 is generally defined as the return code threshold for UNIX-compatible commands
and then the threshold for the cmp.exe command only is changed to 2:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp.exe 2

• (Windows only) In this example, cmp 2 is specified by the CMDRC_THRESHOLD_DEFINE parameter for the
cmp.exe command for which a threshold of 1 is defined by the CMDRC_THRESHOLD_USE_PRESET parameter.
In this case, however, the threshold cannot be changed from 1 to 2:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp 2

In this case, cmp.exe and cmp are managed as separate commands for which different thresholds are effective.

• If the CMDRC_THRESHOLD_USE_PRESET and CMDRC_THRESHOLD_DEFINE parameters are specified in
different environment files, as shown below, the threshold of 2 specified by the CMDRC_THRESHOLD_DEFINE
parameter is applied to the cmp.exe command.
System environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp.exe 2

Job environment file specification:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE

7.3.10 CMDRC_THRESHOLD_USE_PRESET parameter (defines a
threshold for the return code of a UNIX-compatible command)

Syntax

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET {ENABLE|DISABLE}

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 546

Description
This parameter defines a return code threshold for assuming normal termination of all the UNIX-compatible commands
listed below. You can specify only 0 or 1 for the value.

• cmp command

• diff command

• egrep command

• expr command

• grep command

• sort command

You must use the CMDRC_THRESHOLD_DEFINE parameter to define a different threshold for a specific command.

Command names defined in this parameter are registered with an extension in Windows. For example, the cmp command
is registered by the OS as follows:

• In Windows edition: cmp.exe
• In UNIX edition: cmp

If you intend to use the CMDRC_THRESHOLD_DEFINE parameter to change a threshold, you must define the command
name with an extension.

Operands

ENABLE
Specifies 1 as the return code threshold. As a result, commands that terminate with a return code of 1 are also
considered to have terminated normally.
A threshold of 1 is also set for commands with the same name as the targeted UNIX-compatible commands.

DISABLE
Specifies 0 as the return code threshold.

Notes
• This parameter is applied to a command name following variable substitution or alias resolution.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

• The setting for the successRC attribute of the #-adsh_rc_ignore and #-adsh_step_start commands
of the job definition script takes precedence for the command action based on the command threshold specified by
the ENABLE specification and the return code of the executed command.

• Regardless of their specification order, the CMDRC_THRESHOLD_USE_PRESET parameter is always processed
first when both it and the CMDRC_THRESHOLD_DEFINE parameter are specified.

Example
• In this example, normal termination is assumed even when the return code of the targeted UNIX-compatible

commands is 1:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 547

7.3.11 CMDSUB_PROCESS parameter (defines the execution process of
command substitution) [only for Windows]

Syntax

#-adsh_conf CMDSUB_PROCESS {CURRENT | OTHER}

Description
This command defines the execution process of command substitution.

Although the content of the variable is updated with command substitution, specify OTHER when reusing the contents
from before execution of command substitution after finishing command substitution.

An example of when OTHER is specified is as follows.(Assume that CBL_SYSUT is the variable for the common
interface of CBLUAPx.)

• Contents of the job definition script

funcA(){
 CBL_SYSUT=/file2
 CBLUAP2
}
CBL_SYSUT=/file1
VAL1=$(CBLUAP1)
VAL2=$(funcA)
VAL3=$(CBLUAP3)

In this case, /file1 is stored in the shell variable CBL_SYSUT when executing CBLUAP1 and CBLUAP3, and /
file2 is stored in the shell variable CBL_SYSUT when executing CBLUAP2.

Operands

CURRENT
When specifying the following command for command substitution, command substitution is executed with the
current process.

• Standard shell commands

• Substitution expression

• Script control statement

• Extended shell command

• Reserved script command

• Function

In cases other than above, the command operates with a different process. In addition, a temporary file is used for
exchanging data.

OTHER
This command operates the command substitution with a different process.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 548

Notes
• If you define this parameter for both the system environment file and job environment file, the definition of the job

environment file is enabled.

• If you define this parameter for the same host in the environment file multiple times, a parameter error will occur.

• If you specify OTHER, the execution time when specifying OTHER may be longer than when specifying
CURRENT. Therefore, you must verify the execution time of a job when switching from CURRENT to OTHER.
Some script development parts and UNIX-compatible commands in the script format use command substitution in
the script. We recommend specifying CURRENT to prevent lengthening of the execution time when executing script
development parts and UNIX-compatible commands in the script format.

• If a command for which all of the following conditions overlap is described, the result of command substitution may
not be obtained correctly.

• CURRENT is specified for the CMDSUB_PROCESS parameter.

• A pipe is being used during the command substitution process.

• The last command linked with the pipe is being executed in the background.
Example: `cmd1 | { cmd2; cmd3 & }`

7.3.12 COMMAND_CONV_ARG parameter (defines a rule for converting
an argument in job definition scripts during command execution)

Syntax

#-adsh_conf COMMAND_CONV_ARG command-argument-1 command-argument-2

Description
This parameter defines a rule for converting an argument in standard shell commands, extended shell commands,
functions, extended script commands, reserved script commands, external commands, and user programs used in job
definition scripts.

When a job definition script is run, a command argument that matches exactly command-argument-1 is converted to
command-argument-2. Both command-argument-1 and command-argument-2 must be specified.

If different rules are defined for the same command argument, the first rule defined takes effect.

External scripts specified in . (dot) commands and #-adsh_script commands are also subject to this argument's
conversion if they satisfy the specified rule during execution.

The KNAX6804-I or KNAX6806-I message is output to the job execution logs as the conversion result.

Operands

command-argument-1 ~<any character string>((1 to 247 bytes))
Specifies the command argument before conversion. To specify a command argument containing a space, enclose
the entire command argument in double quotation marks ("). A value enclosed in double quotation marks cannot
consist of only a space, tab character, or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 549

If command-argument-1 is omitted or the value specified in command-argument-1 is invalid, the command will
terminate with an error during parameter analysis.

command-argument-2 ~<any character string>((1 to 247 bytes))
Specifies the command argument after conversion. To specify a command argument containing a space, enclose the
entire command argument in double quotation marks ("). A value enclosed in double quotation marks cannot consist
of only a space, tab character, or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If command-argument-2 is omitted or the value specified in command-argument-2 is invalid, the command will
terminate with an error during the parameter analysis.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is defined in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• If the command argument obtained after conversion is the same as the command argument before conversion in a
subsequent parameter and the eval command containing the argument that satisfies the rule is executed, conversion
is performed twice, once during execution of the eval command and once during execution of the command of
that argument, as shown in an example below.
Example:
Contents of environment file

#-adsh_conf COMMAND_CONV_ARG /tmp /var/tmp <--1.
#-adsh_conf COMMAND_CONV_ARG /var/tmp /jp1as/tmp <--2.

Contents of job definition script

eval cd /tmp

In this example, the following conversions occur on the corresponding lines in the environment file:

1. The eval command is executed and /tmp is converted to /var/tmp.

2. The cd command is executed and /var/tmp is converted to /jp1as/tmp.

• The argument obtained after conversion by this parameter is interpreted as a single character-string argument even
if it contains characters that match the IFS shell variable, which is the string separator. Therefore, if the character
string obtained as a result of parameter conversion contains a metacharacter and the command to be executed is not
eval, that character is treated as a normal character, not a metacharacter.
Contents of environment file (IFS shell variable is the space)

#-adsh_conf COMMAND_CONV_ARG "D:\JP1AS" "C:\\Documents and Settings" <--
Argument conversion rule 1
#-adsh_conf COMMAND_CONV_ARG "A=1" "A=1 &" <-- Argument conversion rule 2

Contents of job definition script

cd "D:\JP1AS" <--1.
readonly A=1 <--2.
eval cd "D:\JP1AS" <--3.
eval readonly A=1 <--4.

1. The argument is converted as follows according to conversion rule 1:
cd "C:\\Documents and Settings"

2. The character string is separated as follows according to conversion rule 2:
readonly A=1 &

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 550

3. When the eval command is executed, the argument is converted as follows according to conversion rule 1:
eval cd "C:\\Documents and Settings"
However, when the cd command is executed, the argument is separated and interpreted as follows:
cd C:\Documents and Settings

4. When the eval command is executed, the argument is converted as follows according to conversion rule 2:
eval readonly A=1 &
However, when the readonly command is executed, the argument is separated and interpreted as follows:
readonly A=1 &

• This parameter performs conversion in such a manner that variable substitution and file name substitution are
resolved. Therefore, if a character string containing a wildcard is specified as the argument, the character string
obtained after substitution by the wildcard is recognized as the command's argument.

• If this parameter is applied to the test command, the interpretation of the character string in the argument during
command execution depends on the format used. In the [[]] format, if a variable substitution is specified for
array elements, conversion by this parameter is not applied. To use this parameter to convert a command's argument
by using the test command, we recommend that you use the test or [] format.
Example:
Contents of environment file

#-adsh_conf PATH_CONV_ENABLE \\ :
#-adsh_conf COMMAND_CONV_ARG "/tmp2" "/tmp" <-- Argument conversion rule 1
#-adsh_conf COMMAND_CONV_ARG "ARY[1]" "/tmp" <-- Argument conversion rule 1

Contents of job definition script

ARY[0]="/var" Stores "/var", "/tmp2", and "/home" in the array ARY.
ARY[1]="/tmp2"
ARY[2]="/home"
id1=1
[[-d ${ARY[$id1]}]] <-- Replaces ${ARY[$id1]} through "/tmp2".
Converted to "/tmp" according to argument conversion rule 1.
[[-d ARY[$id1]]] <-- "ARY[$id1]" becomes the argument because substitution
is not performed.
Not subject to conversion because "$" cannot be specified.
[-d ${ARY[$id1]}] <-- Replaces ${ARY[$id1]} through "/tmp2".
The result of substitution is converted to "/tmp" according to argument
conversion rule 1.
[-d ARY[$id1]] <-- Replaces ${ARY[$id1]} through "ARY[1]"
Converted to "/tmp" according to argument conversion rule 1.

• If any of the commands listed below is executed, the command specified in the argument is actually executed, but
this parameter performs comparison and conversion also on the command specified in the argument:

• builtin command

• command command

• eval command

• exec command

• time reserved command

Example:
In this example, pwd specified in the argument of the builtin command is actually executed, but the readonly
command is executed according to the definition in the environment file.
Contents of environment file

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 551

#-adsh_conf COMMAND_CONV_ARG pwd readonly

Contents of job definition script

builtin pwd

• The conversion rules are searched in the order they are defined and the first conversion rule that matches the
conversion condition is applied.

• If conversions are defined for the same path name by using this parameter and the PATH_CONV parameter, the
conversion defined by the PATH_CONV parameter is performed first. To convert the path name obtained after
conversion by the PATH_CONV parameter further by the COMMAND_CONV_ARG parameter, specify the path name
converted by the PATH_CONV parameter.

• Use this parameter carefully, because each time a command is executed, all arguments specified in
COMMAND_CONV_ARG parameters are scanned. Therefore, if you specify this parameter many times, the job
definition script's execution time might be affected adversely.

• To specify a character string containing a backslash (\), not a metacharacter, in command-argument-2, specify \\
instead of \.

Example
• This example converts "/tmp" to "C:\temp" to run in Windows a job definition script created for UNIX:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf COMMAND_CONV_ARG /tmp "C:\\temp"

• This example converts "C:\temp" to "/tmp" to run in UNIX a job definition script created for Windows:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf COMMAND_CONV_ARG "C:\temp" /tmp

7.3.13 COMPATIBLE_CMD_EXEC parameter (defines the activation
method of an external command) [only for Windows]

Syntax

#-adsh_conf COMPATIBLE_CMD_EXEC V10

Description
The purpose of this parameter is for maintaining compatibility. Users satisfying the following conditions need to consider
whether or not a definition is necessary:

• Users who had been using a version of JP1/Advanced Shell earlier than 11-00 and have updated to 11-00 or later.

The activation method of an external command can be selected by defining this parameter.

The activation method of external commands has been changed with version 11-00 of JP1/Advanced Shell. However,
some external commands that were capable of being normally terminated with a version of JP1/Advanced Shell prior
to 11-00 might terminate with an error due to this change.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 552

To activate an external command using a method maintaining compatibility with a version prior to 11-00 without
changing the contents of the job definition script created with the version prior to 11-00, we recommend specifying V10
for the operand and specifying this parameter for the environment file.

With this operation, you can activate an external command using the same method as the version prior to 11-00. When
V10 has been specified for the operand, the following process is performed upon execution of the external command:

Behavior when V10 has been specified for the COMPATIBLE_CMD_EXEC parameter

• Replaces the "\" in front of the " (double quotation mark) in the argument with "\\".

• Adds a "\" in front of the " (double quotation mark) in the argument.

• Enclose the argument with double quotation marks (").

If you want to skip the aforementioned process, specify the -w option for the command command and start the external
command.

However, when the external command is started upon specifying the -w option for the command command, the external
command is started using the method for maintaining compatibility with the version prior to 11-00.

Operands

V10
After executing the aforementioned process, the external command is started using the method for maintaining
compatibility with the version prior to 11-00.

Notes
• Restrictions apply when executing the batch file in an environment where V10 is specified for the operand. For

details of restrictions, see 5.1.11 Specifying external commands.

• When this parameter has been defined for both the system environment file and the job environment file, the
definition of the job environment file will be enabled.

• When this parameter has been defined multiple times for the same host in the same environment file, a parameter
error will occur.

7.3.14 COMPATIBLE_CMDSUB parameter (defines the behavior of
command substitution) [only for UNIX]

Syntax

#-adsh_conf COMPATIBLE_CMDSUB V10

Description
The purpose of this parameter is for maintaining compatibility. Users satisfying the following conditions need to consider
whether or not a definition is necessary:

• Users who had been using a version of JP1/Advanced Shell earlier than 11-00 and have upgraded to 11-00 or later.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 553

Operands

V10
When CURRENT has been specified for the PIPE_CMD_LAST parameter, the last command of the pipe is executed
with the current process. In addition, a temporary file is used for exchanging data.

Notes
• When this parameter has been defined for both the system environment file and the job environment file, the

definition of the job environment file will be enabled.

• When this parameter has been defined multiple times for the same host in the same environment file, a parameter
error will occur.

• If a command for which all of the following conditions overlap is described, the result of command substitution may
not be obtained correctly.

• The COMPATIBLE_CMDSUB parameter is specified.

• CURRENT is specified for the PIPE_CMD_LAST parameter.

• A pipe is being used during the command substitution process.

• The last command linked with a pipe is being executed in the background (example: `cmd1 | { cmd2, cmd3
& }`).

7.3.15 ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of
the echo command when the escape-character option is omitted)

Syntax

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT {YES|NO}

Description
This parameter defines the action the echo command is to take for escape characters when the escape-character option
(-E or -e) is omitted in the echo command.

When YES is specified in this parameter, escape characters are interpreted, even if the -e option is not specified in the
echo command. When NO is specified, escape characters are handled as directed by the echo command specification.

The specification in this parameter is ignored when the -E or -e option is specified in the echo command.

Operands

YES
When the -E and -e options are both omitted, the echo command interprets escape characters.

NO
When the -E and -e options are both omitted, the echo command does not interpret escape characters.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 554

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined multiple times in the same environment file on the same host.

• If you want to interpret ASCII code characters expressed in 1- or 2-digit hexadecimal notation as escape characters,
you must also specify YES in the ESCAPE_SEQ_ECHO_HEX parameter.

Example
• In this example, escape characters are interpreted, even though the -e option is not specified in the echo command:

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT YES

7.3.16 ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII
code characters in hexadecimal notation are to be interpreted as
escape characters)

Syntax

#-adsh_conf ESCAPE_SEQ_ECHO_HEX {YES|NO}

Description
This parameter specifies whether ASCII code characters in hexadecimal notation are to be interpreted as escape
characters by the echo command. This parameter is valid when either of the following conditions is satisfied:

• The -e option is specified in the echo command.

• Neither the -e nor the -E option is specified in the echo command but YES is specified in the
ESCAPE_SEQ_ECHO_DEFAULT parameter.

Operands

YES
Specifies that ASCII code characters expressed in 1- or 2-digit hexadecimal notation are to be interpreted as escape
characters.

NO
Specifies that ASCII code characters expressed in 1- or 2-digit hexadecimal notation are not to be interpreted as
escape characters.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined multiple times in the same environment file on the same host.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 555

• If a value that is outside the ASCII code range is specified as an argument in the echo command, the content output
will be consistent with the character encoding specified for the terminal. Consequently, unprintable characters might
produce an incorrect output.

Example
• In this example, ASCII code characters expressed in 1- or 2-digit hexadecimal notation are interpreted as escape

characters by the echo command.

• Contents of environment file:

#-adsh_conf ESCAPE_SEQ_ECHO_HEX YES

• Contents of job definition script:

STR="\x48\x49\x54\x41\x43\x48\x49"
echo -e $STR

• Contents to be output to the standard output:

HITACHI

• In this example, ASCII code characters expressed in 1- or 2-digit hexadecimal notation are not to be interpreted as
escape characters by the echo command.

• Contents of environment file:

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT YES
#-adsh_conf ESCAPE_SEQ_ECHO_HEX NO

• Contents of job definition script:

STR="\t\x48\x49\x54\x41\x43\x48\x49"
echo $STR

• Contents to be output to the standard output:

tab-character\x48\x49\x54\x41\x43\x48\x49

7.3.17 EVENT_COLLECT parameter (specifies whether the operation
information acquisition functionality is to be enabled for job
definition scripts)

Syntax

#-adsh_conf EVENT_COLLECT {YES|NO}

Description
This parameter specifies whether the operation information acquisition functionality is to be enabled for job definition
scripts. When the operation information acquisition functionality is disabled for job definition scripts, event files are
not created in the spool directory.

This parameter is ignored in JP1/Advanced Shell - Developer, and event files are not created.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 556

This parameter is also ignored when a CUI debugger is used, and event files are not created.

Operands

YES
Enables the operation information acquisition functionality for job definition scripts.
Job definition script operation information is collected and output to event files.

NO
Disables the operation information acquisition functionality for job definition scripts.
No event files are created.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• If this parameter is defined more than once for the same host in the same environment file, a parameter error results.

Example
• This example disables the operation information acquisition functionality for job definition scripts.

#-adsh_conf EVENT_COLLECT NO

7.3.18 export parameter (defines an environment variable)

Syntax

export environment-variable-name=environment-variable-value

Description
This parameter defines an environment variable that is to take effect when job definition scripts are executed.

Arguments

environment-variable-name ~<environment variable name>((1 to 255 bytes))
Specifies a name for the environment variable being defined.
In Windows, the name of the environment variable is loaded as an uppercase shell variable name when DISABLE
is specified for the VAR_ENV_NAME_LOWERCASE environment setting parameter.

environment-variable-value ~<any character string>
Specifies the value to be set in the environment variable.
You can specify an environment variable value containing a space by enclosing it in double-quotation marks (") or
single quotation marks (') or by specifying an escape character (\) before the space. If a character string enclosed
in double quotation marks (") contains the escape character (\), all the characters following \ are treated as escaped
characters. Therefore, to specify \ as a part of a character string enclosed in double quotation marks, specify \\
instead of \.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 557

You can insert the current value of the PATH environment variable by specifying ${PATH} in a desired character
string. Specify ${PATH} at the target location in the following format:

export environment-variable-name=[any-character-string]${PATH}[any-character-
string]

${PATH} is replaced with the value of the PATH environment variable regardless of the specification of double-
quotation marks ("), single quotation marks ('), and escape characters (\). The specified double-quotation marks
("), single quotation marks ('), or escape characters (\) take effect on the entire character string inserted as the
value of the PATH environment variable, and then the value is set in the environment variable.
If you define the PATH environment variable in Windows, enclose the value of the PATH environment variable in
single quotation marks (') so that the resulting value containing a space or \ is interpreted correctly.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the environment variable

is set in the following order:

• Environment variable specified in the system environment file

• Environment variable specified in the job environment file

• Even when a value for the LANG environment variable is specified by the export parameter, the locale of the
process of the adshexec command that loaded this environment-setting parameter is not changed. (UNIX only)

• The upper limit of the character string length that can be stored in the environment variable is 32,766 bytes. In
Windows, when a long character string is stored in the PATH environment variable, an error may occur with the
API of the OS even when the character string has not exceeded the upper limit. For this reason, refrain from storing
a character string that is close to the upper limit.

Example
• This example sets the value of environment variable BBB in environment variable AAA:

export AAA=BBB

• This is an example of incorrectly setting the value of environment variable BBB in environment variable AAA:

AAA=BBB
export AAA

• This example adds /opt/jp1as/bin to the existing PATH environment variable:

export PATH=/opt/jp1as/bin:${PATH}

The colon (:) is used as the path separator.

• This example adds C:\Program Files\HITACHI\JP1AS\JP1ASE\bin to the existing PATH environment
variable:

export PATH='C:\Program Files\HITACHI\JP1AS\JP1ASE\bin;${PATH}'

The semicolon (;) is used as the path separator.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 558

7.3.19 INIT_SCRIPT_READ parameter (defines whether the initialization
script file is to be read and run)

Syntax

#-adsh_conf INIT_SCRIPT_READ {YES | NO}

Description
This parameter defines whether the initialization script file is to be read and run when the job controller starts.

Operands

YES
The job controller reads and runs the initialization script file immediately before running the root job.
However, the command will terminate with an error without reading the initialization script file in the following
cases:

• The initialization script file does not exist.

• Read permissions are not assigned to the initialization script file.

NO
The job controller does not read the initialization script file.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.20 HOSTNAME_JP1IM_MANAGER parameter (specifies the operation
management server on which JP1/IM - Manager is running that is
to be the destination of JP1 events)

Syntax

#-adsh_conf HOSTNAME_JP1IM_MANAGER host-name-of-operation-management-server-on-which-
JP1/IM-Manager-is-running

Description
When the user-reply functionality is used, this parameter specifies the host name of the operation management server
on which JP1/IM - Manager is running that is to be the destination of JP1 events.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 559

Operands

host-name-of-operation-management-server-on-which-JP1/IM-Manager-is-running ~<symbolic name>((1 to 255
characters))<<physical host name of the batch operation server on which JP1/Advanced Shell is running>>

Specifies the host name of an operation management server on which JP1/IM - Manager is running. The user will
be able to perform on the specified host the following tasks related to the user-reply functionality:

• Checking JP1 events from the JP1/IM - View that is connected to JP1/IM - Manager.

• Replying to reply-waiting events.

Note the following about specifying a host name:

• If JP1/IM - Manager is not running on the specified host, JP1 events output by JP1/Integrated Management will
not be displayed on JP1/IM - View, and the adshread command will remain in reply-waiting status. If this
happens, either start JP1/IM - Manager on the host specified in this parameter or execute the adshchmsg
command to enter replies manually.

• You specify the operation management server on which JP1/IM - Manager is running by specifying its host
name. If its IP address is specified, JP1 events will be issued to JP1/IM, but they will not be treated as reply-
waiting events. Also make sure that the specified host name is resolved.

If this parameter is omitted, JP1/Advanced Shell assumes the host name that is displayed when the hostname
command is executed on the batch operation server on which JP1/Advanced Shell is running.

Notes
• Do not specify this parameter in the job environment file.

• When you specify this parameter, determine the maximum number of concurrent reply-request messages that can
be output to each physical host or logical host and then specify that value in the USERREPLY_WAIT_MAXCOUNT
parameter.

• Make sure that the host name of the batch operation server on which JP1/Advanced Shell is run can be resolved on
the operation management server on which this parameter is specified.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination, respectively, for the user-reply functionality.

7.3.21 JOBEXECLOG_PRINT parameter (defines the job execution log
contents to be output to the standard error output when a job
terminates)

Syntax

#-adsh_conf JOBEXECLOG_PRINT {JOBLOG SCRIPT STDERR|STDERR}

Description
This parameter defines the contents of the job execution log that are to be output to the standard error output when a
job terminates. The contents defined by this parameter are displayed, for example, on the screen of the terminal from
which the adshexec command was executed and in the Execution Result Details dialog box of JP1/AJS - View.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 560

When JP1/Advanced Shell - Developer or the adshexec -d command executes debugging, the contents of the job
execution log are not output to the standard error output when the job terminates, regardless of the specification of this
parameter.

Operands

JOBLOG SCRIPT STDERR
Specifies that the following contents are to be output to the standard error output when the job terminates:

• JOBLOG contents (messages indicating the job execution status, such as command execution results and file
allocation results)
Also includes the JOBLOG contents of child jobs to be output to the standard error output of the root job.

• Job definition script

• Contents of the standard error output during job execution

STDERR
Specifies that the only contents to be output to the standard error output when the job terminates are the standard
error output during job execution.
In addition to the standard information messages, messages other than those whose message type is I (information
messages that are normally output to the JOBLOG file) are also output to the standard error output.
The JOBLOG contents of child jobs to be output to the standard error output of the root job are not output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect.

• If any of the following occurs with respect to this parameter in the same environment file, the job controller of JP1/
Advanced Shell terminates with an error without executing the job:

• This parameter is specified more than once.

• No operand is specified.

• More than three operands are specified.

• An operand other than JOBLOG SCRIPT STDERR or STDERR is specified.

• The specification order of the JOBLOG SCRIPT STDERR operand is invalid.

• If a job is operating in the simple output mode or the minimum output mode, no job execution log is output to the
standard error output regardless of the specification of this parameter.

Example
• In this example, only the contents of the standard error output during job execution are output to the standard error

output:

#-adsh_conf JOBEXECLOG_PRINT STDERR

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 561

7.3.22 JOBLOG_SUPPRESS_MSG parameter (defines a message that is
not to be output to job execution logs)

Syntax

#-adsh_conf JOBLOG_SUPPRESS_MSG message-ID

Description
This parameter specifies the message ID of a message that is not to be output to the job execution logs.

To specify multiple messages, specify this parameter for each applicable message ID. The parameters can be specified
in any order.

Specifying the same message ID in more than one parameter will not result in an error. JP1/Advanced Shell assumes
that each message ID is specified only once.

The following table shows the relationship between this parameter and message output.

No. Message output destination Specification of the ID of a message to be suppressed

Specified Omitted

1 Job execution log files on spool N Y

2 Debugger's console N Y

3 Editor's console N Y

4 System execution logs N Y

5 Other output destination (such as the standard output) N N

Legend:
Y: Message is output.
N: Message is not output.

Operands

message-ID((10 bytes))
Specifies the message ID of a message whose output to job execution logs is to be suppressed. The specifiable
message IDs are as follows:

Suppressible message content Specifiable message IDs

Built-in commands Updating of shell variable KNAX6110-I
KNAX6111-I
KNAX6120-I
KNAX6121-I

Standard shell command KNAX6112-I
KNAX6113-I
KNAX6122-I
KNAX6123-I

External commands Executable file KNAX6116-I
KNAX6117-I

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 562

Suppressible message content Specifiable message IDs

External commands Script file KNAX6126-I
KNAX6127-I

Extended shell commands KNAX6114-I
KNAX6115-I
KNAX6124-I
KNAX6125-I

Parameters related to execution of
child jobs

CHILDJOB_PGM parameter KNAX6830-I

CHILDJOB_SHEBANG parameter KNAX6831-I

CHILDJOB_EXT parameter KNAX6832-I

Function (when FUNCTION is specified for the CMDRC_CMDGRP_CHECK parameter) KNAX6118-I
KNAX6119-I
KNAX6128-I
KNAX6129-I

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect.

Example
• This example suppresses output of the KNAX6110-I and KNAX6111-I messages to the job execution logs:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I

7.3.23 KSH_ENV_READ parameter (defines whether the ENV shell
variable is to be read)

Syntax

In Windows and Linux

#-adsh_conf KSH_ENV_READ {YES | NO}

In AIX, HP-UX, and Solaris

#-adsh_conf KSH_ENV_READ {YES | NO}

Description
This parameter specifies whether the ENV shell variable is to be read when the job controller starts and the script file
indicated by the variable's value is to be executed.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 563

Operands

YES
Read the ENV shell variable when the job controller starts.

NO
Do not read the ENV shell variable when the job controller starts.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.24 LOG_DIR parameter (defines the path name of the directory to
which system execution logs are to be output)

Syntax

#-adsh_conf LOG_DIR path-name

Description
Messages about the concurrently executing jobs are collected as system execution logs in a single file. This parameter
defines the path name of the directory to which these system execution logs are to be output.

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASE\log>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\log>>
UNIX: ~<path name>((1 to 512 bytes))<</opt/jp1as/log>>
Specifies the path name of the directory to which system execution logs are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about the file systems that are not supported by JP1/Advanced Shell, see (2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 564

7.3.25 LOG_FILE_CNT parameter (defines the number of files to be used
to back up system execution logs)

Syntax

#-adsh_conf LOG_FILE_CNT number-of-files

Description
This parameter defines the number of files to be used to back up system execution logs.

Operands

number-of-files ~<unsigned integer>((1 to 64))<<4>>
Specifies the number of files to be used to back up system execution logs.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the LOG_DIR parameter and the value specified in the system
environment file are the same, specifying a different value in this parameter results in an error (even when the system
environment file's default value is assumed).

Supplementary information
• If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE

parameter values specified by the last user that started output of system execution logs take effect. We recommend
that all users who output system execution logs to the same file use the same parameter values.

7.3.26 LOG_FILE_SIZE parameter (defines the size of a file to which
system execution logs are to be output)

Syntax

#-adsh_conf LOG_FILE_SIZE file-size

Description
This parameter defines the size of a file to which system execution logs are to be output.

Operands

file-size ~<unsigned integer>((1 to 16))<<2>>
Specifies in megabytes the size of a file to which system execution logs are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the LOG_DIR parameter and the value specified in the system

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 565

environment file are the same, specifying a different value in this parameter results in an error (even when the system
environment file's default value is assumed).

Supplementary information
• If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE

parameter values specified by the last user that started output of system execution logs take effect. We recommend
that all users who output system execution logs to the same file use the same parameter values.

7.3.27 OUTPUT_MODE_CHILD parameter (defines the method for
outputting the execution results of a child job)

Syntax

#-adsh_conf OUTPUT_MODE_CHILD {EXTENDED|SIMPLE|MINIMUM}

Description
This parameter specifies one of the following modes for output of the execution results of a child job:

• Expansion output mode (default)

• Simple output mode

• Minimum output mode

By selecting the simple output mode, you can suppress information messages and output only the command execution
results, making it easier for other programs to use the job execution results. By selecting the minimum output mode,
you suppress output of more messages than when you use the simple output mode.

Standard output and standard error output are output to the destinations that were set when the child job was started.

When a child job is executed with the -m option specified in the adshexec command for starting the child job, the -
m option takes precedence over the specification of this parameter.

For details of each output mode, see the following:

• 2.6.8 Defining job execution results and log output information

• 3.4.1 Specifying the destinations of the standard output and the standard error output

• 3.4.2 Outputting job execution results to spool

• 3.4.4 Suppressing output of information and warning messages to job execution logs

• 3.5.1 Outputting the contents of the job execution log by job type

• 3.5.4 Examples of job execution log output (when the simple output mode or the minimum output mode is selected)

• 12.2 Message output destinations

Operands

EXTENDED
Specifies the extended output mode. Information is output after execution of the child job as follows:

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 566

• The job execution log is output to the standard error output when the child job terminates.

• Messages that the job controller outputs to standard error output and standard output are all output.

SIMPLE
Specifies the simple output mode. Information is output after execution of the child job as follows:

• The job execution log is not output to the standard error output when the child job terminates.

• The messages the job controller outputs to standard error output and standard output are limited to error messages.
Error messages that are output to JOBLOG are output to the standard error output.

MINIMUM
Specifies the minimum output mode. Information is output after execution of the child job as follows:

• No job execution log is output to the standard error output when the child job terminates.

• The messages the job controller outputs to standard error output and standard output are limited to error messages,
excluding notifications of command, job step, and job termination codes. Messages notifying receipt of signals
and events are also suppressed. Unlike the simple output mode, the suppressed messages are not output to
JOBLOG under the spool job directory.
Error messages that are output to JOBLOG are output to the standard error output.

JP1/Advanced Shell inherits the parent process's output mode until the analysis of environment setting parameters
is finished.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.28 OUTPUT_MODE_ROOT parameter (specifies the method for
outputting the execution results of a root job)

Syntax

#-adsh_conf OUTPUT_MODE_ROOT {EXTENDED|SIMPLE|MINIMUM}

Description
This parameter specifies one of the following modes for output of the execution results of a root job:

• Expansion output mode (default)

• Simple output mode

• Minimum output mode

By selecting the simple output mode, you can suppress information messages and output only the command execution
results, making it easier for other programs to use the job execution results. By selecting the minimum output mode,
you suppress output of more messages than when you use the simple output mode.

When a root job is executed with the -m option specified in the adshexec command for starting the root job, the -m
option takes precedence over the specification of this parameter.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 567

Operands

EXTENDED
Specifies the extended output mode. Information is output after execution of the root job as follows:

• Standard output and standard error output are redirected to a file on the spool.

• The job execution log is output to the standard error output when the job terminates.

• Messages that the job controller outputs to standard error output and standard output are all output.

• During debugging, JOBLOG is output to the standard error output at suitable times.

SIMPLE
Specifies the simple output mode. Information is output after execution of the root job as follows:

• The job execution log is not output to the standard error output when the job terminates.

• Standard output and standard error output are output to the destinations that were set when the job was started.

• The messages the job controller outputs to standard error output and standard output are limited to error messages.
Error messages that are output to JOBLOG are output to the standard error output.

• During debugging, JOBLOG is not output to the standard error output, except for error messages. All messages
the job controller outputs to standard error output and standard output are output. Messages other than the error
messages at the time of debugging termination are output.

MINIMUM
Specifies the minimum output mode. Information is output after execution of the root job as follows:

• No job execution log is output to the standard error output when the job terminates.

• The standard output and standard error output are output to the destinations that were set when the job was
started.

• The messages the job controller outputs to standard error output and standard output are limited to error messages,
excluding notifications of command, job step, and job termination codes. Messages notifying receipt of signals
and events are also suppressed. Unlike the simple output mode, the suppressed messages are not output to
JOBLOG under the spool job directory.
Error messages that are output to JOBLOG are output to the standard error output.

• During debugging, JOBLOG is not output to the standard error output, except for error messages. All messages
the job controller outputs to standard error output and standard output are output. Messages are not output except
for the error messages at the time of debugging termination.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When SIMPLE or MINIMUM is specified, the standard output is not redirected to a file on the spool, even if a
command is executed with SPOOL specified in the OUTPUT_STDOUT parameter or with adshexec -s SPOOL
specified.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 568

7.3.29 OUTPUT_STDOUT parameter (defines the destination for the root
job standard output)

Syntax

#-adsh_conf OUTPUT_STDOUT {SPOOL | PARENT}

Description
This parameter defines the destination for the root job's standard output. Child jobs assume that PARENT is specified
in this option. If this option is omitted, the root job assumes that SPOOL is specified in this option.

If the adshexec command is executed with the -s option specified, the -s option takes precedence over this parameter.

If the root job is running in the simple output mode or the minimum output mode (specified by the
OUTPUT_MODE_ROOT parameter or the -m option of the adshexec command), the standard output that was set when
the process started is inherited regardless of the specification of the OUTPUT_STDOUT parameter or the -s option of
the adshexec command.

Operands

{ SPOOL | PARENT }
Specifies one of the following values as the output destination for the root job's standard output:

• SPOOL
Sets the root job's standard output to a file on the spool.

• PARENT
Sets the root job's standard output to the destination inherited from the parent process when the process started.
If the parent process does not redirect the output destination, the output destination of the parent process is used.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.30 PATH_CONV parameter (defines the details of path conversion)

Syntax

#-adsh_conf PATH_CONV path-name-1 path-name-2

Description
This parameter defines path names before and after conversion in job definition scripts.

In character strings separated by the path separator defined in the PATH_CONV_ENABLE parameter, a character string's
leading part that matches path-name-1 is converted to path-name-2 when the job definition script is executed. This
conversion is also performed on the path separator and directory separator defined in the PATH_CONV_ENABLE
parameter.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 569

In Windows, the conversion result varies depending on the path conversion rule selected by the PATH_CONV_RULE
parameter. For details, see 7.3.34 PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows
only).

This parameter is not valid when the PATH_CONV_ENABLE parameter is not defined. If this parameter is defined
multiple times, the parameters are searched in the order they are defined in the environment file and the first definition
satisfying the conversion condition is applied.

Operands

path-name-1 ~<path name>((1 to 247 bytes))
Specifies the path before conversion. To specify a value containing a space, enclose the value in double quotation
marks (").
In Windows, you can specify a path in UNIX for path-name-1. In UNIX, you can specify a path in Windows for
path-name-1. If you intend to use \, specify \\ because JP1/Advanced Shell handles \ as an escape character. Note
that none of the following characters is permitted:
* ? < > | ` (grave accent mark) $
A path name must contain a directory separator. Use the following for the directory separator:

• In Windows, specify a forward slash (/).

• In UNIX, use two consecutive backslashes (\\).

path-name-2 ~<path name>((1 to 247 bytes))
Specifies the path after conversion. To specify a value containing a space, enclose the value in double quotation
marks ("). If you intend to use \, specify \\ because JP1/Advanced Shell handles \ as an escape character. Note
that none of the following characters is permitted:
* ? < > | ` (grave accent mark) $
A path name must contain a directory separator. Use the following for the directory separator:

• For execution in Windows, specify two consecutive backslashes (\\).

• For execution in UNIX, use a forward slash (/).

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• Conversion by this parameter is performed one line at a time. Therefore, if the part of a job definition script that
corresponds to a path name contains an end-of-line character, the correct conversion cannot be performed.

• Character strings in comments are also converted.

• The conversion rules are searched in the order they are defined and only the first rule satisfying the conversion
condition is applied.

• If DELETE is specified in the SPOOLJOB_CHILDJOB parameter, no script image is output for a job definition
script that is executed as a child job. Therefore, if this parameter is used to convert the path name of a job definition
script that is executed as a child job, the conversion results will not be output.

• According to path conversion rule 2, you cannot nest single quotation marks (') inside a range enclosed in double
quotation marks ("). If they are specified, they will be subject to path conversion.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 570

Example
• This example uses the PATH_CONV parameter to execute in Windows job definition scripts created for UNIX:

#-adsh_conf PATH_CONV /home/hitachi "C:\\hitachi"
#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp/jp1as "D:\\jp1as_tmp"
#-adsh_conf PATH_CONV /tmp "C:\\temp"

• This example uses the PATH_CONV parameter to execute in UNIX job definition scripts created for Windows:

#-adsh_conf PATH_CONV "C:\\hitachi" /home/hitachi
#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV "D:\\jp1as_tmp" /tmp/jp1as
#-adsh_conf PATH_CONV "C:\\temp" /tmp

7.3.31 PATH_CONV_ACCESS parameter (defines path conversion details
when files are input and output)

Syntax

#-adsh_conf PATH_CONV_ACCESS path-name-1 path-name-2

Description
This parameter defines the path names before and after conversion for converting file path names in job definition scripts
when files are input and output.

If an input or output operation occurs while a job definition script is running and the path name of the file subject to the
input or output operation matches the specified path-name-1, this parameter converts it to path-name-2. Both path-
name-1 and path-name-2 must be specified.

If different rules are defined for the same file path name, the first rule defined takes effect.

External scripts specified in . (dot) commands and #-adsh_script commands are not subject to conversion by the
COMMAND_CONV_ARG parameter. For details about the COMMAND_CONV_ARG parameter, see 7.3.12 
COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition scripts during
command execution).

The conversion results are output to the job execution logs as the KNAX6803-I or KNAX6805-I message.

If the PATH_CONV_ENABLE parameter is not defined in the environment file, the PATH_CONV_ACCESS parameter
is ignored.

Operands

path-name-1 ~<path name>((1 to 247 bytes))
Specifies the file path before conversion. To specify a file path containing a space, enclose the entire file path in
double quotation marks ("). A value enclosed in double quotation marks cannot consist of only a space, tab character,
or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 571

If path-name-1 is omitted or the value specified in path-name-1 is invalid, the command will terminate with an error
during parameter analysis.

path-name-2 ~<path name>((1 to 247 bytes))
Specifies the file path after conversion. To specify a file path containing a space, enclose the entire file path in double
quotation marks ("). A value enclosed in double quotation marks cannot consist of only a space, tab character, or
null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If path-name-2 is omitted or the value specified in path-name-2 is invalid, the command will terminate with an error
during parameter analysis.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameters is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• This parameter performs conversion in such a manner that a variable substitution and a file name substitution have
been resolved.

• The conversion rules are searched in the order they are defined and only the first rule satisfying the conversion
condition is applied.

• If conversions are defined for the same path name by applying both this parameter and the PATH_CONV parameter,
the conversion defined by the PATH_CONV parameter is performed first. To convert the path name obtained after
conversion by the PATH_CONV parameter further by the PATH_CONV_ACCESS parameter, specify the path name
converted by the PATH_CONV parameter.

• To specify a character string containing a backslash (\), not a metacharacter, in path-name-2, specify \\ instead of
\.

Example
• This example converts"/dev/null" to "nul" to run in UNIX a job definition script created for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_ACCESS /dev/null nul

• This example converts "nul" to "/dev/null" to run in Windows a job definition script created for UNIX:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV_ACCESS nul /dev/null

7.3.32 PATH_CONV_ENABLE parameter (enables the path conversion
functionality)

Syntax

#-adsh_conf PATH_CONV_ENABLE directory-separator path-separator

Description
This parameter enables the path conversion functionality. If the path conversion functionality has already been enabled,
the parameter outputs a message and terminates.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 572

Operands

directory-separator ~((1 or 2 bytes))
Specifies the directory separator in path names before it is converted by the path conversion functionality. The
specified value must be a forward slash (/) or two consecutive backslashes (\\).

path-separator ~((1 byte))
Specifies the path separator in path names before it is converted by the path conversion functionality. The specified
value must be a colon (:) or a semicolon (;).

Notes
• If this parameter is defined in the both system environment file and the job environment file, the definition in the

job environment file takes effect.

Example
• This example specifies a PATH_CONV_ENABLE parameter to run in Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp "C:\\temp"

• This example specifies a PATH_CONV_ENABLE parameter to run in UNIX:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV "C:\\temp" /tmp

7.3.33 PATH_CONV_NOVAR parameter (defines the shell variable that
does not handle the path name)

Syntax

#-adsh_conf PATH_CONV_NOVAR Shell-variable-name [Shell-variable-name ...]

Description
This parameter defines the shell variable name that does not handle the path name.

Operands

Shell-variable-name ~ <[*][Character string][*]>((1 to 255))
This parameter defines the shell variable name that does not handle the path name. There is no upper limit for the
quantity of the shell variable name that can be specified (the upper limit for the length of a single line in an
environment settings file is 4,092 bytes. If the shell variable name cannot be entered on a single line, the name needs
to be entered by separating the name across multiple parameters).
Specifying the same shell variable name redundantly will not result in an error.
The collective variable name can be specified by using * for the shell variable name.
Only * indicates all shell variable names.
* represents a number of characters that is equal to or greater than 0.
A syntax of character string*character string cannot be specified.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 573

** cannot be specified.
An example of the specification when the shell variable names of dirA001, dirA002, A001, A002, A0, and C0B0D0
exist is as follows:

Specification example Target shell variable

#-adsh_conf PATH_CONV_NOVAR * dirA001,dirA002,A001,A002,A0,C0B0D0
(All)

#-adsh_conf PATH_CONV_NOVAR *A001 dirA001,A001

#-adsh_conf PATH_CONV_NOVAR *B0* C0B0D0

#-adsh_conf PATH_CONV_NOVAR dir* dirA001,dirA002

#-adsh_conf PATH_CONV_NOVAR dirA001
#-adsh_conf PATH_CONV_NOVAR A002

dirA001,A002

#-adsh_conf PATH_CONV_NOVAR dirA001 A002 dirA001,A002

This function is available only when the PATH_CONV_ENABLE environment setting parameter has been specified.
However, an error will not occur even if the PATH_CONV_VAR environment setting parameter is not specified.

Specification of this parameter is merged with the specification order of the PATH_CONV_VAR environment setting
parameter and the later specification is prioritized. The later specification is prioritized even when multiple shell variable
names are specified in the same parameter.

Example
While shell variables having a name that starts with dir are defined as shell variables that handles the path name, shell
variables having a name that starts with dirno are defined as shell variables that do not handle the path name.

#-adsh_conf PATH_CONV_VAR dir*
#-adsh_conf PATH_CONV_NOVAR dirno*

7.3.34 PATH_CONV_RULE parameter (defines a rule for converting file
paths) (Windows only)

Syntax

#-adsh_conf PATH_CONV_RULE {1|2}

Description
This parameter defines (selects) a rule for converting file paths. If this parameter is omitted, path conversion rule 1 goes
into effect.

If a path separator is defined in the PATH_CONV_ENABLE parameter, the separated ranges are converted. The separator
defined in the PATH_CONV_ENABLE parameter is converted into a separator to be used by the OS that executes the
job definition script.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 574

Operands

1
Specifies selection of path conversion rule 1.
Only a range enclosed in double quotation marks (") is converted.

2
Specifies selection of path conversion rule 2.
Character strings separated by the separators shown below under Separators used in path conversion rule 2 are
converted. Character strings that are separated here are further separated by a path separator (defined in the
PATH_CONV_ENABLE parameter) and are then converted. Note, however, that characters enclosed in double
quotation marks (") and ${ } are not converted.
If the location to be converted is not enclosed in double quotation marks ("), the conversion results will be enclosed
in double quotation marks ("). Additionally, the ranges listed below will also be enclosed in double quotation marks
(").

• Path separator
Converted to ";".

• $shell-variable-name
Shell variables that are not specified with the #-adsh_path_var command or the PATH_CONV_VAR
parameter are included. Shell variables that are specified with the PATH_CONV_NOVAR parameter are
included.
The range that begins following the dollar sign ($) and ends with the first character that is not an alphanumeric
character (a letter if the leading character is a letter) or an underscore (_) is treated as a shell variable name. If
there is no shell variable name, the dollar sign ($) alone is not enclosed in double quotation marks (").

• Range from ${ to }
Shell variables that are not specified with the #-adsh_path_var command or the PATH_CONV_VAR
parameter are included. Shell variables that are specified with the PATH_CONV_NOVAR parameter are
included.

Separators used in path conversion rule 2
The following table lists the separators used in path conversion rule 2 and the positions at which these separators are
valid or invalid:

Separator Separator position

Within ' ' Within
" "#1

Within `
`#1

Single
character
following \

Within $
()#1

Within $
{ }#1

Other

| N N Y N Y #2 Y

& N N Y N Y #2 Y

; N N Y N Y #2 Y

< N N Y N Y #2 Y

> N N Y N Y #2 Y

(N #3 Y N Y #2 Y

) N N Y N Y #2 Y

` N Y Y N Y #2 Y

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 575

Separator Separator position

Within ' ' Within
" "#1

Within `
`#1

Single
character
following \

Within $
()#1

Within $
{ }#1

Other

' Y N Y N Y #2 Y

" N Y Y N Y #2 Y

N N Y N Y #2 Y

= N N Y N Y #2 Y

Space (including the tab symbol) N N Y N Y #2 Y

Linefeed code N N Y N Y #2 Y

Legend:
Y: The separator is valid.
N: The separator is not valid.

#1
Another range can be nested inside the enclosed range. The following table lists the combinations that can be nested:

Range Ranges to be nested

' ' " " ` ` Single character
following \

$() ${ }

Within " " N N Y Y Y Y

Within ' ' Y Y N Y Y Y

Within $() Y Y Y Y Y Y

Within ${ } Y Y Y Y Y Y

Legend:
Y: Can be nested.
N: Cannot be nested.
If a character indicating the end of a range is encountered within a range to be nested, it is not treated as the end of
a range. For example, if "\"" is specified, the second double quotation mark (") is included in the range following
the backslash (\) and is therefore not treated as the end of the double-quotation mark enclosed range that begins
with the first double quotation mark (").
If no character indicating the end of a range is found before the end of the line, the entire line including its end is
treated as being within the range.

#2
Same as the range in which ${ } is nested.
For example, the vertical bar (|) is valid within a pair of grave accent marks (` `) but is not valid within a pair of
double quotation marks (" ").

#3
Only a left parenthesis (() that follows a dollar sign ($() is valid. Other left parentheses are not valid.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 576

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Because path conversion rule 2 has a wider conversion range than path conversion rule 1, selecting path conversion
rule 2 might not produce the expected conversion results. Before executing a job definition script, use the syntax
check function to check the path conversion results in the generated script image. If there are conversion results that
are not appropriate, switch the path conversion rule or modify and re-execute the job definition script.

• When path conversion rule 2 is selected, variables to be substituted and patterns are not subject to conversion. An
example follows.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /tmp d:\\temp

Job definition script before conversion:

#-adsh_path_var DIR
AA=${DIR:-/tmp}

Job definition script after conversion:

#-adsh_path_var DIR
AA="${DIR:-/tmp}"

In this example, because a variable is defined by the #-adsh_path_var command, the part ${variable-name}
is enclosed in double quotation marks (") but /tmp is not converted. To avoid this problem, modify the job definition
script by, for example, specifying /tmp as a variable, as follows:

#-adsh_path_var DIR
BB=/tmp
AA=${DIR:-$BB}

• Path conversion rule 2 uses character string substitution to convert path names. Consequently, the same conversion
result might not be obtained even when the same path is specified if the specified character string is different.

• Because path conversion rule 2 also converts the document portion of a here document, make sure that programs
are not converted into unprocessable data. You can take the following steps:

• Modify the conversion rule.

• Make sure paths are not converted using variable substitution.

If these methods do not work, switch to path conversion rule 1 or consider making the here document an external
file.
The following shows an example of here document conversion.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

Job definition script before conversion:

uap << EOF
IN=/home/user001/infile
FTP=/home/user001/ftp/outfile
EOF

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 577

Job definition script after conversion:

uap << EOF
IN="d:\\home\\user001"\\infile
FTP="d:\\home\\user001"\\ftp\\outfile
EOF

As a result, the data in the here document is converted as follows:

IN="d:\\home\\user001"\\infile
FTP="d:\\home\\user001"\\ftp\\outfile

Because the post-conversion path is enclosed in double quotation marks ("), the user program will not run correctly
if it cannot properly process double quotation marks ("). In some cases, it might be desirable not to convert the path
name, such as when the ftp command is used to specify a path at a remote site. In this case, make a change, such
as substituting a variable for the path name portion and moving it outside the here document.
For example, if you want to convert the path IN=/home/user001/infile but do not want to convert the path
FTP=/home/user001/ftp/outfile, you can make the following changes:

VARIN=/home/user001/infile
VARFTP='/home/user001/ftp/outfile'
uap << EOF
IN=$VARIN
FTP=$VARFTP
EOF

• Note that the following characters will be converted if they satisfy the path conversion rule:

• Operators

• Command option characters that begin with a forward slash (/)

• Data containing a directory separator that is not a path name, specified for a command argument

• Ternary operator

In the following example, a ternary operator is converted.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV A2/A1 A2\\A1

Job definition script before conversion:

#-adsh_job JOB001
A1=10
A2=5
((BB=A1>A2?A1/A2:A2/A1))

Job definition script after conversion:

#-adsh_job JOB001
A1=10
A2=5
((BB=A1>A2?A1\\A2";""A2\\A1"))

In this example, the last A2/A1 in ((BB=A1>A2?A1/A2:A2/A1)) satisfies the conversion rule and is converted.
To prevent this, modify the job definition script by using one of the following methods.

 Specify the variable in $shell-variable-name format:

 ((BB=$A1>$A2?$A1/$A2:$A2/$A1))

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 578

 Rewrite the script using an if statement:

 if((A1>A2)) then
 ((BB=$A1/$A2))
 else
 ((BB=$A2/$A1))
 fi

• According to path conversion rule 2, if a character string satisfying the conversion rule contains a column name in
${column-name[*]} format, it is enclosed in double quotation marks ("). Note also that "${column-name[*]}",
which is the conversion result, might appear differently after conversion because its individual elements are separated
by the value of the IFS shell variable.

• According to path conversion rule 2, a path not containing a directory separator, such as cd work, cannot be
converted. In this case, modify the description of the job definition script or do not specify conversion that changes
the directory name.

• According to path conversion rule 2, when specifying a path name as an option value, as in command -p path-
name, use a space to separate the option character from the path name.

• According to path conversion rule 2, even if you convert a path contained in a command by using command
substitution in the grave accent (`) format, the expected action will not occur. An example follows.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

Job definition script before conversion:

cat file | grep `cat /home/user001/text`

Job definition script after conversion:

cat file | grep `cat "d:\\home\\user001"\\text`

In this example, because \ used in the command for command substitution is processed as a meta character, \\ is
erased in the end, and as a result the expected action does not occur.
In this case, change to command substitution in the $() format, as shown in the following:

cat file | grep $(cat /home/user001/text)

• According to path conversion rule 2, if you want to change /dev/null to Windows NUL device, use the
COMMAND_CONV_ARG and PATH_CONV_ACCESS parameters.

• According to path conversion rule 2, if you describe a path as shown below, it cannot be converted correctly.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2

Example of a script before conversion:

#-adsh_path_var homedir

INPUT1=${homedir}"/test/data"
INPUT2="${homedir}"/test/data

A path is converted in units of character strings separated by separators. Therefore, even if ${homedir}/test/
data is a path name, ${homedir} and /test/data are converted separately as two character strings because
of the double quotation marks ("), and the following expected conversion result is not obtained.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 579

Expected conversion result:

#-adsh_path_var homedir

INPUT1="${homedir}""\\test\\data"
INPUT2="${homedir}"\\test\\data

Actual conversion result:

#-adsh_path_var homedir

INPUT1="${homedir}""/test/data"
INPUT2="${homedir}"/test/data

In this case, modify the description as follows:

#-adsh_path_var homedir

INPUT1="${homedir}/test/data"
INPUT2="${homedir}/test/data"

Example
Parameter-setting examples are described below. For a job definition script conversion example, see 2.6.2 Converting
path names.

• Path conversion rule 1 is used to convert paths:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

• Path conversion rule 2 is used to convert paths:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user01 d:\\home\\user01
#-adsh_conf PATH_CONV BB/AA BB\\AA

7.3.35 PATH_CONV_VAR parameter (defines the shell variable that
handles the path name)

Syntax

#-adsh_conf PATH_CONV_VAR shell-variable-name [shell-variable-name ...]

Description
This command defines the shell variable name that handles the path name. Separators around the shell variable that
handles the path name are converted with the path conversion functionality.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 580

Operands

shell-variable-name ~ <[*][Character string][*]>((1 to 255))
This command defines the shell variable name that handles the path name. There is no upper limit for the quantity
of the shell variable name that can be specified (the upper limit for the length of a single line in an environment
settings file is 4,092 bytes. If the shell variable name cannot be entered on a single line, the name needs to be entered
by separating the name across multiple parameters).
Specifying the same shell variable name redundantly will not result in an error.
The collective variable name can be specified by using * for the shell variable name.
Only * indicates all shell variable names.
* represents a number of characters that is equal to or greater than 0.
A syntax of character string*character string cannot be specified.
** cannot be specified.
An example of the specification when the shell variable names of dirA001, dirA002, A001, A002, A0, and C0B0D0
exist is as follows:

Specification example Target shell variable

#-adsh_conf PATH_CONV_VAR * dirA001,dirA002,A001,A002,A0,C0B0D0
(All)

#-adsh_conf PATH_CONV_VAR *A001 dirA001,A001

#-adsh_conf PATH_CONV_VAR *B0* C0B0D0

#-adsh_conf PATH_CONV_VAR dir* dirA001,dirA002

#-adsh_conf PATH_CONV_VAR dirA001
#-adsh_conf PATH_CONV_VAR A002

dirA001,A002

#-adsh_conf PATH_CONV_VAR dirA001 A002 dirA001,A002

This function is available only when the PATH_CONV_ENABLE environment setting parameter has been specified.
However, an error will not occur even if the PATH_CONV_VAR environment setting parameter is not specified.
Specification of this parameter is merged with the specification order of the PATH_CONV_NOVAR environment
setting parameter and the later specification is prioritized. The later specification is prioritized even when multiple
shell variable names are specified in the same parameter.

Notes
When specifications have been made with both the system environment file and the job environment file, both of these
specifications will be merged. In addition, the specification of the job environment file is prioritized over that of the
system environment file.

Example
While shell variables having a name that starts with dir are defined as shell variables that handles the path name, shell
variables having a name that starts with dirno are defined as shell variables that do not handle the path name.

#-adsh_conf PATH_CONV_VAR dir*
#-adsh_conf PATH_CONV_NOVAR dirno*

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 581

7.3.36 PERMISSION_SPOOLJOB_DIR parameter (defines permission for
the spool job directory) (UNIX only)

Syntax

#-adsh_conf PERMISSION_SPOOLJOB_DIR permission

Description
This parameter defines the new permission when the permission for the spool job directory is to be changed when the
job terminates.

If this parameter is not specified, the permission for the spool job directory is 0700.

Operands

permission ~<4-digit octal number>((0000 to 1777))
Specifies the new permission. The spool job directory permission specified by this operand is set when the job
terminates.

Notes
• If any of the following is specified for this parameter in an environment file, the job will terminate in an error without

being executed:

• This parameter is specified more than once.

• No operand is specified.

• More than two operands are specified.

• A non-octal number or a value exceeding the value that can be specified for a permission is specified.

• A value that is not four digits in length is specified.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

Example
• This example sets the spool job directory permission to 0750:

#-adsh_conf PERMISSION_SPOOLJOB_DIR 0750

7.3.37 PERMISSION_SPOOLJOB_FILE parameter (defines permission for
the files under the spool job directory) (UNIX only)

Syntax

#-adsh_conf PERMISSION_SPOOLJOB_FILE permission

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 582

Description
This parameter defines the new permission when the permission for the files under the spool job directory is to be
changed when the job terminates.

Specifying this parameter also changes the permission for the directories located under the spool job directory. However,
the permission for the files and directories in the directories located under the spool job directory does not change.

If this parameter is not specified, the permission for the files to be created under the spool job directory is as follows:

• .DBG files: The permission is 666.

• Files allocated by the #adsh_spoolfile command: The permission specified by the command or program that
creates the files takes effect.

• Files other than the above: The permission is 600.

Operands

permission ~<3-digit octal number>((000 to 777))
Specifies the new permission. The permission for the files located under the spool job directory is set to the value
specified by this operand when the job terminates.

Notes
• If any of the following is specified for this parameter in an environment file, the job will terminate in an error without

being executed:

• This parameter is specified more than once.

• No operand is specified.

• More than two operands are specified.

• A non-octal number or a value exceeding the value that can be specified for a permission is specified.

• A value that is not three digits in length is specified.

• The adshhk and adshevtout commands operate on the spool job directory and the files located under the spool
job directory. When changing the permission, take into consideration the permission of the users who execute these
commands.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

• Specifying this parameter deletes the setuid and setgid bits of the files located under the spool job directory.

Example
• This example sets the permission for the files located under the spool job directory to 744:

#-adsh_conf PERMISSION_SPOOLJOB_FILE 744

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 583

7.3.38 PIPE_CMD_LAST parameter (defines execution processing for the
last command in a pipe)

Syntax

UNIX edition

#-adsh_conf PIPE_CMD_LAST {CURRENT|OTHER}

Windows Edition

#-adsh_conf PIPE_CMD_LAST {CURRENT|OTHER|SEQUENTIAL}

Description
This parameter specifies whether the last command in the pipeline in the current process is to be executed.

You specify CURRENT to update the contents of variables by using the last command in the pipeline and you want to
use the updated contents in commands that follow the pipeline, as described in the following.

Contents of job definition script:

typeset -i CNT=0
cat INFILE | while read STR
do
 echo "$STR"
 let CNT=CNT+1
done
echo "Line count is $CNT."

As a result, when the while statement terminates, the shell variable CNT stores the number of lines loaded by the
read command (INFILE line count).

On the other hand, if you want use the last command in the pipeline to update the contents of variables but you want to
revert to using the contents of the pre-update variables after the pipeline has terminated, specify OTHER (CBL_SYSUT1
and CBL_SYSUT2 are assumed to be common interface variables of CBLUAPx).

Contents of job definition script:

CBL_SYSUT1=/file1
CBL_SYSUT2=/file2
CBLUAP1
cat INFILE | while read DIR
do
CBL_SYSUT1=`cmd1 y`
CBL_SYSUT2=`cmd2 y`
CBLUAP2
done
CBLUAP3

In this case, when the while statement terminates, the shell variable CBL_SYSUT1 stores "/file1" and the shell
variable CBL_SYSUT2 stores "/file2".

This parameter cannot be specified more than once in the same environment file. If it is specified more than once, an
error message is output and the job terminates.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 584

Operands

CURRENT
All commands in the pipeline are asynchronously executed. Specifies that when the last command in the pipeline
is one of the following, the command is to run in the current process:

• Shell standard command

• Substitution expression

• Script control statement

• Extended shell command

• Reserved script command

• Function

If the last command of the pipeline is other than above, the command operates in another process.

OTHER
All commands in the pipeline are asynchronously executed.Specifies that the last command in the pipeline is to run
in another process.

SEQUENTIAL [Windows only]
This command sequentially executes all commands of the pipeline by the current process. In addition, a temporary
file is used for exchanging data between commands.
This is the same behavior as that of Windows edition JP1/Advanced Shell 11-00 or earlier.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• If you specify OTHER or CURRENT in the Windows version, the execution time may be longer than when specifying
SEQUENTIAL. Therefore, you must verify the execution time of a job when switching from SEQUENTIAL to
OTHER or CURRENT.

Example
The examples below show the difference in the execution result when the input file and job definition script shown in
the following are used to specify the PIPE_CMD_LAST parameter.

• Example 1
Contents of job definition script:

STR="abcdefg"
echo "ABCDEFG" | read STR
echo $STR

Output result to the standard output (if CURRENT or SEQUENTIAL is specified for the PIPE_CMD_LAST
parameter)

ABCDEFG

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

abcdefg

• Example 2

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 585

Contents of job definition script:

A=1
echo "Hello World" | A=10
echo $A

Output result to the standard output (if CURRENT or SEQUENTIAL is specified for the PIPE_CMD_LAST
parameter)

10

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

1

• Example 3
Contents of the INFILE input file:

user1,500,Tomato
user2,1000,Tomato
user3,300,Lettuce
user1,450,Cabbage
user1,250,Orange

Contents of the job definition script:

typeset -i cnt=1
cat INFILE | grep user1 | while read NAME
do
 if [$cnt -ge 3]; then
 break
 fi
 echo "$cnt = $NAME"
 let cnt=cnt+1
done
echo $cnt

The character strings from while to done are treated as the last command in the pipe.
Output result to the standard output (if CURRENT or SEQUENTIAL is specified for the PIPE_CMD_LAST
parameter)

1 = user1,500,Tomato
2 = user1,450,Cabbage
3

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

1 = user1,500,Tomato
2 = user1,450,Cabbage
1

7.3.39 SPOOL_DIR parameter (defines the spool root directory path
name)

Syntax

#-adsh_conf SPOOL_DIR path-name

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 586

Description
This parameter defines the path name of the spool root directory that is to be created for each job for output of batch
job execution results (job execution logs and the data files output by job step programs).

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi\JP1AS
\JP1ASE\spool>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\spool>>
UNIX: ~<path name>((1 to 128 bytes))<</var/opt/jp1as/spool>>
Specifies the path name of the spool root directory.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• The user-reply functionality might not operate correctly in either of the following cases:

• This parameter is specified in the job environment file.

• Multibyte characters are specified in path names.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about file systems that are not supported by JP1/Advanced Shell, see (2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

• To inherit information to a standby host during cluster operation, the directories to be inherited are shared among
the hosts. Share at least the directory specified in this parameter among the hosts.

7.3.40 SPOOLJOB_CHILDJOB parameter (defines how a spool job of a
child job is to be handled)

Syntax

#-adsh_conf SPOOLJOB_CHILDJOB {MERGE|DELETE}

Description
This parameter specifies whether the spool job of a child job is to be deleted or is to be merged into the spool job of the
root job when the child job terminates.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 587

Operands

MERGE
This command specifies that the spool job of a child job is to be merged into the spool job of the root job when the
child job finishes. As a result, the following processing occurs:

• The job execution logs of child jobs are merged into the job execution logs of the root job and are output in the
order in which the child jobs terminated.

• JOBLOG and SCRIPT of the root job are created with contents into which JOBLOGs and SCRIPTs of the child
jobs have been merged.

• Job execution logs are output to the following location in the syntax that clearly shows whether the output
contents are for the root job or child job:
During normal execution: Standard error output (STDERR, step-number_step-name_STDERR)
During debugging: Standard output and standard error output on the terminal screen

• The program output data files assigned by the #-adsh_spoolfile command while executing a child job
are created in the spool job directory of the root job with the following names:

#-adsh_spoolfile command's
execution location

File name to be assigned (in Windows, the extension .sysout is added.)

If outside the job step of a child job: C number giving the order in which a child job starts_0000_job-name_file-environment-variable-
definition-name-sequence_file-environment-variable-definition-name

If within the job step of a child job: C number-giving-the-order-in-which-a-child-job-starts_step-number_step-name_file-
environment-variable-definition-name-sequence_file-environment-variable-definition-name

If the same job definition script is executed for multiple times as a child job, SCRIPT is output for the number of
times the script is executed.
For details about how to create a spool job directory, see 3.4.2 Outputting job execution results to spool. For details
about the format for outputting job execution logs, see (3) Merging a child job's spool job into the root job's spool
job.
If you specify MERGE, the maximum number of child jobs that can be started from a single root job, including
child jobs started from child jobs, is 9,999,999. A child job that exceeds this limit finishes in an error. However, if
the OS-specified process count or file count limit is reached first, the OS's error processing takes precedence.
For an example of the job execution log output if you specify MERGE, see 3.5.3 Examples of job execution log
output(if you delete the spool job of a child job).

DELETE
This command deletes the spool job of a child job when the child job terminates.
This command only outputs contents of JOBLOG in the job execution log of a child job to the standard error output.
For an example of the job execution log output if DELETE is specified, see 3.5.3 Examples of job execution log
output(if you delete the spool job of a child job).

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When MERGE is specified and child jobs are executed asynchronously, the JOBLOG merging order might not match
the SCRIPT merging order.
For example, if child job A and child job B are executed asynchronously in a root job, JOBLOG might be merged
for child job B first and then for child job A, while SCRIPT might be merged for child job A first and then for child
job B.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 588

• When MERGE is specified and commands in a job definition script are executed asynchronously, the standard output
and standard error output of the asynchronously executed commands might be mixed among the ranges of job
execution logs for the standard output and the standard error output of child jobs.

• When MERGE is specified and an initialization error occurs in the started child job before the job definition script
has been parsed, merging will not be executed.

• Child jobs run under the assumption that a SPOOLJOB_CHILDJOB parameter value has been specified in the
environment file loaded when the root job was started. Even if the value of the SPOOLJOB_CHILDJOB parameter
differs between the root job's job environment file and the child job's job environment file, the child jobs run by
ignoring the difference.

• If a job is executed in the syntax check mode, merging will not be executed.

Example
• In this example, the spool job of a child job is merged into the spool job of the root job when the child job terminates:

#-adsh_conf SPOOLJOB_CHILDJOB MERGE
#-adsh_conf CHILDJOB_SHEBANG /bin/sh

7.3.41 SPOOLJOB_CREATE parameter (selects whether a spool job is to
be created)

Syntax

#-adsh_conf SPOOLJOB_CREATE {YES|NO}

Description
This parameter specifies whether a spool job is to be created when a job definition script is run.

This parameter is ignored for child jobs, because the specification for the root job is inherited.

Operands

YES
Specifies that a spool job directory is to be created.

NO
Specifies that a spool job directory is not to be created. For details about the operation, see (a) Determining whether
the spool job creation suppression functionality is to be used.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When the adshexec -r or adshscripttool -r command is executing, temporary files are not created for
the job definition script file regardless of this parameter's setting. In such a case, -r CMDLINE is displayed in the
output part of the job definition script file in messages.

• When the CUI debugger is used, the DBG file temporary-file-directory/ADSH_DBG_process-ID_job-ID is created
temporarily and deleted when the debugger terminates.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 589

7.3.42 TEMP_FILE_DIR parameter (defines the path name of the directory
for storing temporary files)

Syntax

#-adsh_conf TEMP_FILE_DIR path-name

Description
This parameter defines the path name of the directory for storing temporary files.

Temporary files are created in a batch job and are deleted when the batch job terminates.

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi\JP1AS
\JP1ASE\temp>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\temp>>
UNIX: ~<path name>((1 to 512 bytes))<</var/opt/jp1as/temp>>
Specifies the path name of the directory for storing temporary files.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about file systems that are not supported by JP1/Advanced Shell, see (2) File systems.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

7.3.43 TRACE_DIR parameter (defines the path name of the directory to
which traces are to be output)

Syntax

#-adsh_conf TRACE_DIR path-name

Description
This parameter defines the path name of the directory to which traces are to be output.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 590

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<common-application-data-folder\Hitachi
\JP1AS\JP1ASE\trace>>
Windows development environment: ~<path name>((1 to 128 bytes))<<common-application-data-folder
\Hitachi\JP1AS\JP1ASD\trace>>
UNIX: ~<path name>((1 to 512 bytes))<</opt/jp1as/trace>>
Specifies the path name of the directory to which traces are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about the file systems that are not supported by JP1/Advanced Shell, see (2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

7.3.44 TRACE_FILE_CNT parameter (defines the number of files to which
traces are to be output)

Syntax

#-adsh_conf TRACE_FILE_CNT number-of-files

Description
This parameter defines the number of files to which traces are to be output.

Operands

number-of-files ~<unsigned integer>((1 to 64))<<4>>
Specifies the number of files to which traces are to be output. The normal specification value is 4.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the TRACE_DIR parameter and the value specified in the system
environment file are the same, specifying a different value in this parameter will result in an error (even when the
system environment file's default value is assumed).

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 591

Supplementary information
• If multiple users output trace logs to the same file, the largest TRACE_FILE_CNT parameter value specified by

any of the users takes effect.
If the TRACE_FILE_CNT parameter value is changed in the environment file, the new value is compared with the
existing value for the number of trace files and whichever is larger is used.
To reduce the number of trace files, you must delete all files from the trace folder (make sure that no job is outputting
traces to the trace files when you delete files from the trace folder).
We recommend that all users who output traces to the same file use the same parameter values.

7.3.45 TRACE_FILE_SIZE parameter (defines the size of a file to which
traces are output)

Syntax

#-adsh_conf TRACE_FILE_SIZE file-size

Description
This parameter defines the size of a file to which traces are output.

Operands

file-size ~<unsigned integer>((1 to 16))<<2>>
Specifies in megabytes the size of a file to which traces are to be output. The normal specification value is 2.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the TRACE_DIR parameter value is the same as the value specified in the system
environment file, specifying a different value in this parameter results in an error (even when the system environment
file's default value is assumed).

Supplementary information
• If multiple users output trace logs to the same file, the largest TRACE_FILE_SIZE parameter value specified by

any of the users takes effect.
If the TRACE_FILE_SIZE parameter value is changed in the environment file, the new value is compared with
the existing value for the number of trace files and whichever is larger is used.
To reduce the file size, delete all files from the trace folder (make sure that no job is outputting traces to the trace
files when you delete files from the trace folder).
We recommend that all users who output traces to the same file use the same parameter values.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 592

7.3.46 TRACE_LEVEL parameter (defines a trace output level)

Syntax

#-adsh_conf TRACE_LEVEL trace-level

Description
This parameter defines a trace output level.

Operands

trace-level ~<unsigned integer>((0, 10, 20, 30))<<0>>
Specifies a trace output level. As the specified value increases, the traces that are output become more detailed. The
normal specification value is 0.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7.3.47 TRAP_ACTION_SIGTERM parameter (defines the job controller's
action when a forced termination request is received)

Syntax

In UNIX edition

#-adsh_conf TRAP_ACTION_SIGTERM {DISABLE|TERM|CONT|AUTO}

In Windows edition

#-adsh_conf TRAP_ACTION_SIGTERM {DISABLE|TERM}

Description
This parameter specifies whether the trap command can be used to define an operation to be performed when the job
controller receives a forced termination request. It also specifies an action for the job controller after the operation
defined by the trap command has been executed. Forced termination requests include forced termination operations
from JP1/AJS - View, transmission of a SIGTERM signal by the kill command in UNIX, and forced termination by
the taskkill command in Windows (immediate process termination by a means such as TerminateProcess).

When a forced termination request is received while a job definition script is running, the job controller operates
according to the operand specified here.

If this parameter is omitted, the job controller assumes that DISABLE is specified.

For details about the trap command, see 9.3.27 trap command (specifies the action when signals and forced
termination requests are received) in 9.3 Standard shell commands.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 593

Operands

DISABLE
Specifies that an operation to be performed when a forced termination request is received cannot be defined by the
trap command. If a forced termination request is received, the job controller will terminate with an error without
executing the subsequent commands.

TERM
Specifies that an operation to be performed when a forced termination request is received can be defined by the
trap command.
If a forced termination request is received, the job controller will perform the operation defined by the trap
command, and then will terminate with an error without executing the subsequent commands.
In the UNIX edition, when a second forced termination request is received, the job terminates immediately without
performing the job controller's postprocessing.

CONT (UNIX only)
Specifies that an operation to be performed when a forced termination request is received can be defined by the
trap command.
If a forced termination request is received, the job controller will perform the operation defined by the trap
command and is to continue processing even when subsequent forced termination requests are received.
Note that this operand is not applicable to jobs started from JP1/AJS. If this operand is specified for such a job, the
job controller will issue the KNAX0474-E message during environment file analysis and then terminate with an
error.

AUTO (UNIX only)
Specifies that the job controller is to assume that either TERM or CONT is specified, depending on the job start
method. You specify this operand when you want to share the same environment file regardless of the job start
method.

Target job Operation

Job started from JP1/AJS The job controller assumes that TERM is specified and operates accordingly.

Job started from a program other than
JP1/AJS

The job controller assumes that CONT is specified and operates accordingly.

If the job is any of the following, the job controller assumes that the job was started from JP1/AJS:

1. Job started from JP1/Advanced Shell's custom job

2. Job started while TERM was set in the AJS_BJEX_STOP environment variable

3. Child job started from 1 or 2

For details about the operation that is performed when a forced termination request is performed for each operand,
see 3.11 Forcibly terminating jobs.

Notes

(Common to both UNIX and Windows)
• When an operation to be performed when a forced termination request is received is defined by the trap

command for a job and that job receives a forced termination request, the job is not terminated until the defined
operation is completed. Keep this in mind when you define a command that takes a long time to execute or for
an operation that is not terminated.

• Even if an operation is defined by using the trap command within a job definition script, the defined operation
does not take effect while normal postprocessing is underway during normal job termination. If a forced

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 594

termination request is received during that time, the job controller assumes that no operation is defined by means
of a trap command.

• If the operation defined by the trap command terminates with an error or the job is cancelled by execution of
the exit command, the job is terminated with the termination code of the last command that was executed
within the operation defined by the trap command. However, if TERM is specified for this parameter, the
operation defined by the trap command is terminated with the termination code when the forced termination
request was received. The termination code of the operation defined by the trap command is not applied to
the termination code of the job or job steps.

• If this parameter is defined in both the system environment file and the job environment file, the definition in
the job environment file takes effect.

(UNIX only)
• If any of the conditions listed below is satisfied and a second forced termination request is received while the

first termination request is still engaged in processing, such as terminating a descendant process, performing the
operation defined by the trap command, or deleting temporary files, the postprocessing (including deletion of
created temporary files) might not be completed. In such a case, take appropriate action, such as by deleting the
temporary files manually.

 DISABLE is specified in the operand.
 TERM is specified in the operand.
 CONT is specified in the operand and no operation is defined by the trap command.

7.3.48 UMASK_INHERIT parameter (defines a file mode creation mask
when the job definition script begins to run) [only for UNIX]

Syntax

#-adsh_conf UMASK_INHERIT {YES|NO}

Description
This parameter specifies whether the file mode creation mask for the parent process is to be inherited when the job
definition script begins to run.

Operands

YES
The file mode creation mask when the job controller started is inherited.
Note that if YES is selected, access permissions for the files and directories subject to the influence of umask are
affected.

NO
The file mode creation mask is set to 0 without using the file mode creation mask when the job controller started.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 595

7.3.49 UNSUPPORT_TEST parameter (defines the handling of an
unsupported conditional expression) (Windows only)

Syntax

#-adsh_conf UNSUPPORT_TEST {h|G|L|O|ef} {ERR|TRUE|FALSE}

Description
This parameter specifies the handling of a conditional expression that is not supported by JP1/Advanced Shell in a
Windows environment. The following are the conditional expressions that are not supported by JP1/Advanced Shell in
a Windows environment:

• Conditional expression using the operator "-G"

• Conditional expression using the operator "-O"

Although JP1/Advanced Shell supports the following conditional expressions, versions earlier than 11-00 do not support
these conditional expressions so that these conditional expressions are provided as operands.

• Conditional expression using the operator "-h"

• Conditional expression using the operator "-L"

• Conditional expression using the operator "-ef"

Behavior if the action is not specified with this parameter varies depending on condition expressions.

-G, -O Action is the same as when ERR is specified.

-h, -L, -ef The result of condition evaluation is returned. If you specify L0 for the ADSH_LINK_SUPPORT environment
variable, the action becomes the same as when ERR is specified.

For details about the conditional expressions, see 5.2.2 Conditional expressions.

Operands

{ h | G | L | O | ef }
Specify the conditional expression defining the operation if the evaluation is made.

• h
Indicates a conditional expression that uses the operator -h.

• G
Indicates a conditional expression that uses the operator -G.

• L
Indicates a conditional expression that uses the operator -L.

• O
Indicates a conditional expression that uses the operator -O.

• ef
Indicates a conditional expression that uses the operator -ef.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 596

{ ERR | TRUE | FALSE }
Specify the behavior if the conditional expression is evaluated.

• ERR
Output an error message and terminate the job.

• TRUE
Output an information message and assume that the conditional expression is correct.

• FALSE
Output an information message and assume that the conditional expression is not correct.

Notes
• If this parameter is defined for a given conditional expression in both the system environment file and the job

environment file, the definition in the job environment file takes effect.

7.3.50 USERREPLY_DEBUG_DESTINATION parameter (specifies the
input source and the destination of event notification and reply-
request messages during debug execution)

Syntax

#-adsh_conf USERREPLY_DEBUG_DESTINATION [JP1EVENT | CONSOLE]

Description
This parameter specifies the input source and the destination of event notification and reply-request messages when a
job definition script that uses the adshecho and adshread commands is debugged using the user-reply functionality.

Operands

JP1EVENT
Specifies that event notification messages and reply-request messages are to be issued as JP1 events.

CONSOLE
Specifies that the input source and the destination of event notification messages and reply-request messages are to
be set to the standard input and output, respectively.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• If CONSOLE is specified in this parameter during an execution other than a debug execution, the specification is
ignored. In such a case, event notification messages and reply-request messages are issued as JP1 events.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 597

7.3.51 USERREPLY_JP1EVENT_INTERVAL parameter (specifies the
minimum interval at which JP1 events are to be issued)

Syntax

#-adsh_conf USERREPLY_JP1EVENT_INTERVAL minimum-event-issuance-interval

Description
This parameter specifies the minimum interval at which JP1 events are to be issued by the user-reply functionality.

The purpose of this parameter is to manage the flow of JP1 events by not issuing a JP1 event until the amount of time
defined here has elapsed since the previous JP1 event was issued.

Operands

minimum-event-issuance-interval ~<unsigned integer>((100 to 100000))<<500>>
Specifies in milliseconds the amount of time to wait since the previous JP1 event was issued. To prevent excessive
workload on JP1/IM - Manager, the normal specification value is 500 or greater.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination for the user-reply functionality.

7.3.52 USERREPLY_WAIT_MAXCOUNT parameter (specifies the
maximum number of concurrent reply-request messages that can
be output for a physical or logical host)

Syntax

#-adsh_conf USERREPLY_WAIT_MAXCOUNT maximum-number-of-concurrent-reply-request-
messages-to-be-output

Description
This parameter specifies the maximum number of concurrent reply-request messages to be output for each physical or
logical host when the user-reply functionality is used.

Operands

maximum-number-of-concurrent-reply-request-messages-to-be-output ~<unsigned integer>((1 to 100))<<5>>
Specifies the maximum number of concurrent reply-request messages to be output for each physical host or logical
host. This specification limits the number of reply-request messages that can exist for each physical host and logical
host.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 598

Because a maximum of 2,000 reply-waiting events can be accumulated in JP1/IM - View, specify a value (to be
applied to each host that sends reply-waiting events) that ensures that the following condition is satisfied:

Maximum number of concurrent reply-request messages that can be output by each
host times the number of hosts that send reply-waiting events to the same JP1
event destination (HOSTNAME_JP1IM_MANAGER parameter value)
+ total number of other products' reply-waiting events that can be accumulated
< 2,000

Notes
• Do not specify this parameter in the job environment file. If this parameter is specified in both the system environment

file and the job environment file, the specification in the job environment file will be ignored.

• If output of more reply-waiting events than is specified in this parameter is attempted, the processing will be placed
on wait status until enough space becomes available in the shared memory. Available space in the shared memory
is checked every three minutes for up to three times. If there is still not enough space after three attempts, an error
will result. Therefore, if multiple jobs output reply-request messages concurrently, specify an appropriate value so
that the number of reply-waiting events will not exceed that value.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination, respectively, of the user-reply functionality.

7.3.53 VAR_ENV_NAME_LOWERCASE parameter (specifies whether
environment variable names in lowercase letters are supported)
(Windows only)

Syntax

VAR_ENV_NAME_LOWERCASE {ENABLE|DISABLE}

Description
This parameter specifies whether environment variable names in lowercase letters are supported.

Operands

ENABLE
Specifies that environment variable names in lowercase letters are supported.
Environment variable names with the same spelling but different capitalization are not identified as different
environment variables in Windows, but they are recognized as separate shell variables. To avoid confusion, we
recommend that you use the same capitalization for shell variables that have the same spelling.

DISABLE
Specifies that environment variable names in lowercase letters are not supported.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 599

Examples
This example defines shell variable names SAMPLE01 and sample01 in the job definition script and a batch file, as
shown in the following.

Contents of job definition script envsample.ash

export SAMPLE01=large
export sample01=small
.\\envsample.bat | "${ADSH_DIR_CMD}grep" -i "SAMPLE01" 1>&2
echo "*** Shell variables ***" >&2
echo "SAMPLE01=$SAMPLE01" >&2
echo "sample01=$sample01" >&2

Contents of batch file envsample.bat

set

• Specifying DISABLE (environment variable names in lowercase letters are not supported)
Contents of the environment variable:

#-adsh_conf VAR_ENV_NAME_LOWERCASE DISABLE
#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE

Execution results

D:\home>"C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshexec" envsample.ash
KNAX6712-E Specified variable "sample01" cannot be exported because the name is
not in all capital letters on the current platform. filename="D:\home
\envsample.ash" line=2
KNAX6521-E Command export(line=2) failed. rc=1 E-Time=0.005s C-Time=0.000s
KNAX0101-E ADSH001002 An error occurred during execution of job.

D:\home>

In this example, the export operation for sample01 that was executed after SAMPLE01 has failed.

• Specifying ENABLE (environment variable names in lowercase letters are supported)
Contents of the environment variable:

#-adsh_conf VAR_ENV_NAME_LOWERCASE ENABLE
#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE

Execution results

D:\home>"C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshexec" envsample.ash
sample01=small
*** Shell variables ***
SAMPLE01=large
sample01=small

D:\home>

In this example, shell variables whose names are in lowercase letters can be exported. As a result, sample01, the
last shell variable exported, is exported to the environment variable. Shell variables SAMPLE01 and sample01
have different values.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 600

7.3.54 VAR_SHELL_FUNCINFO parameter (selects whether function
information arrays are used)

Syntax

#-adsh_conf VAR_SHELL_FUNCINFO {TYPE_A|TYPE_B|NONE}

Description
This parameter defines whether function information arrays are used. Arrays of function information are single-
dimensional arrays for storing information about the function being executed by the adshexec command.

There are three types of function information arrays, as listed below. For details about the function information arrays,
see 5.5.3 Function information arrays.

• Called function name array

• Function call line number array

• Function definition script file name array

Operands

TYPE_A
Specifies that function information arrays whose names begin with ADSH_ are to be used, as shown in the following:

Array type Array name

Called function name array ADSH_FUNCNAME

Function call line number array ADSH_LINENO

Function definition script file name array ADSH_SOURCE

TYPE_B
Specifies that function information arrays whose names are the same as the following are to be used:

Array type Array name

Called function name array FUNCNAME

Function call line number array BASH_LINENO

Function definition script file name array BASH_SOURCE

NONE
Specifies that function information arrays are not to be created.
This operand enables you to use the arrays that are created when TYPE_A or TYPE_B is specified as normal arrays.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined more than once in the same environment file on the same host.

• Arrays of function information are read-only. This read-only attribute cannot be released, the values cannot be
updated, and the arrays cannot be disabled by using unset.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 601

• Arrays of function information cannot be defined as local variables in a function. Do not change their attributes in
a function or define them as local functions in a function.

• Arrays of function information cannot be specified for the stepVar attribute in the #-adsh_step_start
command.

• If the parameter value differs between a root job and its child job, the parameter value that is in effect when the job
starts applies to the arrays that are created.

Examples
This example runs the following job definition script in an environment where TYPE_A is specified in the
VAR_SHELL_FUNCINFO parameter:

/home/user/script/adsh_func.ash

0001 : func1(){ <- Define function func1
0002 : function func1_2 { <- Define function func1_2
0003 : echo "in func1_2"
0004 : func2 <- Call function func2 from function func1_2
0005 : }
0006 : echo "in func1"
0007 : . ./func2.ash <- Load the external script that defines function func2
by using the . (dot) command
0008 : func1_2 <- Call function func1_2 from function func1
0009 : }
0010 :
0011 : echo "main_script start"
0012 : export FPATH=`pwd` <- Store the current work directory in shell
variable FPATH
0013 : #-adsh_script ./func3.ash <- Load the external script that defines
function func3 by using #-adsh_script
0014 : autoload func4 <- Enable the function preload functionality for
function func4
0015 :
0016 : func1 <- Call function func1
0017 : echo "main_script end"

/home/user/script/func2.ash

0001 : func2(){
0002 : echo "in func2"
0003 : func3
0004 : }

/home/user/script/func3.ash

0001 : func3(){
0002 : echo "in func3"
0003 : func4
0004 : }

/home/user/script/func4

0001 : func4(){
0002 : echo "in func4"
0003 : cnt=0
0004 : for cnt in 0 1 2 3 4 5
0005 : do
0006 : echo "ADSH_FUNCNAME[$cnt] = ${ADSH_FUNCNAME[$cnt]}"
0007 : echo "ADSH_LINENO[$cnt] = ${ADSH_LINENO[$cnt]}"
0008 : echo "ADSH_SOURCE[$cnt] = ${ADSH_SOURCE[$cnt]}"

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 602

0009 : done
0010 : }

Stack information for one function is output on each echo command line.
The following table lists the values in the function information arrays when function func4() is executing:

Element
no.

Array name

ADSH_FUNCNAME ADSH_LINENO ADSH_SOURCE

0 func4 3 /home/user/script/func4

1 func3 3 /home/user/script/func3.ash

2 func2 4 /home/user/script/func2.ash

3 func1_2 8 /home/user/script/adsh_func.ash

4 func1 16 /home/user/script/adsh_func.ash

5 main 0 /home/user/script/adsh_func.ash

If you use an environment where TYPE_B is specified in the VAR_SHELL_FUNCINFO parameter, change the contents
of job definition script /home/user/script/func4 as follows:

0001 : func4(){
0002 : echo "in func4"
0003 : cnt=0
0004 : for cnt in 0 1 2 3 4 5
0005 : do
0006 : echo "FUNCNAME[$cnt] = ${FUNCNAME[$cnt]}"
0007 : echo "BASH_LINENO[$cnt] = ${BASH_LINENO[$cnt]}"
0008 : echo "BASH_SOURCE[$cnt] = ${BASH_SOURCE[$cnt]}"
0009 : done
0010 : }

7.3.55 VAR_SHELL_GETLENGTH parameter (defines the unit for the
lengths of variable values that are replaced in format ${#variable})

Syntax

VAR_SHELL_GETLENGTH {BYTE|CHARACTER}

Description
This parameter defines the unit for the lengths of variable values that are replaced in the format ${#variable}.

Operands

BYTE
Specifies that the length of a value stored in variable in the format ${#variable} is to be replaced by the
length in bytes.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 603

CHARACTER
Specified that the length of a value stored in variable in the format ${#variable} is to be replaced by the
lengths in characters.

Examples
This example executes echo ${#CVAL} to obtain the length of the value of variable CVAL in which character string
abcdef is set.

• Specifying BYTE (replace by the length in bytes) in the VAR_SHELL_GETLENGTH parameter or omitting the
VAR_SHELL_GETLENGTH parameter
The lengths of multibyte characters vary according to the execution environment. The following example assumes
that a Linux UTF-8 environment is used:

CVAL=abcdef
echo ${#CVAL}

Because abcdef is interpreted as being 12 bytes, 12 is output to the standard output.

• Specifying CHARACTER (replace by the length in characters) in the VAR_SHELL_GETLENGTH parameter

CVAL=abcdef
echo ${#CVAL}

Because abcdef consists of eight characters, 8 is output to the standard output.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 604

7.4 Conditional parameters

To specify environment setting parameters or export parameters that are to apply only on a logical or physical host,
enclose the specifications between conditional parameters that are specified on the immediately preceding and following
lines. This section explains the conditional parameters.

7.4.1 lhost_start and lhost_end parameters (define a set of parameters
applicable only to a specified logical host)

Syntax

#-adsh_conf lhost_start logical-host-name
environment-setting-parameter-or-export-parameter-to-be-applicable-only-on-the-
specified-logical-host
 :
#-adsh_conf lhost_end

Description
If there are environment setting parameters or export parameters that are to take effect only on a specific logical host,
define those parameters enclosed between an lhost_start parameter and an lhost_end parameter. Make sure
that each lhost_end parameter is paired with an lhost_start parameter.

• lhost_start parameter
Begins the specification of environment setting parameters or export parameters that are to take effect only on
the specified logical host. This parameter also specifies the name of the target logical host.

• lhost_end parameter
Ends the specification of environment setting parameters or export parameters that are to take effect only on the
specified logical host.

Specifying multiple conditional parameters for the same logical host does not result in an error. All sets of parameters
that are specified are effective.

Operands

logical-host-name ~<any character string>((1 to 255 bytes))
Specifies the name of the applicable logical host. Specifying multiple definitions for the same logical host does not
result in an error. All sets of parameters specified are effective.
In Windows, you cannot specify a logical host name exceeding 196 bytes. Because the parameter might not work
in some cases when the logical host name exceeds 63 bytes, we recommend that you always specify logical host
names that do not exceed 63 bytes.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 605

7.4.2 phost_start and phost_end parameters (define a set of parameters
applicable only to the physical host)

Syntax

#-adsh_conf phost_start
environment-setting-parameter-or-export-parameter-to-be-applicable-only-on-the-
physical-host
 :
#-adsh_conf phost_end

Description
If there are environment setting parameters or export parameters that are to take effect only on the physical host,
define those parameters by enclosing them between a phost_start parameter and a phost_end parameter. Make
sure that each phost_end parameter is paired with a phost_start parameter.

• phost_start parameter
Specify this parameter on the line that immediately precedes the line on which begins the specification of a set of
environment setting parameters or export parameters that are to take effect only on the physical host.

• phost_end parameter
Specify this parameter on the line that immediately follows the line on which ends the specification of a set of
environment setting parameters or export parameters that are to take effect only on the physical host.

Specifying multiple definitions for the physical host does not result in an error. All sets of parameters specified are
effective.

7. Parameters Specified in the Environment Files

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 606

This chapter describes the shell operation commands and UNIX-compatible commands in JP1/
Advanced Shell.

8 Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 607

8.1 Command description format

The following shows the command description format for shell operation commands and UNIX-compatible commands:

0command-name[1option]... [1option][1operand]

Following the command name, you specify options and then operands. Operands includes option names, option values,
and other arguments that can be specified in commands. If an operand is specified before an option, all specified items
are treated as operands.

• When there is more than one option, they can be specified in any order.

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

For details about the specification of file path names in commands, see 8.1.3 File path names.

The following explains how to execute a command that you enter to the standard input from the terminal keyboard.

For input terminated by an EOF
• In Windows, press Enter followed by Ctrl+Z, and then press Enter again.

• In UNIX, press Ctrl+D.

For a single line of input
• Press Enter.

8.1.1 Command description format for shell operation commands and
UNIX-compatible command (script format) (Windows only)

The following specification rule applies to shell operation commands and UNIX-compatible commands (script format)
(Windows only):

• Options specified without a value can be grouped together as a block (for example, -a -b -c can also be specified
as -abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc
xyz, is the value of option -c).

8.1.2 Command description format for UNIX-compatible commands
The following specification rules apply to UNIX-compatible commands except for those in the script format:

• Options are classified as either short options or long options.

• Two consecutive hyphens (--) indicates the end of the specification of options. All character strings (including
options) that follow double hyphens are processed as operands.

The following subsections explain the description formats for short options and long options.

(1) Specification format for short options
A short option consists of one hyphen (-) followed by one predefined character.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 608

The specification format for short options is shown below. Whether the option value can be omitted depends on the
option.

-short-option-name[0option-value]

The rules for specifying short options are as follows:

• Option names specified without a value can be grouped together as a block (for example, -a -b -c can be specified
as -abc). In this case, a value can be specified for the last option (for example, in the specification -abc xyz,
xyz is the value of option -c).

• Some options do not allow a space before the option value. If a space is specified before the option value for such
an option, the option value will be treated as an operand.
In the Syntax section in the descriptions of the individual commands in this chapter, an option that is shown without
any space before its option value is an option in which a space cannot be specified.

(2) Specification format for long options
A long option consists of two consecutive hyphens (--) followed by a predefined character string.

The specification format for long options is shown below. Whether the option value can be omitted depends on the
option.

--long-option-name[=option-value]

An option with an option value can also be specified in the format shown below. Note that in the case of an option whose
option value can be omitted, the long option name must be separated from the option value by the equal sign (=). If a
space is specified instead of an equal sign, the option value will be treated as an operand.

--long-option-name 1option-value

Long option names and their option values cannot be abbreviated. For example, an error results if you specify --char
list for the --characters option of the cut command or --format=l for the --format option of the ls
command.

Important
For the options that have both short and long option formats, only the short option is explained in this manual
(although both are shown in the Arguments section of the command descriptions). For the options that do
not have a short options, the long option is explained. In the Syntax section in the command descriptions,
the long option names are provided after the short option names for the long options that have no relationship
with other options.

For example, the --side-by-side long option of the -y option of the diff command is not provided
in the Syntax section of the command description. On the other hand, the --suppress-common-lines
long option is provided in the Syntax section because it does not have a corresponding short option.

(3) Notes about commands
• For cp, cut, date, diff, gunzip, gzip, ln, ls, expand, mv, and stat commands, the specification order

of options and operands is arbitrary. If an option is specified after an operand, the option is processed as the option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 609

If you specify one of the environment variables listed below, you must specify operands after all the options have
been specified on the command line. Options specified after the operands will be treated as operands. For details
about these environment variables, see 2.5 Specifying environment variables.

• POSIXLY_CORRECT environment variable

• ADSH_CMD_ARGORDER=seq environment variable

• If you specify options and operands in the awk, find, getopt, tr, or xargs command, first specify all options
and then specify operands.

• If you specify options and operands in the following commands, you can specify options and operands in any order
in Linux, but you must specify options first and then specify operands in AIX, HP-UX, Solaris, and Windows:
cat, cmp, egrep, grep, head, mkdir, paste, rm, sed, sort, split, tail, touch, uniq, wc, which
If you specify the POSIXLY_CORRECT environment variable in Linux, the same operation as the AIX, HP-UX,
Solaris, or Windows operation can be performed.
For the POSIXLY_CORRECT environment variable, see 2.5 Specifying environment variables.

8.1.3 File path names
Files can be specified using absolute path names or relative path names.

Some commands require relative path names to be converted to absolute path names, which means that the length of
the path name for a file specified in a command must sometimes be evaluated in terms of the equivalent absolute path
name.

The following examples illustrate use of the absolute path name for a file specified in a command.

(1) When the file name specification is an absolute path name
The file name is specified using the absolute path name.

Example

/dir1/test1.asc

(2) When the file name specification is a relative path name
The absolute path name is the concatenation of the current directory at the time the command is executed with the path
name of the specified file.

Example

Current directory when command is executed: /home/user1
Path name of file: dir2/test2.asc
Absolute path name of file: /home/user1/dir2/test2.asc

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 610

8.2 List of commands

8.2.1 List of shell operation commands
The shell operation commands can be executed from shells and from the command prompt and include the adshexec
command (that executes a batch job).

The following table lists and describes the shell operation commands in JP1/Advanced Shell.

Table 8-1: Shell operation commands

Command name Description Location of command

adshappagent
[only for Windows
execution
environment]

This command starts the application execution agent, monitors
execution of the adshappexec command, and starts the executable
application specified by the adshappexec command.

Installation-folder\JP1ASE
\bin

adshappexec [only
for Windows
execution
environment]

This command executes the GUI application. Installation-folder\JP1ASE
\bin

adshchmsg Replies manually to a reply-request message when a failure occurs. Windows execution environment:
installation-folder\JP1ASE
\bin
Windows development environment:
installation-folder\JP1ASD
\bin
UNIX:
/opt/jp1as/sbin

adshcvmerg Merges coverage information from two asc files as the input and sends
the output to the file at a specified path.

Windows execution environment:
installation-folder\JP1ASE
\bin
Windows development environment:
installation-folder\JP1ASD
\bin
UNIX:
/opt/jp1as/bin

adshcvshow Inputs and displays coverage information.

adshevtout# Outputs job definition script operation information.

adshexec# Starts a job controller process that reads a job definition script file as
the input and runs a batch job in accordance with the job definition
script.

adshfile Allocates a file that is to be postprocessed at the end of a job step or
job.

adshhk Deletes a spool job as specified by a spool root directory name and the
number of days until deletion.

adshjava
(Windows, Linux,
AIX, and HP-UX
only)

Executes a Java batch application specified by Java application class
name in uCosminexus Application Server.

adshlsmsg Displays a list of reply-request messages when a failure occurs. Windows execution environment:
installation-folder\JP1ASE
\bin
Windows development environment:
installation-folder\JP1ASD
\bin

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 611

Command name Description Location of command

adshlsmsg Displays a list of reply-request messages when a failure occurs. UNIX:
/opt/jp1as/sbin

adshmdctl (UNIX
only)

Starts and stops the daemon that manages shared memory for the user-
reply functionality.

/opt/jp1as/sbin

adshmsvcd
(Windows
development
environment only)

Service program that manages shared memory for the user-reply
functionality. Used in a development environment.

installation-folder\JP1ASD
\bin

adshmsvce
(Windows execution
environment only)

Service program that manages shared memory for the user-reply
functionality. Used in an execution environment.

installation-folder\JP1ASE
\bin

#
Can be used only in a Windows execution environment and in UNIX.

8.2.2 List of UNIX-compatible commands
Some of the UNIX-compatible commands are provided in the executable file format and some in the script format.

• Commands provided in the executable file format
The same JP1/Advanced Shell commands can be used in both Windows and UNIX.
For details about how to specify these commands, see 8.4 UNIX-compatible commands.

• Commands provided in the script format (Windows only)
Commands that depend on UNIX functionality are supported in Windows by being provided in the script format,
thus enabling you to achieve some of the standard UNIX OS functionality while using the Windows functionality.
For details about how to specify these commands, see 8.5 UNIX-compatible commands (script format) (Windows
only).

(1) Commands provided in the executable file format
Of the UNIX-compatible commands, those provided in the executable file format can be executed within job definition
scripts. You can also execute them from the Windows command prompt and UNIX shell.

The UNIX-compatible commands provided in the executable file format are stored at the following locations:

• Windows execution environment:
installation-folder\JP1ASE\cmd

• Windows development environment:
installation-folder\JP1ASD\cmd

• UNIX:
/opt/jp1as/cmd

Amongst the UNIX-compatible commands, for commands that are provided in the executable file format, there are
restrictions on controls with large differences between OS such as the file system. For Windows, there are restrictions
on owner, group, and access permissions.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 612

The following table describes the limitations on the supported UNIX-compatible commands provided in the executable
file format.

Table 8-2: UNIX-compatible commands (executable file format)

Command
name

Overview Restrictions#

awk Performs text processing and pattern
matching.

• In Windows, if you specify a file or directory name that contains
wildcards in an argument to a command that executes the system
function, the wildcards are not expanded.

• In Windows, if you specify a file or directory name that contains
wildcards in an argument to a command connected by a pipe to the
getline, print, or printf function, the wildcards are not
expanded.

basename Obtains a file name from a path name, and
then outputs it to the standard output.

No limitations

cat Outputs files to the standard output. No limitations

cmp Compares binary files. No limitations

cp Copies files or directories. In Windows, the -p option preserves only the modification date and file
access time of the source file. Directory information is not preserved.

cut Displays selected parts of lines to the
standard output.

No limitations

date Displays the system date and time. Cannot be
used to set the system date and time.

The -a option (set time) cannot be used.

diff Compares two files. No limitations

dirname Retrieves a directory path name excluding
any file name from a character string that
satisfies the file path naming conventions,
and then outputs the result to the standard
output.

No limitations

egrep Searches for characters in files. A specified
pattern is treated as an extended regular
expression.
This is the same processing as when the -E
option is specified in the grep command.

No limitations

expand Replaces the tab character with spaces in a
line in which tab stops are set and then
outputs the result to the standard output.

No limitations

expr Evaluates an expression. No limitations

find Searches for files in directories. No limitations

getopt Analyzes command line options for easy
syntax analysis of shell scripts.

No limitations

grep Searches for characters in files. No limitations

gunzip Decompresses compressed files. In Windows, the owner, ACL, and attributes of a compressed file are not
inherited by the decompressed file.

gzip Compresses or decompresses files. • In Windows, the owner, ACL, and attributes of a file to be compressed
are not inherited by the compressed file.

• In Windows, the owner, ACL, and attributes of a compressed file are not
inherited by the decompressed file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 613

Command
name

Overview Restrictions#

head Shows the first part of files. No limitations

hostname Displays the host name (cannot be used to set
the host name).

No limitations

ln Creates a link file for a file or directory. In UNIX, hard links cannot be created for the following items:
• Directories
• Files that do not exist
• Files having different file systems

In Windows, hard links cannot be created for the following items:
• Directories
• Symbolic links for a directory
• Files that do not exist
• Files having different drive letters

In Windows, link files cannot be created in file systems other than NTFS.
In Windows, the UNC format cannot be specified for the argument target or
a target directory.

ls Lists the contents of files or directories. • In Windows, access permissions cannot be displayed for those other than
the owner of a group or file with the -l option.

• In Windows, the TZ environment variable does not apply to output. The
time zone set in the Date and Time control panel is used.

mkdir Creates directories. In Windows, the -m option for setting the mode is ignored.

mv Moves files or directories; changes the name
of a file or directory.

• In Windows, only the access permissions of the owner are visible when
overwriting.

• In Windows, changing the owner is not supported in the same cases as
for the cp command. Owner, group, and mode are not preserved.

paste Concatenates multiple files in lines, and then
outputs them to the standard output.

No limitations

printf Converts values or character strings
according to the form, and then outputs them
to the standard output.

No limitations

rm Removes files or directories. In Windows, only the access permissions of the owner are visible when
overwriting.

rmdir Removes empty directories. No limitations

sed Replaces character strings in text. No limitations

sleep Stops for a specified period of time. No limitations

sort Sorts text files No limitations

split Splits a file. No limitations

stat Outputs the statuses of files and directories
to the standard output.

• In Windows, permissions cannot be displayed other than for file owners.
• In Windows, 0 is always displayed as the information about the number

of file blocks and the block size.
• In Windows, drive numbers are displayed as device numbers.
• In Windows, 0 is always displayed for an owner's user ID and for a group

ID.
• In Windows, ... is always displayed for an owner's group name.
• In Windows, 0 is always displayed for the inode number.
• In Windows, 0 is always displayed for the total size of directories.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 614

Command
name

Overview Restrictions#

stat Outputs the statuses of files and directories
to the standard output.

• In Windows, 0 is always displayed for the major and minor device
numbers.

• In Windows, a file's most recent modification date and time is displayed
for the file's most recent access date and time and for the file's most recent
change date and time information.

• In Windows, file types other than regular files, directories, and symbolic
links cannot be displayed.

tail Outputs the last part of files. No limitations

tar Stores the file or directory in the archive and
extracts/displays the file or directory from
the archive.

• In Windows, link files cannot be extracted to a file system other than
NTFS.

• In Windows, it is not possible to extract a symbolic link in a state where
the destination of the symbolic link does not exist.

• In Windows, the -p option cannot be used.
• In Windows, the owner, group, and permission cannot be set for the file

when extracting a file from the archive.

touch Changes the most recent access date and time
or the most recent modification date and time
for a file.

• In Windows, the most recent access date and time cannot be changed.
• In Windows, the most recent modification date and time cannot be

changed for a directory.
• In Windows, the time zone set in the TZ environment variable must match

the time zone set in the Date and Time control panel.
• In Windows, the precision of the modification time set in actual files

depends on file system specifications.

tr Outputs character strings input from the
standard input to the standard output while
replacing or deleting characters on a byte-by-
byte basis.

No limitations

uname Displays information about the OS or
hardware.

No limitations

uniq Removes duplicated lines from a sorted file. No limitations

wc Counts the number of bytes, lines, characters,
or words in a file.

No limitations

which Obtains the paths of external commands to be
executed from the command search path set
in the PATH environment variable.

In Windows, this command supports only those external commands that
satisfy the path search rules provided in the description of the which
command.

xargs Inputs command arguments from the
standard input, and then creates and runs a
command line.

No limitations

#
The following limitations apply to all UNIX-compatible commands that are provided in the executable file format:

• In Windows, wildcards are not expanded when UNIX-compatible commands are executed from the command
prompt. However, they are expanded when used in a job definition script file.

• The messages that are output can vary depending on the platform on which the command is executed.

• In Windows, you must use double quotation marks when executing commands from the command prompt.

• There are limitations to the supported files. For details, see 2.2.3 Files used in JP1/Advanced Shell.

• The path conversion functionality is not applicable to the path names generated by commands or to the file names
specified in job definition script files.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 615

• If you use functionality that runs the following programs to run an application with a GUI interface, the
application might terminate at a run time of a batch job:
- system function of the awk command
- Format of the awk command: command-name | getline [variable name]
- Format of the awk command: print [expression[, ...]] | command-name
- -exec and -ok primaries of the find command
- xargs command
Note also that new jobs are generated when you run the adshexec command.

Restrictions are as follows when, amongst the UNIX-compatible commands, using a hard link or symbolic link in the
executable file format:

• Values might vary between the UNIX edition and Windows edition when the number of hard links for a directory
is output with the find command, ls command, and stat command.

• In Windows, as hard links and symbolic links have become supported from version 11-00, the output format of some
UNIX-compatible commands might vary between versions before 11-00 and versions later than 11-00. In order to
return the output format to that of a version prior to 11-00 without using hard links or symbolic links, specify L0
for the ADSH_LINK_SUPPORT environment variable. For details on the ADSH_LINK_SUPPORT environment
variable, see 2.2.7 Using hard links and symbolic links.

• When a UNIX-compatible command is executed upon specifying a value other than L0 or L1 for the
ADSH_LINK_SUPPORT environment variable, the command will end in an error with a return code of 255 or
more.

(2) Commands provided in the script format (Windows only)
The UNIX-compatible commands provided in the script format can be executed only within job definition scripts.

Sample script files for the UNIX-compatible commands provided in the script format are stored at the following
locations:

• Windows execution environment:
installation-folder\JP1ASE\sample

• Windows development environment:
installation-folder\JP1ASD\sample

Before using the UNIX-compatible commands provided in the script format, you must complete the preparations
described in (2) Preparations for using the script-format UNIX-compatible commands (Windows only) on the sample
script files provided by JP1/Advanced Shell.

The table below lists and describes the supported UNIX-compatible commands in the script format. The provided sample
script file is for Windows only. To use these commands in UNIX, use the OS-provided commands.

Table 8-3: UNIX-compatible commands (script format)

Command name Overview

chmod Changes the access permissions of files and folders.

su Executes programs specified in the su command.

who Displays information about the users who are currently logged in.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 616

Restrictions on when you use a hard link and symbolic link in the script format out of UNIX-compatible commands
are as follows:

• If you specify a value other than L0 and L1 for the ADSH_LINK_SUPPORT environment variable and execute a
UNIX-compatible command, the command finishes with the error code 255 or more.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 617

8.3 Shell operation commands

8.3.1 adshappagent command (application execution agent start
command) [only for Windows execution environment]

Syntax

adshappagent [-q] [-c]

Description
This command starts the application execution agent, monitors execution of the adshappexec command and then
starts the executable application specified by the adshappexec command.

Each user executing the adshappexec command needs to execute the adshappexec command (mapping OS user
of JP1/Base).

The user must be assigned rights with the administration tool of Windows under Local security policy > Local policy
> Assign user rights > Create global object.

If the right to "create a global object" cannot be enabled due to security problems, a user who can enable the rights to
"create a global object" must use the application execution agent function.

Functions for performing registration on startup of Windows and cancellation from startup are provided. We recommend
using this function to automatically start up at logon.

If you select All Programs > Advanced Shell > Application Execution Agent from Start menu of Windows,
theApplication Execution Agent icon appears in the notification area of the Task bar.

If you place a cursor on the Application Execution Agent icon, the following description of the icon appears:

Status of icons changes as follows:

(Icon color: White) The executable application has not been started yet.

(Icon color: Green) The executable application is being executed.

(Icon color: Yellow) The executable application is forcibly terminated.

Use the argument-c of the adshappagent command or adshappexec command when you reference the
information of the running executable application. Information cannot be obtained from the job definition script.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 618

Arguments

No arguments are specified.
Start up the application execution agent.

-q
Terminates the application execution agent.
To terminate the application execution agent including when you switch the node of cluster link, use this argument.

-c
This command outputs contents of the shared memory of the application-execution agent functionality.
The adshcollect command uses this argument.
To use the application execution agent, the agent needs to be redirected to the file.
Information is not displayed on the console.
In addition, the information to be acquired is the information for each login user and this information needs to be
acquired with the executed login user.

Return codes
Return code Meaning

0 Normal termination.

Other than 0 Termination with an error.

Notes
• You need to execute the adshappagent command before you execute the adshappexec command.

• If you adopt the setting that waits for the executable application to finish (-w) by using the adshappexec command,
do not finish the application execution agent until the executable application finishes. If the application execution
agent finishes, the activated executable application keeps running and the job that started the executable application
becomes an error.

• Domain user and users other than domain users need to be handles as a different user in the application-execution
agent functionality.

• When you perform uninstallation and installation for version upgrade, finish the application execution agent, log in
as the user who registered the application execution agent in startup and then delete the application execution agent
from startup. If you perform uninstallation without deleting the application execution agent registered in startup,
install JP1/Advanced Shell again, log in as the user that startup remains and then delete the application execution
agent remains in startup.

• If you execute the system switchover while running the application-execution agent program. Information before
the system switchover is not inherited after executing system switchover. You need to finish the application execution
agent by using the -q option and then start the application execution agent after performing the system switchover.

• Only one application execution agent can be started for the same user. If multiple application execution agents are
started, an error occurs.

• You need to execute the adshappagent command in the logon area. Do not execute the command as the extension
of the job of JP1/AJS operating in the service space. If you operate the command, you cannot operate the interactive
type application.

• Do not specify the argument-q and argument-c with other arguments at the same time. If you specify the argument-
q and argument-c with other arguments simultaneously, an error occurs.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 619

8.3.2 adshappexec command (GUI application execution command) [only
for Windows execution environment]

Syntax

adshappexec [-m] [-d work-folder] [-v name-to-be-displayed]{-w executable-
application-name | -n Executable-application-name} [-- argument-1 argument-2...]

Description
This command requests activation of the executable application to the application execution agent. You can activate
this command by specifying the executable file name for the PC job definition of JP1/AJS.

This command outputs the return value of the executable application to the standard output and message (detailed results
of JP1/AJS). When using this command in a succeeding job as the return value of the job, the command stores the value
in the variable with command substitution.

Arguments

-m
This command suppresses the message output to the standard error output.
You can use this command in environments where the standard input/output cannot be used.
This command outputs an argument specification error of the command and license check error even if when the -
m option has been specified.

-d work-folder ~ <path name>((1 to 247 bytes))
This command specifies the work folder for execution of the executable application.
When the work folder has not been specified, this command activates the executable application with the current
path for execution of the adshappexec command.
If a work folder contains a space, specify the name including the space by enclosing the name with double quotation
marks (") when executing the application from the job definition script.

-v name-to-be-displayed ~ <path name>((1 to 247 bytes))
You can specify the display name that will appear when you left-click on the [Application Execution Agent] icon.
If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when you executing the application from the job definition script.
If the name to be displayed is omitted, the executable application name is output.
We recommend specifying this argument to distinguish applications when multiple executable applications are
operated.

-w executable-application-name ~ <path name>((1 to 247 bytes))
The application execution agent will not finish until the executable application is finished.
Specifies the file name of the executable application for the executable application name.
If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when executing the application from the job definition script.

-n executable-application-name ~ <path name>((1 to 247 bytes))
The application execution agent finishes without waiting for the executable application to finish.
When you use this argument, the executable application can be started without being affected by the restrictions
applied to the number of simultaneous executions.
Specifies the file name of the executable application for the executable application name.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 620

If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when executing the application from the job definition script.

-- argument-1 argument-2... ~ <argument>((1 to 1023 bytes))
Specifies the parameter after -- that is specified when executing the executable application.
Do not specify an argument when specifying an associated executable application.
You can specify any number of arguments as long as the total length of the arguments is within 1,023 bytes.

Return codes
Return code Meaning

0 Normal termination.

Other than 0 Termination with an error.

There are return codes for 3 processes in the adshappexec command. The return code for each process is handled
as follows:

Figure 8-1: Handling of the return code for each process

The output of the return value at the position where the error has occurred are as follows:

(a) Error when handling the adshappexec command
This command sets the return value of the command. This command outputs the message to the standard error output
(detailed results when executed from JP1/AJS - View).

(b) Error when the application execution agent is processing requests from the adshappexec command
This command sets the return value of the command. This command outputs the message to the standard error output
(detailed results when executed from JP1/AJS - View) by using the application execution agent.

(c) Return value of the executable application
This command outputs the return value to the standard output. In addition, the return value of the executable
application is output to the standard error output (detailed results when executed from JP1/AJS - View).
Even if the executable application returns a return value other than 0, the adshappexec command will not be
abnormally terminated.
To confirm the return value of the executable application, confirm the messages of the standard output.

(d) Error when the application execution agent is not processing requests from the adshappexec command
This command sets the return value of the adshappagent command as an error of the application execution agent.
This command outputs a message to the message box or the log of the application-execution agent functionality
depending on the location where the error has occurred.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 621

Notes
• You must execute the adshappexec command while the application execution command is running. An error

occurs if the application execution command is executed before the application execution agent is run. In addition,
an error occurs if you finish the application execution agent while executing the adshappexec command.

• You must specify the -w argument and -n argument of the adshappexec command.
The argument specified last is enabled in the following cases:

• If the -w option and the -r option are specified at the same time

• If the -w option is specified multiple times

• If the -r option is specified multiple times

• The executable application does not inherit the environment variable and environment variable file name that are
setting items of the PC jobs of JP1/AJS. In addition, the executable application uses the environment variable of the
user running the application.

• A maximum of 5 executable applications that specify the -w argument of the adshappexec command can be run
at the same time. If you start more than 5 executable applications, you must wait until executable applications are
finished.
When waiting for the completion of an executable application, it may take more than a minute from when the
executable application that is being executed ends to when the executable application is started.

• If the same option is specified multiple times, the last specification is enabled.

• When executing the application having the following specifications by using the -w argument, the adshappexec
command may not terminate even when the specified file is terminated.

• Even if you close the file specified for the executable application, the executable application itself will not be
terminated.

In such case, the adshappexec command is terminated if the application itself is terminated.
Example: If you close only the Excel file that is specified as the executable application and do not terminate Excel
itself

• Depending on the specification related to the start of processes of the executable application, the adshappexec
command may be terminated without waiting for termination of the application even if the -w argument is specified.
The adshappexec command may terminate under the following cases:

(1) If KNAX7259-W is output
Example: If Excel itself has already been operated before executing the Excel file as an executable application
In this case, run the executable application while Excel is not being run or adopt the operation in which the -w
argument will not be used.

(2) If KNAX7259-W is not output
Example: If you execute explorer.exe as an executable application
In this case, adopt the operation in which the -w argument will not be used.

• Note the following points when performing a forced termination:

• When the job is forced to terminate while executing the adshappexec command:
The running executable application keeps running.

• When TERM is specified with the TRAP_ACTION_SIGTERM
Do not specify the adshappexec command for the operation definition of the trap command.
When an executable application that performs interactive operation is specified, the executable application will
wait for a reply and the job definition script might not end.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 622

Examples
• When executing and waiting for termination of the executable application:

adshappexec -w "c:\appfolder\app.exe"...1
Terminate echo app...2

Execute c:\appfolder\app.exe (process 1) and wait for termination (process 2).

• When executing and not waiting for termination of the executable application:

adshappexec -n "c:\appfolder\app.exe"...1
Run echo app...2

Execute c:\appfolder\app.exe (process 1) and execute the process 2 without waiting for the application to
finish.

• When determining the return value of the executable application that uses the extended shell command

exeapprc=$(adshappexec -w c:\\appfolder\\app.exe)
if [[$? != 0]] ... 1
then
 echo adshappexec error
 exit
fi
echo $exeapprc
if [[$exeapprc != 0]] ... 2
then
 echo app.exe error
 exit
fi

Process 1 judges the return value of the adshappexec command.
Process 2 judges the return value of c:\\appfolder\\app.exe (executable application).

8.3.3 adshchmsg command (replies manually to a reply-request message
when a failure occurs)

Syntax

adshchmsg [-h logical-host-name] -n reply-request-message-number {-r reply|-d}

Description
This command enters a reply to a reply-request message in shared memory when a failure occurs. It can also be used
to cancel the reply-waiting status of a reply-request message.

You specify the reply-request message number of the reply-request message in the -n option and the reply in the -r
option. To cancel the reply-waiting status of a reply-request message, you specify the reply-request message number of
the reply-request message in the -n option and you specify the -d option (which requests cancellation).

In an execution environment, this command can be executed by the root or an Administrator with an administrator role
on the machine where JP1/Advanced Shell is installed. In a development environment, a general user can run this
command.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 623

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not work.

-n reply-request-message-number ~<unsigned integer>((1 to 2147483647))
Specifies the reply-request message number of the reply-request message that you want to reply to or whose reply-
waiting status you want to cancel. Specify the reply-request message's number as displayed by the adshlsmsg
command.
Either the -r option or the -d option must also be specified or an error will result.
If no reply request message number is specified, the option that is specified next will be treated as the argument,
resulting in an error.

-r reply ~<ASCII character string>((0 to 512 bytes))
Specifies the reply to be read by the issuer of the reply-waiting event. If the reply contains a space, enclose the reply
string in double quotation marks (").
An error results if the -n option is not specified.
If you specify a character string that exceeds 512 bytes, only the first 512 bytes are treated as the reply. If a character
string that contains an end-of-line code is specified, the portion of the character string following the end-of-line code
will be ignored.

-d
Specifies that the reply-waiting status of the reply-request message specified in the -n option is to be canceled. An
error results if the -n option is not also specified.

Return codes
Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• In the following cases, the item that is specified last will be the one that takes effect:

• The -r and the -d option are both specified.

• The -r option is specified more than once.

• The -n option is specified more than once.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 624

8.3.4 adshcvmerg command (merges coverage information)

Syntax

adshcvmerg -o output-asc-file-path-name base-asc-file-path-name merge-asc-file-path-
name

Description
This command merges coverage information from a base asc file and a merge asc file, and then outputs the merged
contents to an output asc file.

A command error results if the input files to be merged are the same file. Whether the input files are the same is
determined by whether they have the same file name, including the absolute path name. It is not based on whether the
contents of the input files are the same.

Arguments
In Windows, arguments are not case sensitive; in UNIX, arguments are case sensitive.

-o output-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the output file to which the merge results are to be output.

base-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the base asc file.

merge-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the asc file to be merged with the base asc file.

Return codes
Return
code

Meaning

0 Normal termination

1 The end of the file was detected in the middle of reading an asc file. The asc file is corrupted.

2 An error occurred during unlocking of a file.

3 There is an error in a command line specification.

4 There is an error in an environment variable setting.
• The character encoding set in the LANG environment variable is not supported.

5 Different job definition scripts were used for the following:
• Storing coverage information in the base asc file
• Storing coverage information in the merge asc file

6 An error occurred during opening of a file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 625

Return
code

Meaning

6 • This error also occurs if the file is the wrong type.

7 An error occurred during locking of a file.

8 An error occurred while the name of a file was being changed.

9 An error occurred during file input or output.

10 A memory shortage occurred.

11 An error occurred during message output processing.

12 An error occurred during processing of output to the standard error output.

13 An inconsistency in internal processing was detected.

14 An error was detected in the data format of an asc file. The asc file is invalid.

15 An error occurred during acquisition of the date and time.

16 An error occurred during acquisition of the job definition script file information.

17 An asc file cannot be processed by the command.
An asc file was created by a different version.

19 An error occurred during interaction with the OS while command processing was ongoing.

Notes
• Merging is possible only when the same job definition script was used to collect the coverage information for the

base asc file and the merge asc file. If different job definition scripts were used, a command error results.

• A command error results if you specify the base asc file or the merge asc file for the output asc file. The output
asc file must be different from the base asc file and the merge asc file.

• A command error results if you specify the same file as the base asc file and the merge asc file.

• Whether the files specified as the base asc file and the merge asc file are the same is determined by the absolute
path names of the specified files. They are considered the same file if their absolute path names are identical.

Example
• Merge the coverage information in JOB_user1.asc and JOB_user2.asc and send the output to
JOB_user3.asc.

adshcvmerg -o JOB_user3.asc JOB_user1.asc JOB_user2.asc

8.3.5 adshcvshow command (displays coverage information)

Syntax

adshcvshow { [-l n1 [- [n2]] [, n3 [- [n4]]]]...]|-s} asc-file-path-name

Description
This command displays coverage information for the asc file specified in the argument.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 626

Arguments

-l n1 [- [n2]] [, n3 [- [n4]]]...
Specifies the range of coverage information to be displayed in terms of the line numbers of the job definition script.
Specify a range of line numbers in the format n1 [- [n2]]. n1- denotes the range beginning with line number
n1 through the last line. You can specify multiple ranges separated by the comma (,).

• n1: Line number of the starting line of the range to be displayed.

• n2: Line number of the final line of the range to be displayed.

If this option is not specified, all lines in the job definition script are displayed.
In the specification format for lines, a range is specified with a hyphen (-), and multiple ranges are separated by the
comma. If you do not specify a number after the hyphen, the range will extend from the line whose line number is
specified before the hyphen through the final line.

-s
Specifies that the display is to be based on the contents of a job definition script file that is being backed up.
This option is used to determine whether the asc file corresponds to the job definition script file or if there are
differences.

asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the asc file containing the coverage information to be displayed.

Return codes
Return
code

Meaning

0 Normal termination

1 The end of the file was detected in the middle of reading an asc file. The asc file is corrupted.

2 An error occurred during unlocking of a file.

3 There is an error in a command line specification.

4 There is an error in an environment variable setting.
• The character encoding set in the LANG environment variable is not supported.

6 An error occurred during opening of a file.
• This error also occurs if the file is the wrong type.

7 An error occurred during locking of a file.

8 An error occurred while the name of a file was being changed.

9 An error occurred during file input or output.

10 A memory shortage occurred.

11 An error occurred during message output processing.

12 An error occurred while output was being sent to the standard error output.

13 An inconsistency in internal processing was detected.

14 An error was detected in the data format of an asc file. The asc file is invalid.

15 An error occurred during acquisition of the date and time.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 627

Return
code

Meaning

16 An error occurred during acquisition of the job definition script file information.

17 The asc file cannot be processed by the command.
The asc file was created by a different version.

19 An error occurred during interaction with the OS while command processing was ongoing.

Notes
• An error results if the -s option and -l option are both specified at the same time.

• An error results if the line number of the final line is less than the line number of the starting line in a specified range
of lines.

• If the line number of the starting line is equal to the line number of the final line, the range will consist of only that
line.

• If the line number of the starting line is greater than the number of lines in the job definition script file, the
specification is ignored.

• If the line number of the final line is greater than the number of lines in the job definition script file, the final line
will be the last line.

• Overlapping ranges are interpreted as the sum of the ranges. For example, -l 1-10,5-20 is equivalent to -l
1-20.

• An error results if the format of a range is incorrect (example: 1-10-20).

• An error results if 0 is specified as a line number.

• When the -l option is specified, the lines from Total information and after are not output.

Examples
• Display coverage information for lines 1 through 10, line 15, and lines 21 through the final line.

adshcvshow -l 1-10,15,21- JOB_user1.asc

• Display coverage information for lines 2 through 8.

adshcvshow -l 2-6,4-8 JOB_user1.asc

• If the job definition script file has 9 lines, nothing is displayed.

adshcvshow -l 10-15 JOB_user1.asc

• If the job definition script file has 9 lines, coverage information for lines 2 through 4 is displayed.

adshcvshow -l 10-15,2-4 JOB_user1.asc

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 628

8.3.6 adshevtout command (outputs job definition script operation
information)

Syntax

adshevtout [-s job-execution-start-time-lower-bound]
 [-e job-execution-start-time-upper-bound]
 [-c JP1/AJS-schedule-service-name]
 [-r JP1/AJS-root-jobnet-name]
 [-k JP1/AJS-job-execution-ID]
 [-n JP1/AJS-job-number]
 [-g JP1/AJS-job-name]
 [-u JP1/Advanced-Shell-execution-user-name]
 [-p job-definition-script-file-path-name]
 [-i JP1/Advanced-Shell-job-ID]
 [-j spool-job-name]
 [-t]
 [-d]
 [-m]
 [-z]
 [-h logical-host-name]

Description
This command searches the event file for job definition script operation information for jobs meeting specified
conditions, and output the results in CSV format. The output destination is the standard output (stdout).

This command cannot be used in JP1/Advanced Shell - Developer.

Specification of output conditions

You use the following arguments to specify the jobs whose job definition script operation information is to be output:

 [-s job-execution-start-time-lower-bound]
 [-e job-execution-start-time-upper-bound]
 [-c JP1/AJS-schedule-service-name]
 [-r JP1/AJS-root-jobnet-name]
 [-k JP1/AJS-job-execution-ID]
 [-n JP1/AJS-job-number]
 [-g JP1/AJS-job-name]
 [-u JP1/Advanced-Shell-execution-user-name]
 [-p job-definition-script-file-path-name]
 [-i JP1/Advanced-Shell-job-ID]
 [-j spool-job-name]

If multiple output conditions are specified, the command outputs job definition script operation information only for
jobs that satisfy all the specified conditions.

If no output conditions are specified, the command outputs job definition script operation information for all jobs on
the physical host or the specified logical host.

If you specify job attributes (such as start date, job ID, and job name) as output conditions for the jobs whose information
is to be output, the job attributes are determined by the attribute values of the root job.

The command outputs the job definition script operation information for the root job that satisfies all the output
conditions and for all its child jobs. You cannot output job definition script operation information that is limited only to
the root job or only to specific child jobs.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 629

What job definition script operation information is output

Normally, job definition script header information is output on the first line, and operation information and messages
are output on the second and subsequent lines.

You select the output information by specifying the following arguments to the adshevtout command:

[-t]
[-d]
[-m]
[-z]

For examples of the output of operation information, see 3.7.9 Job definition script operation information that is output.

When the following argument is specified, the command outputs operation information for jobs executed on the specified
logical host:

 [-h logical-host-name]

When this argument is not specified, the command outputs operation information for jobs executed on the physical host.

Arguments

-s job-execution-start-time-lower-bound
Specifies a lower boundary for the job execution start date and time as a condition for determining the jobs whose
job definition script operation information is to be output.
For details about the specification format of the date and time, see Job execution start date and time below.
If this argument is omitted, there is no limitation on the lower boundary for the execution start date of the jobs to
be output.

-e job-execution-start-time-upper-bound
Specifies an upper boundary for the job execution start date and time as a condition for determining the jobs whose
job definition script operation information is to be output.
For details about the specification format of the date and time, see Job execution start date and time below.
If this argument is omitted, there is no limitation on the upper boundary for the execution start date of the jobs to
be output.

-c JP1/AJS-schedule-service-name
Specifies a JP1/AJS schedule service name as a condition for the jobs whose job definition script operation
information is to be output.
You can output jobs that match either of the following as character strings:

• The scheduler service name specified in this argument

• The name of the JP1/AJS scheduler service that started the job (the value of the AJS_AJSCONF environment
variable that was specified when JP1/AJS started the job)

-r JP1/AJS-root-jobnet-name
Specifies a JP1/AJS root jobnet name as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The root jobnet name specified in this argument

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 630

• The JP1/AJS root jobnet name at the time the job was started (the value of the AJSNETNAME environment
variable that was specified when JP1/AJS started the job)

-k JP1/AJS-job-execution-ID
Specifies a JP1/AJS job execution ID as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The job execution ID specified in this argument

• The JP1/AJS job execution ID at the time the job was started (the value of the AJSEXECID environment variable
that was specified when JP1/AJS started the job)

-n JP1/AJS-job-number
Specifies a JP1/AJS job number as a condition for the jobs whose job definition script operation information is to
be output.
You can output jobs that match either of the following as character strings:

• The job number specified in this argument

• The JP1/AJS job number at the time the job was started (the value of the JP1JobID environment variable that
was specified when JP1/AJS started the job)

For example, to specify the job with job number 0000012345, you must specify -n 0000012345, with the
leading zeros. If you specify -n 12345, it is not considered a match to the job number.
Note that job number formats might differ between platforms.
For details about job numbers, see the applicable JP1/AJS manual.

-g JP1/AJS-job-name
Specifies a JP1/AJS job name as a condition for the jobs whose job definition script operation information is to be
output.
You can output jobs that match either of the following as character strings:

• The job name specified in this argument

• The JP1/AJS job name at the time the job was started (the value of the AJSJOBNAME environment variable that
was specified when JP1/AJS started the job)

-u JP1/Advanced-Shell-execution-user-name
Specifies the execution user name of the process running the adshexec command that executed the job as a
condition for the jobs whose job definition script operation information is to be output.
You can output jobs that match either of the following as character strings:

• The user name specified in this argument

• The user name for the process running the adshexec command that executed the job

-p job-definition-script-file-path-name
Specifies the path name of the job definition script file specified in the adshexec command when the job was
executed as a condition for the jobs whose job definition script operation information is to be output.
You can output jobs that match either of the following as character strings:

• The path name specified in this argument

• The path name of the job definition script file specified in the adshexec command

Even if the path name can be interpreted as being for a job's job definition script file, if there is no match as a character
string, the job will not be considered as a job whose job definition script operation information is to be output. The
following is an example:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 631

Example of when there is not a path name match:
Current directory when the adshexec command is executed: /home/user1
Path name specified in the adshexec command: ./test1.ash
Path name specified in the adshevtout command: /home/user1/test1.ash

-i JP1/Advanced-Shell-job-ID
Specifies a JP1/Advanced Shell job ID as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The job ID specified in this argument

• The JP1/Advanced Shell job ID of the job (the value of the ADSH_JOBID environment variable)

For example, to specify the job whose job ID is 000001, you must specify -i 000001. The leading zeros cannot
be omitted.

-j spool-job-name
Specifies the name of a spool job in the spool job directory as a condition for the jobs whose job definition script
operation information is to be output. As the spool job name, specify the name of the job in JP1/Advanced Shell.
If you specified the spool job name of the spool job directory in the ADSH_SPOOL_JOBNAME shell variable, specify
the value of the ADSH_SPOOL_JOBNAME shell variable.
You can output jobs that match either of the following as character strings:

• The spool-job-name specified in this argument

• A job name in JP1/Advanced Shell (the value of the ADSH_JOB_NAME environment variable) if the
ADSH_SPOOL_JOBNAME shell variable is not specified, or if ADSH_SPOOL_JOBNAME is specified, the name
of a spool job in the spool job directory specified in the ADSH_SPOOL_JOBNAME shell variable

-t
Specifies that output of the header information is to be suppressed when the job definition script operation
information is output.

-d
Specifies that output of the job definition script operation information is to be suppressed.
You use this argument when you want to output the header information only.

-m
Specifies that only the messages are to be output as the job definition script operation information.

-z
Specify that output of information about environment variables is to be suppressed when the job definition script
operation information is output.

-h logical-host-name
Specifies the name of a logical host that is executing jobs whose job definition script operation information is to be
output.
The adshevtout command outputs job definition script operation information from the event files in the spool
corresponding to the specified logical host.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not function correctly.
This argument is for specifying an execution environment. It is not for specifying a condition for the jobs whose job
definition script operation information is to be output.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 632

The -h specification is ignored if the logical host name specified in this argument is not defined in an environment
file.

Return codes
Return
code

Meaning

0 Normal termination

1 There is an error in a command line specification.

2 There is an error in an environment variable setting.

3 The character encoding set in the LANG environment variable is not supported.

4 There is an event file for which processing was skipped.
Check the messages output by the command to determine the cause.

5 An I/O error occurred in referencing the spool, and the spool could not be referenced.

6 The spool could not be referenced because it is being accessed by another command.

7 An error occurred during message output processing.

8 An error occurred during processing of output to the standard output.

10 An error occurred during acquisition of the date and time.

11 A memory shortage occurred.

12 An inconsistency in internal processing was detected.

13 An error occurred during initialization processing.

The return code will generally be the maximum value among the return codes for all events that occurred during
command execution, except for return code 4, which is output only when no other events occurred.

Specifying the same argument more than once
If the same argument is specified multiple times, the last specification takes effect.

Example:
The following case is treated as specifying -s 19900401:

adshevtout -s 20120411 -s 19900401

Combinations of different arguments
When multiple arguments for determining the information to be output are specified, the arguments are interpreted
according to the priority order shown in the following table:

Argument priority# Argument Description

1 -d The operation information is not output.

2 -m Only messages are output.

3 -z Information about environment variables is not output.

#
The smallest number is the highest priority.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 633

When a higher-priority argument is specified, any specified lower-priority arguments will be ignored.
If the format of a specified argument is invalid, a command error results, regardless of the argument's priority.

Job execution start date and time
The lower and upper boundaries for the job execution start date and time can be specified in any of the three formats
listed and described in the table below.

The range of years that can be specified in YYYY is 1970 through 2038.

Table 8-4: Specification and interpretation of the lower and upper boundaries for job execution start
date and time

Specification format of the date
and time

Interpretation of the specification

YYYYMMDD,hhmmss Specifies the year, month, date, hour, minute, and second.
An upper bound is interpreted as the specified time plus 1 second. If the time is specified as
235959, it is interpreted as 00:00:00 on the date following the specified date.

YYYYMMDD Specifies the year, month, and date only.
The hour, minute, and second are interpreted as follows.

Lower bound:
Interpreted as 00:00:00 on the specified date.

Upper bound:
Interpreted as 00:00:00 on the date following the specified date.

, hhmmss Specifies the hour, minute, and second only.
The year, month, and date are interpreted as the execution date of the command.
An upper bound is interpreted as the specified time plus 1 second. If the time is specified as
235959, it is interpreted as 00:00:00 on the date following the specified date.

Examples of interpreting the date and time are shown in the table below. For Nos. 5 through 7 in the table, it is assumed
that the adshevtout command was executed on October 23, 2012.

No. Specification in the
command

Date and time interpreted by the command

Lower bound for the execution start
date and time

Upper bound for the execution start
date and time

1 20120501,000000 May 1, 2012, 00:00:00 May 1, 2012, 00:00:01

2 20120501,100000 May 1, 2012, 10:00:00 May 1, 2012, 10:00:01

3 20120501,235959 May 1, 2012, 23:59:59 May 2, 2012, 00:00:00

4 20120501 May 1, 2012, 00:00:00 May 2, 2012, 00:00:00

5 ,000000 October 23, 2012, 00:00:00 October 23, 2012, 00:00:01

6 ,100000 October 23, 2012, 10:00:00 October 23, 2012, 10:00:01

7 ,235959 October 23, 2012, 23:59:59 October 24, 2012, 00:00:00

The date and time specified in the command are interpreted on the basis of the time zone set in the TZ environment
variable at the time the command executes.

It is important to note that even if the same date and time character string is specified in two different commands, if
those commands are executed in different time zones (according to the values set in the respective TZ environment
variables), the dates and times will be interpreted differently.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 634

The dates and times that can be specified are as follows:

• Expressed in Coordinated Universal Time (UTC):
January 1, 1970, 00:00:00 through January 19, 2038, 03:14:07

• Expressed in Japan Standard Time (UTC+9):
January 1, 1970, 09:00:00 through January 19, 2038, 12:14:07

For time zones not listed above, the representation of the specifiable range of dates and times depends on the time zone
being used.

Note that there are time-related implementation differences among OSs, so errors might result even for dates that fall
within the ranges listed above. The following circumstances will generate an error:

• An invalid date or time is specified.

• The lower bound for the execution start date and time is later than the upper bound.

TZ Environment variable
The time zone specified in the TZ environment variable is referred to for the following purposes:

• Interpretation of the date and time specified in an argument of a command when the command executes

• Representation of a date and time in job definition script operation information

For details about the relationship between time zones and the representation of dates and times, see 3.7.3 Relationship
between dates and times and time zones in the operation information.

The TZ environment variable is specified in POSIX format as illustrated below. Note the use of the sign.

Example:

export TZ=JST-9

The TZ environment variable cannot be specified in Time Zone Database format, as illustrated below.

Examples of incorrect usage:

export TZ=Asia/Tokyo
export TZ=Japan

Do not execute the adshevtout command with the TZ environment variable set to daylight saving time. The
adshevtout command does not support daylight saving time.

For details about setting the TZ environment variable, see the specifications for the OS being used.

Lower bound of the job execution start date and time
If you specify a lower bound for the job execution start date and time with -s, the jobs whose job definition script
operation information will be output must satisfy the following constraint:

ts tj

tj: Job execution start date and time

ts: Lower bound for the job execution start date and time interpreted by the adshevtout command

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 635

Upper bound of the job execution start date and time
If you specify an upper bound for the job execution start date and time with -e, the jobs whose job definition script
operation information will be output must satisfy the following constraint:

tj < te

tj: Job execution start date and time

te: Upper bound for the job execution start date and time interpreted by the adshevtout command

Job definition script operation information that can be output
• The job definition script operation information that can be output is what is stored in the event files that are accessible

to the user who executed the command. If an applicable event file is not accessible to the user who executed the
command, a message is output and job definition script operation information in the inaccessible event file is not
output.

• Job definition script operation information is not output for jobs that are executing or for jobs for which the
adshexec command terminated with an error. This means that job definition script operation information is not
output for a job whose name in the spool job directory name is in one of the following forms:

• job-ID

• job-ID-
• Job definition script operation information is not output for deleted jobs.

A job is considered to have been deleted if the spool job management file indicated below does not exist immediately
below the spool job directory:

• UNIX: .sysout
• Windows: sysout.ini

Concurrent execution with the adshhk command
• The adshevtout command and the adshhk command (for deleting spool jobs) apply exclusive control to spool

directories.

• The adshevtout command and the adshhk command cannot run at the same time on the same spool directory.

• More than one adshevtout command can be executed on the same spool directory at the same time.

• If the adshevtout command cannot be executed because the spool directory is under exclusive control, an error
message is output and processing terminates.

Notes
• If there is a large quantity of job definition script operation information to be output, you can split it up by executing

separate commands with output conditions that divide the information on the basis of dates or other criteria.

Example
• Output to the out.csv file the job definition script operation information for JP1/Advanced Shell job ID 000100.

adshevtout -i 000100 > out.csv

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 636

8.3.7 adshexec command (executes a batch job)

Syntax

To run normally

adshexec [-v] [-c] [-m {EXTENDED|SIMPLE|MINIMUM}]
[-t [-f] [-o asc-file-path-name]] [-h logical-host-name]
[-s {SPOOL|PARENT}] [-x]
{-r command-line|job-definition-script-file-path-name}
[run-time-parameters]

To start in the debugger mode (UNIX only)

adshexec -d [-v] [-c] [-m {EXTENDED|SIMPLE|MINIMUM}]
[-t [-f] [-o asc-file-path-name]] [-h logical-host-name]
[-x] job-definition-script-file-path-name

Description
This command launches the job controller to execute the batch job in the job definition script file specified in an
argument. You can also execute commands that would be specified in a job definition script file by directly specifying
those commands in the -r option.

The command's arguments are specified before the values to be passed to the job definition script's positional parameters.

Arguments

-d (UNIX only)
Specifies that the job controller is to be started in the debugger mode. This option can be used in a UNIX environment.
In the debugger mode, coverage information is collected in memory and continues to be collected each time the
run command is executed. The coverage information stored in memory can be displayed by the info coverage
command.
If the -t option is not specified, the coverage information collected in memory is discarded when you terminate the
debugger with the quit command.
Job definition script operation information is not collected when the -d option is specified.

-v
Specifies that version information is to be displayed; no batch job is executed.

-c
Specifies that the job definition script file's syntax is to be checked.
Only syntax checking is performed; no batch job is executed.

-m {EXTENDED|SIMPLE|MINIMUM}
Specifies how to output the standard output and the standard error output of the job that is to be started. For details
about the output modes, see 3.4.4 Suppressing output of information and warning messages to job execution logs.

• EXTENDED
Use the expansion output mode.

• SIMPLE
Use the simple output mode.

• MINIMUM

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 637

Use the minimum output mode.

If this option is omitted, the specifications of the OUTPUT_MODE_ROOT and OUTPUT_MODE_CHILD parameters
take effect.
This option applies only to the job that is started with the adshexec command and is not inherited by jobs that are
started from that job. For a job that is started separately, specify the -m option again in the adshexec command
that you use to start the job.
If the root job is run in the simple output mode or the minimum output mode, the standard output is not redirected
to a spool file even when the -s option is specified or SPOOL is specified in the OUTPUT_STDOUT environment
setting parameter.
If you use the -r option, also specify -m SIMPLE or -m MINIMUM to avoid job execution logs from being mixed
together with the output results.

-t
Specifies that coverage information is to be collected while the batch job executes and the collected coverage
information is to be output to an asc file when the command terminates.
If the -t option is not specified when the debugger mode is started in UNIX, the coverage information is collected
in memory only (however, it can be displayed with the debugger's info coverage command). When you
terminate the debugger with the quit command, the collected coverage information is discarded.

-f
Specifies that if coverage information has already been collected, the existing asc file is to be overwritten when
differences are detected between the job definition script file to be executed and the backup information. The -f
option can be specified only when the -t option is also specified.

When this option is specified
If coverage information has already been collected and differences are detected between the job definition script
file to be executed and the backup information, the backup information is discarded and new coverage
information is collected.
If no coverage information has been collected, the newly collected coverage information is output to an asc
file.

When this option is not specified
If coverage information has already been collected and differences are detected between the job definition script
file to be executed and the backup information, a command error occurs and the job definition script file is not
executed. The asc file is not updated.

-o asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name for the asc file to be used for collection of coverage information, when you want to use a
different file from the existing asc file. The -o option can be specified only when the -t option is also specified.
Omitting this option is equivalent to specifying the asc file in the current directory when the adshexec command
is executed. The following shows the format of an asc file name:
name-of-job-definition-script-without-extension_user-name.asc
In the example below, the adshexec command is executed under the following conditions:

• Current directory when the adshexec command is executed: /home/user1/test
• User name: user1
• Name of job definition script: script1.ash

The name of the asc file when the -o option is omitted is as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 638

/home/user1/test/script1_user1.asc
-h logical-host-name ~<logical host name>((1 to 255 bytes))

Specifies the name of the logical host to be used for execution on a logical host. In Windows, the length of the logical
host name must not exceed 196 bytes, and it is recommended that it not exceed 63 bytes. If you specify a name that
exceeds 63 bytes, the command might not function correctly.
If an empty string is specified for logical-host-name, the value specified in the JP1_HOSTNAME environment
variable is assumed. If the JP1_HOSTNAME environment variable is not set, the KNAX0220-E message is output
and the command terminates. For details about the JP1_HOSTNAME environment variable, see the JP1/Base User's
Guide.
Do not specify this option when running on the physical host.

-s {SPOOL|PARENT}
Specifies the destination for the standard output from the root job. child jobs assume that PARENT was specified in
this option.
If this option is omitted, the root job assumes the value specified in the OUTPUT_STDOUT parameter. If the root
job is run in the simple output mode or the minimum output mode, the standard output is not redirected to a spool
file, regardless of this option.

• SPOOL
Output the standard output from the root job to a file on the spool.

• PARENT
Output the standard output from the root job to the destination inherited from the parent process when the process
starts. Assuming the destination is not later redirected in the parent process, output goes to the same destination
as for the parent process.

-x
Enables the xtrace shell option.
You can disable the xtrace shell option by executing set +x or set +o xtrace in the job definition script.

-r command-line
Specifies what is to be executed from the command line. In command-line, you can specify any commands that can
be specified in a job definition script, such as standard shell commands and UNIX-compatible commands. Make
sure that the command-line specification does not exceed the maximum length permitted for a line of a job definition
script (8,191 bytes).
If this option is specified together with the -v option, the -v option takes effect.

In UNIX:
This argument cannot be specified together with the -c, -d, or -t option. An error results if this argument is
specified together with any of these options.

In Windows:
This argument cannot be specified together with the -c or -t option. An error results if this argument is specified
together with either of these options.

For details, see 3.2.4 Specifying what is to be executed by a job from the command line.

job-definition-script-file-path-name
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 1,023 bytes))
Specifies the path name of the job definition script file that is to be run.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 639

run-time-parameters ~<any character string>((1 to 1,022 bytes))
Specifies values to be stored in the positional parameters of the job definition script. If a run-time parameter includes
a space, you must enclose that string in double quotation marks (").

Return codes
Trigger Return code

-c option specified -c option not specified

Normal execution of the exit command or of the
return command from an outside function

Return code specified in the command --

Normal execution of an external command by
specifying it in the argument to the exec command

Return code of the external command
specified in the argument

--

Normal execution of the job definition script through
the end of the job definition script file

Return code of the most recently
executed standard shell command or
extended script command

--

No errors in the job controller in the debugger mode 0 --

No syntax errors in the job definition script file or
initialization script file

The job definition script is executed, with
the following return code:
• Return code specified in a command
• Return code of the most recently

executed standard shell command or
extended script command

0

Syntax error in the job definition script file 1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

Syntax error in the initialization script file 1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

--

An error in the job controller, except for an error in
executing the job definition script, such as an error in
reading an environment file

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

The initialization script file does not exist.
Alternatively, the permission required for the job
controller to execute the initialization script file is not
assigned to the initialization script file.

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

--

Executed the forced termination of JP1/AJS.# [Only for
UNIX]

143 143

The job controller process receives a signal and
terminates (UNIX only).

128 + signal number 128 + signal number

The job controller process is forcibly terminated from
outside, for example from JP1/AJS or the Windows
Task Manager (Windows only).

Return code specified by the program
that forcibly terminated the job controller

Return code specified by the program
that forcibly terminated the job
controller

Failure to start the job controller for a reason
attributable to the OS (Windows only)

1 to 3 1 to 3

A parsing error occurred in the ADSH_JOBRC_FATAL
environment variable.

255 255

An invalid value is specified for the
ADSH_LINK_SUPPORT environment variable (only
for Windows)

255 255

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 640

Legend:
--: Does not apply because the job definition script is not executed.

#:
If you define a job with the "command statement" of UNIX job, the return code of the job that can be referenced by
JP1/AJS becomes -1.

Notes
• If the same option is specified more than once, the last specification takes effect.

• When -v and -c are specified together with any other options, they are handled in descending order of priority.
The priority order is -v, then -c, and then the other options. Lower priority options are ignored.
Example
The -d option is ignored, only -v takes effect.

 $ adshexec -v -d MyShell.ash

• Collecting coverage information without specifying the -o option can result in duplication of asc file names. This
duplication occurs in the situations listed below. To avoid duplicate asc file names, change the name of the job
definition script file or the name of the asc file.

• You collect coverage information from multiple job definition scripts whose file names differ only in their
extensions
Example: sc.1 and sc.2

• You collect coverage information from multiple job definition scripts with the same name but in different
directories
Example: /dir1/sc1 and /dir2/sc1

• Do not specify file names that begin with . (dot).

• Do not use a reserved device name (such as CON, AUX, and NUL) as a file name. (Windows only)

• Do not use an NTFS stream as a file name. (Windows only)

• You cannot specify run-time parameters when the -d option is specified. Specify the run-time parameters in an
argument of the run command.

• Access permissions for asc files are set as follows:

• The owner (creator) of a file is granted r (read) and w (write) access permissions regardless of the umask
settings. Group and general access permissions are set according to the umask settings at the time the command
is invoked. (UNIX only)

• In principle, execution users are granted Full Control access permissions over their own asc files. However,
actual file access permissions are affected by permission inheritance in Windows (inheritance of permissions
from higher-level directories). Similarly, access permissions for other users obey Windows permissions
inheritance (inheritance of permissions from higher-level directories). (Windows only)

• File descriptors are closed without being inherited by adshexec commands that are generated as child processes.
For example, an error results if the job definition script of a child process attempts to perform I/O using a file
descriptor opened by a parent process without first reopening it. Standard output and standard error output do not
need to be reopened. (Windows only)

Examples
• Start the job controller in the syntax checking mode.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 641

adshexec -c /home/user/shell/JOB.ash

• Start the job controller in the debugger mode.

adshexec -d /home/user/shell/JOB.ash

• Display version information for the job controller without executing a batch job.

adshexec -v

• Specify run-time parameters to be passed to the positional parameters of the job definition script and start the job
controller.

adshexec /home/user/shell/JOB.ash parm1 parm2

• Collect coverage information.

adshexec -t /home/user/shell/JOB.ash

• If the contents of the job definition script file have been modified, discard the coverage information collected so far
and collect new coverage information.

adshexec -t -f /home/user/shell/JOB.ash

• Collect coverage information and store it in /home/user/JOB.asc.

adshexec -t -o /home/user/JOB.asc /home/user/shell/JOB.ash

• Enable the xtrace shell option and start the job controller.

adshexec -x /home/user/shell/JOB.ash

• Start the job controller with a command specified in command-line in the -r option that is to be executed in the job.

adshexec -r "ls *"

• Start the job controller with a positional parameter that is referenced in command-line in the -r option specified in
the runtime parameters.
This example specifies a command in the job definition script file. command-line must be enclosed in single quotation
marks (') because it specifies a positional parameter.

adshexec -r 'cat $1 | grep $2' file.txt abc

• Start the job controller with a command that handles file paths specified in command-line in the -r option.
This example specifies a command in the job definition script file.

adshexec -r 'cat "C:\\Documents and Settings\\user001\\file.txt"'

8.3.8 adshfile command (specifies the allocation and postprocessing of
regular files)

Syntax

adshfile [-s {step|job}] [-n {del|keep}] [-a {del|keep}]
 [-c {exist|no}] file-path-name

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 642

Description
This shell operation command allocates a regular file, checks whether the regular file already exists, and specifies
postprocessing. The command takes effect when it is specified in a job definition script executed by JP1/Advanced
Shell's job controller. You can specify a maximum of 64 regular files to be allocated.

For details about the allocation and postprocessing of regular files and the difference from the #-adsh_file
command, see 5.9.1 Allocating regular files and performing postprocessing.

Regular files allocated with this command are managed separately from regular files allocated with the #-adsh_file
command. Postprocessing is performed on the regular files allocated by the adshfile command first and then on the
regular files allocated by the #-adsh_file command. If the same file is allocated with both commands, the file will
be postprocessed twice and an error might result.

Note the following about executing this command:

• Do not execute this command asynchronously.

• Do not execute this command as another process.

• This command cannot be executed if the spool job creation suppression functionality is being used.

If the same option is specified more than once, the last specification takes effect.

Arguments

-s {step|job}
Specifies the timing for performing postprocessing on the file.

• step
Perform postprocessing on the file when the job step terminates.

• job
Perform postprocessing on the file when the job terminates.

You can issue this command within the job or job step regardless of the specified option, but the registered file is
postprocessed when the next job step or job terminates. If no job step terminates after the file is registered with
step specified, postprocessing is performed when the job terminates.
If this option is specified in a child job, this processing is performed within that child job.

-n {del|keep}
Specifies the postprocessing to be performed when the corresponding job step or job terminates normally.

• del
Delete the allocated regular file after the corresponding job step or job has terminated.

• keep
Do not delete the allocated regular file after the corresponding job step or job has terminated.

-a {del|keep}
Specifies the postprocessing to be performed when the corresponding job step or job terminates with an error.

• del
Delete the allocated regular file after the corresponding job step or job has terminated.

• keep
Do not delete the allocated regular file after the corresponding job step or job has terminated.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 643

If file allocation processing by the adshfile command results in an error, the following takes place:

• Postprocessing on the regular file specified in the corresponding adshfile command is not performed.

• Of the regular files allocated with the adshfile command beforehand, postprocessing is performed according
to the -a options specified in the adshfile commands.

-c {exist|no}
Specifies whether the file path is to be checked for its existence.

• exist
Check whether the file path exists.
Postprocessing is registered only if the file path exists.
If the file path does not exist, the command terminates with an error.

• no
Do not check whether the file path exists.

file-path
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name> ((1 to 1,023 bytes)
Specifies the path of the regular file that is to be allocated.
You can specify either a relative path or an absolute path. If a relative path is specified and its file path name exceeds
the maximum permissible length after it has been converted to an absolute path name, an error results.

Return code
Return code Meaning

0 Normal termination

99 Error termination

Notes
Unlike the #-adsh_file command, this command does not output to the job execution logs a message indicating
the allocation results. To check the file path name specified in an argument of the adshfile command for purposes
such as troubleshooting, do the following:

1. Collect operation information by specifying YES in the EVENT_COLLECT parameter in the environment file.

2. Execute the adshfile command in the job definition script.
Operation information will be collected.

3. Execute the adshevtout command to output the operation information.

4. In the displayed operation information, check the lines in which command, indicating command information, is set
in the EvtName column (the first column, which shows the type of operation information record).

Note that operation information for job definition scripts can be collected only in the normal mode in the execution
environment. This information cannot be collected in the debugger mode in the execution environment or in the
development environment.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 644

8.3.9 adshhk command (deletes spool jobs)

Syntax

adshhk target-list-file-name report-file-name log-file-name [number-of-days]

Description
This command deletes spool jobs from the spool directories identified in the list file specified in target-list-file-name.
The execution results are output in CSV format to the file specified in report-file-name. Messages output during
execution, such as error messages, are output to the file specified in log-file-name.

This command and the adshevtout command apply exclusive control over spool directories. If the adshhk
command is unable to obtain a lock on a spool directory, it skips processing of that spool directory and outputs the
KNAX4425-E message.

Arguments

target-list-file-name
Specifies the file name of the file that specifies the spool directories that contain spool jobs that are to be targets for
deletion. You specify in advance in the target list file the names of the spool root directories containing the spool
directories to be deleted and for each a number-of-days value. Spool jobs that were executed more than the specified
number of days prior (the count begins from the day before the adshhk command was executed) are deleted from
the specified spool directory.
The target list file can contain multiple lines in text file format. A line cannot exceed 4,095 bytes, counting from the
beginning of the line through the end-of-line code at the end. The values must be enclosed in double quotation marks
(").
The format of the target list file is:

"spool-root-directory-name"[,"number-of-days"]

The following explains each item.

spool-root-directory-name ~<path name>((1 to 128 bytes))
Specifies the name of a spool root directory whose spool jobs are candidates for deletion. Specifying the full
path is recommended.

number-of-days ~<unsigned integer>((1 to 999))
Specifies a days-count value to be used to determine the spool jobs to be deleted from the spool directory. The
spool job directory of batch jobs that were executed more than the specified number of days prior (the count
begins from the day before the adshhk command was executed) are deleted. If this value is omitted in the list
file for a spool directory, the value specified in the number-of-days argument in the adshhk command is used.
If no number-of-days value is specified in the file or in the command argument, the line generates an error, but
subsequent lines are processed.
Specifying "" is same as omitting the number-of-days specification.

report-file-name
Specifies the name of the output file for the execution results. The report file is output in CSV format. If the specified
file does not exist, it is created. If it already exists, its existing contents are overwritten.
The report file access permissions are set as follows:

• Windows: According to the settings for the output folder.

• UNIX: 600

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 645

For an example of a report file's output, see 3.9 Deleting spool jobs.

log-file-name
Specifies the name of the output file for error messages and other messages. If the specified file does not exist, it is
created. If it already exists, its existing contents are overwritten.
The log file access permissions are set as follows:

• Windows: According to the settings for the output folder.

• UNIX: 600
number-of-days ~<unsigned integer>((1 to 999))

Specifies a days-count value to be used to determine the spool jobs to be deleted from the spool directories. The
spool job directory of batch jobs that were executed more than the specified number of days prior (the count begins
from the day before the adshhk command was executed) are deleted. This argument takes precedence over the
number-of-days values specified in the target list file. When this argument is omitted, the number-of-days values
specified in target list file are used. If you omit this argument, you must specify number-of-days values in the target
list file.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

2 Deletion failed because a spool directory is being used by another program (the return code might be other than 2 if other
errors occurred).

253 Error in standard error output

Notes
• The only spool jobs subject to deletion are those for which the user who executes the command has deletion

permissions. A failure to delete will be reported for spool jobs for which deletion permissions are lacking. If you
want to delete the spool jobs of all users, you must execute the deletion as a user who has deletion permissions for
all spool jobs.

• Files created under a spool job directory for which the user has deletion permissions are deleted regardless of whether
they were created as batch jobs.

• Subdirectories created under a spool job directory might not be deletable.

• If a job's execution start date is unknown, deletion will not be performed (this will be treated as an error).

• The only spool jobs that are deleted are those whose spool job directories are in the format job-ID-spool-job-name
or job-ID-. When a spool job directory is missing the hyphen (-) following the job ID, it indicates that the batch
job is still running, it was terminated improperly by means other than one described in 3.11.1 How to forcibly
terminate jobs, or some similar situation. Such directories are never deleted, regardless of the actual state of affairs.

• If an error occurs during deletion, deletion processing on the affected spool job might be in a partially completed
state.

• Results are not output to the report file in number order. If necessary, a sort program can be used to sort them.

• No deletions will be performed in a specified spool directory that is being processed by the adshevtout command
(which outputs job definition script operation information).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 646

• Because spool jobs to be deleted are deleted from the spool job management file, if deletion processing is interrupted,
they might not be deleted even if you re-run the adshhk command. In such a case, you must delete manually any
spool jobs that failed to be deleted.

• To manually delete a spool job that the adshhk command failed to delete, use a command such as rm -r to delete
both the spool job directory and all the files within the directory. When you do so, use the creation date of the spool
job directory and of the files contained in the directory to check whether the job has completely finished. We
recommend that you stop operations such as batch jobs before deleting the directory and files.

Example
• Delete the following batch jobs:

 Batch jobs in the /home/user001/jp1as/spool directory that ran more than seven days ago
 Batch jobs in the /home/user999/jp1as/spool directory that ran more than 30 days ago

Specify the following information in advance in target list file /home/kanrisya/hk/target:

"/home/user001/jp1as/spool","7"
"/home/user999/jp1as/spool","30"

In this case, execute the command shown below. The report is stored in the /home/kanrisya/hk/
result.csv file.

adshhk /home/kanrisya/hk/target /home/kanrisya/hk/result.csv /home/kanrisya/hk/
result.log

For an example of a report that is created, see 3.9 Deleting spool jobs.

8.3.10 adshjava command (executes Java batch applications) [only for
Windows, Linux, AIX, and HP-UX]

Syntax

When using the scheduling functionality of uCosminexus Application Server:

adshjava [-grp schedule-group-name]
 -java [[Java-option]...] Java-application-class-name
 [[argument-passed-to-the-main-method] ...]

When not using the job scheduling functionality of uCosminexus Application Server:

adshjava -srv batch-server-name
 -java [[Java-option]...] Java-application-class-name
 [[argument-passed-to-the-main-method]...]

Description
Execute Java batch applications linked with uCosminexus Application Server according to instructions provided from
the adshjava command. Contents specified by this command are specified for arguments of the cjexecjob
command of uCosminexus Application Server and the cjexecjob command is executed. If forced termination of a
job is detected, the adshjava command executes the cjkilljob command and automatically stops Java batch
applications.

If the job of JP1/Advanced Shell is forced to terminate, Java batch applications are also forced to terminate.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 647

Conditions that automatically force termination of Java batch applications upon forced termination are as follows:

Table 8-5: Conditions that automatically force termination of Java batch applications upon forced
termination

Conditions for forced termination (with
exceptions from the second time and
on)

Windows Linux, AIX, HP-UX

Forced termination from JP1/AJS Y Y

Ctrl+C Y Y

Ctrl+Break N Y

Closing the console N Y

Sending the End signal for the adshexec
command process#1

- Y

Sending SIGTERM to the adshjava
command process

- Y

Sending SIGINT to the adshjava command
process

- Y

Pausing with the quit command of debugger
of adshexec

- #2 - #2

Legend:
Y: Forced termination is available.
N: Forced termination is not available.
-: Not applicable

#1
The end signal is the signal that is terminated by the adshexec command. For signals to be terminated, see 3.11.2 
Processing when signals are received (UNIX only).

#2
You cannot force termination of commands that are executed in the background by using the quit command.

You can select whether to use the job scheduling functionality of uCosminexus Application Server as the execution
method for Java batch applications.

• When not using the job scheduling functionality:
Java batch applications are executed by using the specified batch server.

• When using the job scheduling functionality:
Java batch applications are executed by using the batch server assigned by Component Transaction Monitor. In this
case, the job ID of a Java batch application is created in the following format:

ADSH time process-ID

time
16-digit alphanumeric characters in which the number of seconds elapsed from UTC January 1, 1970, 00:00:00
and nanoseconds as a hexadecimal number. Letters need to be uppercase.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 648

process-ID
8-digit process ID indicated as a hexadecimal number (process ID of command). Letters need to be capital
uppercase.

Users who can execute this command are described below. For details, see the description of the cjexecjob command
or cjkilljob command in the uCosminexus Application Server Command Reference Guide. If a user is not authorized,
the cjexecjob command or cjkilljob command is terminated with an error.

• In Windows
User having the administrator permission or administrator privilege

• In Linux, AIX, and HP-UX
Component Container administrator or superuser who has started the batch server

Arguments

-grp schedule-group-name
Specify the group name of the batch server that is assigned when Component Transaction Monitor of uCosminexus
Application Server schedules execution of Java batch applications. Specify the group name of the batch server within
63 bytes.
You need to specify this option before the -java option. Although the length of the schedule group name is verified,
other items are not verified and the -grp schedule group name is specified for arguments of the cjexecjob
command and cjkilljob command.

-srv batch-server-name
Specify the bath server name of uCosminexus Application Server that will execute Java batch applications within
255 bytes.
You need to specify this option before the -java option.
Although the length of the batch server name is verified, other items are not verified and the -srv batch server name
is specified for arguments of the cjexecjob command and cjkilljob command.

-java
Contents specified after this option are passed as is to the cjexecjob command of uCosminexus Application
Server.
Error check is not executed for contents that are specified after this option by using the adshjava command unless
there are no specifications. Processing is left up to the check using the cjexecjob command.

Java-options
Specify the activation option of JavaVM. For the specification method, see uCosminexus Application Server
Command Reference Guide.
For the file assigned by the #-adsh_file command, #-adsh_file_temp command, or #-
adsh_spoolfile command, the file name can be passed to Java batch applications via the system property
by entering "-D system property name=${file definition name}" with this option.

Java-application-class-name
Specify the class name of the Java application inclusive of the package name. For the Java application class
name, see the description of the cjexecjob command in uCosminexus Application Server Command
Reference Guide.

argument-passed-to-the-main-method
Specify the argument passed to the main method of the Java application. For the argument passed to the main
method, see the description of the cjexecjob command in the uCosminexus Application Server Command
Reference Guide.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 649

Return codes
Return code Occurrence condition Meaning

0#1 The value returned from the public static int
main(String[]) method is 0.

This value is returned when the public static
int main(String[]) method is used.

The values specified for the arguments of
System.exit(), Runtime.halt(), and
Runtime.exit() are 0.

These values are returned if System.exit(),
Runtime.halt(), and Runtime.exit() are used.

The return value of the cjexecjob
command is 0.

The command is normally terminated by
using the public static void main(String[])
method.

1#2 Termination due to processing of the
adshjava command

The adshjava command is forced to
terminate.

2#2 Termination due to processing of the
adshjava command

An error occurred during processing of the
adshjava command.
If activation of the cjkilljob command
fails with the forced termination process, 1
might appear.

The value returned from the public static int
main(String[]) method +15#1, #3

The value returned from the public static int
main(String[]) method is 1 or more.

This value is returned when the public static
int main(String[]) method is used.

The value specified for arguments of
System.exit(), Runtime.halt(), and
Runtime.exit() +15#1, #3

The values specified for arguments of
System.exit(), Runtime.halt(), and
Runtime.exit() are 1 or more.

These values are returned if System.exit(),
Runtime.halt(), and Runtime.exit() are used.

The return value of the cjexecjob
command + 15#1, #3

The return value of the cjexecjob
command is 1.

Execution of the Java batch application
failed. Alternatively, the Java batch
application was forcibly terminated.

The value returned from the public static int
main(String[]) method#1, #4

The value returned from the public static int
main(String[]) method is a negative number.
(Only for Windows. For UNIX, the last 8 bits
are adopted as the RC.)

This value is returned when the public static
int main(String[]) method is used.

The value specified for the argument of
System.exit(), Runtime.halt(), or
Runtime.exit() #1, #4

The value specified for the argument of
System.exit(), Runtime.halt(), or
Runtime.exit() is a negative number (Only for
Windows. For UNIX, the last 8 bits are
adopted as the RC.)

This value is returned if System.exit(),
Runtime.halt(), or Runtime.exit() is used.

17 Activation of the cjexecjob command
failed.

This value is returned if activation of the
cjexecjob command failed.

#1
This is the return value of the cjexecjob command of uCosminexus Application Server.

#2
This is the return code of the adshjava command.

#3
If the return code exceeds 255, the value is converted to 255.

#4
If the return value is a negative value, the job controller converts the value to 255.

Notes
• The batch server needs to be started according to the availability of the job scheduling functionality.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 650

• This command uses the cjexecjob command and cjkilljob command of uCosminexus Application Server.
For this reason, this command needs to be executed in an environment where the cjexecjob command and
cjkilljob command can be executed.

• Even if this command is executed in the background, the adshexec command is terminated after waiting for
termination of this command.

• For arguments that are passed to the cjexecjob command and cjkilljob command, only the length of the
schedule group name and batch server name are checked, and these are passed as is to the cjexecjob command
and cjkilljob command. Therefore, if an invalid value is specified, an error will occur in the cjexecjob
command or cjkilljob command.

• In Windows, the user will need to set the path of the cjexecjob command and cjkilljob command to the
PATH environment variable in advance.

• This command needs to be executed from the job definition script of the adshexec command. If this command is
not executed from the job definition script of the adshexec command, the termination process for Java batch
applications cannot be executed when the job is forced to terminate. In addition, this command cannot be executed
in Windows.

• When the -grp option and -srv option are specified simultaneously, a command analysis error occurs.

• Java batch applications are asynchronously executed with the batch server. Therefore, the result of Java batch
applications (standard output and standard error output) cannot be referred to as the result of the adshjava
command.

• For notes on creating Java batch applications, see the uCosminexus Application Server Expansion Guide.

• If TERM is specified for the TRAP_ACTION_SIGTERM parameter or if a job is started from JP1/AJS after
specifying AUTO in the UNIX edition, do not specify the adshjava command for the behavior definition of the
trap command.

Examples
• When using the job scheduling functionality:

#-adsh_file INPUT "/files/file01"
#-adsh_file_temp TMP001
#-adsh_spoolfile SYSLIST

adshjava -grp JOBGROUP -java -DINPUT=${INPUT} -DTMP001=${TMP001} -DSYSLIST=$
{SYSLIST} com.hitachi.mypackage.MyBatchApp

In this case, the file name assigned by #-adsh_file, #-adsh_file_temp and #-adsh_spoolfile is passed to Java batch
applications in the system properties. The file names assigned by #-adsh_file, #-adsh_file_temp, and #-
adsh_spoolfile are set for the environment variable specified for the file environment variable definition names.
If this adshjava command is executed, the following cjexecjob command is executed:

cjexecjob JOBGROUP -jobID job-ID -DINPUT=${INPUT} -DTMP001=${TMP001} -DSYSLIST=$
{SYSLIST} com.hitachi.mypackage.MyBatchApp

job-ID is the job ID generated by the adshjava command.
${Environment-variable-name} indicates a file name.

• When not using the job scheduling functionality:

#-adsh_file INPUT "/files/file01"
#-adsh_file_temp TMP001
#-adsh_spoolfile SYSLIST

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 651

adshjava -srv MyBatchServer -java -DINPUT=${INPUT} -DTMP001=${TMP001} -DSYSLIST=$
{SYSLIST} com.hitachi.mypackage.MyBatchApp

The file names assigned by #-adsh_file, #-adsh_file_temp, and #-adsh_spoolfile are passed to Java batch applications
in the system properties. The file names assigned by #-adsh_file, #-adsh_file_temp, and #-adsh_spoolfile are set for
the environment variable specified for the file environment variable definition names.
If this adshjava command is executed, the following cjexecjob command is executed:

cjexecjob MyBatchServer -DINPUT=${INPUT} -DTMP001=${TMP001} -DSYSLIST=${SYSLIST}
com.hitachi.mypackage.MyBatchApp

${Environment-variable-name} indicates a file name.

8.3.11 adshlsmsg command (displays a list of reply-request messages
when a failure occurs)

Syntax

adshlsmsg [-h logical-host-name] [-n reply-request-message-number]

Description
This command displays a list of the reply-request messages in shared memory that are in reply-waiting status, as well
as the reply-request messages in receive-waiting status and the replies to them.

In an execution environment, this command is executed by Administrators or root users with an administrator role on
the machine where JP1/Advanced Shell is installed. In a development environment, general users can run this command.

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not function correctly.

-n reply-request-message-number ~<unsigned integer>((1 to 2147483647))
Specifies the reply-request message number of a reply-request message in reply-waiting status that you want to
display, or of a reply-request message in receive-waiting status that you want to display together with the reply to
it.
If only -n is specified and no reply-request message number is specified, any option that is specified next will be
treated as the argument.
When this specification is omitted, the display is of all reply-request messages in shared memory on reply-waiting
status, as well as of all reply-request messages in receive-waiting status and the replies to them.
If the -n option is specified more than once, the last specification takes effect.

Output items
The following describes the headers and contents that are output as a result of executing the adshlsmsg command.

• MESSAGE-NO

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 652

The 10-digit decimal reply-request message number. This is the value that is specified in the -n option of this
command or in the -n option of the adshchmsg command.

• STATUS
The status of the reply-request message is output as follows.

• Wait: The reply-request message is in reply-waiting status

• Set: The reply-request message is in receive-waiting status

• JOBID
The six-digit integer value representing the job ID issued by the adshread command for the job definition script.

• LINENO
The line number in the job definition script executed by the adshread command.

• DATE/TIME
The time the reply-request message was output (local time).

• MESSAGE or RESPONSE
The following items are output:

• msg=: Reply-request message body

• res=: Reply contents (displayed only if in receive-waiting status)

Return codes
Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Example
The following example shows the output when you view a list of reply-request messages in reply-waiting status, as well
as reply-request messages in receive-waiting status and the replies to them.

$ adshlsmsg
 MESSAGE-NO STATUS JOBID LINENO DATE/TIME MESSAGE or RESPONSE
[0000017622] [Wait] 000228 20 12/05/24 18:28:00 msg=STOP
[0000017626] [Set] 000229 136 12/05/24 18:28:10 msg=Continue (Y/N)?
[0000017626] [Set] 000229 136 12/05/24 18:28:10 res=Y

8.3.12 adshmdctl command (starts and stops the user-reply functionality
management daemon) (UNIX only)

Syntax

adshmdctl [-h logical-host-name]
 {start [reuse]|stop|status|conftest [environment-file-name]|help}

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 653

Description
This command starts and stops the user-reply functionality's management daemon. The user-reply functionality's
management daemon manages the shared memory for the user-reply functionality.

When the user-reply functionality is used, reply-request messages are stored in shared memory. Normally, they are
released when the user-reply functionality management daemon is stopped. If the user-reply functionality management
daemon terminates because of a failure without releasing the shared memory, you must use this command to release the
shared memory. The following is the procedure for doing this:

1. Execute this command with the start reuse option specified

2. Execute this command with the stop option specified, and then stop the user-reply functionality's management
daemon

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.
If the logical host name specification is omitted, any option that is specified next will be treated as the argument.

start [reuse]
Specifies that the user-reply functionality's management daemon is to be started.
If reuse is specified, the information in the reply-request messages will be used as is by the user-reply functionality.
When the user-reply functionality is used, reply-request messages are stored in shared memory, and normally they
are released when the user-reply functionality's management daemon is stopped. If the user-reply functionality's
management daemon terminates because of a failure without releasing the shared memory, the user must release the
shared memory by first starting the management daemon with the reuse option specified in the adshmdctl
command, and then terminating the management daemon by specifying the adshmdctl command with the stop
option specified.

stop
Specifies that the user-reply functionality's management daemon is to be stopped.
If there are reply-request messages that have not yet been replied to, the waits for replies will be cancelled.

status
Specifies that the operating status of the user-reply functionality's management daemon is to be returned, using one
of the following return codes:

• 0: The user-reply functionality's management daemon is running

• 1: The user-reply functionality's management daemon is not running

conftest [environment-file-name]
Specifies an environment file whose parameters are to be checked. The results are output to the standard output.
If environment-file-name is omitted, the system environment file is checked.

help
Specifies that a help for the adshmdctl command is to be displayed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 654

Return codes
Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• Start the user-reply functionality's management daemon as a root job.

• Do not change the file system environment while the user-reply functionality's management daemon is running.

• The adshmdctl command sets the LANG environment variable to C and launches the management daemon of the
user-reply functionality. For this reason, subsequent messages and JP1 events are output in English.

8.3.13 adshmsvcd command (registers the user-reply functionality
management service in a development environment) (Windows
only)

Syntax

adshmsvcd [-install [-lhostname logical-host-name]]

Description
This command registers the user-reply functionality management service (adshmsvcd). The user-reply functionality
management service manages shared memory for the user-reply functionality. This command can be executed only in
a Windows development environment.

Arguments

-install
Specifies that the user-reply functionality management service is to be registered.
The user-reply functionality management service is registered automatically when you set up JP1/Advanced Shell.
However, if the registry information is later deleted, you will need to use this option to re-register it manually.

-lhostname logical-host-name ~<logical host name>((1 to 196 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
is to be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.

Return codes
Return
code

Meaning

0 Normal termination

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 655

Return
code

Meaning

Other than
0

Error termination

Notes
• This command terminates without an error even when it is executed with invalid options or with no options specified.

In such a case, the registry information is not updated.

8.3.14 adshmsvce command (registers the user-reply functionality
management service in an execution environment) (Windows only)

Syntax

adshmsvce [-install [-lhostname logical-host-name]]

Description
This command registers the user-reply functionality management service (adshmsvce). The user-reply functionality
management service manages shared memory for the user-reply functionality. This command can be executed only in
a Windows execution environment.

Arguments

-install
Specifies that the user-reply functionality management service is to be registered.
The user-reply functionality management service is registered automatically when you set up JP1/Advanced Shell.
However, if the registry information is later deleted, you will need to use this option to re-register it manually.

-lhostname logical-host-name ~<logical host name>((1 to 196 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
is to be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.

Return codes
Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• This command terminates without an error even when it is executed with invalid options or with no options specified.

In such a case, the registry information is not updated.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 656

8.4 UNIX-compatible commands

This section explains how to use each of the UNIX-compatible commands. The following are general notes.

Regular expressions supported in UNIX-compatible commands
Basic regular expressions and extended regular expressions are both supported. Basic regular expressions can be
used in the following commands:

• expr
• grep (when the -G option is specified)

• sed (when the -E option is not specified)

Extended regular expressions can be used in the following commands:

• awk
• egrep
• grep (when the -E option is specified)

• sed (when the -E option is specified)

The following table shows the characters that can be used in regular expressions. When you use the characters in
this table in regular expressions, UNIX-compatible commands interpret them as metacharacters.

Table 8-6: Differences in the metacharacters that can be used in regular expressions

Metacharacter Meaning Basic regular
expressions

Extended regular
expressions

* Zero or more repetitions Y Y

\+ One or more repetitions Y N

+ One or more repetitions N Y

. One character Y Y

\? The preceding regular expression Y N

? The preceding regular expression N Y

^ Beginning of the line Y Y

$ End of the line Y Y

\| Or Y N

| Or N Y

[char-list] Range specification Y Y

\(regexp\) Grouping Y N

(regexp) Grouping N Y

\{n, m\} Repeats at least n times but no more than
m times

Y N

{n, m} Repeats at least n times but no more than
m times

N Y

\{n\} n times Y N

{n} n times N Y

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 657

Metacharacter Meaning Basic regular
expressions

Extended regular
expressions

\{n, \} n or more times Y N

{n, } n or more times N Y

Legend:
Y: Can be used.
N: Cannot be used.

About the command usage examples
• In the usage examples provided in the remainder of this chapter, the UNIX-compatible commands are executed

on Windows, with a few exceptions.

• The path to the directory where the commands are installed is assumed to have been set in the
ADSH_OSCMD_DIR environment variable.

8.4.1 awk command (performs text processing and pattern matching)

Syntax

awk [-F input-field-separator] [-v variable-name=variable-value]...
 [-f script-file-path-name|script]
 [[target-path-name...]|[built-in-variable-name=variable-value...]]...

Description
This command retrieves lines (referred to hereafter as records) in a text file that match a particular pattern and performs
specified processing on the retrieved lines.

Arguments

-F input-field-separator
Specifies the value to be used as the input field separator. The specified value becomes the value of the awk
command's FS built-in variable.

-v variable-name=variable-value
Specifies a variable name and its value. The variable name and its value are passed to the script that is specified in
a script file or in the argument specified in the -f option. Multiple variables can be specified. If you specify the
same variable name more than once, the last specification takes effect.

-f script-file-path-name
Specifies the path name of a file (script file) that contains the patterns to be matched in the input files and the
processing instructions for the records that match the patterns.

• If - is specified as the path name, the standard input is assumed for the input.

• Up to 19 -f options can be specified.

script
Specifies a pattern to be matched in the input files and the processing instructions for the records that match the
pattern.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 658

target-path-name
Specifies the path name of a file to be processed. Multiple path names can be specified.
If no path name is specified or - is specified as the path name, input is read from the standard input. Note that if
only the BEGIN pattern is executed, no records are retrieved from the specified file or from the standard input.

built-in-variable-name=variable-value
Specifies the name of a built-in variable and its value. The variable name and its value are passed to the scripts that
are specified in the script file or in the script argument specified in the -f option.

• If you specify a name that is not for a listed built-in variable, it is treated the same as the -v option.

• A built-in variable that is specified before all the target path names is enabled for all file processing, except for
BEGIN pattern processing, and is also enabled for END pattern processing.

• A built-in variable that is specified after all the target path names is enabled for END pattern processing only.

• A built-in variable that is specified between target path names is enabled for processing of the path names
specified after the variable specification and for END pattern processing.

Scripts (patterns and actions)
The following is the descriptive format of a script executed by the awk command:

[pattern] [{[action]}]

A pattern to be searched for in the input files is defined in pattern. For details about the pattern specification, see Types
of patterns below. Processing instructions for records that match the pattern are defined in action.

Each successive record from the input file is compared to each specified pattern, and the action specified for a pattern
is executed when a match is found for that pattern. A specified action can be performed on all records by not specifying
a pattern (omitting pattern and specifying action only).

You specify for the action control statements and functions that perform desired processing on the records that match
the specified pattern. The action operation can include control statements, built-in functions, user-defined functions,
variables, and operators. Multiple statements, separated by an end-of-line code or semicolon, are permitted. When the
entire {action} portion is omitted, including the braces, the matching records are output to the standard output. If you
specify the empty braces without action ({ }), no processing is performed.

To include a comment, specify a hash mark (#) and then the comment string. Everything from the hash mark to the end
of the line is treated as a comment.

Records and fields
A record is a unit that is obtained by using the input record separator to split up the input. In awk, an end-of-line code
serves as the input record separator. In Windows, an end-of-line code is denoted by [CR] + [LF] or by [LF]. In
UNIX, an end-of-line code is denoted by [LF]. Note that in UNIX, if [CR] + [LF] is used for the end-of-line code,
the [CR] part will be included in the resulting record.

The input record separator can be changed by setting in the RS built-in variable any single-byte character to serve as
the new record separator. If a character string is specified, only the first character in the character string becomes the
input record separator.

Records are divided by field separators into units called fields. The default field separator is the space. The field separator
can be changed by specifying in the -F option or by setting in the FS built-in variable any character string to serve as
the new field separator.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 659

The input passed to the specified action consists of the contents of the record currently being read from the input file
and the value of each field in the record. The entire contents of the record are stored in field variable $0. The first field
of the record is stored in field variable $1, the second field is stored in field variable $2, and so on.

Types of patterns
The following types of patterns can be specified.

• Character strings
To search for a character string in a field or record, enclose it in slashes (/). Character strings can be specified using
regular expressions. To search for a forward slash (/) by itself, you must use the escape character (\), so the
specification becomes /\//.
In the following example, hitachi is specified as the search string:

/hitachi/{
(action)
}

• Relational expressions
Relational operators (>, >=, <, <=, ==, and !=) can be used to perform comparisons on fields. In the following
example, the specified action is performed if the second field of a record is hitachi:

$2 == "hitachi"{
(action)
}

• Combinations of patterns
Multiple patterns can be combined to express conditions for executing an action. The following table shows the
combinations that can be used:

Format Description

pattern1 && pattern2 Using the logical AND operator, execute the action on records that are a match for both
pattern1 and pattern2.

pattern1 || pattern2 Using the logical OR operator, execute the action on records that are a match for either
pattern1 or pattern2.

pattern1 ? pattern2 : pattern3 Using the ternary operator, execute the action on records that are a match for both pattern1
and pattern2 or are a match for pattern3.

! pattern Using the NOT operator, execute the action on records that are not a match for pattern.

(pattern) Group multiple conditions into pattern.

pattern1, pattern2 Execute the action on the range of input records beginning with the record that is a match
for pattern1 and concluding with the record that is a match for pattern2. Note that if the
search reaches the end of the input file without finding a record that matches pattern2, the
last record in the input file will be the end of the range. However, if multiple input files
are specified, the successive input files are searched for a record that matches pattern2.
This format can be specified up to 50 times.

• BEGIN
This pattern is for an action that is to be performed before processing of the input file begins. For this pattern, action
cannot be omitted. This pattern cannot be combined with other patterns. If multiple input files are specified, the
specified action is executed before input starts from the first input file.

• END
This pattern is for an action that is to be performed after the last record in the file has been processed or when the
exit control statement is entered. For this pattern, action cannot be omitted. This pattern cannot be combined with

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 660

other patterns. If multiple input files are specified, the specified action is not executed until the last record in the
last file has been processed.

Control statements
The control statements that can be used are described in the table below. The if, while, for, do, break,
continue, and return statements are subject to the C language syntax rules. An exception is the for statement,
which is limited to a single initialization expression and a single increment expression.

Control
statement

Syntax Description

if statement if (conditional-expression) processing [else
processing]

Branch conditionally.

if (variable in array) processing [else processing] Branch based on whether the index specified in variable
exists in array.

while statement while (conditional-expression) processing Repeat as long as the condition is true.

for statement for (initialization-expression; continuation-conditional-
expression; increment-expression) processing

Execute repeatedly.

for (variable in array) processing Perform processing while setting variable to successive
indexes of the array. Note that the indexes are retrieved
in no particular order.

do statement do processing while (continuation-conditional-
expression)

Repeat as long as the condition at the end remains true.

break statement break Exit immediately from a loop.

continue
statement

continue Interrupt loop processing and return to the beginning of
the next cycle of the loop.

next statement next Stop processing the current input record after this
control statement, and start processing the next input
record.

nextfile
statement

nextfile Stop processing the current input file after this control
statement, and start processing the next input file.

return statement return [expr] Exit a user-defined function. The value specified in the
expression expr is returned to the caller. If no value is
specified for the expr expression, the return value of the
user-defined function will be 0.

delete statement delete array Delete an array.

delete array[element] Delete an element of the array.

exit statement exit [expr] Stop execution of a script during processing. The value
specified in the expr expression is returned as the return
code of the command. If no value is specified for the
expr expression, the return code of the command will
be 0.
The value specified in the expr expression is treated as
a signed four-byte numeric value. In Windows, the
value specified in the expression expr will be the return
code of the command. In UNIX, when the value
specified in the expr expression is outside the range 0
to 255, the low-order 8 bits of the value will be the
return code of the command. If you are executing a job

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 661

Control
statement

Syntax Description

exit statement exit [expr] definition script in JP1/Advanced Shell, specify a value
in the range 0 to 255.
If you are executing a job definition script in JP1/
Advanced Shell in Windows and the value specified in
the expr expression is outside the range 0 to 255, the
return code that is returned to the caller of the command
will be different from the value specified in the expr
expression. For details about how the return codes of
commands are handled in JP1/Advanced Shell, see
5.8.8 Return codes of jobs, job steps, and commands.

Built-in functions
The following built-in functions can be used.

• Mathematical functions
The mathematical functions that can be used are described in the following table:

Function name Description

atan2(y,x) Returns the arctangent of y/x. The unit is radians. If an argument is missing, 1 is returned and a warning
message is output.

cos(x) Returns the cosine of x. The unit is radians.

exp(x) Returns the exponential function of x. If the result produces an overflow or underflow, 1 is returned and a
warning message is output.

int(x) Returns an integer by truncating at the decimal point of x.

log(x) Returns the natural logarithm of x. If x is zero or negative, 1 is returned and a warning message is output.

rand() Returns random number n (in the range 0 n < 1). If you do not use the srand function to set a seed value,
the same series of values will be generated each time awk is run.

sin(x) Returns the sine of x. The unit is radians.

sqrt(x) Returns the square root of x. If x is negative, 1 is returned and a warning message is output.

srand([expr]) Sets the expr expression as the seed value for the rand function and then returns the seed value that has been
set. If expr is omitted, the seed value is set based on the time.

• Character string functions
The character string functions that can be used are described in the table below. Multibyte characters are treated as
single characters.

Function name Description

gsub(r,t[,s]) Replaces all matches for regular expression r in character string s with t. If s is omitted, the assumed
replacement target is $0 (the field variable that stores the entire record). If & is specified in t, & is
replaced by the matched character string. The number of replacements is returned as the return value.

index(s,t) Returns the position of character string t in character string s. If character string t is not found, 0 is
returned.

length[([s])] Returns the number of characters in character string s. If s is not specified, the number of characters in
$0 (the field variable that contains the entire record) is returned.

match(s,r) Returns the position at which regular expression r occurs in character string s. If regular expression r
is not found, 0 is returned. In addition, the RSTART built-in variable is set to the position at which
regular expression r matches the character string, or is set to 0 if there is no match. The RLENGTH built-

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 662

Function name Description

match(s,r) in variable is set to the length of the character string that matches regular expression r, or to -1 if there
is no match.

sprintf(format,
expression[, ...])

Returns the character string in which expression is formatted according to format. For details about
format, see the description under Output format.

split(s, array[,fs]) Splits character string s into fields using field separator fs and stores the fields in array array. The
number of elements in the array is returned as the return code. The values of the fields that were split
are stored in array array in the order array[1], array[2], ..., array[return-value]. If field separator fs
is not specified, the value of the FS built-in variable is used as the field separator.
The fs field separator can be specified as a character string or regular expression. If you specify "" for
the fs field separator to indicate no characters, s is split into single characters.

sub(r, t[,s]) Replaces the first match for regular expression r in character string s with t. If s is omitted, the assumed
replacement target is $0 (the field variable that contains the entire record). If & is specified in t, & is
replaced by the matched character string. The return code is 1 if regular expression r is found and 0 if
regular expression r is not found.

substr(s,m[,n]) Returns a substring of up to n characters, beginning with the mth character of character string s. If n is
omitted, the entire character string beginning with position m is returned.

tolower(str) Returns a character string in which all uppercase characters in character string str have been changed
to lowercase.

toupper(str) Returns a character string in which all lowercase characters in character string str have been changed
to uppercase.

• Bit manipulation functions
The bit manipulation functions that can be used are described in the table below. Both x and y are treated as signed
four-byte numeric values.

Function name Description

compl(x) Returns the one's complement of integer x.

and(x,y) Returns the bitwise logical AND of integer x and integer y.

or(x,y) Returns the bitwise logical OR of integer x and integer y.

xor(x,y) Returns the bitwise logical XOR of integer x and integer y.

lshift(x,n) Returns the value of integer x shifted n bits to the left. Because an arithmetic bit shift is performed, the sign bit is
also shifted.

rshift(x,n) Returns the value of integer x shifted n bits to the right. Because an arithmetic bit shift is performed, the sign bit
is reintroduced after the right shift, preserving the sign.

• Input/output functions
The following input/output functions can be used.

getline [variable-name]
Reads the next record from the current input file. If variable-name is specified, the record is read into the variable
specified in variable-name and is set as the value of the NR and FNR built-in variables. If variable-name is
omitted, the record is read into field variable $0 and set as the value of the NF, NR, and FNR built-in variables.
The function returns 1 if the record is successfully read, 0 if the end of the file was reached, or -1 if an error
occurred.

getline [variable-name] < path-name
Reads the next record from the file specified in path-name. The path name must be enclosed in double quotation
marks ("). You can also specify in place of the path name the name of a variable assigned to the path name. If
- is specified for path-name, input is read from the standard input.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 663

The following is an example:

getline line < "file001.txt"

If variable-name is specified, the record is read into the variable specified in variable-name. If variable-name
is omitted, the record is read into field variable $0 and set as the value of the NF built-in variable.
The specified file is opened when the first record is read by the getline function and remains open until the
awk command terminates. For this reason, you must execute the close function if you want to restart input
from first record of the same file.

command-name | getline [variable-name]
Reads a record being output to a pipe by the program specified in command-name. The command name must
be expressed in command line format, with the name of the program to be executed and the values of its arguments
enclosed in double quotation marks ("). You can also specify in place of the command name the name of a
variable that has been assigned to the command name.
If variable-name is specified, the record is read into the variable specified in variable-name. If variable-name
is omitted, the record is read into field variable $0 and set as the value of the NF built-in variable. The following
are examples.
Using the output from command-name to the pipe as the input, read one record and assign it to field variable $0:

"cat -n file01.txt" | getline

Assign command-name to a variable, and then execute the program by connecting the variable to the getline
function:

rtxt = "cat -n file01.txt"
rtxt | getline

Creation of a pipe to receive the output from the specified program and execution of the program are performed
when you execute command-name | getline [variable-name]. If you execute the same command-name
multiple times, pipe creation and program execution are performed only the first time the specified command-
name is executed. The pipe that is created exists only until the awk command terminates. For this reason, if you
want to re-run the program specified in command-name, you must execute the close function. This is illustrated
in the following example:

"cat -n file01.txt" | getline rec -->1.
"cat -n file01.txt" | getline rec -->2.
close("cat -n file01.txt") -->3.
"cat -n file01.txt" | getline rec -->4.

1. The pipe is created and the cat command is executed. The contents of the first record that is output from the
cat command to the pipe are set in variable rec.
2. The contents of the second record that is output from the cat command to the pipe are set in variable rec.
3. The pipe is closed.
4. The pipe is created and the cat command is executed. The contents of the first record that is output from the
cat command to the pipe are set in variable rec.
Note that even if this command-name is identical to the command-name specified in a print or printf
function, they are considered to be different commands.

print [expression[, ...]]
Prints expression to the standard output. If expression is omitted, the current input record is printed to the standard
output. If you specify multiple expressions delimited by the comma (,), the expressions will be separated by
the value of the OFS built-in variable. The value of the ORS built-in variable is output at the end of the output
record.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 664

print [expression[, ...]] > path-name
Outputs expression to the file specified in path-name. path-name must be enclosed in double quotation marks
("). You can also specify in place of the path name the name of a variable assigned to the path name. If expression
is omitted, the current input record is output to the file specified in path-name. If you specify multiple expressions
delimited by the comma (,), the expressions will be separated by the value of the OFS built-in variable. The
value of the ORS built-in variable is output at the end of the output record. To append the output to an existing
file, specify >>path-name.
The specified file will be opened when you first produce output using the print function and will remain open
until the awk command terminates. For this reason, if you want to output from the beginning of the same file,
you must execute the close function.

print [expression[, ...]] | command-name
Outputs expression to a pipe and passes it to the program specified in command-name.
The command name must be expressed in command line format, with the name of the program to be executed
and the values of its arguments enclosed in double quotation marks ("). You can also specify in place of the
command name the name of a variable assigned to the command name.
If expression is omitted, the current input record is output to the pipe. If you specify multiple expressions
delimited by the comma (,), the expressions will be separated by the value of the OFS built-in variable. The
value of the ORS built-in variable is output at the end of the output record.
The creation of a pipe to receive the output from the specified program and execution of the program are
performed when you execute print [expression[, ...]] | command-name. If you execute the same
command multiple times, pipe creation and program execution are performed only the first time the specified
command-name is executed. The pipe that is created exists only until the awk command terminates. For this
reason, if you want to re-run the program specified in command-name, you must execute the close function.
Note that even if this command-name is identical to the command-name specified in a getline function, they
are considered to be different commands.

printf format[, expression[, ...]]
Prints to the standard output according to the format in format. For details about format, see the description
under Output format. For details about the other parts of the command, see print [expression[, ...]].
In Windows, when you use \n to represent a new line, it is output as [CR] + [LF].

printf format[, expression[, ...]] >path-name
Prints to a file according to the format in format. For details about format, see the description under Output
format. For details about the other parts of the command, see print [expression[, ...]] >path-name.

printf format[, expression[, ...]] | command-name
Outputs to a pipe according to the format in format. For details about format, see the description under Output
format. For details about the other parts of the command, see print [expression[, ...]] | command-
name. If this command-name is identical to the command-name specified in a print function, their output is
considered to be from the same program.

close(path-name|command-name)
Closes a file that was used by the getline, print, or printf function, or a pipe that was created when the
getline, print, or printf function was executed.
When the close function is successful, 0 is returned. When the close function fails, the return value of the
OS's close function is returned in the case of a file, or the return value of the pclose function is returned in
the case of a pipe.
The argument specifies a path name or command that was specified in a getline, print, or printf function.
path-name must be enclosed in double quotation marks ("). command-name must be expressed in command
line format, with the name of the program to be executed and the values of its arguments enclosed in double

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 665

quotation marks ("). Alternatively, you can specify a variable that contains the path name or command that was
specified in the getline, print, or printf function. Note that the path-name or command-name argument
to the close function must be identical, including the number of characters, to the path name or command used
in the getline, print, or printf function. If command-name or path-name specifies a different character
string, it will be considered a different path name or command. Note that in addition to closing command-
name, the close function also closes any pipes to command-name from the getline, print, or printf
functions. The following is an example:

print "hitachi" | "cat -n"
close("cat -n")

fflush([path-name|command-name])
Flushes a file used by the getline, print, or printf function, or a pipe created when a getline,
print, or printf function is executed. When the flush is successful, 0 is returned. When the flush fails, the
return value of the OS's fflush function is returned.
The argument specifies a path name or command that was specified in a getline, print, or printf function.
path-name must be enclosed in double quotation marks ("). command-name must be expressed in command
line format, with the name of the program to be executed and the values of its arguments enclosed in double
quotation marks ("). Alternatively, you can specify a variable that contains the path name or command that was
specified in the getline, print, or printf function. Note that the path-name or command-name argument
to the fflush function must be identical, including the number of characters, to the path name or command
used in the getline, print, or printf function. If command-name or path-name specifies a different
character string, it will be considered a different path name or command.
If no argument is specified, all files and pipes are flushed.

• General functions
The general function that can be used is described in the following table:

Function name Description

system(command-name) Executes the program specified in command-name and returns the status of the executed program.
command-name must be expressed in command line format, with the name of the program to be
executed and the values of its arguments enclosed in double quotation marks ("). You can also
specify in place of the command name the name of a variable assigned to the command name.
In UNIX, the status of the executed program will be the value of the low-order 8 bits of the return
code that is returned by the program.

User-defined functions
In addition to the built-in functions, you can also define your own functions. The syntax of a user-defined function is
as follows:

function | func name([param[, ...]]) { statements }

The function name name must be specified in alphanumeric characters and the underscore (_), and the first character
must be non-numeric.

You can specify in param arguments to the function using the names of user-defined variables or arrays. An argument
is passed to the function by its value in the case of a user-defined variable or as a reference in the case of an array.

A parsing error does not occur if the number of arguments specified in the function definition differs from the number
of arguments specified when the function is called. However, if the number of arguments specified when the function
is called is greater than the number of arguments specified in the function definition, a warning message is output. The
arguments specified in the function definition are considered local variables, but if the number of arguments specified

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 666

when the function is called is greater than the number of arguments specified in the function definition, the extra
arguments at the time of the function call are considered global variables.

A maximum of 50 arguments can be specified in a function definition. Similarly, a maximum of 50 arguments can be
specified when the function is called. A check is performed at the time the function is called to confirm that the number
of arguments does not exceed 50.

Variables
The types of variables used in scripts include user-defined variables, field variables, built-in variables, and arrays. User-
defined variables and arrays are generated the first time they are used in a script. Note that the initial value stored in an
uninitialized variable (one that has not been used in an arithmetic or assignment expression) is 0 in the case of a numeric
value and NULL in the case of a character string.

The type of the value of a variable changes to numeric or character string depending on the situation in which it is used.
However, non-numeric character strings have a numeric value of 0. For example, in the following example, the two
print functions both produce 7 as the output:

x = "3" + "4"
y = 3 + 4
print x
print y

The following describes each type of variable.

• User-defined variable
A variable name must consist of only alphanumeric characters and the underscore (_). The first character must be
non-numeric.

• Array
An array name is represented with an index enclosed in square brackets ([]) after the variable name. An index can
be a character string enclosed in double quotation marks (") instead of a number. Indexes written as a comma-
separated list represent a multidimensional array.
Multidimensional arrays are implemented in awk by connecting the index values at each dimension with the value
of the SUBSEP built-in variable, in order to treat them as a single character string index. In other words, a
multidimensional array is handled internally as a one-dimensional array. In the example below, the value of the
SUBSEP built-in variable is set to #, and then an array is created as shown. The two print functions both output the
same value, which in this case is Hitachi.

SUBSEP = "#"
arry["a", "b", "c"] = "Hitachi"
print arry["a", "b", "c"]
print arry["a#b#c"]

• Field variables
The field variables for referring to the contents of input records are described in the following table:

Variable Description

$0 Set to the entire contents of the record currently being read from the input file.

$1,$2,... Set sequentially to the field contents of the record that has just been read.
The record is split into fields by the value of the FS built-in variable, and then variable $1 is set to the record's
first field, variable $2 is set to the record's second field, and so on.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 667

Variable Description

$variable-name By assigning field numbers to variables, you can refer to fields in the same way as if you had written the field
numbers directly as $0, $1, and so on.#

When you do this in a function or control statement, the variable must be set to the field number before it is used.

$(expression) By setting expression to an expression that evaluates to a field number (such as variable-name+1), you can refer
to fields in the same way as if you had written the field numbers directly as $0, $1, and so on.

#
For example, in the following case, print $a and print $1 produce the same output:

 a = 1
 print $a
 print $1

• Built-in variables
The built-in variables are described in the following table:

Variable Description

ARGC Stores the number of command line arguments. This number does not include option values and script specification
values. The value of ARGC can be changed by a script or by the -v option. If you set ARGC to 0 with the -v option,
target path names specified in arguments will be ignored.

ARGV Stores an array of command line arguments. The array elements can be modified by a script. For example, if you
set to NULL an element storing one of the target path names specified in the arguments, that input file will be
ignored and no records will be read from it. This will overwrite values specified with the -v option.

CONVFMT# Stores the conversion format to use when converting numeric values. The default is %.6g. If the numeric value
has a fractional part, it is also included.

ENVIRON Stores an array of run-time environment variables. The indexes are the names of environment variables. The name
of an environment variable must be enclosed in double quotation marks ("). You can also specify in place of the
name of an environment variable the name of a variable that has been assigned the name of the environment
variable.

FILENAME Stores the name of the current input file. The file name is set to - when the input is from the standard input.

FNR Stores the number of input records that have been read from the current input file. This value is updated each time
a record is read from the file specified in the target path name. It is also updated when a record is read by getline
[variable-name].
When more than one target path name is specified, it is initialized to 0 when input starts to be read from the next
input file.

FS Stores the field separator. The default is a one-byte space. FS can be set to a regular expression. If you wish to
change the field separator, specify a character string of no more than 99 bytes. If the value of the field separator is
a one-byte space, it will split fields at both spaces and tabs (\t). If no value is set for the field separator, each
individual character will become a field.
If you specify more than one character, the backslash (\) will be regarded as the regular expression escape character.
If the -F option is also specified, this variable takes precedence.

NF Stores the number of fields in the current input record. NF is set each time an input record is read from the file
specified in the target path name. It is also set when an input record is read into the $0 field variable by the getline
function.
You can reference the value of the last field of the current input record by specifying $NF.

NR Stores the number of input records detected so far. The value is updated each time a record is read from a file
specified by the target path name. The value is also updated when a record is read by getline [variable-name].
If more than one target path name is specified, the number of records includes the records from all files from which
input has been performed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 668

Variable Description

OFMT# Stores the output format for numeric values. The default is %.6g. If the numeric value has a fractional part, it is
also included.

OFS Stores the output field separator. The default is a one-byte space.

ORS Stores the output record separator. The default is the newline character (\n). In Windows, the newline character
(\n) is output as [CR] + [LF].

RLENGTH Stores the length of a substring matched by the match function. The value is set to -1 if no match was found.

RS Stores the input record separator. The default is the end-of-line character. If you change its value, use single-byte
characters only. If you specify a character string or a multibyte character, the initial byte only will be used. When
RS is set to the newline character (\n), this will match either [CR] + [LF] or [LF] in an input file in Windows,
and it will match [LF] in an input file in UNIX. If the value of RS is set to something other than the newline
character, the end-of-line character included in the input records will be [LF] in the case of Windows. On a UNIX
system, if the input file uses [CR] + [LF] as the end-of-line code, the [CR] part only will be included with the
input records.

RSTART Stores the starting position of a substring matched by the match function. The value is set to 0 if no match was
found.

SUBSEP Stores the separator used in multidimensional arrays. The default is 0x1C.

#
The conversion specifiers f, e, g, E, and G are supported. Do not use any other conversion specifiers.

Operators
The operators that can be used are listed and described in the table below, in order of lowest to highest priority. For an
expression with operators at the same priority level, the operators are listed from left to right in order of highest to lowest
priority.

Operator Description

=, +=, -=, *=, /=, %=, ^=, **= Assignment operators

?: Ternary operator

|| Logical OR

&& Logical AND

~, !~ Operators for match (~) or fail to match (!~) a regular expression

<, <=, >, >=, !=, == Relational operators

space Concatenation of character strings

+, - Addition and subtraction

*, /, % Multiplication, division, and modulus

+, -, ! Unary and logical negation

^, ** Exponentiation

++, -- Increment and decrement operators

Output format
The following table lists and describes the conversion specifiers that follow % to indicate conversion specifications in
the printf and sprintf functions:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 669

Character Description

c Output as a single-byte character.

s Output as a character string.

d Output as a signed decimal integer.

i

o Output as an unsigned octal integer.

x Output as an unsigned hexadecimal integer. The values 10 through 15 use abcdef.

X Output as an unsigned hexadecimal integer. The values 10 through 15 use ABCDEF.

u Output as an unsigned decimal integer.

f Output as a floating point number. It is converted to the format [-]dddd.dddd.

e Output as a floating point number. It is converted to the format [-]d.dddde[+-]dd[d].

g Output in the signed format of conversion specifier e or f, depending on which is able to represent the specified value
and precision in the shortest way. Trailing zeros are not output.

E Output as a floating point number. It is converted to the format [-]d.ddddE[+-]dd[d].

G Output in the signed format of conversion specifier E or f, depending on which is able to represent the specified value
and precision in the shortest way. Trailing zeros are not output.

% Output as the % character.

Escape characters
You can use escape characters as follows:

• In the input field separator in the -F option

• As a variable value in the -v option

• As a built-in variable value specified in an argument

• Within character strings that are enclosed in double quotation marks (") in an assignment to a pattern or variable

The following table shows the escape characters that can be used:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\d, \dd, \ddd Character represented by one, two, or three octal digits.#1 You cannot specify a numeric value that denotes 0.

\xhex Character represented by a hexadecimal value (0 to 9, a to f, A to F).#1, #2 You cannot specify a numeric
value that denotes 0.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 670

Escape character Meaning

\c Any literal character (for example, \" for ")

\\ A single backslash character

#1
If you specify a pattern or regular expression enclosed in forward slashes (/), there are values that cannot be specified
depending on the character encoding at the time of execution. The hexadecimal representations of the permissible
values for each character encoding are shown below. If you specify a value that is outside these values, termination
with an error will occur.

Character encoding Permitted values (in hexadecimal)

Shift JIS 0x01 to 0x80, 0xA0 to 0xDF, 0xFD to 0xFF

UTF-8 0x01 to 0xBF, 0xFE to 0xFF

EUC 0x01 to 0x8D, 0x90 to 0xA0, 0xFF

C 0x01 to 0xFF

#2
If \xhex is specified in a character string enclosed in double quotation marks ("), the hexadecimal digits are assumed
to extend from \x to the first non-hexadecimal character. If the hexadecimal representation exceeds 98 characters,
only the first 98 characters will be used. When the hexadecimal representation exceeds two characters, the results
of converting the hexadecimal values from their hexadecimal representation are not guaranteed.

A backslash (\) specified in variable values in the -v option and in built-in variable values in arguments is treated as
an escape character (except when it is enclosed in single quotation marks (')). Specify path names carefully. The
following shows examples.

Example 1: The correct path name, c:\a\b\c, cannot be passed to the awk command's scripts.
In this example, \ is deleted because it is processed as an escape character. As a result, c:\a\b\c is set in VAR001.
After that, \ is processed as an escape character again when the value is set in the variable in the awk command.
As a result, c:abc is set in VAR001:

CCC01="c:\\a\\b\\c"
awk -v VAR001="${CCC01}" -f prog01.awk

Similarly, the following two examples also cannot pass the correct path name:

awk -v VAR001=c:\\a\\b\\c -f prog01.awk
awk -v VAR001='c:\a\b\c' -f prog01.awk

Example 2: The correct path name, c:\a\b\c, is passed to the awk command's scripts.
In this example, c:\\a\\b\\c is stored in both CCC01 and CCC02.
After that, when the value is stored in VAR001 in the awk command, it becomes c:\a\b\c, thereby processing
correctly:

CCC01='c:\\a\\b\\c'
CCC02="c:\\\\a\\\\b\\\\c"
awk -v VAR001="${CCC01}" -f prog01.awk
awk -v VAR001="${CCC02}" -f prog01.awk

Similarly, the following two examples can also pass the correct path name:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 671

awk -v VAR001=c:\\\\a\\\\b\\\\c -f prog01.awk
awk -v VAR001='c:\\a\\b\\c' -f prog01.awk

Special file names
Special file names can be used to represent the input source and output destination when you use the getline function
to read from the standard input or the print or printf function to output to the standard output or standard error
output. The table below lists the special file names that are available. Note that attempting to apply the close function
to a special file name will have no effect.

Special file name Meaning

/dev/stdin Standard input

/dev/stdout Standard output

/dev/stderr Standard error output

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Value specified in the exit statement Command return code specified in the exit control statement

Notes
• The awk command treats numeric values as double-precision floating point numbers (8 bytes). When you output

or convert a numeric value by specifying the conversion specifier d, i, o, x, X, or u in the output format of the
printf or sprintf function, it is rounded to a four-byte signed integer. For this reason, an error occurs when
you output or convert a numeric value that is outside the range of a four-byte signed integer by specifying the
conversion specifier d, i, o, x, X, or u. The particular error depends on the OS.

• The maximum number of files that can be opened at the same time by the getline, print, or printf function
is 256. Note that the number of files that can be open at the same time includes pipes generated by the commands
that invoke these functions. In UNIX, the maximum number will be less than 256, depending on OS settings, such
as the maximum number of files that can be open at the same time on the system as a whole, or restrictions imposed
by ulimit on the number of open file descriptors for those processes.

• Input from binary files and output of binary data are not guaranteed to work.

• Execution of external programs, for example by the system function, is implemented in terms of arguments to
other programs, as described below. For this reason, the execution specifications for the external program, such as
the maximum length of path names, depend on the specifications of those executing programs.

• Windows
External programs are executed as arguments to the command processor specified in the COMSPEC environment
variable, the default value for which is cmd.exe. The command processor that is used is determined by the
COMSPEC and PATH environment variables.

• UNIX
External programs are executed as arguments to the shell. Different executing programs might be launched
depending on OS specifications.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 672

• In Windows, at the start of input or output from a command that is specified in a getline, print, or printf
function, an application error might occur in the execution of the specified command due to insufficient desktop
heap space. For this reason, either use the close function close the command when command input/output is no
longer required or adjust the value of the desktop heap.

• In Windows, if you specify a file or directory name that contains wildcards in an argument to a command that
executes the system function, the wildcards are not expanded.

• In Windows, if you specify file and directory names that contain wildcards as arguments to a command that is
connected by a pipe to a getline, print, or printf function, the wildcards are not expanded.

• In Windows, if you specify the path name of a linked file in a place where you specify an external function, such as
in the system function, the program that it has been linked to will launch. Take note of this when executing batch
jobs.

• In Windows, when you specify a path name in an input/output function or a general function, observe the following
constraints concerning the backslash (\) character:

• The directory separator character \ must be specified as \\.

• If you specify a path name that includes spaces in the place where you specify an external function, such as in
the system function, the entire path must be enclosed in \".

• The \ character is treated as representing the escape character when it is specified as the value of a built-in
variable specified in the input field separator in the -F option, or as a variable value specified in an argument
or in the -v option.

• In Windows, file descriptors are closed without being inherited by processes that were generated by the system
function or similar means. For example, an error results if you attempt to perform input or output on a file descriptor
opened by the parent process without reopening it. This does not apply to the standard input, standard output, and
standard error output, which do not need to be reopened.

• In Windows, if the command name specified in the system function contains no path, the command found in the
path search order of a command processor such as the command prompt is executed.

• When you use the exit statement to return a return code for a command, depending on the value specified in the
exit statement, the return code might sometimes be different from the return code that is returned to the caller of
the command. See the description of the exit statement for details about specifying a command return code in the
exit statement. Note that in the awk command, the value specified in the exit statement is rounded to a four-
byte signed integer. For this reason, an error occurs if you specify a numeric value that is outside the range of a four-
byte signed integer. The specific error is OS-dependent.

Examples
• In an argument to the command, specify that the action is to convert from lowercase to uppercase the records that

match the search pattern. The input file is file01.txt.
Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "/hitachi/{print toupper($0)}" file01.txt
HITACHI GROUP01 TOKYO
HITACHI GROUP03 FUKUOKA

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 673

• Output the records where the second field matches the pattern in a regular expression. The input file is
file01a.txt.
Contents of file01a.txt:

hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi grp0000 Fukuoka
hitachi group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "$2 ~ /group/" file01a.txt
hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi group04 Hokkaido

• Output the contents of the third field, using the -F option to specify # as the input field separator. The input file is
file02.txt.
Contents of file02.txt:

hitachi#group01#Nagoya
HITACHI#group02#Hiroshima
hitachi#group03#Ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -F"#" "{print $3}" file02.txt
Nagoya
Hiroshima
Ooita

• Specify the variable padstr and its value in an argument, in order to pass them to the action, which is specified
in the prog01.awk script file. The input file is file03.txt.
Contents of prog01.awk:

program name : prog01
{
count++
print padstr " " $0#
}
END{
 print "total record : " count
}

#
Outputs the value of the variable specified in the -v option, a space, and the contents of the input record.

Contents of file03.txt:

group01 Tokyo
group02 Yokohama
group03 Fukuoka

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -v padstr="hitachi" -f prog01.awk file03.txt
hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi group03 Fukuoka
total record : 3

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 674

• In a command argument, specify # as the value of the FS built-in variable for input file file02.txt. The input
files are file01.txt and file02.txt.
Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file02.txt:

hitachi#group01#Nagoya
HITACHI#group02#Hiroshima
hitachi#group03#Ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "{print $3}" file01.txt FS="#" file02.txt
Tokyo
Yokohama
Fukuoka
Hokkaido
Nagoya
Hiroshima
Ooita

• Retrieve records beginning with the record that contains group03 through the record that contains group06, and
output them to the file file06.txt. The script file is prog02.awk. The input files are file04.txt and
file05.txt.
Contents of prog02.awk:

BEGIN{
 print "Extract record : group03 - group06" > "file06.txt"
}
/group03/, /group06/{#
 count++;
 print >> "file06.txt";

}
END{
 printf "total record : %03d\n", count >> "file06.txt"
}

#
The processing target begins with the record that matches group03 and extends through the record that matches
group06.

Contents of file04.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file05.txt:

hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita

The results of executing the command are as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 675

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog02.awk file04.txt file05.txt
C:\TEMP>%ADSH_OSCMD_DIR%\cat file06.txt
Extract record : group03 - group06
hitachi group03 Fukuoka
HITACHI group04 Hokkaido
hitachi group05 Nagoya
HITACHI group06 Hiroshima
total record : 004

• Output beginning with the first record in file file04.txt through the record that contains group02. In addition,
output all records from the file file05.txt. The script file is prog03.awk. The input files are the previous
file04.txt and file05.txt.
Contents of prog03.awk:

{
 count++; print
 if ($2 == "group02") {
 nextfile#
 }
}
END{
 printf("total record : %03d\n", count)
}

#
If the second field is group02, begin processing the next input file.

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog03.awk file04.txt file05.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita
total record : 005

• If the second field of the record is group02, terminate execution of the awk command. In addition, return as the
return code of the command the number of records that were read before the command terminated. The script file
is prog04.awk. The input files are file04.txt and file07.txt.
Contents of prog04.awk:

{
 print
if ($2 == "group02") {
 exit(NR)#
 }
}
END{
 printf("total record : %03d\n", NR)
}

#
Terminates the command and sets as the return code the value of the NR built-in variable, which contains the
number of records read so far.

Contents of file04.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 676

hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file07.txt:

hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita
hitachi group03 Okinawa

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog04.awk file04.txt file07.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
total record : 002

• Use the sub function to change the first occurrence of a specific character string in each record. The script file is
prog05.awk. The input file is file08.txt.
Contents of prog05.awk:

{
 if (sub(/Hitachi/, "& Corporation")#) {
 print
 } else {
 print "Unconverted record : " $0
 }
}

#
Replaces Hitachi with Hitachi Corporation in the records.

Contents of file08.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Tanaka Okinawa Office Tanaka Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog05.awk file08.txt
Hitachi Corporation Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Group
Unconverted record : Tanaka Okinawa Office Tanaka Group
Hitachi Corporation Fukuoka Office Hitachi Group

• Use the gsub function to change every occurrence of a specific character string in each record. The script file is
prog06.awk. The input file is file09.txt.
Contents of prog06.awk:

{
 if (gsub(/Hitachi/, "& Corporation")#) {
 print
 } else {
 print "Unconverted record : " $0
 }
}

#
Replaces every instance of Hitachi with Hitachi Corporation in the records.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 677

Contents of file09.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Tanaka Okinawa Office Tanaka Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog06.awk file09.txt
Hitachi Corporation Yokohama Office Hitachi Corporation Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Unconverted record : Tanaka Okinawa Office Tanaka Group
Hitachi Corporation Fukuoka Office Hitachi Corporation Group

• Find the position of a specific character string using the index function. The script file is prog07.awk.
Contents of prog07.awk:

BEGIN{
 str = "HI:hitachi"
 print "Column = " index(str, "hitachi")
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog07.awk
Column = 4

• Find the length of a character string using the length function. The script file is prog08.awk.
Contents of prog08.awk:

BEGIN{
 str = "HI:hitachi"
 print "Length = " length(str)
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog08.awk
Length = 10

• Use the match function to find the position and length of a specific character string. The script file is prog09.awk.
Contents of prog09.awk:

BEGIN{
 str = "hitachi:MOUSE"
 print "Column = " match(str, /U.E/)
 print "RSTART = " RSTART
 print "RLENGTH = " RLENGTH
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog09.awk
Column = 11
RSTART = 11
RLENGTH = 3

• Split a character string using a specific character as the delimiter, and store the results in an array. The script file is
prog10.awk.
Contents of prog10.awk:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 678

BEGIN{
 str = "Hitachi#Yokohama Office#Hitachi Group"
 num = split(str, arry, "#")
 for (i = 1; i <= num; i++) {
 print arry[i]
 }
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog10.awk
Hitachi
Yokohama Office
Hitachi Group

• Find the substring at a specific position. The script file is prog11.awk.
Contents of prog11.awk:

BEGIN{
 str = "hitachi:MOUSE"
 rtnstr = substr(str, 11, 2)
 print "SUBSTR = " rtnstr
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog11.awk
SUBSTR = US

• Read records from an input file that is not specified as an argument. The script file is prog12.awk. The input file
is file10.txt.
Contents of prog12.awk:

BEGIN{
 while ((getline rec < "file10.txt"#) > 0) {
 print rec
 }
}

#
Reads a record from the specified input file file10.txt and stores the contents of the record in the rec
variable.

Contents of file10.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog12.awk
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

• Pass output from the print function to a command through a pipe. The script file is prog13.awk. The input file
is file11.txt.
Contents of prog13.awk:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 679

BEGIN{
 cmd = "sort "
}
{
 if (sub(/group01/, $2)) {
 count++
 print | cmd#1
 }
}
END{
 close(cmd)#2
 print "total record : " count
}

#1
Passes records to the sort command specified in the cmd variable.

#2
Closes the pipe and terminates execution of the sort command by executing the close function.

Contents of file11.txt:

hitachi group01 003 tokyo
hitachi group02 001 yokohama
hitachi group03 001 fukuoka
hitachi group01 004 hokkaido
hitachi group01 001 nagoya
hitachi group02 001 hiroshima
hitachi group01 002 ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog13.awk file11.txt
hitachi group01 001 nagoya
hitachi group01 002 ooita
hitachi group01 003 tokyo
hitachi group01 004 hokkaido
total record : 4

• Delete an element of an array. The script file is prog14.awk.
Contents of prog14.awk:

BEGIN{
 arry["Fukuoka"] = "Fukuoka"
 arry["Hokkaido"] = "Sapporo"
 arry["Kanagawa"] = "Yokohama"
 arry["Shimane"] = "Matsue"
 for (key in arry) {
 printf(" %*s : %s\n", 6, key, arry[key])
 }
 print "Deletes result of the array element"
 delete arry["Kanagawa"]
 for (key in arry) {
 printf(" %*s : %s\n", 6, key, arry[key])
 }
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog14.awk
 Fukuoka : Fukuoka
 Hokkaido : Sapporo
 Kanagawa : Yokohama

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 680

 Shimane : Matsue
Deletes result of the array element
 Fukuoka : Fukuoka
 Hokkaido : Sapporo
 Shimane : Matsue

• When the program starts, create a directory and output the contents of the records to a file in the directory that was
created. The script file is prog15.awk. The input file is file12.txt.
Contents of prog15.awk:

BEGIN{
 if ((rc = system("mkdir dir001")#1)) {
 printf("system func error rc = %x\n", rc) > "/dev/stderr"#2
 exit(1)
 }
}
{
 print >> "dir001\\outfile.txt"
}

#1
Creates a directory by executing the mkdir command from the system function.

#2
Outputs the return code of the system function to the standard error output.

Contents of file12.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog15.awk file12.txt
C:\TEMP>%ADSH_OSCMD_DIR%\cat dir001\\outfile.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

• Call a user-defined function and output its results. The script file is prog16.awk.
Contents of prog16.awk:

BEGIN{
a = 3
b = 4
result = func01(a, b, c)
print "func01 = " result
}
function func01(x, y){
x *= x
y *= y
return x + y
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog16.awk
awk: warning: function func01 called with 3 args, uses only 2#

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 681

 source line number 4
func01 = 25

#
A warning message is output because the number of arguments in the call to the user-defined function exceeds
the number of arguments in the function definition.

• Display a message when a syntax error is detected in a control statement. The script file is prog17.awk.
Contents of prog17.awk:

BEGIN{
 while ((getline rec < "file10.txt") > 0)) {#
 print rec
 }
}

#
The number of opening and closing parentheses is mismatched in the while statement.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\awk -f prog17.awk
awk: extra) at source line 2 source file prog17.awk
 context is
 while ((getline rec < "file10.txt") > >>> 0)) <<<
awk: syntax error at source line 2 source file prog17.awk
awk: illegal statement at source line 2 source file prog17.awk
 extra)

• Display a message when the syntax of a built-in function is invalid. The script file is prog18.awk.
Contents of prog18.awk:

BEGIN{
 str = "Hitachi:hitachi"
 print "Column = " index(str)#
}

#
No character string is specified as an argument to the index function.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\awk -f prog18.awk
awk: syntax error at source line 3 source file prog18.awk
 context is
 print "Column = " >>> index(str) <<<
awk: illegal statement at source line 3 source file prog18.awk

• Use the temporary file functionality and path conversion functionality of the job controller to perform file input and
output. The job definition script is adsh001.ash. The script file is prog19.awk. The input file is file12.txt.
Specification of the temporary file functionality and path conversion functionality for the environment files:

#-adsh_conf TEMP_FILE_DIR "C:\\TEMP\\ADSH"
#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV "/var/hitachi/jp1as/perm" "C:\\hitachi\\JP1AS\\perm"

Contents of adsh001.ash:

#-adsh_file_temp TEMP
#-adsh_step_start adsh001 -onError stop
"$ADSH_OSCMD_DIR/awk" -f prog19.awk "/var/hitachi/jp1as/perm/file12.txt"
#-adsh_step_error

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 682

exit 100
#-adsh_step_end

Contents of prog19.awk:

{
 print FILENAME, ":", $0 > ENVIRON["TEMP"]
}
END{
while(getline var < ENVIRON["TEMP"])
 print var
}

Contents of file12.txt:

001 abc
002 efgh
003 ijklmnop

Output of the awk command (sent to the standard output by the job):

C:\hitachi\JP1AS\perm\file12.txt : 001 abc
C:\hitachi\JP1AS\perm\file12.txt : 002 efgh
C:\hitachi\JP1AS\perm\file12.txt : 003 ijklmnop

• Display a message when no arguments are specified:

C:\DIR>%ADSH_OSCMD_DIR%\awk
usage: awk [-F fs] [-v var=value] [-f progfile | prog]
 [[file ...] | [built-in-var=value ...]] ...

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -z
awk: illegal option -- z
usage: awk [-F fs] [-v var=value] [-f progfile | prog]
 [[file ...] | [built-in-var=value ...]] ...

8.4.2 basename command (extracts a file name from a path)

Syntax

basename character-string[suffix]

Description
This command extracts a file name character string from a character string that conforms to the path naming conventions
and then outputs it to the standard output.

If a suffix (a string of any characters) is specified, the command deletes the character string that matches the specified
suffix from the end of the extracted character string.

The rules for extracting a file name character string are as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 683

• Of the elements separated by directory separators in the specified character string, the command extracts the
rightmost element.

• In UNIX, a forward slash (/) is treated as a directory separator. In Windows, the / and the backslash (\) are both
treated as directory separators.

• In Windows, colons (:) following a drive letter are treated as element separators.

• Multiple consecutive directory separators are treated as a single directory separator.

• If the specified character string ends with a directory separator, the command extracts the file name character string
without the last directory separator.

• If the specified character string contains no directory separator, the command extracts the specified character string
as is.

• If the specified character string consists of only directory separators, the command extracts the directory separators.

Arguments

character-string
Specifies the character string from which a file name is to be extracted.

suffix
Specifies the suffix to be deleted from the end of the extracted file name. If the he following conditions are satisfied,
the command outputs the extracted file name character string as is:

• The suffix does not match the end of the file name character string.

• The specified suffix is the same as the extracted file name character string.

Return code
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
This command has no options. Any option that is specified in the argument is treated as part of the character string or
suffix that is to be subject to the extraction of a file name character string.

Examples
• Extract file name character strings from path names.

Example 1:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\file01.txt
file01.txt

Example 2:

C:\TEMP>%ADSH_OSCMD_DIR%\basename /dir001
dir001

Example 3:

C:\TEMP>%ADSH_OSCMD_DIR%\basename .\file01.txt
file01.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 684

Example 4:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\dir002\
dir002

Example 5:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\
E:

Example 6:

C:\TEMP>%ADSH_OSCMD_DIR%\basename \\server01\
server01

Example 7:

C:\TEMP>%ADSH_OSCMD_DIR%\basename \\
\

Example 8:

C:\TEMP>%ADSH_OSCMD_DIR%\basename "C:\Documents and Settings\User01\My Documents"
My Documents

Example 9:

C:\TEMP>%ADSH_OSCMD_DIR%\basename C:file01.txt
file01.txt

• Extract a file name from a path name without the extension:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\file01.txt .txt
file01

8.4.3 cat command (outputs files to the standard output)

Syntax

cat [-b] [-n] [-s] [-u] [path-name ...]

Description
This command outputs one or more files to the standard output. If there are multiple files, they are concatenated and
output.

Arguments

-b
Specifies that all non-blank output lines are to be assigned line numbers.

-n
Specifies that all output lines are to be assigned line numbers beginning with 1. Each line number is displayed as
six digits. If the number of lines is such that line numbers cannot be accommodated in six digits, the number of
digits is increased as necessary. A tab is output after each line number. If you specify multiple path names, a line
number is provided and docked to the path name of each specified file and the path name is output.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 685

-s
Specifies that multiple consecutive blank lines are to be compressed and output as a single blank line.

-u
In UNIX, specifies that output buffering is to be suppressed.
In Windows, this option is ignored.

path-name
Specify the path name of a file to be output. Multiple path names can be specified, in which case the specified files
are concatenated and then output. If no path name is specified, or if - is specified as the path name, the input is read
from the standard input.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• A blank line is considered to be a line consisting of only a linefeed code [LF]. A line that includes [CR] + [LF]

is not considered a blank line for the purposes of the -b and -s options. For this reason, files in Windows are
normally not considered to include any blank lines.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of linefeed codes is performed.

• If the standard output is a file and the specified path name indicates this file, the command outputs the following
message and results in an error:

cat: file-name: input file is output file

Examples
These usage examples illustrate the results of executing the cat command on files abc.txt and abcdex.txt,
whose contents are shown below. In the examples, represents a space and represents a tab character.

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd

• abcdex.txt
aaaaaaaaaaa

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 686

bbbbbbbb

cccccccccccc

dddddddddddd

eeeeeeeeeeeeeeeee

The files listed above are used as input files in the following examples, which illustrate the results of executing the cat
command.

• Specify the -b option to number non-blank output lines.

$ cat -b abc.txt

 1 aaaaaaaaaaa

 2 bbbbbbbb

 3
 4 cccccccccccccccc

 5

 6
 7 dddddddddddd

• Specify the -n option to number all output lines.

$ cat -n abc.txt
 1 aaaaaaaaaaa
 2
 3 bbbbbbbb
 4
 5
 6 cccccccccccccccc
 7
 8
 9
 10
 11 dddddddddddd

• Specify the -s option to squeeze consecutive blank lines and output them as a single blank line.

$ cat -s abcdex.txt
aaaaaaaaaaa

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 687

bbbbbbbb

cccccccccccc

dddddddddddd

eeeeeeeeeeeeeeeee

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cat -w
cat: illegal option -- w
usage: cat [-bnsu] [file ...]

• Display an error message because a file does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\cat file99
cat: file99: No such file or directory

8.4.4 cmp command (compares binary files)

Syntax

cmp [-l|-s] path-name-1 path-name-2 [skip-1 [skip-2]]

Description
This command compares binary files. Differences in byte values and the locations where the differences occur can be
displayed.

Arguments
If the -l and -s options are both omitted, the command displays only the location where the first difference is detected.
An error results if the -l and -s options are both specified.

-l
Specifies that each set of a difference in byte values (octal) and their offset in bytes (decimal) are to be displayed.

-s
Specifies that only a termination status indicating whether the files are different is to be returned.

path-name-1
Specifies the path name of the comparison source file. If you specify - for path-name-1, the contents for comparison
are read from the standard input.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 688

path-name-2
Specifies the path name of the comparison target file. If you specify - for path-name-2, the contents for comparison
are read from the standard input.

skip-1
Specifies the position (in bytes) in the file in path-name-1 that is to be the beginning point of the comparison
processing.

skip-2
Specifies the position (in bytes) in the file in path-name-2 that is to be the beginning point of the comparison
processing.

Return codes
Return code Meaning

0 Normal termination. The files are identical.

1 Normal termination. The files are different. Or, the end-of-file (EOF) was reached earlier in one
file than in the other, in which case a message (cmp: EOF on file-name) is output.

2 or greater Error termination

Notes
• The end-of-line code [CR] + [LF] is considered two bytes.

• In Windows, input from a file or from the standard input is performed in binary mode. No conversion of end-of-line
codes is performed.

Examples
These usage examples illustrate the results of executing the cmp command on the files abc.txt and abcd.txt,
whose contents are shown below. In the examples, represents a space and represents a tab character.

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd

• abcd.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 689

dddddddddddd
eeeeeeeeeeeeeeeee

The files listed above are the input files in the following examples, which illustrate the results of executing the cmp
command.

• Specify the -l option to display the offset in bytes (decimal) and the values (octal) of each difference between
abc.txt and abcd.txt.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -l abc.txt abcd.txt
 49 12 40
 50 11 40
 51 11 40
 52 11 40
 53 12 40
 54 12 40
 65 40 12
 66 12 40
 67 144 40
 68 144 40
 69 144 40
 70 144 40
 71 144 40
 72 144 40
 73 144 40
 74 144 40
 75 144 40
 76 144 40
 77 144 40
 78 144 40
 79 12 40
cmp: EOF on abc.txt

• Specify the -s option to return the return code without displaying the results.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -s abc.txt abcd.txt

• Specify the optional skip arguments to set the starting bytes for comparison to 3 for each file. In the first example,
the skip arguments are omitted. In the second example, they are set to 3.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp abc.txt abcd.txt
abc.txt abcd.txt differ: char 49, line 7

C:\TEMP>%ADSH_OSCMD_DIR%\cmp abc.txt abcd.txt 3 3
abc.txt abcd.txt differ: char 46, line 7

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -w
cmp: illegal option -- w
usage: cmp [-l | -s] file1 file2 [skip1 [skip2]]

• Display an error message if the file does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\cmp file99 file123
cmp: file99: No such file or directory

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 690

8.4.5 cp command (copies files or directories)

Syntax

cp [-f|-i] [-p] [-u] [-R|-r [-H|-L|-P]] copy-source-file-name copy-target-file-name
cp [-f|-i] [-p] [-u] [-R|-r [-H|-L|-P]] copy-source ... copy-target-directory-name

Description
The command copies files or directories.

Arguments
-f

--force
This command does not issue warning when the file at the destination is overwritten. If the -f and -i options are
both specified, the option specified last takes effect.

-i

--interactive
This command specifies that when the file at the destination is overwritten, a warning is to be issued asking the user
to respond. Copying is performed if the response from the standard input begins with the letter y or Y. If the response
begins with any other character, or if the standard input is not available, processing is interrupted and the command
terminates with a return code of 0.
If the -f and -i options are both specified, the option specified last takes effect.

-p

--preserve
This command saves the attributes of the source file.
In Windows, the last modified date and time and the last access date and time of each source file are retained.
Directory information is not retained.
In UNIX, the owner, group, access permissions, last modified date and time, and last access date and time of each
source file are retained.

-u

--update
This command specifies that copying is to not be executed when the destination file already exists and the last
modified date and time are the same as or later than those of the source when copying a file other than directory.
When copying a symbolic link, whether to copy the symbolic link is determined based on the last modified date and
time if the destination is a symbolic link. If the destination is a file, whether to copy the symbolic link is determined
based on the last modified date and time of the destination file.
The last modified date and time of a file is determined upon rounding off values smaller than a second.

-R|-r

--recursive
This command recursively copies a directory.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 691

In Windows, the directory delimiter at the end is ignored even if you specify the symbolic link to the directory having
the directory delimiter at the end for the copy source. To copy the directory of the link destination of the symbolic
link, specify this option along with the -H or -L option.

-H
This command follows the symbolic link specified in the command line when this option is specified together with
the -R option or -r option.
This command does not follow symbolic links encountered while traversing the tree.
This option is applied to the source.
This option is ignored if either the -R or -r option is not specified. If more than one of the -H, -L, and -P options
are specified, the option specified last takes effect.

-L

--dereference
If this option is simultaneously specified with the -R or -r option, the command follows all symbolic links that are
encountered.
This option is applied to the source.
This option is ignored if either the -R or -r option is not specified. If more than one of the -H, -L, and -P options
are specified, the option specified last takes effect.

-P

--no-dereference
If this option is simultaneously specified with the -R or -r option, the command does not follow any symbolic
links.
This option is applied to the source.
This option is ignored if either the -R or -r option is not specified. If more than one of the -H, -L, and -P options
are specified, the option specified last takes effect.

copy-source-file-name
This command specifies the name of the file to be copied.

copy-target-file-name
This command specifies the name of the file at the destination.

copy-source
This command specifies the file or directory to be copied.

copy-target-directory-name
This command specifies the directory to be copied.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 692

Notes
• In Windows, a target file is created with the file name specified for the copy source. However, uppercase letters in

file names are converted to lowercase when copied. For example, if the name of the target file is A.txt and you
execute cp a.txt tmpdir, the name of the file in tmpdir will be a.txt.

• In Windows, file input and output are performed in the binary mode. No conversion of end-of-line codes is performed.

• In Windows, if you specify the -f option and attempt to overwrite a file in the copy destination, depending on the
status of the Windows environment in which the command is executed, the error Permission denied might
be output.

• In UNIX, when a general user preserves the attributes of the copy source file by specifying the -p option of the cp
command but the owner of the source file is not the user executing the cp command, the owner, group, and access
permission information (setuid bit, setgid bit, and sticky bit) of the source file will not be preserved.

• If the destination is new (including cases when the destination is the same) with specification of the -u option,
copying is normally terminated without an error when a file or directory is not copied.

Examples
• Specify the -i option to ask the user for confirmation before overwriting the target file.

C:\TEMP>%ADSH_OSCMD_DIR%\cp -i file1.txt file2.txt
overwrite file2.txt? y

C:\TEMP>%ADSH_OSCMD_DIR%\cp -i file1.txt file2.txt
overwrite file2.txt? n

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cp -w
cp: illegal option -- w
usage: cp [-fipu] [-Rr [-H | -L | -P]] source target
 cp [-fipu] [-Rr [-H | -L | -P]] source ... directory

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\cp file99 file123
cp: file99: No such file or directory

8.4.6 cut command (outputs selected parts of lines to the standard output)

Syntax

cut -b list [-n] [--output-delimiter=character-string] [path-name ...]
cut -c list [--output-delimiter=character-string] [path-name ...]
cut -f list [-s] [-d delimiter] [--output-delimiter=character-string] [path-name ...]

Description
This command outputs selected parts of lines to the standard output. For each line in the input files (or, by default, the
standard input), the command selects the portions specified in list and outputs them to the standard output.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 693

Arguments
If the -b, -c, and -f options are all omitted, the command outputs command usage information and terminates.

-b list

--bytes=list
Specifies that what is to be cut and output is defined as a range of byte positions. The byte positions are specified
in list (where a file's first byte is position 1). If multiple byte position ranges are specified, they are concatenated.
If this option is specified together with the --output-delimiter option, the character string specified in the
--output-delimiter option is used to concatenate data.

-c list

--characters=list
Specifies that what is to be cut and output is defined as a range of character positions. The character positions are
specified in list (where a file's first character is position 1). If multiple character position ranges are specified, they
are concatenated.
If this option is specified together with the --output-delimiter option, the character string specified in the
--output-delimiter option is used to concatenate data.

-f list

--fields=list
Specifies that what is to be cut and output is defined as a range of field positions. The field positions are specified
in list (where a file's first field is position 1). If multiple field position ranges are specified, they are concatenated.
The selected fields are output separated by a delimiter. If the delimiter is not found in a line, the entire line is output,
unless the -s option is specified, in which case lines that do not contain the delimiter are not output.
By specifying the --output-delimiter option, you can change the separator that is output together with the
selected fields.

list
Specifies either column positions or field positions as separated by the delimiter. Column positions start from 1.
You can specify multiple selection ranges by separating them with the comma, space, or tab. If you separate them
with the space or tab, each selection range must be enclosed in double quotation marks ("). A selection range can
be specified as n, x-, -y, or x-y, where n, x, and y are either field positions or column positions. No error results if a
nonexistent position is specified.

• n: Specifies a single position that is to be output.

• x-: Specifies that all positions beginning with position x through the end of the file are to be output.

• -y: Specifies that all positions from the beginning of the file through position y are to be output.

• x-y: Specifies that all positions beginning with position x through position y are to be output. In such a case, x
< y. If x > y, an error message (cut: [-bcf] list: illegal list value) is output.

-n
Specifies that multibyte characters are not to be split. If this option is not specified, the -b option results in multibyte
characters being split into separate bytes.

path-name
Specifies the path name of a file that is to be read as the input. If path-name is omitted or a hyphen (-) is specified,
the standard input is read.

-s

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 694

--only-delimited
Specifies that lines that do not contain a delimiter are not to be output. If this option is omitted when the -f option
is specified, the command will only display command usage information and terminate.

-d delimiter

--delimiter=delimiter
Specifies the field delimiter to be used (only the initial character of the specified value is used as the delimiter). If
this option is omitted, the field delimiter is set to the tab.
If this option is omitted when the -f option is specified, the command will only display command usage information
and terminate.

--output-delimiter=character-string
When this option is specified together with the -f option, specifies the replacement character string that is to be
used as the separator for the fields that are to be output.
When this option is specified together with the -b or -c option, specifies the replacement character string that is
to be used to concatenate fields.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• The cut command expects text files. Input from binary files and output of binary data are not guaranteed to work.

Examples
These usage examples illustrate the results of executing the cut command on the file test.txt, whose contents are
shown in the following:

123:5678:abcdef:hijkl
field1:field2:field3:filed4
sssssssssssssssssssssss

This file is used as the input file in the following examples, which illustrate the results of executing the cut command.

• Output the first byte and the third through fifth bytes.

$ cut -b 1,3-5 test.txt
13:5
feld
ssss

• Output the first through fourth characters.

$ cut -c -4 test.txt
123:
fiel
ssss

• Output the first and fourth fields.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 695

$ cut -f 1,4 -d : test.txt
123:hijkl
field1:filed4
sssssssssssssssssssssss

• Output the first byte and the third through fifth bytes with character string @:/ added between fields.

$ cut -b 1,3-5 --output-delimiter="@:/" test.txt
1@:/3:5
f@:/eld
s@:/sss

• Display the first and fourth fields and replace the separator with the character string @:/.

$ cut -f 1,4 -d : --output-delimiter="@:/" test.txt
123@:/hijkl
field1@:/field4
sssssssssssssssssssssss

• Output an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cut -z
cut: illegal option -- z
usage: cut -b list [-n] [--output-delimiter=string] [file ...]
 cut -c list [--output-delimiter=string] [file ...]
 cut -f list [-s] [-d delim] [--output-delimiter=string] [file ...]

8.4.7 date command (displays the system date and time)

Syntax

date [-u] [-d date-information-string | -r elapsed-seconds] [+format]

Description
This command displays the system date and time.

Arguments
-u

--utc

--universal
Specifies that the date is to be displayed in UTC (Coordinated Universal Time).

-d date-information-string

--date=date-information-string
Specifies the date and time to be displayed as a date-information string. If more than one information string is
specified, the last string specified takes effect. For the supported date-information strings, see Date-information
strings that can be specified in the -d option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 696

-r elapsed-seconds
Specifies that the display is to be of the date and time after the amount of time specified by elapsed-seconds had
elapsed since the beginning of the UNIX epoch (UTC January 1, 1970, 00:00:00). The value specified in elapsed-
seconds can range from -1009875600 to 2147440447. The output result cannot be guaranteed if the specified
value is outside this range.

+format
Specifies a display format for the date and time using format specification codes. The format specification codes
for the strftime function (OS's API) can be used. For details about the supported format specification codes, see
Supported format specification codes, below.
If this argument is not specified, the display format for the date and time will be %Y/%m/%d %A %H:%M:%S %Z.

Supported format specification codes
In the argument that begins with a plus sign (+), you can specify the format specification codes for the strftime
function (OS's API). These format specification codes vary according to the OS. For the format specification codes
supported by your OS, see the information about the strftime function in the OS documentation.

The following table shows the strftime function of each OS and typical format specification codes that are unique
to JP1/Advanced Shell and can be uniquely used.

Format specification
code

Meaning

%a Abbreviation for the day of the week

%A Full name for the day of the week

%b Abbreviation for the month

%B Full name for the month

%c Date and time display based on the locale

%d Day of the month as a decimal number (01 to 31)

%H Time in the 24-hour clock (00 to 23)

%I Time in the 12-hour clock (01 to 12)

%j Number of days since the beginning of the year as a decimal number (001 to 366)

%m Month as a decimal number (01 to 12)

%M Minute as a decimal number (00 to 59)

%p AM or PM based on the current locale

%S Second as a decimal number. The range of values displayed varies according to the OS depending on support
for leap seconds.

%s Number of seconds elapsed from the epoch (UTC January 1, 1970, 00:00:00).
If the code is not specified for the ADSH_CMDDATE_FORMAT environment variable, the code can be used with
Linux, AIX and HP-UX (processing with the strftime function).
If the code is specified for the ADSH_CMDDATE_FORMAT environment variable, the code can be used in all
OSs (executing conversion that is unique to JP1/Advanced Shell).

%U Week as a decimal number (00 to 53). The first Sunday of the year begins the weeks.

%w Day of the week as a decimal number (0 to 6, where 0 indicates Sunday)

%W Week as a decimal number (00 to 53). The first Monday of the year begins the weeks.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 697

Format specification
code

Meaning

%x Date based on the current locale

%X Time based on the current locale

%y Last two digits of the year as a decimal number (00 to 99)

%Y Year as four decimal digits

%Z Time zone name. If the time zone is unknown, this information is not displayed.

%% Percent symbol (%)

Date-information strings that can be specified in the -d option
Specify as explained below the date-information string that you want the date command to display:

• Specifying an absolute date only
The specified date and time are displayed.

• Specifying a relative date only
The date and time shifted from the current date and time are displayed.

• Specifying an absolute date combined with a relative date
The date and time obtained by shifting the date and time specified as an absolute date by the date and time specified
as a relative date are displayed.

The elements of the date-information string can be specified as uppercase or lowercase letters. If a specified value is
earlier than 1970-01-01 00:00:00 or later than 2038-01-19 03:14:07 in UTC, the command issues the error message
date: Invalid date: specified-value and then terminates with an error. In AIX, if a specified value is later than
2038-01-19 03:14:07 in the local time zone, the command issues error message date: Invalid date: specified-
value and then terminates with an error. If the null character is specified as the date-information string, the command
displays 00:00:00 on the current date.

The date information string is specified as a space-separated string. However, when strings of alphabetic characters,
numeric characters, and symbols are specified together, strings of different types can be specified next to each other
without spaces. For example, two alphabetic characters cannot be specified together without a space, but numeric
characters and alphabetic characters can be specified next to each other without a space in between.

The following explains the permitted elements of a date-information string and the syntax.

• Specifying absolute dates
The following table lists and describes the elements of a date-information string that specifies an absolute date.

Table 8-7: Elements of date-information strings (specifying an absolute date)

Type Specifiable
element#

Details

Year Four-digit
calendar year in
decimal (YYYY)

Permitted values are from 1970 to 2038.

Last two digits of
the calendar year
in decimal (YY)

Permitted values are from 00 to 99.
For 69 to 99, 1969 to 1999 are assumed; for 00 to 68, 2000 to 2068 are assumed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 698

Type Specifiable
element#

Details

Month Name of month
(MONTH)

The following values can be specified:
• January or Jan
• February or Feb
• March or Mar
• April or Apr
• May
• June or Jun
• July or Jul
• August or Aug
• September, Sept, or Sep
• October or Oct
• November or Nov
• December or Dec

Month in decimal
(MM)

Permitted values are from 01 to 12.

Day Day of the month
in decimal (DD)

Permitted values are from 01 to 31.

Hour Time in 24-hour
representation
(hh)

Permitted values are from 00 to 23.

Time in 12-hour
representation
(hh)

Permitted values are from 01 to 12.

Minute Minute in decimal
(mm)

Permitted values are from 00 to 59.

Second Second in decimal
(ss)

Permitted values are from 00 to 59.

am/pm am and pm (am |
a.m. | pm |
p.m.)

The following values can be specified after the time:
• am or a.m.
• pm or p.m.

Time zone Time zone name
(ST)

The following values can be specified:
• UTC or UT: Coordinated Universal Time
• GMT: Greenwich Mean Time (UTC + 0 hours)
• WET: Western European Time (UTC + 0 hours)
• AST: Atlantic Standard Time (UTC - 4 hours)
• EST: Eastern Standard Time (UTC - 5 hours)
• CST: Central Standard Time (UTC - 6 hours)
• MST: Mountain Standard Time (UTC - 7 hours)
• PST: Pacific Standard Time (UTC - 8 hours)
• HST: Hawaii Standard Time (UTC - 10 hours)
• WAT: West Africa Time (UTC + 1 hours)
• CET: Central European Time (UTC + 1 hours)
• MET: Middle European Time (UTC + 1 hours)
• CAT: Central Africa Time (UTC + 2 hours)
• EET: Eastern European Time (UTC + 2 hours)
• JST: Japan Standard Time (UTC + 9 hours)
• GST: Guam Standard Time (UTC + 10 hours)

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 699

Type Specifiable
element#

Details

Time zone Time zone name
(ST)

• NZST: New Zealand Standard Time (UTC + 12 hours)

Military time zone
(ST)

The following values can be specified:
• A: UTC - 1 hour
• B: UTC - 2 hours
• C: UTC - 3 hours
• D: UTC - 4 hours
• E: UTC - 5 hours
• F: UTC - 6 hours
• G: UTC - 7 hours
• H: UTC - 8 hours
• I: UTC - 9 hours
• K: UTC - 10 hours
• L: UTC - 11 hours
• M: UTC - 12 hours
• N: UTC + 1 hour
• O: UTC + 2 hours
• P: UTC + 3 hours
• Q: UTC + 4 hours
• R: UTC + 5 hours
• S: UTC + 6 hours
• T: UTC + 7 hours
• U: UTC + 8 hours
• V: UTC + 9 hours
• W: UTC + 10 hours
• X: UTC + 11 hours
• Y: UTC + 12 hours
• Z: UTC

Specification of
time from UTC
(+hhmm | -hhmm
| +hh:mm | -
hh:mm)

The time from UTC can be specified in the format +hhmm, -hhmm, +hh:mm, or -hh:mm (mm
and :mm can be omitted).

Time zone
(summer time)

Time zone
(summer time)
(DT)

The following values can be specified:
• BST: British Summer Time (GMT + 1 hours)
• ADT: Atlantic Daylight Time (AST + 1 hours)
• EDT: Eastern Daylight Time (EST + 1 hours)
• CDT: Central Daylight Time (CST + 1 hours)
• MDT: Mountain Daylight Time (MST + 1 hours)
• PDT: Pacific Daylight Time (PST + 1 hours)
• MEST: Middle European Summer Time (MET + 1 hours)
• NZDT: New Zealand Daylight Time (NZST + 1 hours)

Daylight saving
time

Daylight saving
time (DST)

You can specify DST for daylight saving time. When DST is specified together with a time zone,
the specified time zone's standard time is advanced by one hour regardless of the specified date,
time, and time zone. DST cannot be specified alone without a time zone specification.

#
Letters in parentheses, such as YY and MONTH, correspond to the syntax explained in the table below.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 700

The following table explains the syntax for date-information strings when an absolute date is specified.

Table 8-8: Syntax for date-information strings (when specifying an absolute date)

Type# Syntax Details

Date specification [YY]YYMMDD Define year, month, and day in this order without spaces. The first two digits
of the year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros.

[YYYY/]MM/DD Define year, month, and day in this order separated by /. If the year is omitted,
the current year is assumed.
In this syntax, you can specify MM and DD as a one digit numeric value, or
as a numeric value that is two or more digits with leading zeros.

MM/DD[/[YY]YY] Define month, day, and year in this order separated by /. If the year is omitted,
the current year is assumed. The first two digits of the year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify MM and DD as a one digit
numeric value, or as a numeric value that is two or more digits with leading
zeros. However, you cannot specify MM as a four digit numeric value.

[YY]YY-MM-DD Define year, month, and day in this order separated by -. The first two digits
of the year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify MM and DD as a one digit
numeric value, or as a numeric value that is two or more digits with leading
zeros.

DD MONTH [[YY]YY] Define day, the formal name for month (or abbreviation for month), and year
in this order separated by the space. If the year is omitted, the current year is
assumed. The first two digits of the year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify DD as a one digit numeric
value, or as a numeric value that is two or more digits with leading zeros.

MONTH DD [,[YY]YY] Define the formal name for month (or abbreviation for month), day, and year
in this order. Separate the formal name for month (or abbreviation for month)
and day with the space and separate day and year with the comma (,). If the
year is omitted, the current year is assumed. The first two digits of the year
can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify DD as a one digit numeric
value, or as a numeric value that is two or more digits with leading zeros.

DD[-]MONTH[[-][YY]YY] Define day, the formal name for month (or abbreviation for month), and year
in this order without any spaces or separator or with the - as the separator. If
the year is omitted, the current year is assumed. The first two digits of the
year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify DD as a one digit numeric
value, or as a numeric value that is two or more digits with leading zeros.

MONTH-DD-[YY]YY Define the formal name for month (or abbreviation for month), day, and year
in this order separated by -. The first two digits of the year can be omitted.
In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify DD as a one digit numeric
value, or as a numeric value that is two or more digits with leading zeros.

MONTH DD [[YY]YY] Define the formal name for month (or abbreviation for month), day, and year
in this order separated by the space. If the year is omitted, the current year is
assumed. The first two digits of the year can be omitted.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 701

Type# Syntax Details

Date specification MONTH DD [[YY]YY] In this syntax, you can specify YYYY as a numeric value that is five or more
digits with leading zeros. You can also specify DD as a one digit numeric
value, or as a numeric value that is two or more digits with leading zeros.

Time specification hh[mm]
hh [am | a.m. | pm | p.m.]

Define the hour and minute in this order without any spaces.
The value for minute can be omitted.
If only a value for hour is defined, am (a.m.) or pm (p.m.) can be specified
following a space.
If you are specifying am (a.m.) or pm (p.m.), use the 12-hour representation
for the time.
In this syntax, you can specify the hh in hh[mm] as a one digit numeric value.
You can also specify the hh in hh[am | a.m. | pm | p.m.] as a one
digit numeric value, or as a numeric value that is two or more digits with
leading zeros.

hh:mm[:ss] [am | a.m. | pm | p.m.] Define hour, minute, and second in this order separated by colons (:).
The value for second can be omitted.
You can specify am (a.m.) or pm (p.m.) following the definition of hour,
minute, and second and a space.
If you are specifying am (a.m.) or pm (p.m.), make sure that the definition
of hour, minute, and second does not exceed 12:59:59.
In this syntax, you can specify hh, mm, and ss as one digit numeric values, or
as numeric values that are two or more digits with leading zeros.

hh:mm[:ss] [+hh[mm] | -hh[mm] |
+hh[:mm] | -hh[:mm]]

Define hour, minute, and second in this order separated colons (:).
The value for second can be omitted.
You can specify +hhmm, -hhmm, +hh:mm, or -hh:mm following the
definition of the hour, minute, and second and a space.
In this syntax, you can specify hh, mm, and ss as one digit numeric values, or
as numeric values that are two or more digits with leading zeros.

Time zone ST [DST]
ST [+hh[mm] | -hh[mm] | +hh[:mm] | -
hh[:mm]]

Specify a time zone. You can specify DST, +hhmm, -hhmm, +hh:mm, or -
hh:mm following the time zone and a space.
In this syntax, you can specify hh and mm as one digit numeric values, or as
numeric values that are two or more digits with leading zeros. However, the
mm in hhmm must be specified with two digits.

DT Define a time zone (summer time). The time zone (summer time) cannot be
specified together with DST, +hhmm, -hhmm, +hh:mm, or -hh:mm.

#
The same type cannot be defined multiple times, but different types can be combined.
If only a date is specified, 00:00:00 is assumed for the time.
If only hour (hh) is specified, minute (mm) and second (ss) are set to 0 on the current date.
If only hour (hh) and minute (mm) are specified, second (ss) is set to 0 on the current date.

• Specifying relative dates
The following table lists and describes the elements of a date-information string that specifies a relative date.

Table 8-9: Elements of date-information strings (specifying a relative date)

Specifiable element# Details

Number of years and months to
be shifted (DATE)

Specify the following values:
• year or years: Number of years to be shifted
• month or months: Number of months to be shifted

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 702

Specifiable element# Details

Number of years and months to
be shifted (DATE)

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of days to be shifted
(DATE)

Specify the following values:
• fortnight or fortnights: Shift by two weeks (14 days)
• week or weeks: Shift by one week (7 days)
• day or days: Shift by day(s)
• tomorrow: Tomorrow (one day later)
• yesterday: Yesterday (one day ago)
• today: Today (0 day)
• now: Now (0 day)

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of hours and minutes to
be shifted (DATE)

Specify the following values:
• hour or hours: Number of hours to be shifted
• minute, min, or minutes: Number of minutes to be shifted

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of seconds to be shifted
(DATE)

Specify the following value:
• second, sec, or seconds: Number of seconds to be shifted

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of days of week to be
shifted (DAY)

Specify the following values:
• Monday or Mon
• Tuesday, Tue, or Tues
• Wednesday, Wed, or Wednes
• Thursday, Thu, Thur, or Thurs
• Friday or Fri
• Saturday or Sat
• Sunday or Sun

You can specify a numeric value (NUM) before this value to specify the NUM-th day of the week. If the
numeric value (NUM) is omitted, 1 is assumed. If neither 1 nor a numeric value (NUM) is specified, the
next day of the week is assumed. Neither signs (+|-) nor the before and after specification (ago) can be
specified.

Numeric value specification
(character string) (NUM)

Specify the following values:
• last: -1
• this: 0
• next: 1
• first: 1
• third: 3
• fourth: 4
• fifth: 5
• sixth: 6
• seventh: 7
• eighth: 8
• ninth: 9
• tenth: 10
• eleventh: 11
• twelfth: 12

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 703

Specifiable element# Details

Numeric value specification
(character string) (NUM)

A numeric value (NUM) cannot be specified before this value.

Numeric value specification
(number) (NUM)

Permitted values are from 0 to 2147483647.

Sign (+|-) You can specify the following values before the numeric value (NUM):
• +: Positive
• -: Negative

If the sign is not followed by a numeric value, the sign is ignored.

Before and after specification
(ago)

Specify the following value:
• ago: Ago -

The positive or negative sign for the date-information string specified immediately before ago is reversed
(positive becomes negative and negative becomes positive).

#
Letters in parentheses, such as NUM and DATE, correspond to the syntax explained in the table below.

The table below explains the syntax for date-information strings when a relative date is specified. Shift in date and
time can be combined with shift in day of week.

Table 8-10: Syntax for date-information strings (when specifying a relative date)

Type Syntax Details

Shift in date and
time

[[+ | -]NUM] DATE [ago] Specify the amount of time to be shifted from the current date and time or the
date and time specified as a date-information string.
Multiple elements can be specified by separating them with the space.
For the elements that can be combined, see Table 8-9: Elements of date-
information strings (specifying a relative date).

Shift in day of
week

[NUM] DAY
DAY[,]

Specify a day of the week. Only one value can be specified.
A day of the week immediately preceded by a numeric value (NUM) defines
the NUM-th day of the week. If the numeric value (NUM) is omitted, the next
day of the week is assumed.
The specified day of the week can be followed by a comma (,) or a space,
and then by another definition of shift in date and time.

• Other specification
The following table describes other elements of date-information strings.

Table 8-11: Elements of date-information strings (other)

Specifiable element Details

Comment Specify any character string as a comment by enclosing it in parentheses (()) within a date-information string.
If () is nesting within another (), the character string specified in the inner () is ignored.
If only a left parenthesis (() is specified, all characters following the left parenthesis are ignored.

The specified absolute and relative date and time values are obtained in the order shown below. In steps 2 through 4, if
the value converted to seconds is outside the range from 0 to 2147483647, an error might result regardless of the
final results.

1. Obtains the current date and time or the date and time specified as an absolute date.

2. Adds the shift in day of week specified as a relative date to the value obtained in step 1. If date specification is
specified as an absolute date, the number of days of week to be shifted (DAY) is not added, if specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 704

3. Adds or subtracts all results obtained based on the specified number of years and months to be shifted (DATE) as a
relative date to or from the value obtained in step 2.

4. Adds or subtracts all results obtained based on the specified number of days to be shifted (DATE), number of hours
and minutes to be shifted (DATE), and number of seconds to be shifted (DATE) specified as a relative date to or
from the value obtained in step 3.

Steps 2 through 4 obtain the amount to be shifted from the date and time subject to calculation.

For example, if the current date and time is 2014-04-30 at 10:10:10 and date -d "Fri, 1 year 1 month 1 day 1
hour 1 min 1 sec" is specified, the following calculation occurs:

1. Obtain the current date and time.
 The result is 2014-04-30 (Wednesday) at 10:10:10.

2. Add the number of days from 2014-04-30 (Wednesday) to the next Friday.
 The result is 2014-05-02 (Friday) at 10:10:10.

3. Add 365 days and the number of days in May 2014.
 The result is 2015-06-02 (Monday) at 10:10:10.

4. Add one day, one hour, one minute, and one second.
 The result is 2015-06-03 (Tuesday) at 11:11:11.

Specifications that require caution when combining different syntax in date-
information strings
Some ways of specifying date-information strings require caution when using a combination of absolute and relative
date specification.

If, as follows, you specify a signed relative date specification after the [YY]YYMMDD or hh[mm] syntax, an error occurs.
If you want to combine the [YY]YYMMDD or hh[mm] syntax with a signed relative date specification, make sure that
the [YY]YYMMDD or hh[mm] syntax is specified last.

C:\TEMP>date -d "20151112 -10 days"
date: Invalid date: 20151112 -10 days

C:\TEMP>date -d "-10 days 20151112"
2015/11/02 Monday 00:00:00 JST

C:\TEMP>date -d "0955 -1 hours"
date: Invalid date: 0955 -1 hours

C:\TEMP>date -d "-1 hours 0955"
2016/09/28 Wednesday 08:55:00 JST

When alphabetic characters, numeric characters, or symbols appear next to each other in character strings, any spaces
between them are not handled as separators. Therefore, the following example is interpreted in the same way as date
-d "10-November-15 days", as one day after November 10th, 2015. When using an absolute date specification
whose interpretation might differ according to the relative date specification that follows it, make sure that the absolute
date is specified last.

C:\TEMP>date -d "10-November -15 days"
2015/11/11 Wednesday 00:00:00 JST

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 705

If, as follows, you specify signed numeric characters after hh:mm[:ss] and ST, the signed numeric characters are
interpreted as +hh[mm] or -hh[mm]. Therefore, in the case of the following example, a date and time are displayed that
are one hour ahead of the time obtained by converting 12:11:10 UTC-10 to JST.

C:\TEMP>date -d "20151110 12:11:10 -10 hours"
2015/11/11 Wednesday 08:11:10 JST

Common format specification code that is unique to JP1/Advanced Shell
JP1/Advanced Shell uniquely edits the format specification code specified with the ADSH_CMDDATE_FORMAT
environment variable without using the strftime function. Therefore, common output result can be obtained
regardless of difference in specifications of the strftime function among OS.

The format codes that can be specified and their behaviors are as follows:

ADSH_CMDDATE_FORMAT environment variable
Conversion process that is unique to JP1/Advanced Shell is executed only if the code is executed by the
ADSH_CMDDATE_FORMAT environment variable.

Environment variable name Specification value

ADSH_CMDDATE_FORMAT s

If you specify s for the ADSH_CMDDATE_FORMAT environment variable, number of seconds elapsed from the
epoch (UTC January 1, 1970, 00:00:00) is output. If you specify s, the code is operated in the range of the common
format process described below.

Syntax type
%[flag][field width]
- flag~[_ | - | 0 | ^ | #]
_(underscore)
This command executes padding (filling up blanks) for the result character string of values spaces (blank
characters).
- (hyphen)
This command left-aligns the result character string in fields.
This command executes padding for spaces (blank characters) for empty field.
0
This command executes zero-padding for the result character string.
^
This command converts alphabetic characters in the result character string with uppercase letters.
However, the format specification code s is ignored because there is not a meaning.
#
This command converts uppercase and lowercase of the result character string.
The format specification code s is ignored because there is not a meaning.
- Field width
This command specifies the width of the field to which a numerical value is output.
This command executes padding with spaces (blank characters) if padding is not specified.
If the format syntax is not correct, this format specification (from % to s of the corresponding format) is output
as characters.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 706

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If a format code specified in an argument that begins with a plus sign (+) is not a valid format code in the context

of the strftime function, the specified value is output as-is. However, the format specification code specified by
the ADSH_CMDDATE_FORMAT environment variable is excluded. If the specification format of the format
specification code specified by the ADSH_CMDDATE_FORMAT environment variable is invalid, the specified value
is output as it is.

• In Windows, if you specify a mixture of valid and invalid format codes, the specified values are output as is, without
any format code conversion.

• In UNIX, valid format codes are converted while the specified values are output as is for invalid format codes.

• In Windows, if you specify the TZ environment variable, you must ensure that the value of the TZ environment
variable matches the time zone set in the Date and Time control panel. If their values do not match, the correct date
and time might not be displayed.

• An unsupported argument that is specified in the command line is ignored.

• If either of the following environment variables is specified, any option following an argument that begins with a
plus sign (+) is ignored:

• POSIXLY_CORRECT environment variable

• ADSH_CMD_ARGORDER=seq environment variable

Examples
• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\date
2011/05/09 Monday 02:03:05 JST

• Specify the -u option to display the date and time in UTC (Coordinated Universal Time).

C:\TEMP>%ADSH_OSCMD_DIR%\date -u
2011/05/08 Sunday 17:03:11 UTC

• Specify the -r option to display the date and time after a specified number of seconds had elapsed from the beginning
of the UNIX epoch.

C:\TEMP>%ADSH_OSCMD_DIR%\date -r 1234567890
2009/02/14 Saturday 08:31:30 JST

• Specify a display format for the date and time in the +operand argument.

C:\TEMP>%ADSH_OSCMD_DIR%\date "+%Y-%m-%d %H.%M.%S"
2011-05-09 02.10.02

• Display the date of December 12 this year.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "12/12"
2011/12/12 Sunday 00:00:00 JST

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 707

• Display the date that is three months and one day from the current date.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "3 months 1 day"
2011/08/10 Wednesday 00:00:00 JST

• Display the date that was two days ago.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "2 days ago"
2011/05/07 Saturday 00:00:00 JST

• Display the date that falls 100 days after 2011-05-01. This example uses the --date option to specify a date-
information strings.

C:\TEMP>%ADSH_OSCMD_DIR%\date --date="1-May-2011 100 days"
2011/08/09 Tuesday 00:00:00 JST

• In Windows, the number of seconds elapsed from the epoch (UTC January 1, 1970, 00:00:00) appears.

C:\TEMP>set ADSH_CMDDATE_FORMAT=s
C:\TEMP>%ADSH_OSCMD_DIR%\date +%s
1435197101

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\date -a
date: illegal option -- a
usage: date [-u] [-d string | -r seconds] [+format]

8.4.8 diff command (compares two files)

Syntax

diff[-a][-b][-i][-s][-w]
 [-cnum-lines|-C num-lines|-q|-unum-lines|-U num-lines|
 -y[-W output-width] [--suppress-common-lines]]
 [-L label]
 path-name-1 path-name-2
diff[-a][-b][-i][-r][-s][-w]
 [-cnum-lines|-C num-lines|-q|-unum-lines|-U num-lines|
 -y[-W output-width] [--suppress-common-lines]]
 [-L label]
 directory-name-1 directory-name-2

Description
This command compares two files.

Arguments
-a

--text
Specifies that the files are to be handled as text files.

-b

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 708

--ignore-space-change
Specifies that multiple consecutive spaces or tabs in a line are to be compressed and handled as a single space or
tab. The -b and -w options cannot both be specified at the same time.

-i

--ignore-case
Specifies that differences in case are not to be considered (uppercase alphabetic letters are not to be distinguished
from lowercase alphabetic letters).

-s

--report-identical-files
Specifies that a message (Files path-name-1 and path-name-2 are identical) is to be output if the
contents of the files are identical.

-w

--ignore-all-space
Specifies that all spaces and tabs in a line are to be ignored. The -w and -b options cannot both be specified at the
same time.

-cnum-lines

-C num-lines

--context[=num-lines]
Specifies that the path names being compared are to be output to the standard output with additions, deletions, and
changes to lines indicated by the symbols +, -, and !, respectively.
The number of lines specified in num-lines are to be output for context before and after each difference. If num-lines
is not specified in the -c and --context options, the default is 3 lines.
Note that when num-lines is specified in the -c option, there must not be any spaces between -c and num-lines.

-q

--brief
Specifies that if there are differences between the files, only the message Files path-name-1 and path-name-2
differ is to be output.

-unum-lines

-U num-lines

--unified[=num-lines]
Specifies that the path names being compared are to be output to the standard output with additions and deletions
indicated by the symbols + and -, respectively. The old and new text are output together as a single section.
The number of lines specified in num-lines are to be output for context before and after each difference. If num-lines
is not specified in the -u and --unified options, the default is 3 lines.
Note that when num-lines is specified in the -c option, there must not be any spaces between -u and num-lines.

-L label

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 709

--label=label
When the -c, -u, -C, or -U option is specified, specifies that labels are to be output in place of the path names. If
one label is specified, it is output in place of path-name-1. If two labels are specified, they are output in place of
path-name-1 and path-name-2, respectively, in the order they are specified.

-y

--side-by-side
Specifies that the symbols >, <, |, \, and / are to be used to indicate the difference information.
The >, <, |, \, and / symbols are output only for lines in which there is a difference in terms of line addition,
deletion, or change or whether an end-of-line code is used; no symbol is output for lines in which there are no
differences. The path-name-1 and path-name-2 lines are combined on one line and output side by side.
If the length of one combined line exceeds 130 columns, the lengths of the path-name-1 and path-name-2 lines are
adjusted before the lines are output.
This option can be combined with the following options to change the output:

• -W option

• --suppress-common-lines option

-W output-width

--width=output-width
Specifies a change in the output width (number of columns) to be output per line. This option take effect when it is
specified together with the -y option.

--suppress-common-lines
Specifies that lines that have no differences are not to be output. This option takes effect when it is specified together
with the -y option.

path-name-1
Specifies the path name of the comparison source file.
Specify - to read the contents to be compared from the standard input. A temporary file will be created to store input
from the standard input. The temporary file is output to the following directory:

• UNIX
Directory specified in the TMPDIR environment variable, or /var/tmp if no value has been set for TMPDIR.

• Windows
common-application-data-folder\HITACHI\JP1AS\misc

path-name-2
Specifies the path name of the comparison target file.
Specify - to read the contents to be compared from the standard input. A temporary file will be created to store input
from the standard input. The temporary file is output to the following directory:

• UNIX
Directory specified in the TMPDIR environment variable, or /var/tmp if no value has been set for TMPDIR.

• Windows
common-application-data-folder\HITACHI\JP1AS\misc

-r

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 710

--recursive
If directories are being compared, specifies that subdirectories are to be traversed recursively.

directory-name-1
Specifies a directory as the comparison source. If you specify a file path name for either directory-name-1 or
directory-name-2, the command searches for a file with the same name in the other directory. If no file with the
same name is found, an error message (diff: path-name-to-compare: No such file or directory) is
output.

directory-name-2
Specifies a directory as the comparison target. If you specify a file path name for either directory-name-1 or directory-
name-2, the command searches for a file with the same name in the other directory. If no file with the same name
is found, an error message (diff: path-name-to-compare: No such file or directory) is output.

Display formats
The diff command provides the three display formats shown below for displaying the differences between files. The
output format that is used depends on the specification of options.

Format Meaning

Traditional display format This output format is used when none of the -c, -C, -q, -u, -U and -y options is specified.
This format displays the differences between the two files, as well as the start and end positions of the
differences. In between the start and end positions, it displays the following symbols, which represent the
differences:
• a: Added
• d: Deleted
• c: Changed

If a difference extends across multiple lines, the numbers of the start and end lines are shown separated by the
comma (,).
A difference from path-name-1 and a difference from path-name-2 are displayed in this order separated from
each other by ---. < at the beginning of a line indicates a deletion or change from the first input file, while
> indicates an addition or change from the second input file. One space is output after < and >.

Context format This output format is used when the -c or -C option is specified. In addition to displaying the differences
between the two files, it also displays unchanged lines before and after each difference. You can specify the
number of such context lines to be displayed. The default is three lines.
Headers display the following information about the two files:
• Boundaries between change blocks: a row of 15 asterisks (*)
• The starting and ending positions of the differences between the two files, followed by the differences

themselves

The differences are expressed as follows:
• Line starting with +: Added line
• Line starting with -: Deleted line
• Line starting with !: Changed line

A single space is output after +, -, and !. Two spaces are output at the beginning of a line on which there are
no differences.
Adjacent changed lines are treated as a single change block. However, when there is a gap between changed
lines, another 15 asterisks are displayed and then the differences are displayed.

Unified format This output format is used when the -u or -U option is specified. It displays the context format output as a
single section. You can specify the number of lines of context to be displayed. The default is three lines.
Headers display the following information for the two files:
• Lines that start with @@: The starting and ending positions of the differences between the two files, followed

by the differences themselves

The differences are displayed as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 711

Format Meaning

Unified format • Line starting with +: Added line
• Line starting with -: Deleted line

No space is output after + or -, unlike in the context format. One space is output at the beginning of an
unchanged line.
Only added and deleted lines represent differences.
Adjacent changed lines are treated as a single change block. However, when there is a gap between changed
lines, @@ are again used to identify lines that constitute the starting and ending positions of the differences
between the two files, followed by the differences themselves.

Side-by-side format This output format is used when the -y option is specified. The path-name-1 and path-name-2 lines are
combined on one line and output side by side. By default, all lines are output regardless of whether there are
any differences on lines. If the length of one combined line exceeds 130 columns, the lengths of the path-
name-1 and path-name-2 lines are adjusted so that they can be displayed side by side within 130 columns.
The following symbols are displayed before the lines to indicate the difference:
• >: Line was added
• <: Line was deleted
• |: Line was changed
• \ (escape character): path-name-1 line contains no end-of-line code
• /: path-name-2 line contains no end-of-line code

By combining the -y option with the -W and --suppress-common-lines options, you can change the
output width per line and suppress output of lines that have no difference.

Traditional display format example
The following example illustrates the traditional display format.

Output example

C:\USR\JP1\oscmd\bin>diff file1 file2
1c1,2 <--1.
< aaaaaaaaaaa <--2.
--- <--3.
> aaAAAAAaaaa <--4.
> bbBBBBBbbbb <--4.

Explanation
1. This shows the position of a difference between file1 and file2. To represent the difference between file1

and file 2, the symbol a means added, d means deleted, and c means changed. The line number from file1
is displayed before the symbol, and the line number from file2 is displayed after it. If there are differences
that span multiple lines, the start line and end line numbers are separated by the comma (,).

2. This shows the difference line in file1.

3. This shows the boundary between the difference lines in file1 and file2.

4. This shows the difference lines in file2.

Context format example

Output example

C:\USR\JP1\oscmd\bin>diff -c file1 file2
*** file1 Thu May 12 20:17:54 2011 <--1.
--- file2 Thu May 12 20:18:29 2011 <--2.
*************** <--3.
*** 1,5 **** <--4.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 712

 aaaaaaaaaaa <--5.
! bbbbbbbb <--5.
 cccccccccccc <--5.
- dddddddddddd <--5.
 eeeeeeeee <--5.
--- 1,5 ---- <--6.
 aaaaaaaaaaa <--7.
! bbbBBBbb <--7.
 cccccccccccc <--7.
 eeeeeeeee <--7.
+ ffffffffffffffffff <--7.

Explanation
1. This shows the file name and most recent modification date and time as the information about file1.

2. This shows the file name and most recent modification date and time as the information about file2.

3. This shows a row of 15 asterisks (*), which represents the border between change blocks. Whenever changed
lines are separated by three or more lines, this border is displayed again, and then the next change block showing
differences between file1 and file2 is output.

4. This shows the start and end positions of the file1 differences, separated by the comma (,).

5. This shows the file1 differences. + means added, - means deleted, and ! means changed.

6. This shows the start and end positions of the file2 differences, separated by the comma (,).

7. This shows the file2 differences. + means added, - means deleted, and ! means changed.

Unified format example

Output example

C:\USR\JP1\oscmd\bin>diff -u file1 file2
--- file1 Thu May 12 20:17:54 2011 <--1.
+++ file2 Thu May 12 20:18:29 2011 <--2.
@@ -1,5 +1,5 @@ <--3.
 aaaaaaaaaaa <--4.
-bbbbbbbb <--4.
+bbbBBBbb <--4.
 cccccccccccc <--4.
-dddddddddddd <--4.
 eeeeeeeee <--4.
+ffffffffffffffffff <--4.

Explanation
1. This shows the file name and most recent modification date and time as the information about file1.

2. This shows the file name and most recent modification date and time as the information about file2.

3. This shows the start and end positions of the file1 changes, separated by the comma (,), a space, and then
the start and end positions of the file2 changes, separated by the comma (,). The start and end positions of
the file1 changes are prefixed with a -, and the start and end positions of the file2 changes are prefixed
with a +.

4. This displays as a single section the differences between file1 and file2. + indicates a line that was added
in file2 from file1, and - indicates a line that was deleted in file2 from file1. Deleted lines and added
lines constitute the changed portions.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 713

Side-by-side format example

Output example

C:\USR\JP1\oscmd\bin>diff -y file1 file2
a a <--1.
b | b1 <--1.
c c <--1.
d < <--1.
e e <--1.
 > f <--1.
g \ g <--1.

Explanation
1. Each line of file1 and file2 is combined into one line and then output side by side.
> indicates a line that is not in file1 but was added in file2.
< indicates a line that is in file1 but was deleted from file2.
| indicates a line in file1 that has been changed in file2.
\ indicates a line in file1 that has no end-of-line code.
A line with no symbol has no differences.

Return codes
Return code Meaning

0 The files are identical.

1 The files are different.

2 or greater Error termination

Notes
• If more than one of the -c, -C, -q, -u, -U, and -y options is specified, the one specified last takes effect.

• A file is considered to be binary if the first 8,192 bytes of the file includes any characters other than printable single-
byte characters, spaces, tabs, backspaces, and multibyte characters.

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

• If - was specified for a path name and you interrupt execution of the diff command while the standard input is
being read from the terminal or while comparison processing is underway, a temporary file with the name shown
below might remain. Delete such a temporary file manually.

In Windows:
diff.XXXXXX (XXXXXX: any character string consisting of six characters)

In UNIX:
diffppppp.XXXXXXXX (ppppp: process ID consisting of five or more digits; XXXXXXXX: any character string
consisting of eight characters)

Examples
These usage examples illustrate the results of executing the diff command on files whose contents are shown below.

 represents a space and represents a tab character.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 714

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd
eeeeeeeeeeee

• abcd.txt
aaAAAAAaaaa

bbBBBbbb

cccccccccccccccc

dddddddddddd
eeeeeeeeeeee

• wxy.txt
aaaaaaaaaaa

bbbbbbbb
xxxxxxxxxxxxxx

cccccccccccccccc
dddddddddddd
eeeeeeeeeeee
fffffffffffffff
ggggggggg

• wxyz.txt
aaaaaaaaaaa

bbbBBBbb
xxxxxxxxxxxxxx

cccccccccccccccc
dddddddddddd
fffffffffffffff
ggggggggg
hhhhhhhhhhhhhhhhhh

The following examples illustrate the results of executing the command on the files shown above.

• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\diff abc.txt abcd.txt
1c1
< aaaaaaaaaaa

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 715

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb
7,10c7,10
<
<
<
<

>
>
>
>
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -b option to ignore differences in the number of spaces or tabs.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -b abc.txt abcd.txt
1c1
< aaaaaaaaaaa

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -i option to compare without distinguishing between uppercase and lowercase letters.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -i abc.txt abcd.txt
7,10c7,10
<
<

<
<

>
>
>
>
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -s option to report when the contents of the files are the same.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -s abc.txt abc.txt
Files abc.txt and abc.txt are identical

• Specify the -w option to ignore all spaces and tabs in a line.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -w abc.txt abcd.txt
1c1

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 716

< aaaaaaaaaaa

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb

• Specify the -q option to only report whether the files are different, without displaying the differences.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -q abc.txt abcd.txt
Files abc.txt and abcd.txt differ

• Specify the -c option to indicate added, deleted, and changed lines with the symbols +, -, and !.
C:\TEMP>%ADSH_OSCMD_DIR%\diff -c ..\dir1\wxy.txt ..\dir1\wxyz.txt
*** wxy.txt Thu May 12 20:17:54 2011
--- wxyz.txt Thu May 12 20:18:29 2011

*** 1,10 ****
 aaaaaaaaaaa

! bbbbbbbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
- eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
--- 1,10 ----
 aaaaaaaaaaa

! bbbBBBbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
 fffffffffffffff
 ggggggggg
+ hhhhhhhhhhhhhhhhhh

• Specify the -u option to indicate added and deleted lines with the symbols + and -. The differences are displayed
as a single section.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -u ..\dir1\wxy.txt ..\dir1\wxyz.txt
--- wxy.txt Thu May 12 20:17:54 2011
+++ wxyz.txt Thu May 12 20:18:29 2011
@@ -1,10 +1,10 @@
 aaaaaaaaaaa

-bbbbbbbb
+bbbBBBbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
-eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
+hhhhhhhhhhhhhhhhhh

• Specify the -C option to display a single line for context before and after a difference.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 717

C:\TEMP>%ADSH_OSCMD_DIR%\diff -C1 wxy.txt wxyz.txt
*** wxy.txt Thu May 12 20:17:54 2011
--- wxyz.txt Thu May 12 20:18:29 2011

*** 2,4 ****

! bbbbbbbb
 xxxxxxxxxxxxxx
--- 2,4 ----

! bbbBBBbb
 xxxxxxxxxxxxxx

*** 7,10 ****
 dddddddddddd
- eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
--- 7,10 ----
 dddddddddddd
 fffffffffffffff
 ggggggggg
+ hhhhhhhhhhhhhhhhhh

• Specify the -U option to indicate added and deleted lines with the symbols + and -. The differences are displayed
as a single section, with a single line of context before and after a difference.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -U1 wxy.txt wxyz.txt
--- wxy.txt Thu May 12 20:17:54 2011
+++ wxyz.txt Thu May 12 20:18:29 2011
@@ -2,3 +2,3 @@

-bbbbbbbb
+bbbBBBbb
 xxxxxxxxxxxxxx
@@ -7,4 +7,4 @@
 dddddddddddd
-eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
+hhhhhhhhhhhhhhhhhh

• Specify the -y option and display line additions, deletions, and changes with the >, <, and | symbols.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -y wxy.txt wxyz.txt
aaaaaaaaaaa aaaaaaaaaaa

bbbbbbbb | bbbBBBbb
xxxxxxxxxxxxxx xxxxxxxxxxxxxx

cccccccccccccccc cccccccccccccccc
dddddddddddd dddddddddddd
eeeeeeeeeeee <
fffffffffffffff fffffffffffffff
ggggggggg ggggggggg
 > hhhhhhhhhhhhhhhhhh

• Specify the -y option to display lines in side-by-side format and also specify the --suppress-common-lines
option to suppress output of lines that have no differences.

C:\TEMP>%ADSH_OSCMD_DIR%diff -y --suppress-common-lines wxy.txt wxyz.txt
bbbbbbbb | bbbBBBbb

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 718

eeeeeeeeeeee <
 > hhhhhhhhhhhhhhhhhh

• Display the comparison source file name as a label specified with the -L option.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -L name1 -c abc.txt abcd.txt
*** name1
--- abcd.txt Thu May 12 20:36:44 2011

*** 1,12 ****
! aaaaaaaaaaa

! bbbbbbbb

 cccccccccccccccc
!
!
!
!
 dddddddddddd
! eeeeeeeeeeee
--- 1,12 ----
! aaAAAAAaaaa

! bbBBBbbb

 cccccccccccccccc
!
!
!
!
 dddddddddddd
! eeeeeeeeeeee

• Compare binary files without specifying the -a option.

C:\TEMP>%ADSH_OSCMD_DIR%\diff binaryfile1 binaryfile2
Binary files binaryfile1 and binaryfile2 differ

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\diff -z
diff: illegal option -- z
usage: diff [-abisw] [-c[number] | -C number | -q | -u[number] | -U number] |
 -y [-W columns] [--suppress-common-lines]] [-L label] file1
 file2
 diff [-abirsw] [-c[number] | -C number | -q | -u[number] | -U number] |
 -y [-W columns] [--suppress-common-lines]] [-L label] dir1 dir2

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\diff file99 file123
diff: file99: No such file or directory

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 719

8.4.9 dirname command (retrieves character strings for directory path
names from path names)

Syntax

dirname[character-string]

Description
This command retrieves a directory path name excluding any file name from a character string that satisfies the file path
naming conventions, and then outputs the result to the standard output.

The rules for retrieving directory path names are as follows:

• The command retrieves all elements separated by the directory separator from the specified character string except
for the right-most element and the directory separator that immediately precedes that element. The command
retrieves a directory path name as is even if it contains multiple consecutive separators.
In UNIX, the forward slash (/) is treated as the directory separator. In Windows, both the forward slash (/) and the
backslash (\) are treated as directory separators.

• If the specified character string ends with a directory separator, the command retrieves all elements except that last
directory separator and the right-most element.

• If the specified character string contains no directory separator or no character string is specified, the command
outputs a period (.) meaning the current directory.

• If the specified character string consists of only directory separators, the command retrieves the directory separators.

• In Windows, if the specified character string begins with an alphabetic character that is immediately followed by a
colon (:), that alphabetic character is treated as a drive letter. The colon following the drive letter is also treated as
a separator for elements.

• In Windows, the root directory path is retrieved as described in the following regardless of the above rules:

First character string of the path name Result retrieved by the dirname command

drive-letter:\ drive-letter:\

drive-letter: drive-letter:

\\server-name (UNC name specification) \\

\\? (service function disabling specification) \\

\\. (specification of 10th or subsequent device name) \\

The following table shows examples of dirname values and the retrieval results:

dirname command value Retrieval result

C:\ C:\

C: C:

\\server01\ \\

\\server01 \\

\\?\ \\

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 720

dirname command value Retrieval result

\\? \\

\\.\ \\

\\. \\

\\ \\

C:file001.txt C:

C:\file001.txt C:\

Arguments

character-string
Specifies a file path name.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• This command has no options. If an option is specified in the argument, the command assumes that the specified

option is the character string used to retrieve directory path names.

Examples
• Retrieve directory path names from path names:

Example 1:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\dir001\file01.txt
E:\dir001

Example 2:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname /dir001
/

Example 3:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname .\file01.txt
.

Example 4:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\dir001\dir002\
E:\dir001

Example 5:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\
E:\

Example 6:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 721

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\server01\
\\

Example 7:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\server01\com
\\server01

Example 8:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\
\\

Example 9:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname "C:\Documents and Settings\User01\My Documents"
C:\Documents and Settings\User01

Example 10:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname C:file01.txt
C:

Example 11:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname C:\file01.txt
C:\

Example 12:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname file01.txt
.

• Display option error messages:
This message might differ depending on the platform used to execute the command. This example is for Windows:

C:\> dirname /a/b /c/d
usage: dirname [string]

8.4.10 egrep command (searches for characters in files)

Syntax

egrep[-a][-b][-c][-E][-h][-I][-i][-L][-l][-n]
 [-q][-R][-r][-s][-U][-v][-w][-x]
 [-A number] [-B number] [-C[number]]
 [-e pattern] [-f pattern-file-path-name] [pattern] [path-name ...]

Description
This command searches files for specified patterns. The patterns to be retrieved are assumed to be extended regular
expressions. The behavior of the egrep command is the same as that of the grep command with the -E option
specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 722

Arguments

-a
Specifies that all files are to be handled as ASCII text files.

-b
Specifies that the offset in bytes is to be displayed at the beginning of each matching line.

-c
Specifies that only the number of lines selected is to be output to the standard output.

-E
Specifies that the value specified in pattern is to be handled as an extended regular expression (default value).

-h
Specifies that no file name is to be displayed at the beginning of each output line when either of the following
conditions is satisfied:

• The -R or -r option is specified.

• Multiple path names are specified as being subject to search.

-I
Specifies that binary files are to be ignored.

-i
Specifies that uppercase letters are not to be distinguished from lowercase letters (and vice versa).

-L
Specifies that only the names of files that do not contain a match for the value specified in pattern are to be output
to the standard output. If the -L and -l options are both specified, the one specified last takes effect.

-l
Specifies that only the names of files that contain a match for the value specified in pattern are to be output to the
standard output. If the -L and -l options are both specified, the one specified last takes effect.

-n
Specifies that its relative line number in the file is to be output at the beginning of each output line. This specification
is ignored when any of the -c, -L, -l, and -q options is specified.

-q
Specifies that nothing is to be output to the standard output. The command returns only the return code.

-R|-r
Specifies that directories are to be searched recursively.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.
In Windows, the directory delimiter at the end is ignored even if you specify this option and specify the symbolic
link to the directory having the directory delimiter at the end of its path name.

-s
Specifies that unreadable or nonexistent files are to be ignored, and output of error messages related to unreadable
or nonexistent files is to be suppressed.

-U
Specifies that binary files are to be searched but not output.

-v
Specifies that lines that do not contain a match for the value in pattern are to be output.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 723

-w
Specifies that only lines that contain the specified character string as a whole word are to be output.
A word is a character string that consists of alphanumeric characters and the underscore (_). Words must be delimited
by the space, any other non-word character, or the beginning or end of the line.

-x
Specifies that the specified character string is to be compared to each line in the file, and a line is to be output only
if the entire line constitutes an exact match.

-A number
Specifies that as many lines as specified that follow a line matching pattern are to be output.

-B number
Specifies that as many lines as specified that precede a line matching pattern are to be output.

-C[number]
Specifies that as many lines as specified that precede and follow a line matching pattern are to be output. If no value
is specified (number is omitted), two lines preceding and following a line matching pattern are output. This would
be the equivalent of specifying -A 2 -B 2.
If you specify number in the -C option, do not specify any spaces between -C and number.

pattern | -e pattern
This command specifies the pattern to be searched. You can specify multiple -e options.
You can specify the patter beginning with "-" for the -e option.

-f pattern-file-path-name
Specifies the path name for a file that contains patterns to be searched for. The specified file specifies one line per
pattern. If an empty file is specified (a file in which no patterns are specified), there will be nothing to search for
and no matches will be found.

path-name ...
Specifies a path name that is to be searched. Multiple path names can be specified. If no path name is specified, the
contents of the standard input are searched. If you specify a directory name, you must also specify the -R or -r
option.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

Return code
Return code Meaning

0 Normal termination.
• A line was found that contains a pattern being searched for.
• Or, if the -v option is specified, a line was found that does not contain the pattern being searched for.

1 Normal termination.
• No lines contain the pattern being searched for.
• Or, if the -v option is specified, all lines contain the pattern being searched for.

2 or greater Error termination

Notes
• If the first 8,192 bytes of the file consist of data that is other than printable single-byte characters, spaces, tabs,

backspaces, and multibyte characters, the file is considered to be a binary file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 724

• To execute grep from the command prompt in Windows, you must enclose the pattern in double quotation marks
(").

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and the standard
output. No conversion of end-of-line codes is performed.

• To search for any of the metacharacters listed below that are used in regular expressions, specify an escape character
(\) immediately before the metacharacter.
+, ?, |, (,), {, }

Examples
These usage examples show searches using extended regular expressions. For examples of the options, see the usage
examples for the grep command.

• Search for lines that contain character string AB or AD by using | that indicates an extended regular expression. The
input file is file01.txt.
Contents of file01.txt:

AA
AB
AC
AD
AB|AD

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\egrep "AB|AD" file01.txt
AB
AD
AB|AD

• Search for lines that contain character string AB|AD. Because | is treated as an extended regular expression, specify
an escape character (\) immediately before |. The input file is file01.txt.
Contents of file01.txt:

AA
AB
AC
AD
AB|AD

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\egrep "AB\|AD" file01.txt
AB|AD

8.4.11 expand command (replaces tab characters with spaces)

Syntax

expand[-tab-stop-list)][-t tab-stop-list][path-name ...]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 725

Description
This command replaces the tab character with spaces in a line in which tab stops are set and then outputs the result to
the standard output. If the tab character is followed by the backspace character, the column width for tabs is reduced in
the output results.

One record delimited by an end-of-line code in the input file is treated as one line. In Windows, [CR]+[LF] or [LF]
is treated as the end-of-line code; in UNIX, [LF] is treated as the end-of-line code. In UNIX, if a record in the input
file is delimited by [CR]+[LF], the output result after conversion will contain [CR].

Arguments

-tab-stop-list
The function of this argument is the same as for -t tab-stop-list.
-tab-stop-list can be specified together with -t tab-stop-list, in which case all the specifications are effective.

-t tab-stop-list

--tabs=tab-stop-list
Specifies a list of the locations for tab stops, each as 1 or a greater integer. If this option is omitted, default tab stop
8 is used, which is the same as when one tab stop location is specified.
The following explains the command processing when one tab stop location is specified in the tab-stop list and when
multiple tab stop locations are specified in the tab-stop list:

When one tab stop location is specified:
The command uses the specified value as the character spacing between equidistant tab stops.
When the tab character contained in one tab stop is replaced with spaces, the numbers of spaces between tab
stops are adjusted to obtain the specified character spacing.

When multiple tab stop locations are specified:
The command uses each specified value as the column location for a tab stop. The column locations begin from
0.
The following explains how to specify multiple tab stop locations.
- Specify multiple tab stop locations in the tab-stop list separating them with the comma or space.
To use the space as the separator, enclose it in double-quotation marks (").
When the tab characters contained in the tab stops are replaced with spaces, the numbers of spaces between tab
stops are adjusted to the specified column locations. If it is necessary to set more tab stops than specified in the
tab-stop list, the tab character is replaced by one space.
- Specify one tab stop location in the tab-stop list and specify the option multiple times.
- Combine both of the above specification methods.
Tab stops are set for each input line from the first value specified. Specify tab stop locations in ascending order
in the entire arguments.

path-name
Specifies the path name of the file in which tab characters are to be replaced with spaces. If no path name or - is
specified, the path name is loaded from the standard input.
If multiple files are specified and one of the files results in an open error, the command issues an error message and
continues processing.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 726

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• Path name contained a file that could not be opened.

2 Error termination (excluding the case resulting in termination code 1)

Notes
• The expand command expects text files. Input from binary files and output of binary data are not guaranteed to

work.

Examples

Specifying one tab stop location
If one tab stop is specified, the command uses the specified value as the character spacing between tab stops.
The following example specifies 6 for the tab stop for file file1:

Contents of file1
In the following file, -> indicates the tab character.

----+----+----+----+----+----+-----
a001 -> a002 -> a003
b001 -> b002 -> b003
c001 -> c2 -> c03

Command execution example
Specify 6 for the tab stop and file1 as the file:

$ expand -t 6 file1

Execution results

----+----+----+----+----+----+-----
a001 a002 a003
b001 b002 b003
c001 c2 c03

On the first line, tab stops are set at the specified interval of 6.
On the second line, two tab stops are set between b002 and b003 because there are two tab characters.
On the third line, c001, c2, and c03 that have different numbers of characters are set at a tab stop interval of 6.

Specifying multiple tab stop locations by using a tab-stop list
When multiple tab stops are specified, the tab stops are set in the order specified. If it is necessary to set more tab
stops than specified in the tab-stop list, the tab character is replaced by one space.

Contents of file1
In the following file, -> indicates the tab character.

----+----+----+----+----+----+-----
a001 -> a002 -> a003 -> a004

Command execution example 1
Specify 6,16 as the tab-stop list and file file1:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 727

$ expand -t 6,16 file1

Execution results 1

----+----+----+----+----+----+-----
a001 a002 a003 a004

Character strings are output with the specified number of spaces placed.
Because the first value specified is 6, the command first outputs a001, places spaces through column 6, then
outputs a002.
Similarly, the command outputs a002, places spaces through column 16, then outputs a003.
Because there are no more values in the tab-stop list, the command places one space, and then outputs a004.

Command execution example 2
Specify 2,16 as the tab-stop list and file file1:

$ expand -t "2 16" file1

Execution result 2

----+----+----+----+----+----+-----
a001 a002 a003 a004

Because the first value specified is 2, the command outputs a001 and then attempts to place spaces through
column 2, but the current location is already beyond column 2 because a001 has been output. Therefore, the
command ignores value 2, places spaces through column 16, which is the next value specified, and then outputs
a002.
Because there are no more values in the tab-stop list, the command places one space before each of the subsequent
character strings.

Specifying multiple tab stops in options
There are several ways to specify multiple tab stops by combining [-t tab-stop list] and [-tab-stop list]. All the
following examples specify 2 and 16 as the tab stops and their results are the same:

$ expand -t 2 -t 16 file1
$ expand -t 2 -16 file1
$ expand -2 -t 16 file1
$ expand -2 -16 file1
$ expand -t 2,16 file1
$ expand -2,16 file1

Entering the backspace character
If the tab character is followed by the backspace character, the tab's column width is reduced.

Contents of file1
In the following file, -> indicates the tab character.
There is a backspace character (^H) immediately before a003:

----+----+----+----+----+----+-----
a001 -> a002 -> ^Ha003->a004
b001 -> b002 -> b003 -> b004

Command execution example
Execute the command using default tab stop 8:

$ expand file1

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 728

Execution results

----+----+----+----+----+----+-----
a001 a002 a003 a004
b001 b002 b003 b004

Because there is a backspace character (^H) immediately before a003, the command saves the results during
output processing. As a result, the output location of a003 is column 16, not column 17.

Input from the standard input
If no path name is specified or if - is specified, files are input from the standard input.

Contents of file1
In the following file, -> indicates the tab character.

----+----+----+----+----+----+-----
a001 -> a002 -> a003 -> a004

Command execution example
Input file1 from the standard input:

$ expand < file1

or

$ expand - < file1

Execution results

----+----+----+----+----+----+-----
a001 a002 a003 a004

• Display option error massages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\> expand -z
expand: illegal option -- z
usage: expand [-tablist] [-t tablist] [file ...]

8.4.12 expr command (evaluates an expression)

Syntax

expr expression

Description
This command evaluates an expression and sends the results to the standard output. All elements of the expression are
specified as separate arguments.

An expression is specified as a combination of numeric values, character strings, variables, expressions, and their
operators. The evaluation of the expression is retained as a character string or integer.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 729

Arguments

expression
Specifies the expression to be evaluated. The operators are shown below in increasing order of priority. Operators
shown enclosed in curly brackets ({}) and separated by the comma have the same priority. When an argument is
invalid, the expr command outputs an error message and returns 2 as the return code. Expressions are denoted by
expr1 and expr2.

expr1| expr2
If expr1 is not an empty character string or zero, the evaluation of expr1 is returned. If expr1 is an empty character
string or zero, the evaluation of expr2 is returned. If expr2 is also a null character string, the null character string
is returned.

expr1 & expr2
If neither expression evaluates to an empty character string or zero, the evaluation of expr1 is returned; otherwise,
0 is returned.

expr1 {=, >, >=, <, <=, !=} expr2
If both expressions evaluate to an integer, the result of comparing the integers is returned; otherwise, the result
of comparing the character strings in the collating sequence defined locally is returned. The result is 1 if the
specified relationship is true, and 0 if it is false.
- =: The values on the left and right are equal.
- >: The value on the left is greater than the value on the right.
- >=: The value on the left is greater than or equal to the value on the right.
- <: The value on the left is less than the value on the right.
- <=: The value on the left is less than or equal to the value on the right.
- !=: The values on the left and right are not equal.

expr1 {+, -} expr2
If both expressions evaluate to integer values, the result of the addition or subtraction is returned.
If the value is not an integer, an error message (expr: non-numeric argument) is output.
- +: Add
- -: Subtract

expr1 {*, /, %} expr2
If both expressions evaluate to integer values, the result of the multiplication, division, or modulo operation is
returned. If the values are not integers, an error message (expr: non-numeric argument) is output. If
the divisor is zero, an error message (expr: division by zero) is output.
- *: Multiply
- /: Divide
- %: Modulo

expr1 : expr2
Evaluates whether expr2 matches expr1.
The expression expr2 is specified as a regular expression. The regular expression is treated as if ^ were added
at the beginning of the string.
- If a tagged regular expression is specified in expr2 (if expr2 matches expr1), the first character string that
matched the tagged regular expression is returned.
- If a tagged regular expression is not specified in expr2 (if expr2 matches expr1), the number of matched
characters is returned.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 730

- If expr2 does not match expr1, and a regular expression is used in expr2, the null character is returned. If a
regular expression is not used in expr2, 0 is returned.
- If the specification of expr2 matches the null character, 0 is returned. To determine if expr1 is the null character,
you must evaluate it by assigning the same character to both expr1 and expr2. That is, instead of expr '' :
'$', you must use expr X'' : 'X$', or a similar variation.

length character-string
Returns the length of the specified character string. For details about the ADSH_CMDEXPR_LENGTH
environment variable, see 2.5 Specifying environment variables.
- If the ADSH_CMDEXPR_LENGTH=b environment variable is set, the command treats length as an operator
and returns the length (in bytes) of the character string that follows.
- If the ADSH_CMDEXPR_LENGTH=c environment variable is set, the command treats length as an operator
and returns the length (in characters) of the character string that follows.
- If the ADSH_CMDEXPR_LENGTH environment variable is not set or a value other than b or c is set in the
environment variable, the command does not treat length as an operator.
You can specify an expression in the length operator. If you specify an expression, enclose the entire expression
is parentheses (()).

Return codes
Return code Meaning

0 Normal termination. The expression is not an empty character string or 0.

1 Normal termination. The expression is an empty character string or 0.

2 Error termination. The expression is not valid.

3 or greater Error termination
• An error, such as a memory shortage, occurred.

Notes
• Integer values are stored in the range of -2147483648 to 2147483647. If you specify a value outside this range,

any overflow into the 32-bit binary digit position will be ignored.

• Characters specified in the operators and parentheses, because they include characters that are interpreted by the
shell, must be properly escaped. Because the entire expression is interpreted as a character string when it is enclosed
in double quotation marks ("), each individual operator must be enclosed in double quotation marks (").

• This command does not accept options. If you specify an option as an argument, the option is interpreted as an
expression.

Examples
• Perform a calculation using variable a and variableb.

$ a=2
$ b=3
$ x=`expr \($a + $b \) * 10`
$ echo $?
0
$ echo $x
50
$

• Evaluate variable a | variable b.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 731

$ a=""
$ b="abcdef"
$ expr "$a" \| "$b"
abcdef
$

• Cut the file name from the path name, without the extension.

$ a='d:\jp1as\test.txt'
$ expr $a : '.*\\\(.*\)\.'
test
$

• Determine whether a variable includes numbers. The return will be 0 if there are no numbers.

$ a='abcde12345kl'
$ b='abcdefg'
$ expr $a : '.*[0-9].*'
12
$ expr $b : '.*[0-9].*'
0
$

• Return the length of character string in bytes.

$ export ADSH_CMDEXPR_LENGTH=b
$ echo $LANG
ja_JP.UTF-8
$ expr length " "
18

• Return the length of character string in characters.

$ export ADSH_CMDEXPR_LENGTH=c
$ echo $LANG
ja_JP.UTF-8
$ expr length " "
6

• Return a value that is obtained by adding 2 to the length of character string teststring (in bytes).

$ export ADSH_CMDEXPR_LENGTH=b
$ echo $LANG
ja_JP.UTF-8
$ expr length teststring + 2
12

8.4.13 find command (searches for files in directories)

Syntax

find [-d] [-H] [-h] [-L] path-name [...] [search-pattern]

Description
This command specifies paths where you want to conduct a search and then follows the directory hierarchies searching
for files. You can specify search conditions and how files that are found are to be handled.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 732

Arguments
You specify options, path names where the search is to be conducted, and a search pattern. The path names where the
search is to be conducted are specified as arguments to the find command.

Each option is specified as a one-letter option name preceded by a hyphen (-).

-d
Specifies that files inside the deepest directory are searched for first, and processing proceeds from there up to the
directory specified in path-name.

-H
If the path name specified as argument is symbolic link, process is executed in such a manner that the link destination
is specified. If the link destination does not exist, process is executed in such a manner that symbolic link is specified.
The symbolic link that encounters during the search does not reference the link destination. If more than one of the
-H, -h and -L options are both specified, the one specified last takes effect.

-h
Symbolic link references all link destinations and continues the process. If the link destination does not exist, process
is executed in such a manner that symbolic link is specified. If more than one of the -H, -h and -L options are both
specified, the one specified last takes effect.

-L
Symbolic link references all link destinations and continues the process. If the link destination does not exist, process
is executed in such a manner that symbolic link is specified. If more than one of the -H, -h and -L options are both
specified, the one specified last takes effect.

path-name
Specifies a path name.

search-pattern
Specifies a search pattern (expression). A search pattern consists of primaries and operators.

• Primaries

-amin time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of minutes
specified in time-difference is valid as the difference between the date and time of the last access to the file or
directory and the date and time at which execution of the find command starts. A difference in date and time
that is less than one minute is rounded up to the nearest minute.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:
- When a sign is not specified: Specified time difference
- + is specified before a numeric value: Greater than the specified value
- - is specified before a numeric value: Less than the specified value
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 733

-anewer path-name
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the date and time of the
most recent access to the file or directory is more recent than the date and time of the most recent access to path-
name.
In Windows, an error occurs if this primary is specified.

-atime time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of days specified
in time-difference is valid as the difference between the date and time of the last access to the file or directory
and the date and time at which execution of the find command starts. A difference in date and time that is less
than one day is rounded up to the nearest day.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:
- When a sign is not specified: Specified time difference
- + is specified before a numeric value: Greater than the specified value
- - is specified before a numeric value: Less than the specified value
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-cmin time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of minutes
specified in time-difference is valid as the difference between the last date and time the file information was
changed (for example, the date and time the file was written to, or the date and time the owner, group, link count,
or mode was changed) and the date and time at which execution of the find command starts. A difference in
date and time that is less than one minute is rounded up to the nearest minute.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:
- When a sign is not specified: Specified time difference
- + is specified before a numeric value: Greater than the specified value
- - is specified before a numeric value: Less than the specified value
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-cnewer path-name
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the last date and time the
file information was changed (for example, the date and time the file was written to, or the date and time the
owner, group, link count, or mode was changed) is more recent than the last time the file specified in path-name
was changed.
In Windows, an error occurs if this primary is specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 734

-ctime time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of days specified
in time-difference is valid as the difference between the last date and time the file information was changed (for
example, the date and time the file was written to, or the date and time the owner, group, link count, or mode
was changed) and the date and time at which execution of the find command starts. A difference in date and
time that is less than one day is rounded up to the nearest day.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:
- When a sign is not specified: Specified time difference
- + is specified before a numeric value: Greater than the specified value
- - is specified before a numeric value: Less than the specified value
You can specify time-difference without a sign or with a leading + or - sign. When + is specified, the check
determines whether the actual time is greater than the specified time difference value. When - is specified, the
check determines whether the actual time is less than the specified time difference value. When no sign is
specified, the check determines whether they are the same. The specified value must not exceed 2147483647
(0x7fffffff). If you specify a greater value, 2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-depth
Specifies that an evaluation is to be performed. The evaluation is true when the directories at the deepest level
are searched first, and the files within a directory are processed before the directory itself. This evaluation is
always true.

-empty
Specifies that an evaluation is to be performed. The evaluation is true when the file or directory is empty.

-exec command-line ;
Specifies a command line command for processing the files and directories being searched that is to be evaluated.
- Depending on the shell in which the find command is executed, characters such as the asterisk (*) and
semicolon (;) might be expanded by the shell, and so must be enclosed in double quotation marks (") or single
quotation marks ('), or must be prefixed with the escape character (\).
- The command-line specification must terminate with a semicolon (;).
- The program specified in command-line is launched with the directory from which find was launched set as
the current directory.
- If you specify curly brackets ({ }) in command-line, they are replaced by the path name of the file or directory
being searched. Their replacement is an absolute path name if you specified an absolute path name as the path
for conducting the search or a relative path name if you specified a relative path name as the path for conducting
the search.
- The evaluation is true if the program specified in command-line terminates with a return code of 0.

-follow
This evaluation is always true.
Symbolic link references all link destinations and continues the process. If the link destination does not exist,
process is executed in such a manner that symbolic link is specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 735

-group group-name
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the file belongs to the
group whose name is specified. If you specify a number for the group-name and no such group name exists, the
specified value is interpreted as a group ID.

-iname pattern
See the description of the -name option. This option functions identically except that it does not distinguish
between uppercase and lowercase letters.

-inum number
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the relationship between
the inode number of the file and the specified value is valid.
The specified number is interpreted as follows depending on whether the numeral is specified without a sign,
or prefixed with + or -:
No sign: The specified number
Prefixed with + sign: A number greater than the specified value
Prefixed with - sign: A number less than the specified value
The value specified for number must not exceed 9223372036854775807 (0x7fffffffffffffff). If
you specify a higher value, 9223372036854775807 is assumed.
If you specify a non-numeric value in number, an error message (find:primary: specified-character-string:
illegal numeric value) is output.
If you do not specify a value for number, an error message (find:primary: requires additional
arguments) is output.

-links link-count
True if the number of links of the file is the number of links.
The specified link-count is interpreted as follows depending on whether the numeral is specified without a sign,
or prefixed with + or -:
No sign: The specified link count
Prefixed with + sign: A number greater than the specified value
Prefixed with - sign: A number less than the specified value
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value in link-count, an error message (find:primary: specified-character-
string: illegal numeric value) is output.
If you do not specify a value for link-count, an error message (find:primary: requires additional
arguments) is output.

-ls
This evaluation is always true.
In Windows, file permission, number of hard links, owner name, size (in units of bytes), the last modification
date/time and path name are output to the standard output. If the file is symbolic link, the path name of the link
destination appears after "->".
In UNIX, inode number, size (in units of 512 bytes), file permission, number of hard links, owner name, group,
size (in units of bytes), the last modification date/time and path name are output to the standard output. If the
file is a special file, the major number and minor number are displayed instead of the size (in units of bytes). If
the file is symbolic link, the path name of the link destination appears after "->".

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 736

-maxdepth depth
Specifies an evaluation that is to be performed. The evaluation is true when the depth of the directory currently
being searched is less than or equal to the specified value. The depth of a specified directory initially is 1.
- The specified value must be in the range of 0 through 32767. If 0 is specified, the search target becomes the
directory only (the files stored in the directory are not searched).
- If you specify a value greater than the maximum specifiable value, an error message (find: specified-
value: maxdepth value too large) is output.
- If you specify a non-numeric value, an error message (find: specified-character-string: primary: value
invalid) is output.
- If depth is omitted, an error message (find: primary: requires additional arguments) is
output.

-mindepth depth
Specifies an evaluation that is to be performed. The evaluation is true when the depth of the directory currently
being searched is greater than or equal to the specified value.
- The specified value must be in the range of 0 through 32767.
- No error occurs is the specified value is greater than the maximum specifiable value.
- If you specify a non-numeric value for depth, 0 is assumed.
- If depth is omitted, an error message (find: primary: requires additional arguments) is
output.

-mmin time-difference
Specifies an evaluation that is to be performed. The evaluation is true when the number of minutes specified in
time-difference is valid as the difference between the last date and time the file or directory was modified and
the time at which execution of the find command starts. A difference in date and time that is less than one
minute is rounded up to the nearest minute. The specified time-difference is interpreted as follows depending on
whether the numeral is specified without a sign, or prefixed with a + or - sign.
No sign: The specified time difference
Prefixed with + sign: A number greater than the specified value
Prefixed with - sign: A number less than the specified value.
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value
2147483647 is assumed.
- If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
- If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.

-mtime time-difference
Specifies an evaluation that is to be performed. The evaluation is true when the number of days specified in
time-difference is valid as the difference between the time of the last modification of the file or directory and
the time at which execution of the find command starts. A time difference that is less than one day is rounded
up to the nearest day. The specified time-difference is interpreted as follows depending on whether the numeral
is specified without a sign, or prefixed with a + or - sign.
No sign: The specified time difference
Prefixed with + sign: A number greater than the specified value
Prefixed with - sign: A number less than the specified value.
The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 737

- If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
- If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.

-mount
This is always true. In UNIX, this argument specifies that a directory whose device number differs from that of
the directory in which the search began is not to be searched.

-name pattern
Specifies an evaluation that is to be performed. The evaluation is true when the name of the file or directory to
be searched for matches the value specified in pattern.
The pattern is specified as a combination of characters and wildcards. You can use the escape character (\) to
specify as part of the pattern value a character that would otherwise be a wildcard. If the escape character (\)
is specified before a character that is not a wildcard characters, the \ is ignored.
The following table shows the characters that can be used as wildcards:

Wildcard Meaning

? Matches any single character.

* Matches a character string of zero or more characters.

[] Matches any single character in the character string enclosed in []. If there is an ! or a ̂ at the beginning
of the character string enclosed in [], there is a match if none of the characters in [] is found. If two
characters are separated by a hyphen (-), the match is of any character between those two characters
(including the two characters themselves).

The following examples illustrate the use of the [] wildcard:

Example Meaning

[!abc] Matches any character other than a, b, or c.

[0-9] Matches any character from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

-newer path-name
Specifies an evaluation that is to be performed. The evaluation is true when the current file or directory is newer
than the time at which path-name was last modified.

-nogroup
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the current file belongs to
a non-existent group.

-nouser
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the owner of the current
file is a non-existent user.

-ok command-line ;
Specifies a command line command for processing the files and directories being searched that is to be evaluated.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 738

- Depending on the shell in which the find command is executed, characters such as the asterisk (*) and
semicolon (;) might be expanded by the shell, and so must be enclosed in double quotation marks (") or single
quotation marks ('), or must be prefixed with the escape character (\).
- The command-line specification must terminate with a semicolon (;).
- The program specified in command-line is launched with the directory from which find was launched set as
the current directory. Before the program is launched, a prompt is output asking for confirmation. If the response
from the standard input is not y, the specified command does not execute and false is returned.
- If you specify curly brackets ({ }) in command-line, they are replaced by the path name of the file or directory
being searched. Their replacement is an absolute path name if you specified an absolute path name as the path
for conducting the search or a relative path name if you specified a relative path name as the path for conducting
the search.
- The evaluation is true if the program specified in command-line terminates with a return code of 0.

-path pattern
Specifies an evaluation that is to be performed. The evaluation is true when the name of the file or directory to
be searched for matches the value specified in pattern.
- The pattern is specified as a combination of characters and wildcards. You can use the escape character (\) to
specify as part of the pattern value a character that would otherwise be a wildcard. If the escape character (\)
is specified before a character that is not a wildcard characters, the \ is ignored.
- For details about specifying pattern, see the description under -name pattern.

-perm [-]permissions
In UNIX, specifies permissions as octal numbers or symbols. If this argument is specified in Windows, an error
(find: -perm: unknown option) results.
If the specified permissions follow a hyphen (-), the evaluation is true when the specified permissions are set
in the mode of the file or directory. If a hyphen (-) is not specified, the evaluation is true when the specified
permissions match the file mode exactly.
When you specify a numeric value for permissions, an error occurs if you specify a non-octal number or you
specify an octal value greater than 07777 (4095 decimal).
If you specify symbols for permissions, do so by setting, adding, and removing permissions, starting from the
state in which nothing is specified (0 in numeric representation). The result from specifying one or more symbols
is then used in the search.
A symbol consists of three parts. Specify one or more symbols, as explained below. If you specify more than
one, separate them with the comma (,).

Order within the symbol Permitted value

First Specifies the items for which you want to set access permissions. You can specify more than one at the
same time. The items below can be specified. If nothing is specified, a (all users) is assumed.
- u: Owner
- g: Group
- o: Other
- a: All users

Second Specifies an operation on the mode. The following processing is performed on the items specified in
the first part of a symbol:
- =: Set (overwrite) access permissions
- +: Add access permissions
- -: Remove access permissions
The value to be set, added, or removed is specified in the third part of the symbol.
You can specify the second and third parts of a symbol following the third part. The third part of a
symbol can be omitted.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 739

Order within the symbol Permitted value

Third Specifies the applicable access permissions. You can specify more than one at the same time. The
following values can be specified:
- r: Read
- w: Write
- x: Execute
- s: Set the user ID or group ID at run time
- t: Sticky bit
- u: Owner access permissions currently set in the mode
- g: Group access permissions currently set in the mode
- o: Other access permissions currently set in the mode
When this part is omitted and = is specified in the second part of the symbol, the items for which access
permissions are set are cleared. When this part is omitted and + or - is specified in the second part of
the symbol, no processing occurs.
Specifying s or t in this part will be ignored if only o is specified in the first part.

The following table shows examples of specifying symbols:

Value specified in -perm Numeric equivalent Description

u=x,g=w 120 Set u to x, and set g to w.

u=x,g=u 110 Set u to x, and set the same values for g and u.

u=x,=u 111 Set u to x, and then set a (the default value) to the same values as u.

u=x,u=w 200 Set u to x, and then set (overwrite) u to w.

u=x,u+w 300 Set u to x, and then add w to u.

ug=x 110 Set u and g to x.

u=rw 600 Set u to r and w.

u=r+x 500 Set u to r, and then add x.

u=r=w 200 Set u to r, and then set (overwrite) it to w.

=x,u= 011 Set a (the default value) to x, and clear the settings for u.

= 000 Clear a (the default value).

This argument cannot be specified in Windows; if it is specified, an error occurs (find: -perm: unknown
option).

-print
Specifies an evaluation that is to be performed. The evaluation is true when the path name of the file or directory
being searched is output to the standard output followed by an end-of-line code. This evaluation is always true.

-print0
Specifies an evaluation that is to be performed. The evaluation is true when the path name of the file or directory
being searched is output to the standard output followed by NULL ('\0'). This evaluation is always true.

-prune
Specifies an evaluation that is to be performed. The evaluation is true when directories encountered during the
search are not to be followed. This evaluation is always true. This item is not valid when the -d option is specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 740

-size size[c]
Specifies an evaluation that is to be performed. The evaluation is true when the relationship between the file's
size and the specified size value (in units of blocks, rounded up to an even increment of 512 bytes) is valid. When
c is specified after size, the unit for evaluation is bytes.
The specified size is interpreted as follows depending on whether the numeral is specified without a sign, or
prefixed with a + or - sign.
No sign: The specified size
Prefixed with + sign: A size greater than the specified value
Prefixed with - sign: A size less than the specified value
The specified size must not exceed 9223372036854775807 (0x7fffffffffffffff). If you specify a
greater value, 9223372036854775807 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If size is omitted, an error message (find: primary: requires additional arguments) is output.

-type type
Specifies an evaluation that is to be performed. The evaluation is true when the type of the current file is the
same as the specified type value. The types are listed below. If you specify a type other one than the following,
an error message (find: -type: specified-value: unknown type) is output.
- b: Block special file (cannot be specified in Windows)
- c: Character special file (cannot be specified in Windows)
- d: Directory
- f: Regular file
- l: Symbolic link
- p: FIFO (cannot be specified in Windows)
- s: Socket (cannot be specified in Windows)

-user user-name
In Windows, specifies an evaluation that is to be performed. The evaluation is true when the file owner's user
name is the same as the specified user-name value.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the file owner's user name
is the same as the specified user-name value. If you specify a numeric value for the user name and no such owner
name exists, the specified value is interpreted as a user ID.

-xdev
Specifies an evaluation that is to be performed. This evaluation is always true. It is true in UNIX when directories
are never searched with a device number that differs from that of the directory where the search was started.

• Operators
The primaries can be used with the operators listed below. The operators are shown in descending order of
priority.

(search-pattern)
True is when the search pattern in the parentheses satisfies the conditions.

! search-pattern
False is when the search pattern that follows the ! operator satisfies the conditions.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 741

search-pattern -and search-pattern | search-pattern -a search-pattern | search-pattern search-pattern
This is the logical AND of two search patterns connected by the -and or -a operator, or else two side-by-side
search patterns. True is when both search patterns are true. If the first search pattern is false, the second search
pattern is not evaluated.

search-pattern -or search-pattern | search-pattern -o search-pattern
This is the logical OR of two search patterns connected by the -or or -o operator. True is when either search
pattern is true.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• Depending on the shell used to execute find, characters such as the semicolon and parentheses might need to be

prefixed with the escape character (\) or enclosed in single quotation marks (') or double quotation marks (").

• The output order of the files and directories being searched depends on the OS and the file system. If consistency
across multiple platforms is desired, the output must be sorted.

• In Windows, file descriptors are closed without being inherited by processes that were generated by the -exec
primary or a similar means. For example, an error results if you attempt to perform input or output on a file descriptor
opened by the parent process without reopening it. This does not apply to the standard input, standard output, and
standard error output, which do not need to be reopened.

• In Windows, if the program name specified in the -exec option contains no path, the program found according to
the path search order of the target Windows API is executed.

• In Windows, the directory delimiter at the end is ignored even if you specify the symbolic link to the directory having
the directory delimiter at the end of its path name. To set the directory of the link destination of the symbolic link
for the path name from which the search starts, specify the -H option, -L option, or -follow primary.

Examples
• Display file and directory names ending in .c.

$ find . -name '*.c'
./test/a.c
./test/b.c
./test/c.c
./test/abc.c
$

• Display files and directories that are older than file ttt, or whose owner is not root.

$ ls -l
total 0
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:12 a.c
-rw-rw-r-- 1 root group1 0 Oct 7 10:12 abc.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:12 b.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:10 c.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:11 ttt
$ find . \! \(-newer ttt -user root \)
.
./ttt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 742

./b.c

./a.c

./c.c
$

• Display file names under the current directory that end with a dot (.) followed by a single digit, skipping over the
directory command1.

$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c command1.o extern.h obj

command2:
a2.txt b2.txt command2 command2.1 command2.c command2.o extern.h obj
$ find . ! -path './command1/*' -name '*.[0-9]'
./command2/command2.1
$

• Delete all .o files under the current directory.

$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c command1.o extern.h obj

command2:
a2.txt b2.txt command2 command2.1 command2.c command2.o extern.h obj
$ find . -name '*.o' -exec rm {} \;
$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c extern.h obj

command2:
a2.txt b2.txt command2 command2.1 command2.c extern.h obj
$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\find -w
find: illegal option -- w
usage: find [-dHhL] path ... [expression]

8.4.14 getopt command (analyzes command line options)

Syntax 1

getopt analysis-options argument-to-be-analyzed

Syntax 2

getopt [option] [--] analysis-options argument-to-be-analyzed

Syntax 3

getopt [option] -o short-analysis-option-name [option] [--] argument-to-be-analyzed

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 743

Description
This command analyzes the command line specified in argument-to-be-analyzed according to the specified analysis-
options and outputs the analysis results to the standard output. The command can analyze both short and long options.
This command simplifies syntax analysis of shell scripts.

If one of the following specifications is made, the command assumes that format 1 is being used:

• The first parameter of the argument does not begin with -.

• The GETOPT_COMPATIBLE environment variable is set.

For any other specifications, if the -o option is specified, format 3 is assumed; if the -o option is not specified, format
2 is assumed.

Arguments

analysis-options
Specifies a character string containing the analysis options.
When you specify short options, note the following:

• If a short option begins with -, an operand is output at the location where it appears. If a short option begins
with +, the option must be specified before an operand.
Note that in format 1, - and + at the beginning are ignored.

• If a short option begins with : (or if a short option begins with - or + and the next character is :), and the option
for the argument to be analyzed is not specified in the analysis options, no error message is issued, but the return
code will be an error. Analysis of the arguments to be analyzed will continue.

By specifying : or :: after an option character or an option name, you can define the following:

Specifying : after an option character or an option name
This indicates that the option requires a value.
In this case, specify an option name and an option value for the argument to be analyzed in the following format:
- Specify a short option name and an option value without a separator.
$ getopt "xy:z" -yarg
-y arg --
- Specify a short option name and an option value separated by a space.
$ getopt "xy:z" -y arg
-y arg --
- Specify a long option name and an option value separated by a space.
$ getopt -o "abc" -l xyz: -- --xyz nml
--xyz 'nml' --
- Specify in the format long-option-name=option-value.
$ getopt -o "abc" -l xyz: -- --xyz=nml
--xyz 'nml' --

Specifying :: after an option character or an option name
This indicates that specifying a value for the option is optional. If you specify an argument, specify ::
immediately after an option character or an option name.
In this case, specify an option name and an option value for the argument to be analyzed in the following format:
- Short options

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 744

Specify an option name immediately followed by an option value.
- Long options
Specify in the format long-option-name=option-value.

argument-to-be-analyzed
Specifies an option name, an option value, and an operand as the argument to be analyzed. For details about
specifying options, see 8.1 Command description format.

How to specify options
Specify a short option following - and a long option following --. If no long option name follows --, the
command terminates option analysis at that location and treats all subsequent parameters as operands.
You can abbreviate long option names. In such a case, the complete long option names are displayed in the output
results. The following shows an example:

$ getopt -o "" -l "longZ" -- --lo
 --longZ --

If you abbreviate a long option name, make sure that the specified name can be distinguished from all other
options. If the specified long option name cannot be identified, the command treats it as any option name defined
earlier in analysis-options.

Specification order of options and operands
By default, there is no rule for the specification order of options and operands. The options specified after
operands are still analyzed. You can specify an option specification order by using the following environment
variables:
- Using the ADSH_CMD_ARGORDER environment variable to specify an option specification order
If the ADSH_CMD_ARGORDER environment variable is specified, the options specified as the argument to be
analyzed must appear before operands.
- Using the POSIXLY_CORRECT environment variable to specify an option specification order
If the POSIXLY_CORRECT environment variable is specified, the options specified as the argument to be
analyzed must appear before operands.
This definition applies to commands in the Linux version as well as to commands specified in the
ADSH_CMD_ARGORDER environment variable.

option
In formats 2 and 3, you can specify the following options:

• -l long-option-name
• -longoptions=long-option-name

Specifies the long analysis option.
To specify multiple options, separate them with the comma (,) or the space or specify this option multiple times.

• -n program-name
• --name=program-name

Specifies a command name that is to be displayed in error messages for option analysis instead of the getopt
command name.

• -q
• --quiet

Specifies that output of error messages resulting from option analysis of the argument being analyzed is to be
suppressed.

• -Q

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 745

• --quiet-output
Specifies that output of the analysis results is to be suppressed.

• -u
• --unquoted

Specifies that option values and operands obtained as analysis results in formats 2 and 3 are not to be enclosed
in quotation marks.

• -o short-analysis-option-name
• --options=short-option-name

Specifies a short analysis option.
If this option is specified more than once, the last value specified takes effect.
If W; is specified for the short option and a long option name with -W for the argument to be analyzed is specified,
the specified value is treated as a long option name.

Output of analysis results
Analysis results are classified into option names, option values, and operands and output to the standard output.

If format 2 or 3 was used, option values and operands are enclosed in single quotation marks ('). If -u is specified,
they are not enclosed in single quotation marks (').

For short options, an option name with - is output as one option. For long options, the complete option name with --
is output as one option.

The separator -- is output between an option (option name and option value) and an operand. This does not apply if -
is specified at the beginning of short options.

The command continues processing all parameter options even if an error occurs during option analysis. The following
shows an example:

$ getopt "xyz" -w -x
getopt: invalid option -- w
 -x --

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• The option specified for argument-to-be-analyzed is not defined in analysis-options.

2 Error termination
• A getopt command option is invalid.

3 Error termination
• An error other than return code 1 or 2 occurred.

Examples
• Execute the command using format 1:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 746

$ getopt "xy:z" -z -y arg1 arg2
 -z -y arg1 -- arg2

• Execute the command using format 2:

$ getopt -q "xy:z" -z -y arg1 arg2
 -z -y 'arg1' -- 'arg2'

• Execute the command using format 3:

$ getopt -o "xy:z" -- -z -y arg1 arg2
 -z -y 'arg1' -- 'arg2'

• Set analysis results in positional parameters.
Executable file

OPT=`getopt -o abc:d: -- -a -b`
eval set -- "$OPT"
echo $1
echo $2
echo $3

Execution results

-a
-b
--

• Display option error messages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\> getopt -z
getopt: illegal option -- z
usage: getopt optstring parameters
 getopt [options] [--] optstring parameters
 getopt [options] -o optstring [options] [--] parameters

8.4.15 grep command (searches for characters in files)

Syntax

grep [-a] [-b] [-c] [-E] [-G] [-h] [-I] [-i] [-L] [-l] [-n]
 [-q] [-R] [-r] [-s] [-U] [-v] [-w] [-x]
 [-A number] [-B number] [-C[number]]
 [-e pattern] [-f pattern-file-path-name] [pattern] [path-name ...]

Description
This command searches files for characters (specified in pattern).

Arguments

-a
Specifies that all files are to be handled as ASCII text files.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 747

-b
Specifies that the offset in bytes is to be displayed at the beginning of each matching line.

-c
Specifies that only the number of lines selected is to be output to the standard output.

-E
Specifies that the value specified in pattern is to be handled as an extended regular expression. When the -E and
-G options are both specified, the one specified last takes effect.

-G
Specifies that the value specified in pattern is to be handled as a regular expression. This is the default behavior.
When the -E and -G options are both specified, the one specified last takes effect.

-h
Specifies that no file name is to be displayed at the beginning of each output line when either of the following
conditions is satisfied:

• The -R or -r option is specified.

• Multiple path name are specified as being subject to search.

-I
Specifies that binary files are to be ignored.

-i
Specifies that uppercase letters are not to be distinguished from lowercase letters (and vice versa).

-L
Specifies that only the names of files that do not contain a match for the value specified in pattern are to be output
to the standard output. If the -L and -l options are both specified, the one specified last takes effect.

-l
Specifies that only the names of files that contain a match for the value specified in pattern are to be output to the
standard output. If the -L and -l options are both specified, the one specified last takes effect.

-n
Specifies that its relative line number in the file is to be output at the beginning of each output line. This specification
is ignored when any of the -c, -L, -l, and -q options is specified.

-q
Specifies that nothing is to be output to the standard output.

-R|-r
Specifies that directories are to be searched recursively.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.
In Windows, the directory delimiter at the end is ignored even if you specify this option and specify the symbolic
link to the directory having the directory delimiter at the end of its path name.

-s
Specifies that output of error messages related to unreadable or nonexistent files is to be suppressed.

-U
Specifies that binary files are to be searched but not output.

-v
Specifies that lines that do not contain a match for the value in pattern are to be output.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 748

-w
Specifies that only lines that contain the specified character string as a whole word are to be output.
A word is a character string that consists of alphanumeric characters and the underscore (_). Words must be delimited
by the space, any other non-word character, or the beginning or end of the line.

-x
Specifies that the specified character string is to be compared to each line in the file, and a line is to be output only
if the entire line constitutes an exact match.

-A number
Specifies that as many lines as specified that follow a line matching pattern are to be output.

-B number
Specifies that as many lines as specified that precede a line matching pattern are to be output.

-C[number]
Specifies that as many lines as specified that precede and follow a line matching pattern are to be output. If no value
is specified (number is omitted), the default is 2 (which would be the equivalent of specifying -A 2 -B 2).
If you specify number in the -C option, do not specify any spaces between -C and number.

pattern|-e pattern
This command specifies the pattern to be searched. You can specify multiple -e options.
You can specify a pattern beginning with - for the -e option.

-f pattern-file-path-name
Specifies the path name for a file that contains patterns to be searched for. The specified file specifies one line per
pattern. If an empty file is specified (a file in which no patterns are specified), there will be nothing to search for
and no matches will be found.

path-name ...
Specifies a path name that is to be searched. Multiple path names can be specified. If no path name is specified, the
contents of the standard input are searched. If you specify a directory name, you must also specify the -R or -r
option.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

Return codes
Return code Meaning

0 Normal termination.
• A line was found that contains a pattern being searched for.
• Or, if the -v option is specified, a line was found that does not contain the pattern being searched for.

1 Normal termination.
• No lines contain the pattern being searched for.
• Or, if the -v option is specified, all lines contain the pattern being searched for.

2 or greater Error termination

Notes
• If the first 8,192 bytes of the file include data that is other than printable single-byte characters, spaces, tabs,

backspaces, and multibyte characters, the file is considered to be a binary file.

• To execute grep from the command prompt in Windows, you must enclose the pattern in double quotation marks
(").

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 749

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Examples
• Display the default output with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
ABCD
ABCD_XYZ
0000<ABCD>0000
/* ABCD */

• Display the default output from multiple files with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD_ test1.txt test2.txt test3.txt test4.txt
test1.txt:ABCD_XYZ
test2.txt:ABCD_XYZ
test3.txt:ABCD_XYZ
test4.txt:ABCD_XYZ

• Specify the -h option to display the matching lines without adding a file name when multiple files are searched:

C:\TEMP>%ADSH_OSCMD_DIR%\grep -h ABCD test1.txt test2.txt test3.txt test4.txt
ABCD_XYZ
ABCD_XYZ
ABCD_XYZ
ABCD_XYZ

• Specify the -b option to show the offset in bytes at the beginning of matching lines.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -b ABCD test1.txt
77:ABCDEFGHIJKLMNOPQRSTUVWXYZ
104:77777777[ABCD]ccccccccc
133:555555555:ABCD:111111111
212:ABCD
256:ABCD_XYZ
301:0000<ABCD>0000
316:/* ABCD */

• Specify the -c option to display only a count of the number of matching lines.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -c ABCD test1.txt
7

• Specify the -i option to not distinguish between upper and lowercase.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -i AbCd test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
abcdefghijklmnopqrstuvwxyz
ABCD
abcd
ABCD_XYZ
0000<ABCD>0000
/* ABCD */

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 750

• Specify the -L option to display only the names of files that do not contain the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -L ABC_ test1.txt test2.txt test3.txt test4.txt
test1.txt
test2.txt
test4.txt

• Specify the -l option to display only the names of files that contain the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -l ABC_ test1.txt test2.txt test3.txt test4.txt
test3.txt

• Specify the -n option to display the relative line number in the file before each output line.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -n ABCD test1.txt
4:ABCDEFGHIJKLMNOPQRSTUVWXYZ
5:77777777[ABCD]ccccccccc
7:555555555:ABCD:111111111
10:ABCD
14:ABCD_XYZ
17:0000<ABCD>0000
18:/* ABCD */

• Specify the -q option to not write anything to the standard output. The first example below does not specify the -
q option, while the second example does.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD_XYZ test1.txt
ABCD_XYZ

C:\TEMP>%ADSH_OSCMD_DIR%\grep -q ABCD_XYZ test1.txt

• Specify the -R option to search directories recursively.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -R ABCD C:\USR\data
C:\USR\data\data_2\data_3\test3.txt:ABCDEFGHIJKLMNOPQRSTUVWXYZ
C:\USR\data\data_2\data_3\test3.txt:ABCD333
C:\USR\data\data_2\data_3\test3.txt:ABCD_AS
C:\USR\data\data_2\test2.txt:77777777[ABCD]ccccccccc
C:\USR\data\data_2\test2.txt:555555555:ABCD:111111111
C:\USR\data\data_2\test2.txt:ABCD222
C:\USR\data\data_2\test2.txt:ABCD_MM
C:\USR\data\test0.txt:ABCD_1118
C:\USR\data\test0.txt:ABCD_AS321
C:\USR\data\test0.txt:0000<ABCD>0000
C:\USR\data\test0.txt:/* ABCD */

• Specify the -s option to suppress output of error messages. The first example below does not specify the -s option,
while the second example does.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD test5.txt
grep: test5.txt: No such file or directory

C:\TEMP>%ADSH_OSCMD_DIR%\grep -s ABCD test5.txt

• Specify the -w option to display only whole-word matches for the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -w ABCD test1.txt
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
ABCD
0000<ABCD>0000
/* ABCD */

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 751

• Specify the -x option to display only whole-line matches.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -x ABCD test1.txt
ABCD

• The example below also specifies the -x option, this time to search the file file.txt, whose contents are as
follows:
file.txt
 ABABAB
 ACACACAC
 ABABAB

• The command displays nothing because there are no whole-line matches:

grep -x ABA file.txt

• In the following example, two whole-line matches (lines 1 and 3) are found in file.txt:

grep -x ABABAB file.txt
ABABAB
ABABAB

• Specify 3 with the -A option to display three lines following each matching line as context.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -A 3 XYZ test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
555555555:ABCD:111111111
ababababababababababababab
abcdefghijklmnopqrstuvwxyz
--
ABCD_XYZ
asasasasasasasasas01
ASASASASASASAS
0000<ABCD>0000

• Specify 3 with the -B option to display three lines preceding each matching line as context.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -B 3 XYZ test1.txt
/*-----------------------*/
ABABABABABABABABABABABABAB
012345678901234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
--
JJJJJJJJJJJJJJJJ
KKKKKKKKKKKKKKKK
abcd
ABCD_XYZ

• Specify the -C option to display two lines preceding and following each matching line as context.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -C XYZ test1.txt
ABABABABABABABABABABABABAB
012345678901234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
555555555:ABCD:111111111
ababababababababababababab

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 752

--
KKKKKKKKKKKKKKKK
abcd
ABCD_XYZ
asasasasasasasasas01
ASASASASASASAS

• Use the -e option to specify a pattern that begins with -.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -e "-rw-" file01.txt
-rw------- user0001 12 May 12 17:19 a.txt
-rw------- user0001 79 May 12 20:36 abc.txt
-rw------- user0001 141 May 12 20:36 abcd.txt
-rw------- user0001 12 May 12 18:05 b.txt
-rw------- user0001 133 May 12 21:49 f01.txt
-rw------- user0001 0 May 12 19:42 ff
-rw------- user0001 0 May 12 20:54 ff.txt

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\grep -d
grep: illegal option -- d
usage: grep [-abcEGhIiLlnqRrsUvwx] [-A num] [-B num] [-C[num]]
 [-e pattern] [-f file] [pattern] [file ...]

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\grep CHECK file99
grep: file99: No such file or directory

8.4.16 gunzip command (decompresses compressed files)

Syntax

[Only for Windows]

gunzip [-c] [-f] [-k] [-l] [-N] [-n] [-q] [-r] [-t] [-v]
 [-o output-path-name] [-S suffix] [target-path-name ...]

[Only for UNIX]

gunzip [-a] [-c] [-f] [-k] [-l] [-N] [-n] [-q] [-r] [-t] [-v]
 [-o output-path-name] [-S suffix] [target-path-name ...]

Description
This command decompresses compressed files.

This command enables you to perform the following operations:

Operation type Description

Decompress Decompresses a compressed file (hereafter, this operation is called a
decompression operation).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 753

Operation type Description

Decompress This operation is the same as the gzip command with the -d option
specified.
If the -l and -t options are omitted, the decompression operation is
performed.
In a decompression operation, the compressed file is deleted after the
decompressed file is created. For how not to delete compressed files,
see Description in 8.4.17 gzip command (compresses files or
decompresses compressed files).

Display Displays the information about the compressed file when the -l option
is specified (hereafter, this operation is called a display operation). This
operation is the same as the gzip command with the -l option
specified.

Verify Specifying the -t option verifies the integrity of the compressed data
stored in the compressed file without decompressing the compressed
file (hereafter, this operation is called a verification operation).
This operation is the same as the gzip command with the -t option
specified.

For details about each operation, see Description in 8.4.17 gzip command (compresses files or decompresses
compressed files).

You can use the options of the gunzip command without specifying them in the command arguments, by specifying
the options in the environment variable GZIP. For details about the environment variable GZIP, see 2.5 Specifying
environment variables.

Arguments
Specifying operation options

Specify the operation to be executed.

If this command is executed without specifying the following options, the compressed file will be decompressed
(decompression operation):

-l

--list
Displays information about the compressed file (display operation).
Displays information such as the file size before compression and the compression ratio.
If the -v option is specified at the same time, detailed information about the compressed file is also displayed.
For details about the displayed content, see Displaying compressed file information in 8.4.17 gzip command
(compresses files or decompresses compressed files).
Note that if the displayed file size before compression is 4 GB or greater, the value might not be displayed correctly.
If you want to display the correct file size, specify the -t option at the same time. However, if the -t option is
specified at the same time, displaying the file size might take some time.

-t

--test
Verifies the integrity of the compressed data stored in the compressed file without decompressing the compressed
file (verification operation).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 754

If this option is specified at the same time as the -l option, both the integrity verification of the compressed data
and the display of information about the compressed file are performed.

Specifying the behavior for recovering file information

Specify the behavior for recovering file information.

If the -N and -n options are specified at the same time, only the last specified option is valid. If neither the -N nor -n
option is specified, the -n option is valid. If the -N or -n option is specified at the same time as the -t option, the
specification is ignored.

For details about using the most recent modification date and time in a decompression operation, see Handling of the
most recent access date and time or the most recent modification date and time for a file in 8.4.17 gzip command
(compresses files or decompresses compressed files). For details about the file name and using the most recent
modification date and time in a display operation, see Displaying compressed file information in 8.4.17 gzip command
(compresses files or decompresses compressed files).

-N

--name
[For decompression operations]

Names the file created at decompression using the file name stored in the compressed file. In addition, sets the
most recent modification date and time stored in the compressed file, for the created file. If the file name and
the most recent modification date and time are not stored in the compressed file, the system behaves the same
as when the -n option is specified.

[For display operations]
In the displayed compressed file information, displays the file name and the most recent modification date and
time stored in the compressed file.

-n

--no-name
[For decompression operations]

Names the file created at decompression using the file name from the compressed file, with the compressed file
extension removed. In addition, sets the most recent modification date and time of the compressed file to the
created file.

[For display operations]
In the displayed compressed file information, displays the file name as the compressed file name with its
extension removed, and the most recent modification date and time of the compressed file.

Specifying input and output

-c

--stdout

--to-stdout
[For decompression operations]

Outputs the result of decompressing the compressed data to the standard output.

If this option is specified at the same time as the -l or -t option, the specification is ignored.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 755

-k

--keep
[For decompression operations]

The compressed file is not deleted even after the decompressed file is created.

If this option is specified at the same time as the -l, -t, or -c option, the specification is ignored.

-r

--recursive
If the path specified in the target-path-name is a directory, searches for the compressed file in the directory and its
subdirectories.
In Windows, when the -r option is specified, directory delimiters at the end of the path name are ignored, even
when you specify a symbolic link to a directory.
The file extension determines whether files found while searching are handled as compressed files. For details about
file extensions whose files are handled as compressed files, see Handling of the extensions of compressed files in
8.4.17 gzip command (compresses files or decompresses compressed files).
Symbolic links to directories are followed to their destination based on the operation type and the specified options.
For details about behavior when a symbolic link to a directory is specified, see Handling of link files in 8.4.17 
gzip command (compresses files or decompresses compressed files).

-ooutput-path-name

--output=output-path-name

[For decompression operations]
Creates the files to be decompressed based on the specified path name. In addition, in a decompression operation,
the compressed file is deleted. If the -N option is specified at the same time as the decompression operation, the
most recent modification date and time stored in the compressed file is used as the most recent modification date
and time for the decompressed file that is to be created. The file name is based on the output-path-name.

This option ends in an error if one of the following is specified at the same time.

• When the -c, -t, -l, or -r option is specified.

• When more than one compressed file is specified.

• When the compressed file is input from the standard input.

Target-path-name
Specify the path name for the compressed file.
For details about when files other than a compressed file are specified in target-path-name, see Handling of the
extensions of compressed files in 8.4.17 gzip command (compresses files or decompresses compressed files).
More than one target-path-name can be specified.
If the target-path-name is not specified, or when - is specified to the target-path-name, enter the compressed data
from the standard input. In a decompression operation, when the compressed data is input from the standard input,
the result of decompressing the compressed data is output to the standard output. Note that in a decompression
operation, an error occurs if the standard input is linked to the terminal.
The file types that can be specified for the target-path-name are as follows:

• In a decompression operation, only regular files can be specified. In addition, whether link files can be specified
depends on the specified options. For details about behavior when link files are specified, see Handling of link
files in 8.4.17 gzip command (compresses files or decompresses compressed files).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 756

• In display operations and verification operations, regular files and link files can be specified.

• A directory can be specified for the -r option. Whether a symbolic link to a directory can be specified depends
on the operation type and the specified options. For details about behavior when a symbolic link to a directory
is specified, see Handling of link files in 8.4.17 gzip command (compresses files or decompresses compressed
files).

An error occurs if the specified target-path-name is a file type other than the file types that can be operated.

Other specifications

-a

--ascii
[Only for UNIX]

This option is for compatibility with the gunzip command provided by the OS.
This option is not valid even if specified. However, the message (gunzip: Option -a is ignored on
this system) is output to the standard error output.

-f

--force
Permits the following operations:
[For decompression operations]

• Follows the link destination in a link file. For details about link files, see Handling of link files in 8.4.17 gzip
command (compresses files or decompresses compressed files).

• If an existing file has the same name as the decompressed file to be created, the system overwrites the file without
prompting the user.

• When the file data to be operated is entered from the standard input, the input begins even if the standard input
is linked to the terminal.

-S suffix

--suffix= suffix
Uses the specified suffix (any character string) as the extension of the compressed file.

[For decompression operations]
The system assumes that a file that has the extension .gz or .tgz, and has a suffix attached, is a compressed
file.

The specifiable length of the suffix ranges from 1 to 30 bytes. Multibyte characters cannot be used for a suffix. For
details about behavior when the suffix is specified, see Handling of the extensions of compressed files in 8.4.17 
gzip command (compresses files or decompresses compressed files).

-q

--quiet
Suppresses message output.
However, the following messages are outside the scope of suppression:

• Error messages for analyzing options

• For decompression operations, messages that confirm whether you want to overwrite an existing file that has
the same name as the decompressed file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 757

[For display operations]
Does not display the following information:

• Header line

• Total information of multiple compressed files

If the -v option is specified after this option, the specification for this option is canceled.

-v

--verbose
Displays the following information:

• For decompression operations and verification operations, the content indicated in Table 8-12 Detailed
information output for compression operations, decompression operations, and verification operations in 8.4.17 
gzip command (compresses files or decompresses compressed files) are output to the standard error output as
the detailed information of the operation result.

• In a display operation, detailed information such as the compression method is also displayed in the compressed
file information. For details about the displayed content, see Displaying compressed file information in 8.4.17 
gzip command (compresses files or decompresses compressed files).

• When files in a directory are searched by specifying the -r option, gunzip: file name: Unknown
suffix: ignored is output to the standard error output, for files other than the compressed file.

If the -q option is specified after this option, the specification for this option is canceled.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
In decompression operations, decompressed files are not created.

2 Error termination
In decompression operations, decompressed files are created. An error
occurred at post-processing. For details about post-processing when an
error occurs, see the output messages.
Note that when an operation is performed on multiple files and errors
for both the return codes 1 and 2 occur, 1 is returned as the return code.

3 Error termination
An invalid option has been specified.

The return code is 1 when the following message is output:

• gunzip: file-name: Unknown suffix: ignored

Notes
For notes shared in common with the gzip command, see 8.4.17 gzip command (compresses files or decompresses
compressed files). The following shows notes specific to the gunzip command:

• This command only supports operations on compressed files that were created by the gzip command provided by
JP1/Advanced Shell. If this command is used to operate a compressed file in gzip format that was created by a
command other than the gzip command provided by JP1/Advanced Shell, decompression, display, or verification
might not be performed correctly.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 758

• In Windows, if the read-only attribute is set for compressed files to be decompressed, a 1,550-millisecond delay
occurs when each of these compressed files is deleted. Therefore, before using wildcards to specify multiple files
or decompressing multiple files in a directory by specifying the -r option, remove any read-only attributes first.

Examples
The following shows an example of a decompression operation that uses the gunzip command. For decompression
operations using the -l, -t, or other options, see the examples in 8.4.17 gzip command (compresses files or
decompresses compressed files).

• Decompress the files.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip file001.txt.gz

C:\TEMP>%ADSH_OSCMD_DIR%ls
file001.txt

• Specify the -k option to decompress the file without deleting the compressed file.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip -k file001.txt.gz

C:\TEMP>ls
file001.txt file001.txt.gz

• Specify the -c option to decompress the file without deleting the compressed file. Also, output the decompression
result to the file003.txt file.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip -c backup_file003.gz >file003.txt

C:\TEMP>ls
backup_file003.gz file003.txt

• Specify the -N option to decompress a file by using the file name before compression.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip -N backup_file003.gz

C:\TEMP>ls
file003.txt

• Specify the -S option to decompress a compressed file that has an extension other than .gz.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip -S ".gzip" file004.txt.gzip

C:\TEMP>ls
file004.txt

• Pass the result of decompressing the compressed archive to the tar command and expand the archive.

C:\TEMP>%ADSH_OSCMD_DIR%gunzip -c DIR002.tar.gz | %ADSH_OSCMD_DIR%tar -xvf -
DIR002
DIR002\DIR003
DIR002\DIR003\file004.txt
DIR002\DIR003\file005.txt
DIR002\file001.txt
DIR002\file002.txt
DIR002\file003.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 759

8.4.17 gzip command (compresses files or decompresses compressed
files)

Syntax

[Only for Windows]

gzip [-1|-2|-3|-4|-5|-6|-7|-8|-9] [-c] [-d] [-f] [-k] [-l] [-N] [-n] [-q]
 [-r] [-t] [-v] [-o output-path-name] [-S suffix] [target-path-name ...]

[Only for UNIX]

gzip [-1|-2|-3|-4|-5|-6|-7|-8|-9] [-a] [-c] [-d] [-f] [-k] [-l] [-N] [-n] [-q]
 [-r] [-t] [-v] [-o output-path-name] [-S suffix] [target-path-name ...]

Description
This command compresses files or decompresses compressed files.

This command enables you to perform the following operations:

Operation type Description

Compress Compresses a file (hereafter, this operation is called a compression operation).
If the -d, -l, and -t options are omitted, a compression operation is performed.
The format of the compressed file is gzip (hereafter, files compressed in gzip
format are called "compressed files").
Compresses the file data by using the DEFLATE compression method# (hereafter,
compressed file data is called "compressed data").
The compressed data is stored in the compressed file that was created by the
compression operation.
In a compression operation, the compressed file is created with the extension .gz
appended to the name of the file to be compressed.
In a compression operation, the file to be compressed is deleted after the
compressed file is created.

Decompress Decompresses a compressed file when the -d option is specified (hereafter, this
operation is called a decompression operation).
Only files compressed in gzip format can be decompressed. The system assumes
files with .gz or .tgz extensions are compressed files. Files that are not
compressed in gzip format or those without .gz or .tgz extensions cannot be
decompressed.
In a decompression operation, the decompressed file is created under a name
whose character string is generated as follows:
• Character string of the compressed file name with its extension .gz removed.
• Character string of the compressed file name with its extension changed

from .tgz to .tar.

In a decompression operation, the compressed file is deleted after the
decompressed file is created.

Display Displays the information about the compressed file when the -l option is specified
(hereafter, this operation is called a display operation). For details about the
displayed information of compressed files, see the description of the -l and -v
options, as well as Displaying the compressed file information.

Verify Specifying the -t option verifies the integrity of the compressed data stored in
the compressed file without decompressing the compressed file (hereafter, this
operation is called a verification operation).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 760

#
Compression method used when the file is compressed in gzip format.

In compression operations and decompression operations, if you do not want to delete the files to be compressed or the
compressed files, perform one of the following operations:

1. Output the compression result and the decompression result to the standard output.
The following operation outputs the compressed or decompressed file data to the standard output without deleting
the files. As required, redirect the output results to files or send them to other programs by using a pipe.

• Specify the -c option.

• Enter the files to be compressed or the compressed file from the standard input.

2. Specify the -k option.
If this command is executed by specifying the -k option, the system behaves as follows:

[For compression operations]
Files to be compressed are not deleted even after the compressed file is created.

[For decompression operations]
Compressed files are not deleted even after the decompressed files are created.

In compression operations and decompression operations, if an existing file has the same name as the compressed file
or decompressed file to be created, the system asks whether to overwrite the file. If the response character from the
standard input begins with y or Y, the system deletes the existing file, and then creates the compressed file or
decompressed file. If the response character does not begin with y or Y, or when the standard input cannot be used,
processing on the target files stops. If you want to permit overwriting of files without prompting, specify the -f option.

Note that directories cannot be compressed in compression operations. If you want to compress files while retaining
their directory configuration, create an archive by using the tar command, and then compress that archived file. In
addition, by using the -z option of the tar command, you can simultaneously create and compress the archive file.
For details about the tar command, see 8.4.34 tar command (stores the target path name in the archive and extracts/
displays the target path name).

Verification of the integrity of the compressed data, which is performed in the verification operation, is also performed
in the decompression operation. Note that for values (information such as the compression method) other than the
compressed data of the compressed file, integrity verification is performed in all operations.

You can use the options of the gzip command without specifying them in the command arguments, by specifying the
options in the environment variable GZIP. For details about the environment variable GZIP, see 2.5 Specifying
environment variables.

Arguments
Specifying operation options

Specify the operation to be executed.

If this command is executed without specifying the following options, the file will be compressed (compression
operation):

-d

--decompress

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 761

--uncompress
Decompresses the compressed file (decompression operation).
If this option is specified at the same time as the -l or -t option, the specification is ignored.

-l

--list
Displays information about the compressed file (display operation).
Displays information such as the file size before compression and the compression ratio.
If the -v option is specified at the same time, detailed information about the compressed file is also displayed.
For details about the displayed content, see Displaying compressed file information.
Note that if the displayed file size before compression is 4 GB or greater, the value might not be displayed correctly.
If you want to display the correct file size, specify the -t option at the same time. However, if the -t option is
specified at the same time, displaying the file size might take some time.

-t

--test
Verifies the integrity of the compressed data stored in the compressed file without decompressing the compressed
file (verification operation).
If this option is specified at the same time as the -l option, both the integrity verification of the compressed data
and the display of information about the compressed file are performed.

Specifying the compression level

-compression-level

--fast

--best
When performing compression, use levels to specify the compression speed and the compression ratio.
Specify the compression level from a range of 1 to 9. The meanings of the values are as follows:

• Compression speed
1 is the fastest, and 9 is the slowest.
As the value gets larger, the compression speed gets slower.

• Compression ratio
1 is the lowest, and 9 is the highest.
As the value gets larger, the compression ratio gets higher.

If this option is not specified, the file is compressed using compression level 6.
The --fast option compresses the file using the same compression level as -1.
The --best option compresses the file using the same compression level as -9.
If you specify this option multiple times, the last option specified is valid.
If this option is specified at the same time as the -d, -l, or -t option, the specification is ignored.

Specifying behavior for saving and recovering file information

Specify behavior for saving and recovering file information.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 762

If the -N and -n options are specified at the same time, only the last specified option is valid. If the -N or -n option is
specified at the same time as the -t option, the specification is ignored.

For details about using the most recent modification date and time in compression operations and decompression
operations, see Handling of the most recent access date and time or the most recent modification date and time for a
file. For details about the handling of file names and the most recent modification date and time in display operations,
see Displaying compressed file information.

-N

--name
[For compression operations]

Stores the file name and the most recent modification date and time of the file to be compressed, in the compressed
file. File names to be stored in the compressed file are extracted from the path name. Note that when a file to be
compressed is entered from the standard input, the execution date and time of the command is stored in the most
recent modification date and time in the compressed file. However, the file name is not stored in the compressed
file.

[For decompression operations]
Names the file created at decompression using the file name stored in the compressed file. In addition, sets the
most recent modification date and time stored in the compressed file, for the created file. If the file name and
the most recent modification date and time are not stored in the compressed file, the system behaves the same
as when the -n option is specified.

[For display operations]
In the displayed compressed file information, displays the file name and the most recent modification date and
time stored in the compressed file.

In compression operations, this option is the default behavior.

-n

--no-name
[For compression operations]

Does not store the file name or the most recent modification date and time of the file to be compressed, in the
compressed file.

[For decompression operations]
Names the file created at decompression using the file name from the compressed file, with the compressed file
extension removed. In addition, sets the most recent modification date and time of the compressed file to the
created file.

[For display operations]
In the displayed compressed file information, displays the file name as the compressed file name with its
extension removed, and the most recent modification date and time of the compressed file.

For decompression operations and display operations, this option is the default behavior.

Specifying input and output

-c

--stdout

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 763

--to-stdout
[For compression operations]

Outputs compressed file data to the standard output.
An error occurs if the standard output is linked with the terminal when the command is executed.
If multiple files are compressed by specifying this option, compression and output to the standard output is
repeated for each file. This behavior is the same as when multiple compressed files are concatenated by using
commands such as the cat command (to create a single compressed file). For notes on compressed files created
by this operation, see Notes.

[For decompression operations]
Outputs the result of decompressing the compressed data to the standard output.

If this option is specified at the same time as the -l or -t option, the specification is ignored.

-k

--keep
[For compression operations]

The original files to be compressed are not deleted even after the compressed file is created.

[For decompression operations]
The compressed file is not deleted even after the decompressed file is created.

If this option is specified at the same time as the -l, -t, or -c option, the specification is ignored.

-r

--recursive
If the path specified in the target-path-name is a directory, searches recursively for files in the directory and its
subdirectories.

[For compression operations]
Searches for files in the directory and its subdirectories that are not compressed.

[For decompression operations, display operations, and verification operations]
Searches for compressed files in the directory and its subdirectories.

In Windows, when the -r option is specified, directory delimiters at the end of the path name are ignored, even
when you specify a symbolic link to a directory.
The file extension determines whether files found while searching are handled as compressed files. For details about
the file extensions of files that are handled as compressed files, see Handling of the extensions of compressed files.
Symbolic links to directories are followed to their destination based on the operation type and the specified options.
For details about behavior when a symbolic link to a directory is specified, see Handling of link files.

-ooutput-path-name

--output=output-path-name

[For compression operations]
Creates a compressed file based on the specified path name.
In addition, in compression operations, the files to be compressed are deleted.

[For decompression operations]
Creates the files to be decompressed based on the specified path name. In addition, in a decompression operation,
the compressed file is deleted. If the -N option is specified at the same time as the decompression operation, the

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 764

most recent modification date and time stored in the compressed file is used. The file name is based on the
output-path-name.

This option ends in an error if one of the following is specified at the same time.

• When the -c, -t, -l, or -r option is specified.

• When more than one file to be compressed or compressed file is specified.

• Enter the files to be compressed, or the compressed file, from the standard input.

Target-path-name

[For compression operations]
Specify the path name for the file to be compressed.

[For decompression operations, display operations, and verification operations]
Specify the path name for the compressed file.

For details about specifying compressed files in compression operations, or specifying files other than compressed
files in decompression operations, display operations, and verification operations, see Handling of the extensions
of compressed files.
More than one target-path-name can be specified.
If the target-path-name is not specified, or when - is specified for the target-path-name, enter the file data to be
compressed or the compressed data from the standard input. For compression operations and decompression
operations, when the file data to be compressed or the compressed data is input from the standard input, the
compressed file data or the result of decompressing the compressed data is output to the standard output. Note that
in a compression operation, an error occurs if the standard output is linked to the terminal. In a decompression
operation, an error occurs if the standard input is linked to the terminal.
The file types that can be specified for the target-path-name are as follows:

• For compression operations and decompression operations, only regular files can be specified. In addition,
whether link files can be specified depends on the specified options. For details about behavior when link files
are specified, see Handling of link files.

• For display operations and verification operations, regular files and link files can be specified.

• A directory can be specified for the -r option. Whether a symbolic link to a directory can be specified depends
on the operation type and the specified options. For details about behavior when a symbolic link to a directory
is specified, see Handling of link files.

An error occurs if the specified target-path-name is a file type other than the file types that can be operated.

Other specifications

-a

--ascii
[Only for UNIX]

This option is for compatibility with the gzip command provided by the OS.
This option is not valid even if specified. However, the message gzip: Option -a is ignored on
this system is output to the standard error output.

-f

--force
Permits the following operations:
[For compression operations]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 765

• Follows the link destination in a link file. For details about link files, see Handling of link files.

• If an existing file has the same name as the compressed file to be created, the system overwrites the file without
prompting the user.

• When the -c option is specified or when the file data to be compressed is entered from the standard input, output
of the compressed file data begins even if the standard output is linked to the terminal.

[For decompression operations]

• Follows the link destination in a link file. For details about link files, see Handling of link files.

• If an existing file has the same name as the decompressed file to be created, the system overwrites the file without
prompting the user.

• When the file data to be operated is entered from the standard input, the input begins even if the standard input
is linked to the terminal.

-S suffix

--suffix= suffix
Uses the specified suffix (any character string) as the extension of the compressed file.

[For compression operations]
Creates a compressed file using a specified suffix instead of an extension .gz.

[For decompression operations]
The system assumes that a file that has the extension .gz or .tgz, and has a suffix attached, is a compressed
file.

The specifiable length of the suffix ranges from 1 to 30 bytes. Multibyte characters cannot be used for a suffix. For
details about behavior when a suffix is specified, see Handling of the extensions of compressed files.

-q

--quiet
Suppresses message output.
However, the following messages are outside the scope of suppression:

• Error messages for analyzing options

• For compression operations, messages that confirm whether you want to overwrite an existing file that has the
same name as the compressed file

• For decompression operations, messages that confirm whether you want to overwrite an existing file that has
the same name as the decompressed file.

[For display operations]
Does not display the following information:

• Header line

• Total information of multiple compressed files

If the -v option is specified after this option, the specification for this option is canceled.

-v

--verbose
Displays the following information:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 766

• For compression operations, decompression operations, and verification operations, the content indicated in
Table 8-12 Detailed information output for compression operations, decompression operations, and verification
operations are output to the standard error output as the detailed information of the operation result.

• In a display operation, detailed information such as the compression method is also displayed in the compressed
file information. For details about the content to be displayed, see Displaying compressed file information.

• When files in a directory are searched with the -r option specified, the following message is output to the
standard error output, for files that are outside the scope of the operation.
[For compression operations]
For compressed files: gzip: file-name already has suffix suffix -- unchanged is
output.
[For decompression operations, display operations, and verification operations]
For files other than compressed files: gzip: file-name: Unknown suffix: ignored is output.

If the -q option is specified after this option, the specification for this option is canceled.

Table 8-12: Detailed information output for compression operations, decompression operations,
and verification operations

Operation type Content# and description of the detailed information (top line:
content, bottom line: description)

Compress [name-of-the-file-to-be-compressed:]compression-ratio%[-- replaced
with compressed-file-name]

Outputs the name of the file to be compressed, the compression ratio, and the
name of the compressed file.
When the -c option is specified, the compressed file name is not output.
When entered from the standard input, the name of the file to be compressed
and the compressed file name are not output.

Decompress compressed-file-name: compression-ratio%[-- replaced with file-
name-after-decompression]

Outputs the name of the compressed file, the compression ratio, and the name
of the file after decompression.
When the -c option is specified, the name of the file after decompression is
not output.
When entered from the standard input, no detailed information is output.

Verify [compressed-file-name:] OK

Outputs OK, which indicates that there are no problems in integrity between
the name of the compressed file and the compressed file data.
When entered from the standard input, the name of the compressed file is not
output.

#

• Displays name-of-the-file-to-be-compressed: in name-of-the-file-to-be-compressed:tab-character.

• Displays compressed-file-name: in compressed-file-name:tab-character.

Return codes
Return code Meaning

0 Normal termination.

1 Termination with an error.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 767

Return code Meaning

1 The results of compression operations and decompression operations are
as follows:

[For compression operations]
The compressed files are not created.

[For decompression operations]
The decompressed files are not created.

2 Termination with an error.
The results of compression operations and decompression operations are
as follows:

[For compression operations]
The compressed files are created. An error occurred at post-
processing. For details about post-processing when an error occurs,
see the output messages.

[For decompression operations]
The decompressed files are created. An error occurred at post-
processing. For details about post-processing when an error occurs,
see the output messages.

Note that when an operation is performed on multiple files and errors
for both the return codes 1 and 2 occur, 1 is returned as the return code.

3 An invalid option has been specified.

The return code is 1 when the following message is output:

• gzip: file-name already has suffix suffix -- unchanged

• gzip: file-name: Unknown suffix: ignored

Handling of the most recent access date and time or the most recent modification
date and time for a file
In compression operations and decompression operations, the most recent access date and time or the most recent
modification date and time for a file is used as follows:

• For compression operations
In compression operations, usually the most recent access date and time and the most recent modification date and
time of the file to be compressed are inherited by the compressed file. In addition, the most recent modification date
and time of the file to be compressed is stored in the compressed file.
Depending on the input source and option settings of the file to be compressed, the most recent access date and time
and the most recent modification date and time for the file are handled as follows:

Table 8-13: Handling of the most recent access date and time or the most recent modification
date and time in compression operations

Input source of the
file to be
compressed

Output destination
of the compression
result

Option#1 Compression result

The most recent
access date and time
or the most recent
modification date
and time of the
compressed file

The most recent
modification date
and time stored in
the compressed
file#2

File Compressed file -N The most recent access
date and time or the most

The most recent
modification date and

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 768

Input source of the
file to be
compressed

Output destination
of the compression
result

Option#1 Compression result

The most recent
access date and time
or the most recent
modification date
and time of the
compressed file

The most recent
modification date
and time stored in
the compressed
file#2

File Compressed file -N recent modification date
and time of the file to be
compressed

time of the file to be
compressed

-n The most recent access
date and time or the most
recent modification date
and time of the file to be
compressed

The most recent
modification date and
time are not stored in the
compressed file

Standard output
(When the -c option is
specified.)

-N Not inherited#3 The most recent
modification date and
time of the file to be
compressed#2

-n Not inherited#3 The most recent
modification date and
time are not stored in the
compressed file#2

Standard input Standard output -N Not inherited#3 Date and time of
command execution#2

-n Not inherited#3 The most recent
modification date and
time are not stored in the
compressed file#2

#1
If neither the -N nor -n option is not specified, the -N option is assumed.

#2
When the output destination of the compression result is standard output, indicates the most recent modification
date and time within the compressed file data output to the standard output.

#3
Handling of the most recent access date and time and the most recent modification date and time follows the
specification (redirect or pipe) of the output destination of the compression result.

Note that if you fail to set the most recent access date and time and the most recent modification date and time for
the file, an error occurs, but the compressed file is created and the files to be compressed are deleted.

• For decompression operations
In decompression operations, usually the most recent access date and time and the most recent modification date
and time of the compressed file are inherited by the decompressed file.
Depending on the option settings and whether the most recent modification date and time is stored in the compressed
file, handling of the most recent modification date and time for the file works as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 769

Table 8-14: Handling of the most recent access date and time or the most recent modification
date and time in decompression operations

Option# Storage of the most recent
modification date and time
in the compressed file

Decompression result

The most recent access
date and time set for the
decompressed file

The most recent
modification date and time
set for the decompressed
file

-N Stored The most recent access date and
time of the compressed file

The most recent modification
date and time stored in the
compressed file

Not stored The most recent access date and
time of the compressed file

The most recent modification
date and time of the compressed
file

-n Stored The most recent access date and
time of the compressed file

The most recent modification
date and time of the compressed
file

Not stored The most recent access date and
time of the compressed file

The most recent modification
date and time of the compressed
file

#
If neither the -N nor -n option is specified, the -n option is assumed.

In decompression operations such as those below, the most recent modification date and time stored in the
compressed file are not used.

• When the compressed file is entered from the standard input and the decompression result is output to the standard
output.

• When the decompression result is output to the standard output by specifying the -c option.

Handling of the most recent access date and time and the most recent modification date and time in this
decompression operation follows the specification (redirect or pipe) of the output destination of the decompression
result.
Note that if you fail to set the most recent access date and time and the most recent modification date and time for
the file, an error occurs, but the decompressed file is created and the compressed file is deleted.

Handling of user IDs, group IDs, and permissions in compression and decompression
operations
In UNIX, user IDs, group IDs, and permissions of files are handled as follows:

[For compression operations]
User IDs, group IDs, and permissions of files to be compressed are inherited by the compressed files.

[For decompression operations]
User IDs, group IDs, and permissions of compressed file are inherited by the decompressed files.

In addition, user IDs, group IDs, and permissions are handled as follows:

• Sticky bits, setuid bits, and setgid bits are not inherited.

• An error does not occur even if inheriting of user IDs and group IDs fails. If inheriting fails, the user ID and group
ID of the user executing the command is set.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 770

• An error occurs when inheriting of the permission fails. However, compressed files or decompressed files are created.
In addition, the files to be compressed or the compressed files are deleted.

• When the file is entered from the standard input, or when the result of compression or decompression is output to
the standard output by specifying the -c option, the user ID, group ID, and permissions are not inherited. Handling
of user IDs, group IDs, and permissions follows the specification (redirect or pipe) of the output destination of the
standard output.

In Windows, the file owner, ACL, and file attributes are not inherited.

Handling of the extensions of compressed files
This section explains the handling of the extensions of compressed files. Note that to enter the files to be compressed
or the compressed files from the standard input, there is no need to be aware of the file extension.

1. Handling of files that are compressed by using compression operations
In a compression operation, when an extension .gz or .tgz, or the suffix specified in the -S option is attached to
the name of the file to be compressed, the file is assumed to have been compressed, and compression is not performed.
In addition, for files that are already compressed, the message gzip: file-name already has suffix
suffix -- unchanged is output.
If the -r option is specified, compression is not performed on already-compressed files found in the directory.
Furthermore, the message gzip: file-name already has suffix suffix -- unchanged is not
output. Note that the message is output when the -v option is specified.
When the -c option is specified, compressed files are also compressed.

2. Extensions of compressed files that are targets for decompression, display, or verification
In decompression operations, verification operations, and display operations, extensions for compressed files are
handled as follows:

• When specifying compressed file names in the arguments
[For decompression operations]
When the extension .gz or .tgz, or the suffix specified in the -S option is attached to the compressed file
name, the file is assumed to be a compressed file and decompression is performed. For other files, decompression
is not performed. In addition, for the specified file, the message gzip: file-name: Unknown suffix:
ignored is output.
[For display operations and verification operations]
The operation is performed even when the extension .gz or .tgz, or the suffix specified in the -S option is
not attached to the compressed file name.

• When searching the directory by specifying the -r option
The operation is performed on files that exist in the directory and have the extension .gz or .tgz, or the suffix
specified in the -S option. The operation is not performed on files that do not have the extension .gz or .tgz,
or the suffix specified in the -S option. Furthermore, the message gzip: file-name: Unknown
suffix: ignored is not output. Note that the message is output when the -v option is specified.
In the decompression operations, note that when the -c option is specified, decompression is attempted even
when the file name does not have the extension .gz or .tgz, or the suffix specified in the -S option.

3. Handling of character types for extensions
Checking of the extensions of compressed files is not case-sensitive for the extensions .gz and .tgz, and the suffix
specified in the -S option. For example, a file is assumed to be compressed even if its file name is file.GZ.

4. Supplement of the extensions of compressed file names

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 771

In decompression operations, display operations, and verification operations, the compressed file names can be
specified in the arguments in the following ways:

• When the extension of the compressed file is .gz, the description for .gz can be omitted.

• When the compressed file name ends with the suffix specified in the -S option, the description for the suffix
can be omitted.

The .gz extension and the suffix specified in the -S option can be supplemented by the command.
However, for compressed files with the extension .tgz, the description for .tgz cannot be omitted.
The following shows an example of supplementing the extension .gz to the compressed file specified in the
arguments:

$ ls
file1.txt.gz
$ gzip -d file1.txt
$ ls
file1.txt

Note that when more than one file is stored in the directory that is being operated, the system works as follows:

• When the only difference between two compressed files is the .gz extension and the suffix specified in the -S
option, the compressed file that has the suffix specified in the -S option becomes the target of the operation.

• When one of the files has the extension .gz or the suffix specified in the -S option and the other file does not, the
latter file becomes the target of the operation.

When an extension is supplemented, handling of the extension .gz and the uppercase or lowercase characters specified
in the suffix for the -S option depends on the OS.

[In UNIX]
Supplementation is case-sensitive.

• The extension .gz
Supplementation can be performed on compressed files that have the lowercase extension .gz.
Supplementation cannot be performed on compressed files that have the extension .GZ, .gZ, or .Gz.

• The suffix specified in the -S option
Supplementation can be performed on compressed files that have the suffix specified in the -S option.
Supplementation cannot be performed on compressed files whose suffix has a different configuration of
uppercase and lowercase letters from the specified suffix.

[In Windows]
Supplementation is not case-sensitive.

• The extension .gz
Supplementation can be performed on compressed files that have the lowercase extension .gz, or any of the
extensions .GZ, .gZ, and .Gz.

• The suffix specified in the -S option
Supplementation can be performed on compressed files that have the suffix specified in the -S option.
Supplementation can also be performed on compressed files whose suffix has a different configuration of
uppercase and lowercase letters from the specified suffix.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 772

Displaying compressed file information
When the information of a compressed file is displayed, first the item name is displayed in the header line, and then the
compressed file information is displayed in the next line. Display of the header line can be suppressed by using the -q
option.

1. Items to be displayed
Displays the following items (rows): Items method, crc, date, and time are displayed when the -v option is
specified.

Table 8-15: Items (rows) displayed for compressed file information

Item name Content

method Indicates the compression method. Displays the following values:
defla: The compressed data is compressed by using the DEFLATE
compression method.

crc Indicates the value of the cyclical redundancy check (CRC) of the file
data before compression. The value is displayed in 8-digit
hexadecimal numbers.
The integrity of the compressed file data is verified by using this value.
When a file of size 0 is compressed, 00000000 is displayed.
When a compressed file is entered from the standard input,
ffffffff is displayed#1.

date Indicates the month and day of the most recent modification date and
time of the file. This month and day is to be set for the file after
decompression. The year is not displayed.
The content to be displayed differs depending on the input source and
the specified options of the compressed file.
For details, see Table 8-16 Date and time display.

time Indicates the hour and minute of the most recent modification date
and time of the file. This hour and minute is to be set for the file after
decompression. Seconds are not displayed.
The content to be displayed differs depending on the input source and
the specified options of the compressed file.
For details, see Table 8-16 Date and time display.

compressed Indicates the size of the compressed file.
When a compressed file is entered from the standard input, -1 is
displayed#1.

uncompressed Indicates the file size before compression.
When a compressed file is entered from the standard input, -1 is
displayed#1.
When the file size before compression is 4 GB or greater, the value
might not be displayed correctly#2.

ratio Indicates the compression ratio (%). Displays the value up to the first
decimal place.
The compression ratio is calculated based on the file size before
compression and the length of the compressed data in the compressed
file. Note that the length of the compressed data is different from the
size of the compressed file.
When -1 is displayed in the compressed or uncompressed
items, 0.0% is displayed.
When compressing a small file or a file whose compression effect is
small, the compression ratio might be negative.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 773

Item name Content

uncompressed_name Indicates the name of the file after decompression. When the
compressed file name is specified from the directory path name, a path
name consisting of the directory part of the path name and the file
name after decompression is displayed. When the compressed file is
entered from the standard input, stdout is displayed.
The content to be displayed differs depending on the input source and
the specified options of the compressed file.
For details, see Table 8-17 Display of the uncompressed_name item.

#1
If you specify the -t option, you can display the same content as if you had entered from the compressed file,
even when entering from the standard input. However, depending on the size of the compressed file, it might
take some time to display the information.

#2
To display files that are 4 GB or greater, use the -t option. However, it might take some time to display the
information.

Table 8-16: Date and time display

Input source of the
compressed file

Storage of the most recent
modification date and time
in the compressed file#1

Options to be specified#2 Month, day, hour, and
minute of the most recent
modification date and time
to be displayed

File Stored -N The most recent modification
date and time stored in the
compressed file (the most recent
modification date and time of the
files before compression)

-n The most recent modification
date and time of the compressed
file itself

Not stored -N The most recent modification
date and time of the compressed
file itself

-n The most recent modification
date and time of the compressed
file itself

Standard input Stored -N The most recent modification
date and time stored in the
compressed file (the most recent
modification date and time of the
files before compression)

-n Date and time of command
execution

Not stored -N Date and time of command
execution

-n Date and time of command
execution

#1
Whether the most recent modification date and time will be stored in the compressed file is determined by the
input method or the option specifications of the file to be compressed by the compression operation. For details

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 774

about using the most recent modification date and time in compression operations, see Handling of the most
recent access date and time or the most recent modification date and time for a file.

#2
If neither the -N nor -n option is specified, the -n option is assumed.

Table 8-17: Display of the uncompressed_name item

Input source of the
compressed file

Storage of the file name in the
compressed file#1

Options to be specified#2 File name after
decompression

File Stored -N The name of the file stored in the
compressed file (name of the
files before compression)

-n The name of the file generated
from the compressed file name
(such as by removing the
extension of the compressed
file)

Not stored -N The name of the file generated
from the compressed file name
(such as by removing the
extension of the compressed
file)

-n The name of the file generated
from the compressed file name
(such as by removing the
extension of the compressed
file)

Standard input Stored -N The name of the file stored in the
compressed file (name of the
files before compression)

-n stdout

Not stored -N stdout

-n stdout

#1
Whether the file name will be stored in the compressed file is determined by the input method or the specification
of the -N or -n option for the file that is to be compressed by the compression operation. For details about the
file name to be stored in the compressed file, see the description of the arguments for the -N and -n options.

#2
If neither the -N nor -n option is specified, the -n option is assumed.

2. Displaying the total information of multiple compressed files
When specifying multiple compressed files in an argument or when targeting all compressed files in a directory by
using the -r option, the compressed file information for each file is displayed first, and then the total information
of multiple compressed files is displayed in the last line. The displayed content is shown in Table 8-18 Display of
the total information of multiple compressed files.
Displaying this information can be suppressed by using the -q option. In addition, when input from the standard
input is included (where -1 is displayed in compressed or uncompressed) in the files to be displayed, this
information is not displayed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 775

Table 8-18: Display of the total information of multiple compressed files

Item name Content

compressed Indicates the total size of the compressed files.

uncompressed Indicates the total file size before compression.

ratio Indicates the compression ratio calculated based on the total compressed
file size and the total length of the compressed file data.

uncompressed_name (totals)

Handling of link files
This command uses link files (symbolic links or hard links) as follows:

[For compression operations and decompression operations]
In compression operations and decompression operations, link files for files to be compressed or for compressed
files cannot be operated. However, you can operate link files by specifying the -f option. The behavior when link
files are operated while the -f option is specified is as follows:

Operation type Behavior when link files are operated

Compress • Compresses the file data of the link destination.
• When generating the compressed file name from a file name, generates

from the link file name.
• Stores the link file name as the file name to be stored in the compressed

file.
• Deletes the link files after compression.

Decompress • Decompresses the compressed data of the file in the link destination.
• When generating the decompressed file name from a file name, uses

the link file name.
• Deletes the link files after decompression.

Furthermore, specify the -k option if you do not want to delete the link file after compression or decompression.
You can operate link files by specifying the -c option.
Symbolic links to a directory can be used to search within a directory by specifying the -r option. However, the -
f option must be specified at the same time as the -r option. When the -f option is specified, the destinations of
symbolic links to a directory are followed. In addition, when a directory is searched recursively, the destinations of
symbolic links to encountered directories are followed. Note that when the -c option is specified, the destinations
of symbolic links to directories are followed.

[For display operations and verification operations]
Link files can be used in display operations and verification operations. When a link file is specified for the
compressed file, the link destination is followed and the compressed file at the link destination is referenced for
display or verification. However, when a file name after decompression is displayed in a display operation, the name
generated from the link file name is displayed instead of the compressed file name at the link destination.
When a search is performed within a directory by specifying the -r option, symbolic links to directories are followed
to their destination. In addition, when a directory is searched recursively, the destinations of symbolic links to
encountered directories are followed.

Notes
• This command supports operation only on compressed files that were created by the command itself. The following

operations might not be performed correctly:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 776

• Operations on compressed files in gzip format that were created by other programs (such as the gzip command
provided by the OS) by using the gzip command provided by JP1/Advanced Shell.

• Operations on compressed files created by using the gzip command provided by JP1/Advanced Shell by using
a program that can operate compressed files in gzip format (such as the gzip command provided by the OS).

• When you compress a small file or a file whose compression effect is small, the file might sometimes be larger after
compression than before compression.

• When you perform a decompression operation or display operation by specifying the -N option, if any of the
conditions below apply to the file name stored in the compressed file, and when the OS or encoding is different from
that used at compression, decompression or display might not be performed correctly.

• When the file name contains encoding-dependent characters such as multibyte characters.

• When the file name contains characters that can only be used in certain OSs (e.g. using the character \ in a file
name in UNIX).

• When the path name, or file name, of the file to be compressed is longer than the following value, creation of the
compressed file fails. In such cases, use the -o or -c option to create the compressed file.

• maximum-path-length-defined-by-OS -length-of-compressed-file-extension

• maximum-file-name-length-defined-by-OS -length-of-compressed-file-extension

• When any of the following conditions is met, and when a decompression operation is performed by specifying the
-N option, the creation of files after decompression fails:

• The name of the file stored in the compressed file exceeds the maximum file name length defined by the OS.

• The path name that was generated based on the name of the file stored in the compressed file exceeds the
maximum path length defined by the OS.

• The range of dates and times that can be stored as the most recent modification date and time in the compressed file
is from 00:00:01 on January 1, 1970 UTC to 03:14:07 on January 19, 2038 UTC. The date and time is not stored if
it is outside this range.

• When command execution is canceled during a compression operation, a partially compressed file might remain.

• When command execution is canceled during a decompression operation, a partially decompressed file might
remain.

• If you do not have the delete permission for the files to be compressed, deletion of the files to be compressed by the
compression operation will fail. The compressed files are created, even if deletion of the files to be compressed fails.

• If you do not have the delete permission for the compressed file, deletion of the compressed file by the decompression
operation will fail. The decompressed files are created, even if deletion of the compressed file fails.

• When a compressed file, or files after decompression, are created by overwriting existing files, the existing files are
deleted first. Therefore, if an error occurs during processing, the existing files might already have been deleted.

• If the file to be operated and the output file are substantially the same (they have the same symbolic link destination
or the hard link destination), an error occurs.

• For compressed files created from multiple files by using the -c option, or compressed files created by linking
multiple compressed files by using the cat command, the decompression operation or display operation is
performed as follows:

• One decompressed file is created by outputting the data of multiple files. Decompressed files corresponding to
each file before compression are not created.

• When a file is decompressed by specifying the -N option, the file name of the created decompressed file is taken
from the information of the file that was first specified at the time the compressed file was created.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 777

• In a display operation, the size of the file that was last specified at the time the compressed file was created, is
displayed as the file size before compression. In addition, the compression ratio is calculated based on the value
derived above. Note that when the -t option is specified, the total size of all files is displayed.

• In Windows, when a short name is specified as the name of the file to be compressed or as the name of the compressed
file, the created compressed file or decompressed file also has a short name.

• In Windows, the file names are not case-sensitive. Therefore, the behavior is as follows:

• File names with the same spelling as the compressed file or decompressed file but are capitalized differently are
assumed to be the same file. For example, if there is a file whose name has the same spelling as the compressed
file or the decompressed file to be created, and only the capitalization is different, the command assumes that
the same file already exists.

• When the name of the file to be compressed or the compressed file is specified in the arguments using different
capitalization, the created compressed file or decompressed file takes the file name specified in the argument.

• In Windows, when the file to be operated or an existing file to be overwritten is used by different program, deletion
of that file might fail.

• In Windows, if the read-only attribute is set for files to be compressed or to be decompressed, a 1,550-millisecond
delay occurs when each of these files is deleted. When specifying multiple files by using a wildcard, or when
compressing or decompressing multiple files in a directory by specifying the -r option, remove the read-only
attributes first.

Examples
• Compress the files.

C:\TEMP>%ADSH_OSCMD_DIR%gzip file001.txt

C:\TEMP>%ADSH_OSCMD_DIR%ls
file001.txt.gz

• Specify the -k option to compress a file without deleting it.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -k file001.txt

C:\TEMP>%ADSH_OSCMD_DIR%ls
file001.txt file001.txt.gz

• Specify the -o option to create a compressed file with a different name from that generated by the command.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -o save_file002.gz file002.txt

C:\TEMP>ls
save_file002.gz

• Specify the -c option to compress a file without deleting it.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -c file003.txt > backup_file003.gz

C:\TEMP>ls
backup_file003.gz file003.txt

• Specify the -S option to create a compressed file that has an extension other than .gz.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -S ".gzip" file004.txt

C:\TEMP>ls
file004.txt.gzip

• Specify the -r option to compress a file in a directory.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 778

C:\TEMP>%ADSH_OSCMD_DIR%gzip -r DIR002

C:\TEMP>ls -R DIR002
DIR003 file001.txt.gz file002.txt.gz file003.txt.gz

DIR002\DIR003:
file004.txt.gz file005.txt.gz

• Specify the -v option to output the compression ratio and the compressed file name at compression.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -v file005.txt
file005.txt: 26.5% -- replaced with file005.txt.gz

Note that the compression ratio and the compressed file name are output to the standard error output.

• Decompress the compressed file.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d file001.txt.gz

C:\TEMP>%ADSH_OSCMD_DIR%ls
file001.txt

• Specify the -o option to create a decompressed file with a different name from that generated by the command.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -o FILE002.txt save_file002.gz

C:\TEMP>ls
FILE002.txt

• Specify the -c option to decompress the file without deleting the compressed file.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -c backup_file003.gz >file003.txt

C:\TEMP>ls
backup_file003.gz file003.txt

• Specify the -N option to decompress a file by using the file name before compression.

C:\DIR001>%ADSH_OSCMD_DIR%gzip -d -N backup_file003.gz

C:\DIR001>ls
file003.txt

• Specify the -S option to decompress a compressed file that has an extension other than .gz.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -S ".gzip" file004.txt.gzip

C:\TEMP>ls
file004.txt

• Specify the -r option to decompress a compressed file in a directory.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -r DIR002

C:\TEMP>ls -R DIR002
DIR003 file001.txt file002.txt file003.txt

DIR002\DIR003:
file004.txt file005.txt

• Specify the -v option to output the decompression ratio and the decompressed file name at decompression.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 779

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -v file005.txt.gz
file005.txt.gz: 26.5% -- replaced with file005.txt

Note that the decompression ratio and the decompressed file name are output to the standard error output.

• Displays information about the compressed file.

C:\TEMP>gzip -l file001.txt.gz
 compressed uncompressed ratio uncompressed_name
 25025357 34040107 26.5% file001.txt

• Specify the -v option to display detailed information about a compressed file.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -l -v file001.txt.gz
method crc date time compressed uncompressed ratio
uncompressed_name
defla fe65cbfa Dec 23 16:52 25025357 34040107 26.5%
file001.txt

• Displays information about multiple compressed files.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -l -v file001.txt.gz file002.txt.gz
file003.txt.gz file004.txt.gz file005.txt.gz
method crc date time compressed uncompressed ratio
uncompressed_name
defla 5d262330 Dec 23 17:12 16142040 17838735 9.5%
file001.txt
defla 0e523a79 Dec 23 17:12 18824484 20542848 8.4%
file002.txt
defla 1cb8a527 Dec 23 17:12 12476069 17673807 29.4%
file003.txt
defla b167ed5d Dec 23 17:12 19489411 22390086 13.0%
file004.txt
defla 9b4d3435 Dec 23 17:12 19631128 22513931 12.8%
file005.txt
 86563132 100959407 14.3%
(totals)

• Verifies the integrity of a compressed file. In addition, specify the -v option to output the verified result.

C:\TEMP>gzip -t -v file001.txt.gz
file001.txt.gz: OK

Note that the verified result is output to the standard error output.

• Compress the archive result of the tar command.

C:\TEMP>%ADSH_OSCMD_DIR%tar -cvf - DIR002 | %ADSH_OSCMD_DIR%gzip > DIR002.tar.gz
DIR002
DIR002/DIR003
DIR002/DIR003/file004.txt
DIR002/DIR003/file005.txt
DIR002/file001.txt
DIR002/file002.txt
DIR002/file003.txt

• Pass the result of decompressing the compressed archive to the tar command and expand the archive.

C:\TEMP>%ADSH_OSCMD_DIR%gzip -d -c DIR002.tar.gz | %ADSH_OSCMD_DIR%tar -xvf -
DIR002
DIR002\DIR003
DIR002\DIR003\file004.txt
DIR002\DIR003\file005.txt
DIR002\file001.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 780

DIR002\file002.txt
DIR002\file003.txt

8.4.18 head command (displays the first part of files)

Syntax

head [-num-lines|-n num-lines] [path-name ...]

Description
This command displays the first few lines from one or more files. The specified number of lines from the beginning of
the file are output to the standard output. If no file is specified, the standard input is read. If no value is specified for the
number of lines to be output, 10 lines is assumed.

Arguments

-num-lines | -n num-lines ~<decimal>((1 to 2147483647))
Specifies the number of lines from the beginning of the input file that are to be sent to the standard output. If you
specify a value that is less than or equal to 0 or that is greater than 2147483647, an error message (head: line
count too small: specified-value or head: line count too large: specified-value) is output.

path-name
Specifies the path name of an input file.

• The default is the standard input.

• Multiple files can be specified. If you specify more than one file, each file is identified at the beginning of the
output from that file by a blank line (linefeed) and its file name in a header string in the following format:
==> file-name <==

• When you execute the command with multiple files specified, all the files are processed. If any file fails to open,
the command terminates with a return code of 1.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Examples
The following shows the format of the files used in the examples below to illustrate the results of executing the head
command.

• test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 781

0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt

• test2.txt
0001:test2.txt
0002:test2.txt
0003:test2.txt
0004:test2.txt
0005:test2.txt
0006:test2.txt
0007:test2.txt
0008:test2.txt
0009:test2.txt
0010:test2.txt

The examples below illustrate the results of executing the command on the files shown above.

• Display the first two lines of the files test1.txt and test2.txt.

$ head -2 test1.txt test2.txt
==> test1.txt <==
0001:test1.txt
0002:test1.txt

==> test2.txt <==
0001:test2.txt
0002:test2.txt
$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\head -d
head: illegal option -- d
usage: head [-count | -n count] [file ...]

8.4.19 hostname command (displays the host name)

Syntax

hostname

Description
This command displays the current host's host name.

Return codes
Return code Meaning

0 Normal termination

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 782

Return code Meaning

1 or greater Error termination

Notes
• This command takes no arguments. Any arguments that are specified are ignored during execution of the command.

Example
• Display the name of the current host system.

C:\TEMP>%ADSH_OSCMD_DIR%\hostname
HOST01

8.4.20 ln command (creates a link file for a file or directory)

Syntax

Syntax 1

ln [-f] [-i] [-L] [-n] [-P] [-s] [-T] [-v] [--follow={yes | no}]
 [--no-exist-directory] [--no-exist-file] link-destination-path-name ...
[target]

Syntax 2

ln [-f] [-i] [-L] [-n] [-P] [-s] [-v] [--follow={yes | no}]
 [--no-exist-directory] [--no-exist-file] -t target-directory-name link-
destination-path-name ...

Description
This command creates a link file for a file or directory. This command creates a hard link or symbolic link according
to the specification of the -s option.

If you create a symbolic link with the ln command, the operation must be executed as a user having the administrative
role for creating symbolic links. A user who has the administrative role for creating symbolic links cannot create a
symbolic link. In addition, a user who does not have the administrative role for creating symbolic links cannot create a
symbolic link in an environment where user account control (UAC) is enabled. When creating a symbolic link in an
environment where UAC is enabled, the administrator privilege needs to be granted to assign to the user the
administrative role for creating symbolic links.

For syntax 1, a link file is created for the path specified for the argument target. If the argument target is a directory, a
link file is created in the directory.

For syntax 2, a link file is created in the target directory.

Arguments
-f

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 783

--force
If the file specified for the argument target already exists, a link file is created after removing the existing file.
If the command is specified with the -i option, the specification of the -i option will be valid.
However, you can enable the option that was last specified by specifying LAST for the ADSH_CMDLN_OPT_I_F
environment variable.

-i

--interactive
If there is a file specified for the argument target, whether to delete the file is asked. If the reply character from the
standard input starts with y or Y, the existing file is deleted and a link file is created. If other characters are used for
the reply and the standard input cannot be used, the process is interrupted.
If this command is specified with the -f option, the specification of the -i option will be valid.
However, you can enable the option that was last specified by specifying LAST for the ADSH_CMDLN_OPT_I_F
environment variable.

-L

--logical
If a symbolic link is specified for the argument link destination path name, the symbolic link is followed and a hard
link for the entity indicated by the link destination is created. However, no hard link is created if the file the link
destination points to does not exist.
This option is a valid option when creating a hard link. If this command is specified with the -s option, the
specification is ignored.
If neither the -L option nor -P option are specified, the -L option is considered as being specified.
When the -L option and -P option are specified simultaneously, the options specified last become valid.

-n

--no-dereference
This is a meaningless option. The specification is ignored.

--follow={yes | no}
This is the option used for selecting the behavior when a symbolic link for a directory is specified for the argument
target.
If yes is selected, the symbolic link for the directory specified for the argument target is followed and a link file is
created in the directory of the link destination.
If no is specified, the symbolic link for the directory specified for the argument target is not followed and the option
is handled as a link file name.
If the --follow option is not specified, yes is considered to be specified.

-P

--physical
• In Windows, Linux, and Solaris

If a symbolic link is specified for the argument link destination path name, a hard link for a the symbolic link
itself is created without following the symbolic link.
This option is a valid option when creating a hard link. If this command is specified with the -s option, the
specification is ignored.
If neither the -L option nor -P option are specified, the -L option is considered as being specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 784

When the -L option and -P option are specified simultaneously, the options specified last become valid.

• In AIX and HP-UX
The specification is ignored and the behavior will be the same as when the -L option has been specified.

-s

--symbolic
Creates a symbolic link for the file or directory specified as the argument link destination path name.
If the -s option is not specified, a hard link is created. However, the following hard links cannot be created:

• The target specified for the argument link destination path name does not exist.

• Hard links for a directory

• In UNIX: Files having a different file system

• In Windows: Files having a different drive letter

If the -s option is specified, a symbolic link is created.

In UNIX
A symbolic link can be created regardless of the existence of the target specified for the argument link destination
path name.

In Windows
Symbolic links cannot be created if the target that is specified for the argument link destination path name does
not exist. When creating a symbolic link in a state where the target specified for the argument link destination
path name does not exist, specify the --no-exist-directory option or the --no-exist-file option.

The created hard link will inherit access permissions.
Access permissions for symbolic links that are created are as follows:

• In UNIX: Grants full control to all users.

• Windows: Grants full control to Everyone upon inheriting access permissions of the directory being created

-t target-directory-name

--target-directory = target-directory-name
Specify the directory for which the link file is to be created. If any of the following cases occurs, an error will result:

• The target directory name is simultaneously specified with the -T option.

• A path that is neither the directory nor a symbolic link for a directory has been specified for the target directory
name.

• A directory that does not exist has been specified for the target directory name.

• This option has been specified multiple times.

-T

--no-target-directory
The symbolic link for the directory specified for the argument target is not followed and the option is handled as a
link file name.
If any of the following conditions are met, an error occurs:

• The directory having the same name as that specified for the argument target exists.

• The target directory name is simultaneously specified with the -t option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 785

-v

--verbose
The argument link destination path name and the link file to be created are output to the standard output. The output
formats are as follows:

• When creating a hard link
`Argument link destination path name' => `Link file to be created'

• When creating a symbolic link
`Argument link destination path name' -> `Link file to be created'

--no-exist-directory
In Windows

When this option is specified, a symbolic link for a directory is created if the file or directory specified for the
argument link destination path name does not exist when creating a symbolic link.
Specify this option to create a symbolic link for the directory in advance in a state where a symbolic link pointing
to the directory does not exist.
If any of the following conditions are met, this option is ignored:
- The file or directory specified for the argument link destination path exists.
- The -s option is not specified.
When the --no-exist-directory option and --no-exist-file option are specified simultaneously, the options
specified last become valid.

In UNIX
The specification is ignored.

--no-exist-file
In Windows

When this option is specified, a symbolic link for a file is created if the file or directory specified for the argument
link destination path name does not exist when creating a symbolic link.
Specify this option to create a symbolic link for the file in advance in a state where a symbolic link pointing to
the file does not exist.
If any of the following conditions are met, this option is ignored:
- The file or directory specified for the argument link destination path exists.
- The -s option is not specified.
When the --no-exist-file option and --no-exist-directory option are specified simultaneously, the options
specified last become valid.

In UNIX
The specification is ignored.

link-destination-path-name
Specify the file path name or directory path name that the link file being created will point to. Multiple link destination
path names can be specified. When specifying 2 or more link destination path names, specify a directory for the
argument target or specify a directory by using the -t option with syntax 2.

target
Specifies the link file name to be created or the directory name in which the link file will be created.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 786

If a link file name is specified, the link file is created with the specified file name. If a name for the directory in
which to create the link file is specified, a link file having the same name as the file specified for the argument link
destination path name is created in the specified directory.
If the specification of the target is omitted, a link file is created in the current directory.
If a symbolic link for the directory is specified, track the symbolic link and create the symbolic link for the entity
indicated by the link destination. However, the following options can be specified to handle the target as a link file
name without following the symbolic link:

• -T option

• Specify no for the --follow option.

• Specify No for the ADSH_CMDLN_FOLLOW environment variable.

Return codes
Return code Meaning

0 Normal termination.

1 or more Termination with an error.

Notes
Notes common to all platforms

• Multiple hard links can be created for a single file. However, depending on the OS or file system, there is an upper
limit for the number of hard links that can be created for a single file. The creation of a hard link will fail if the
number of links exceeds the upper limit.

• If the number of times a symbolic link is nested exceeds the upper limit of the OS upon tracking the argument link
destination path name or the symbolic link specified for the argument target, an error occurs and creation of the hard
link fails.

• Specify the directory delimiter according to the OS to be executed for the file path to be specified for the argument
link destination path name and argument target. If specification of the directory delimiter is incorrect, the link
destination may not be tracked. For details of the directory delimiter that can be used in JP1/Advanced Shell, see
the description regarding Cautions regarding specification of file and path in 2.2.3 (1) List of files that are used by .

• If a relative path name is specified for the argument link destination path name, a symbolic link indicates the link
destination starting from that directory. Therefore, be careful if the current directory is different from the directory
in which the symbolic link is being created. An example is as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 787

For this reason, if the current directory is different from the directory in which the symbolic link is being created,
specify the argument link destination path name with an absolute path or specify the relative path from the directory
in which the symbolic link is being created.

• If the -f option is specified or y or Y is returned as a reply of the -i option in an environment where a file or directory
having the same name as the link file being created exists, the ln command creates a temporary file in the directory
in which the link file is being created. In this case, the temporary file might remain if execution of the ln command
is terminated. In such case, the file will need to be deleted manually.

• Creation of the temporary file might fail depending on the length of the directory path name in which the link file
is being created. In such case, delete the existing file having the same name, change the name, or change the name
of the link file being created.

• When a symbolic link for a directory is specified for the argument target, its interpretation can be changed by
specifying the -T option, the --follow option, or the ADSH_CMDLN_FOLLOW environment variable. When

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 788

specified simultaneously, priority will be in order of the -T option, the --follow option, and the
ADSH_CMDLN_FOLLOW environment variable.

• When the -i option and -f option are specified at the time, the specification of the -i option will always take effect.
However, you can enable the option that was specified last by specifying LAST for the ADSH_CMDLN_OPT_I_F
environment variable.

Notes for the UNIX edition only

Hard links cannot be created for the following items:

• Directories

• Files that do not exist

• Files having different file systems

Notes for the Windows edition only

• Hard links cannot be created for the following items:

• Directories

• Files that do not exist

• Files having different drive letters

• Link files cannot be created in file systems other than NTFS.

• For symbolic links created by using the ln command, access permissions of full control are granted to Everyone
after inheriting access permissions of the created directory.

• When creating a hard link or symbolic link for an executable file, add one of the following extensions: ".bat", ".com",
".cmd", or ".exe". In addition, you need to enter the link file name to which an extension has been added in the job
definition script.

• If you attempt to create a symbolic link upon specifying a file or directory that does not exist in the argument link
destination path name, an error occurs and the symbolic link cannot be created. When creating a symbolic link for
a file or directory that does not exist, specify the --no-exist-directory option or the --no-exist-file option.

• The UNC format cannot be specified for the argument target or target directory. If the UNC format is specified, an
error occurs. In addition, if a hard link is created upon specifying the UNC format for the argument link destination
path name, an error occurs.

• If the -f option is specified or y or Y is returned as a reply upon specifying the -f option, due to the access permissions
for existing files, deletion might not be possible and creation of a new link file might fail.

• If assignment of full control fails while creating a symbolic link, an invalid symbolic link might remain.

• Symbolic links may not be used in an environment where a product designed for protecting the file system has been
installed. If you use this command in an environment in which a product for protecting the file system is installed,
the "Failed to rename a temporary file" message is output and the system may finish with an error. In addition, if
this message is output, a temporary file may remain. In this case, delete the temporary file by using the rm command
provided by JP1/Advanced Shell and recreate the symbolic link.

Examples
Creating a hard link for a file.

C:\TEMP>%ADSH_OSCMD_DIR%ln test.txt hlink.txt

C:\TEMP>%ADSH_OSCMD_DIR%ls -l
total 714

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 789

-rw------- 2 Administrators 357 Jun 01 15:05 hlink.txt
-rw------- 2 Administrators 357 Jun 01 15:05 test.txt

Omitting the argument target and creating a hard link for a file.

C:\TEMP>%ADSH_OSCMD_DIR%ln testdir\new.txt
C:\TEMP>%ADSH_OSCMD_DIR%ls -l
total 3572
-rw------- 2 Administrators 3572 Jun 04 11:19 new.txt
drwx------ 1 Administrators Jun 04 11:19 testdir

C:\TEMP>%ADSH_OSCMD_DIR%ls -l testdir
total 3572
-rw------- 2 70247321 3572 Jun 04 11:19 new.txt

Creating a symbolic link for a file.

C:\TEMP>%ADSH_OSCMD_DIR%ln -s test.txt slink.txt

C:\TEMP>%ADSH_OSCMD_DIR%ls -l
total 357
lrw------- 1 Administrators 0 Jun 01 15:07 slink.txt
-> test.txt -rw------- 1 Administrators 357 Jun 01 15:05 test.txt

Creating a symbolic link for a directory.

C:\TEMP>%ADSH_OSCMD_DIR%ln -s testdir slinkdir

C:\TEMP>%ADSH_OSCMD_DIR%ls -l
total 0
lrw------- 1 Administrators 0 Jun 01 15:08 slinkdir -> testdir
drwx------ 1 Administrators Jun 01 15:05 testdir

The option error message is displayed. This message might vary depending on the platform in which the command is
being executed. The following shows an example for Windows:

C:\TEMP>%ADSH_OSCMD_DIR%ln -z
ln: illegal option -- z
usage: ln [-f] [-i] [-L] [-n] [-P] [-s] [-T] [-v] [--follow={yes | no}]
 [--no-exist-directory] [--no-exist-file] linkpath ... [target]
 ln [-f] [-i] [-L] [-n] [-P] [-s] [-v] [--follow={yes | no}]
 [--no-exist-directory] [--no-exist-file] -t target_directory linkpath ...

8.4.21 ls command (lists the contents of files or directories)

Syntax

ls [-1] [-A] [-a] [-C] [-c] [-d] [-F] [-f] [-g] [-h] [-i] [-k]
 [-L] [-l] [-m] [-n] [-p] [-q] [-R] [-r] [-S] [-s] [-T] [-t]
 [-u] [-x]
 [--format=display-format][--full-time]
 [--indicator-style=file-type-style][--sort=sort-key]
 [--time=file-date-and-time-type]
 [path-name ...]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 790

Description
The command lists directory contents. The contents are sent to the standard output.

In the output contents, permissions are displayed as described in the following:

• The first character indicates the type of target:
-: Regular file
b: Block special file
c: Character special file
d: Directory
l: Symbolic link
p: FIFO
s: Socket

• The subsequent nine characters are treated as three sets of three characters which indicate the owner permissions,
group permissions, and other user permissions. In Windows, only the owner permissions are displayed.

Order in
permissions

Displayed
character#

Permission

1 r Read by owner

2 w Write by owner

3 x Execute by owner

s Set user ID or set group ID by owner/execute

S Set user ID or set group ID by owner/no execute

4 r Read by group

5 w Write by group

6 x Execute by group

s Set user ID or set group ID by group/execute

S Set user ID or set group ID by group/no execute

7 r Read by other users

8 w Write by other users

9 x Execute by other users

t Sticky bits by other users/execute

T Sticky bits by other users/no execute

#
The following table explains the characters that are displayed:

Character Meaning

- The corresponding permission is not granted.

r In Windows, files or directories exist.
In UNIX, read permissions are granted.

w In Windows, the read-only attribute is not set.
In UNIX, write permissions are granted.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 791

Character Meaning

x In Windows, one of the following:
• The extension is .com, .exe, .cmd, or .bat.
• This is a directory.

In UNIX, execute permissions are granted.

s Set user ID or set group ID is granted and execute permissions are granted (UNIX only).

S Set user ID or set group ID is granted, but execute permissions are not granted (UNIX only).

t Sticky bits are granted and execute permissions are granted (UNIX only).

T Sticky bits are granted, but execute permissions are not granted (UNIX only).

If the -g, -l, -n, or --full-time option is specified, results are output in the long format.

The long format means that not only file and directory names but detailed information about files and directories are
output. You can change the output format for each item by combining the long format with the -h, -T, and -u options.

Arguments
-1

--format=single-column
Specifies that the list format is to be one entry per line (in a single column).

-A

--almost-all
Specifies that all entries are to be listed except for those from those from . (dot) and .. (dot dot) files.

-a

--all
Specifies that all files and directories, including those with names starting with . (dot), are to be listed.

-C

--format=vertical
Specifies that entries are to be listed in multiple columns, sorted vertically. This is the default for output to the
terminal.

-c

--time=ctime

--time=status
Specifies that the date and time of the last change in file information rather than the most recent modification date
and time is to be used for sorting (-t option) and for list output (-g, -l, -n, and --full-time options).
In Windows, the specification is ignored.

-d

--directory
Specifies that only the directory names are to be listed, without displaying the contents of the directories.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 792

In Windows, the directory delimiter at the end is ignored even if you specify this option and specify the symbolic
link to the directory having the directory delimiter at the end of its path name. To output contents of the directory
of the destination of the symbolic link, specify this option with the -L option.

-F

--classify

--indicator-style=classify
Specifies that a forward slash (/) is to be output after a directory name, an asterisk (*) is to be output after an
executable file, an at mark (@) is to be output after a symbolic link, a vertical bar (|) is to be output after a FIFO
name, and an equal sign (=) is to be output after a socket. In Windows, the specification is ignored.

-f

--sort=none
Specifies that the list is to be output without sorting.

-g
Specifies that the list is to be output in long format, but without listing the file owners.
In Windows, the directory delimiter at the end is ignored even if you specify this option and specify the symbolic
link to the directory having the directory delimiter at the end of its path name. To output contents of the directory
of the destination of the symbolic link, specify this option with the -L option.

-h

--human-readable
Specifies that when the long format is used, file sizes are to be divided by a power of 2 and rounded off to two
decimal places for display purposes. A size letter (M for 1048576 or K for 1024) is to be added to the file size.
The -h option is ignored for any special files in a directory.

-i

--inode
In UNIX, specifies that each file's inode number is to be output.
In Windows, 0 is always output.

-k
In UNIX, specifies that KB is to be output as the units for listing file sizes with the -s option and as the units for
listing the total number of blocks for directories with the -l, -g, -s, and --full-time options.
In Windows, specifies that KB is to be output as the units for listing file sizes with the -s option.

-L

--dereference
This command outputs information of the file that is being referenced instead of symbolic link.

-l

--format=long

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 793

--format=verbose
Specifies that the list is to be output in long format with the following items displayed. To output date and time in
the complete format, specify the --full-time option.

• UNIX
Access permissions, number of links, owner name, group name, size, most recent modification date and time,
name of file or directory. If the target is directories, the total number of directories including . and .. under
that directory are displayed.
If the file is symbolic link, the path name of the link destination appears after "->".

• Windows
Access permissions, number of links, owner name, size (this item does not appear for directory), most recent
modification date and time, name of file or directory.
If the file is symbolic link, the path name of the link destination appears after "->".
The directory delimiter at the end is ignored even if you specify this option and then specify the symbolic link
to the directory having the directory delimiter at the end of its path name. To output contents of the directory of
the destination of the symbolic link, specify this option with the -L option.

-m

--format=commas
Specifies that file names are to be delimited by the comma (,).

-n

--numeric-uid-gid
• In UNIX

The user ID and group ID are output instead of the user name and group name.

• In Windows
0 is output for the user ID. The group ID is not output.
The directory delimiter at the end is ignored even if you specify this option and then specify the symbolic link
to the directory having the directory delimiter at the end of its path name. To output contents of the directory of
the destination of the symbolic link, specify this option with the -L option.

-p

--indicator-style=slash
Specifies that a forward slash (/) is to be output after a directory name.

-q

--hide-control-chars
Specifies that a question mark (?) is to be output for any unprintable character used in a file name. This is the default
for output to the terminal.

-R

--recursive
Specifies that subdirectories are to be listed recursively.

-r

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 794

--reverse
Specifies that the output is to be sorted in reverse order.

-S

--sort=size
Specifies that the entries are to be sorted by size, from largest to smallest.

-s

--size
In UNIX, specifies that the number of blocks in each file, rounded up to full blocks, is to be output. A block is 512
bytes, unless you also specify the -k option or have defined the BLOCKSIZE environment variable.
In Windows, the number of blocks is always listed as 0.

-T
Specifies that date and time information is to be listed in the order month, date, hour, minute, second, and year. This
option is specified together with the -g, -l, or -n option.

-t

--sort=time
Specifies that the entries are to be sorted by most recent modification date and time, starting with the most recent.

-u

--time=atime

--time=access

--time=use
Specifies that the most recent access date and time instead of the most recent modification date and time is to be
used when sorting (-t option) or listing in the long format (-g, -l, -n, or --full-time option).
In Windows, the specification is ignored.

-x

--format=across

--format=horizontal
Specifies that entries are to be listed in multiple columns, as with -C, but sorted horizontally.

--format=display-format
Specifies the format for displaying file or directory contents.
The permitted values for display formats are listed below. If the --format option is specified more than once, the
last option specified takes effect.

across or horizontal
Specifies that entries are to be listed in multiple columns, sorted horizontally. This is the same as the -x option.

commas
Displays file names separated by the comma (,). This is the same as the -m option.

long or verbose
Displays in the long format. This is the same as the -l option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 795

single-column
Displays one entry (one column) per line. This is the same as the -l option.

vertical
Displays multiple columns, sorted vertically. This is the same as the -C option.

--full-time
Specifies that the same items as when the -l option is specified are to be output. However, information about the
date and time is to be output in the complete format, not in the default abbreviated format.
The output format for the date and time information is as follows:

YYYY-MM-DD hh:mm:ss.nnnnnnnnn +/-hhmm
YYYY: Calendar year
MM: Month
DD: Date
hh: Hour
mm: Minute
ss: Second
nnnnnnnnn: Date and time less than one second. 000000000 is always output.
+/-hhmm: Time zone (the time differential from UTC).
In Windows, the directory delimiter at the end is ignored even if you specify this option and specify the symbolic
link to the directory having the directory delimiter at the end of its path name. To output contents of the directory
of the destination of the symbolic link, specify this option with the -L option.

--indicator-style=file-type-style
Specifies the style to be used to display information about the file type.
The following values are supported:

classify
Outputs the character indicating the file type immediately after the file name. For a directory name, a forward
slash (/) is displayed immediately after the directory name. This is the same as the -F option.
For details about the characters used to indicate file types, see the description of the -F option.

slash
Displays a forward slash (/) immediately after the directory name. This is the same as the -p option.

If --indicator-style=classify is specified together with --indicator-style=slash, the
classify specification takes effect.
In Windows, classify is ignored, if specified.

--sort=sort-key
Specifies that when multiple files are displayed, they are to be sorted by the file information indicated by the specified
sort key. If the --sort option is specified more than once, the last specification takes effect.
For the sort key, the following values are supported:

size
Sorts files by file size. This is the same as the -S option.

time
Sorts files by most recent modification date and time. This is the same as the -t option. You can also specify
the --time option to sort files by the date and time each was last accessed or changed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 796

none
Outputs files without sorting them. This is the same as the -f option.

--time=file-date-and-time-type
Specifies a file date and time type that is to be applied to date and time information used for sorting (-t) and listing
(the -g, -l, -n, and --full-time options). If the --time option is specified more than once, the last
specification takes effect. If more than one option is specified, the last option takes effect. In Windows, --time is
ignored, if specified.
For the file date and time type, the following values are supported:

atime, access, or use
Uses the last date and time files were accessed. This is the same as the -u option.

ctime or status
Uses the last date and time file information was changed. This is the same as the -c option.

path-name
Specifies the name of a file or directory that is to be listed. More than one can be specified.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If more than one of the -1, -C, -l, -m, -x and --full-time options is specified, the one specified last takes

effect.
However, if the -l option is specified together with the --full-time option, the --full-time option takes
effect.

• All entries other than . (dot) or .. (dot dot), including entries that start with . (dot), are eligible to be listed,
regardless of whether the -A option is specified.

• The default block size is 512 bytes.

• If the date and time associated with a file is at least 182 days (about six months) distant from the time the command
is executed, the year is listed instead of the date and time.
However, this does not apply when the --full-time option is specified.

• In UNIX, if the user name or group name cannot be acquired, the user ID or group ID, respectively, is displayed.

• In Windows, an ellipsis (...) is displayed when the user name cannot be obtained.

• In Windows, the total size of the files in the directory is displayed in bytes.

• In Windows, hidden file attributes can be displayed.

• This command is affected by the following environment variables:

• COLUMNS environment variable
The output width for each line when multiple columns are output by specifying the -C option.

• BLOCKSIZE environment variable
In UNIX, sets the size of a block for purposes of displaying the number of blocks with the -s option. The
permitted value range is from 512 to 1 GB (1,024 1,024 1,024). If the specified value is outside this range,

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 797

the command handles it as described below, outputs a warning message to the standard error output, and then
performs the subsequent processing:

 If a value smaller than 512 is specified in the BLOCKSIZE environment variable
 The block size is set to 512 bytes.
 If a value greater than 1 GB (1,024 1,024 1,024) is specified in the BLOCKSIZE environment variable

 The block size is set to 1 gigabyte (1,024 1,024 1,024).
If you use the BLOCKSIZE environment variable to change the block size, specify a multiple of 512. If the
specified value is not a multiple of 512, the remainder will be discarded. For example, if a size of 1,500 bytes
is defined, the block size will be treated as being 1,024 bytes. You can specify following the numeric value a
size character indicating a multiple, such as G (1,024 1,024 1,024), M (1,024 1,024), or K (1,024). If
any value other than a numeric value and size character is specified, the command will assume 512 bytes as the
block size, output a warning message to the standard error output, and then resume the subsequent processing.

• TZ environment variable
In UNIX, sets the time zone used to display the date and time.
In Windows, the time zone set in the Date and Time control panel is used to display the date and time. The
value of the TZ environment variable is ignored.
Note that the --full-time option uses the value of the TZ environment variable and the time zone set in the
Date and Time control panel. For this reason, you must ensure sure that the value of the TZ environment variable
and the time zone set in the Date and Time control panel are the same. If they differ, the correct time zone will
not be displayed by the --full-time option.

• In Windows, when you specify a drive letter as the directory, depending on how it is specified, it might reference
the current directory where the command is being executed.
Examples based on the following folder organization are explained below:

 Current drive Other drive
 D:\ E:\
 | |
 + X + R
 + Y + S
 + Z + T
 | |
 + file1 + fileA
 + file2 + fileB
 + file3 + fileC

When the current drive (D:) is specified, the entries under the directory where the command is executed are listed
(D:\Z):

 D:\Z>ls -l D:
 total 462
 -rw------- ouser001 154 Jun 02 15:23 file1
 -rw------- ouser001 154 Jun 02 15:23 file2
 -rw------- ouser001 154 Jun 02 15:23 file3

 D:\Z>

Specify the current drive (D:\) to list the entries directly under the specified drive letter (D:\):

D:\Z>ls -l D:\
total 0
drwx------ ouser001 Jun 02 15:22 X
drwx------ ouser001 Jun 02 15:23 Y
drwx------ ouser001 Jun 02 15:25 Z

D:\Z>

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 798

Specify another drive (E:) to list the entries directly under the specified drive letter (E:\):

D:\Z>ls -l E:
total 0
drwx------ ouser001 Jun 02 15:24 R
drwx------ ouser001 Jun 02 15:24 S
drwx------ ouser001 Jun 02 15:25 T

D:\Z>

Specify another drive (E:\) to list the entries directly under the specified drive letter (E:\):

D:\Z>ls -l E:\
total 0
drwx------ ouser001 Jun 02 15:24 R
drwx------ ouser001 Jun 02 15:24 S
drwx------ ouser001 Jun 02 15:25 T

D:\Z>

Examples
• Specify no option to display files in the current directory.

C:\TEMP>%ADSH_OSCMD_DIR%\ls
HARDLINK.txt TestLog test_result.txt
SYMLINK.txt test_data.txt uap.exe

• Specify the -1 option to list entries in a single column.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -1
HARDLINK.txt
SYMLINK.txt
TestLog
test_data.txt
test_result.txt
uap.exe

• Specify the -A option to list all entries except . (dot) and .. (dot dot). In Windows, entries that begin with . (dot)
are always listed, regardless of whether the -A option is specified.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -A
HARDLINK.txt TestLog test_result.txt
SYMLINK.txt test_data.txt uap.exe

• Specify the -a option to include directories that begin with . (dot).

C:\TEMP>%ADSH_OSCMD_DIR%\ls -a
. SYMLINK.txt test_result.txt
.. TestLog uap.exe
HARDLINK.txt test_data.txt

• Specify the -C option to list entries in multiple columns sorted vertically.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -C
HARDLINK.txt TestLog test_result.txt
SYMLINK.txt test_data.txt uap.exe

• Specify the -f option to list without sorting.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 799

C:\TEMP>%ADSH_OSCMD_DIR%\ls -f
HARDLINK.txt TestLog test_result.txt
SYMLINK.txt test_data.txt uap.exe

• Specify the -g option to list entries in long format, but omitting the owner. In the case of Windows, the group name
is omitted.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -g
total 337744
-rw------- 2 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Jul 06 16:58 TestLog
-rw------- 1 102000 Jul 06 16:20 test_data.txt
-rw------- 2 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 31744 Jun 12 16:23 uap.exe

• Specify the -h option together with the long format option to append a size letter to the file size.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lh
total 337744
-rw------- 2 Administrators 99.6K Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0B Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog
-rw------- 1 Administrators 99.6K Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 99.6K Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31.0K Jun 12 16:23 uap.exe

• Specify the -i option to display the inode number for each file. In the case of Windows, 0 is displayed for the inode
number.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -i
0 HARDLINK.txt 0 TestLog 0 test_result.txt
0 SYMLINK.txt 0 test_data.txt 0 uap.exe

C:\TEMP>%ADSH_OSCMD_DIR%\ls -il
total 337744
0 -rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
0 lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
0 drwx------ 1 Administrators Jul 06 16:58 TestLog
0 -rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
0 -rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
0 -rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• The file is displayed in long format by specifying the -l option. In Windows, only access permissions of the owner
appear. Group name and directory size do not appear.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -l
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -l option together with the -c option to display the date and time of the most recent change in file
information instead of the most recent modification date and time. Windows ignores the -c option and displays the
most recent modification date and time.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lc
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 800

drwx------ 1 Administrators Jul 06 16:58 TestLog
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -l option together with the -u option to display the most recent access date and time instead of the
most recent modification date and time. Windows ignores the -u option and displays the most recent modification
date and time.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lu
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -m option to list entries in stream output format delimited by the comma.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -m
HARDLINK.txt, SYMLINK.txt, TestLog, test_data.txt,
test_result.txt, uap.exe

• Specify the -n option to display user ID and group ID instead of user name and group name. In Windows, 0 is
displayed for the user ID and group IDs are not output.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -n
total 337744
-rw------- 2 0 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 0 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 0 Jul 06 16:58 TestLog
-rw------- 1 0 102000 Jul 06 16:20 test_data.txt
-rw------- 2 0 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 0 31744 Jun 12 16:23 uap.exe

• Specify the -p option to display a forward slash (/) after a directory name.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -p
HARDLINK.txt TestLog/ test_result.txt
SYMLINK.txt test_data.txt uap.exe

C:\TEMP>%ADSH_OSCMD_DIR%\ls -alp
total 337744
drwx------ 1 Administrators Jul 06 16:29 ./
drwx------ 1 TrustedInstaller Jan 01 1980 ../
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog/
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -q option to show unprintable characters as a question mark (?).

C:\TEMP>%ADSH_OSCMD_DIR%\ls -q ..\dir1
.sub1 file2.txt sub4 wc2.c wc4.c
.sub2 sub3 wc1.c wc3.c ????.txt

• Specify the -R option to list subdirectories recursively.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -R ..\dir1
.sub1 file2.txt sub4 wc2.c wc4.c

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 801

.sub2 sub3 wc1.c wc3.c ????.txt

..\dir1\.sub1:

..\dir1\.sub2:

..\dir1\sub3:

..\dir1\sub4:

• Specify the -r option to list entries sorted in reverse order.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -r
uap.exe test_data.txt SYMLINK.txt
test_result.txt TestLog HARDLINK.txt

C:\TEMP>%ADSH_OSCMD_DIR%\ls -rl
total 337744
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt

• Specify the -S option to sort by size, from largest to smallest.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -S
HARDLINK.txt test_result.txt SYMLINK.txt
test_data.txt uap.exe TestLog

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lS
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
drwx------ 1 Administrators Jul 06 16:58 TestLog

• Specify the -s option to display the number of blocks for each file. In Windows, 0 is displayed.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -sl
total 337744
0 -rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
0 lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
0 drwx------ 1 Administrators Jul 06 16:58 TestLog
0 -rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
0 -rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
0 -rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -T option to display time information as the month, date, hour, minute, second, and year.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lT
total 337744
-rw------- 2 Administrators 102000 Jul 06 16:26:40 2015 HARDLINK.txt
lrw------- 1 Administrators 0 Jul 06 16:27:11 2015 SYMLINK.txt -> .
\test_data.txt
drwx------ 1 Administrators Jul 06 16:58:21 2015 TestLog
-rw------- 1 Administrators 102000 Jul 06 16:20:28 2015 test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26:40 2015 test_result.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23:18 2015 uap.exe

• Specify the -t option to sort files in the order of most recent modification date and time.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 802

C:\TEMP>%ADSH_OSCMD_DIR%\ls -t
TestLog HARDLINK.txt test_data.txt
SYMLINK.txt test_result.txt uap.exe

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lt
total 337744
drwx------ 1 Administrators Jul 06 16:58 TestLog
lrw------- 1 Administrators 0 Jul 06 16:27 SYMLINK.txt -> .\test_data.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 HARDLINK.txt
-rw------- 2 Administrators 102000 Jul 06 16:26 test_result.txt
-rw------- 1 Administrators 102000 Jul 06 16:20 test_data.txt
-rwx------ 1 Administrators 31744 Jun 12 16:23 uap.exe

• Specify the -x option to list entries in multiple columns sorted horizontally.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -x
HARDLINK.txt SYMLINK.txt TestLog
test_data.txt test_result.txt uap.exe

• Specify the --full-time option to display the date and time information in the complete long format.

C:\Program Files\HITACHI\JP1AS\JP1ASE\cmd>ls --full-time
total 2638901
-rwx------ 1 SYSTEM 327168 2014-01-10 19:47:42.000000000 +0900 awk.exe
-rwx------ 1 SYSTEM 10240 2014-01-10 19:45:32.000000000 +0900 basename.exe
-rwx------ 1 SYSTEM 12800 2014-01-10 19:48:44.000000000 +0900 cat.exe
-rwx------ 1 SYSTEM 11264 2014-01-10 19:48:44.000000000 +0900 cmp.exe
-rwx------ 1 SYSTEM 19968 2014-01-10 19:48:40.000000000 +0900 cp.exe
-rwx------ 1 SYSTEM 14848 2014-01-10 19:48:04.000000000 +0900 cut.exe
-rwx------ 1 SYSTEM 10240 2014-01-10 19:48:36.000000000 +0900 date.exe
-rwx------ 1 SYSTEM 237056 2014-01-10 19:48:14.000000000 +0900 diff.exe
-rwx------ 1 SYSTEM 224256 2014-01-10 19:45:28.000000000 +0900 egrep.exe

• Display option error massages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\>ls -z
ls: illegal option -- z
usage: ls [-1AaCcdFfghikLlmnpqRrSsTtux] [--format=word] [--full-time]
 [--indicator-style=word] [--sort=word] [--time=word] [file ...]

8.4.22 mkdir command (creates directories)

Syntax

mkdir [-p] [-m permissions] directory ...

Description
This command creates directories.

Arguments

-p
Specifies that missing intermediate directories are to be created as needed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 803

-m permissions
In UNIX, specifies permissions that are to be set for the created directories. The umask value is not applied.
You can specify the permissions either as an octal number or using symbols.
If you specify a number, an error occurs if you specify a non-octal number or an octal value greater than 07777
(4095 decimal).
If you specify symbols, do so by setting, adding, and removing permissions, starting from the state in which nothing
is specified (0 in numeric representation).
A symbol consists of three parts. Specify one or more of the symbols, as explained below. If you specify more than
one, separate them with the comma (,).

Order within the symbol Permitted value

First Specifies the items for which you want to set access permissions. You can specify more than one at the
same time. The items below can be specified. If nothing is specified, a (all users) is assumed.
• u: Owner
• g: Group
• o: Other
• a: All users

Second Specifies an operation on the mode. The following processing is performed on the items specified in
the first part of a symbol.
• =: Set (overwrite) access permissions.
• +: Add access permissions.
• -: Remove access permissions.

The value to be set, added, or removed is specified in the third part of the symbol.
You can specify the second and third parts of a symbol following the third part. The third part of a
symbol can be omitted.

Third Specifies the applicable access permissions. You can specify more than one at the same time. The
following values can be specified:
• r: Read.
• w: Write.
• x: Execute.
• s: Set the user ID or group ID at run time.
• t: Sticky bit
• u: Owner access permissions currently set in the mode.
• g: Group access permissions currently set in the mode.
• o: Other access permissions currently set in the mode.

When this part is omitted and = is specified in the second part of the symbol, the items for which access
permissions are set are cleared. When this part is omitted and + or - is specified in the second part of
the symbol, no processing occurs.
Specifying s or t in this part will be ignored if only o is specified in the first part.

The following table shows examples of specifying symbols:

Value specified in -m Numeric equivalent Description

u=x, g=w 120 Set u to x, and set g to w.

u=x, g=u 110 Set u to x, and set the same values for g and u.

u=x, =u 111 Set u to x, and then set a (the default value) to the same values as u.

u=x, u=w 200 Set u to x, and then set (overwrite) u to w.

u=x, u+w 300 Set u to x, and then add w to u.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 804

Value specified in -m Numeric equivalent Description

ug=x 110 Set u and g to x.

u=rw 600 Set u to r and w.

u=r+x 500 Set u to r, and then add x.

u=r=w 200 Set u to r, and then set (overwrite) it to w.

=x, u= 011 Set a (the default value) to x, and clear the settings for u.

= 000 Clear a (the default value).

In Windows, this specification is ignored.

directory
Specifies a name for a directory to be created. Multiple directory names can be specified.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• In Windows, the -m option is ignored. The mode cannot be specified.

Examples
• Create directory Dir2 under C:\USR\JP1.

C:\TEMP>%ADSH_OSCMD_DIR%\mkdir C:\USR\JP1\Dir2

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\mkdir -w
mkdir: illegal option -- w
usage: mkdir [-p] [-m mode] directory ...

8.4.23 mv command (moves files or directories)

Syntax

mv [-f] [-i] [-u]source destination
mv [-f] [-i] [-u]source ... destination-directory

Description
This command moves files or directories. It can also change the names of files or directories.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 805

Arguments
-f

--force
This command overwrites the path without verifying the path. This command is ignored if this command is specified
before the -i option.

-i

--interactive
This command enables you to confirm overwriting. If you reply y or Y from the standard input, the path is
overwritten. This command is ignored if this command is specified before the -f option.

-u

--update
If the destination file already exists and the last modification date and time are the same as or later than those of the
source while you attempt to move a file other than directory, file is not moved. The last modified date and time of
a file is determined upon rounding off values smaller than a second.

source
This command specifies the name of the path to be moved. Multiple path names can be specified for the source.

destination
This command specifies the name of the path of the destination. If you specify the path name for source and
destination, you can change the file name or directory name.

destination-directory
This command specifies the directory of destination. If you specify multiple path names for the source, you can
move multiple files and directories.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If the -i and -f options are both specified, the one specified last takes effect.

• In Windows, when a file or directory is overwritten, access permissions other than the owner's are not displayed.
For details about the permissions that are displayed, see 8.4.21 ls command (lists the contents of files or directories).

• In Windows, group and mode are not preserved.

• In Windows, the destination file name will be created using the file name specified in the source. However, uppercase
letters in the file name will be replaced with lowercase letters. For example, if the name of the file to be moved is
A.txt and you execute mv a.txt tmpdir, the name of the file in tmpdir will be a.txt.

• In Windows, file input and output are performed in the binary mode. No conversion of end-of-line codes is performed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 806

• In Windows, if a file that has the same name as the file you are attempting to move already exists in the destination,
depending on the status of the Windows environment in which the command is executed, the error Permission
denied might be output.

• In Windows, when moving files to another drive, if you set the read-only attribute to the files to be moved, a 1,550-
millisecond delay occurs when each file is moved. Therefore, before using a wildcard to specify multiple files or
moving multiple files in a directory, remove the read-only attribute first.

• In UNIX, when the mv command is used to move a file or directory and all the following conditions are satisfied,
the user who executes the mv command becomes the owner of the file or directory:

• A general user executed the mv command.

• The user executing the mv command is different from the owner of the source file.

• The source and destination file systems are different.

In addition, the following information will not be inherited:

• The access permission information set in the setuid and setgid bits of the source file

• The access permission information set in the setuid, setgid, and sticky bits of the source directory

• If the file does not move with the specification of the -u option because the destination is new (including the
case that the destination is the same), no error occurs and this command normally terminates.

Examples
• Specify the -i option to require confirmation before the destination file is overwritten.

C:\TEMP>%ADSH_OSCMD_DIR%\mv -i ..\dir1\file1.txt ..\dir1\file2.txt
overwrite ..\dir1\file2.txt?

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\mv -w
mv: illegal option -- w
usage: mv [-fiu] source target
 mv [-fiu] source ... directory

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\mv file3.txt file4.txt
mv: file3.txt: No such file or directory

8.4.24 paste command (concatenates multiple files in lines)

Syntax

paste[-s][-d list][path-name ...]

Description
This command concatenates multiple files in units of lines and then outputs the results to the standard output. You can
also join all lines in a file into a single continuous line and then concatenate multiple files.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 807

Arguments

-s
Joins all lines in the files into a single line (with separators).
If the -s option is omitted, the command joins the lines in all files that have the same line number (with separators).

-d list
Specifies a list of the separators that will be inserted between the lines to be concatenated. If the -d option is omitted,
the tab character is assumed.
To specify a space or tab character, enclose the character in double quotation marks (").
You can also specify special characters as separators.

Permitted special
character

Meaning Remarks

\n End-of-line code In Windows, an end-of-line code is denoted by [CR] + [LF].
In UNIX, an end-of-line code is denoted by [LF].

\t Tab character --

\\ One backslash character --

\0 Null character string Character string with a length of zero (""). No separator is inserted between the
lines to be concatenated.

Legend:
--: Not applicable.

Depending on the shell used to execute the paste command, special characters are treated as escape characters.
Therefore, enclose special characters in double or single quotation marks (" or '). If a non-special character is
immediately preceded by a backslash (\), the command ignores \ and uses the character following \ as the separator.
If only \ is specified, the command terminates with an error.
You can specify multiple separators. When multiple separators are specified, the command handles them as follows:

• Each time the command concatenates lines, it fetches a separator and inserts it between the lines. The separators
are fetched in order from the beginning of the list.

• When the -s option is not specified, the command fetches separators in order from the beginning of the list
again after it has output concatenated lines.

• When the -s option is specified, the command fetches separators in order from the beginning of the list again
after it has joined all lines in a file and has output them.

• When the end of the list of separators specified in the -d option is reached, the command fetches separators
from the list again in order from the beginning of the list.

path-name
Specifies the path name of a file to be concatenated and output. If no path name is specified or a hyphen (-) is
specified as the path name, the command reads the path name from the standard input.
You can specify multiple path names and hyphens (-) or a mixture of path names and hyphens.
If multiple files are specified and an open error occurs on any of the files, the following occurs:

• When the -s option is omitted, the command outputs an error message and terminates with return code 1. In
this case, nothing is output to the standard output.

• When the -s option is specified, the command outputs an error message for the file resulting in the open error
and resumes processing. When the command has processed all files, it terminates with return code 1.

If only one path name is specified, the command runs as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 808

• When the -s option is omitted, the command only outputs the lines.

• When the -s option is specified, the command joins all lines in the file and then outputs them.

Input and output of lines
In input files, the command treats a record separated by an end-of-line code as one line.

• In Windows, [CR] + [LF] or by [LF] is treated as the end-of-line code.

• In UNIX, [LF] is treated as the end-of-line code.
If each record in the input file is separated by [CR] + [LF], the concatenated lines contain [CR].

An end-of-line code is output at the end of the concatenated lines. The following is output as the end-of-line code:

• In Windows: [CR]+[LF]
• In UNIX: [LF]

Concatenating files in units of lines (when the -s option is omitted)
The command joins the lines that have the same line number in all the files and then outputs the results as a single line
(with separators). Null lines are treated as null character strings when they are joined with other lines.

If the end-of-file is detected in any of the files while lines with the same line number are being read, any remaining lines
for that file are joined as null characters with the lines from the other files.

The following example concatenates file1, file2, file3, and file4 in units of lines.

Contents of file1:

a001
a002

Contents of file2:

b001
(null line)
b003

Contents of file3:

c001
c002
c003
c004

Contents of file4:

d001

Command that concatenates file1, file2, file3, and file4 in units of lines:

$ paste file1 file2 file3 file4

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->b001->c001->d001 1.
a002->-> c002-> 2.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 809

-> b003->c003-> 3.
-> -> c004-> 4.

1. The command joins the first lines of file1, file2, file3, and file4 and then outputs the results. The command
inserts a tab character between the lines.

2. The command joins the following values with tab characters and then outputs the results:

• Contents of the second line of file1
• Null character string because the second line of file2 is the null line

• Contents of the second line of file3
• Null character string because the end of file is reached in file4

A null character string is a character string with a length of 0. Therefore, the actual result that is output is the contents
of the second line of file1 + tab character + tab character + contents of the second line of file3 + tab character.

3. The command joins the following values with tab characters and then outputs the results:

• Null character string because the end-of-file is reached in file1
• Contents of the third line of file2
• Contents of the third line of file3
• Null character string because the end of file is reached in file4

The actual result that is output is a tab character + contents of the third line of file2 + tab character + contents of
the third line of file3 + tab character.

4. The command joins the following values with tab characters and then outputs the results:

• Null character string because the end-of-file is reached in file1
• Null character string because the end-of-file is reached in file2
• Contents of the fourth line of file3
• Null character string because the end-of-file is reached in file4

The actual result that is output is a tab character + tab character + contents of the fourth line of file3 + tab character.

If any of the specified files is empty, lines in that file are treated as null character strings and joined with other files'
lines. However, if all the files specified in the argument are empty, no line is output.

Joining lines in files (when the -s option is specified)
The command joins all lines in one file with separators into a single line and then concatenates it with other files. If a
file is empty, the command outputs only an end-of-line code. If all the files specified in the argument are empty, the
command outputs an end-of-line code for each file.

The following example concatenates file1, file2, file3, and file4.

Contents of file1:

a001
a002

Contents of file2:

Null file

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 810

Contents of file3:

c001
c002
c003
c004

Contents of file4:

d001

Command that concatenates file1, file2, file3, and file4:

$ paste -s file1 file2 file3 file4

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->a002 1.
 2.
c001->c002->c003->c004 3.
d001 4.

1. Joins all lines in file1 with separators and then outputs the results.

2. Outputs only an end-of-line code because file2 is an empty file.

3. Joins all lines in file3 with separators and then outputs the results.

4. Outputs the contents of the line because file4 contains only one line.

Joining lines read from the standard input
This subsection explains joining lines that are read from the standard input.

Concatenating files in units of lines (when the -s option is omitted)
The command reads only one line from the standard input and joins that line with a line from another file. If multiple
hyphens (-) are specified, the command reads a line from the standard input for each - specified in order, and then
joins the lines.
When a file is to be concatenated with the contents of the standard input, the command keeps reading lines from the
standard input until the end-of-file is reached. Therefore, if EOF is read from the standard input, the command treats
it as the null character string and joins that null character string with a line from the file.
The following example reads file1 from the standard input and concatenates it with file2 in units of lines.

Contents of file1:

a001
a002
a003
a004
a005

Contents of file2:

b001
b002
b003
b004

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 811

Command that concatenates file1 and file2 in units of lines:

$ cat file1 | paste - file2 -

The lines are joined in the following order:

1. Line input from file1 (read from the standard input)

2. Line input from file2
3. Line input from file1 (read from the standard input)

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->b001->a002 1.
a003->b002->a004 2.
a005->b003-> 3.
-> b004-> 4.

1. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the first line in file1)
 Contents of the first line in file2
 Contents of the line read from the standard input (contents of the second line in file1)

2. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the third line in file1)
 Contents of the second line in file2
 Contents of the line read from the standard input (contents of the fourth line in file1)

3. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the fifth line in file1)
 Contents of the third line in file2
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)

4. The command joins the following values with tab characters and then outputs the results:
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)
 Contents of the fourth line in file2
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)

Joining lines in files (when the -s option is specified)
The command repeats reading one line at a time from the standard input and joins the lines with separators until
EOF is read. The command then concatenates the joined lines with another file. The following example reads file1
from the standard input and concatenates it with file2.

Contents of file1:

a001
a002
a003

Contents of file2:

b001
b002

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 812

Command that concatenates file1 and file2 (file1 is read from the standard input):

$ cat file1 | paste -s - file2

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->a002->a003 1.
b001->b002 2.

1. Joins all lines read from the standard input (all lines in file1) with separators, and then outputs them.

2. Joins all lines read from file2 with separators, and then outputs them.

Return code
Return code Meaning

0 Normal termination

1 Error termination
• At least one of the files specified in the argument failed to open.

If the -s option was omitted, the files are not concatenated.
If the -s option was specified, an error message is output when a file open error occurs, and then the next file
is processed.

2 Error termination
• An invalid option was specified.

3 Error termination
• An unresumable error occurred, such as a memory shortage.

Notes
• The paste command expects text files. Input from binary files and output of binary data are not guaranteed to

work.

• When the -s option is omitted, the command opens all the files specified in the argument simultaneously. In UNIX,
an error might occur when files are opened depending on OS settings, such as the maximum number of files that
can be open at the same time in the entire OS or the maximum number of file descriptors permitted for a process
(ulimit).

Examples
• Concatenate multiple files in units of lines. Use the tab character as the separator between the lines that are joined.

In the output results, -> indicates the tab character.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file3:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 813

c001
c002
c003

The following shows the specified command and the execution results:

$ paste file01 file02 file03
a001->b001->c001
a002->b002->c002
a003->b003->c003

• Concatenate multiple files in units of lines. Insert the separators = and % one at a time in this order between the lines
that are joined.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file03:

c001
c002
c003

Contents of input file file04:

d001
d002
d003

The following shows the specified command and the execution results:

$ paste -d "=%" file01 file02 file03 file04
a001=b001%c001=d001
a002=b002%c002=d002
a003=b003%c003=d003

• Concatenate multiple files in units of lines. Insert the separators =, %, and @ one at a time in this order between the
lines that are joined.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file03:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 814

c001
c002
c003

The following shows the specified command and the execution results:

$ paste -d "=%@" file01 file02 file03
a001=b001%c001#
a002=b002%c002
a003=b003%c003

#
The concatenation count for the lines with the same line number is 2 as shown in the following:

 Concatenate one line of file01 and one line of file02
 Concatenate one line of file03 and the results of concatenating file01 and file02

Note that the separator @ specified in the -d option is not used.

• Read the list of file names displayed with the ls command from the standard input and then output four columns.
Insert the comma (,) as the separator between file names.

$ ls
a001 a002 a003 a004 b001 b002 b003 b004 c001 c002
$ ls | paste -d "," - - - -
a001,a002,a003,a004
b001,b002,b003,b004
c001,c002,,

• Join all lines in each file into a single line and then concatenate all files. Insert the separators =, %, and @ one at a
time in this order between the lines that are joined.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003
b004

Contents of input file file03:

c001
c002
c003
c004
c005

Contents of input file file04:

d001
d002

The following shows the specified command and the execution results:

$ paste -s -d "=%@" file01 file02 file03 file04
a001=a002%a003
b001=b002%b003@b004

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 815

c001=c002%c003@c004=c005
d001=d002

• When multiple files are concatenated in units of lines, the following message is displayed if a nonexistent file is
specified:

$ paste file01 file02 file03
paste: file02: No such file or directory

• Join all lines in each file and concatenate all files. Nonexistent files file01 and file03 are specified as input
files.
Contents of input file file02:

b001
b002
b003
b004

Contents of input file file04:

d001
d002

The following shows the specified command and the execution results:

$ paste -s -d "=%@" file01 file02 file03 file04
paste: file01: No such file or directory#
b001=b002%b003@b004
paste: file03: No such file or directory#
d001=d002

#
Contents output to the standard error output.

8.4.25 printf command (converts form arguments according to the form
and outputs the results to the standard output)

Syntax

printf form [form argument ...]

Description
This command converts form arguments according to the form and outputs the results to the standard output.

Arguments
Form

The form is composed of the following three types of character strings:

• Characters to be output to the standard output

• Conversion specification

• Escape characters

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 816

To specify a conversion, specify %, which indicates a conversion specification, followed in sequence by: flag characters,
the minimum field width, the precision, and a conversion specifier. Flag characters, minimum field width, and precision
can be omitted.

• Conversion specification

% Indicates a conversion specification.

• Flag character string
You can specify the flag characters listed below, after the % sign that indicates a conversion specification.
Specification of this item can be omitted.

Flag character Meaning

- The conversion result is left-aligned in the field.
If this flag character is omitted, the conversion result is aligned to the right.

+ Adds the + or - sign to the result of a signed conversion.
If this flag character is omitted, the - is added only when the conversion result is a negative value.

Space Adds a space before positive numerical values in the result of a signed conversion.
If this flag character and the + flag character are both specified, the + flag character takes priority.

When any of the following conversion specifiers are specified, the conversion result is output in another format:
• For an o conversion, 0 is added to the beginning of the conversion result (excluding cases when the

conversion result is 0).
• For an x or X conversion, 0x or 0X is added to the beginning of the conversion result (excluding cases

when the conversion result is 0).
• For an e, E, f, g, or G conversion, a decimal point is added to the output result without exception, even

when a value that does not contain a decimal point is specified.
• For a g or G conversion, the 0 at the end of the conversion result is not deleted.

0 For a d, i, o, u, x, X, e, E, f, g, or G conversion, spaces on the left are padded with zeros in the conversion
result field.
If this flag character is specified together with the - flag character or the precision of one of the following
conversion specifiers, the 0 flag character is ignored: d, i,o, u, x, and X.

• Minimum field width
Specify the minimum field width by using a decimal number. You can specify the minimum field width from a range
of 0 to 2147483647. Specification of this item can be omitted. If the number of characters of the value after
conversion is less than the width of the field, spaces on the left are padded with spaces. However, if the left-alignment
flag character is specified, spaces on the right are padded with spaces. If the size of the conversion result is larger
than the field width, the field width is extended to fit the conversion result. If an asterisk (*) is specified, the value
specified for the form argument is used as the minimum field width.

• Precision
Specify the precision by using a period (.) followed by a decimal number. In UNIX, specify from a range of 0 to
2147483647. In Windows, specify from a range of 0 to 512. Specification of this item can be omitted. If only a
period (.) is specified, 0 is assumed to be specified. For a d, i, o, u, x or X conversion, specify the minimum
number of digits to be displayed. For an e, E, or f conversion, specify the number of digits to be displayed after the
decimal point. For a g or G conversion, specify the maximum number of valid digits. For a s conversion, specify
the maximum number of bytes of the character string to be displayed. If you specify an asterisk (*) instead of a
value, the value specified for form argument is used.

• Conversion specifiers

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 817

Conversion
specifier

Meaning

d, i Converts an argument to a signed decimal value.
Precision specifies the minimum number of digits to be displayed. If the number of digits of the value after conversion
is less than the number of digits specified for precision, one or more 0s are added to the beginning of the value. The
default precision is 1.
If you specify 0 for precision and then convert the value 0, an empty character string is output.

o Converts an argument to an octal number without a sign.
Precision specifies the minimum number of digits to be displayed. If the number of digits of the value after conversion
is less than the number of digits specified for precision, one or more 0s are added to the beginning of the value. The
default precision is 1.
If you specify 0 for precision and then convert the value 0, an empty character string is output.

u Converts an argument to a decimal value without a sign.
Precision specifies the minimum number of digits to be displayed. If the number of digits of the value after conversion
is less than the number of digits specified for precision, one or more 0s are added to the beginning of the value. The
default precision is 1.
If you specify 0 for precision and then convert the value 0, an empty character string is output.

x, X Converts an argument to a hexadecimal value. If you specify x, lowercase characters (abcdef) are used. If you
specify X, uppercase characters (ABCDEF) are used.
Precision specifies the minimum number of digits to be displayed. If the number of digits of the value after conversion
is less than the number of digits specified for precision,
one or more 0s are added to the beginning of the value. The default precision is 1.
If you specify 0 for precision and then convert the value 0, an empty character string is output.

e, E Converts a floating point number to a decimal number in the form [-]d.dddde± dd[d].
If you specify e, lowercase characters will be used. If you specify E, uppercase characters will be used.
One digit before the decimal point is displayed. If precision is not specified, 6 digits after the decimal point are
displayed. If precision is specified, the specified number of digits after the decimal point is displayed. Also, if 0 is
specified for precision, digits after the decimal point are not output.

f Converts a floating point number to a decimal number in the form [-]dddd.dddd.
One or more digits before the decimal point are displayed. If precision is not specified, 6 digits after the decimal point
are displayed. If precision is specified, the specified number of digits after the decimal point is displayed.

g, G Displays a floating point number in format of f or in the format of e and E.
The displayed format varies depending on the value to be converted.
If precision is not specified, a 6-digit value is displayed. If precision is specified, a value containing the specified
number of digits is displayed. The 0 at the end of the conversion result is deleted.

c Displays the first byte of the form argument.

s Interprets and displays a form argument as a character string.
If the precision is not specified, the entire character string is displayed. If the precision is specified, a value of the
specified number of bytes is displayed.
However, note that when the precision is specified and the delimiter to be output is in the middle of a multibyte
character string, depending on the specifications of the OS, the number of bytes that is output might be less than the
specified value.

% Displays the % sign.
This conversion specifier cannot be used to specify flag characters, minimum field width, or precision.

b Interprets and displays a form argument as a character string.
Escape characters contained in a character string are also interpreted, converted, and displayed as character strings.
However, if \c appears in the character string of the form argument, conversions after \c are not displayed.
This conversion specifier cannot be used to specify flag characters, minimum field width, or precision.

• Escape characters

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 818

The following table shows the escape characters that can be used:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\f Form field character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\d, \dd, \ddd ASCII code characters displayed in octal notation (0 to 7) with 1 to 3 digits

\xhex ASCII characters displayed in hexadecimal notation (0 to 9, a to f, and A to F) with 1 or 2 digits

\\ Display of \

\' Display of '

\" Display of "

If \ is contained in a character string other than the above, \ is also output.

Form arguments

• If the number of items to be converted that is specified for form arguments is greater than that specified for forms,
the forms are used repeatedly. The extra forms are assumed to be 0 or NULL.
Example

$ printf "%x %d " 123 456 789
7b 456 315 0

• In a conversion of a numeric value, if a single quotation mark (') or double quotation mark (") is added before the
character in the form argument, the conversion result is output in ASCII code.
Example

$ printf "%x %x" \'a \"b
61 62

• If a numeric value is specified for the form argument of one of the following conversion specifiers, an octal number
(0 specification), decimal number, or hexadecimal number (0x specification) can be specified:d, i, o, u, x, and X.
Example

$ printf "%d %d %d" 010 10 0x10
8 10 16

Return codes
Return code Meaning

0 Normal termination.

1 Termination with an error.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 819

Notes
• In Windows, linefeed characters are output as [CR]+[LF]. In UNIX, linefeed characters are output as [LF].

• When the printf command is used to output and convert a value by specifying any of the following conversion
specifiers, the value to be converted is handled as a 4-byte integer: d, i, o, u, x, and X. When a value is output or
converted by specifying any of the following conversion specifiers, the value to be converted is handled as a double-
precision floating point number (8 bytes): e, E, f, g, and G. For this reason, the conversion result has a margin of
error. This error is dependent on the OS.

Examples
• Output the hexadecimal value after conversion by specifying #0 as the flag character and 10 as the minimum field

width.

$./printf "%#010x\n" 123
0x0000007b

• Output the decimal value after conversion by specifying #+ as the flag character.

$./printf "%#+d\n" 123
+123

• Output the result of converting a floating point number to the f format by specifying 8 as the precision.

$./printf "%.8f\n" 123.456
123.45600000

• Output the result of converting a specified floating point number to the e format.

$./printf "%e\n" 123.456
1.234560e+02

• Output one byte of the character string abcdef.

$./printf "%c\n" abcdef
a

• Output the character string abcdef by specifying 3 as the precision.

$./printf "%.3s\n" abcdef
abc

• Output the value specified for the form argument by specifying an escape character (\t) for the form.

$./printf "%s %d\txyz\n" abc 123
abc 123 xyz

• Output a value by specifying 0 as the flag character and * (asterisk) as the precision.
In this example, * (asterisk) is replaced by 5.

$./printf "%0*d" 5 123
00123

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 820

8.4.26 rm command (removes files or directories)

Syntax

rm [-d] [-f] [-i] [-R] [-r] path-name ...

Description
This command removes files or directories.

Arguments

-d
Specifies that file or directory removal is to be performed. In the case of a directory, the entire directory is removed.

-f
Specifies that file removal is to be performed without requesting confirmation. Nonexistent files are ignored. This
option is ignored if it is specified before the -i option.

-i
Specifies that confirmation is to be requested before removal is performed. Removal will be performed only if the
reply y or Y is read from the standard input. This option is ignored if it is specified before the -f option.

-R|-r
Specifies that a directory tree is to be removed recursively.

path-name
Specifies a path name to be removed. Multiple path names can be specified.

Return codes
Return
code

Meaning

0 Normal termination
• The specified file or directory removal was successful.
• If the -f option was specified, the files that existed among the specified files were removed successfully.

1 or greater Error termination

Notes
• In Windows, when you confirm removal without write permissions, non-access permissions other than the owner's

are not displayed.
For details about the permissions that are displayed, see 8.4.21 ls command (lists the contents of files or directories).

• If the options -f and -i are both specified, the one specified last takes effect.

• Specify the file and directory to which the role for deletion is assigned for the argument of the rm command. Deletion
of file and directory might fail if you specify the file and directory to which the privilege for deletion is not assigned.
[Windows edition]

Examples
• Specify the -i option to require confirmation before removing a file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 821

C:\TEMP>%ADSH_OSCMD_DIR%\rm -i file2.txt
remove file2.txt?

• Display an error message if the file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\rm c.txt
rm: c.txt: No such file or directory

• Display an error message when you attempt to remove a directory without using the -d option.

C:\TEMP>%ADSH_OSCMD_DIR%\rm dir8
rm: dir8: is a directory

• Display an error message when you attempt to remove a directory that contains files.

C:\TEMP>%ADSH_OSCMD_DIR%\rm -d dir8
rm: dir8: Directory not empty

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\rm -w
rm: illegal option -- w
usage: rm [-dfiRr] file ...

8.4.27 rmdir command (removes empty directories)

Syntax

rmdir directory-name ...

Description
This command removes empty directories.

Arguments

directory-name
Specifies a directory that is to be removed.

Return codes
Return code Meaning

0 Normal termination
• Directory removal was successful.

1 or greater Error termination

Notes
• This command does not accept options. If you specify an option as an argument, the option is interpreted as a directory

name.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 822

Examples
• Remove the dir1 directory from D:\temp\dir1.

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir D:\temp\dir1

• Display an error message because you are trying to remove a directory that is not empty.

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir dir8
rmdir: dir8: Directory not empty

• Display an error message when you do not specify a directory to be removed.

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir
usage: rmdir directory ...

8.4.28 sed command (replaces character strings in text)

Syntax

sed [-a] [-E] [-n] [-r] [-u] command [input-file-path-name...]
sed [-a] [-E] [-n] [-r] [-u] [-e command]... [-f script-file-path-name]... [input-
file-path-name...]

Description
This command sends text from a file or the standard input to the standard output with specified character strings replaced.

Arguments

-a
Specifies that if a parsing error occurs in an editing command, no new file is to be created nor is any existing file to
be overwritten (which could otherwise occur unintentionally). This option is used to maintain control over when
the pattern space output file used by the w command or by the s command's w flag is created. The pattern space
output file is created when the w command or the s command's w flag is applied. If the -a option is not specified,
the pattern space output file is created during parsing of the w command or the s command's w flag.

-E|-r
Specifies that any patterns specified in the command are to be handled as extended regular expressions. The -E and
-r options function identically.

-n
Specifies that output of the pattern space to the standard output is to be suppressed. When this option is specified,
output of the pattern space to the standard output will not be performed unless the p or P command is executed.

-u
In Windows, specifies that output buffering of the execution results to the standard output is to be suppressed.
In UNIX, specifies that the execution results are to be buffered on a per-record basis when output to the standard
output.

command|-e command
Specifies a command for editing the input file. More than one -e option can be specified. If you specify more than
one -e option, the commands will be executed in the order they are specified. When the -f option is not used,
command can be specified without the preceding -e option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 823

-f script-file-path-name
Specifies the path name of a script file. The script file contains edit commands for editing the records in the input
file. More than one -f option can be specified. If you specify more than one -f option, or if you specify a
combination of multiple -f and -e options, the execution order of the commands will be the order in which they
were specified.

input-file-path-name
Specifies the path name of an input file to be edited. More than one input file path name can be specified. If no path
name is specified, the standard input is read. If more than one file is specified, each file is opened when processing
of the previous file reaches the end of the file, and reading of input records from the newly opened file begins.

Editing command description format
The following is the description format for an editing command for editing an input file:

[address[,address]] command[arguments]

An address for identifying a record to be retrieved for editing can be specified in address. The address can be a record
line number or a search pattern character string to be used for matching

The editing command to be applied to the retrieved records is specified in command.

Arguments to be passed to the editing command can be specified in arguments.

As each record is read from the input file, it is compared to the line number or search pattern character string specified
in address. If there is a match, the editing specified in the command is performed. If address is omitted, all records will
be retrieved as targets for editing. The results of executing the editing command are output to the standard output.

Addresses
Addresses are used to identify the records from the input file that are to be edited.

• Line number
Specifies a line number, where 1 represents the first record of the input file. You can use the dollar sign ($) to indicate
the last record. If multiple input files are specified, the records are numbered continuously across the multiple files.
Note that if you specify 0 for the line number (or for the starting line number when specifying a range), the editing
command will not be applied to any records.

• Search pattern character string
Specifies a search pattern character string enclosed in forward slashes (/) for finding a matching character string in
the input records. You can specify a regular expression for the search pattern character string. The following is an
example for writing to a specified file the records that contain the character string abc:

/abc/w file

Instead of enclosing the search pattern character string in forward slashes (/), you can use any other single-byte
character (except for \ or an end-of-line character). To use a separator other than the forward slash, specify a \ in
front of the first separator.
The following is an example of changing the separator enclosing the search pattern character string from / to #.

\#abc#w file

• Address range specification
You can use address, address to specify a range of records to be edited. The execution range for the editing command
will begin with the record that matches the first address and conclude with the record that matches the second address.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 824

A range can be specified as follows:

• A range defined by two line numbers

• A range defined by two search pattern character strings

• A range defined by a combination of a line number and a search pattern character string

The following is an example of a range defined by two line numbers (this example writes to outfile the records
in lines 5 through 20):

5,20w outfile

The execution range of the editing command begins with the record whose line number is specified in the first
address and concludes with the record whose line number is specified in the second address.
Note that if the line number specified in the first address is greater than the line number specified in the second
address (first address > second address), only the record corresponding to the line number specified in the first
address will be subject to the editing command.
The following is an example of a range of two search pattern character strings:

/abc/, /xyz/w file

The execution range of the editing command begins with the record that matches the search pattern character string
in the first address through and including the record that matches the search pattern character string in the second
address.
If the search reaches the end of an input file without finding a record that contains the search pattern character string
specified in the second address, the range concludes with the last line of the input file. However, if multiple input
files are specified, the search for a record that matches the search pattern character string specified in the second
address continues in the next input file.
If the first address is a search pattern character string and the second address is a line number and the line number
of the record that matches the search pattern character string is greater than the line number in the second address
(first address > second address), only the record matching the search pattern character string is subject to the editing
command.

Pattern space and hold space
The sed command maintains two workspaces for text editing, called the pattern space and the hold space.

The pattern space stores records that are read from the input file.

The flow of processing in the pattern space is as follows:

1. Reads one record, delimited by the end-of-line code, from the input file.
In Windows, the end-of-line code is [CR] + [LF] or [LF]. In UNIX, the end-of-line code is [LF]. In UNIX, if
the input file uses [CR] + [LF] for the end-of-line code, the [CR] is stored in the pattern space.

2. Copies the contents of the input record into the pattern space.

3. Executes the editing command if the pattern space includes a line number specified in the address or the search
pattern character string matches a character string in the pattern space.
If the command to be executed is the D command and part of the input record remains in the pattern space after the
D command has executed, steps 1 and 2 are skipped.

4. Outputs the contents of the pattern space to the standard output, unless the -n option has been specified.

5. Clears the contents of the pattern space.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 825

The hold space is used as a temporary work area for operations such as saving the contents of the pattern space in the
hold space and then returning the contents of the hold space to the pattern space.

Editing commands
The following editing commands can be used in sed:

[address[,address]]{ command-list}
Creates a group of multiple editing commands that are to be applied to the matched input records. The editing
commands are delimited by an end-of-line character or a semicolon (;). If a right curly bracket (}) is specified on
the same line as the last editing command, there must be a semicolon after the command name.

[address]a\(end-of-line)

text
Outputs the text set in text to the standard output before the next input record is read. To output multiple records,
you must specify \ immediately before each end-of-line character.
In the following example, two records are sent to the standard output before the next input record is read.

a\(end-of-line)
text1\(end-of-line)
text2

[address[,address]]b[label]
Branches to the :label command defined by the specified label label. If label is not specified, branching is to the
end of the script.

[address[,address]]c\(end-of-line)

text
Clears the contents of the pattern space. When no address or a single address is specified, the text expressed in text
is sent to the standard output. When two addresses are specified, the text expressed in text is sent to the standard
output after processing the last record in the selected range. If multiple records are output, you must specify \
immediately before each end-of-line character.
After the pattern space is cleared, the next input record is read and execution restarts from the beginning, without
executing any commands that appear after the c command.

[address[,address]]d
Clears the contents of the pattern space. The contents of the pattern space are sent to the standard output before the
pattern space is cleared. Then the next input record is read and execution restarts from the beginning, without
executing any commands that appear after the d command.

[address[,address]]D
When the pattern space holds multiple records, deletes everything up to the first end-of-line character. The contents
of the pattern space are not sent to the standard output. The next input record is then read and execution restarts
from the beginning, without executing any commands that appear after the D command.
If the pattern space is empty as a result of executing the D command, the next input record is read and execution
restarts from the beginning of the command.

[address[,address]]g
Copies the contents of the hold space into the pattern space. The previous contents of the pattern space are discarded.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 826

[address[,address]]G
Appends the contents of the hold space to the pattern space, separated from the records already stored in the pattern
space by the end-of-line character.

[address[,address]]h
Copies the contents of the pattern space into the hold space. The previous contents of the hold space are discarded.

[address[,address]]H
Appends the contents of the pattern space to the hold space, separated from the records already stored in the hold
space by the end-of-line character.

[address]i\(end-of-line)

text
Sends the text expressed in text to the standard output before storing the current input record in the pattern space.
To output multiple records, you must specify a backslash (\) immediately before each end-of-line character.

[address[,address]]l
Sends the contents of the pattern space to the standard output. For data other than single-byte characters (in the range
0x20 to 0x7e), the space, and multibyte characters, each byte is output as a three-digit octal number preceded by
a backslash (\). The backslash itself is output as \\, and the control codes shown in the following table are output
as escape characters.

Control code Escape character that is output

Alert character (bell) \a

Backspace character \b

Formfeed character (page break) \f

End-of-line character. Note that the end-of-line character at the end of a lone
line (or of the last line in the case of multiple lines) is not output.

\n

Carriage return character \r

Tab character \t

Vertical tab character \v

The value for the output width of a record is determined in the following priority order:

1. Value of the COLUMNS environment variable

2. For output to the console, width of the console screen

3. 60 single-byte characters

The dollar sign ($) is output at the end of each record. If a record exceeds the output width, it is split and a backslash
(\) is set at the split location.

[address[,address]]n
Sends the current contents of the pattern space to the standard output and then reads the next input record from the
input file and stores it in the pattern space. The current line number is incremented by 1. If the -n option was
specified, the current contents of the pattern space are not sent to the standard output.

[address[,address]]N
Reads the next input record from the input file and appends it to the pattern space, separated from the records already
stored in the pattern space by the end-of-line character. The current line number is incremented by 1.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 827

[address[,address]]p
Sends the contents of the pattern space to the standard output.

[address[,address]]P
If the pattern space contains multiple records, outputs the contents only up to the first end-of-line character. If the
pattern space contains only one record, this command is the same as the p command.

[address]q
Terminates processing of the script. No further execution of commands or reading of input records is performed
after this command. Unless the -n option was specified, the contents of the pattern space are sent to the standard
output at the time of termination. In addition, any records that had been added using the a or r command are output.

[address]r path-name
Before reading the next input record, reads the file specified in path-name and outputs its contents to the standard
output. Any errors that occur during input of the file specified in path-name are ignored.
In Windows, end-of-line codes in the file are output as [CR] + [LF].
In UNIX, end-of-line codes in the file are output as is.

[address[,address]]s/pattern/replacement/flags
Substitutes the replacement character string (replacement) for the first character string that matches the pattern
(pattern) in the pattern space. Instead of using a forward slash (/) to separate s, pattern, and replacement, you can
use any single-byte character except for a backslash (\) or the end-of-line character. To include the separator
character within pattern or replacement, it must be preceded by a backslash (\).
You can specify a regular expression for pattern.
The following characters can be used in the replacement character string for the indicated purposes:

• &: The ampersand (&) is replaced by the character string that matches pattern. To handle an & as a character to
be replaced, it must be preceded by a backslash (\).

• \N (where N is a digit from 1 through 9): The \N is replaced by the character string that matches a tagged
regular expression enclosed in parentheses (()) in pattern. The numeric digit (N) specifies the sequential order
of the tagged regular expression to be matched.

• \: To include an end-of-line code, specify backslash (\) immediately before the end-of-line code.

The flags that can be specified in flags include the values shown below. The flags are optional. More than one can
be specified.

N
Only replace the N-th matched pattern in the pattern space.

g
Globally replace all the character strings that match the pattern in the pattern space, not just the first one.

p
If any substitution was made, output the contents of the pattern space to the standard output.

w path-name
If any substitution was made, output the contents of the pattern space to the file specified in path-name. If an
existing file is specified in path-name, the following occurs:
- If the -a option was not specified
Regardless of whether a substitution was made, the prior contents before execution of the sed command are
discarded.
- If the -a option was specified
If a substitution was made, the prior contents before execution of the sed command are discarded.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 828

In Windows, the end-of-line code for the file is output as [CR] + [LF].

[address[,address]]t[label]
Branches to the : (colon) command defined by the specified label (label) if a substitution has been performed by
the s command since the last input record was read or since the previously-executed t command was executed. If
no label is specified, branching is to the end of the script.

[address[,address]] w path-name
Writes the contents of the pattern space to the file specified in path-name. If an existing file is specified in path-
name, the following occurs:

• If the -a option was not specified
Regardless of whether there is a match with the address (address), the prior contents before execution of the
sed command are discarded.

• If the -a option was specified
If there is a match with the address (address), the prior contents before execution of the sed command are
discarded.

In Windows, the end-of-line code for the file is output as [CR] + [LF].

[address[,address]]x
Exchanges the contents of the pattern space and the contents of the hold space.

[address[,address]]y/string1/string2/
Searches the contents of the pattern space and replaces each character string specified in string1 with the character
string specified in string2 (this is a character-by-character replacement, so each character position in string1 is
replaced with the character at the corresponding position in string2).
The number of characters in string1 and string2 must be the same.
To specify an end-of-line character in string1 or string2, specify \n. Instead of using a / to separate y, string1, and
string2, you can use any other single-byte character except for \ or the end-of-line character.

[address[,address]]!command or [address[,address]]!{command-list}
Applies the command, or list of grouped commands, to the records that are not selected by the address (address).

:label
Defines a label for the branch destinations specified in the b and t commands. The : (colon) command itself
performs no processing.

[address]=
Outputs the current line number to the standard output as a single record.

(blank line)
Blank lines are ignored.

#
Indicates a comment. The hash mark (#) and everything following it is treated as a comment. Note that if the first
column of the first record of the script file begins with #n, the -n option is assumed.

Escape characters
The escape characters listed below can be used within an address search pattern, the text portion of the a, c, and i
commands, pattern and replacement character strings of the s command, and the search characters and replacement
characters of the y command.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 829

Escape character Meaning

\a Alert character (bell)

\b Backspace character#1

\f Formfeed character (page break)

\n End-of-line character#2

\r Carriage return character

\t Tab character

\v Vertical tab character

\xhex Character represented by a one- or two-digit hexadecimal value (0 to 9, a to f, A to F)#3

\c Any literal character (for example, \" for ")

\\ A single backslash character

#1
If you specify this in an address search pattern or in the pattern in the s command, it is treated as the \b regular
expression operator. However, if you specify it in a character class enclosed in square brackets ([]), it is treated
as the backspace character.

#2
In Windows, this is output as [CR] + [LF] when specified within the text portion of the a, c, and i commands.

#3
There are values that cannot be specified in a pattern depending on the character encoding at the time of execution.
The values that can be specified for each character encoding are listed below in hexadecimal. Execution terminates
with an error if you specify any other value.

 Shift JIS
0x01-0x80, 0xA0-0xDF, 0xFD-0xFF

 UTF-8
0x01-0xBF, 0xFE-0xFF

 EUC
0x01-0x8D, 0x90-0xA0, 0xFF

 C
0x01-0xFF

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Examples
• Specify the d command to delete the first through third records of the file. The input file is file01.txt.

Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 830

hitachi group03 Fukuoka
HITACHI group04 Hokkaido
HITACHI group05 Ooita
HITACHI group06 Hiroshima

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "1,3d" file01.txt
HITACHI group04 Hokkaido
HITACHI group05 Ooita
HITACHI group06 Hiroshima

• Search for a pattern and then use the i command to add two records before each matched record and the a command
to add one record before each matched record. In addition, use the c command to replace with another record each
record that does not match the search pattern. The script file is scpt01.sed, and the input file is file02.txt.
Contents of scpt01.sed:

/file/{
i\
<FILE-LINE>\
 [FILE-BEGIN]
a\
 [FILE-END]
}
/file/!{
c\
<DIR-LINE>
}

Contents of file02.txt:

The file path used by trace is invalid.
Don't know current directory.
Input asc file is the same as output asc file.
Cannot change directory.
Merging two asc files is started.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt01.sed file02.txt
<FILE-LINE>
 [FILE-BEGIN]
The file path used by trace is invalid.
 [FILE-END]
<DIR-LINE>
<FILE-LINE>
 [FILE-BEGIN]
Input asc file is the same as output asc file.
 [FILE-END]
<DIR-LINE>
<FILE-LINE>
 [FILE-BEGIN]
Merging two asc files is started.
 [FILE-END]

• Replace the first character string that matches a pattern. The input file is file03.txt.
Contents of file03.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 831

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/Hitachi/& Corporation/" file03.txt
Hitachi Corporation Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Group
Hitachi Corporation Okinawa Office Hitachi Group
Hitachi Corporation Fukuoka Office Hitachi Group

• Format the output by replacing character strings that match a pattern. The input file is file04.txt.
Contents of file04.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Hokkaido Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/\(Hitachi \)\(.*\) \(Office\)/\1\3 name: \2/"
file04.txt
Hitachi Office name: Yokohama Hitachi Group
Hitachi Office name: Tokyo Hitachi Group
Hitachi Office name: Okinawa Hitachi Group
Hitachi Office name: Hokkaido Hitachi Group
Hitachi Office name: Fukuoka Hitachi Group

• Replace the second character string that matches a pattern. The input file is file05.txt.
Contents of file05.txt:

Hitachi Yokohama Office Hitachi Group Hitachi Corporation
Hitachi Tokyo Office Hitachi Group Hitachi Corporation
Hitachi Okinawa Office Hitachi Group Hitachi Corporation
Hitachi Fukuoka Office Hitachi Group Hitachi Corporation

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/Hitachi/& Corporation/2" file05.txt
Hitachi Yokohama Office Hitachi Corporation Group Hitachi Corporation
Hitachi Tokyo Office Hitachi Corporation Group Hitachi Corporation
Hitachi Okinawa Office Hitachi Corporation Group Hitachi Corporation
Hitachi Fukuoka Office Hitachi Corporation Group Hitachi Corporation

• Replace all character strings that match a pattern in the records in a specified range. The input file is file06.txt.
Contents of file06.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/g"
file06.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Fukuoka Office Hitachi Group

• Specify the p flag to the s command to output to the standard output the records in which a substitution occurred.
The input file is file07.txt.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 832

Contents of file07.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

Examples of executing the command are given below.
Example output with the -n option

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/gp"
file07.txt
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group

Example output without the -n option

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/gp"
file07.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Fukuoka Office Hitachi Group

• Specify the w flag to the s command to output to a file the records in which a substitution occurred. The input file
is file08.txt.
Contents of file08.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/gw dir\
\out.txt" file08.txt
C:\DIR>%ADSH_OSCMD_DIR%\cat dir\out.txt
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group

• Output to a file the records not found within a specified range. The input file is file09.txt.
Contents of file09.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Hokkaido Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>sed -n "/Tokyo/, /Okinawa/!w dir\\out.txt" file09.txt
C:\DIR>cat dir\out.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

• Use the y command to substitute characters. The input file is file10.txt.
Contents of file10.txt:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 833

a b c d e a b c
e d c b a

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "y/abcde/12345/" file10.txt
1 2 3 4 5 1 2 3
5 4 3 2 1

• Output to the standard output the records that match a search pattern and their line numbers. Because the first record
of the script file begins with #n, records that do not match the search pattern are not output. The script file is
scpt02.sed, and the input file is prog01.awk.
Contents of scpt02.sed:

#n
/ print/{
=
p
}

Contents of prog01.awk:

BEGIN{
 print "Extract record : group03 - group06" > "file06.txt"
}
/group03/, /group06/{#
 count++;
 print >> "file06.txt";

}
END{
 printf "total record : %03d\n", count >> "file06.txt"
}

#
The processing target begins with the record that matches group03 and concludes with the record that matches
group06.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt02.sed prog01.awk
2
 print "Extract record : group03 - group06" > "file06.txt"
6
 print >> "file06.txt";
10
 printf "total record : %03d\n", count >> "file06.txt"

• Use the 1 command so that unprintable and escape characters will be visible in the output. The input file is
file11.txt.
Contents of file11.txt:

Hitachi(tab)Yokohama\Office(tab)HitachiGroup
Hitachi(tab)Tokyo\Office(tab)HitachiGroup
Hitachi(tab)Fukuoka\Office(tab)Hitachi(0x12)#Group

#
1 byte of data.

The results of executing the command are as follows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 834

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "l" file11.txt
Hitachi\tYokohama\\Office\tHitachiGroup$
Hitachi\tTokyo\\Office\tHitachiGroup$
Hitachi\tFukuoka\\Office\tHitachi\022Group$

• Read the contents of the file specified by the r command at the location of the record that matches the search pattern,
and then use the d command to delete the record that matches the search pattern. The script file is scpt03.sed,
and the input files are prog02.awk and header.txt.
Contents of scpt03.sed:

/^<Header>/{
r header.txt
d
}

Contents of prog02.awk:

###
<Header>
###
BEGIN{
 str = "Hitachi#YokohamaOffice#HitachiGroup"
 num = split(str, arry, "#")
 for (i = 1; i <= num; i++) {
 print arry[i]
 }
}

Contents of header.txt:

Sample program
Hitachi group list

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt03.sed prog02.awk
###
Sample program
Hitachi group list
###
BEGIN{
 str = "Hitachi#YokohamaOffice#HitachiGroup"
 num = split(str, arry,"#")
 for (i = 1; i <= num; i++) {
 print arry[i]
 }
}

• Extract blocks of records from a file. The script file is scpt04.sed, and the input file is file12.txt.
Contents of scpt04.sed:

/^Error01/{
:LOOP
 n#1
 /Error/{
 /^Error01/b LOOP#2
 /^Error01/!d
 }
 b LOOP#2
}
d

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 835

#1
This outputs the current contents of the pattern space to the standard output and then reads the next record.

#2
This branches to the LOOP label to execute the n command to read the next record.

Contents of file12.txt:

Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.
Error02002
Asc file name size is exceeded limits
for batch coverage function.
Error01004
Failed to get the current time.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt04.sed file12.txt
Error01001
The file path used by trace is invalid.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.
Error01004
Failed to get the current time.

• Use the q command to terminate the script after reading a record that matches the pattern. The input file is
file13.txt.
Contents of file13.txt:

Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Error01002/q" file13.txt
Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 836

C:\TEMP>%ADSH_OSCMD_DIR%\sed -x
sed: illegal option -- x
usage: sed [-aEnru] command [file ...]
 sed [-aEnru] [-e command] ... [-f command_file] ... [file ...]

8.4.29 sleep command (stops for a specified period of time)

Syntax

sleep seconds

Description
This command suspends execution for a specified period of time.

Arguments

seconds
Specifies the amount of time in seconds that execution is to be suspended. If a non-numeric value is specified, the
command's usage is displayed.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Examples
• Suspend execution for five seconds.

C:\TEMP>%ADSH_OSCMD_DIR%\sleep 5

• Show what happens if a non-numeric value is specified for seconds.

C:\TEMP>%ADSH_OSCMD_DIR%\sleep poipoi
usage: sleep seconds

8.4.30 sort command (sorts text files)

Syntax

sort [-c|-m] [-b] [-f] [-n] [-r] [-u] [-z]
 [-k start-position[, end-position]] [-o output-path-name]
 [-T temporary-file-directory] [-t field-delimiter]
 [input-path-name ...]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 837

Description
This command reads input from files or from the standard input and performs one of the following operations, then
sends the results to the standard output:

• Sort

• Merge

• Check whether the input is already sorted

Arguments

Specifying the operation
If no operation is specified, the default is to sort. The -r option specifies whether items are to be sorted in ascending
or descending order.

-c
Specifies that a single specified file is to be checked to determine if it is already sorted. This check functionality
determines whether a specified file is already correctly sorted.
If the file is in sorted order, the command terminates with a return code of 0. If the file is not in sorted order, the
command outputs a message (sort: found disorder: field-contents) to the standard error output and
terminates with a return code of 1.
Specifying more than one file when this option is specified results in an error (sort: too many input
files for the -c option). This option takes precedence when it is specified at the same time as any
other option except for the -u option. Specifying this option more than once does not result in an error.
If this option is not specified, the default operation is to sort.

-m
Specifies that input files are to be merged (and assumes that they are already sorted). The -m option is ignored
if it is specified at the same time as the -c option. Specifying this option more than once does not result in an
error.
If this option is not specified, the default operation is to sort.

Input and output specifications
-o output-path-name

Specifies a destination for the output when the output is not to be sent to the standard output.
The output file is created if it does not already exist. In UNIX, the permissions for a newly created file are set
according to the umask.
If the file already exists, the sort command first sends the output to a temporary file, then renames the temporary
file to the output file, which overwrites the original file. The temporary output file is created in the same directory
as the input files. In UNIX, the permissions for the file are reset according to the umask.
If this option is specified more than once, the last specification takes effect.
In UNIX, the standard output is used when specifying /dev/stdout for the output destination path name
(describe /dev/stdout with lower case letters in Windows).
If you specify a hard link or a symbolic link for the destination path name, the link is deleted and a new file is
created.

-T temporary-file-directory
Specifies the directory to be used internally by the sort command for creating temporary files.
A temporary file is a work file that is used for sort and merge operations that cannot be performed entirely in
memory.
If this option is specified more than once, the last specification takes effect.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 838

If this option is omitted, the following directory is used:
Windows: common-application-data-folder\HITACHI\JP1AS\misc
UNIX: Directory specified in the TMPDIR environment variable (/var/tmp if the TMPDIR environment
variable is not defined)

input-path-name
Specifies an input file. If this option omitted or specified as -, the standard input is read as the input. The standard
input is also read when /dev/stdin (also written as lowercase /dev/stdin in Windows) is specified.

Sort key specifications
-b

Specifies that leading spaces are to be ignored in determining the start and end positions of a sort key specified
with the -k option. The -b option is valid when a sort key is specified with the -k option. The -b option cannot
be specified after the -k option.

-f
Specifies that lowercase letters are not to be distinguished from uppercase letters for purposes of sorting.
Specifying this option more than once does not result in an error.

-n
Specifies numeric sorting, with the initial numeric character string in each line handled as a number.
The -n option takes precedence over the -f option. This option can be specified multiple times.
Numeric values are handled as follows.
- A numeric value is a character string composed of the ASCII characters 0 (0x30) through 9 (0x39).
- Leading whitespaces (0x20 and 0x09) and zeros (0x30) are ignored.
- A minus sign (0x2d) is allowed to precede a numeric value.
- No more than one decimal point can be specified.
- A numeric value can include a digits grouping character in the integer portion.
- The decimal point and the digits grouping character in the integer portion depend on the locale. Typically, the
period (.) is used as the decimal point, and the comma (,) is used as the digits grouping character.
- Anything other than a numeric character string is treated as 0.
- Do not specify for a sort key a numeric value that consists of more than 61 digits in the integer or more than
61 digits following the decimal point in a decimal value.

-r
Specifies sorting in descending order. If this option is not specified, the default is sorting in ascending order.
This option can be specified multiple times.

Specifying the field separator
-t field-delimiter

Specifies the field delimiter. The field delimiter is not considered part of the field in determining the offset for
the sort key. Consecutive field delimiters denote an empty field between them. You cannot specify the same
character for the record delimiter.
If the -t option is omitted, fields are delimited by one or more consecutive whitespaces (consecutive spaces do
not denote an empty field between them). Leading spaces are considered part of the field in determining the
offset for the sort key.
If you specify more than one character for the field delimiter or if you specify a multibyte character, only the
initial byte is used as the field delimiter (which cannot be the same byte value as the record delimiter).
If -t is specified but no field delimiter value is specified, the option or file name that follows immediately will
be interpreted as the field delimiter during processing. To prevent this from happening, you must make sure to

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 839

specify a delimiter. It is an error to specify this option multiple times (sort: multiple field-
delimiters).

Specifying a sort key
-k start-position[, end-position]

Specifies the start and end positions of the sort key. If you specify more than one sort key, then all lines with the
same value for the first sort key can be distinguished on the basis of the next sort key.
If start-position is greater than end-position, or if a specified field does not exist, the command assumes that no
sort key is specified and all comparisons against this sort key are considered to be the same.
Specify start-position and end-position in the following format:

field-position[.indent][bfnr]

- field-position
Specifies the position of the field in the record. It is an error to specify a non-numeric value (sort: missing
field number) or a negative value (sort: field numbers must be positive).
You cannot specify 0 for the start position.
If you specify 0 for the end position, the sort key is considered to extend to the end of the record.
The maximum value that can be specified for field-position is the maximum value for the int type (overflow
will occur if you specify a greater value).
If you specify 0 for the field position of an end position, you cannot specify the indent described below.
- indent
Specifies an offset within the field. It is an error to specify a non-numeric or a negative value (sort: missing
offset).
The unit for the offset indentation is bytes. If the middle of a multibyte character is specified, evaluation occurs
from that byte position.
You cannot specify 0 for the indent of the start position.
If you specify 0 for the indent of the end position, it is treated as though no indent were specified.
The maximum value that can be specified for indent is the maximum value for the int type (overflow will occur
if you specify a greater value).
If you omit indent in start-position, the default is the first byte position of the field.
If you omit indent in end-position, the default is the last byte position of the field.
- Sort key options
Specifies the b, f, n, or r option for sorting.
The b option ignores leading spaces in determining the start or end position.
The f option does not distinguish between lowercase and uppercase letters in sorting.
The n option sorts numerically, treating the initial numeric character string in each line as a number.
The r option sorts in descending order.
The b option specified in start-position is valid only for start-position, and the b option specified in end-position
is valid only for end-position. If no indent is specified in end-position, specification of the b option is disabled.
For the options other than b, it does not matter whether they are specified for start-position or end-position (they
function the same regardless of where they are specified.

Other specifications
-u

Specifies that when multiple records have the same sort key value, only one of them is to be output. If the -u
option is specified at the same time as the -c option, a check is performed for whether there are records with
the same sort key value. Specifying this option more than once does not result in an error.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 840

-z
Specifies that the record delimiter is to be changed to NULL (0x00). It is an error to specify this option more
than once (sort: multiple record delimiters).
In Windows, end-of-line codes are removed from the input data when the input is read and then are added back
during output. For this reason, binary files must not be used as the input.

Sort function
Sorting works by reading one or more input files and running comparisons against one or more sort keys. The -k option
is used to specify fields as sort keys. The -t option is used to specify a field delimiter for separating each record into
fields.

If no sort key is specified, the entire record is considered to constitute the sort key. Sort keys are compared on a byte-
by-byte basis.

If there are multiple sort keys, the first sort key specified is compared. If a match is found, the next sort key is compared,
and comparing of sort keys continues until no match is found.

If there is a match on all the sort keys, the entire record is then compared byte-by-byte. Output is produced in ascending
order with the -r option or in descending order without the -r option.

Sort key options
Two types of options apply to sort keys. When you specify one or more keys, for each global option that can be enabled,
there is a corresponding local option that can be specified within the -k option. The -fnrb options are specified for
the sort command globally. There are also corresponding local versions of the fnbr options that are specified within
the -k option to the sort command. The global options cannot be specified after the -k option.

b
This option is enabled globally for both the start position and the end position specified in the -k option. However,
it is disabled for the end position if no indent is specified for the end position or if an indent of 0 is specified for the
end position.
The -b option is valid only when the -k option is specified.

f | n | r
When any of these options is specified locally, the local specification replaces the global specifications for the
applicable field.

The following example illustrates global options:

-bfnr -k 1,1 -k 2,2

In this case, the -bnfr options are enabled for both the first and second fields. They are applied to the first and second
fields as follows:

• -b option: Ignores leading blanks when determining the position of the sort key.

• -f option: Does not distinguish between lowercase and uppercase letters when sorting; this is disabled if the -n
option is specified.

• -n option: Sorts numerically, handling the initial numeric character string in each line as a number.

• -r option: Sorts in descending order.

The following examples illustrate the range of sort keys when the global -b option is not specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 841

-k 1
The sort key extends from the first field through the end of the record.

-k 1,1
The sort key is the entire first field.

-k 1,5
The sort key extends from the initial byte of the first field through the final byte of the fifth field.

-k 1.2,5.11
The sort key extends from the second byte of the first field through the eleventh byte of the fifth field.

-k 2,1
No sort key applies, because the fields are specified in reverse order, from the second to the first.

-k 2.1b, 5.1b
The sort key extends from the first byte (excluding leading whitespaces) of the second field through the first byte
(excluding leading whitespaces) of the fifth field.

-k 2.1b, 5.0b
The sort key extends from the first byte (excluding leading whitespaces) of the second field through the final byte
of the fifth field.

Merge function
The merge function aligns and integrates the input data by comparing the records of each pre-sorted input file. Even if
the input files are not actually sorted, merging proceeds on the assumption that they are sorted. The example below
illustrates merging of file1 and file2, whose contents are as follows:

file1
AAA
DDD

file2
BBB
AAA

The following command will merge file1 and file2:

sort -m file1 file2

The file will be as follows:

AAA (1st line of file1) <-- Result of comparing 1st line of file1 to 1st line
of file2
BBB (1st line of file2) <-- Result of comparing 2nd line of file1 to 1st line
of file2
AAA (2nd line of file2) <-- Result of comparing 2nd line of file1 to 2nd line
of file2
DDD (2nd line of file1) <-- 2nd line of file1, because no 3rd line in file2

Option to not distinguish between lowercase and uppercase (-f option)
In the examples below, the following input records are sorted:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 842

file1
a:B
A:b

Sort with lowercase and uppercase letters distinguished:

$ sort -t : -k 2,2 file1

The sort key is set to the second field, which is delimited by :.

The following is the output of sorting with lowercase and uppercase letters distinguished:

a:B
A:b

Because B is smaller than b, a:B is output first.

Sort without distinguishing between lowercase and uppercase letters:

$ sort -f -t : -k 2,2 file1

In this case, the -f option is specified.

The following is the output of sorting without distinguishing between lowercase and uppercase letters:

A:b
a:B

In this case, the second fields are regarded to be the same value because they are compared without distinguishing
between lowercase and uppercase, as specified by the -f option. Because the sort key values are the same, the
records are compared byte-by-byte in their entirety. As a result, since A is smaller than a, A:b is output first.

Return codes
Return
code

Meaning

0 Normal termination

1 Normal termination
• The input data is not sorted (when the -c option is specified).
• Duplicated key values exist (when the -c and -u options are specified).

2 Error termination

Notes
• If processing cannot be carried out in memory, it is performed using a temporary file. If the system runs out of disk

space in the course of using the temporary file, the following error message is output:

sort: fwrite: No space left on device

If you receive this message, use the -T option to specify a disk with sufficient free space.

• If you interrupt execution of the sort command, the temporary file might remain in the directory containing the
output file that was specified with the -o option. In such a case, it must be deleted manually. Similarly, in cases
where the -o option is omitted, the temporary file might remain and will have to be deleted manually.

• References to whitespaces in the sort command include the tab character (\t) as well as the space character (0x20).
Also, when the -z option is specified, \n (end-of-line) is also considered to be a whitespace.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 843

• When the record delimiter is missing from the last record of the input file, the result of the sort or merge operation
is output with the record delimiter appended.

• Processing can be carried out with the output end-of-line codes [CR] + [LF] or [LF], but in the case of UNIX,
the [CR] is treated as data. Regardless of the format of the end-of-line codes in the input file, the output results will
follow the end-of-line code conventions of the platform.

• If a record cannot be accommodated, memory expands so that is can be stored. An error results if sufficient memory
cannot be allocated.

• The size of the sort buffer is 16 megabytes. If this amount of space is not adequate, a temporary file is created.
Therefore, this command is not recommended for sorting large amounts of data.

• If the sort command is cancelled during processing because sort or merge processing cannot be performed only
in memory, a temporary file with the name shown below might remain. Delete such a temporary file manually.

In Windows:
sortuuuu.tmp (uuuu: any hexadecimal character string)

In UNIX:
sortppppp.XXXXXX (ppppp: process ID consisting of five or more digits; XXXXXX: any character string
consisting of six characters)

• If the -o option is specified and the sort command processing is cancelled, an intermediate file with the name
shown below might remain. Delete such a temporary file manually.

In Windows:
first-three-characters-of-the-output-destination-path-nameuuuu.tmp (uuuu: any hexadecimal character string)

In UNIX:
output-destination-file-namepppppXXXXXX (ppppp: process ID consisting of five or more digits; XXXXXX: any
character string consisting of six characters)

• If multiple sort commands with the same output destination path name specified in the -o option are executed
concurrently, they might terminate with an error. In such a case, the operation cannot be guaranteed.

Examples
The following shows the format of the files used in the examples below to illustrate the results of executing the sort
command.

• file1

yyyy:101
tttt:8
ppppppp:14

• file2

cccccc:101
ggggg:31
rrrrrrrr:5
mmmmmmm:14

The files listed above are used as input files in the following examples.

• Combine and sort the two text files.

$ sort file1 file2
cccccc:101
ggggg:31

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 844

mmmmmmm:14
ppppppp:14
rrrrrrrr:5
tttt:8
yyyy:101

• Sort the two combined text files in descending order based on the numeric portion.

$ sort -t: -n -r -k 2 file1 file2
yyyy:101
cccccc:101
ggggg:31
ppppppp:14
mmmmmmm:14
tttt:8
rrrrrrrr:5

• Merge three files, using the first field as the sort key.

$ cat s1.txt
AAA s1
DDD s1

$ cat s2.txt
BBB s2
AAA s2

$ cat s3.txt
CCC s3
111 s3

$ sort -m -k 1,1 s1.txt s2.txt s3.txt
AAA s1
BBB s2
AAA s2

CCC s3
111 s3

DDD s1

$

• Sort data for which the keys are the same.

$ cat zr1.txt
aaa:999
$ cat zr2.txt
bbb:999

$ sort -k 2,2 -t : zr2.txt zr1.txt

aaa:999
bbb:999
$

• Sort the first field numerically and the second field as a character string.

• Input command

sort -t : -k 1n, 1 -k 2,2

• Input data

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 845

0010:aaa
10:AAA
-1:aaa
-1.00:ZZZ
1:zzz

• Execution results

-1.00:ZZZ
-1:aaa
1:zzz
10:AAA
0010:aaa

• Sort from the beginning of the third field through the end of the line without distinguishing between lowercase and
uppercase, and secondarily with the second field in descending order. In this example, because the second field is
specified with a local option, it does not inherit the global options, so lowercase is distinguished from uppercase in
the second field.
Input command

sort -t : -f -k 3 -k 2,2r

Input data

aaa:aaa:cccc
aaa:AAA:cccc
aaa:aaa:AAAA
aaa:AAA:aaaa
aaa:aaa:BBBB
aaa:AAA:bbbb

Execution results

aaa:aaa:AAAA
aaa:AAA:aaaa
aaa:aaa:BBBB
aaa:AAA:bbbb
aaa:aaa:cccc
aaa:AAA:cccc

• Display an option error message.
Windows example

C:\TEMP>%ADSH_OSCMD_DIR%\sort -w
sort: illegal option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

Linux example

$ sort -w
sort: invalid option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

AIX example

$ sort -w
sort: illegal option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 846

• Display the message that is output when you specify a directory for the input file.

$./sort dir01
sort: dir01: Is a directory

• Display the message that is output when you specify a nonexistent file as an input file.

$./sort xxxx
sort: xxxx: No such file or directory

• Display the message that is output when you specify a temporary file directory that does not exist.
Windows example

C:\TEMP>%ADSH_OSCMD_DIR%\sort -mTxxx s0.txt s0.txt s0.txt s0.txt s0.txt s0.t
xt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
sort: xxx\sort: The directory name is invalid.

Linux example

$./sort -mT xxxx s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt
sort: xxxx/sort.SDm1yr: No such file or directory

AIX example

$./sort -mT xxxx s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt
sort: xxxx/sort.XXXXXX: No such file or directory

• Display the message that is output when you specify an invalid field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k xx
sort: missing field number

• Display the message that is output when you specify an invalid field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k 0 s0.txt
sort: field numbers must be positive

• Display the message that is output when you specify an invalid indent for the field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k 1.0 s0.txt
sort: illegal offset

8.4.31 split command (splits a file)

Syntax

split [-a suffix-length]
 [-b num-bytes [k|m]|-l num-lines] [input-path-name [prefix]]

Description
This command splits the contents of a file or of the standard input into segments and outputs the segments to separate
files.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 847

Arguments

-a suffix-length
Specifies the length of the suffix that is to be appended to the resulting file names after the input file is split.
Specify a value in the range 1 to 254. An error results if you specify a value outside this range (split: specified-
value: too small or split: specified-value: too large) or you specify a non-numeric value (split:
specified-value: invalid). The default is 2. If this option is specified multiple times, the last specification takes
effect.

-b num-bytes [k|m]
Specifies in bytes the data size for each output file. If you specify both this option and the -l option, the command
displays usage information and terminates.

• k: Specifies that the specified value is in kilobytes (1k = 1,024 bytes).

• m: Specifies that the specified value specified is in megabytes (1m = 1,048,576 bytes).

If this option is specified multiple times, the last specification takes effect.

-l num-lines
Specifies the number of lines for each output file. If you specify both this option and the -b option at the same time,
the command displays usage information and terminates. If the -b and -l options are both omitted, the default
value of 1000 (lines) is used.

input-path-name
Specifies the name of the input file. If this option is omitted, the standard input is read as the input.

prefix
Specifies a prefix for each file name after the split.
The file names of the output files after the split are constructed as follows:
prefix+suffix
If a prefix is specified, that character string is used. If no prefix is specified, x, y, and z are used in succession.
The suffix value is a character string consisting of lowercase alphabetic letters (a to z) of the length specified in
suffix-length. Suffixes are created automatically, incrementing in alphabetical order.
For example, if the suffix length is set at two bytes, the suffix for the first file will be aa, and the successive files'
suffixes will be ab, ac, ..., az, ba, bb,

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• The input file will be overwritten if an output file has the same name. You can prevent this by specifying a prefix

that will differentiate the output files from the input file, or else you can move the input file to a directory other than
the current directory.

• If not enough file names can be generated to accommodate the split files, the command will terminate with an error
(split: too many files). However, the files that were created are not deleted. In such a case, either increase
the suffix-length value or increase the value of num-bytes or num-lines.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 848

• If the length of the file name obtained after split processing exceeds the system's maximum value, the command
outputs the following message and results in an error.
In Windows:

split : file-name : No such file or directory

In UNIX:

split : file-name : File name too long

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Examples
• Split the file test1.txt into two-line segments.

$ ls
test1.txt
$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ split -l2 test1.txt
$ ls
test1.txt xaa xab xac xad xae
$ cat xaa
0001:test1.txt
0002:test1.txt
$ cat xab
0003:test1.txt
0004:test1.txt
$ cat xac
0005:test1.txt
0006:test1.txt
$ cat xad
0007:test1.txt
0008:test1.txt
$ cat xae
0009:test1.txt
0010:test1.txt
$

• Split the file test1.txt into 40-byte segments.

$ ls
test1.txt
$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 849

0009:test1.txt
0010:test1.txt
$ split -a 5 -b 40 test1.txt new
$ ls
newaaaaa newaaaab newaaaac newaaaad test1.txt
$ cat newaaaaa
0001:test1.txt
0002:test1.txt
0003:test1$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\split -z
split: illegal option -- z
usage: split [-a suffix_length]
 [-b byte_count[k|m] | -l line_count] [file [name]]

8.4.32 stat command (outputs the statuses of files and directories to the
standard output)

Syntax

stat [-L] [-c format] [-t] path-name ...

Description
This command outputs file or directory statuses to the standard output. If a symbolic link file is specified for path-
name, the command displays the status of the symbolic link file without using the link.

Arguments
-L

--dereference
Specifies that if a symbolic link file is specified for path-name, the command is to display the status of the file or
directory at the link destination.

-c format

--format=format
Specifies the format in which the status of a file or directory is to be displayed . For format, you can specify a format
specification code and any character string. For details about the display formats and format specification codes
when this option is specified, see Unique display format in Display formats. If an unsupported format specification
code is specified, the command outputs a warning message to the standard error output and a question mark (?) to
the standard output, and then resumes the subsequent processing.
If this option is specified together with the -t option, this option takes effect.

-t

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 850

--terse
Specifies that the information is to be displayed in the concise format. For details about the concise display format,
see Concise display format in Display formats.

path-name
Specifies the name of a file or a directory whose status is to be displayed.
If multiple path names are specified, file or directory statuses are displayed vertically. If the command is executed
with multiple path names specified and the status display fails even for one of the files or directories, the command
terminates with return code 1.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Display formats
The three file information display formats are the normal display format, the concise display format, and the unique
display format. The display format to be used depends on the options specification.

Normal display format

This is the display format used when no option is specified. The following file information is displayed with the indicated
labels:

Output information Label

Quoted file name
For a symbolic link, the reference target of the symbolic link is also displayed.

File:

Total size Size:

Number of allocated blocks Blocks:

Optimum block size for file system I/O operations IO Block:

File type
For details about the information that is displayed, see Information displayed as file types in Display formats.

-

Device number
This information is displayed in the format device-number-in-hexadecimal-h/device-number-in-decimal-d.
Nothing is displayed for non-device files.

Device:

Inode number Inode:

Number of hard links Links:

Device file type
This information is displayed in the format major-device-number,minor-device-number. Nothing is displayed for
non-device files.

Device type:

Permissions
This information is displayed in the format permissions-in-octal/permissions-character-string.

Access:

Owner's user information
This information is displayed in the format owner's-user-ID/owner's-user-name.

Uid:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 851

Output information Label

Owner's group information
This information is displayed in the format owner's-group-ID/owner's-group-name.

Gid:

File's most recent access date and time Access:

File's most recent modification date and time Modify:

Most recent date and time file information was changed Change:

Legend:
-: Displayed without a label.

Concise display format

This is the display format used when the -t option is specified. The following information is displayed sequentially
separated by the space.

• File name

• Total size

• Number of allocated blocks

• raw mode in hexadecimal

• Owner's user ID

• Owner's group ID

• Device number in hexadecimal

• Inode number

• Number of hard links

• Major device number

• Minor device number

• File's most recent access date and time (number of seconds since the epoch)

• File's most recent modification date and time (number of seconds since the epoch)

• Most recent date and time file information was changed (number of seconds since the epoch)

• Optimum block size for file system I/O operations

Unique display format

This is the display format used when the -c option is specified. You can specify a unique display format by combining
format specification codes and any character strings. Also, format specification code % can be followed by a flag
character, field width, and precision.

• Format specification codes
The following table lists and describes the supported format specification codes:

Format
specification
code

Meaning

%a Permissions in octal
In Windows, only the owner's permissions are displayed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 852

Format
specification
code

Meaning

%A Permissions character string
In Windows, only the owner's permissions are displayed.

%b Number of allocated blocks
In Windows, 0 is always displayed.

%B Size of one block (bytes)
In Windows, 0 is always displayed.

%d Device number in decimal
In Windows, a drive number is displayed, but the display varies in the following cases:
• For paths whose full path has no colon (:) after the drive letter

The command displays - as the device number and then resumes the subsequent processing.
• If the device number acquisition processing results in an error

The command outputs a warning message to the standard error output, displays a question mark (?) as the device
number, and then resumes the subsequent processing.

%D Device number in hexadecimal
In Windows, a drive number is displayed, but the display varies in the following cases:
• For paths whose full path has no colon (:) after the drive letter

The command displays - as the device number and then resumes the subsequent processing.
• If the device number acquisition processing results in an error

The command outputs a warning message to the standard error output, displays a question mark (?) as the device
number, and then resumes the subsequent processing.

%f raw mode in hexadecimal
In Windows, only the owner's permissions are displayed.

%F File type
For details about the information that is displayed, see Information displayed as file types in Display formats.

%g Owner's group ID
In Windows, 0 is always displayed.

%G Owner's group name
In Windows, an ellipsis (...) is always displayed.
In UNIX, if the owner's group name cannot be acquired, the command displays the owner's group ID and then resumes
the subsequent processing.

%h Number of hard links

%i Inode number
In Windows, 0 is always displayed.

%n File name

%N File name enclosed in quotation marks
For a symbolic link, the name of the referenced file is also displayed.
If the command fails to get a reference file name, the command outputs a warning message to the standard error output,
and then continues the subsequent processing without displaying the reference file name.

%o Optimum block size for file system I/O operations
In Windows, 0 is always displayed.

%s Total size (bytes)
In Windows, 0 is always displayed as the total size of directories.
In UNIX, 0 is always displayed as the total size of device files.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 853

Format
specification
code

Meaning

%t Major device number in hexadecimal
In Windows, 0 is always displayed.

%T Minor device number in hexadecimal
In Windows, 0 is always displayed.

%u Owner's user ID
In Windows, 0 is always displayed.

%U Owner's user name
In Windows, if the owner's user name cannot be acquired, the command displays an ellipsis (...), and then resumes
the subsequent processing.
In UNIX, if the owner's user name cannot be acquired, the command displays the owner's user ID, and then resumes
the subsequent processing.

%x File's most recent access date and time
In Windows, the file's most recent modification date and time is displayed.
If the command fails to display the file's most recent access date and time, the command outputs a warning message
to the standard error output, displays a question mark (?) as the file's most recent access date and time, and then resumes
the subsequent processing.

%X File's most recent access date and time
Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the file's most recent access date and time.
In Windows, the file's most recent modification date and time is displayed.

%y File's most recent modification date and time#

If the command fails to display the file's most recent modification date and time, the command outputs a warning
message to the standard error output, displays a question mark (?) as the file's most recent modification date and time,
and then resumes the subsequent processing.

%Y Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the file's most recent modification date and
time

%z Most recent date and time file information was changed#

In Windows, the file's most recent modification date and time is displayed.
If the command fails to display the most recent date and time file information was changed, the command outputs a
warning message to the standard error output, displays a question mark (?) as the most recent date and time file
information was changed, and then resumes the subsequent processing.

%Z Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the most recent date and time the file was
changed.
In Windows, the file's most recent modification date and time is displayed.

%% Percent symbol (%)

#
The following format is used for display of file's most recent access date and time, file's most recent modification
date and time, and most recent date and time file information was changed:
YYYY-MM-DD hh:mm:ss.nnnnnnnnn +/-hhmm

 YYYY: Calendar year
 MM: Month
 DD: Date
 hh: Hour
 mm: Minute
 ss: Second

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 854

 nnnnnnnnn: Date and time less than one second. 000000000 is always output.
 +/-hhmm: Time zone (time differential from UTC)

• Flag characters
You can specify (or omit) the following flag characters following the % format specification code:

Flag character Description

Prefixes with 0 an octal number other than 0.
Prefixes with 0x a hexadecimal number other than 0.

- Left-aligns the output character strings in fields.

+ Always displays a symbol (+ or -) indicating a positive or negative numeric value.
This specification is ignored for file information that is defined as unsigned integers.

space Displays a space before a positive number for file information that is defined as signed integers.
If this flag character is specified together with +, + takes effect.

0 Pads the leading part of fields with zeros, not spaces.

• Field width
You can define a minimum field width by specifying a numeric value following the % format specification code or
flag character. The permitted range for field width is from 0 to 2147483647. The field width can be omitted.

• Precision
You can define a period (.) and one of the numeric values listed below following the % format specification code
or flag character. The precision range is from 0 to 2147483647 in UNIX and from 0 to 512 in Windows. The
precision can be omitted.

• If the file information is a character string
The maximum length to be displayed is defined.

• If the file information is a numeric value
The minimum number of digits is defined.

Information displayed as file types

The following table lists the file types that are displayed and their meanings:

File type Meaning

regular file Regular file

directory Directory

symbolic link Symbolic link

fifo FIFO (UNIX only)

socket Socket (UNIX only)

block special file Block special file (UNIX only)

character special file Character special file (UNIX only)

unknown file Unknown file (other than the above) (UNIX only)

Notes
• In Windows, a file other than normal file, directory or symbolic link is handled as a regular file or directory.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 855

In UNIX, a file other than a regular file, directory, symbolic link, FIFO, socket, block special file, or character special
file is handled as an unknown file.

• In Windows, the time zone set in the Date and Time control panel is used to display the date and time. The value
of the TZ environment variable has no effect.
Note that the value of the TZ environment variable and the time zone set in the Date and Time control panel are
used to display the time zone. For this reason, you must ensure that the value of the TZ environment variable and
the time zone set in the Date and Time control panel are the same. If they differ, the correct time zone will not be
displayed for a file's most recent access date and time, a file's most recent modification date and time, and the most
recent date and time file information was updated.

• In UNIX, the default block size is 512 bytes. You can change the block size with the BLOCKSIZE environment
variable.
The permitted value range for the BLOCKSIZE environment variable is from 512 to 1G (1,024 1,024 1,024).
If the specified value is outside this range, the command handles it as described below, outputs a warning message
to the standard error output, and then performs the subsequent processing:

• If a value smaller than 512 is specified in the BLOCKSIZE environment variable
The block size is set to 512 bytes.

• If a value greater than 1G (1,024 1,024 1,024) is specified in the BLOCKSIZE environment variable
The block size is set to 1G (1,024 1,024 1,024).

If you use the BLOCKSIZE environment variable to change the block size, specify a multiple of 512. If the specified
value is not a multiple of 512, the remainder will be discarded. For example, if a size of 1,500 bytes is defined, the
block size will be treated as being 1,024 bytes.
You can specify following the numeric value a size character indicating a multiple, such as G (1,024 1,024
1,024), M (1,024 1,024), or K (1,024). If any value other than a numeric value and size character is specified, the
command will assume 512 bytes as the block size, output a warning message to the standard error output, and then
resume the subsequent processing.

• In Solaris, the total number of blocks including indirect blocks is displayed as the number of allocated blocks for
files in a directory. If there are hard-linked files, the number of allocated blocks will not display correctly.

Examples
• Display a file's status in the normal display format.

In Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\stat .\test.txt
 File: `.\test.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 10:31:28.000000000 +0900
Modify: 2014-02-20 10:31:33.000000000 +0900
Change: 2014-02-20 10:31:28.000000000 +0900

In UNIX:

$ stat ./test.txt
 File: `./test.txt'
 Size: 4 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 688407 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ user1) Gid: (502/ group1)
Access: 2014-02-11 18:35:52.000000000 +0900
Modify: 2014-02-11 18:35:52.000000000 +0900
Change: 2014-02-18 16:08:39.000000000 +0900

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 856

• Display a file's size only.

C:\TEMP>%ADSH_OSCMD_DIR%\stat -c %s .\test.txt
7

• Display the statuses of multiple files.

C:\TEMP>%ADSH_OSCMD_DIR%\stat .\test.txt .\test1.txt
 File: `.\test.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 10:31:28.000000000 +0900
Modify: 2014-02-20 10:31:33.000000000 +0900
Change: 2014-02-20 10:31:28.000000000 +0900
 File: '.\test1.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 14:34:01.000000000 +0900
Modify: 2014-02-20 14:34:01.000000000 +0900
Change: 2014-02-20 14:34:01.000000000 +0900

• Display a file's status in the unique display format.

C:\TEMP>%ADSH_OSCMD_DIR%\stat -c "Filename : %n" .\test.txt
Filename : .\test.txt

• Display option error messages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\stat -z
stat: illegal option -- z
usage: stat [-L] [-c format] [-t] file ...

8.4.33 tail command (displays the last part of files)

Syntax

tail [-r] [-b num-blocks|-c num-bytes|-n num-lines|-num-lines] [path-name ...]

Description
This command outputs the last part of one or more files to the standard output. If no file is specified, the standard input
is read as the input. The displayed portion of a file begins at a position that is expressed in units of bytes, lines, or blocks.
All data found in the specified display range is displayed. No error occurs if there is no data within the specified range.

Arguments
A numeric value prefixed with the plus sign (+) indicates a position from the beginning of the input. For example, -c
+2 starts displaying from the second byte from the beginning of the input.

A numeric value prefixed with a minus sign (-) or without a sign indicates a position from the end. For example, -n
2 indicates the second line from the end of the input. The default is -n 10, or 10 lines from the end of the input.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 857

-r
Specifies that the display is to be line-by-line in reverse order.
When the -r option is specified together with the -b option, the display is line-by-line from the end of the file for
the number of blocks specified in the -b option. If display starts from a position that is in the middle of a multibyte
character, garbled characters might result.
When the -r option is specified together with the -c option, the display is line-by-line from the end of the file for
the number of bytes specified in the -c option. If display starts from a position that is in the middle of a multibyte
character, garbled characters might result.
When the -r option is specified together with the -n option or with num-lines specified, the display is line-by-line
from the end of the file for the number of lines specified in num-lines or in the -n option.
When the -r option is specified by itself, all input lines are output line-by-line in reverse order from the end of the
file. Specifying this option more than once does not result in an error.

-b num-blocks
Unless the -r option is specified, specifies the position from which to start displaying, in units of blocks (one block
is 512 bytes).
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with the plus sign (+) indicates a position counted from the beginning
of the input.
If num-blocks is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-blocks, an error
message (tail: illegal offset -- specified-character-string) is output.
If display starts from a position that is in the middle of a multibyte character, garbled characters might result. End-
of-line codes are included in the byte count. For example, in Windows, a linefeed [LF] counts as one byte, and
[CR] + [LF] counts as two bytes. If this option is specified more than once, usage information is displayed.

-c num-bytes
Unless the -r option is specified, specifies the position from which to start displaying, in units of bytes.
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with a plus sign (+) indicates a position counted from the beginning
of the input.
If num-bytes is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-bytes, an error
message (tail: illegal offset -- specified-character-string) is output.
If display starts from a position that is in the middle of a multibyte character, garbled characters might result. End-
of-line codes are included in the byte count. For example, in Windows, a linefeed [LF] counts as one byte, and
[CR] + [LF] counts as two bytes. If this option is specified more than once, usage information is displayed.

-n num-lines|-num-lines
Unless the -r option is specified, specifies the position from which to start displaying, in units of lines.
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with a plus sign (+) indicates a position counted from the beginning
of the input.
If num-lines is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-lines, an error
message (tail: illegal offset -- specified-character-string) is output. If this option is specified more
than once, usage information is displayed.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 858

path-name
Specifies an input file. If no input file is specified, the standard input is read. Multiple input files can be specified.
If you specify more than one file, each file is identified at the beginning of the output from that file by a blank line
(linefeed) and its file name in a header string in the following format:
==> file-name <==
When you execute the tail command with multiple files specified, all the files are processed. If any file fails to
open, the command terminates with a return code of 1.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• All data found in the specified display range is displayed. No error occurs if there is no data in the specified range.

• If no options are specified, -n 10 is assumed.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Examples
• Display the last two lines of the files test1.txt and test2.txt.

$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ cat test2.txt
0001:test2.txt
0002:test2.txt
0003:test2.txt
0004:test2.txt
0005:test2.txt
0006:test2.txt
0007:test2.txt
0008:test2.txt
0009:test2.txt
0010:test2.txt
$ tail -n2 test1.txt test2.txt
==> test1.txt <==
0009:test1.txt
0010:test1.txt

==> test2.txt <==
0009:test2.txt
0010:test2.txt
$

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 859

• Display the fifth and subsequent lines from the beginning of the file test1.txt.

$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ tail -n+5 test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$

• The following is an example of specifying the -r option.

$ cat zztt1.txt
1:0001:zzzz:
2:0001:aaaa:
3:0001:JJJJ:
4:0001:cccc:
5:0001:cccc:
6:0001:cccc:
7:0001:cccc:
8:0001:cccc:
9:0001:cccc:
10:0001:cccc:
11:0001:cccc:
12:0001:cccc:
$ tail -r -n 2 zztt1.txt
12:0001:cccc:
11:0001:cccc:
$ tail -r zztt1.txt (display all lines rather than just 10)
12:0001:cccc:
11:0001:cccc:
10:0001:cccc:
9:0001:cccc:
8:0001:cccc:
7:0001:cccc:
6:0001:cccc:
5:0001:cccc:
4:0001:cccc:
3:0001:JJJJ:
2:0001:aaaa:
1:0001:zzzz:
$

• Below are two more examples that illustrate the -r option.

$ cat block.txt ---> 101 lines of 100 bytes + end-of-line code (\n)
0000000000:1234567890123(omitted)78901234567890123456789012345678T
00001xxx00:1234567890123(omitted)78901234567890123456789012345678T
00002xxx00:1234567890123(omitted)78901234567890123456789012345678T
 (omitted)
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 860

00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -b 1 block.txt
45678T
00096xxx00:1234567890123(omitted)78901234567890123456789012345678T
00097xxx00:1234567890123(omitted)78901234567890123456789012345678T
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -rb 1 block.txt
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00097xxx00:1234567890123(omitted)78901234567890123456789012345678T
00096xxx00:1234567890123(omitted)78901234567890123456789012345678T
45678T
$ tail -c 110 block.txt
2345678T
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -rc 110 block.txt
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
2345678T
$

• Display an option error message.
This message might vary depending on the platform in which a command is executed. The following shows an
example of Windows.

C:\TEMP>%ADSH_OSCMD_DIR%\tail -z
tail: illegal option -- z
usage: tail [-r] [-b number | -c number | -n number | -number] [file ...]

8.4.34 tar command (stores the target path name in the archive and
extracts/displays the target path name)

Syntax

[Only for Windows]

tar {-c|-r|-t|-u|-x} [-b blocking-factor] [-d] [-f archive] [-h] [-m] [-P]
 [-V] [-v] [-Xexcluded-list-file] [-z] [--cmdrc0] [--compatible=type]
 [-C directory] [-T file] [target-path-name...]

tar {c|r|t|u|x}[b][d][f][h][m][P][V][v][X][z] [blocking-factor] [archive]
 [excluded-list-file] [--cmdrc0] [--compatible=type] [-C directory]
 [-T file] [target-path-name...]

[Only for UNIX]

tar {-c|-r|-t|-u|-x} [-b blocking-factor] [-d] [-f archive] [-h] [-m] [-P] [-p]
 [-V] [-v] [-Xexcluded-list-file] [-z] [--cmdrc0] [--compatible=type]
 [-C directory] [-T file] [target-path-name...]

tar {c|r|t|u|x}[b][d][f][h][m][P][p][V][v][X][z] [blocking-factor] [archive]
 [excluded-list-file] [--cmdrc0] [--compatible=type] [-C directory]
 [-T file] [target-path-name...]

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 861

Description
Stores the target path name in the archive and extracts/displays the target path name from the archive. The behavior of
the command is determined by specifying one function character (c, r, t, u, or x) and another function modifier.

The archive that is created by this command is in the ustar format.

Arguments
Options of function characters

-c

--create
This command creates a new archive. The command stores the target path name from the beginning of the archive.
If the target path name is a directory, the portion in the directory is also stored.

-r

--append
This command additionally stores the target path name at the end of the specified archive.

-t

--list
This command displays a list of the names of the files in the archive.
The following detailed information appears if this option is specified with the -v option:
"permission uid/gid file-size date/time file-name"

-u

--update
This command additionally stores files for which the target path name is newer than the file with the same name
and files that are not stored in the archive.

-x

--extract

--get
This command extracts the target path name from the archive. If the target path name is a directory, the portion in
the directory is also extracted.
Files are extracted as follows:

• If there is an existing file, this command creates a file after deleting the existing file (the permission of the
existing file is not retained).
If you do not specify the -p option in UNIX, the permission is determined according to the permission stored
in the archive and umask. If the executor is a non-Administrator user, setuid bit, setgid bit, and sticky bit are
not set.
If the directory already exists, the extracted file is recovered in the corresponding directory.

• If the executor is a superuser in UNIX, users and groups are extracted and set.

• In Windows, the permission, user, and group are not extracted and set.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 862

Function modifier options

-b blocking-factor

--blocking-factor=blocking-factor
Block size is blocking factor * 512 bytes.
The default value is 20 (block size is 20 * 512 bytes).
The range that can be specified for the blocking factor is 1 to 63.
This option is enabled when this option is specified with the -c option. If this option is specified with the -t and
-x options, the specification becomes invalid.
If this option is specified with the -r and -u options, the option is determined with the archive size and the specified
blocking factor.
For multiple specifications, the blocking factor specified last is enabled.
If a value outside the allowed range is specified, this option operates assuming that 20 has been set.

-d
Upon storage in the archive, this command stores special files and pipe files in the archive also.
This option is added by default and there are no differences in actions regardless of the existence of options.

-f archive

--file= archive
This command specifies the archive. Archives that can be specified are regular files, pipe files, and symbolic link
files.
If this option is not specified or "-" (hyphen) is specified, the standard input/output is indicated.
For the -r and -u options, you cannot use the combination of a standard input/output and a pipe file.
If you specify this option multiple times, the archive specified last is enabled.

-h

--dereference
This command follows a symbolic link and handles the link as a file or directory.
This option is enabled when this option is specified together with the -c, -r, and -u options. If this option is
specified with the -t and -x options, the specification becomes invalid.

-m

--touch
The most recent modification date and time of the file is extracted but not set.
This option is enabled when this option is specified with the -x option. If this option is specified with the -c, -r,
-u, and -t options, the specification becomes invalid.
In Windows, the most recent modification date and time of the directory cannot be set regardless of the specification
of the -m option.

-P

--absolute-names
This command does not remove the root directory of the target path name.

-p

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 863

--same-permissions

--preserve-permissions
[Only for UNIX]
Permissions are extracted and set. This option is enabled when this option is specified with the -x option. If this
option is specified with the -c, -r, -u, and -t options, the specification becomes invalid.
The superuser operates with the default setting.

-V
When displaying the detailed information of the archive, English characters indicating the type of file are also output.
This option is added by default and there are no differences in actions regardless of the existence of options.

-v

--verbose
This command outputs detailed information.

-z

--gzip

--gunzip

--ungzip
Handles gzip archives.
If this option is specified together with the -c option, a new archive is created by compressing the data in gzip
format.
If this option is specified together with the -x option, the target path name is extracted from the gzip archive.
If this option is specified together with the -t option, a list of names of files stored in the gzip archive is displayed.
When a gzip archive is used, the tar command calls the gzip command. To pass the options of the gzip command
to the gzip command that is called by the tar command, set the options of the gzip command in the environment
variable GZIP, and then execute the tar command. For details about the environment variable GZIP, see 2.5 
Specifying environment variables.
The -z option cannot be specified together with the -r option or -u option. If the -z option is specified together
with the -r or -u option, an error occurs and the processing ends.
If this option is specified together with the -x or -t option and the archive is not compressed in gzip format, the
target path name cannot be extracted, and a list of file names cannot be displayed.
Note that the --gzip, --gunzip, and --ungzip options only signify the long options of the -z option. For
example, when the -c and --gunzip options are specified, a new archive is created by compressing the data in
gzip format.

--cmdrc0
The return value must be set to 0 even if an error occurs after this command analyzes options.

--compatible=Type
You can specify the following character string for Type:
long-file-name
When storing the target path name in the archive, the following restrictions apply with respect to the header area in
the archive: the directory path length is 155 bytes, file name is 100 bytes, and the length of file name of the link
destination of the symbolic link is 100 bytes.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 864

When using this option, restrictions can be removed. (Up to 3072 bytes can be specified for the target path name.
The length of the path name that can actually be created depends on the maximum length for each OS.)
However, the archive created with this option may not be compatible with the tar command in the ustar format
provided by the OS.
This option is enabled when this option is specified with the -c, -r, and -u options. If this option is specified with
the -t and -x options, the specification is ignored.

-C directory

--directory= directory
This command enables operation upon jumping to the specified directory.
If you combine the target path name, -T option, and -C option, the target path specified after the -C option becomes
the target.
If you specify the -C option multiple times, note that the current directory is moved by the previously specified -
C option when you specifying the -C option for the second time or later.

-T file

-L file

-I file

--files-from= file
This command loads, from the specified file, a list of the target paths to be stored, extracted, or displayed. You must
accurately describe one target path name in each line. Spaces and blank lines are treated as path names.
When multiple files are specified, all specifications become valid.
Actions of the short options of the -T, -L, and -I options are the same regardless of their specifications.
If this option is combined with the -x or -t option, you can specify the target path name with a combination of
wildcards.
To specify the characters used as the wildcards, you can escape with \ and you need to escape with \ for a
specification with \.
Characters that can be used as the wildcards are as follows:

Wildcard Meaning

? Matches any single character.

* Matches a character string of zero or more characters.

[...] Matches any single character in the character string enclosed in []. If there is an ! or a ^ at the
beginning of the character string enclosed in [], there is a match if none of the characters in []
are found. If two characters are separated by a hyphen (-), the match is of any character between
those two characters (including the two characters themselves).

The following examples in the table illustrate the use of the [] wildcards:

Examples Meaning

[!abc] Matches any character other than a, b, or c.

[0-9] Matches any character from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 865

Examples Meaning

[0-9a-zA-Z] Matches any alphanumeric character.

-X file

--exclude-from= file
This command loads, from the specified file, a list of the target paths that are to be excluded from being stored,
extracted, or displayed. You must describe one target path name in each line. The target paths will be excluded from
the description of the partial directory path.
Spaces and blank lines are treated as path names.
The list of files to be excluded that are specified with this option is prioritized over the file list specified with the -
T, -L, -I, and --files-from options.
The target path name can be specified with a combination of wildcards. To specify the characters used as the
wildcards, you can escape with \ and you need to escape with \ for a specification with \.
Characters that can be used as the wildcards are as follows:

Wildcard Meaning

? Matches any single character.

* Matches a character string of zero or more characters.

[...] Matches any single character in the character string enclosed in []. If there is an ! or a ^ at the
beginning of the character string enclosed in [], there is a match if none of the characters in []
are found. If two characters are separated by a hyphen (-), the match is of any character between
those two characters (including the two characters themselves).

The following examples illustrate the use of the [] wildcards:

Examples Meaning

[!abc] Matches any character other than a, b, or c.

[0-9] Matches any character from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

Target-path-name
This option specifies the path name of the file or directory to be stored, extracted, or displayed.
If the target path name is identical to the archive at the time of storage, the path name is not stored.
For restrictions on the length of the target path name, refer to the --compatible=long-file-name option.
If this option is combined with the -x or -t option, you can specify the target path name with a combination of
wildcards.
To specify the characters used as the wildcards, you can escape with \ and you need to escape with \ for a
specification with \.
Characters that can be used as the wildcards are as follows:

Wildcard Meaning

? Matches any single character.

* Matches a character string of zero or more characters.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 866

Wildcard Meaning

[...] Matches any single character in the character string enclosed in []. If there is an ! or a ^ at the
beginning of the character string enclosed in [], there is a match if none of the characters in []
are found. If two characters are separated by a hyphen (-), the match is of any character between
those two characters (including the two characters themselves).

The following examples illustrate the use of the [] wildcards:

Examples Meaning

[!abc] Matches any character other than a, b, or c.

[0-9] Matches any character from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

Handling of the root directory of the target path name to be stored or extracted
The command is executed after removing the root directory of the target path name when storing or extracting the path
name. The following table shows the corresponding root directories. It is possible to execute the command without
removing the root directory of the target path name by using the -P option.

If you specify the ADSH_CMDTAR_ROOTPATH environment variable, you can change the default action of the
command from "remove the root directory of the target path name" to "do not remove the root directory of the target
path name".

Table 8-19: Root directory of the target path name to be removed with storage and extraction

OS Description

UNIX When storing or extracting the target path name, the following root directory at the beginning is removed:
/ ../

Windows When storing or extracting the target path name, the following root directory at the beginning is removed:
\ ..\ Drive letter:\

• The ADSH_CMDTAR_ROOTPATH environment variable is not specified.
As the default behavior of the command, the command executes storage and extraction after removing the root
directory. If you do not want to remove the root directory, execute the command upon specifying the -P option.

• The ADSH_CMDTAR_ROOTPATH environment variable is specified.
If you set ADSH_CMDTAR_ROOTPATH=absolute, the command executes storage and extraction without
removing the root directory as the default behavior of the command.

Handling of user name, user ID, group name, and group ID
The handling of the user and group during creation, extraction, and display of the archive is as follows: If the archive
is operated between multiple platforms, the users and groups might differ.

Status of archive User ID/name Group ID/name

When creating an archive UNIX
The user ID and user name of the corresponding file
are stored.

UNIX
The group ID and group name of the
corresponding file are stored.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 867

Status of archive User ID/name Group ID/name

When creating an archive Windows
0 for the user ID, and the user name of the
corresponding file are stored.

Windows
0 is set for the group ID, and no group
name is set.

When extracting an archive UNIX
- Superuser
The user ID is obtained from the extracted user name
and this user ID is set to the file. If the user ID cannot
be obtained, the extracted user ID is set.
- Non-Administrator user
The execution user ID or execution user name are set.

Windows
Logon user name.

UNIX
- Superuser
The group ID is obtained from the
extracted group name, and this group ID
is set to the file. If the group ID cannot be
obtained, the extracted group ID is set.
- Non-Administrator user
The group ID or group name belonging to
the execution user name are set.

Windows
Not applicable

When displaying an archive UNIX
The user ID is obtained from the extracted user
name, and this user ID is displayed. If the user ID
cannot be obtained, the extracted user ID appears.

Windows
The extracted user ID appears.

UNIX
The group ID is obtained from the
extracted group name, and this group ID
is displayed. If the group ID cannot be
obtained, the extracted group ID is
displayed.

Windows
The extracted group ID appears.

Temporary file directory
This command might create a temporary file. Temporary file directories are as follows:

In Windows
common application folder\HITACHI\JP1AS\misc

In UNIX
Directory defined in the TMPDIR environment variable
/var/tmp if the TMPDIR environment variable has not been defined.

Return codes
Return code Meaning

0 Normal termination.

1 Termination with an error. Case 2 is excluded.

2 Termination with an error. An invalid option has been specified.

Notes
• If you specify the syntax with the short option without "-", the options and operands need to be specified in the

order displayed in "syntax".

• For symbolic links, the most recent modification date/time and the final access date/time are not retained.

• If you pause the tar command while the target path name is being stored in the archive, a temporary file with the
following name might remain: In such case, you will need to manually delete the temporary file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 868

[In Windows]
tar.XXXXXX (XXXXXX is an arbitrary character string of 6 characters.)

[In UNIX]
tarppppp.XXXXXXXX (ppppp is the process ID with 5 or more digits and XXXXXXXX is an arbitrary 8-
character character string.)

• If an unknown file is detected during extraction, an attempt is made to process the file as a regular file.
In Windows, extracted block device files, character device files and pipe files are determined as unknown file types.
(Example)

C:\TEMP>%ADSH_OSCMD_DIR%\tar xvf PIPE.tar
tar: PIPE/pp creating as regular file.
PIPE/pp

• If there are multiple path names having the same name in the archive, the older files are overwritten by the most
recent path name.

• In Windows, storage and extraction of UNC paths are not supported.

• In Windows, if the extracted file name only has a difference in the use of upper and lowercase letters, the file is
treated as the same file.

• In Windows, short name specification executes storage, extraction and, display with the long name. However,
the destination of the symbolic link stores, extracts, and displays with the specified file name.

• In Windows, if backslashes (\) are used to separate directories, storage and extraction are converted and unified
by using slashes (/).

• In Windows, junctions are processed as actual files.

• In Windows, the user must have the authority to create symbolic links to extract a symbolic link.

• In Windows, link files cannot be extracted to a file system other than NTFS.

• In Windows, it is not possible to extract a symbolic link in a state where the destination of the symbolic link
does not exist.

• If you store a file that includes backslashes (\) in UNIX and extract the file in Windows, backslashes (\) are
used as directory separators.

• If a file is stored in Windows and extracted in UNIX, the directory hierarchy of path specification that is unique
to Windows might vary between the time when the file is stored and the time when the file is extracted.

(Example)
The driver letter is determined as part of the directory in UNIX.
An example where the drive letter is used is as follows:

Storing with Windows
C:\TEMP>%ADSH_OSCMD_DIR%\tar cvfP reg.tar G:\DIR\regfile
G:/DIR/regfile

Extracting with UNIX
$ tar xvf reg.tar
G:/DIR/regfile
$ ls -lR ./G:
total 8
drwxrwxr-x 2 USER1 GROUP1 4096 Oct 30 15:59 DIR

./G:/DIR:
total 8
-rw-rw-r-- 1 USER1 GROUP1 3 Oct 30 15:59 regfile

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 869

The driver letter is created as a directory in UNIX.

• In UNIX, special files must be extracted by a user who has permission to create special files.

• This command supports operation only on archives that were created by the command itself. When operating the
archive between the tar command provided by each OS and the tar command of JP1/AS, due to differences in
the archive format, files might not be stored, extracted, or displayed correctly.

• If encoding varies upon storage, extraction, or display, the file name might not be extracted or displayed correctly.

• Storing a file larger than 8GB in the archive and extracting and displaying a file larger than 8GB are not supported.

• For UNIX, user IDs, group IDs, major numbers, and minor IDs exceeding 2097152 are not supported.

• Files in which the number of characters of the user name and group name is 32 characters or more are not supported.

Examples

Example 1 Creation of archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar cvf ar.tar ar
ar
ar/file1
ar/file2

Example 2 Extraction of archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar xvf ar.tar ar
ar
ar\file1
ar\file2

Example 3 Display of archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar tvf ar.tar
drwx------ 1234/5678 0 Oct 30 15:52:24 2015 ar
-rw------- 1234/5678 0 Oct 30 15:52:24 2015 ar/file1
-rw------- 1234/5678 0 Oct 30 15:52:24 2015 ar/file2

Example 4 Additional storage of archive (when using the -r option)

C:\TEMP>%ADSH_OSCMD_DIR%\tar rvf ar.tar ar
tar: Reading archive to position at the end...done.
ar
ar/file1
ar/file2

Example 5 Additional storage of archive (when using the -u option)

C:\TEMP>%ADSH_OSCMD_DIR%\tar uvf ar.tar ar
tar: Reading archive to position at the end...done.
ar/file2

Although ar/file2 is already stored in ar.tar, the ar/file2 to be stored is stored due to having a later time
compared to the file of ar.tar.

Example 6 Cross-platform storage and extraction

Storing with Windows
C:\TEMP>%ADSH_OSCMD_DIR%\tar cvf reg.tar .\regfile
./regfile

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 870

Extracting with UNIX
$ tar xvf reg.tar
./regfile

Example 7 Setting the archive destination as a standard input/output

$ tar cvf - regfile > reg.tar
regfile
$ cat reg.tar | ./tar tvf -
-rw------- 1234/5678 5 Feb 17 16:47:28 2015 regfile

Example 8 Storing a file with a path name that is unique to Windows and extracting the file in UNIX

Storing with Windows
C:\TEMP>%ADSH_OSCMD_DIR%\tar cvfP reg.tar G:\DIR\regfile
G:/DIR/regfile

Extracting with UNIX
$./tar xvf reg.tar
G:/DIR/regfile

$ ls -lR ./G:
total 8
drwxrwxr-x 2 USER1 GROUP1 4096 Oct 30 15:59 DIR

./G:/DIR:
total 8
-rw-rw-r-- 1 USER1 GROUP1 3 Oct 30 15:59 regfile

For extraction in UNIX, G: is also extracted as the directory.

Example 9 Extraction as a superuser

$./tar tvf reg.tar
-rw-rw-r-- 1234/5678 3 Oct 30 15:59:00 2015 regfile

Extraction as superuser
./tar xvf reg.tar
regfile
ls -al regfile
-rw-rw-r-- 1 USER1 GROUP1 3 Oct 30 15:59 regfile

If a file is extracted as a superuser, the user and group are extracted and set.

Example 10 Storing files with a different path name as the same parent directory

DIR1/SUB1/file1
DIR2/SUB1/file2
exists and the tar command is executed in the same hierarchy as DIR1 and DIR2

$ tar -c -v -f ar.tar -C DIR1 SUB1 -C ../DIR2 SUB1
SUB1
SUB1/file1
SUB1
SUB1/file2

Example 11 Creating a gzip archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar cvzf ar.tar.gz ar
ar
ar/file1
ar/file2

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 871

Example 12 Creating a gzip archive by specifying the gzip command option for the environment variable GZIP
$ export GZIP="-9 -q"
$ /opt/jp1as/cmd/tar cvzf ar.tar.gz ar
ar
ar/file1
ar/file2

Example 13 Extracting a directory from a gzip archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar xvzf ar.tar.gz ar
ar
ar/file1
ar/file2

Example 14 Displaying a gzip archive

C:\TEMP>%ADSH_OSCMD_DIR%\tar tvzf ar.tar.gz
drwx------ 0/0 0 Dec 09 19:44:24 2015 ar
-rw------- 0/0 2758 Dec 09 19:39:35 2015 ar/file1
-rw------- 0/0 5516 Dec 09 19:39:55 2015 ar/file2

8.4.35 touch command (changes a file's last access date and time or
modification date and time)

Syntax

touch[-a][-c][-f][-m][-r path-name][-t date-and-time]path-name ...
touch[-a][-c][-f][-m]date-and-time path-name ...

Description
This command changes the most recent access date and time or the most recent modification date and time for specified
files. In Windows, the command can change only the most recent modification date and time.

Arguments
Type of date and time to be changed

The -a and -m options specify the type of date and time to be changed. If both these options are omitted or both are
specified, the command changes both the most recent access date and time and the most recent modification date and
time. In Windows, the file's most recent access date and time is not changed.

-a
Changes the file's most recent access date and time.
When the -m option is omitted and the -a option is specified, the command changes only the file's most recent
access date and time and does not change the file's most recent modification date and time.
In Windows, if the -a option is specified, the command does not change the file's most recent access date and time,
but checks the format of the date and time specified in the argument and reads the file specified in the -r option.

-m
Changes the file's most recent modification date and time.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 872

When the -a option is omitted and the -m option is specified, the command changes only the file's most recent
modification date and time and does not change the file's most recent access date and time.

Specifying the time to be set

The -r or -t option or date-and-time in MMDDhhmm[YY] format specifies the date and time to be set. If none of
these options is specified, the command sets the date and time this command executes.

The range of time values permitted in the -t option and in MMDDhhmm[YY] format is from 1970-01-01 at
00:00:00 to 2038-01-19 at 03:14:07 in UTC (Coordinated Universal Time). The specified date and time is
interpreted according to the time zone in effect when the command is executed.

If the time zone is Japan Standard Time (UTC + 9), the permitted range of time values is 1970-01-01 at 09:00:00
to 2038-01-19 at 12:14:07. Note that in AIX and Windows, the maximum time value permitted in Japan Standard
Time (UTC + 9) is 2038-01-19 at 03:14:07.

For the time zone, the command uses the value of the TZ environment variable. In Windows, if the TZ environment
variable is not set, the command uses the time zone set in the Date and Time control panel. In Windows, the time zone
set in the TZ environment variable must match the time zone set in Date and Time.

-r path-name
Specifies that the file's most recent access and modification dates and times to be set in the files are to be obtained
from the file path specified here. An obtained date and time is set as a file's most recent access date and time when
the -a option is specified and as a file's most recent modification date and time when the -m option is specified.
When a directory name is specified, the command obtains the most recent access and modification dates and times
from the specified directory.
If this option is specified more than once, the last option specified takes effect. If the -r and -t options are both
specified, the last option specified takes effect.

-t date-and-time
Specifies a date and time to be set as the most recent access or modification date and time in the files. The specified
date and time is set as the most recent access date and time when the -a option is specified and as the most recent
modification date and time when the -m option is specified.
If this option is specified more than once, the last option specified takes effect.
If the -r and -t options are both specified, the last option specified takes effect.
Specify the date and time in the following format:

[[CC]YY]MMDDhhmm[.SS]

CC
First two digits of the year.

YY
Last two digits of the year
If CC is omitted, the following value is set as CC:
If YY is from 69 to 99: 19 is set as CC.
If YY is from 00 to 68, 20 is set as CC.
If CC and YY are both omitted, the year in which this command executes is set.

MM
Month, as a numeric value from 01 to 12. To specify a single-digit number, add a leading zero.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 873

DD
Date, as a numeric value from 01 to 31. To specify a single-digit number, add a leading zero.

hh
Hour, as a numeric value from 00 to 23. To specify a single-digit number, add a leading zero.

mm
Minute, as a numeric value from 00 to 59. To specify a single-digit number, add a leading zero.

SS
Second, as a numeric value from 00 to 61. To specify a single-digit number, add a leading zero. If this specification
is omitted, 00 is set.
Note that if 60 or 61 is specified and the system does not support leap seconds, the date and time displayed by
the ls command is advanced by one second for 60 and two seconds for 61.

date-and-time
Specifies the date and time to be set as the file's most recent access or modification date and time. The specified
date and time is set as the most recent access date and time when the -a option is specified and as the most recent
modification date and time when the -m option is specified.
If the -r or -t option is specified, the specified value is treated as a file name.
If the specified date and time does not consist of eight or 10 digits, it is treated as a file name. If there is no such
file, a file with the specified name is created.
Specify the date and time in the following format:

MMDDhhmm[YY]

MM
Month, as a numeric value from 01 to 12. To specify a single-digit number, add a leading zero.

DD
Date, as a numeric value from 01 to 31. To specify a single-digit number, add a leading zero.

hh
Hour, as a numeric value from 00 to 23. To specify a single-digit number, add a leading zero.

mm
Minute, as a numeric value from 00 to 59. To specify a single-digit number, add a leading zero.

YY
Last two digits of the year. If the specification is omitted, the year in which this command executes is set.
For the first two digits of the year, the following value is set:
If YY is from 69 to 99: 19
If YY is from 00 to 68: 20

Other options

path-name
Specifies the path name of a file whose most recent access or modification date and time is to be changed. You can
specify multiple path names.
If the specified path does not exist, the command creates a new file with a size of zero bytes.

In Windows:
A directory's most recent modification date and time cannot be changed. If a directory name is specified, an
error results. Read and write permissions are required to change the most recent modification date and time of
an existing file.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 874

In UNIX:
Permissions for a newly created file are set according to umask. If a directory name is specified, the directory's
most recent access and modification dates and times are changed.
For a non-superuser to change the most recent access or modification date and time of an existing file, the
following permissions are required:
- When the -t option or a date-and-time value in MMDDhhmm[YY] format is specified
File owner permissions are required.
- When neither the -t option nor a date-and-time value in MMDDhhmm[YY] format is specified
Write permission for the file is required.

-c
Specifies that no file is to be created when there is no file whose most recent modification date and time is to be
changed. No error message is output (because this event is not handled as an error).

-f
This option is provided for compatibility with the touch OS command. This option is ignored, if specified.

Most recent access and modification dates and times that can be set in files
How the file's most recent access and modification dates and times are set depends on the -r or -t option or the date-
and-time value in MMDDhhmm[YY] format that specifies a date and time and the -a or -m option that specifies the
type of date and time to be changed, as described in the following.

When the -r option is specified
How the most recent access and modification dates and times obtained from the file specified in the -r option are
set depends on whether the file specified in path-name exists, as described in the following table.

Table 8-20: Most recent access and modification dates and times that are set when the -r option
is specified

Specification of the -a and -m options Whether the file specified in
path-name exists

Most recent access date and
time that is set

Most recent
modification
date and time
that is setWindows UNIX

Only -a is specified Yes -- T --

No C T C

Only -m is specified Yes -- T

No C T

-a and -m are both specified or neither -a
nor -m is specified

Yes -- T T

No C T T

Legend:
T: The corresponding date and time in the file specified in the -r option is set.
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

When the -t option or a date-and-time value in MMDDhhmm[YY] format is specified
How the date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY] format
is set depends on whether the file specified in path-name exists, as described in the following table.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 875

Table 8-21: Most recent access and modification dates and times that are set when a date-and-
time value is specified in the argument

Specification of the -a and -m options Whether the file specified in
path-name exists

File's most recent access
date and time that is set

File's most
recent
modification
date and time
that is set

Windows UNIX

Only -a is specified Yes -- T --

No C T C

Only -m is specified Yes -- T

No C T

-a and -m are both specified or neither -a
nor -m is specified

Yes -- T T

No C T T

Legend:
T: The date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY]
format is set.
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

When the -r option, the -t option, and a date-and-time value in MMDDhhmm[YY] format are all omitted
When the -r option, the -t option, and a date-and-time value in MMDDhhmm[YY] format are all omitted, how the
date and time is set depends on whether the file specified in path-name exists, as described in the following table.

Table 8-22: File's most recent access and modification dates and times that are set when a date-
and-time value is not obtained or specified

Specification of the -a and -m options Whether the file specified in
path-name exists

File's most recent access
date and time that is set

File's most
recent
modification
date and time
that is set

Windows UNIX

Only the -a option is specified Yes -- C --

No C C

Only the -m option is specified Yes -- C

No C C

-a and -m are both specified or neither -a
nor -m is specified

Yes -- C C

No C C

Legend:
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

Return code
Return code Meaning

0 Normal termination

1 Error termination

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 876

Return code Meaning

1 • An invalid option was specified.
• The date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY] format

is invalid.
• A read error occurred in the file specified in the -r option.

2 Error termination
• File creation processing failed.
• The command failed to change the file's most recent access date and time and/or most recent modification

date and time.
• A directory was specified as the path name of a file whose most recent modification date and time was to be

changed. (Windows only)

If multiple files are specified in the argument, the command processes the next file.

Notes
• In UNIX, if symbolic links are specified for the path name in the -r option or for a path name whose most recent

access or modification date and time is to be changed, the specified symbolic links are subject to command
processing.
In Windows, if symbolic links are specified for the path name in the -r option or for a path name whose the last
modification date and time of the file is to be changed, the specified symbolic links are subject to command
processing.

• If the date and time in the file specified in the -r option is outside the range from 1970-01-01 at 00:00 to
2038-01-19 at 03:14 in UTC (Coordinated Universal Time), the most recent access or modification date and
time that is set in the file by the command is not guaranteed to be correct.

• In Windows, the precision of the most recent modification date and time that is actually set in the file depends on
specifications for the file system being used. For example, the most recent access and modification dates and times
are set in files in a FAT file system as follows:

• The range of times that can be specified is from 1980-01-01 at 00:00:00 to 2038-01-19 at
03:14:07, regardless of the time zone in effect when the command executes.

• The hour, minute, and second (hhmm.ss) values of a file's most recent access date and time are not set.

• The number of seconds specified in the most recent modification date and time is rounded up to the next multiple
of two seconds.

Examples
• Create a file:

$ touch file001

The most recent access and modification dates and times of the created file are the date and time this command
executes. The file is created with a size of zero.

• Change the most recent access and modification dates and times of an existing file to the date and time specified in
the -t option (2012-05-12 at 03:49:05):

$ touch -t 1205120349.05 file001

This command changes the most recent access and modification dates and times of the file to the date and time
specified in the -t option.

• Change only the most recent access date and time of an existing file to the date and time specified in the -t option
(2013-11-01 at 15:08:00):

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 877

$ touch -a -t 201311011508 file001

This command changes the most recent access date and time of the file to the date and time specified in the -t
option. The file's most recent modification date and time remains the same as before the command executed.

• Change only the most recent modification date and time of an existing file to the date-and-time value specified in
MMDDhhmm[YY] format (2013-09-29 at 23:00:00):

$ touch -m 0929230013 file001

This command changes the most recent modification date and time of the file to the date-and-time value specified
in MMDDhhmm[YY] format. The file's most recent access date and time remains the same as before the command
executed.

• Change the most recent access and modification dates and times of multiple files to the date and time specified in
the -t option. Specify the -c option so that any file that does not already exist will not be created. In the following
example, file002 does not already exist:

$ touch -c -t 201311011508 file001 file002 file003
$ ls -lT *
-rw-r--r-- 1 usr1 grp1 5 Nov 1 15:08:00 2013 file001
-rw-r--r-- 1 usr1 rrp1 9 Nov 1 15:08:00 2013 file003

8.4.36 tr command (outputs character strings input from the standard
input to the standard output while replacing or deleting characters
on a byte-by-byte basis)

Syntax

Syntax 1

tr [-cst] [--check-multi-byte] character-string-1 character-string-2

Syntax 2

tr -d [-c] [--check-multi-byte] character-string-1

Syntax 3

tr -s [-c] [--check-multi-byte] character-string-1

Syntax 4

tr [-ds] [--check-multi-byte] character-string-1 character-string-2

Description
This command outputs character strings input from the standard input to the standard output while replacing or deleting
characters on a byte-by-byte basis.

The command specified in syntax 1 replaces the character strings input from the standard input, and then outputs the
results to the standard output. During replacement, each byte in character-string-1 contained in character strings in the
standard input is replaced with a byte in character-string-2. If character-string-1 is longer than character-string-2, the
last character of character-string-2 is assumed to be repeated until its length reaches character-string-1.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 878

The command specified in syntax 2 deletes the characters (bytes) in character-string-1 contained in character strings
input from the standard input, and then outputs the results to the standard output.

The command specified in syntax 3 replaces the character strings input from the standard input, and then outputs the
results to the standard output. During replacement, if the character strings in the standard input contain characters (bytes)
in character-string-1 in succession, consecutive identical characters are compressed into a single character.

The command specified in syntax 4 deletes and replaces the character strings input from the standard input, and then
outputs the results to the standard output. During deletion, characters (bytes) in character-string-1 contained in character
strings in the standard input are deleted. If the character strings after deletion of characters in character-string-1 contain
characters (bytes) in character-string-2 in succession, consecutive identical characters are compressed into a single
character.

Arguments
-c

--complement
Replaces character-string-1 with the complement of character-string-1 (that is, all characters not contained in
character-string-1).

-d

--delete
Deletes the input characters existing in character-string-1 from the character strings in the standard input.

-s

--squeeze-repeats
In the character strings for which all deletion and replacement processes are complete, this option compresses
consecutive identical characters (bytes) into a single byte. For syntax 1 and syntax 4, the character string to be
replaced consists of characters (bytes) specified in character-string-2. For syntax 3, the character string to be replaced
consists of characters (bytes) specified in character-string-1.

-t

--truncate-set1
If character-string-1 is longer than character-string-2, character-string-1 is truncated to the length of character-
string-2 by deleting characters. Then, the character string is replaced.

--check-multi-byte
If a multibyte character is contained in character-string-1 or character-string-2, an error results.

character-string-1, character-string-2
Specify the character string to be replaced or deleted for the character strings input from the standard input. The
character string is processed byte by byte.
You can specify a set of characters for character-string-1 and character-string-2 by using the following expression.

Specification format Meaning

\ooo Define ASCII code characters displayed in octal notation with 1 to 3 digits.

character-1-character-2 Range specification. Specify a character (one byte) in ASCII collating sequence.

Escape character \a Alert character (bell)

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 879

Specification format Meaning

Escape character \b Backspace character

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

[:character-class:] For character-string-1 and syntax 4 character-string-2, you can specify the following character classes.
For syntax 1 character-string-2, you can specify lower or upper if all the following conditions are
satisfied:
- The -c option is not specified.
- In character-string-1, specify lower or upper in the same position as character-string-2

alnum Alphanumeric character

alpha Alphabetic character

blank Space characters (spaces and tabs)

cntrl Control character

digit Numeric character

graph Character that can be displayed (excluding spaces)

lower Lowercase character

print Character that can be displayed (including spaces)

punct Punctuation

space Space character

upper Uppercase character

xdigit Hexadecimal number

[#*n] This has the same meaning as specifying n characters specified in #, where each character is one byte.
This format is used for character-string-2 in syntax 1. If n is omitted or if 0 is specified, the value of
character-string-2 is assumed to have the same length as character-string-1, and characters exceeding
that length are ignored. If the value of n begins with 0, the value is assumed to be an octal number. For
other cases, the value is assumed to be a decimal number.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• This function replaces or deletes characters on a byte-by-byte basis. Therefore, if character-string-1, character-

string-2, or a character string input from the standard input contains multibyte characters, unexpected output results
might be obtained. To replace or delete a character string containing multibyte characters, use the sed command.

• If input characters are linefeed characters [CR]+[LF], [CR], and [LF] are processed separately.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 880

Examples

Example 1: Character strings input from the standard input are replaced according to the specifications of character-
string-1 and character-string-2. In this example, character strings of different types of brackets are unified as square
brackets ([]).

Contents of file1
[apple],{banana}
[orange],<peach>,{cherry}

Command execution results

$ tr '{}<>' '[][]' < file1
[apple],[banana]
[orange],[peach],[cherry]

Example 2: The complement of character string-1 is replaced with character-string-2, and then consecutive characters
are compressed into one character. In this example, alphabetic characters are obtained from the character strings input
from the standard input.

Contents of file1
[apple],{banana}
[orange],<peach>,{cherry}

Command execution results

$ tr -s -c '[:alpha:]' '[\n*]' < file1

apple
banana
orange
peach
cherry

Example 3: Character strings input from the standard input are deleted according to the specifications of character-
string-1. In this example, brackets are deleted.

Contents of file1
[apple],{banana}
[orange],<peach>,{cherry}

Command execution results

$ tr -d '{}<>[]' < file1
apple,banana
orange,peach,cherry

Example 4: Character strings input from the standard input are replaced according to the specifications of character-
string-1 and character-string-2, and then consecutive characters are compressed. In this example, brackets are replaced
with commas (,) and then the commas (,) are compressed into one character.

Contents of file1
[apple],{banana}
[orange],<peach>,{cherry}

Command execution results

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 881

$ tr -s '{}<>[]' ','< file1
,apple,banana,
,orange,peach,cherry,

Example 5: Characters in character-string-1 are deleted from the character strings input from the standard input, and
then consecutive characters are compressed according to character-string-2. In this example, parentheses are deleted
and commas (,) are compressed.

Contents of file1
[apple],{banana}
[orange],<>,{cherry}

Command execution results

$ tr -ds '{}<>[]' ','< file1
apple,banana
orange,cherry

Example 6: character-string-1 is truncated to the same length as character-string-2, and then characters are replaced
as specified. In this example, curly brackets ({ }) are replaced with square brackets ([]). Angle brackets (< >) are not
replaced.

Contents of file1
[apple],{banana}
[orange],<peach>,{cherry}

Command execution results

$ tr -t '{}<>' '[]'< file1
[apple],[banana]
[orange],<peach>,[cherry]

8.4.37 uname command (displays information about the OS or hardware)

Syntax

(Windows only) uname [-a] [-m] [-n] [-r] [-s] [-v] [-w]
(UNIX only) uname [-a] [-m] [-n] [-r] [-s] [-v]

Description
This command outputs information about the OS, the system host name, or hardware to the standard output.

Arguments
When this command is executed with no options specified, the processing is the same as when the -s option is specified.

-a
(Windows only)

When the -a option is specified and the -w option is omitted, the command displays the following information
all on one line in the order shown in the following:
- OS name (always Windows)

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 882

- Node name
- Information about the OS
- Most recent service pack installed on the OS
- OS version
- Machine (hardware) type
When the -a option is specified and the -w option is also specified, the command displays the following
information one item per line in the order shown in the following:
- OS name, installation folder for that OS, and partition information for the disk on which the OS is installed
- Node name
- OS release (always unknown)
- OS version
- Machine (hardware) type

(UNIX only)
The command displays the following information all on one line in the order shown in the following:
- OS name
- Node name
- OS release
- OS version
- Machine (hardware) type

-m
Specifies that the type of machine (hardware) is to be displayed.

-n
Specifies that the node name is to be displayed.

-r
Specifies that the OS release is to be displayed. In Windows, unknown is always displayed.

-s
Specifies that the OS name is to be displayed.
In Windows, the command displays the following information as the OS name:

• When the -w option is omitted, the command always displays Windows.

• When the -w option is also specified, the command displays the OS name, installation folder for that OS, and
partition information for the disk on which the OS is installed.

-v
Specifies that the OS version is to be displayed.

-w (Windows only)
Specifies that the information is to be displayed in the format used in JP1/Advanced Shell version 10-01 or earlier.
When the -w option is specified, the command displays the information as follows:

• The information about each option is displayed on a single line.

• The information that is displayed by the -a and -s options is variable. For details, see the description of each
option.

If only this option is specified, the command's processing is the same as when the -w and -s options are both
specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 883

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• In Windows, input and output are performed in the binary mode for files and for the standard input and standard

output. No conversion of end-of-line codes is performed.

• In Windows, if an option other than those listed below is specified, a user with Administrators permissions must
execute the command, because Administrators permissions are required to acquire the information. An error results
if a user without Administrators permissions attempts to execute a uname command in which any option other than
those listed below is specified.

• -r option

• -s option (when not specified together with the -w option)

• In Windows, in order for the uname command to use Windows OS functions for acquiring information about the
OS and hardware, the PATH environment variable must contain the Windows system folder paths at the time the
script executes. If you want to add another path to the PATH environment variable, be sure to append it to the PATH
environment variable as in the following example.

Example
PATH="${PATH};C:\\home\\bin"

Examples
• Display the default with no options specified.

Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname
Windows

UNIX example (when the command is run in Linux):

$ /opt/jp1as/cmd/uname
Linux

• Specify the -a option to display the detailed information about the OS environment.
Windows example (when the -w option is omitted):

C:\TEMP>%ADSH_OSCMD_DIR%\uname -a
Windows MyMachine Microsoft Windows Server 2008 R2 Enterprise Service Pack 1
6.1.7601 x64-based PC

Windows example (when the -w option is also specified):

C:\TEMP>%ADSH_OSCMD_DIR%\uname -aw
Microsoft Windows Server 2008 R2 Enterprise|C:\Windows|\Device
\Harddisk0\Partition2
 MyMachine
 unknown
 6.1.7601
 x64-based PC

UNIX example (when the command is run in Linux):

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 884

$ /opt/jp1as/cmd/uname -a
Linux LINUX1 2.6.18-53.el5 #1 SMP Wed Oct 10 16:34:02 EDT 2007 i686

• Specify the -m option to display the name of the machine and hardware:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -m
x64-based PC

• Specify the -n option to display the node name:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -n
MyMachine

• Specify the -r option to display the OS release. The following shows a Windows example that always displays
unknown:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -r
unknown

• Specify the -s option to display the OS name.
Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -s
Windows

• Specify the -v option to display the OS version.
Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -v

• If multiple options are combined, the command displays the corresponding information according to the order
defined for the -a option. A Windows example is shown below. This example specifies the -v and -s options in
this order, but the information is displayed in the order of -s and -v:

6.1.7601
C:\TEMP>%ADSH_OSCMD_DIR%\uname -v -s
Windows 6.1.7601

• Display an option error message.
This message might vary depending on the platform on which the command is executed.
Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -p
uname: illegal option -- p
usage: uname [-amnrsvw]

• In Windows, if a user without Administrators permissions attempts to execute the uname command in which is
specified an option requiring Administrator permissions, an error message is displayed as shown below. This
example executes the command with the -m option specified:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -m
Failed to register mof file(s).
Only the administrator group members can use WMIC.EXE.
Reason:Win32 Error: Access is denied.

unknown

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 885

8.4.38 uniq command (removes duplicated lines from a sorted file)

Syntax

uniq [-c] [-d] [-u] [input-path-name [output-path-name]]

Description
This command outputs the results of consolidating duplicated lines in a file into single lines. Note that lines with identical
content are considered to be duplicates only if they are consecutive.

Arguments
If no options are specified, the processing is the same as when the -d and -u options are both specified. That is, the
command outputs duplicate lines as a single line, and it also outputs all non-duplicate lines.

-c
Specifies that each output line is to be preceded by a count of the number of times the line occurred, followed by a
single space. A count is displayed as a four-digit number, but the number of digits will be increased if necessary to
accommodate values that exceed four digits. A single space is displayed after each count.

-d
Specifies that only duplicate lines are to be output.

-u
Specifies that only lines that had no duplicates are to be displayed.

input-path-name
Specifies the input file. If input-path-name is not specified or is specified as -, the standard input is read.

output-path-name
Specifies the output file for the results. If output-path-name is not specified or is specified as -, the standard output
is assumed.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If you specify the same file for input-path-name and output-path-name, the file will be empty.

• The maximum number of bytes that can be compared in a single line is 8,192.

• Input from binary files and output of binary data are not guaranteed to work.

Examples
The following shows the format of the file used in the examples below to illustrate the results of executing the uniq
command.

• file1.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 886

aaaa
aaaaaaa duplicate
aaaaaaa duplicate
bbbbbbb
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bcbcbcbcbcb
ddddddddddddddddddd
dddddddddddddddddddddd
dddddddddddddddddddddddd
ddddddddddddddddddddddddeee duplicate
ddddddddddddddddddddddddeee duplicate

The file listed above is used as the input file in the following examples.

• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq file1.txt
aaaa
aaaaaaa
bbbbbbb
bbbbbbbbbbb
bcbcbcbcbcb
ddddddddddddddddddd
dddddddddddddddddddddd
dddddddddddddddddddddddd
ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -c option to precede each output line with a count of the number of times the line occurred.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -c file1.txt
 1 aaaa
 2 aaaaaaa
 1 bbbbbbb
 4 bbbbbbbbbbb
 1 bcbcbcbcbcb
 1 ddddddddddddddddddd
 1 dddddddddddddddddddddd
 1 dddddddddddddddddddddddd
 2 ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -d option to display only the duplicate lines (one instance of each set of lines that were duplicated).

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -d file1.txt
aaaaaaa
bbbbbbbbbbb
ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -u option to display only the lines that had no duplicates.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -u file1.txt
aaaa
bbbbbbb
bcbcbcbcbcb
ddddddddddddddddddd

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 887

dddddddddddddddddddddd
dddddddddddddddddddddddd

C:\TEMP>

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -w
uniq: illegal option -- w
usage: uniq [-cdu] [input_file [output_file]]

8.4.39 wc command (counts the number of bytes, lines, characters, and
words in files)

Syntax

wc [-c] [-l] [-m] [-w] [path-name ...]

Description
This command counts the number of bytes, lines, characters, and words in files. Depending on the options that are
specified, the counts of the numbers of lines, words, characters, and bytes are displayed in front of the name of each
input file.

Arguments

-c
Specifies that the number of bytes in an input file is to be output to the standard output.

-l
Specifies that the number of lines in an input file is to be output to the standard output. The number of lines is
determined by the number of end-of-line codes.

-m
Specifies that the number of characters in an input file is to be output to the standard output. A multibyte character
is counted as a single character.

-w
Specifies that the number of words in an input file is to be output to the standard output. The number of words is
determined by the number of character strings delimited by a space, tab, or end-of-line code.

path-name
Specifies the name of an input file. If path-name is not specified or is specified as -, the standard input is read.

Return codes
Return code Meaning

0 Normal termination

1 or greater Error termination

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 888

Notes
• Any character in a character encoding that is different from the local character encoding is considered an invalid or

incomplete character.

• Specifying no option is equivalent to specifying the -c, -l, and -w options.

• Regardless of the order in which the options are specified, output items are displayed in the order of lines-count,
words-count, multibyte-characters-count, bytes-count, and file-name. Numeric values are displayed as seven-digit
numbers separated by a single space. The number of digits is increased if necessary to accommodate values that
exceed seven digits.

• An error results if an input file contains invalid or incomplete multibyte or wide characters, binary data, or a character
encoding that is different from the local character encoding. In these cases, an error message (wc: binaryfile:
Invalid or incomplete multibyte or wide character) is output.

Examples
• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\wc a.txt b.txt
 5 5 55 a.txt
 4 4 44 b.txt
 9 9 99 total

• Specify the -c option to display the number of bytes in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -c a.txt
 55 a.txt

• Specify the -l option to display the number of lines in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -l a.txt
 5 a.txt

• Specify the -m option to display the number of characters in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -m a.txt
 50 a.txt

• Specify the -w option to display the number of words in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -w a.txt
 5 a.txt

• Specify all the options to display the number of lines, words, characters, and bytes in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -clmw a.txt
 5 5 50 55 a.txt

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\wc -z
wc: illegal option -- z
usage: wc [-clmw] [file ...]

• Display the error message that is output when there is an invalid or incomplete character in the file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc binaryfile
wc: binaryfile: Invalid or incomplete multibyte or wide character

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 889

The following are considered invalid or incomplete characters:

• Invalid or incomplete multibyte or wide characters, or binary data

• Characters in a character encoding that is different from the local character encoding

8.4.40 which command (obtains the paths of external commands)

Syntax

which[-a]command-name ...

Description
This command obtains the paths of external commands to be executed from the command search path set in the PATH
environment variable. The command outputs the obtained command paths to the standard output.

Arguments

-a
Specifies that all executable command paths are to be obtained from the command search path set in the PATH
environment variable.
When the -a option is omitted, the command output only the first command path obtained.

command-name
Specifies the name of an external command whose command path is to be obtained. You can specify multiple
command names.
If the command path of a specified external command is not found, the which command outputs a message to that
effect to the standard error output.

Command path search rules
The command searches for the command paths of external commands according to the rules described below.

In Windows:

Paths subject to external command search
The command searches the command search path set in the PATH environment variable for the external
commands. If multiple command paths are set in the PATH environment variable, the command searches the
command paths in order from the beginning. If the user executing the which command does not have
permissions to read the external command storage directory, that directory is not subject to command path search.

External commands whose command paths are to be output
If the user executing the which command has permissions to read the external command storage directory, the
which command outputs the corresponding command paths. The which command does not check whether
the user has permissions to execute the external command.
The which command can output the paths of external commands if they are executable files with the
extension .com, .exe, .cmd, or .bat.
If a specified external command contains no extension, the which command adds the extensions defined in the
PATHEXT environment variable in the order defined and then searches the external commands. The supported
extensions are .com, .exe, .cmd, and .bat. For details, see 5.1.11 Specifying external commands.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 890

In UNIX:

Paths subject to external command search
The command searches the command search path set in the PATH environment variable for the external
commands. If multiple command paths are set in the PATH environment variable, the command searches the
command paths in order from the beginning. If the user executing the which command does not have
permissions to search the external command storage directory (including all directories in the path), that directory
is not subject to command path search.

External commands whose command paths are to be output
If the user executing the which command has permissions to execute a specified external command, the which
command determines that that external command is executable and outputs its command path. If the user does
not have permissions to execute a specified external command, that external command's path is not output.

When the command names specified in the argument contain paths

In Windows:
If the user executing the which command has permissions to read the external command storage directory, the
which command outputs the corresponding command paths. The which command does not check whether the
user has permissions to execute the external command.
If the user executing the which command does not have permissions to read the external command storage directory,
the which command outputs a message indicating that the external command's command path was not found.
The which command can output the paths of external commands if they are executable files with
extension .com, .exe, .cmd, or .bat.
If the specified external commands contain no extension, the which command adds to the external command names
the extensions defined in the PATHEXT environment variable in the order defined. The supported extensions
are .com, .exe, .cmd, and .bat.
This command behaves as follows if the specified external command is a symbolic link.

• Execution permission is determined to be evaluated if both extensions of the symbolic link and file at the link
destination are .com, .exe, .cmd, or .bat.

• If the specified external commands contain no extension, add extensions to the PATHEXT environment variable
in the order defined. However, no extension is added to a file at the link destination. The supported extensions
are .com, .exe, .cmd, and .bat.

In UNIX:
If the user executing the which command has permissions to search the external command storage directory
(including all directories in the path) and the external command execution permissions, the which command outputs
the command names specified in the argument. If the user executing the which command does not have these
permissions, the which command outputs a message indicating that the external command's command path was
not found.

Return code
Return code Meaning

0 Normal termination

1 Error termination
The command path of the external command was not found; or, if multiple external commands were searched, at
least one external command's command path was not found.

2 Error termination
• An invalid option was specified.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 891

Return code Meaning

2 • The PATH environment variable is undefined.
• In Windows, the PATHEXT environment variable is undefined.

Notes
• If the PATH environment variable is undefined, the command terminates with an error.

• In Windows, if the PATHEXT environment variable is undefined, the command terminates with an error.

• If the following names are specified as command names in the argument, the which command treats them as external
commands:

• Aliases defined by the alias command

• Reserved words, standard shell commands, extended shell commands, and functions

• If a command name specified in the argument contains a path and the path name is subject to conversion by either
of the environment setting parameters listed below, the which command outputs the path name obtained after
conversion:

• PATH_CONV parameter

• COMMAND_CONV_ARG parameter

• In Windows, only external commands that satisfy the command path search rules are subject to output of command
paths.
When you execute an external command from the awk, find, or xargs command, the path search rules of the
external command apply as follows:

Method of external command execution Path search rules

• system function of awk command
• Format of the awk command: command-name | getline

[variable-name]
• Format of the awk command: print [expression[, ...]] |

command-name

The path search rules for command processor execution (such as the
command prompt) apply

• -exec primary of find command
• -ok primary of find command
• xargs command

The path search rules of the Windows API that executes the program
apply

Note that the command path that is output when a command name specified in the above command is specified in
the argument might differ from the path of the command that is executed.

Examples
• Obtain the command path of command pgm01.exe:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01.exe
C:\Program Files\Hitachi\PP001\pgm01.exe

• Obtain the command path of command pgm01. This example omits the extension of the command name:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01
C:\Program Files\Hitachi\PP001\pgm01.exe

• Specify the -a option to obtain all command paths of command pgm01.exe:

C:\TEMP>%ADSH_OSCMD_DIR%\which -a pgm01.exe
C:\Program Files\Hitachi\PP001\pgm01.exe

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 892

C:\Program Files\Hitachi\PP002\pgm01.exe
C:\Program Files\Hitachi\PP003\pgm01.exe

• Obtain the command path of command pgm02. In this example, the command search path does not contain pgm02:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm02
which: no pgm02 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)

• Obtain the command paths of the commands pgm01,pgm02, pgm03, and pgm04. In this example, the command
search path does not contain the commands pgm02 and pgm04:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01 pgm02 pgm03 pgm04
C:\Program Files\Hitachi\PP001\pgm01.exe
which: no pgm02 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)
C:\Program Files\Hitachi\PP001\pgm03.exe
which: no pgm04 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)

• Execute the which command with a command name containing a path specified. In this example, the specified
program name exists:

C:\TEMP>%ADSH_OSCMD_DIR%\which "C:\Program Files\Hitachi\PP001\pgm01"
C:\Program Files\Hitachi\PP001\pgm01.exe

• Execute the which command with a command name containing a path specified. In this example, the specified
program name does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\which "C:\Program Files\Hitachi\PP001\pgm02"
which: no pgm02 in (C:\Program Files\Hitachi\PP001)

8.4.41 xargs command (creates and runs a command line)

Syntax

xargs [-0] [-r] [-x] [-d delimiter] [-n maximum-number-of-command-arguments]
 [-s maximum-command-line-length] [--cmdrc-threshold=threshold]
 [external-command-name [external-command's-argument ...]

Description
This command inputs command arguments from the standard input, and then creates and runs a command line.

For details about how to input command arguments, see Input of command arguments.

If the length of the command line to be created exceeds the maximum length of a command line, adjust the number of
command arguments in the command line. Then, repeat the process for creating and running the command line. For
details about the maximum length of a command line, see Maximum length of a command line.

Input of command arguments
In the standard input, character strings separated by command argument separators are selected as command
arguments to be input from the standard input.
Command argument separators are space (0x20), tab character (0x09), and linefeed character. In Windows, [CR]
+[LF] (0x0d0a) or [LF] (0x0a) is considered a linefeed character. In UNIX, [LF] (0x0a) is considered a linefeed

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 893

character. If these separators appear in succession, they are handled as a single separator. You can change command
argument separators by using the -0 option or -d option.
The following characters have special meanings for input of command arguments.

Table 8-23: Special characters that have meaning for input of command arguments

Special character Meaning

' The following characters contained in a character string enclosed in single quotation marks (')
are handled as characters contained in the command argument.
• Command argument separators (excluding linefeed characters)
• Other special characters

" The following characters contained in a character string enclosed in double quotation marks (")
are handled as characters contained in the command argument.
• Command argument separators (excluding linefeed characters)
• Other special characters

\ A backslash (\) that precedes the following characters disables their spacial meaning (escape
characters).
• Command argument separators
• Special character

The following characters must be considered during input of command arguments.

• NULL (0x00)
This character cannot be included in a character string in a command argument. If neither of the following options
is specified and NULL(0x00) is input from the standard input, the input process terminates:
- -0 option
- -d option for which a delimiter such as \0 indicating NULL(0x00) is specified

• Formfeed character (0x0c), carriage return character (0x0d), and vertical tab character(0x0b)
These characters are placed at the beginning of the command arguments separated by separators, those characters
are not included in the character string in the command argument.
Example: A formfeed character is represented as \f, a carriage return character is represented as \r, a vertical
tab character is represented as \v, and a space is represented as ∆.
- Contents of the standard input

\f\f\rABC\vDEF∆\vGHI\fJKL

- Contents of the command argument array (argv) that is passed to an external command

Command argument array
(argv)

Contents of command argument

First External command name

Second ABC\vDEF

Third GHI\fJKL

A command line is also created and run if a command argument is not input from the standard input due to the
following causes:

• The input from the standard input contains zero byte.

• Only command argument separators are input.

If you do not want a command line to be created and run when a command argument is not input from the standard
input, specify the -r option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 894

For details about the notes on input of command arguments, see Notes.

Command line length
In UNIX, the unit of the command line length is bytes.
In Windows, the command line length is expressed in characters. A multibyte character is counted as one character.
The command line length is the total length of the following character strings. The length of a character string
includes NULL (0x00), which indicates the end of the character string.

• External command name

• The command arguments of the external command name specified for the xargs command argument

• The command arguments input from the standard input

In Windows, the following number of characters are added according to the contents of the character string.

Contents of the character string Number of characters to be added

A space character (0x20)# or a tab character (0x09)# is included. 2

Double quotation marks (")# are included. 1

A double quotation mark (")# is preceded by at least one backslash (\)#. - For only one backslash (\): 1
- For consecutive backslashes (\): Number of
backslashes (\)

The character string ends with at least one backslash (\)# and includes a space
character (0x20)#.

- For only one backslash (\): 1
- For consecutive backslashes (\): Number of
backslashes (\)

#
When the string is handled as a character string in the command argument for special characters indicated in
Special characters that have meaning for input of command arguments, or for the -0 or -d option.

Maximum length of a command line
If the length of the command line indicated by Command line length exceeds the maximum length of a command
line, adjust the number of command arguments in the command line. Then, re-create the command line and run the
command again.
If you do not specify the -s option, the default value is applied for the maximum length of a command line. The
default of the maximum length of a command line is determined by the maximum length of a command line that
can run in the system. The following describes the maximum length of a command line and the maximum length
of a command line that can run in the system.
[In UNIX]
The default of the maximum length of a command line is as follows according to the maximum length of a command
line that can run in the system.

Condition Maximum length of a command line to be used

Maximum length of a command line that can run in the system ≥
131072

131072 bytes (128 KB)

Maximum length of a command line that can run in the system <
131072

Maximum length of a command line that can run in the system

The maximum length of a command line that can run in the system is obtained by using the following formula.

maximum-length-of-a-command-line-that-can-run-in-the-system# = A - E - 8192

Legend:
A: ARG_MAX value of the system

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 895

E: Total size of environment variables that are set at runtime of an external command
#
This value is truncated at the decimal point.

Important
- In a 64-bit edition of Linux, if a value exceeding 1 GB is specified for the ARG_MAX value, 1 GB
minus 1 byte is set for the ARG_MAX value.

- In Solaris, the value applicable to a 32-bit program is set for the ARG_MAX value.

In Solaris, create a command line so that the sum of the following values 1 and 2 does not exceed the maximum
length of a command line.
1. The value indicated in Command line length
2. Four bytes for each of the following character strings:
- External command name
- Command argument of the external command specified for the argument of the xargs command
- Command argument input from the standard input
[In Windows]
The maximum length of a command line is 32,760 characters. This value is the same as the maximum length of a
command line that can run in the system.
If the number of command arguments included in the command line is 1, note that if the length of the command line
exceeds the maximum, the command terminates with an error.

Arguments
-0

--null
Sets NULL (0x00) as a command argument separator.
When command arguments are input from the standard input, character strings separated by NULL (0x00) are
handled as a single command argument.
Default command line argument separators and special characters indicated in Special characters that have meaning
for input of command arguments are handled as characters contained in the command argument.
A character string input from the standard input might contain NULL (0x00) that is not preceded by a character
other than NULL (0x00). In this case, the command argument that only contains NULL (0x00), indicating the end
of the character string, is passed to an external command.
(Example)
Indicate NULL in \0.

• Contents of the standard input

abc\0\0def

• Contents of the command argument array (argv) that is passed to an external command

Command argument array (argv) Contents of command argument

First external-command-name\0

Second abc\0

Third \0

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 896

Command argument array (argv) Contents of command argument

Fourth def\0

If the -0 and -d options are specified at the same time, the last specified option is valid.

-r

--no-run-if-empty
Does not run the external command if a command argument is not input from the standard input. For details about
the input of command arguments, see Input of command arguments.

-x

--exit
Terminates the command with an error if the length of the created command line exceeds the permitted maximum
length.
This option takes effect if the -n option is specified at the same time. For details about the operation when this
option is specified together with the -n option, see the description of the -n option.

-d delimiter

--delimiter=delimiter
Sets the specified delimiter as a command argument separator.
When command arguments are input from the standard input, character strings separated by delimiter are handled
as a single command argument.
Default command line argument separators and special characters indicated in the table Special characters that have
meaning for input of command arguments are handled as characters contained in the command argument.
Only single-byte characters can be specified for delimiter. If the length of the specified delimiter is not 1 byte, the
command terminates with an error.
The following escape characters can also be specified.

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\d, \dd, \ddd ASCII code characters displayed in octal notation (d: 0 to 7) with 1 to 3 digits

\xh, \xhh ASCII characters displayed in hexadecimal notation (h: 0 to 9, a to f, and A to F) with 1 or 2 digits

In the character string input from the standard input, the specified delimiter might not be preceded by a character
other than a delimiter. In this case, the command argument that only contains NULL (\0) indicating the end of the
character string is passed to an external command.
(Example) Indicate NULL in \0. The specified delimiter is indicated in X.

• Contents of the standard input

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 897

abcXXdef

• Contents of the command argument array (argv) that is passed to an external command

Command argument array (argv) Contents of command argument

First external-command-name\0

Second abc\0

Third \0

Fourth def\0

If the -d and -0 options are specified at the same time, only the last specified option is valid.

-n maximum-number-of-command-arguments

--max-args=maximum-number-of-command-arguments
Specifies the maximum number of command arguments that can be contained in a command line.
The maximum number of command arguments to be specified does not include the following arguments:

• External command name

• Command argument of the external command specified in the command line of the xargs
You can specify the maximum number of command arguments in the range from 1 to 2147483647. If the length
of the command line containing the maximum number of command arguments exceeds the permitted maximum
length, create a command line with fewer command arguments so that it does not exceed the maximum length.
If the -x option is specified at the same time, the command terminates with an error if the length of the command
line containing the maximum number of command arguments exceeds the maximum length of a command line.

-s maximum-command-line-length

--max-chars=maximum-command-line-length
Specifies the maximum length of a command line that can be created.
In UNIX, the unit of the command line length is bytes.
In Windows, the command line length is expressed in characters. A multibyte character is counted as one character.
You can specify the maximum length in the range from 1 to the maximum length of a command line that can run
in the system indicated in Maximum length of a command line.
If the specified maximum length exceeds the maximum length of a command line that can run in the system (indicated
in Maximum length of a command line), the following error message is output to the standard error output: xargs:
The value specified for the option -s exceeds the maximum length (maximum-
length-of-a-command-line-that-can-run-in-the-system) of the command line in
the system. In addition, the maximum length of a command line that can run in the system is set to the maximum
length of a command line.

--cmdrc-threshold=threshold
If you want to assume normal termination even if the return code of an external command is not 0, specify the
threshold. This causes normal termination if the return code of the external command is equal to or smaller than the
threshold.
You can specify the threshold in the range from 0 to 254 in UNIX, and in the range from 0 to 2147483647 in
Windows.
The subject to the threshold is only the return code of the external command when the xargs command sets 123
for the return code.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 898

For details about handling of return codes of external commands, see Return codes.

external-command-name
Specify the name of the external command to be run in the command line.
If external-command-name contains no path, the external command found according to the path search order of the
OS file run function (execvp function in UNIX or CreateProcess function in Windows) is run.
If external-command-name is omitted, the command argument is output as is to the standard output. Escape
characters in the command argument are also output as they are. Note that 5 is added to the value of Command line
length as the length of the character string for the command name.

external-command-argument
Specify the command argument to be added after the external command name in the command line.
Command arguments input from the standard input are added after this command argument. If the command line is
created and run several times, this command argument is included in each command line.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
An error occurred during xargs command processing.

123 [In UNIX]
The external command terminated with a return code#1 in the range from 1 to 254 (except for 126, 127, and
the return code for signal termination).

[In Windows]
The external command terminated with return code#2 1 or greater.

If processing for creating and running the command line must be performed several times, processing continues.

124 [In UNIX]
The external command terminated with return code#1 255.

[In Windows]
The external command terminated with a return code#2 less than 0.
For return codes less than 0, exception codes are excluded. For details about exception codes, see the table
Exception codes treated as exceptions and their meaning in 5.8.8 Return codes of jobs, job steps, and
commands.

125 [In UNIX]
The command received a signal and terminated.

[In Windows]#3

The external command terminated due to an exception. For details about exceptions, see the table Exception
codes handled as exceptions and their meaning in 5.8.8 Return codes of jobs, job steps, and commands.

126 The external command could not run.
In UNIX, this return code is set if the return code of the external command is 126.

127 The external command was not found.
In UNIX, this return code is set if the return code of the external command is 127.

#1
The trailing eight bits of the value returned by the external command are handled as the return code.

#2
The value returned by the external command are handled as a signed integer.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 899

#3
If the external command terminated due to immediate termination of process by, for example,
TerminateProcess, the code set by this immediate termination operation is used as the return code of the
external command.

Notes
• If both of the following options are not specified and the character string input from the standard input contains
NULL (0x00), the characters up to NULL (0x00) are used to create and run the command line. The portion of the
character string following NULL (0x00) is ignored.

• -0 option

• The -d option for which a delimiter such as \0 indicating NULL(0x00) is specified

For details about handling of NULL (0x00), see Input of command arguments.

• In Windows, if a path name is input as a command argument from the standard input, a directory-separator backslash
(\) and the beginning \\ that indicates the path name in UNC format are handled as escape characters. Therefore,
perform one of the following:

• Use a special character in the table in Special characters that have meaning for input of command arguments to
handle a backslash (\) as a character.

• Specify the -0 option. In addition, use NULL (0x00) as the separator for path names in the standard input. For
example, if the file search results output by the find command are to be input by the xargs command, specify
-print0 for a search pattern of the find command.

• Specify the -d option. In addition, use the delimiter specified for the -d option as the separator for path names
in the standard input. For example, if the file search results output by the find command are to be input by the
xargs command, specify \n (linefeed character) for the -d option.

• In Windows, if you use a special character to include a linefeed character in the command argument, the linefeed
character passed to the external command is [LF] (0x0a).

• In Windows, the input process terminates if 0x1a code is input from the standard input.

• When the command line runs, the following file is set as the standard input of the external command.

• In UNIX: /dev/null file

• In Windows: NUL device

If /dev/null file or NUL device does not exist in the system, the following message is output to the standard error
output: xargs: Failed to open a null file when executing the external command
external-command-name (error=error-details). The command line is run after the standard input
of the external command is closed.

• To run a program from the external command, make sure that the maximum length of a command line for the OS
is not exceeded when arguments are passed from the external command to the program. If the maximum length of
a command line for the OS is exceeded, the program fails to run.

• If the external command returns a value other than 0, indicating normal termination, the return code of the xargs
command is set to 123. If you want to set the return code of the xargs command to 0, use the --cmdrc-
threshold option. For details about handling of return codes of external commands, see Return codes.

• For some external commands, the maximum length of a command line for the external command might be less than
the default maximum length indicated in Maximum length of a command line. In such cases, specify the maximum
length of a command line for the external command in the -s option.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 900

• If the maximum number of command arguments is specified for the external command, use the -n option, and then
make sure that the number of command arguments in the command line does not exceed the maximum.

Examples
Receive the path names of files obtained by the find command, and then run the rm command with those path names
specified for the operand. Specify as follows to prevent directory separators from being handled as escape characters.

• For a search pattern of the find command, specify -print0.

• For an option of the xargs command, specify -0.

If the file is not found by the find command with the -r option specified, the rm command is not run.

C:\TEMP>%ADSH_OSCMD_DIR%\ls "C:\Program TEMP"
cmd001.log file001.tmp file002.tmp file003.tmp file004.tmp file005.tmp
file006.tmp

C:\TEMP>%ADSH_OSCMD_DIR%\find "C:\Program TEMP" -name "*.tmp" -print0 |
%ADSH_OSCMD_DIR%\xargs -0 -r %ADSH_OSCMD_DIR%\rm -f

C:\TEMP>%ADSH_OSCMD_DIR%\ls "C:\Program TEMP"
cmd001.log

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 901

8.5 UNIX-compatible commands (script format) (Windows only)

You can execute the UNIX-compatible commands listed below by using the sample script files provided by JP1/
Advanced Shell. These sample script files are for Widows only. In UNIX, use the commands provided by the OS.

Table 8-24: UNIX-compatible commands provided as sample script files

Command
name

Name of sample script
file

Overview of functionality

All commands script_0 Disables the commands specified in job definition scripts.

chmod script_chmod1 Changes the file read-only attribute setting (enable or disable).

script_chmod2 Specifies file or folder permissions as numeric values.

script_chmod3 Specifies file or folder permissions as symbols or numeric values.

su script_su1 Executes programs with the permissions of the executing user.

who script_who1 Outputs to logs information about the login user.

For details about the procedure for using the sample script files, see (2) Preparations for using the script-format UNIX-
compatible commands (Windows only).

8.5.1 chmod command (disables the chmod commands specified in job
definition scripts)

Syntax

chmod [option][mode][path-name]

You can create this command by using the script_0 sample script file as the base. For details about how to create
the command, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all the chmod commands and their arguments that are specified in job definition scripts. This
command always terminates normally with return code 0.

In Windows, if access control is performed for each login user, it might not be necessary to change access permissions
when job definition scripts are run. In such a case, you can use this command to disable all chmod commands specified
in job definition scripts, thereby eliminating the need to modify job definition scripts that have been migrated from a
UNIX system to a Windows system.

Arguments

option
Ignores the specification.

mode
Ignores the specification.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 902

path-name
Ignores the specification.

Return code
Return code Meaning

0 Normal termination

Notes
• In command substitution, the commands specified in arguments are still executed. If this affects the subsequent

processing, check and, if necessary, revise the specification.

Examples
The following shows an example definition of a job definition script. This example assumes that the chmod command
has been created by using the script_0 sample script file as the base.

• Ignore the chmod commands specified in job definition scripts. The options of the chmod commands specified in
this example are not executed:

chmod go-x test.txt
if [[$? -ge 1]]; then # Processing continues because the return code of
chmod is always 0.
 echo "chmod error." 1>&2
 exit 1
fi

8.5.2 chmod command (changes the file read-only attribute setting
(enable or disable))

Syntax

chmod [-fhR] mode path-name

You can create this command by using the script_chmod1 sample script file as the base. For details about how to
create the command, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command changes the file read-only attribute setting (enable or disable).

Use this command when you want to suppress updating of files.

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 903

-R
Ignores the specification.

mode
Specifies the mode as a symbol or a numeric value and enables or disables the read-only attribute. The table below
explains how to specify this option. If any other mode is specified, the command outputs chmod: invalid file
mode: mode to the standard error output, in which case the access permissions remain unchanged.

Specification Symbol Numeric value

Disabling the read-only attribute and permitting write
operations
(equivalent to when the execution results of the
adshscripttool -fmode -s w command are AAA or
RRR)

+w specified Numeric value that turns on write permission mode bits u,
g, and o (such as 777, 666, 333, 222, and 733)

Enabling the read-only attribute and prohibiting write
operations
(equivalent to when the execution results of the
adshscripttool -fmode -s w command are DDD)

-w specified Numeric value that turns off write permission mode bits u,
g, and o (such as 555, 444, 111, 000, and 511)

path-name
Specifies the target file. You can specify multiple files. A folder cannot be specified.

Return code
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If the executing user does not have permissions to change the file attribute, the attrib command outputs the

message Access denied - path-name to the standard error output and then results in an error, in which case the
permissions cannot be changed. Grant the executing user the permissions to change file attributes and then re-execute
the command.

• If a folder is specified for path-name, the message chmod: cannot access [path-name]: change for the
directory is not supported is output. In this case, the command does not change the folder read-only
attribute and terminates with return code 1.

• If symbolic link is specified for the argument path name, you can change the link destination file. Use the command
provided by OS if you change the symbolic link itself.

Examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod1 sample script file as the base.

• Use a symbol to prohibit write operations on files:

chmod -w test.txt

• Use a symbol to permit write operations on files:

chmod +w test.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 904

• Use a numeric value to prohibit write operations on files:

chmod 444 test.txt

• Specify a mode whose specification is not permitted:

chmod -r test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: -r

8.5.3 chmod command (specifies permissions as numeric values)

Syntax

chmod [-fhR] mode path-name

You can create this command by using thescript_chmod2 sample script file as the base. For details about how to
create the command, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command deletes the existing access control list (ACL) and specifies a new ACL using numeric values for the
mode specification.

Use this command to set access permissions as numeric values for the following purposes:

• Suppressing write and read by users other than owner
• Permitting write and read by all users

• Suppressing write by all users including owner

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

-R
Ignores the specification.

mode
The table below lists the mode values and the corresponding access permissions in access control entries (ACEs)
that are set. If any other mode is specified, the command outputs the message chmod: invalid file mode:
mode to the standard error output, in which case the access permissions are not changed.

Mode value Access permission that is set

777 Owner: F, Everyone: F

766 Owner: F, Everyone: C

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 905

Mode value Access permission that is set

755 Owner: F, Everyone: R

744 Owner: F, Everyone: R

733 Owner: F, Everyone: W

722 Owner: F, Everyone: W

700 Owner: F

666 Owner: C, Everyone: C

655 Owner: C, Everyone: R

644 Owner: C, Everyone: R

633 Owner: C, Everyone: W

622 Owner: C, Everyone: W

600 Owner: C

555 Owner: R, Everyone: R

544 Owner: R, Everyone: R

533 Owner: R, Everyone: W

522 Owner: R, Everyone: W

500 Owner: R

444 Owner: R, Everyone: R

433 Owner: R, Everyone: W

422 Owner: R, Everyone: W

400 Owner: R

333 Owner: W, Everyone: W

322 Owner: W, Everyone: W

300 Owner: W

222 Owner: W, Everyone: W

200 Owner: W

Legend:
In the table, F, C, R, and W correspond to the following access permissions of the cacls command:

 F: Full control
 C: Change permission
 R: Read permission
 W: Write permission

The mode read and write permissions combined (mode bit 6) are defined as the change permission. All permissions
combined (mode bit 7) are defined as full control.
A mode specification equivalent to execution permissions is ignored. Therefore, mode bit 5 is defined as being
equivalent to mode bit 4, and mode bit 3 is defined as being equivalent to mode bit 2.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 906

path-name
Specifies the target file or folder. You can specify multiple files or folders.

Return code
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• This command deletes the existing ACL and sets only those ACEs listed in the explanation of mode. If there are

ACEs for accounts that you want to keep, add them to the cacls command definition in the sample script.

• The Other users account is set to Everyone. Therefore, if Owner's access permissions are lower than Other users'
access permissions, Owner can use Everyone's access permissions.

• If the executing user does not have permissions to access files and folders, the cacls command outputs the message
Access denied to the standard error output and then results in an error, in which case the permissions cannot be
changed. Grant the executing user the permissions to change access permissions and then re-execute the command.

• If symbolic link is specified for the argument path name, link destination file and directory are changed. Use the
command provided by OS if you change the symbolic link itself.

Examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod2 sample script file as the base.

• Set a specified file to be readable by all users:

chmod 444 test.txt

• Specify a mode whose specification is not permitted:

chmod 611 test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: 611

8.5.4 chmod command (specifies permissions as symbols or numeric
values)

Syntax

chmod [-fhR] mode path-name

You can create this command by using the script_chmod3 sample script file as the base. For details about how to
create the command, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 907

Description
This command deletes all ACEs except for those for Owner and Everyone and changes or sets access permissions
according to the mode specified as symbols or numeric values.

Use this command to set access permissions as symbols or numeric values for the following purposes:

• Migrating to a Windows system job definition scripts in which chmod command modes are specified as symbols

• Adding or suppressing Owner's or all users' access permissions

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

-R
Ignores the specification.

mode
The table below lists the mode values and the corresponding access permissions in access control entries (ACEs)
that are set. If any other mode is specified, the command outputs the message chmod: invalid file mode:
mode to the standard error output, in which case the access permissions are not changed.

Mode value
(execution results of the adshscripttool -fmode command)

Access permission that is set

u+r (A00000000) Owner: R is added.

u+rw (AA0000000) Owner: C is added.

u+rwx (AAA000000) Owner: F is added.

u+w (0A0000000) Owner: W is added.

u-rwx (DDD000000) Owner's ACE is deleted.

u=r (RDD000000) Owner: Replaced with R.

u=rw (RRD000000) Owner: Replaced with C.

u=rwx (RRR000000) Owner: Replaced with F.

u=w (DRD000000) Owner: Replaced with W.

o+r (000000A00) Everyone: R is added.

o+rw (000000AA0) Everyone: C is added.

o+rwx (000000AAA) Everyone: F is added.

o+w (0000000A0) Everyone: W is added.

o-rwx (000000DDD) Everyone's ACE is deleted.

o=r (000000RDD) Everyone: Replaced with R.

o=rw (000000RRD) Everyone: Replaced with C.

o=rwx (000000RRR) Everyone: Replaced with F.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 908

Mode value
(execution results of the adshscripttool -fmode command)

Access permission that is set

o=w (000000DRD) Everyone: Replaced with W.

+r / ugo+r (A00A00A00) Owner: R, Everyone: R is added.

+rw / ugo+rw (AA0AA0AA0) Owner: C, Everyone: C is added.

+rwx / ugo+rwx (AAAAAAAAA) Owner: F, Everyone: F is added.

+w / ugo+w (0A00A00A0) Owner: W, Everyone: W is added.

-rwx / ugo-rwx (DDDDDDDDD) Owner's and Everyone's ACEs are deleted.

=r / ugo=r (RDDRDDRDD) Owner: R, Everyone: Replaced with R.

=rw / ugo=rw (RRDRRDRRD) Owner: C, Everyone: Replaced with C.

=rwx / ugo=rwx (RRRRRRRRR) Owner: F, Everyone: Replaced with F.

=w / ugo=w (DRDDRDDRD) Owner: W, Everyone: Replaced with W.

777 (RRRRRRRRR) Owner: F, Everyone: Replaced with F.

766 (RRRRRDRRD) Owner: F, Everyone: Replaced with C.

755 (RRRRDRRDR) Owner: F, Everyone: Replaced with R.

744 (RRRRDDRDD) Owner: F, Everyone: Replaced with R.

733 (RRRDRRDRR) Owner: F, Everyone: Replaced with W.

722 (RRRDRDDRD) Owner: F, Everyone: Replaced with W.

700 (RRRDDDDDD) Owner: Replaced with F.

666 (RRDRRDRRD) Owner: C, Everyone: Replaced with C.

655 (RRDRDRRDR) Owner: C, Everyone: Replaced with R.

644 (RRDRDDRDD) Owner: C, Everyone: Replaced with R.

633 (RRDDRRDRR) Owner: C, Everyone: Replaced with W.

622 (RRDDRDDRD) Owner: C, Everyone: Replaced with W.

600 (RRDDDDDDD) Owner: Replaced with C.

555 (RDRRDRRDR) Owner: R, Everyone: Replaced with R.

544 (RDRRDDRDD) Owner: R, Everyone: Replaced with R.

533 (RDRDRRDRR) Owner: R, Everyone: Replaced with W.

522 (RDRDRDDRD) Owner: R, Everyone: Replaced with W.

500 (RDRDDDDDD) Owner: Replaced with R.

444 (RDDRDDRDD) Owner: R, Everyone: Replaced with R.

433 (RDDDRRDRR) Owner: R, Everyone: Replaced with W.

422 (RDDDRDDRD) Owner: R, Everyone: Replaced with W.

400 (RDDDDDDDD) Owner: Replaced with R.

333 (DRRDRRDRR) Owner: W, Everyone: Replaced with W.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 909

Mode value
(execution results of the adshscripttool -fmode command)

Access permission that is set

322 (DRRDRDDRD) Owner: W, Everyone: Replaced with W.

300 (DRRDDDDDD) Owner: Replaced with W.

222 (DRDDRDDRD) Owner: W, Everyone: Replaced with W.

200 (DRDDDDDDD) Owner: Replaced with W.

Legend:
In the table, F, C, R, and W correspond to the following access permissions of the cacls command:

 F: Full control
 C: Change permission
 R: Read permission
 W: Write permission

The mode read and write permissions combined (mode bit 6) are defined as the change permission. All permissions
combined (mode bit 7) are defined as full control.
A mode specification equivalent to execution permissions is ignored. Therefore, mode bit 5 is defined as being
equivalent to mode bit 4, and mode bit 3 is defined as being equivalent to mode bit 2.

path-name
Specifies the target file or folder. You can specify multiple files or folders.

Return code
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• This command deletes all ACEs except for those for Owner and Everyone and sets only those ACEs listed in the

explanation of mode. If there are ACEs for accounts that you want to keep, add them to the cacls command
definition in the sample script.

• The Other users account is set to Everyone. Therefore, if Owner's access permissions are lower than Other users'
access permissions, Owner can use Everyone's access permissions.

• If the executing user does not have permissions to access files and folders, the cacls command outputs the message
Access denied to the standard error output and then results in an error, in which case the permissions cannot be
changed. Grant the executing user the permissions to change access permissions and then re-execute the command.

• If symbolic link is specified for the argument path name, link destination file and directory are changed. Use the
command provided by OS if you change the symbolic link itself.

Examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod3 sample script file as the base.

• Add write permission to Other users:

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 910

chmod o+w test.txt

• Specify a mode whose specification is not permitted:

chmod g-w test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: g-w

8.5.5 su command (disables the su commands specified in job definition
scripts)

Syntax

su [-] [user-name] [argument...]

You can create this command by using thescript_0 sample script file as the base. For details about how to create the
command, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all su commands and their arguments that are specified in job definition scripts. This command
always terminates normally with return code 0.

If job definition scripts that use the su command in a UNIX system to start and stop subsystems are migrated to a
Windows system that uses a different system to start and stop subsystems, the su command processing specified in the
job definition scripts might no longer be needed. In such a case, you can use this command to disable all su command
definitions in job definition scripts, thereby eliminating the need to modify job definition scripts that have been migrated
from a UNIX system to a Windows system.

Arguments

-
Ignores the specification.

user-name
Ignores the specification.

argument
Ignores the specification.

Return code
Return code Meaning

0 Normal termination

Notes
• In command substitution, the commands specified in arguments are still executed. If this affects the subsequent

processing, check and, if necessary, revise the specification.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 911

Examples
The following shows example definitions of job definition scripts. These examples assume that the su command has
been created by using the script0 sample script file as the base.

• Ignore the su commands specified in job definition scripts. The options of the su commands specified in this
example are not executed:

su - ${DBADMIN} -c 'export PDDIR=/home/db/db1; start -q'
if [[$? -ge 1]]; then # Processing continues because the return code of su
is always 0.
 echo "su error." 1>&2
 exit 1
fi

8.5.6 su command (executes programs with the permissions of the
executing user)

Syntax

su [-] user-name {-c command-line|script-file-path-name}
 [run-time-parameters]

script_su1 sample script file as the base. For details about how to create the command, see (2) Preparations for
using the script-format UNIX-compatible commands (Windows only).

Description
This command executes the commands specified in the argument. The command ignores the specified user name and
executes the specified commands with the permissions of the executing user.

If existing job definition scripts contain su commands, this command enables you to migrate them to a Windows system
without having to rewrite the job definition scripts.

Arguments

-
Ignores the specification.

user-name
Ignores the specification.

-c command-line
Specifies the command line to be executed in the job.
You can specify for command-line any commands that can be specified in job definition scripts, such as shell
operation commands and UNIX-compatible commands.

script-file-path-name
Specifies the path name of the script file that is to be executed.

run-time-parameters
Specifies the values to be set in command-line or script-file-path-name positional parameters. To include a space in
a run-time parameter, you must enclose the corresponding character string in double quotation marks (").

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 912

Return code
Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• Before you execute this command, grant the necessary permissions to the executing user.

Examples
The following shows example definitions of job definition scripts. These examples assume that the su command has
been created by using the script_su1 sample script file as the base.

• Grant the necessary permissions to the executing user and then execute this command with multiple commands
specified in the -c argument:

Execute the command by a user that has the required permissions
su - ${DBADMIN} -c 'export PDDIR=C:\\db\\db1; start -q'

• Grant the necessary permissions to the executing user and then execute this command with a script file name specified
in the argument:

Run the job definition script by a user that has the required permissions
su - ${DBADMIN} '.\\DBSTART.ash'

8.5.7 who command (disables the who commands specified in job
definition scripts)

Syntax

who [am i]

This command is created by using the sample script file script_0 as the base. For details about the creation procedure,
see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all who commands and their arguments that are specified in job definition scripts. This command
always terminates normally with return code 0.

You might want to disable the who command processing specified in job definition scripts in a situation where the who
command was used in UNIX, but that information is no longer needed in Windows. By using this command, you
eliminate the need to modify job definition scripts that have been migrated from UNIX to Windows because this
command disables all who command definitions in job definition scripts.

Arguments

am i
Ignores the specification.

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 913

Return codes
Return code Meaning

0 Normal termination

Notes
• In the event of command substitution, the commands specified in arguments will still be executed. If this affects the

subsequent processing, check and revise the specifications as necessary.

8.5.8 who command (outputs login user information to logs)

Syntax

who [am i]

This command is created by using the sample script file script_who1 as the base. For details about the creation
procedure, see (2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command starts the quser.exe or qwinsta.exe command.

Specify this command to output to logs a list of the users who are logged in to the system when job definition scripts
are run.

Arguments

am i
Ignores the specification.

Return codes
Return code Meaning

0 Normal termination

Other than 0 Error termination (return code of the quser.exe or qwinsta.exe command)

Examples
The following shows an example definition for job definition scripts. This example assumes that the who command has
been created by using the script_who1 sample script file as the base.

• Output to log file log.txt a list of the users who are logged in:

who >>log.txt

8. Commands Used During Operations

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 914

This section explains the description formats and details of the commands and control statements
used for the job definition script file.

9 Job Definition Script Commands and Control
Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 915

9.1 Command and control statement description formats

The following types of commands and control statements can be used in job definition script files:

• Standard shell commands

• Extended shell commands

• Extended script commands

• Script control statements

• Reserved script commands

Note the following points about specifying job definition script files:

• If NULL (0x00, or \0 in C language) is specified in the middle of a line, the location in the line where that NULL
character occurs will be considered by the job controller to be the end of the line. Any character string (on the same
line) following that NULL character will be ignored. You can prevent invalid execution results and run-time errors
by avoiding use of NULL.

Example:
• Input line (0x00 is indicated by \0)
echo "test\0null";echo "test after"

• Output example
echo "test

• To make job definition scripts easier to read, and to ensure that coverage information is displayed properly, we
recommend that only one command be specified on a line. We recommend that you not specify multiple commands
on a single line using the semicolon (;) separator between them.

Note the following points about collecting coverage information on the commands specified in job definition script
files:

• Information about whether each command has executed can be displayed only if no more than four commands were
specified on a single line.

• You will be able to determine whether all the commands in an entire job definition script have executed only if no
more than 32 commands were specified on a single line.

• When the number of commands on one line exceeds 32, no coverage information will be acquired for the 33rd and
subsequent commands. Even if all the commands in the job definition script have executed, the C0 execution ratio
will not be shown as 100%.

• Rather than specifying an entire script control statement, such as an if statement, on a single line, we recommend
that you begin a new line at each keyword.

• Specify the keywords listed below by themselves on a single line, rather than in combinations such as fi;fi. If
these keywords are written on the same line, coverage information will not be displayed correctly.

• fi, which marks the end of an if statement

• done, which marks the end of a do block

• esac, which marks the end of a case statement

• Only the following coverage information is output:

• C0 information: Output for only the first four C0 target commands specified on a line

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 916

• C1 information: Output for only the first four execution paths on a line

• When multiple commands and execution paths are specified on a single line, some coverage information might not
be displayed.
Example 1:

 Multiple commands and execution paths are specified on a single line

 echo 1; echo 2; echo 3; echo 4; echo 5

 Each command and execution path is specified on a separate line

 echo 1
 echo 2
 echo 3
 echo 4
 echo 5

Example 2:
 Multiple commands and execution paths are specified on a single line

 if true ;then echo 1 ;elif true ;then echo 2 ;elif true ;then echo 3 ;else
echo 4 ;fi

 Each command and execution path is specified on a separate line

 if true
 then
 echo 1
 elif true
 then
 echo 2
 elif true
 then
 echo 3
 else
 echo 4
 fi

• To execute a command for which you provide input to the standard input from the terminal keyboard, you must do
the following to complete the input:

• To read input terminated by EOF
In Windows, press Enter followed by Ctrl+Z, and then press Enter again.
In UNIX, type Ctrl+D.

• To read one line of input
Press Enter.

The following sections show the description formats of the commands and control statements used in job definition
script files.

9.1.1 Standard shell command description format
The description format for standard shell commands is as follows:

0command-name[1option]...[1option][1operands]

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 917

• First specify options, and then specify operands. Operands include option names, option values, and other arguments
that can be specified in commands. If an operand is specified before an option, all specified items are treated as
operands.

• Specify an option in the format -option-name[1value]. When there is more than one option, they can be specified
in any order.

• Options specified without a value can be grouped together in a block (for example, -a -b -c is equivalent to -
abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc xyz is
the value of option -c).

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

9.1.2 Extended shell command description format
The description format for extended shell commands is as follows:

0command-name[1option][1operand]

9.1.3 Extended script command description format
The description format for extended script commands is as follows:

0command-name 1attribute-value [... 1attribute-value] [1-attribute-name
1attribute-value [... 1-attribute-name 1attribute-value]]

• The command name of an extended script command always begins with #-adsh_.

• The command name is followed first by a list of attribute values and then by a list of pairs of an attribute name and
an attribute value (-attribute-name attribute-value).

• The list of attribute values cannot be omitted, and they must be specified in a predetermined order. The list of -
attribute-name attribute-value pairs can be specified in any order and their specification is optional.

• If you specify for an attribute value a character string beginning with a hyphen (-), it will be interpreted as a
specification of an attribute name. To begin an attribute value with a hyphen (-), the hyphen must be escaped with
a \, ", or '.

• A hash mark (#) at the beginning of an extended script command does not indicate a comment. You must specify
two hash marks in succession (##) to set a comment in an extended script command.

• The double quotation ("), single quotation ('), and escape (\) characters can all be used.
However, in an extended script command, any \ within a character string enclosed in double quotation marks will
be interpreted as an escape character, regardless of what the following character is. To specify a \ within a character
string enclosed in double quotation marks, you must specify it as \\.

• Uppercase and lowercase characters are distinguished in command-name, attribute-name, and attribute-value (in
the case of reserved words).

• You can specify the name of an environment variable for attribute-value, and the environment variable's value will
be set for the attribute value before the script starts. The name of the environment variable must be enclosed in curly

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 918

brackets ({ }). The name of an environment variable must not exceed 255 bytes and must be specified in the
<environment variable name> format shown below in (2) Character set definitions.

• Start the specification of an extended script command at the beginning of the line. Between the command name and
the linefeed code, use the space as the delimiter between items. A parsing error will result if any non-space character
is used as a delimiter.

• A parsing error will result if you specify more than one extended script command on a line (you cannot use a
command delimiter to separate multiple commands on the same line).

• A parsing error will result if you specify an extended script command within a function.

• A pre-execution syntax error will result if you specify an extended script command within the block of a for,
while, or until statement or within a function definition.

• You cannot specify an extended script command within an external script called with a dot (.). If you do, the extended
script command will be treated as a comment.

When you specify an extended script command that spans multiple lines, the second and subsequent lines must be
specified in the following format:

#-adsh 1continuing-specification

• You can specify a continuation line only at the location of a delimiter following the command name or an attribute.
A continuation line cannot be specified in the middle of the command name, an attribute name, or an attribute value.

• If a syntax error is detected in a continuation line, the line number displayed in the error message will be for the first
line of the extended script command.

(1) Limitations
• An extended script command must not exceed 8,191 bytes per line, including continuation lines.

• To specify more than one attribute value, delimit them with the space or comma. A value cannot be omitted by
specifying two commas in the manner of omitting positional parameters.

(2) Character set definitions
The following table defines the character sets that can be used in attribute values.

Table 9-1: Character sets that can be used in attribute values

Syntactic element Permissible characters Example target

<symbolic name> {<alphabetic character> | <numeric character> | @ | # | _ }+ Job name

<environment variable
name>

{<alphabetic character> | _}{<alphabetic character> | _ | numeric
character>}*

File environment variable
definition name

<path name> A character string that conforms to the path naming conventions of the OS.
Because \ is treated as metacharacter (escape character), path names in
Windows must be specified as in the examples below. For details about
metacharacters, see 5.1.6 Metacharacters.
Examples: 'C:\test' or C:\\test

Path name

<any character string> A string of any characters.
Using only the following characters is recommended:
{<alphabetic character> | <numeric character> | @ | # | _ }+

Value of an environment
variable

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 919

9.1.4 Script control statement description format
The description format for script control statements is as follows:

0control-statement [1condition] [1reserved-word [1processing]]...
 [1condition] [1reserved-word [1processing]]
 [0control-statement-(end)-or-reserved-word]

condition, reserved-word, processing
Specify a condition, a reserved word, and processing, respectively.

9.1.5 Reserved script command description format
The description format for reserved script commands is as follows:

0command-name[1option]...[1option][1operands]

• First specify options, and then specify operands. Operands include option names, option values, and other arguments
that can be specified in commands. If an operand is specified before an option, all specified items are treated as
operands.

• Specify an option in the format -option-name[1value]. When there is more than one option, they can be specified
in any order.

• Options specified without a value can be grouped together in a block (for example: -a -b -c is equivalent to -
abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc xyz is
the value of option -c).

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 920

9.2 Lists of commands and control statements

This section provides overviews of the standard shell commands, extended shell commands, extended script commands,
script control statements, and reserved script commands.

9.2.1 List of standard shell commands
The standard shell commands include special built-in commands and regular built-in commands.

Table 9-2: List of special built-in commands

Command name Overview

. Executes a shell script.

: Expands arguments and returns 0 as the return code.

break Exits from a loop.

continue Interrupts loop processing and returns to the beginning of the next cycle of the loop.

eval Concatenates arguments into a command that it executes.

exec Executes a specified command and then exits.

exit Exits the shell.

export Exports shell variables.

readonly Sets the read-only attribute for variables or displays all read-only variables.

return Returns from a function or an external script.

set Sets shell options, creates an array, or displays variable values.

shift Shifts the run-time parameters.

trap Specifies the action when signals and forced termination requests are received.

typeset Declares explicitly the attributes and values of variables and functions.

unset Unsets variable values and attributes.

Table 9-3: List of regular built-in commands

Command name Overview

alias Defines aliases.

builtin Executes a built-in command.

cd Changes the current directory.

command Executes a built-in command or external command.

echo Outputs what is specified in arguments to the standard output.

false Returns 1 as the return code.

getopts Parses option arguments.

kill Sends a signal to processes.

let Evaluates the values of arithmetic expressions.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 921

Command name Overview

print Outputs what is specified in the arguments to the standard output.

pwd Outputs the path of the current directory.

read Reads from the standard input and stores the input in shell variables.

test Determines the value of a conditional expression.

times Displays the amount of CPU time used by the shell.

true Returns 0 as the return code.

ulimit (UNIX only) Sets or displays information about limits on system resources.

umask (UNIX only) Sets or displays the file mode creation mask.

unalias Removes alias definitions.

wait Waits for child processes to complete.

whence Displays how specified character strings would be interpreted if used as commands.

9.2.2 List of extended shell commands
The table below lists the extended shell commands. Both these commands are regular built-in commands.

Table 9-4: List of extended shell commands

Command name Overview

adshappexec [only for
Windows execution
environments]

This command requests activation of the executable application to the application execution agent.

adshappexec [only for
Windows development
environment]

Run the executable application without starting the application execution agent in order to perform debugging
in the development environment.

adshcmdrc This command defines the threshold of the command return code.

adshecho In the user-reply functionality, issues a specified event notification message as a JP1 event.

adshjoberr This command reports an error to the job and job step.

adshmktemp This command creates a file with a unique name.

adshparsecsv This command analyses the CSV data.

adshparsejson This command analyses the JSON data.

adshread In the user-reply functionality, issue a specified reply-request message as a reply-waiting event.

adshscripttool
(Windows only)

This command obtains and outputs information that facilitates the creation of job definition scripts.

adshvarconv This command converts the value of a variable.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 922

9.2.3 List of extended script commands
The table below lists the extended script commands and shows for each command the maximum number of times it can
be specified in a job.

Table 9-5: List of extended script commands

Command name Overview Maximum number of
times specified#

#-adsh_file Assigns and postprocesses a regular file. 4,095

#-adsh_file_temp Assigns and postprocesses a temporary file. 4,095

#-adsh_job Declares a name for a job. 1

#-adsh_job_stop Defines termination conditions for a job. 1,023

#-adsh_path_var Defines shell variables for handling path names. 1

#-adsh_rc_ignore Defines commands to always terminate normally. 1,023

#-adsh_script Calls an external job definition script file from the job definition script that
is running.

4,095

#-adsh_spoolfile Assigns a program output data file. In a job: 4,095
In a job step: 255
Outside a job step: 255

#-adsh_step Defines a job step, using the following three commands: #-
adsh_step_start, #-adsh_step_end, and #-
adsh_step_error.

4,095

#
The maximum number of times a command can be specified in a job includes the sum of the number of times it is
specified in the script defined in the job definition script file specified in an argument of the adshexec command
plus the number of times it is specified in external scripts called from that script by the #-adsh_script command.
External scripts include scripts in nested calls.

9.2.4 List of script control statements
The table below lists the script control statements.

Table 9-6: List of script control statements

Control statement Overview

case Performs one among several processing steps, depending on a match with a character string.

for Repeats the same processing while incrementing a value.

if Controls processing by executing branching based on the result of evaluating a condition.

until Executes specified processing repeatedly until a specified condition becomes true.

while Executes specified processing repeatedly as long as a specified condition is true.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 923

9.2.5 List of reserved script commands
The table below lists the reserved script commands.

Table 9-7: List of reserved script commands

Command name Overview

time Displays the time used to execute a command.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 924

9.3 Standard shell commands

The standard shell commands are divided into special built-in commands and regular built-in commands, as shown
below. A built-in command is one that is included as part of the shell, and is executed by the shell itself.

• Special built-in commands
If a special built-in command's syntax is invalid, it exits the shell that is executing the command.

• Regular built-in commands
Even if a regular built-in command's syntax is invalid, it does not exit the shell that is executing the command.

9.3.1 . command (executes a shell script)

Syntax

. filename [args]

Description
This command executes a shell script in the current shell. The shell script specified in filename is executed in the shell
environment. The current directory of the shell script specified in filename will be the same as the current directory of
the current shell being used by the . (dot) command.

Variables and functions that are set and defined in the specified shell script can be used in the current shell environment
even after the specified shell script terminates. Also, variables and functions that were set or defined before the specified
shell script was started can be used in the specified shell script. However, extended script commands cannot be used in
the specified shell script. If an extended script command is encountered, it will be handled as a comment. For details
about the extended script commands, see 9.5 Extended script commands.

Arguments

filename
Specifies the file name of the shell script that is to be executed in the current shell.

args
Specifies positional parameters to be used in the specified shell script. How the value of a positional parameter is
set depends on whether args was specified and whether the positional parameter is changed in the specified shell
script file, as summarized in the following table:

args is specified Positional parameter is changed in the specified
shell script file

Positional parameter is not changed in the
specified shell script file

Yes • The value of the positional parameter in the file will
be the value specified in the args argument.

• The value of the positional parameter after the file has
terminated will be its value just before execution of
the . (dot) command.

Same as at the left.

No • The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

• The value of the positional parameter after the file has
terminated will be the new value acquired in the file.

• The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 925

args is specified Positional parameter is changed in the specified
shell script file

Positional parameter is not changed in the
specified shell script file

No • The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

• The value of the positional parameter after the file has
terminated will be the new value acquired in the file.

• The value of the positional parameter after the file has
terminated will be its value just before execution of
the . (dot) command.

Return codes
Return code Meaning

0 to 255 Normal termination
• The return code is set by the script that executed.

0 Normal termination
• The command executed but no file was specified in the filename argument.

1 Error termination
• A file other than a regular file was specified in the filename argument.
• The file specified in the filename argument could not be read.

Notes
• The shell script specified in this command does not send output to the script image file in the spool directory. To

output the execution history to the script image file, you must use the #-adsh_script command.

• When this command terminates normally, its execution results are not output to the job execution log. Note also that
this command does not identify whether the job or job step terminated normally or with an error. Refer instead to
the execution results of the external script that was called.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Execute a shell script in the current shell.

. ./test.sh

9.3.2 : command (expands arguments)

Syntax

: [arguments]

Description
This command expands arguments. It always returns 0 as the return code.

For example, you can omit the else or elif clause from an if statement, but not the then clause. In such a case,
specify the : command for the then clause as follows, to indicate that no action is to be taken when the condition is
satisfied:

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 926

if [conditional-expression]; then
 : # Takes no action if the result of the conditional expression
is true.
else
 cmd1 # Executes command if the result of the conditional expression
is false.
fi

Arguments

arguments
Specifies arguments that are to be expanded as explained below.

Job definition script specification example

set -x
NUMBER=1
: $NUMBER

Result that is output to the standard error output

+ NUMBER=1
+ : 1 # Outputs the expansion result of the variable NUMBER.

Therefore, by specifying a variable substitution in the arguments argument, you can check whether a value is
stored in the variable and substitute a value if there is no value.

Job definition script specification example

STRING01=ABC
: ${STRING01:=DEF} # Because variable STRING01 stores ABC, no action
is taken.
: ${STRING02:=GHI} # Because variable STRING02 is undefined, CHI is
substituted.
echo $STRING01 $STRING02 # "ABC GHI" is output to the standard output.

If variable substitution in the format ${variable:?word} or ${variable?word} is specified in the arguments
argument and no value is stored in variable, processing terminates with an error with 1 as the return code.

Note that this command accepts no options. If an option is specified, it is ignored and processing continues.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• A variable substitution in the format ${variable:?word} was specified in an argument, but variable was

not defined or no value was set in variable.
• A variable substitution in the format ${variable?word} was specified in an argument, but variable was not

defined.

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 927

Example
• Only expand the arguments.

: $test

9.3.3 alias command (defines aliases)

Syntax

alias [-p|-x|+p|+x] [name [=value]...]

Description
This command defines aliases or outputs defined aliases to the standard output. If you do not specify at least one
argument, it outputs the names and values of the aliases that are currently defined.

Arguments

-p
Outputs the aliases that have been defined, in the form alias alias-name=value.

-x|+x
Defines or outputs exported aliases.

+p
Outputs the aliases that have been defined, in the form alias alias-name.

name
Specifies a name for an alias to be defined or output. To output an alias, specify in name the name of an alias that
has already been defined.

value
Specifies the command to set to the alias name specified in name. To define an alias, specify value in the form alias-
name=value.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• An attempt was made to output an alias that has not been defined.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Example
• Output a defined alias (functions).

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 928

Contents of the job definition script:

alias functions='typeset -f'
alias functions

Contents of the STDOUT file of the execution job:

******** JOB SCOPE STDOUT ********
functions='typeset -f'

9.3.4 break command (exits from a loop)

Syntax

break [n]

Description
This command exits from a loop that occurs in a for statement, while statement, or other looping control structure.
If this command is executed while processing is not in a loop, it outputs a message and terminates normally.

Argument

n
Specifies the number of nested loops from which the command is to exit. Specify 1 or a greater integer.
When n is specified, the command exits out of n loops. When n is omitted, the command exits to the first enclosing
loop.
If the command is executed with a value for n that exceeds the current number of nested looping structures, it
continues exiting through the outermost loop, and then outputs a message and terminates normally.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• 0 was specified for n.
• A non-numeric value was specified for n.
• A negative value or an option character string (-alphanumeric-character) was specified for n.

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Exit to the second enclosing loop.

break 2

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 929

9.3.5 builtin command (executes a built-in command)

Syntax

builtin [command [args ...]]

Description
This command executes a specified built-in command with arguments that are specified.

Arguments

command
Specifies the name of the built-in command that is to be executed. If this argument is omitted, the command
terminates normally.

args
Specifies arguments for the built-in command.

Return codes
Return code Meaning

0 Normal termination
• The built-in command terminated normally.

1 Error termination
• The specified command in the argument was not a built-in command, or the command terminated with an

error.

Notes
• This command accepts no options. If an option is specified in the arguments, it will be interpreted as an argument

of command and the job will terminate with an error.

• The execution results of this command are not output to the job execution log. Note also that this command does
not identify whether the job or job step terminated normally or with an error. Refer instead to the execution results
of the command that was called.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Example
• Use the builtin command to execute the pwd built-in command.

Contents of the job definition script

cd /tmp
builtin pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 930

9.3.6 cd command (changes the current directory)

Syntax 1

cd [directory-path]

Syntax 2

cd old new

Description
This command changes the current directory. The destination can be specified in either of two formats.

The first format specifies the destination in directory-path. If the variable CDPATH is defined, this format specifies a
directory relative to the location defined in CDPATH. If the variable CDPATH is not defined, this format specifies a
directory relative to the current directory.

In the second format, the change is to the directory path in which the character string matching old is replaced with new
in the path name of the current directory.

Arguments

directory-path
Specifies the new directory path.
If this argument is omitted, the change is to the user's home directory (HOME variable). If a hyphen (-) is specified
for this argument, the change is to the previous working directory (OLDPWD variable).

old
Specifies a character string that is to be replaced in the path name of the current directory.

new
Specifies the character string that is to replace the specified character string in the path name of the current directory.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• Executing the cd command in Windows converts the directory delimiter from / to \.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• If HOME is not defined, an error results if you execute the cd command with no argument specified.

• A name in UNC format cannot be specified for the directory path name.

• In Syntax 2, if a character string that occurs multiple times in the current directory path name is specified for
substitution, only the first instance of that character string will become subject to substitution. An example follows.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 931

Example: The current directory path name is /home/user/test/test
cd test tmp.

In this case, the cd command attempts to change the path to /home/user/tmp/test instead of /home/user/
tmp/tmp.

Example
• Change from /var/log to /var/lib.

Contents of the job definition script

pwd
cd log lib
p2w2d1222

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/var/log
/var/lib
/var/lib

9.3.7 command command (executes a command)

Syntax
UNIX

command [-p] [command [args ...]]
command [-v|-V] [-p] [command [command ...]]

Windows

command [-w] [command [args ...]]
command [-v|-V] [command [command ...]]

Description
This command executes a command or a built-in command.

The command specified in command is executed with the arguments specified in args.

When the -v option is specified, the same command path name as for the whence command is output to the standard
output. When the -V option is specified, the same command interpretation as for the whence -v command is output
to the standard output. If the -v and -V options are both specified, the -V option takes precedence.

For details about the output format, see 9.3.35 whence command (displays how character strings would be interpreted
if used as commands).

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 932

Arguments

-p (UNIX only)
Specifies that the specified command is to be found on the standard path.

-w (Windows only)
Specifies that when an external command is executed in Windows, the following processing is not to be performed:

• Converting \ to \\ preceding double quotation marks (") in arguments

• Prefixing \ to any double quotation mark (") in arguments

• Enclosing arguments in double quotation marks (")

However, even when this option is specified, the processing noted above is performed on the character string
specified in command.

-v
Specifies that the command path for the character string specified in command is to be output as if it were to be
treated as a command.

-V
Specifies that whether the character string specified in command is a command, reserved word, alias, standard shell
command, extended shell command, or function is to be output.

command
Specifies the name of the command that is to be executed or a character string that is to be treated as a command.
If this argument is omitted, the command terminates normally but without executing anything.

args
Specifies arguments to be passed to the specified command.

Return codes
Without the -v or -V option

Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the
above

Error termination
• The format of the command is invalid, or the command terminated with an error.

With the -v or -V option

Return code Meaning

0 Normal termination

1 Error termination, or the value specified in command could not be found as a command.

Notes
• If a symbolic link is specified for the argument command, both execution permissions of symbolic link and link

destination are evaluated when you evaluate whether the symbolic link can be executed. [Windows edition]

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 933

• When this command terminates normally, its execution results are not output to the job execution log. Note also that
this command does not identify whether the job or job step terminated normally or with an error. Refer instead to
the standard output or to the execution results of the command that was called.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Example
• Use the command command to execute the pwd command.

Contents of the job definition script

command -p pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

9.3.8 continue command (interrupts loop processing and returns to the
beginning of the loop)

Syntax

continue [n]

Description
This command interrupts processing of a for statement, while statement, or other looping control structure and returns
to the beginning of the loop. The argument specifies that the current iteration of the nth enclosing loop is to be interrupted.
If this command is executed while processing is not in a loop, it outputs a message and terminates normally.

Argument

n
Specifies the number of nested loops for which the command is to skip processing. Specify 1 or a greater integer.
When n is specified, the command skips processing of n loops, and resumes processing from the beginning of the
nth enclosing loop. When n is omitted, the command skips processing in the current level loop, and resumes
processing from the beginning of the enclosing loop.
If the command is executed with a value for n that exceeds the current number of nested looping structures, it resumes
processing from the beginning of the outermost loop, and then outputs a message and terminates normally.

Return codes
Return code Meaning

0 Normal termination

1 Error termination
• 0 was specified for n.
• A non-numeric value was specified for n.
• A negative value or an option character string (-alphanumeric-character) was specified for n.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 934

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Interrupt the current iteration of the second enclosing loop.

continue 2

9.3.9 echo command (outputs what is specified in arguments to the
standard output)

Syntax

echo [-n] [-e|-E] [args ...]

Description
This command outputs what is specified in arguments to the standard output.

During the output processing, escape characters that begin with a backslash (\) are replaced. The following table shows
the escape characters that are replaced:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\c Suppress trailing linefeed (characters after \c are not output)

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\0nnn#1 ASCII character represented by one, two, or three octal digits (0 to 7)

\xnn#2 ASCII character represented by one or two hexadecimal digits (0 to 9, a to f, A to F)

\\ A single backslash character

#1
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to
make it three digits, the ASCII character will still be treated as consisting of only one or two digits. For example,
the following three specifications are all interpreted as being the same, in which case the alert character (bell) is
output three times:
echo -e "\07"

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 935

echo -e "\007"
echo -e "\0007"

#2
Enabled only when YES is specified in the ESCAPE_SEQ_ECHO_HEX environment setting parameter. For details
about the ESCAPE_SEQ_ECHO_HEX parameter, see 7.3.16 ESCAPE_SEQ_ECHO_HEX parameter (specifies
whether ASCII code characters in hexadecimal notation are to be interpreted as escape characters) in 7. Parameters
Specified in the Environment Files.
If a specified ASCII character consists of one digit and a leading zero is added to make it two digits, the ASCII
character will still be treated as consisting of only one digit. For example, the following two specifications are
interpreted as being the same, in which case the linefeed character is output twice:
echo -e "\xA"
echo -e "\x0A"

If you want to replace an escape character, enclose the -e option argument in single or double quotation marks (' or
"), as in Example 2 below. The following examples show how escape characters are interpreted depending on whether
quotation marks are used and whether the -e or -E option is specified.

1. In this example, ta is output to the standard output:

echo -e \ta

2. In this example, tab-charactera is output to the standard output:

echo -e "\ta"

3. In this example, ta is output to the standard output:

echo -E \ta

4. In this example, \ta is output to the standard output:

echo -E "\ta"

Options specified for commands and interpretation of arguments
If the characters specified as the arguments to the echo command are all valid option characters, they are interpreted
as options. For example, because the letters in eEn are all valid option characters, they are interpreted as options in
the following example:

echo -eEn

However, if even one character is not a valid option character, the characters are interpreted as an args value. In the
next example, because a is not a valid option character, -eEna is interpreted as an args value, which will be sent
to the standard output.

echo -eEna

Finally, when an argument is enclosed in quotation marks, the entire enclosed character string is interpreted as a
single argument. In the next example, because the space is not a valid option character, -e a is interpreted as an
args value, which will be sent to the standard output.

echo "-e a"

Interpretation of escape characters (-e and -E options)
Escape characters are interpreted as follows, depending on the specification of the -e and -E options:

• When the -e option is specified, escape characters are interpreted.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 936

• When the -E option is specified, escape characters are not interpreted.

• When the -e and -E options are both specified, the option specified last takes effect.

• When neither the -e nor the -E option is specified, the processing depends on the specification of the
ESCAPE_SEQ_ECHO_DEFAULT environment setting parameter. For details about the
ESCAPE_SEQ_ECHO_DEFAULT parameter, see 7.3.15 ESCAPE_SEQ_ECHO_DEFAULT parameter
(defines the action of the echo command when the escape-character option is omitted) in 7. Parameters Specified
in the Environment Files.

Arguments

-n
Specifies that trailing linefeeds are to be omitted from the output to the standard output.

-e
Specifies that escape characters are to be interpreted. The escape characters to be interpreted are determined by the
specification of the ESCAPE_SEQ_ECHO_HEX environment setting parameter. If you want escape characters to
be interpreted, enclose them in single or double quotation marks (' or ").

-E
Specifies that escape characters are not to be interpreted.

args
Specifies the arguments (what it is that is to be output).

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• If an escape character is specified using an ASCII code in hexadecimal notation, the result is the same as when the
escape character is specified directly.
In both of the following specifications, atab-characterb is output:

echo -e "a\tb"
echo -e "a\x09b"

In both of the following specifications, alinefeed-characterb is output to out.txt, but the linefeed character will
be CR+LF (Windows only):

echo -e "a\nb" > out.txt
echo -e "a\x0ab" > out.txt

• If a value outside the ASCII code range is specified when escape characters are expressed as ASCII character strings,
the content to be output follows the character encoding specified for the terminal and unprintable characters might
produce an incorrect output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 937

• If you specify a path name for an argument, execute the echo command in an environment in which the -E option
is specified or NO is specified in the ESCAPE_SEQ_ECHO_DEFAULT parameter in order to prevent the backslash
(\) from being replaced as an escape character.
For example, the path name (d:\a\b\c) is not output correctly by any of the following commands:

FILE="d:\\a\\b\\c"
echo $FILE
echo "$FILE"
echo "d:\\a\\b\\c"
echo 'd:\a\b\c'

The path name (d:\a\b\c) is output correctly by all the following commands:

FILE="d:\\a\\b\\c"
echo -E $FILE
echo -E "$FILE"
echo -E "d:\\a\\b\\c"
echo -E 'd:\a\b\c'

FILE="d:\\\\a\\\\b\\\\c"
echo $FILE
echo 'd:\\a\\b\\c'
echo d:\\\\a\\\\b\\\\c

Example
• Output the variable LANG.

Contents of the job definition script

echo $LANG

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
ja_JP.eucJP

9.3.10 eval command (concatenates arguments into a command and
executes it)

Syntax

eval [command [args ...]]

Description
This command concatenates arguments into a command that it executes. The character strings provided as the arguments
are interpreted as a single command that is executed.

Arguments

command
Specifies a name for the command that is to be executed. If this argument is omitted, the eval command terminates
normally but without executing anything.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 938

args
Specifies the arguments that are to be concatenated into a command and executed.

Return codes
Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the above Error termination
• The format of the command is invalid, or the command terminated with an error.

Notes
• The execution results of this command are not output to the job execution log. Note also that this command does

not identify whether the job or job step terminated normally or with an error. Refer instead to the execution results
of the command that was called.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Change directories to /home/adsh/script.

eval cd /home/adsh/script

9.3.11 exec command (executes a command and exits)

Syntax

exec [command [args]...]

Description
This command executes a specified command and then exits.

If an external command is specified as the argument, it executes the command as a child process of the adshexec
command. After waiting for the external command to complete, it performs postprocessing for the job, such as deleting
temporary files.

If you specify only the input/output redirection symbol and a redirection target, it switches the input and output targets
according to the input/output redirection symbol. For details about redirection, see (8) Input and output redirection.

Arguments

command
Specifies the command name of the command that is to be executed. If nothing is specified in this argument, the
exec command does nothing, and execution of the job definition script continues.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 939

args
Specifies arguments for the command that is to be executed.

Return codes
Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the above Error termination
• The command terminated with an error.

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Examples
• Execute the user program UAP01 and terminate the job:

exec UAP01

• Redirect the standard output destination to file01:

exec > file01

9.3.12 exit command (exits the shell)

Syntax

exit [n]

Description
This command exits the shell. Regardless of the value of the return code, this command terminates normally or with an
error on the basis of whether the command syntax is valid.

If no argument is specified, the command terminates normally with the return code of the command that executed last
as its return code. When executed with an appropriate numeric value specified for the argument, the command terminates
normally. When executed with an invalid value, such as non-numeric characters, specified as the argument, the command
terminates with an error. When the command terminates with an error, it returns 1 as the return code.

When this command is executed within a job step error block, the results are as follows:

• If the argument is specified and the command terminates normally, the value specified in the argument is set as the
job step's return code.

• If the argument is not specified and the command terminates normally, or if it terminates with an error with the
argument specified, the return code of the job step will be the return code of the last command to execute within the
job step normal block.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 940

Arguments

n ~<unsigned integer>((0 to 255))
Specifies the return code to be set upon exiting the shell. If this argument is omitted, the command exits the shell
with the return code of the last command that executed. If you specify 256 or a greater value for this argument, the
command terminates normally with a return code that is the remainder of dividing the specified value by 256. If you
specify a negative value for this argument, the command terminates normally with a return code that is the two's
complement of the specified value.

Return codes
Return code Meaning

0 to 255 Normal termination
• Returns either n or the return code of the last command that executed.

1 Error termination
• A non-numeric value was specified for n.

Notes
• You can specify for n a negative value or a value that is greater than 255, but we recommend that you specify in

JP1/Advanced Shell a value in the range of 0 to 255.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• When executing the exit command in a separate process, such as by using the & operator or a command substitution,
also see the notes provided in 5.1.7 Execution as a separate process.

Example
• Exit the shell with a return code of 2.

exit 2

9.3.13 export command (exports shell variables)

Syntax

export [-p] [name[=value]...]

Description
This command exports specified shell variables. If the -p option and name argument are both specified, export of the
variables specified in name takes precedence.

If the command is executed with no options specified, it outputs to the standard output the names of all the currently
exported variables.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 941

Arguments

-p
Specifies that all currently exported variables are to be output to the standard output in the format export variable-
name=value.

name
Specifies the name of a variable that is to be exported.
When you export shell variables in Windows, the supported variable names vary as follows:

• When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
All letters contained in variable names must be in uppercase because shell variables whose names contain
lowercase letters cannot be exported.
If you attempt to export a shell variable whose name includes lowercase letters, the command outputs an error
message and exits the batch job.

• When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Shell variables whose names contains lowercase letters can be exported.
Note that environment variables are not case sensitive. The last shell variable with the same spelling that was
exported becomes the final environment variable value. Shell variables with the same spelling but in a different
case are considered to be different values regardless of whether they are exported.

For name, you can specify multiple names of variables or arrays that are to be exported. If an array name is specified,
the command exports all the elements that constitute the array. Even if you specify a single element of an array, all
the elements of the array will be exported.
If you specify a variable that has not yet been created, the variable will be created and exported simultaneously.
However, if you do not specify a value for the variable in such a case, the linefeed character will be set as the value
and then the variable will be exported.
If the read-only attribute is set for a shell variable that is specified, and you attempt to specify a value for it, the
command will terminate with an error.

value
Specifies a value that is to be assigned to the paired specified variable.
When =value is specified, the specified value is assigned and the variable with the specified value is exported
simultaneously. When this argument is omitted, the specified variable is exported using the value that is already set
for it.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Export the shell variable HOME after assigning "/home/jp1as" to it.

export HOME="/home/jp1as"

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 942

9.3.14 false command (returns 1 as the return code)

Syntax

false

Description
This command returns 1 as the return code.

Note that this command accepts no options. If an option is specified, it is ignored and processing continues.

Return code
Return code Meaning

1 Normal termination
• This command always returns 1.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The execution result of this command is output in the KNAX6113-I message.

Example
• Set return code 1.

Contents of the job definition script

false
echo $?

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
1

9.3.15 getopts command (parses option arguments)

Syntax

getopts optstr name [args ...]

Description
This command parses specified option arguments.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 943

Arguments

optstr
Specifies a string of valid option characters. When a character is followed by a colon (:), it indicates that the option
has an associated value.
You specify a string of option characters that are valid as arguments for specification on the command line or in
args. For example, specify ab for the options -a and -b. Multibyte characters cannot be used.
When a character specified in this argument is determined to be a valid option, the matching option is set in the
variable whose name is specified in name. When a specified character is not found to be a valid option, ? is set in
the variable whose name is specified in name.
If an option has a value, specify a colon (:) after the option character, in which case the value associated with the
matching option will be set in the OPTARG shell variable. The getopts command parses the options starting at
the argument index (which begins with 1) specified in the OPTIND shell variable. For example, if -a 10 is specified
in args, the position of -a will be index 1.

name
Specifies a variable in which the option characters matched by the getopts command are to be set.

args
Specifies arguments that are to be parsed. When this option is omitted, getopts parses only the command-line
options.

Return codes
Return code Meaning

0 Normal termination

1 • Normal termination (detects option termination)
• Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• When executing the getopts command in a separate process, such as the & operator and a command substitution,
also see the notes provided in 5.1.7 Execution as a separate process.

Example
• Parse -b as a valid option.

Contents of the job definition script

getopts b: name -b 10
echo $name

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
b

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 944

9.3.16 kill command (sends a signal)

Syntax

kill [-s {signame|signum}] {pid|-pid}...
kill [-signame|-signum] {pid|-pid}...

Description
This command sends a signal to one or more processes. The specified signal it is sent to one or more specified processes.
If no signal to be sent is specified, SIGTERM is sent. When you specify by name the signal that is to be sent, specify
its name without the leading characters SIG (for example, specify INT for SIGINT). For the specification for each
signal, see the documentation for the OS being used.

Arguments

-s
Specifies that a signal to be sent is being specified by its signal number or signal name.

signame|-signame
Specifies the signal name of the signal that is to be sent.

signum|-signum
Specifies the signal number of the signal that is to be sent.

pid
Specifies the process ID of a process that is to receive the signal.

-pid
Specifies the process ID of a process when the signal is to be sent to all processes that belong to the specified process's
process group. In Windows, you must specify a value greater than 0 to send the signal to multiple processes.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• In Windows, an error results if you specify any signal other than SIGKILL.

• In Windows, when SIGKILL is specified, TerminateProcess() is used to forcibly terminate the process.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• To send the default signal (SIGTERM) in the -signame or -signum format to a process group (-pid), you must
specify -- as the signal. If you do not specify --, the process group (-pid) will be interpreted as -signum. An
example follows:
This example sends the default signal (SIGTERM) to process group 14588:

kill -- -14588

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 945

Examples
• In UNIX, send SIGINT to process ID 4725.

kill -INT 4725

• In Windows, forcibly terminate process ID 4725.

kill -KILL 4725

9.3.17 let command (evaluates the values of arithmetic expressions)

Syntax 1

let arithmetic-expression[,arithmetic-expression ...]

Syntax 2

((arithmetic-expression))

Description
This command performs numeric calculations in order to evaluate specified arithmetic expressions.

In addition to using the let command, you can also calculate the result of an arithmetic expression using the syntax
((arithmetic-expression)), and the results will be evaluated in the same way as for the let command.

The let command accepts multiple arithmetic expressions delimited by the comma (,). If you specify more than one
arithmetic expression, they are calculated in order from left to right. As a result, if you use a conditional expression to
evaluate a comma-separated list of arithmetic expressions, a conditional is evaluated taking into account the result of
the arithmetic expression that was executed last. Note that specifying any spaces before or after a delimiter comma
results in termination of the command with an arithmetic error. You can group calculations in parentheses in order to
change the priority of operations.

For details about arithmetic expressions, see 5.3 Arithmetic operations. For details about conditionals, see 5.2 
Conditionals.

Return codes
Return code Meaning

0 Normal termination
• The value of the arithmetic expression is not 0.

1 Normal termination
• The value of the arithmetic expression is 0.
• The syntax (()) executed but no arithmetic expression was specified.

Error termination
• The let command executed but no arithmetic expression was specified.

2 Error termination
• An arithmetic error occurred (division by zero, invalid arithmetic expression).

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 946

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The arithmetic operators *, &, <, <<, >, and >> have special meanings as metacharacters. To use these characters
in the let command, you must disable them as metacharacters.
Example: Set the variable RC to 1 shifted 2 bits to the left.

 Contents of the job definition script

 let "RC=1<<2"
 echo $RC

Contents of the STDOUT file of the execution job

 ******** JOB SCOPE STDOUT ********
 4

• The let command accepts no options. If you specify -alphabetic-character as an argument, it will be interpreted
as a variable name, not an option.
In the example shown below, -a is specified as the argument. It is interpreted as -3, with a return code of 0.

 Contents of the job definition script

 a=3
 let -a
 echo $?

 Contents of the STDOUT file of the execution job

 ******** JOB SCOPE STDOUT ********
 0

• When executing the let command in a separate process, such as the & operator and a command substitution, also
see the notes provided in 5.1.7 Execution as a separate process.

Examples
• Add 3+4 and multiply the result by 2.

Contents of the job definition script

let "VAR=2*(3+4)"
echo $VAR

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
14

• Set the variable RC to the result of 1+2.
Contents of the job definition script

((RC=1+2))
echo $RC

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
3

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 947

9.3.18 print command (outputs to the standard output)

Syntax

print [-n|-p|-r] [-u [num]] [--] [args]

Description
This command outputs what is specified in the arguments to the standard output. Trailing linefeeds are appended to the
output.

Escape characters prefixed with \ are replaced in the output. The following table shows the escape characters that are
replaced:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\c Suppress the trailing linefeed (characters after the \c are not output)

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\0nnn# ASCII character represented by one, two, or three octal digits (0 to 7)

\\ A single backslash character

#
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to
make it three digits, the ASCII character will still be treated as consisting of only one or two digits.

When the -r option is specified, escape characters are ignored.

Arguments

-n
Specifies that trailing linefeeds are to be omitted from the output to the standard output.

-p
Specifies that a pipe is to be used to send the output to the standard input of a background process, rather than to
the standard output.

-r
Specifies that escape characters are to be ignored.

-u [num]
Specifies the file identifier to which the output is to be output. When no value is specified, 1 is assumed.
Specify either an output destination file identifier or p. Specifying p is equivalent to specifying the -p option.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 948

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of args.

args
Specifies the arguments (what is to be output).

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• If a value outside the ASCII code range is specified when escape characters are expressed as ASCII character strings,
the content to be output follows the character encoding specified for the terminal and unprintable characters might
produce an incorrect output.

Examples
• Output the character string abc with a trailing linefeed.

Contents of the job definition script

print "abc\n"

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Abc

• Output the character string abc to the standard input of the coproc.sh background process.

coproc.sh |&
print -p abc

9.3.19 pwd command (outputs the path of the current directory)

Syntax

pwd [-L|-P]

Description
This command outputs the path of the current directory to the standard output.

Arguments
Specifying no options is equivalent to specifying the -L option.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 949

-L
This command outputs the path while a symbolic link is not resolved if the current directory path contains a symbolic
link (a link using a file that contains the actual file path). If the -L and -P options are both specified, the option
specified last takes effect.

-P
If the current directory is the path including a symbolic link, this command outputs the path with the symbolic link
resolved. If the -L and -P options are both specified, the option specified last takes effect.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• In Windows, when you execute the pwd command, the directory delimiter / is displayed as \.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Example
• Output the path of the current directory.

Contents of the job definition script

cd /tmp
pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

9.3.20 read command (reads from the standard input and stores the input
in variables)

Syntax

read [-p] [-r] [-u [num]] [varname ...]

Description
This command reads one line at a time from the standard input and stores the input in specified shell variables.

Arguments

-p
Specifies that the command is to read from the output of a background process through a pipe.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 950

-r
A \ (backslash) is not treated as an escape character.
If a \ (backslash) is included in the contents to be read, the read command treats the backlash as an escape letter.
If a \ (backslash) is included in the line, the read command treats the backlash as an escape letter even if the character
followed by the backlash is the delimiter defined by using the shell variable IFS. If a backlash is specified at the end
of the line, the next line is continuously read. Use the -r option if the \ (backslash) is not to be treated as an escape
character.

-u [num]
Specifies the file identifier of the file from which the input is to be read. If no value is specified, the standard input
is read.
Specify either a file identifier or p. Specifying p is equivalent to specifying the -p option.

varname
Specifies the name of a variable in which input that is read is to be stored.
When multiple variable names are specified, the input line is split into the fields delimited by the delimiter set in
the IFS variable, and the fields are assigned to the variable names in sequential order (input line's first field is set
in the first variable, second field is set in the second variable, and so on).
If the number of fields exceeds the number of variable names, the values of all the remaining fields are stored in the
last variable that is specified.
If there are fewer fields than there are variables, a linefeed is set in each additional variable.

Return codes
Return code Meaning

0 Normal termination

1 Normal termination
• The end of file (EOF) was detected.

Error termination
• Other than the above.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• When executing the read command in a separate process, such as the & operator and a command substitution, also
see the notes provided in 5.1.7 Execution as a separate process.

• In Windows, there are circumstances where keyboard input is accepted even before the read command starts. For
example, this can happen while the system is executing a previous command, or when you are reading input from
the console or command prompt while running the debugger within an editor and the debugger is stopped at a
breakpoint. To prevent the input from being read incorrectly, do not make entries from the keyboard before the read
command starts.
If there is input from the keyboard before the read command starts, that input will be displayed when the read
command starts. At that point, delete the keyboard input that is displayed and re-enter it for the read command.

• If the character string read from standard input uses [LF] as the linefeed code, the read command stores the string
in the variable with the [LF] characters removed. If the linefeed code is [CR]+[LF], the read command stores the
string with the [CR] and [LF] characters removed.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 951

Examples
• Read the file string.txt and send its contents to the standard output.

Contents of the job definition script

while read LINE
do
 echo "$LINE"
done < string.txt

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
HITACHI
JP1
Advanced Shell

• Read a character string output to the standard output by the coproc.sh background process and store it in the
variable NAME.

coproc.sh |&
read -p NAME

9.3.21 readonly command (sets the read-only attribute for variables or
displays all read-only variables)

Syntax

readonly [-p] [name [=value]...]

Description
This command sets the read-only attribute for specified variables or displays all read-only variables. When the command
is executed with no options, it outputs to the standard output the names of all the read-only variables.

To revert a variable's read-only attribute back to writable, specify the +r option to the typeset command.

Arguments

-p
Specifies that all read-only variables are to be output to the standard output in the format readonly variable-
name=value. However, if you specify the -p option and name at the same time, the read-only attribute is set for the
specified variable.

name
Specifies the name of a variable for which the read-only attribute is to be set.
More than one variable name or array name can be specified. However, if a function name is specified in name, the
read-only attribute is not set for the function, instead the read-only attribute is set for a variable with the same name
as the specified function.
If an array name is specified in name, the read-only attribute is set for all the elements that constitute the array. Even
if you specify one element of an array, the read-only attribute is set for all the elements of the array.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 952

If there is no variable with the specified name, such a variable is created, and the read-only attribute is set for it. In
such case, if no value is specified for the attribute, the linefeed character is set as the new attribute's value and it has
the read-only attribute.
If the read-only attribute is already set for the specified variable, the command terminates normally without doing
anything.

value
Specifies a value to be set for the specified variable.
The specified value is set for the variable when name is followed by =value. If no value is specified, the read-only
attribute is set for the specified variable without changing its value.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Set the read-only attribute for the test variable.

readonly test

9.3.22 return command (returns from a function or an external script)

Syntax

return [n]

Description
This command returns from a function or an external script, then continues processing in the calling function. Note that
this command exits the shell if it is executed at a location other than from within a function or an external script.

Regardless of the value of the return code, this command terminates normally or with an error on the basis of whether
the command syntax is valid.

If no argument is specified, the command terminates normally with the return code from the command that executed
last as the return code. If it executes with a valid numeric value specified as the argument, it terminates normally. If it
executes with an invalid value specified as the argument, such as non-numeric characters, it terminates with an error.
When this command terminates with an error, it returns 1 as the return code.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 953

Arguments

n ~<unsigned integer>((0 to 255))
Specifies the return code. When this argument is omitted, the command returns with the return code from the
command that executed last. If you specify 256 or a greater value for this argument, the command terminates
normally with a return code that is the remainder from dividing the specified value by 256. If you specify a negative
value, the command terminates normally with a return code that is the two's complement of the specified value.

Return codes
Return code Meaning

0 to 255 Normal termination
• Returns the value specified in n or the return code of the command that executed last.

1 Error termination
• A non-numeric value was specified.

Notes
• You can specify for n a negative value or a value that is greater than 255, but we recommend that you specify in

JP1/Advanced Shell a value in the range of 0 to 255.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• When executing the return command in a separate process, such as the & operator and a command substitution,
also see the notes provided in 5.1.7 Execution as a separate process.

Example
• Return with return code 2 from a function or external script and continue processing in the calling function.

return 2

9.3.23 set command (sets shell options, creates an array, or displays
variable values)

Syntax

set [-a|+a] [-f|+f] [-u|+u] [-v|+v] [-x|+x]
 [{-o|+o} [opt]]...
 [{-A|+A} name] [--] [val ...]
 [{-D|+D} name][--][{ val ... } ...]

Description
The command sets specified shell options, creates an array, or displays variable values.

This command specifies shell options and creation of arrays at the same time. If you specify setting of Shell option and
creation of array at the same time, specify in the order of Shell option and creation of array. If you specify creation of
array first, contents subsequent to -A option and -D option are interpreted as name and val.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 954

Arguments
You can specify more than one option at the same time. If the same option is specified more than once, the last
specification takes effect.

If no options are specified, all variables that have been assigned are output to the standard output in the format variable-
name=value.

-a|+a
• -a: Enables the allexport option.

• +a: Disables the allexport option.

-f|+f
• -f: Enables the noglob option.

• +f: Disables the noglob option.

-u|+u
• -u: Enables the nounset option.

• +u: Disables the nounset option.

-v|+v
• -v: Enables the verbose option. When the verbose option is enabled, all lines that are read as input to the

shell are output to the standard output. All input lines are output, regardless of category, such as control statement
or command. The items that are output include even the following:

 Comments
 Nonexistent commands
 Commands that are not executed because they do not satisfy the conditions in an if, case, or similar statement
 Commands that are not executed because the loop in a while statement, for statement, or other looping

structure is never entered
 Job steps that are skipped by means of the run attribute

• +v: Disables the verbose option.

-x|+x
• -x: Enables the xtrace option.

• +x: Disables the xtrace option.

-o|+o
• -o: Enables the shell option specified in opt. In addition, displays a list of the shell options that are currently

set.

• +o: Disables the shell option specified in opt. In addition, displays the shell options that are currently set, in a
format that can be entered into the command line.

opt
Specifies the name of a shell option that is to be set. For details about the shell option names that can be specified,
see 5.6 Shell options.

-A|+A
This command is specified if a value is substituted in one-dimensional array.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 955

If you execute the command with the -A option specified and the array or variable specified in name already exists,
the command deletes the contents of name and then creates the array or variable by assigning to it the values specified
in val. The command creates as many array elements as there are arguments specified in val.
If you execute the command with the -A option specified and the array or variable specified in name already exists,
the command assigns the values specified in val to the array or variable specified in name without deleting the
contents of name. If the number of element values to be assigned is fewer than the number of elements existing in
the array, the values of the array elements to which no value is assigned remain unchanged. If the array or variable
specified in name does not exist, the command processing is the same as when the -A option is specified.
The number of array elements must be within the rage of 2 to 65,536. If only one value is specified, the command
creates a variable rather than an array. Multiple arrays cannot be created simultaneously.

-D|+D
This command is specified if a value is substituted in two-dimensional array.
If the array and variable specified for name already exist when you specify and execute the -D option, delete contents
of name and then create the array by substituting the value specified for val into the array and variable specified for
name. Create the elements of an array for the number of variables specified for val.
If the array and variable specified for name already exist when you specify and execute the +D option, the value
specified for val is substituted into the array and variable specified for name without deleting contents of name. If
the number of elements to be substituted is less than the number of elements of array, the value of the element of
array that is not substituted does not change. If the array and variable specified for name do not exist, behavior
becomes the same as that when the -D option is specified.
If the number of elements of array that can be created is 65,536 x 64, variable is created instead of array. In addition,
multiple arrays cannot be created at the same time.

name
Specify the name to be assigned to the array that is being created. If you specify a read-only variable, the command
terminates with an error.

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of val.

val
This command specifies a value to be substituted in one-dimensional array. If you specify and execute val, the value
specified for val is substituted into the positional parameter. If multiple val are specified, values are substituted from
the left in the order of $1, $2...
To specify the value to be substituted into an element of two-dimensional array, specify the value by enclosing with
{}. One or more space character needs to be inserted between parenthesis and val.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• If the braceexpand and noglob options are both specified, the noglob option takes effect and brace expansion
is disabled.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 956

Example
• Create the one-dimensional array test and then substitute test[0] with a01, substitute test[1] with a02 and substitute

test[2] with a03.

set -A test a01 a02 a03

• Create the two-dimensional array test 2 and then substitute test[0][0] with a01, substitute test[0][1] with a02 and
substitute test[0][2] with a03.

set -D test { a01 a02 a03 }

9.3.24 shift command (shifts the run-time parameters)

Syntax

shift [n]

Description
This command shifts all the run-time parameters so that a specified subsequent parameter becomes set in the first
position.

Argument

n
Specifies the number of places by which the run-time parameters are to be shifted. When this argument is specified,
the run-time parameters are shifted by the specified number of places. When this argument is omitted, 1 is assumed
(the second parameter becomes the first parameter, and so on). If you specify 0, the run-time parameters are not
shifted. If you specify a negative or non-numeric value, the command terminates with an error. If you specify a value
greater than the number of run-time parameters, the command terminates with an error.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• If you specify 0 for the argument, the run-time parameters are not shifted. If you intend to use the shift command

to iterate through the run-time parameters in a for statement, while statement, or other looping control structure,
be sure not to specify 0 for the argument.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Example
• Shift the run-time parameters by 2 places.

shift 2

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 957

9.3.25 test command (determines the value of a conditional expression)

Syntax 1

test conditional-expression

Syntax 2

[conditional-expression]

Syntax 3

[[conditional-expression]]

Description
This command determines the value of a specified conditional expression. The command evaluates the value of a
conditional expression specified using conditional operators. It returns 0 if the result is true or 1 if the result is false. If
you execute the test command or [] with conditional-expression omitted, it returns 1.

For details about conditional expressions, see 5.2 Conditionals.

Return codes
Return code Meaning

0 Normal termination
• The result of evaluating the conditional expression was true.

1 Normal termination
• The result of evaluating the conditional expression was false.

2 Error termination
• The command terminated with an error.

Notes
• Operators such as angle brackets (< and >) have special meanings as metacharacters. To use these characters in the
test command, you must disable them as metacharacters.

• When the square bracket format ([[]]) is used, neither a wildcard nor file name substitution is applied to a character
string entered between the square brackets.
An example is shown below. In this example, it is assumed that files test.ash and hhh are located in the current
directory.

[[-f *est.ash]] ... (1)
[-f *est.ash] ... (2)
test -f *est.ash ... (3)
[[-f ?(hhh)]] ... (4)
[-f ?(hhh)] ... (5)
test -f ?(hhh) ... (6)

In lines (1) and (4), the wildcard enclosed in the square brackets ([[]]) is not applied. Therefore, it is interpreted
that no applicable file exists, and the return code will be 1.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 958

In lines (2), (3), (5), and (6), the wildcard is applied. Therefore, the determined result of the conditional expression
becomes true, and the return code will be 0.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Example
• Determine whether the variables arg1 and arg2 have the same value.

test $arg1 -eq $arg2

9.3.26 times command (displays the amount of CPU time used by the
shell)

Syntax

times

Description
This command outputs to the standard output the amount of CPU time used by the shell and by processes launched from
the shell. The following information is displayed:

• User CPU time (in seconds) used by the shell

• System CPU time (in seconds) used by the shell

• Total user CPU time (in seconds) used by processes launched from the shell

• Total system CPU time (in seconds) used by processes launched from the shell

The output format of the times command is shown in the following table:

Output format# Meaning

Shell: CPU-time user CPU-time system CPU time used by the shell is output in the order user CPU
time, system CPU time.

Kids: CPU-time user CPU-time system CPU time used by processes launched from the shell is
output in the order user CPU time, system CPU time.

#
CPU-time is displayed to two decimal places.

Note that if an option is specified, it is ignored and processing of the command continues unaffected.

Return code
Return code Meaning

0 Normal termination

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 959

Notes
• In Windows, the CPU time of child processes does not include the CPU time of grandchild processes.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Example
• Display the CPU time of the shell and the process launched from the shell (ps command).

Contents of the job definition script

ps > /dev/null
times

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Shell: 0.00s user 0.01s system
Kids: 0.01s user 0.10s system

9.3.27 trap command (specifies the action when signals and forced
termination requests are received)

The functionality of the trap command for the Windows edition differs from its functionality for the UNIX edition.
For details about the functionality for the UNIX edition, see (1) trap command (UNIX edition). For details about the
functionality for the Windows edition, see (2) trap command (Windows edition).

(1) trap command [UNIX edition]

Syntax

trap [action] [signal...]

Description
This command sets the action to be taken when signals are received. If the shell receives a specified signal for signal,
the behavior specified for action is executed.

If the command is executed without specifying an argument, the behavior that is set for signal is output to the standard
output in the following format:

Signal type Output format

For signals with a defined name: trap -- action "Signal name without the leading SIG"

For signals without a defined name: trap -- action UNKNOWN SIGNAL

Actions for signals in which multiple names are defined for a single signal number are as follows:

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 960

[Only for Linux]

Signal name Alternate name Setting of the action by the trap command

SIGSYS SIGUNUSED SIGSYS Can be set.

SIGUNUSED Can be set.

Note:
Because extended functions use SIGSYS instead of SIGUNUSED as the main signal name, the trap command
also treats SIGSYS as the signal name.

[Only for AIX]

Signal name Alternate name 1 Alternate name 2 Setting of the action by the trap command

SIGABRT SIGLOST SIGIOT SIGABRT Can be set.

SIGLOST Can be set.

SIGIOT Can be set.

SIGIO SIGPOLL None SIGIO Can be set.

SIGPOLL Can be set.

[Only for HP-UX and Solaris]

Signal name Alternate name Setting of the action by the trap command

SIGABRT SIGIOT SIGABRT Can be set.

SIGIOT Can be set.

SIGIO SIGPOLL SIGIO Can be set.

SIGPOLL Can be set.

When an action is specified with the trap command for a signal for which multiple names are defined under a single
signal number, one of the specified signal names is output.

Arguments

action
This command specifies the action to be taken when the specified signals are received.
If a hyphen (-) is specified for action, the previously-specified traps for the specified signal are reverted to their
default settings. If action is not specified and a signal number is specified for signal, the previously specified traps
for the specified signals are also reverted to their default settings.
If "" is specified for action, the signal specified for signal is ignored (SIG_IGN).
However, for SIGTERM, the signal is not ignored (SIG_IGN) even when "" is specified for the action.
If "" is specified, the trap command finishes normally without changing the currently configured action.

signal
This command specifies the signal that is to be trapped.
You can specify a signal number or a signal name for signal. When you specify a signal name, this must be specified
without the SIG at the beginning (for example, specify INT for SIGINT). For specifications of each signal, see the
documentation of the OS being used.
The operation that is performed when SIGTERM is specified depends on the specification of the
TRAP_ACTION_SIGTERM environment setting parameter. See 7. Parameters Specified in the Environment Files

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 961

> TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a request for a forced termination
is received).
For signal, you can specify multiple signals delimited by a space. You can also specify 0, "EXIT", or "ERR" for
signal.

When specifying 0 or "EXIT" for signal and executing the trap command:
You can execute the command specified for action when a shell ends.

When specifying "ERR" for signal and executing the trap command:
When the following command that is executed after the trap command finishes with a return code other than
0, the action specified for action is executed.
- Regular built-in command
- typeset command
- return command that results in an error in a function or external script because of an invalid format

In AIX, you cannot specify SIGWAITING for signal. If you execute this command in AIX with SIGWAITING
specified, the command ends in an error.

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
• If you specify a value that is smaller than 0 for the signal argument, the trap command treats this as an invalid

signal. If you specify a numeric value for the signal argument, specify a value that is within 0 to the permissible
range of the signal.

• If the adshread extended shell command is specified in the operation defined by the trap command, the job
waits for an entry even when a forced termination request is received and the job will not be terminated. If you
specify TERM for the operand in the TRAP_ACTION_SIGTERM parameter, or if you specify AUTO in the
TRAP_ACTION_SIGTERM parameter and start a job from JP1/AJS, do not specify the adshread extended shell
command in the operation that is defined by the trap command.

• If the shell operation command adshjava is specified for the operation that is defined by the trap command and
the command is forcibly terminated, you can execute Java batch applications in the trap action. However, if a forced
termination is executed while executing the trap action, the asshjava command will not be forced to terminate.
If you specify TERM for the operand in the TRAP_ACTION_SIGTERM parameter, or if you specify AUTO in the
TRAP_ACTION_SIGTERM parameter and start a job from JP1/AJS, do not use the adshjava command in the
trap action. If you run Java batch applications as post-processing that is unique to a user, use the cjexecjob
command and cjkilljob command.

• If the command syntax of this special built-in command is invalid, the shell that is executing the command will be
terminated.

• If the argument action is omitted and only a signal number is specified for the signal argument, the trap command
resets the action specified for signal to the default setting. If only a signal name without SIG is specified, the trap
command terminates itself without resetting the action specified for the signal argument.

Example: trap 15
--> The command resets the action for signal number 15 to the default setting.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 962

Example: trap TERM
-->The command does not reset the action.

Examples
• The message "trapped." is output by the echo command when the INT signal is received.

trap 'echo trapped.' INT

• Displays the action that is set for the signal.
Contents of the job definition script

trap 'echo Hangup.' HUP
trap 'echo trapped.' INT
trap

Contents of the STDOUT file of the execution job

******** Contents of the STDOUT file of the executable job ********
trap -- 'echo Hangup.' HUP
trap -- 'echo trapped.' INT

(2) trap command [Windows edition]

Syntax

trap [action][method]

Description
This command sets the action to be taken when a forced termination request is received.

When specifying TERM with the TRAP_ACTION_SIGTERM parameter:
You can set the action to take when the job controller receives a forced termination request. If the job controller
receives a forced termination request specified for method, the job controller executes the action specified for
action.
If a forced termination request with neither TERM nor 15 is specified for method, the specified action is not set and
the job controller outputs the message KNAX6718-I and terminates after returning the return code 0.
When the command is executed without specifying an argument, the action that is set for the forced termination
request is output to the standard output in the following format:

Output format

trap -- action "character-string-that-indicates-the-method-of-forced-termination"

When specifying DISABLE in the TRAP_ACTION_SIGTERM parameter:
The command issues the KNAX6710-I message and always terminates normally with the return code of 0. The
command does not perform processing for forced termination requests.

Arguments

action
This command specifies the action to be taken when a forced termination request is received.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 963

If a hyphen (-) is specified for action, the command resets the previously specified action that matches method,
disables the behavior definition for method(action), and no settings become available. If action is omitted and 15 is
specified for method, the command also resets the behavior definition for method (action) and no settings become
available.
If "" is specified for action, the trap command finishes normally without changing the current setting for action.

method
Specifies the forced termination method that is to be trapped.
Specify TERM or 15 for method.

TERM or 15
Specifies that immediate process termination is to be performed by a function such as TerminateProcess (such
as forced termination from JP1/AJS or the taskkill command).

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
• When kill -KILL process-ID is executed to terminate adshexec.exe for a job, the action defined in the terminated

job's "trap action TERM" is executed.

• If TERM is specified in the TRAP_ACTION_SIGTERM parameter, the trap command with an option specified
results in an error. If a value other than TERM is specified in the TRAP_ACTION_SIGTERM parameter, the trap
command with an option specified will not result in an error.

• If the adshread extended shell command is specified in the operation defined by the trap command and a forced
termination request is received, the job will wait for an entry and will not be terminated. Do not specify the
adshread command for the operation definition of the trap command if TERM has been specified for the operand
in the TRAP_ACTION_SIGTERM parameter.

• If the shell operation command adshjava is specified for the operation that is defined by the trap command and
the command is forcibly terminated, you can execute Java batch applications in the trap action. However, if a forced
termination is executed while executing the trap action, the adshjava command will not be forced to terminate.
For this reason, when specifying TERM for the operand in the TRAP_ACTION_SIGTERM parameter or when
specifying AUTO in the TRAP_ACTION_SIGTERM parameter and starting a job from JP1/AJS, do not use the
adshjava command in the trap action. If you operate Java batch applications as post-processing that is unique to
a user, use the cjexecjob command and cjkilljob command.

• If the command syntax of this special built-in command is terminated with an error due to an incorrect syntax, the
shell that is executing the command will end.

• If the argument action is omitted and 15 is specified for the argument method, the trap command resets the action
specified for immediate process termination by using a function such as TerminateProcess so that the method is not
associated with any action settings. However, if only TERM is specified, the trap command terminates itself
without resetting the action specified for immediate process termination.

Example: trap 15
The command resets the action specified for immediate process termination by using a function such as
TerminateProcess so that the method is not associated with any action settings.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 964

Example: trap TERM
-->The command does not reset the action.

• If two or more values are specified for method and at least one of these values is TERM or 15, the command sets
action for TERM or 15 without issuing the KNAX6718-I message. For any other method, action is not set.
Example: If you execute "trap date 28 15", the trap command sets the date command as the action for 15 without
issuing the KNAX6718-I message.

• The process that is being executed in the background when the forced termination request is received is terminated
before executing the action defined with "trap action TERM".

Examples
• This example outputs the message "trapped." with the echo command when a forced termination request is received.

trap 'echo trapped.' TERM

• This example displays the action that is set for forced termination requests. The example outputs TERM for the
method of forced termination even if 15 is specified for method with the trap command in which action is set.
Contents of the job definition script

trap 'echo trapped.' 15
trap

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
trap -- 'echo trapped.' TERM

9.3.28 true command (returns 0 as the return code)

Syntax

true

Description
This command terminates successfully, returning 0 as the return code.

This command accepts no options. If an option is specified, it is ignored and processing continues.

Return code
Return code Meaning

0 Normal termination
• Always returns 0.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The execution result of this command is output in the KNAX6113-I message.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 965

Example
• Set the return code to 0.

Contents of the job definition script

true
echo $?

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
0

9.3.29 typeset command (declares explicitly the attributes and values of
variables and functions)

Syntax

typeset [{-L|+L} [n]] [{-R|+R} [n]] [{-Z|+Z} [n]]
 [-l|+l|-u|+u] [{-i|+i} [n]] [-r|+r|-x|+x]
 [{-f|+f} [-t|+t] [-u]]
 [-p|+p]
 [--] [name [=value]...]

Description
This command declares explicitly the attributes and values of variables and functions. You can use this command to
define specified variables and functions (specified in name), as well as to declare explicitly attributes and values for
them.

When this command is executed within a function, it defines local variables that are valid within that function only
(local variables in a function). If you define a local variable in a function, its values and attributes revert when the
function terminates.

The options for this command are organized into the four categories of character string formatting options, attribute and
type options, function options, and display options.

Arguments
You prefix each option specification with a minus sign (-) to enable the option (attribute) or a plus sign (+) to disable
it.

[{-L|+L} [n]] [{-R|+R} [n]] [{-Z|+Z} [n]]

• -L|+L
These are character string formatting options. The -L option left-justifies the contents of the variables. The +L
option removes any left-justification that has been set.
When a value is set in a variable and the length of the area is greater that the length of the specified value, this
option pads the trailing remainder of the area with spaces. If the length of the specified value is greater than the
length of the area, the trailing portion of the value is truncated to fit in the region
If the -Z option is also specified, leading zeros are stripped. If the -R option is also specified, the one specified
last takes effect.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 966

If the item whose name is specified in name is already defined with the -R option, its right-justification setting
is disabled.

• -R|+R
This is a character string formatting option. The -R option right-justifies the contents of the variables. The +R
option removes any right-justification that has been set.
When a value is set in a variable and the length of the area is greater than the length of the specified value, this
option pads the beginning of the area with spaces. If the length of the specified value is greater than the length
of the area, the beginning portion of the value is truncated to fit in the region. If -L and -R are both specified,
the one specified last takes effect.
If the item whose name is specified in name is already defined with the -L option, its left-justification setting
is disabled.

• -Z|+Z
This is a character string formatting option. The -Z option pads the contents of the variables with zeros. The +Z
option removes any zeros-padding that has been set.
Unless the -L option is set, the contents will be right-justified. If the first character of the value specified in
value is a numeric, the beginning of value is padded with zeros. If the first character of the value specified in
value is a non-numeric, the beginning of value is padded with spaces.

• n
Specifies the length of the area for value. If 0 is specified or n is omitted, the length of the area will be the length
of the value specified in value. An error results if you specify a value for n that exceeds 16,385.

[-l|+l|-u|+u]

• -l|+l
These are character string formatting options. The -l option converts the letters assigned to a variable specified
in name from uppercase to lowercase. If the character string assigned to the variable contains a mixture of
uppercase and lowercase, this option converts only the uppercase letters to lowercase letters. If the -u option is
also specified, the option specified last takes effect.
The +l option removes any uppercase-to-lowercase conversion that has been set.

• -u|+u
This is a character string formatting option. The -u option converts the letters assigned to a variable specified
in name from lowercase to uppercase. If the character string assigned to the variable contains a mixture of
uppercase and lowercase, it converts only the lowercase letters to uppercase letters. If the -l option is also
specified, the option specified last takes effect.
The +u option removes any lowercase-to-uppercase-conversion attribute that has been set.

[{-i|+i} [n]] [-r|+r|-x|+x]

• -i|+i
These are attribute and type options. The -i option declares that the type of a variable specified in name is
integer. When this option is specified, the value assigned to value must be in decimal. If you use -i to specify
a base other than 10, 'base#' will be prefixed at the beginning of the contents of the variable specified in name.
If you also specify the -Z option to set zero-padding, the area up to the beginning of 'base#' will be padded with
leading zeros.
The +i option removes any integer type attribute for a variable specified in name.

• n
Specifies the base in which name is to be displayed when it is output. If 0 is specified or n is omitted, and name
is an undefined variable, the name item will be treated as a decimal number. If 0 is specified or n is omitted, and

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 967

name is a defined variable, the name item will use the base that has already been defined for it. An error results
if you specify a base of 1 or a base greater than 16.

• -r|+r
These are attribute and type options. The -r option sets the read-only attribute for a variable specified in
name. Once the read-only attribute is set for a variable, neither the variable's value nor any of its attributes can
be changed.
The +r option removes any read-only attribute that has been set.

• -x|+x
These are attribute and type options. The -x option exports a variable specified in name. The +x option cancels
exporting of a variable specified in name.
When you export variables in Windows, the supported variable names are handled as follows:

When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
All letters contained in variable names must be in uppercase because shell variables whose names contain
lowercase letters cannot be exported.
If a variable containing a lowercase letter is specified for name, an error message is output and the batch job
terminates.

When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Shell variables whose names contain lowercase letters can be exported.
Note that environment variables are not case sensitive. The last shell variable with the same spelling that was
exported becomes the final environment variable value.

{-f|+f} [-t|+t] [-u]

• -f|+f
These are function options. The -f option declares that the processing targets specified in name are to be treated
as functions, not variables. When the command is executed with the -f option specified, functions specified in
name are also output to the standard output. Functions are not displayed when the command is executed with
the +f option.
When the command is executed with only -f specified, and with no name specification, all currently defined
functions are output to the standard output.

• -t|+t
These are function options. When specified together with the -f option, the -t option enables the trace mode
for a function specified in name.
The +t option disables the trace mode for a function specified in name.

• -u
This is a function option. When specified together with the -f option, the -u option enables the auto-load
functionality for a function specified in name.

-p|+p
These are display options. The -p option outputs all defined variables to the standard output in the format typeset
variable-name=value. If you specify the -p option and name at the same time, the declaration of attributes for the
variable specified in name takes precedence.
The +p option outputs all defined variables to the standard output in the format typeset variable-name.

No options specified
This is a display option. When this command is executed with no options specified, all the defined variables are
output to the standard output. Each variable name is preceded by the values of the attribute and type options declared
in typeset. When no attribute and type options have been declared, the variable name is displayed left-justified.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 968

Option only specified without a name specification
This is a display option. All the variables and functions with the specified property are output. If the option is prefixed
with a hyphen (-), what is output to the standard output is variable-name=value or the contents of each function. If
the option is prefixed with a plus sign (+), only the names of the variables or functions are output to the standard
output.

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of a
variable name.

name
Specifies a variable name, array name, or function name whose attributes and values are to be declared. You can
specify multiple variable names, array names, and function names.
When you specify an array name, the declaration applies to all the elements that constitute the array, even if you
specify only one element of the array.
You can specify = after name to assign a value to name and declare its attributes at the same time.
If the read-only attribute is set for the variable specified in name and you attempt to set a value for it, the command
will terminate with an error.

value
Specifies a value to be assign to the paired name. If value is omitted, the linefeed character is assigned, and then the
attribute changes are made.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• For the n argument, specify a value that is within the permissible range set for each of the arguments specified

concurrently.

• If a variable that contains multibyte characters is truncated during left- or right-justification, the multibyte character
data might be lost, leaving behind a character that is assigned to an incomplete byte sequence.

• You cannot use a single hyphen to specify multiple options and arguments at the same time. For example, to declare
an octal integer that is right-justified within 16 digits, specify -i8 -R16. If you specify -i8R16, the command
will terminate with an error.

• If the -f and -x options are both specified, the -x option is ignored and the processing is the same as when only
the -f option is specified.

• If you specify the -i option to change attribute, you cannot execute the batch definition of the array (specification
defining with the specification of array-name=(...) or array-name[]=({...}...). If you execute the batch
update of attributes of array, you need to specify the defined array name with the typeset command to which the
-i option is specified after executing the batch definition of array.

Examples
• Set the attributes for the variable num so that it is declared as an integer and displayed left-justified with a length

of 10 digits.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 969

typeset -L10 -i num

• Enable the trace mode for the function func.

typeset -ft func

9.3.30 ulimit command (sets limits on system resources) (UNIX only)

Syntax

ulimit [-H] [-S] [-a] [-c] [-d] [-f] [-l] [-m]
 [-n] [-p] [-s] [-t] [limit]

Description
This command sets limits on system resources or displays information about limits on system resources that have been
set. This command is used to set upper limits on system resources that are specified by option specifications, as well as
to output to the standard output limits that have been set.

The following table shows the output formats for displaying resource limits.

Output format Contents

time(cpu-seconds) upper-limit Maximum CPU time

file(blocks) upper-limit Maximum file size

coredump(blocks) upper-limit Maximum file size of core dump

data(kbytes) upper-limit Maximum data area size

stack(kbytes) upper-limit Maximum stack area size

lockedmem(kbytes) upper-limit Maximum size of physical memory that can be locked

memory(kbytes) upper-limit Maximum size of physical memory that can be used

nofiles(descriptors) upper-limit Maximum number of file descriptors

processes upper-limit Maximum number of processes

Arguments
If you indicate multiple resources by specifying more than one resource option, the option specified last takes effect.

-H
Specifies that the limit being set (or displayed) is a hard limit. If the -H and -S options are both specified, the one
specified last takes effect.

-S
Specifies that the limit being set (or displayed) is a soft limit. If the -H and -S options are both specified, the one
specified last takes effect.

-a
Specifies that the upper limits for all resources are to be output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 970

-c
Specifies that a maximum size for a core dump file (in blocks) is to be set or displayed.

-d
Specifies that a maximum data area size (in kilobytes) is to be set or displayed.

-f
Specifies that a maximum file size (in blocks) for files written by a shell or by processes launched from a shell is to
be set or displayed.

-l (Linux only)
Specifies that a maximum size (in kilobytes) for the physical memory that can be locked is to be set or displayed.

-m (AIX, HP-UX, and Linux only)
Specifies that a maximum size (in kilobytes) for the physical memory that can be used is to be set or displayed.

-n
Specifies that a maximum number of file descriptors that can be open is to be set or displayed.

-p (Linux only)
Specifies that a maximum number of processes that one user can start is to be set or displayed.

-s
Specifies that a maximum size (in kilobytes) of the stack area is to be set or displayed.

-t
Specifies that a maximum CPU time (in seconds) is to be set or displayed.

limit
Specifies the resource limit value that is to be set. If you specify unlimited, no upper limit is set for the resource.
You can specify any numeric value as an upper limit, but for details about the upper limits that are valid in practice,
see the documentation for the OS being used.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• When either of the following conditions apply, the ulimit command outputs the KNAX6710-I message indicating

that the command is not supported, and then terminates normally with a return code of 0:

• A specified option is not supported by the OS.

• You are running in a Windows environment.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• If the maximum file size set with the ulimit command is too small to be able to generate the files required when
you run a job definition script with the adshexec command, you might receive the SIGXFSZ signal.

• To increase the hard limit, you need the administrator's permission.

• The upper limits on resources that can be specified depend on the execution environment and the OS.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 971

• For some resources whose limits are to be changed, if you specify a value that is not permitted, the execution
environment or the OS might set a different value.

• In the limit argument, specify a value in the range from 0 to 2,147,483,647. Specifying a value outside this
range in the limit argument might yield unexpected results.

Example
• Output the upper limits for all resources.

Contents of the job definition script

ulimit -a

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
time(cpu-seconds) unlimited
file(blocks) unlimited
coredump(blocks) 0
data(kbytes) unlimited
stack(kbytes) 10240
lockedmem(kbytes) 32
memory(kbytes) unlimited
nofiles(descriptors) 1024
processes 4096

9.3.31 umask command (sets the access permissions for creating a new
file) (UNIX only)

Syntax

umask [-S] [mask]

Description
This command sets the access permissions used when a new file is created. You specify in mask the file mode creation
mask that is to be set. If the command is executed with mask omitted, it outputs the current umask value to the standard
output.

Arguments

-S
Specifies that the value is to be set or output in symbolic format.
When the -S option is specified, the command sets or outputs the file mode in symbolic format. When the -S option
is not specified, the access permissions that are set or output are expressed in octal. This specification also indicates
when the specified access permissions are not granted at file creation time.

mask
Specifies a umask value to serve as the default file mode when a file is created. You can specify mask in numeric
or symbolic format. If you use symbolic format, the specification follows the format [who][op][perm]
[,...]. You can specify multiple sets of values delimited by the comma (you cannot use the space).

• who

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 972

Specifies the targets for which the mask is set. Specify none, one, or multiple of the following letters:
u: Permissions for the user (owner)
g: Permissions for the group
o: Permissions for others
a: Permissions for all (a=ugo)
(none): Permissions for all (a=ugo)

• op
Specifies the mask setting operation. Specify one of the following symbols:
+: Add perm to the current mask for each who entry
-: Remove perm from the current mask for each who entry
=: Change the current mask for each who entry to perm

• perm
Specifies the permissions to be granted at the time of file creation. Specify none, one, or multiple of the following
letters:
r: Read permission
w: Write permission
x: Execute permission
u: Same permissions as for the user
g: Same permissions as for the group
o: Same permissions as for others
X: If any of ugo has the execute permission, grant those execute permissions. If none of ugo have execute
permissions, no permissions are set. If no permissions are set, nothing changes when op is + or -, but the mask
for who is removed when op is =.
s: No permissions. Nothing changes when op is + or -, but the mask for who is removed when op is =.
(none): No permissions. Nothing changes when op is + or -, but the mask for who is removed when op is =.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• When you use this command in a Windows environment, the KNAX6710-I message is output indicating that the

command is not supported. The command then terminates normally with a return code of 0 (no file creation mask
is set).

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• For permission for the temporary file that is created by using the #-adsh_file_temp command and
adshmktemp command, 0 is always set for access privilege of group and other users, except that the value for the
file owner (creator) depends on the value specified for umask.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 973

Example
• Set the file creation mask so that only the user has all access permissions:

umask 077

• Set the file creation mask so that only the user has write permission:

umask u=rwx,go=rx

9.3.32 unalias command (removes alias definitions)

Syntax

unalias [-a]name [name...]

Description
This command removes specified alias definitions. To do so, specify in name the name of the alias you want to remove.
You can specify multiple names whose aliases are to be removed, using the space as the delimiter. If you specify in
name an alias name that is not defined, or if you execute the command without any options or arguments, the command
terminates with an error and returns 1 as the return code.

Arguments

-a
Specifies that all alias definitions are to be removed.

name
Specifies the name for an alias definition to be removed.

Return codes
Return code Meaning

0 Normal termination

1 Error termination (such as that a name specified in name does not have a defined alias)

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Example
• Remove the alias defined for functions.

unalias functions

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 974

9.3.33 unset command (unsets variable values and attributes)

Syntax

unset [-f] name [name ...]

Description
This command unsets specified variables or functions. You can specify more than one variable or function name. When
you execute the command with the -f option specified, each name is assumed to be a function name, and the specified
function definitions are removed.

Arguments

-f
Specifies that this command applies to removal of function definitions.

name
Specifies the name of a variable or function that is to be removed. You can also specify the name of an array.
If an array name is specified for name, all elements constituting the array are unset. To unset only a single element,
you must specify for name, "array-name [element number] [element number]" or "array-name [element-number]".
You can specify the numerical value indicating the array element number, @, and * for the array element number.
For the range of unset targets with a combination of specifications, see (3) Referencing the values of arrays.
If the read-only attribute is set for a variable whose name is specified, the command terminates with an error. When
you execute this command with an undefined variable name or function name specified in name, it terminates with
an error.

Return codes
Return code Meaning

0 Normal termination

1 Error termination (such as that a name specified in name is not defined as a variable or function)

Notes
• If you use this command to unset shell variables such as LINENO, OPTARG, OPTIND, RANDOM, and SECONDS,

the special meanings of the shell variables will be lost, even if you define them again later.

• If you use this command to unset array elements individually, they will still count as defined variables in the debugger,
and you will still be able to use the debug command to display or set them.
However, if you unset all the elements that constitute an array, they will be treated as undefined variables in the
debugger, and you will no longer be able to use the debug command to display or set them. For details about using
the debug command to display and set variable values, see 6. Debugging Job Definition Scripts.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Examples
• Remove a variable.

unset val

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 975

• Remove a function.

unset -f func

9.3.34 wait command (waits for child processes to complete)

Syntax

wait [pid ...]

Description
This command waits for child processes to complete. Specify for pid one or more process IDs of child processes waiting
for completion. If pid is not specified, the command waits for all child processes being executed to complete. If an
invalid process ID that begins with a non-numeric value is specified for pid, processing terminates normally with return
code 127.

Note the following if a mixture of numeric values and non-numeric values is specified beginning with a numeric value,
as shown in the example below: The character string up to the last position preceding the non-numeric value is interpreted
as a process ID and the command waits for the child process to complete.

UAP & # Shell variable ! stores the process that started the UAP.
wait $!ABC # The wait command interprets the character string preceding ABC and
waits for the child process to complete.

When the pid argument is specified, the wait command terminates with the return code of the last process that waited
for completion. An example follows:

UAP1 & # UAP1 terminates with a return code of 2.
PID1=$! #
UAP2 & # UAP2 terminates with a return code of 16.
PID2=$! #
UAP3 & # UAP3 terminates with a return code of 0.
PID3=$! #
wait $PID1 $PID2 $PID3 # The wait command terminates with a return code of 0.

Argument

pid
Specifies the process ID of a child process that is waiting to complete.

Return codes
Return code Meaning

0 Normal termination

127 Normal termination
• Could not identify a specified child process.
• A specified process ID was not for a currently executing child process.

Other than the above Error termination

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 976

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Example
• Wait for the child process with process ID 4848 to complete.

wait 4848

9.3.35 whence command (displays how character strings would be
interpreted if used as commands)

Syntax

whence [-p] [-v] name [name...]

Description
This command displays how specified character strings would be interpreted if used as commands. When neither option
is specified, the output is as follows.

• If a specified character string is a command, the path name of the command is output.

• If a specified character string is an alias, the value of the alias is output.

• If a specified character string is a reserved word, standard shell command, extended shell command, or function,
the specified character string is output.

• If none of the above applies, nothing is output and the command terminates with a return code of 1.

If the -p and -v options are both specified, the whence command assumes that a specified character string is a
command and produces output accordingly. If the name argument is omitted, the command terminates with an error and
returns 1 as the return code.

Arguments

-p
Specifies that the specified character strings are to be handled as commands whose paths are to be output.

-v
Specifies that whether each specified character string is a command, reserved-word, alias, standard shell command,
extended shell command, or function is to be output.
The following table shows the contents of the output:

No. Output contents Meaning

1 name is a reserved word name is a reserved word.

2 name is a function name is a function.

3 name is a traced function name is a function for which the trace mode is enabled.
If the function is undefined and the trace mode is enabled for it, the contents shown
in No. 4 are output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 977

No. Output contents Meaning

4 name is an undefined function name is an undefined function.

5 name is an extended shell
command

name is an extended shell command.

6 name is a shell builtin name is a built-in command.

7 name is a special shell
builtin

name is a special built-in command.

8 name is a shell builtin not
supported

name is a command that is not provided in JP1/Advanced Shell.

9 name is path-name name is a command or executable file.

10 name is an alias for 'alias-value' name is an alias.

11 name is an exported alias for
'alias-value'

name is an exported alias.

12 name not found name is not a command, reserved-word, alias, standard shell command, extended
shell command, or function.

name
Specifies a character string to be interpreted as a command. If this argument is omitted, the command terminates
with an error and returns 1 as the return code.

Return codes
Return code Meaning

0 Normal termination

1 Error termination. Or, one of specified character strings could not be found as a command.

Notes
• If a symbolic link is specified for the name argument, both execution roles of symbolic link and link destination are

evaluated when you evaluate whether the symbolic link can be executed. [Windows edition]

• Even if the command syntax of this regular built-in command is incorrect, it does not exit the shell that is executing
the command.

Example
• Assume that pwd is a command and output its path.

Contents of the job definition script

whence -p pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/bin/pwd

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 978

9.4 Extended shell commands

The extended shell commands are built into JP1/Advanced Shell itself. A built-in command is one that is included as
part of the shell, and is executed by the shell itself.

Even if the command syntax of an extended command is invalid, it does not exit the shell that is executing the command.

9.4.1 adshappexec command (GUI application executable command)
(only for Windows execution environment)

Functions are the same as those of the shell operation command. For functions of this command, see 8.3.2 adshappexec
command (GUI application execution command) [only for Windows execution environment].

9.4.2 adshappexec command (GUI application execution command) [only
for Windows development environment]

Syntax

adshappexec [-m] [-d work-folder] [-v name-to-be-displayed] {-w executable-
application-name | -n executable-application-name} [-- argument-1 argument-2...]

Description
Run the executable application without starting the application execution agent in order to perform debugging in the
development environment.

This command outputs the return value of the executable application to the standard output. When using this command
in a succeeding job as the return value of the job, the command stores the value in the variable with command substitution.

Arguments

-m
This command suppresses the message output to the standard error output. This command can be used in
environments where the standard input/output cannot be used.
This command outputs argument specification errors for the command and license check errors even when the -m
option is specified.

-d work-folder ~ <path name>((1 to 247 bytes))
This command specifies the work folder upon execution of the executable application.
When the work folder has not been specified, this command activates the application with the current path for
execution of the adshappexec command.
If a work folder contains a space, specify the name including the space by enclosing the name with double quotation
marks (") when executing the application from the job definition script.

-v name-to-be-displayed ~ <path name>((1 to 247 bytes))
This command specifies the name that appears when you left-click on the application execution agent icon.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 979

If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when you executing the application from the job definition script.
If the name to be displayed is omitted, the executable application name is output.
In a Windows development environment, this command is only used for message output.
We recommend specifying this argument to distinguish applications when multiple executable applications are
operated.

-w executable-application-name ~ <path name>((1 to 247 bytes))
The application execution agent will not finish until the executable application is finished.
Specifies the file name of the executable application for the executable application name.
If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when executing the application from the job definition script.

-n executable-application-name ~ <path name>((1 to 247 bytes))
The application execution agent finishes without waiting for the executable application to finish.
Specifies the file name of the executable application for the executable application name.
If a space is included in the executable application name, specify the name including the space by enclosing the
name with double quotation marks (") when executing the application from the job definition script.

-- argument-1 argument-2... ~ <argument>((1 to 1,023 bytes))
Specifies the parameter after -- that is specified when executing the executable application.
Do not specify an argument when specifying an associated executable application.
You can specify any number of arguments as long as the total length of the arguments is within 1,023 bytes.

Return codes
Return code Meaning

0 Normal termination

Other than 0 Abnormal termination

There are return codes for 2 processes in the adshappexec command. The return code for each process is handled
as follows:

The output of the return value at the position where the error has occurred is as follows:

(a) Error when processing the adshappexec command
A value is output as the return value of the command.
In addition, a message is output to the standard error output.

(b) Return value of the executable application
A value is output to the standard output.
In addition, the return value of the executable application is output to the standard error output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 980

The adshappexec command will not end abnormally even if a return value other than 0 is returned with the return
value of the executable application.
To confirm the return value of the executable application, check the messages or the details of the standard output.

Notes
• You must specify the -w argument and -n argument of the adshappexec command.

The argument specified last is enabled in the following cases:
- If the -w option and the -r option are specified at the same time
- If the -w option is specified multiple times
- If the -r option is specified multiple times

• The executable application uses the environment variable of the user running the application.

• If the same option is specified multiple times, the last specification is enabled.

• When executing the application having the following specifications by using the -w argument, the adshappexec
command may not terminate even when the specified file is terminated.

• Even if you close the file specified for the executable application, the executable application itself will not be
terminated.

In such case, the adshappexec command is terminated if the application itself is terminated.
Example: If you close only the Excel file that is specified as the executable application and do not terminate Excel
itself

• Depending on the specification related to the start of processes of the executable application, the adshappexec
command may be terminated without waiting for termination of the application even if the -w argument is specified.
The adshappexec command may terminate under the following cases:

(1) If KNAX7259-W is output
Example: If Excel itself has already been operated before executing the Excel file as an executable application
In this case, run the executable application while Excel is not being run or adopt the operation in which the -w
argument will not be used.

(2) If KNAX7259-W is not output
Example: If you execute explorer.exe as an executable application
In this case, adopt the operation in which the -w argument will not be used.

• Note the following points when performing a forced termination:

• You cannot quit debugging by using the editor or quit the editor by pressing the × button while the executable
application is operating.
You must wait for the executable application to finish.

• Do not specify the adshappexec command for the operation definition of the trap command if TERM has
been specified with the TRAP_ACTION_SIGTERM parameter.
In addition, when an executable application that performs interactive operation is specified, the executable
application might wait for a reply and the job definition script might not finish.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 981

9.4.3 adshcmdrc command (defining the return code threshold of a
command)

Syntax

adshcmdrc command-name threshold

Description
To treat the command as having ended normally despite the return code of the command executed from the job definition
script being other than 0, define the value consisting of the target command name and threshold. Accordingly, cases
when the return code of the command is not greater than the threshold value will be interpreted as the command having
ended normally. If the command that is specified for the argument finishes by receiving a signal, the command specified
for the argument ends in an error. You can specify a maximum of 4095 adshcmdrc commands.

The effective range of the definition of this command is as follows:

• This command is valid with executions of the job definition script at positions after specification of the command.

• If there are two or more definitions for the same command, the definition closer to the target command will be valid.

• If you specify the command outside the job step, the command is valid for the entire job definition script.

• If you specify the command within the job step, the command is valid from the specified position to the end of the
job step.

Arguments

command-name ~ <Command name> ((1 to 255 bytes))
This command specifies the command name that defines the return code to be treated as normal termination. In
Windows, you can specify the command name with an extension. You cannot specify the command path. Types of
commands that can be specified are as follows: Other commands become targeted if other processes have been
executed (using pipe, command substitution, |&, or &).

• External commands

• UNIX-compatible commands

• Shell operation commands

• Scripts that have been executed as a command (executed with #!)

• Child jobs

• Functions (only if FUNCTION is specified for the operand of the CMDRC_CMDGRP_CHECK parameter)

If the extension of the command name is omitted in Windows, the command and batch file having the same name
as the specified name become subject to control of the threshold regardless of extension. If you specify a command
that includes a space in Windows, enclose the command with " (double quotation marks).

threshold ~ <integer> ((-1 to 255))
Defines the threshold value that is treated as a normal termination in the return code. If the return code is larger than
the threshold value specified here, the command is considered to have been terminated with an error.
If -1 is specified, the result is always terminated with an error.
If 255 is specified, the result is always normally terminated.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 982

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
• This command is applied to variable replacement and the command name after solving the alias.

• If you define the return code threshold that is determined as a normal termination of the job definition script that is
executed as a child job, use the CHILDJOB_EXT parameter or CHILDJOB_SHEBANG parameter for the definition
of the child job. If you define a child job by using the CHILDJOB_PGM parameter, this job will not be considered
as a subject of the return code threshold.

• When FUNCTION is specified for the CMDRC_CMDGRP_CHECK parameter, you can define the return code
threshold that is considered as a normal termination by specifying the function name for the command name of the
argument. When the CMDRC_CMDGRP_CHECK parameter is not specified or NONE is specified for the
CMDRC_CMDGRP_CHECK parameter, the parameter is processed as the command name having the same name
even when a function name is specified for the command name of the argument.

• When FUNCTION is specified for the CMDRC_CMDGRP_CHECK parameter, the definition of the adshcmdrc
command specified in the function will not be enabled. When the CMDRC_CMDGRP_CHECK parameter is not
specified or NONE is specified for the CMDRC_CMDGRP_CHECK parameter, the definition of the adshcmdrc
command that is specified in the function becomes valid for the command of the script that calls the function.

• When executing the adshcmdrc command as a different process, the definition of the return code threshold that
is considered as a normal termination will not be valid for the command calling the script. Do not execute the
adshcmdrc command with other processes.

• When specifying and executing the adshcmdrc command in a child job, the definition of the return code threshold
that is considered as a normal termination will not be valid for the command of the script calling the child job. The
definition of the return code threshold that is considered as a normal termination is valid only with commands in
the child job.

• The upper limit of the specified quantity is the total of the number of scripts defined for the job definition script file
that is specified for the argument of the adshexec command, the . (dot) command called from the script, and
the number of external scripts called by the #-adsh_script command. External scripts are inclusive of the scripts
called by the nest.

Examples
Defines the threshold value of the return code that UAP considers as being normally terminated. In the following
example, if UAP finishes in job step 1 with a return code that is 1 or less, UAP treats this as having terminated normally.

#-adsh_step_start STEP1
 adshcmdrc UAP 1
 UAP data
#-adsh_step_end

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 983

9.4.4 adshecho command (issues a specified event notification message
as a JP1 event)

Syntax

adshecho [-d] event-notification-message

Description
This command issues a specified event notification message as a JP1 event. The issued JP1 event is displayed in
JP1/IM - View. If you are running the debugger with the standard input and output redirected to the user-reply
functionality, the specified event notification message is output to the standard output.

The JP1 event is issued after waiting for a fixed amount of time (specified in the USERREPLY_JP1EVENT_INTERVAL
parameter) to elapse since the last JP1 event was issued. For details about the USERREPLY_JP1EVENT_INTERVAL
parameter, see 7.3.51 USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1
events are to be issued) in 7. Parameters Specified in the Environment Files.

Arguments

-d
Specifies that during debugging, the output destination for the specified event notification message is to be set to
the standard output. This option is ignored except during debugging.
When the specification is a character string that begins with a hyphen (-), it is treated as an option specification if
it consists entirely of valid options. If such a character string does not consist entirely of valid hyphens, or if the
character string does not begin with a hyphen (-), it is treated as an event notification message from that position.

event-notification-message ~<any character-string>((0 to 1,023 bytes))
Specifies the event notification message that is to be issued as a JP1 event.
The character encoding of the specified event notification message must be consistent with the character encoding
of the JP1/Base running on the same host. If the character encodings are different, characters might become garbled.
The specified event notification message is issued as a JP1 event after its contents are converted by the echo -E
event-notification-message command. If more than one event notification message is specified, an error results
(KNAX7403-E).

Return codes
Return code Meaning Response Whether to

retry

0 Normal termination None --

1 A non-recoverable system
error occurred:
• Out of memory
• Internal inconsistency

detected

Contact a system administrator. N

4 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
12.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

Y

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 984

Return code Meaning Response Whether to
retry

5 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
12.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

N

6 The JP1 event failed to be
transmitted to the specified
host.

Check the following:
• JP1/Base is installed on the host where JP1/IM - Manager is

installed.
• The JP1/Base event service is running on the host where JP1/IM

- Manager is installed.
• A JP1/Base connection has been established between the host

where JP1/Advanced Shell is installed and the host where
JP1/IM - Manager is installed.

Y

7 The JP1/Base library cannot be
found.

Check if JP1/Base is installed on the host where JP1/Advanced Shell
is installed.
If JP1/Base is installed and this occurs anyway, re-install JP1/Base.

N

8 The connection to the JP1/
Base event service on the local
host failed.

Check that the JP1/Base event service is running on the host where
JP1/Advanced Shell is installed.

Y

10 The specified format is invalid. Check the format of the command. N

128+ signal
number (UNIX
only)

The adshecho command
received a signal and
terminated.

Confirm that the job received a signal and terminated. N

200 (Windows
only)

The adshecho command
was forcibly terminated.

Confirm that the job was forcibly terminated. N

Legend:
Y: Retry
N: Do not retry
--: Not applicable

Notes
• Do not execute this command as another process. If you execute this command as other process, the flow control

(specified with the USERREPLY_JP1EVENT_INTERVAL parameter) does not function.

• Do not execute this command in an environment without JP1/Base and JP1/IM, unless you are running the debugger
with standard input and output redirected to the user-reply functionality.
The following problems might occur during execution:

• If JP1/Base is not installed on the host running JP1/Advanced Shell, the command will terminate with an error.

• If the JP1/Base event service is not running on the host running JP1/Advanced Shell, the command will terminate
with an error.

• If JP1/Base or the JP1/Base event service is not running on the host specified in
HOSTNAME_JP1IM_MANAGER, the command will terminate with an error.

• Even if JP1/IM - Manager is not running on the host specified in HOSTNAME_JP1IM_MANAGER, the command
works and will successfully transmit a JP1 event once the event reaches the JP1/Base event service on the host
specified in HOSTNAME_JP1IM_MANAGER.

• If the command terminates with an error from which it is possible to retry the command, the command might succeed
when it is re-executed. Before re-executing the command, see the example job definition scripts in 3.8.5 How to
handle adshecho and adshread commands that terminate with an error for help in preparing the job definition script.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 985

• Do not execute this command in conjunction with the pipe symbol.

• Do not execute this command in conjunction with the redirection symbols.

9.4.5 adshjoberr command (reports an error to a job and job step)

Syntax

adshjoberr return-code

Description
An error can be reported from the specified job and job step error. Behavior of the command if the specified position is
within the job step or outside the job step is as follows:

If you specify the command within the job step:
The succeeding process of the job step normal block is not executed regardless of the onError attribute of the job
step. Therefore, the command is executed if the job step error block is defined and the job step finishes with an error.

If you specify the command outside the job step:
If the subsequent job step in which the run attribute is abnormal or always is defined, the command is executed
and the job finishes with an error.

Arguments

return-code ~ <integer>((0 to 255))
Define the return code to be reported to a job or job step.

Return codes
Return code Meaning

0 to 255 Termination with an error
This command reports the return code specified for argument of the
adshjoberr command to the job or job step.

1 Termination with an error
Fatal error occurred.

200 Termination with an error
Specification of the command line is wrong.

Notes
• If you execute the adshjoberr command as another process, an error might not be reported to the job and job

step of the calling script. Do not execute the adshjoberr command as another process.

• If you define and execute the adshjoberr command in the child job, an error is reported to the child job and the
job step in the child job, Error is not reported to the job or job step of the calling child job.

• If you execute the adshjoberr command within the action of the trap command, an error is reported to the job
if the execution timing is outside the job step and an error is reported to the job step if the execution timing is within
the job step.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 986

• If you define FUNCTION for the operand of the CMDRC_CMDGRP_CHECK parameter, the command in the function
is outside the target of error check. Therefore, the adshjoberr command specified in the function does not report
an error to the job and job step of the calling script. If you specify FUNCTION for the operand of the
CMDRC_CMDGRP_CHECK parameter, do not define the adshjoberr command in the function.

• You cannot define the adshjoberr command in an .env file or initialization script file.

Examples
If the file does not exist, forcibly terminate the job step with the return code 1.

Job definition script

#-adsh_job J01

#-adsh_step_start S01
 cmd1
 if [[! -a /tmp/tempfile]]; then
 echo "tempfile not found"
 adshjoberr 1
 fi
#-adsh_step_end

Results

******** JOB CONTROLLER MESSAGE ********
17:01:22 046276 KNAX0091-I J01 The job started.
17:01:22 046276 KNAX7901-I The job controller will wait for all asynchronous
processes at the end of the job.
17:01:22 046276 KNAX7902-I The job controller will run in tty stdin mode.
17:01:22 046276 KNAX0092-I J01.S01 step started.
17:01:22 046276 KNAX6116-I Execution of the command ./cmd1 (line=4) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
17:01:22 046276 KNAX6112-I Execution of the command [[(line=5) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
17:01:22 046276 KNAX6112-I Execution of the command echo (line=6) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
17:01:22 046276 KNAX6150-E An error was reported to "step". (exit status=1, line
7)
17:01:22 046276 KNAX6596-E J01.S01 step failed. exit status=1 execution
time=0.002s CPU time=0.000s
17:01:22 046276 KNAX0101-E J01 An error occurred during execution of the job.
17:01:22 046276 KNAX0098-I J01 The job ended. exit status=1 execution time=0.004s
CPU time=0.000s

9.4.6 adshmktemp command (creates a file for which the file name is not
duplicated)

Syntax

adshmktemp prefix

Description
This command creates a file with a name that is not duplicated and outputs the path name to the standard output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 987

The name of the path of the file to be created is follows:

Temporary-file-directory-path-name prefix_job-ID_process-ID_time-information_file-sequence-number

Temporary-file-directory-path-name
Path name of the directory defined with the TEMP_FILE_DIR parameter.

prefix
Prefix specified for argument.

job-ID
6-digit job ID in decimal. If the number of digits of the job ID is less than 6, add 0 at the beginning to make a 6-
digit ID.

process-ID
Process ID in decimal. If the number of digits of the job ID is less than 5, add 0 at the beginning to make a 5-digit
ID. If the number of digits is not less than 5, leave the value as it is.

time-information
Character string of numerical value representing time information in hexadecimal.

file-sequence-number
Sequence number of the file path name created in one process. A character string of 4-digit in decimal from 0001
to 4095.
You can create a file in one process until the file sequence number exceeds 4095.

In UNIX, for permission for the file to be created, only owner (creator) of a file is specified by the umask value and 0
is always set for access privilege of group and other users.

In Windows, permissions are not specified.

Arguments

prefix ~<any character string>((1 to 128 bytes))
Prefix specifies a character string to be provided at the beginning of the file name.

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
• If the created file path name exceeds the maximum number of bytes of the path name permitted by OS, the command

finishes with an error.

• If you specify the character string including the following characters for the prefix of argument, the command
terminates with an error.
In UNIX: "/"
In Windows: "/", "\" and ":"

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 988

• Do not specify the character that cannot be used as a path name for the prefix of argument. If these characters are
specified, creation of a file fails.

Examples

#If the default value is set for the TEMP_FILE_DIR parameter in the UNIX edition:
adshmktemp testjob
The following file is created and the path name is output to the standard output:
/var/opt/jp1as/temp/testjob_000150_12278_557539f8_0001

#If the default value is set for the TEMP_FILE_DIR parameter in the Windows edition:
adshmktemp testjob
The following file is created and the path name is output to the standard output:
E:\temp\testjob_000030_00826_55265a48_0002

Specify the file for the adshfile command and output the character string by using
the echo command.
#The adshfile command deletes the file when the job finishes.
tempfile=$(adshmktemp job1)
"${ADSH_DIR_BIN}adshfile" -n del -a del "$tempfile"
echo "OK" > "$tempfile"

9.4.7 adshparsecsv command (analyzing CSV data)

Syntax

adshparsecsv [-e] array-name

Description
This command is a command that is used with script development parts. We recommend using parts for making CSV
operation of script development parts when analyzing CSV data.

This command stores the CSV data that is loaded from the standard input in the two-dimensional array. Specifically,
this command stores data delimited by comma as the value of each element of two-dimensional array. The size of the
CSV data that can be input is 100KB or less. If you input data larger than 100KB, the execution time of the job may
become longer.

Examples of the correspondence between elements of CSV data and the two-dimensional array are as follows:

CSV data (data.csv)

name,value,id
"Yokohama",200,0001
"Kawasaki",100,0002

Correspondence between the two-dimensional array (array) and CSV data (data.csv)

array[0][0]=name
array[0][1]=value
array[0][2]=id
array[1][0]="Yokohama"
array[1][1]=200
array[1][2]=0001
array[2][0]="Kawasaki"

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 989

array[2][1]=100
array[2][2]=0002

Arguments

-e
This command interprets a double quotation mark included in the CSV data as a metacharacter.

array-name ~ <environment variable name>
This command specifies the name of array in which the data is stored.

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Example

CSV data(data.csv)
name,value,id
"Yokohama",200,0001
"Kawasaki",100,0002

Stores the CSV data in the two-dimensional array.
adshparsecsv array < data.csv
echo "${array[1][0]}" # "Yokohama" is output.
echo "${array[1][1]}" # "200" is output.

Interprets any double quotation marks included in the CSV data as metacharacters,
and stores them in the two-dimensional array.
adshparsecsv -e array < data.csv
echo "${array[1][0]}" # "Yokohama" is output.
echo "${array[1][1]}" # "200" is output.

9.4.8 adshparsejson command (analyzes JSON data)

Syntax

adshparsejson name

Description
This command is a command that is used with script development parts. We recommend using parts for making JSON
operation of script development parts when analyzing JSON data.

This command searches for a name from JSON data that is read from the standard input, and then outputs the value that
supports the fully matched name, using line breaks as delimiters.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 990

[Only for UNIX]
When inputting JSON data for encoding having a different value from the environment variable LANG of an
environment where JP1/Advanced Shell will operate, unified encoding can be operated while the adshparsejson
command is executed by setting a value for the shell variable ADSH_PARSER_LANG. Set a value that can be
specified for the environment variable LANG for the shell variable ADSH_PARSER_LANG. For example, if the
following condition is applied, execute the adshparsejson command after setting JA_JP.UTF-8 for the shell
variable ADSH_PARSER_LANG to unify and operate encoding.

• The value (Ja_JP) indicating SJIS is set for the environment variable LANG in AIX.

• Encoding inputs JSON data of UTF-8.

Arguments

name
This command specifies the name to be searched.

Return codes
Return code Meaning

0 Normal termination

1 Termination with an error

Notes
• If matching item is not found, the command terminates with an error.

• If the data having the same name is nested, output the value corresponding to the outermost name of data.
Examples: (test.json) : {"num":{"id":"0001","num":200}}
If the aforementioned data is searched by using num, {"id":"0001","num":200} is output. In this case, the value
(200) corresponding to the inner name of the data can be output by specifying the following:
adshparsejson num < test.json | adshparsejson num

Examples

JSON data (data.json)
{ "city": [
 { "name":"Yokohama", "id":"0001", "value":{ "A":200, "B":100 } },
 { "name":"Kawasaki", "id":"0002", "value":{ "A":100, "B":300 } }
]
}

adshparsejson name < data.json
The following message is output:
"Yokohama"
"Kawasaki"

adshparsejson value < data.json
The following message is output: (Output the nested data as it is)
{ "A":200, "B":100 }
{ "A":100, "B":300 }

adshparsejson B < data.json
The following message is output:
100
300

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 991

9.4.9 adshread command (issues a specified reply-request message as a
reply-waiting event)

Syntax

adshread [-d] variable-name reply-request-message

Description
This command issues a specified reply-request message as a reply-waiting event. The reply-waiting event that is issued
is displayed in JP1/IM - View, from where the operator can enter a reply. The reply that is entered is stored in the specified
variable.

If you are running the debugger with the standard input and output redirected to the user-reply functionality, the specified
reply-request message is output to the standard output and the reply is received from the standard input.

The JP1 event is issued after waiting for a fixed amount of time (specified in the USERREPLY_JP1EVENT_INTERVAL
parameter) to elapse since the last JP1 event was issued. For details about the USERREPLY_JP1EVENT_INTERVAL
parameter, see 7.3.51 USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1
events are to be issued) in 7. Parameters Specified in the Environment Files.

Arguments

-d
Specifies that during debugging, the I/O is to be redirected so that the output destination for the specified reply-
request message is the standard output and the reply is received from the standard input. This option is ignored
except during debugging.
A character string that begins with a hyphen (-) is treated as an option specification until a character string that
begins with a character other than a hyphen (-) is encountered. If an invalid option is specified, an option error
results.

variable-name ~<environment variable name>
Specifies a shell variable for storing the reply from the operator. Only one shell variable can be specified. If you
specify more than one shell variable, everything that is specified following the first shell variable will be interpreted
as part of the reply-request message.
The shell variable can accept an ASCII character string of 0-512 bytes.
When you run the debugger with the standard input and output redirected to the user-reply functionality, the portion
in excess of 512 bytes in a character string consisting of more than 512 bytes that is specified in the reply from the
standard input will be ignored. In addition, if a character string that contains a linefeed is specified, everything
following the linefeed will be ignored.
To specify an array in this argument, you must specify each element. You can specify the number of elements in a
one-dimensional array, in the range from 0 to 65,535 elements.
You can specify the number of elements in a two-dimensional array, in the range from 0 to 65,535 elements for each
element-number specification.

Examples:
Regular variable specification: adshread ans "Continue (Y/N)?"
Array specification: adshread ans[1] "Continue (Y/N)?"

The following table shows the execution result for this command, depending on the attributes of the specified shell
variable:

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 992

Attribute of the specified shell variable Execution result of the command

Read-only Outputs KNAX6008-E and terminates.

Type is numeric. Outputs KNAX7404-E and terminates.

Type is character string or an array of character
strings.

Updates the value and terminates.

Non-existent variable Creates a new variable of the character type, sets its value, and terminates.

Variable name is invalid. Outputs KNAX6003-E and terminates.

Variable is outside the permitted range of array
elements

Outputs KNAX6007-E and terminates.

reply-request-message ~<any character string>((0 to 1,023 bytes))
Specifies the reply-request message that is to be issued as a reply-waiting event.
The character encoding of the specified reply-request message must be consistent with the character encoding of
the JP1/Base running on the same host. If the character encodings are different, characters might become garbled.
The specified reply-request message is issued as a JP1 event after its contents are converted by the echo -E reply-
request-message command. If more than one reply request message is specified, an error results (KNAX7403-E).

Return codes
Return code Meaning Response Whether to retry

0 Normal termination None. --

1 One of the following non-
resumable errors occurred:
• Out of memory
• A variable that cannot be

used in variable-name was
detected

• Internal inconsistency
detected

If you have specified a variable that cannot be used as variable-
name, change the specification of the variable.
If this does not resolve the problem, contact a system
administrator.

N

2 Semaphore (Mutex):
• An error occurred in shared

memory operations.

Take action based on the information in the error message. See
12.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

N

3 There is no free space in shared
memory.

Check and revise if necessary the setting for the
USERREPLY_WAIT_MAXCOUNT parameter.

Y

4 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
12.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

Y

5 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
12.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

N

6 The JP1 event failed to be
transmitted to the specified host.

Check the following:
• JP1/Base is installed on the host where JP1/IM - Manager is

installed.
• The JP1/Base event service is running on the host where JP1/

IM - Manager is installed.
• A JP1/Base connection has been established between the host

where JP1/Advanced Shell is installed and the host where
JP1/IM - Manager is installed.

Y

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 993

Return code Meaning Response Whether to retry

7 The JP1/Base library cannot be
found.

Check if JP1/Base is installed on the host where JP1/Advanced
Shell is installed.
If JP1/Base is installed and this occurs anyway, re-install JP1/
Base.

N

8 The connection to the JP1/Base
event service on the local host
failed.

Check that the JP1/Base event service is running on the host
where JP1/Advanced Shell is installed.

Y

10 The specified format is invalid. Check the format of the command. N

128+ signal
number (UNIX
only)

The adshread command
received a signal and
terminated.

Confirm that the job received a signal and terminated. N

200 (Windows
only)

The adshread command was
forcibly terminated.

Confirm that the job was forcibly terminated. N

Legend:
Y: Retry
N: Do not retry
--: Not applicable

Notes
• Do not execute this command as another process. If you execute this command as other process, the flow control

(specified with the USERREPLY_JP1EVENT_INTERVAL parameter) does not function. In addition, reply from
the operator is not stored in the variable specified for the job that the adshread command is executed.

• Do not execute this command with a pipe specified.

• Do not specify processing that accepts a value and redirects it to this command.

• Do not execute this command in an environment without JP1/Base and JP1/IM, unless you are running the debugger
with standard input and output redirected to the user-reply functionality.
The following problems might occur during execution:

• If JP1/Base is not installed on the host running JP1/Advanced Shell, the command will terminate with an error.

• If the JP1/Base event service is not running on the host running JP1/Advanced Shell, the command will terminate
with an error.

• If JP1/Base or the JP1/Base event service is not running on the host specified in
HOSTNAME_JP1IM_MANAGER, the command will terminate with an error.

• Even if JP1/IM - Manager is not running on the host specified in HOSTNAME_JP1IM_MANAGER, the command
works and will successfully transmit a JP1 event once the event reaches the JP1/Base event service on the host
specified in HOSTNAME_JP1IM_MANAGER.

• If the user-reply functionality's management daemon service is not running, the command will terminate with
an error.

• If the command terminates with an error from which it is possible to retry the command, the command might succeed
when it is re-executed. Before re-executing the command, see the example job definition scripts in 3.8.5 How to
handle adshecho and adshread commands that terminate with an error for help in preparing the job definition script.

• If the adshread command is waiting for a reply-request message and you terminate the job suddenly in a manner
other than as described in 3.11.1 How to forcibly terminate jobs, the reply-request message will be left in shared
memory and the reply-waiting event might be retained in JP1/IM - View. In such a case, either use the adshchmsg

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 994

command's -d option to cancel the reply-waiting status for the reply-request message, or restart the user-reply
functionality's management daemon or service.

• Do not specify the adshread command to the action of the trap command if, in the TRAP_ACTION_SIGTERM
parameter, you specify TERM or, in the UNIX edition, you specify AUTO (and the job starts from JP1/AJS).

Example
• Output the reply-request message and determine the processing based on the reply from the operator.

adshread ans "Continue (Y/N)?"

if ["$ans" = "Y"] ; then
 echo "Continuing processing."
elif ["$ans" = "N"] ; then
 echo "Terminating processing."
 exit 1
else
 echo "Invalid reply entered. Terminating processing."
 exit 1

fi

9.4.10 adshscripttool command (supports creation of job definition
scripts) (Windows only)

Syntax

adshscripttool -fowner [-L]path-name
adshscripttool -fentry [-L]path-name
adshscripttool -fmode [-s {u|g|o|r|w|x}] mode
adshscripttool -exec {-m SIMPLE|MINIMUM}]
 {-r command-line|job-definition-script-file-path-name}
 [run-time-parameters]

Description
This command collects and outputs information in order to make it easy to create job definition scripts. The following
table describes the arguments that can be specified and their purposes:

Argument Execution content Purpose

-fowner Outputs the owner name of a file or folder. Use this argument when you want to acquire the owner name of a file
or folder in order to change the access privilege of the owner of the
file or folder.

-fentry Outputs a list of account names registered in the
ACL of a file or folder.

Use this argument when you want to change the execution of the
cacls or attrib command in the job definition script according
to the account information in the acquired ACL.

-fmode Parses the symbol or numeric value specified as the
mode for the chmod command, and outputs the
changes made to the permissions for owners,
groups, and other users as 9-digit character strings
so that they can be used easily in a job definition
script.

Use this argument when you want to change the execution of the
cacls or attrib command in the job definition script according
to the symbol or numeric value specified.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 995

Argument Execution content Purpose

-fmode When this argument is specified together with the
-s option, only the characters in the digits
corresponding to the ugorwx specification are
output out of the characters that would be output
when the -fmode option is specified.

Use this argument when you want to change the execution of the
cacls or attrib command in the job definition script according
to the symbol or numeric value specified.

-exec Executes the specified command line or job
definition script as a child job.

Use this argument when you want to execute the specified command
line or job definition script as a child job.

Arguments

-L
This command selects the location from which information is obtained.
If the file specified for the path name is a regular file, this command obtains the information of the specified file. If
the file specified for the path name is a symbolic link, the specification of the -L option is adopted.
If you the -L option has been specified, the information of the entity the symbolic link points to can be obtained.
If you the -L option has not been specified, the information of the symbolic link can be obtained.
If L0 has been specified for the ADSH_LINK_SUPPORT environment variable, the -L option cannot be used.

-fowner
Specifies that the owner name of a file or folder is to be output to the standard output.
The owner name is output in the format domain-or-computer-name\user-name or user-name format.
Even if you use the cacls command to define Creator Owner, it might not be mapped to the file or folder owner.
Before using the cacls command to specify an owner name, determine the owner name by executing the
adshscripttool command with this option specified.

-fentry
Specifies that a list of account names registered in the ACL of a file or folder, separated by semicolons (;), is to be
output to the standard output.
An account name is output in the format domain-or-computer-name\user-name or user-name.

path-name
Specifies the targeted file or folder.

-fmode
Specifies that the symbol or numeric value specified as the mode for the chmod command is to be parsed and that
the changes made to the permissions for owners, groups, and other users are to be output as a 9-digit character string.
If a numeric value is specified, a value corresponding to mode bit ON is set to R and a value corresponding to mode
bit OFF is set to D. If an error occurs, only E is output and processing terminates.
The following table explains the meaning of the character string that is output as the execution result of the
adshscripttool command when the -fmode option is specified:

Digit number counted from the left
side

Meaning

1 Owner's read permission

2 Owner's write permission

3 Owner's execute permission

4 Group's read permission

5 Group's write permission

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 996

Digit number counted from the left
side

Meaning

6 Group's execute permission

7 Other users' read permission

8 Other users' write permission

9 Other users' execute permission

The following values are set in the individual digits:

Value Meaning

A Addition ((+) was set).

D Deletion ((-) was set).

R Substitution ((=) or numeric value was set).

0 Not specified.

E The adshscripttool -fmode command terminated with an error.

-s[u|g|o|r|w|x]
Specifies one of the values listed below to indicate which of the digits specified when the -fmode option was
specified are to be output. You can specify one of these values when you specify the -fmode option.

• u
Corresponds to digits 1 to 3 of the output when the -fmode option was specified.

• g
Corresponds to digits 4 to 6 of the output when the -fmode option was specified.

• o
Corresponds to digits 7 to 9 of the output when the -fmode option was specified.

• r
Corresponds to digits 1, 4, and 7 of the output when the -fmode option was specified.

• w
Corresponds to digits 2, 5, and 8 of the output when the -fmode option was specified.

• x
Corresponds to digits 3, 6, and 9 of the output when the -fmode option was specified.

mode
Specifies an 8-digit numeric value or symbol. You can specify mode when you specify the -fmode option.

• Specifying a numeric value
Specify an octal number. If a non-octal number or a value that is greater than the octal value 07777 (4095 in
decimal) is specified, an error occurs.

• Specifying a symbol
Specify setting, addition, or deletion when nothing is specified (0 in the numeric value expression). The
specification result of the symbol is output as the result.
The table below shows what can be specified in a symbol. When specifying multiple items, separate them with
a comma (,).

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 997

Order in the
symbol

Value that can be specified

First Specifies the item for which access permissions are being set. Multiple items can be specified concurrently.
The items listed below can be specified. If the specification is omitted, All users is assumed.
- u: Owner
- g: Group
- o: Other
- a: All users

Second Specifies the mode's operation. Executes one of the following processes for the item specified by the first symbol:
- =: Sets access permission (overwriting).
- +: Adds access permission.
- -: Deletes access permission.
You use the third symbol to specify the value to be set, added, or deleted.
You can specify the second and third symbols following the third symbol. The third symbol can be omitted.

Third Specifies the access permission to be set. Multiple values can be specified concurrently. The following values can be
specified:
- r: Read
- w: Write
- x: Execute
If this symbol is omitted, the item for which access permission is to be set is erased. The erased value is set, added, or
deleted according to the second symbol. Addition or deletion alone does not change the value.
If s, t, u, g, or o is specified, it will be ignored.

-exec
Specifies that the command line specified in the -r option or the specified job definition script file is to be executed
as a child job.

-m {SIMPLE|MINIMUM}
Specifies the mode to be used to output to the standard output or the standard error output. You can specify this
option when the -exec option is specified.
For details about the simple output mode and the minimum output mode, see 3.4.4 Suppressing output of information
and warning messages to job execution logs.

• SIMPLE
Runs the child job in the simple output mode.

• MINIMUM
Runs the child job in the minimum output mode.

A sample script in the child job format is run in the minimum output mode. Therefore, if you use this command
within a sample script in the child job format, we recommend that you specify MINIMUM in the -m option.

-r command-line
Specifies what is to be executed by a job from the command line. You can specify this option when the -exec
option is specified.
The information specified in the -r option is not created as a job definition script file in the spool job directory.
Therefore, for the job definition script file name that is displayed, such as in messages, "-r CMDLINE" is displayed,
not the absolute path of the job definition script file.

Command line specification
You can specify on the command line any commands that can be described in a job definition script, such as
shell operation commands and UNIX-compatible commands. The following example specifies the pwd
command, which is a standard shell command:

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 998

adshscripttool -exec -m MINIMUM -r pwd

You can specify any contents that can be described in a job definition script file, such as multiple commands
separated by command separators. The following example specifies multiple commands on the command line:

adshscripttool -exec -m MINIMUM -r "export DATA=file01 ; pgm001"

If you specify a space on the command line, you must enclose the command line specification in single or double
quotation marks (' or "). Because metacharacters, such as $, *, and the semicolon (;), are expanded, depending
on the command-execution shell, you must enclose them in double quotation marks (") or use an escape character
(\).

Child job output information
If the -r option is specified, "-r CMDLINE" is output as the path name of the job definition script file in
message text and the job definition script operation information output by the job controller. The absolute path
of the job definition script file is not output.

Positional parameter storage information
If positional parameter $0 is specified for command-line in the -r option, adshexec is stored in $0.

Relationship to the SPOOLJOB_CHILDJOB parameter
Note the following when the command is executed with the -r option specified and MERGE is specified for the
SPOOLJOB_CHILDJOB parameter: The values listed below, instead of the absolute path for the job definition
script file, are output for the symbols that indicate the start and end of a child job's job execution logs to be output
to the root job's job execution logs. For details about the output format when MERGE is specified for the
SPOOLJOB_CHILDJOB parameter, see (3) Merging a child job's spool job into the root job's spool job.
- Symbol indicating the start of a child job's JOBLOG
>>>>>> [JOBLOG] "-r CMDLINE"
- Symbol indicating the end of a child job's JOBLOG
<<<<<< [JOBLOG] "-r CMDLINE"
- Symbol indicating the start of a child job's standard error output (for normal execution)
>>>>>> [STDERR] "-r CMDLINE"
- Symbol indicating the end of a child job's standard error output (for normal execution)
<<<<<< [STDERR] "-r CMDLINE"
- Symbol indicating the start of a child job's standard error output and standard output (for debugging)
>>>>>> [STDERR,STDOUT] "-r CMDLINE"
- Symbol indicating the end of a child job's standard error output and standard output (for debugging)
<<<<<< [STDERR,STDOUT] "-r CMDLINE"
"-r CMDLINE" is also displayed as the job definition script file name in the script image file.

job-definition-script-file-path-name ~ <path name>((1 to 247 bytes))
Specifies the path name of the job definition script file. You can specify a value when the -exec option is specified.

run-time-parameters ~<character string>((1 to 1,022 bytes)))
Specifies the values to be stored in the positional parameters of the command line or job definition script file that
is specified in the -r option. You can specify values when the -exec option is specified.
To include a space in a run-time parameter, enclose the character string in double quotation marks (").

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 999

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Examples
• The following shows a specification example of the -fowner option and the result that is output to the standard

output.
Contents of job definition script:

adshscripttool -fowner test.txt

Result that is output to the standard output:

MYPC\user1

• The following shows a specification example of the -fentry option and the result that is output to the standard
output.
Contents of job definition script:

adshscripttool -fentry test.txt

Result that is output to the standard output:

BUILTIN\Administrators;NT AUTHORITY\SYSTEM;MYPC\user1;BUILTIN\Users

• The following shows an example in which +w is specified in the -fmode option and the result that is output to the
standard output.
Contents of job definition script:

adshscripttool -fmode +w

Result that is output to the standard output:

0A00A00A0

• The following shows an example in which ug-r is specified in the -fmode option and the result that is output to
the standard output.
Contents of job definition script:

adshscripttool -fmode ug-r

Result that is output to the standard output:

D00D00000

• The following shows an example in which ug-w,u+w is specified in the -fmode option and the result that is
output to the standard output.
Contents of job definition script:

adshscripttool -fmode ug-w,u+w

Result that is output to the standard output:

0A00D0000

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1000

• The following shows an example in which 655 is specified in the -fmode option and the result that is output to
the standard output.
Contents of job definition script:

adshscripttool -fmode 655

Result that is output to the standard output:

RRDRDRRDR

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, +w is parsed with the -s w specification).
Contents of job definition script:

adshscripttool -fmode -s w +w

Result that is output to the standard output (the second, fifth, and eighth digits of the result 0A00A00A0 are output):

AAA

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, 655 is parsed with the -s r specification).
Contents of job definition script:

adshscripttool -fmode -s r 655

Result that is output to the standard output (the first, fourth, and seventh digits of the result RRDRDRRDR are output):

RRR

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, 655 is parsed with the -s uor specification).
Contents of job definition script:

adshscripttool -fmode -s uor 655

Result that is output to the standard output (the first and seventh digits of the result RRDRDRRDR are output):

RR

• The following shows an example in which a job definition script is specified to switch the execution of the cacls
command on the basis of the symbol parsing result:

username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of adshscripttool -
fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
modebit=`adshscripttool -fmode $mode` # Parses the mode. (mode=u+w)
case $modebit in # 0A0000000 is stored in modebit.
 "AA0000000") cacls "$1" /E /G $username:C ;;
 "0A0000000") cacls "$1" /E /G $username:W ;; # This cacls is executed.
 "E") echo "adshscripttool -fmode error." # Error processing of
adshscripttool -fmode
 return 1 ;;
esac

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1001

• The following shows an example in which a job definition script is specified to delete all ACEs, except for those of
the owner and Everyone:

IFS=\;
username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of adshscripttool -
fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
set -A entry `adshscripttool -fentry $1` # Acquires an account name list.
for i in "${entry[@]}"
do
 if ! [[$i == "$username" || $i == "Everyone"]]
 then
 cacls "$1" /E /R "$i" # Deletes all ACEs, except for those
of the owner and Everyone.
 fi
done

• The following shows an example in which a job definition script is specified to switch the execution of the cacls
command according only to the definition content for the owner out of the numeric value parsing results:

username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of adshscripttool -
fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
modebit=`adshscripttool -fmode -s u $mode` # Parses the mode.(mode=644)
case $modebit in # RRD------ is stored in modebit.
 "RRR") cacls "$1" /P $username:F ;;
 "RRD") cacls "$1" /P $username:C ;; # This cacls is executed.
 "RDD") cacls "$1" /P $username:R ;;
 "DRD") cacls "$1" /P $username:W ;;
 "E") echo "adshscripttool -fmode error." # Error processing of
adshscripttool -fmode
 return 1 ;;
esac

• The following shows an example of execution as a child job of the command line export DBPATH=C:\\HOME
\\DBUSER; start -q:

adshscripttool -exec -m MINIMUM -r 'export DBPATH=C:\\HOME\\DBUSER; start -q'

• The following shows an example in which the job definition script file ppstart.ash is executed as a child job:

adshscripttool -exec -m MINIMUM ppstart.ash

Notes
• When the -fowner and -fentry options are specified, the command must be executed by the owner of the

targeted file or folder. If this is not the case, the command might output an error message and terminate with an
error.

• The -L option cannot be specified before the -fowner option or the -fentry option. If the -L option has been specified
before the -fowner option or the -fentry option, a command analysis error will occur.

• You cannot specify the -s option before the -fmode option. If the -s option is specified before the -fmode option,
a command parsing error occurs.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1002

• If an internal conflict is detected, the shell being executed is terminated. When an error other than an internal conflict
is detected, processing of the shell being executed continues.

• If an error occurs while the security information of the ACEs is being viewed with the -fentry option specified,
only the account names of the ACEs that were viewed successfully are output and processing terminates with an
error.

• If a child job is executed with the -exec option specified, the command name that will be output to the job execution
log is a JP1/Advanced Shell command (adshexecsub command).

9.4.11 adshvarconv command (converts the value of a variable)

Syntax

adshvarconv [-o] -p shell-variable-name [shell-variable-name ...]
adshvarconv [-o] [-c] -b character-string-before-conversion
 [-a character-string-after-conversion]
 shell-variable-name [shell-variable-name ...]
adshvarconv [-o] -i increase-of-\ shell-variable-name [shell-variable-name ...]

[only for Windows]
adshvarconv [-o] [-u] -e encoding-before-conversion
 encoding-after-conversion
 shell-variable-name [shell-variable-name ...]

Description
This command converts the value of a variable according to the option.

Options Function

-p This command converts the shell variable value according to the path conversion setting.

-b, -a, -c This command converts the character-string-before-conversion into the character-string-after-
conversion for the shell variable value.

-i This command increases the number of \ in the shell variable value by the specified number.

-e, -u This command executes the code conversion of the shell variable value. [Only for Windows]

The description of the -o option is as follows:

-o option Output destination

Omitted This command updates the original shell variable value with the vale after conversion.

Specified This command outputs the value after conversion to the standard output without changing the original
shell variable value.

Arguments

-p
This command converts the value of the shell variable according to the path conversion setting
(PATH_CONV_ENABLE and PATH_CONV environment setting parameters). The path is converted when
executing the adshvarconv command. Therefore, when changing the value of the variable after executing the

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1003

command, the value is not automatically converted. The value is not automatically converted even when the changed
value is a value that matches the path conversion setting.
The behavior after converting the path is different from the conversion setting. The behavior of path conversion is
as follows:

Path conversion actions

Each path separated with the path separator specified by PATH_CONV_ENABLE is converted with the PATH_CONV environment setting
parameter.
Note: Although \\ is used as the separator symbol of Windows in the environment setting parameter, this command is converted by changing
the number of \ from 2 to 1.

If the path is converted with the PATH_CONV environment setting parameter, the path separator and directory separator are converted
into the separator of the corresponding OS.
Note: Although the separator symbol of Windows is converted into two backslashes (\\) by the normal path conversion functionality, the
symbol is converted into a single backslash (\) by conversion using this command.

This command will not do anything when the path conversion functionality is disabled.

-b character-string-before-conversion [-a character-string-after-conversion]
This command converts the character-string-before-conversion into the character-string-after-conversion for the
shell variable value. If you do not specify -a, character-string-before-conversion is deleted.
character-string-before-conversion ~ <Any character string>((1 to 256 bytes))
character-string-after-conversion ~ <Any character string>((1 to 256 bytes))

-c
This command executes conversion only when the path conversion functionality is available. This command will
not do anything when the path conversion functionality is disabled. The path is converted unconditionally if the -c
specification does not exist.

-i increase-of-\
This command increases the number of \ in the shell variable value by the specified number for each character. If
you specify -i 1 and the character string before conversion is abc\def\\ghi\\\jkl, the character string after conversion
becomes abc\\def\\\\ghi\\\\\\jkl.
increase-of-\ ~ <3-digit decimal number>((1 to 256))

-e encoding-before-conversion encoding-after-conversion [only for Windows]
Code conversion is executed for the value of the shell variable. variable-name

• encoding-before-conversion ~ {SJIS | UTF8}
SJIS: Indicates that encoding is Shift-JIS.
UTF8: Indicates that encoding is UTF-8.

• encoding-after-conversion ~ {SJIS | UTF8}
SJIS: Indicates that encoding is Shift-JIS.
UTF8: Indicates that encoding is UTF-8.

A validity check is not executed for the combination of the encoding before conversion and the encoding after
conversion.

-u
If there is a code that cannot be converted when executing code conversion, the code conversion will end in an error.
When the -u option is not specified, the process continues after converting the character that cannot be converted
into a "?".

-o
The value after conversion is output to the standard output. The shell variable value is not updated.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1004

When the -o option is specified, you cannot specify multiple shell variable names. You cannot specify multiple
elements with the array.
For options other than the -e option, the value of the variable before conversion is output to the standard output if
the -o option exists even if conversion is not executed.
If conversion cannot be executed with the -e option, the result is not output to the standard output even if the -o
option exists.

shell-variable-name ~ <Shell variable name>((1 to 256))
The shell variable that changes the value needs to be specified. For the upper limit of the length of the array, the
upper limit of the character string includes the specification of the argument.
You can specify the array in the following format:
The element number of the array can be specified from 0 to 65,535.

How to specify an array Description

array[n] nth element

array[@] All elements

array[*] All elements

array[] Same as array[0]

array[n][m] Element of line n and column m

array[n][@] All elements of the nth line

array[n][*] All elements of the nth line

array[n][] Same as array[n][0]

array[@][m] All elements of column m

array[@][@] All elements

array[@][*] All elements

array[@][] All elements

array[*][m] All elements of column m

array[*][@] All elements

array[*][*] All elements

array[*][] All elements

array[][m] Same as array[0][m]

array[][@] All elements

array[][*] All elements

array[][] Same as array[0][0]

Return codes
Return code Meaning

0 Normal termination

1 • There is a character that cannot be converted with -e. (When -u is specified)
• The variable has the read-only attribute.
• The variable has the integer-type attribute.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1005

Return code Meaning

1 • The variable name is not valid.
• The variable name has not been specified.
• -b does not exist while -a exists.
• The character string lengths of the character string before conversion and the character string after conversion

are not correct.
• The value is not specified for the option requiring a value.
• The combination of the options is wrong.
• Multiple variables have been specified when specifying the -o option.
• * or @ has been specified for the array element when specifying the -o option.
• The specification of encoding with -e is invalid.
• An invalid option has been specified.
• A necessary option has not been specified.
• An unexpected error has occurred.

Notes
• If the same variable is specified for multiple times, the variable is converted twice.

• If the specified element does not exist in the variable of the array, subsequent variables are processed without being
determined as an error.

• If the specified variable name does not exist, subsequent variables are processed without being determined as an
error.

• If the value is processed with the right-justified attribute when a variable is stored, the value processed by the attribute
is evaluated according to the conversion rule during the conversion according to the path conversion setting and the
value might not be converted.

• Note that the value after conversion might be processed depending on the attributes of the variable.
If the variable name is typeset-R10 (the area length is 10 characters with the right-justified format), truncation occurs
according to the specification if the value after conversion exceeds the area length. If the value is shorter than the
area length even after deleting the space characters at the beginning, one or more space characters are inserted at
the beginning.

Examples
• When the path of the parameter at the time of the start of the job definition script is specified and the path needs to

be converted according to the conversion rule of PATH_CONV.

• Environment setting parameters

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user001 "d:\\user001"

• Job definition script (sample.ash)

infile=$1
adshvarconv -p infile
"${ADSH_DIR_CMD}cat" ${infile}

• Examples

D:\user001>cat d:\user001\zzzz.txt
Data_zzzz.txt(d:\user001\zzzz.txt contents of file)

D:\user001>adshexec -m MINIMUM sample.ash /home/user001/zzzz.txt
Data_zzzz.txt(d:\user001\zzzz.txt contents of file)

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1006

• When converting the path included in the file with the value of the argument:

• Job definition script (sample.ash)

while read LINE
do
 adshvarconv -b "/home/user1" -a "$1" LINE
 adshvarconv -b "/" -a "\\" LINE
 echo -E "$LINE" >&2
done < input.txt

• input.txt

/home/user1/data001
/home/user1/data002

• Examples

D:\user001>adshexec -m MINIMUM sample.ash D:/home/winuser001
D:\home\winuser001\data001
D:\home\winuser001\data002

• When deleting the character string of \de from the input data:

• Job definition script (sample.ash)

echo -E 'abc\de\kkk' >test.txt
echo -E '123\de\kkk' >>test.txt
"${ADSH_DIR_CMD}cat" test.txt >&2
echo -E start_sed >&2
"${ADSH_DIR_CMD}cat" test.txt | "${ADSH_DIR_CMD}sed" -e 's/\de//' >&2
echo -E start_adshvarconv >&2
while read -r LINE
do
adshvarconv -o -b '\de' LINE >&2
done < test.txt

• Results

abc\de\kkk
123\de\kkk
start_sed
abc\\kkk
123\\kkk
start_adshvarconv
abc\kkk
123\kkk

As "\" in the character string specified for the pattern of the sed command is treated as an escape character, the
character string of \de cannot be deleted correctly.

• When increasing one \ when passing the path name to the awk command to prevent the \ from being deleted upon
processing of an escape letter.

• Job definition script (sample.ash)

aa=d:\\g1234z\\azzzz
echo -E 'hitachi' | "${ADSH_DIR_CMD}awk" -v VVV1=$aa '/hitachi/ { \
print "VVV1=" VVV1 ; \
}' >&2
adshvarconv -i 1 aa
echo -E 'hitachi' | "${ADSH_DIR_CMD}awk" -v VVV1=$aa '/hitachi/ { \
print "VVV1=" VVV1 ; \
}' >&2

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1007

• Examples

D:\user001>adshexec -m MINIMUM sample.ash
VVV1=d:g1234zzzzz
VVV1=d:\g1234z\azzzz

• When loading a file with read and converting the encoding from UTF-8 to Shift-JIS.

• Job definition script file (sample1.ash)

echo -E "--- before ---"
"${ADSH_DIR_CMD}ls" outdir
while read LINE
do
 "${ADSH_DIR_CMD}cp" $(adshvarconv -o -e UTF8 SJIS LINE) outdir
done < input.txt
echo -E "--- after ---"
"${ADSH_DIR_CMD}ls" outdir

• Input.txt file (UTF-8)

Tokyo.txt
Kyoto.txt

• Examples

D:\user001>adshexec -m MINIMUM sample.ash
--- before ---
--- after ---
Kyoto.txt Tokyo.txt

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1008

9.5 Extended script commands

The extended script commands begin with #-adsh_ and are used in job definition script files.

You use extended script commands to create files and assign them to environment variables, to perform postprocessing
of files after executing a job definition script or job step, and to declare the job name of a job definition script. In addition,
you can define job steps, control the execution of jobs, and call external scripts with extended script commands.

The return code of an extended script command can be changed with the ADSHCMD_RC_ERROR and
ADSHCMD_RC_SUCCESS environment setting parameters. However, the return code cannot be changed in the
following circumstances:

• Normal termination or error termination of a job step by the #-adsh_step_end command

• Normal termination by the #-adsh_script command

For details about the environment setting parameters, see 7. Parameters Specified in the Environment Files.

Do not execute the extended script command as another process.

9.5.1 #-adsh_file command (specifies assignment and postprocessing of
regular files)

Syntax

#-adsh_file file-environment-variable file-path
 [-chk {exist|no}]
 [-normal {del|keep}] [-abnormal {del|keep}]

Description
This command assigns a regular file, checks for the existence of a regular file, or specifies the postprocessing of a regular
file. A maximum of 4,095 regular files can be assigned.

For details about assigning and postprocessing regular files, as well as the functional differences from the adshfile
command, see 5.9.1 Allocating regular files and performing postprocessing.

The regular files assigned by this command are managed separately from those assigned by the adshfile command.
However, postprocessing is executed first for the regular files assigned by the adshfile command and then for the
regular files assigned by the #-adsh_file command. If the same file is assigned by both commands, it will be
postprocessed twice and an error might result.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
regular file you are assigning to it.
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1009

file-path
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 1,023 bytes))
Specifies the path of the regular file that is to be assigned.
If a relative path is specified, it is converted into an absolute path before the command is executed. Make sure that
the path length following conversion to an absolute path does not exceed the maximum permissible path length set
by the OS. If the maximum set by the OS is exceeded, an execution error will occur.

-chk{exist|no}
Specifies whether a check is to be conducted for the existence of the specified regular file. If this specification is
omitted, no is assumed.

• exist
Check for the existence of the file.

• no or not specified
Do not check for the existence of the file.

-normal{del|keep}
Specifies postprocessing that is to be performed when the applicable job or job step terminates normally. If this
specification is omitted, keep is assumed.

• del
After the applicable job or job step has completed, delete the assigned regular file.

• keep
After the applicable job or job step has completed, do not delete the assigned regular file.

-abnormal{del|keep}
Specifies postprocessing that is to be performed when the applicable job or job step terminates with an error. If this
specification is omitted, keep is assumed.

• del
After the applicable job or job step has completed, delete the assigned regular file.

• keep
After the applicable job or job step has completed, do not delete the assigned regular file.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1010

9.5.2 #-adsh_file_temp command (assigns and postprocesses a
temporary file)

Syntax

#-adsh_file_temp file-environment-variable [-id temporary-file-identifier]
 [-chk {create|exist}]
 [-normal {del|keep}]

Description
This command assigns a file to be used temporarily in a job definition script and specifies its postprocessing. A maximum
of 4,095 temporary files can be assigned. For details about how to use the #-adsh_file_temp command to create
temporary files, see 5.9.2 Allocating temporary files and performing postprocessing.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
temporary file you are assigning to it
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

-id temporary-file-identifier
~<symbolic name>((1 to 31 bytes))
Specifies an identifier for the temporary file, so that a temporary file created in a job step can be used in subsequent
job steps. This argument can be omitted if you will not be using the assigned temporary file in any subsequent job
step. This argument cannot be used to make assignments outside of the job's job steps.
The temporary file identifier must be unique among the temporary files that are created within the job. You cannot
specify an identifier that is already in use for a temporary file created in another job step. However, you can specify
the identifier of a file that was deleted during postprocessing in a previous job step.

-chk{create|exist}
Specifies whether to create a new temporary file or to assign an existing temporary file. If this specification is
omitted, create is assumed.

• create
Create a new temporary file. The job controller will generate a file name and create a file whose size is zero
bytes.

• exist
Assign an existing temporary file that was created in a previous job step. You cannot use this specification to
assign a file that was not created in a job step of the current job. When this option is specified, the id option
and a temporary file identifier must also be specified.

-normal{del|keep}
Specifies the post-processing that is to be performed on the temporary file. If this specification is omitted, del is
assumed.

• del
After the applicable job or job step has completed, delete the assigned temporary file.

• keep

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1011

After the applicable job step has completed, do not delete the assigned temporary file. The temporary file can
be used again subsequently only in the current job's job steps. When this option is specified, the id option and
a temporary file identifier must also be specified.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

9.5.3 #-adsh_job command (declares a name for a job)

Syntax

#-adsh_job job-name

Description
This command declares a name for the job in the job definition script. The declaration of the job name can be specified
on either the first or second line.

Argument

job-name
~<symbolic name>((1 to 31 bytes))
Specifies a name for the job, which will serve as one way to identify the job. The job name will appear in messages,
such as in the job execution log, and will also be used in file names created by the job controller.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

9.5.4 #-adsh_job_stop command (defines termination conditions for a
job)

Syntax

#-adsh_job_stop return-code-definition[,return-code-definition ...]

Description
This command defines conditions to be used to determine whether to terminate the job at the end of a job step. A
maximum of 1,023 job termination conditions can be specified.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1012

Arguments

return-code-definition[,return-code-definition]...
Specifies definitions for job step return codes that are to be used to determine whether to terminate the job.
Multiple return code definitions can be specified, delimited by the comma (,), in which case the job will be
terminated when any of the definitions is satisfied. You can specify a maximum of eight return code definitions.

return-code-definition
~<unsigned integer>((0 to 255))
- return-code
Terminate the job when the specified return code is returned.
- return-code-1:return-code-2
Terminate the job when the return code that is returned is in the range of the specified return codes, inclusive.
- return-code:
Terminate the job when the return code that is returned is equal to or greater than the specified return code.
- :return-code
Terminate the job when the return code that is returned is less than the specified return code.
- :
Do not terminate the job on the basis of the return code that is returned. A syntax error results if you use this
format while specifying multiple return code definitions.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• A parsing error results if this command is used in a job step.

• Once the job has terminated, no subsequent job definition scripts will be executed, regardless of the value of the
run attribute for the subsequent job steps.

9.5.5 #-adsh_path_var command (defines shell variables for handling
path names)

Syntax

#-adsh_path_var shell-variable-name[, ... shell-variable-name]

Description
This command defines shell variables for handling path names. This command is enabled when the
PATH_CONV_ENABLE parameter is defined in the environment file.

This specification is prioritized over the specification of the PATH_CONV_VAR parameter and PATH_CONV_NOVAR
parameter of environment file.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1013

The #-adsh_path_var command can be specified at the following locations only:

• The line after #!any-character-string on the first line

• The line after the #-adsh_job command

• The first line (continuation lines are allowed).

When a shell variable specified by this command is described at the beginning of a path name, the path and directory
separators in that path name as defined by the PATH_CONV_ENABLE parameter are converted to the path and directory
separators of the target OS.

A text whose leading part matches the shell variable specified in either of the following formats is treated as a path
name:

• $shell-variable-name

• ${shell-variable-name}

Variable names must match completely. If shell-variable-name has a suffix consisting of a letter or the underscore (_),
it will be evaluated as not to be a targeted shell variable and will not be converted.

After conversion, if the character string to be converted contains a path separator or directory separator defined by the
PATH_CONV_ENABLE parameter, that separator is converted according to the OS under which the job definition script
will be executed.

The conversion result depends on whether path conversion rule 1 or path conversion rule 2 was set by the
PATH_CONV_RULE parameter. For details about the path conversion rules, see 7.3.34 PATH_CONV_RULE parameter
(defines a rule for converting file paths) (Windows only). For conversion examples of job definition scripts, see 2.6.2 
Converting path names.

Arguments

shell-variable-name
~<environment variable name>((1 to 255 bytes))
Specifies the name of an environment variable that is to be used to define a shell variable for handling path names.
A maximum of 255 shell variables can be specified. To use the defined shell variable in a job definition script, is
must be specified as $shell-variable-name or ${shell-variable-name}.
For details about pre-defined shell variables and shell variable names that cannot be used, see 5.5 Shell variables.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• The conversions specified by this command are performed on a line-by-line basis. For this reason, if there is a

linefeed in a job definition script, the path name might not be converted correctly.
In the following example, $DIR1linefeed-code\\bar1\\... is specified in the job definition script, to be
converted based on path conversion rule 1 in Linux:

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1014

#-adsh_path_var DIR1,DIR2
echo foo > "$DIR1 Not converted because linefeed is entered within "".
\\bar1\\"$DIR2\\bar2"bar3" $DIR2\\bar2 is converted to $DIR2/bar2.

In the following example, $DIR1linefeed-code/bar1/... is specified in the job definition script, to be converted
based on path conversion rule 2 in Windows:

#-adsh_path_var DIR1,DIR2
echo foo > '$DIR1
/bar1/"$DIR2/bar2"bar3' $DIR2/bar2 is converted to $DIR2\\bar2.

• Character strings with comments are also subject to conversion.

• If DELETE is specified for the SPOOLJOB_CHILDJOB parameter, no script images are output in the case of job
definition scripts executed as child jobs. For this reason, if a job definition script executed as a child job is converted
based on a conversion rule defined by this command, the conversion results will not be output.

• The variable that is specified by the #-adsh_path_var command is not defined as the variable handling the path
in the different process. If you define the variable handling the path in the different process, specify the variable by
using the PATH_CONV_VAR parameter and the PATH_CONV_NOVAR parameter. [Only for Windows]

9.5.6 #-adsh_rc_ignore command (defines commands to always
terminate normally)

Syntax

#-adsh_rc_ignore command-name[,command-name ...]

Description
This command specifies commands that are always to terminate normally, regardless of the return code. The return code
set by such a command will not be used to evaluate the success or failure of the job step. A maximum of 1,023 #-
adsh_rc_ignore commands can be used to define commands that are to always terminate normally.

Note that if a specified command receives a signal and terminates, its termination will still be an error termination,
regardless of this specification. For details about the definition method, see (2) Defining commands that always
terminate normally.

During execution of a job definition script, this command becomes applicable at the location where it is specified. If
this command is specified outside of a job step, its definitions are applicable throughout the entire job definition script.
If this command is specified within a job step, its definitions are applicable within that job step only, beginning at the
point where it is specified through termination of the job step, during which period definitions specified outside the job
step are disabled (however, before the point where it is specified within the job step, the definitions specified outside
the job step are in effect).

Arguments

command-name [,command-name ...]
Specifies the commands that are to be defined to always terminate normally.
You can specify a maximum of 255 command names delimited by the comma (,).

• command-name
Windows: ~<path name>((1 to 247 bytes))

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1015

UNIX: ~<path name>((1 to 256 bytes))
Specifies a command's base name.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• A command must be specified by its base name. Do not use aliases or links within an applicable job step, because

the names you use in the applicable job steps must match the base names you used to define the commands in the
#-adsh_rc_ignore command.

• A maximum of 1,023 #-adsh_rc_ignore commands can be specified in a job definition script file.

• This command cannot be applied to an extended script command. The return code from an extended script command
is always 0 for normal termination and 1 for error termination, and the job cannot continue when it terminates with
an error.

• This command cannot be specified in a job step error block.

• When a batch job is interrupted and the KNAX6584-I message is output, the specification of this command will
not have been applied to the command that executed last.

• If a command that is specified in the #-adsh_rc_ignore command will be executed in the format described in
5.1.7 Execution as a separate process, you must specify in the #-adsh_rc_ignore command the base name of
the applicable command before character string substitutions have been applied.

• If you specify FUNCTION for the CMDRC_CMDGRP_CHECK parameter, the function can always be terminated
normally by specifying the function name for the command name for argument. When the
CMDRC_CMDGRP_CHECK parameter is not specified or NONE is specified for the CMDRC_CMDGRP_CHECK
parameter, the parameter is processed as the command name having the same name even when the function name
is specified for the command name of the argument.

Example
• Ignore the grep command's return code.

#-adsh_step_start STEP1
 #-adsh_rc_ignore grep
 UAP data|grep "TOTAL:"
#-adsh_step_end

9.5.7 #-adsh_script command (calls an external job definition script file
from the job definition script that is running)

Syntax

#-adsh_script job-definition-script-file-name

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1016

Description
This command inserts the contents of an external job definition script file at the time the job controller was launched
into the currently-running job definition script file. You can call a maximum of 4,095 external job definition script files
from a job definition script that is running. An external script that is called is unpacked within the job definition script
that contains the calling function. That job definition script is then parsed and executed as a single job definition script.

Arguments

job-definition-script-file-name
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 4,096 bytes))
Specifies the path of the job definition script file that to be deployed. If you specify a relative path, it is interpreted
relative to the current directory at the time the job controller was launched.

Return codes
Return code Meaning

Return code of the last command to terminate in the external script that was called Normal termination

1 Error termination

Note:
You cannot use an environment setting parameter to change the return code when the #-adsh_script command
terminates normally.
Whether the #-adsh_script command terminates normally or with an error depends on whether the external
job definition script file is inserted correctly. It does not depend on whether commands executed within the inserted
external job definition script file terminated normally or with errors.

Notes
• This command differs from the standard shell . (dot) command in the following respects.

• The . (dot) command executes the external script when the job definition script is executed. The #-
adsh_script command executes the external script when the job definition script is parsed. You must not
change the external script between the time the job definition script is parsed and the time it is executed.

• The . (dot) command treats any extended script commands in the external script as comments. The #-
adsh_script command is able to execute extended script commands contained in the external script.

• If you execute the #-adsh_script command from an external script executed by another #-adsh_script
command, do not call the same external script more than once.

• The contents of an external script called by the . (dot) command are not output to the script image. The contents
of an external script called by the #-adsh_script command are output to the script image.

• If you specify an external script with a path that is relative to the . (dot) command, it resolves the path with
reference to the value of the PATH environment variable. If you specify an external script with a path that is
relative to the #-adsh_script command, it is interpreted as a path relative to the current directory when
adshexec is started, without reference to the value of the PATH environment variable.

• There is no limit to the number of times the . (dot) command can be used in a job. The #-adsh_script
command can be used no more than 4,095 times in a job.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1017

• The . (dot) command allows you to specify arguments to the external script. The #-adsh_script command
does not allow you to specify arguments to the external script.

• Do not specify a file name that begins with . (dot).

• Do not use a reserved device name (such as CON, AUX, and NUL) as a file name. (Windows only)

• Do not use an NTFS stream as a file name. (Windows only)

• Normal termination of this command cannot be used to identify the termination status (normal or error) of the job
or job step. Refer instead to the execution results of the external script that was called.

9.5.8 #-adsh_spoolfile command (assigns a program output data file)

Syntax

#-adsh_spoolfile file-environment-variable

Description
This command assigns a program output data file. A maximum of 4,095 output files can be assigned. A maximum of
255 output files can be specified in a single job step or outside a job step. For details about the assignment method, see
5.9.3 Allocating program output data files and performing postprocessing.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
program output data file you are assigning to it.
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

Return codes
Return code Meaning

0 Normal termination

1 Error termination

Notes
• Do not create directories under the spool job directory by using the path name assigned by the #-
adsh_spoolfile command. If a directory is created under the spool job directory, an unexpected error might
occur, such as an error resulting from spool job deletion by the adshhk command.

• The #-adsh_spoolfile command cannot be used when the spool job creation suppression functionality is being
used. If the #-adsh_spoolfile command is used in such a case, the KNAX6385-E message is issued and the
command is terminated.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1018

9.5.9 #-adsh_step_start command, #-adsh_step_error command,
#-adsh_step_end command (defines a job step)

Syntax

#-adsh_step_start
 [job-step-name]
 [-successRC return-code-definition[,return-code-definition ...]]
 [-stepVar shell-variable-name[,shell-variable-name ...]]
 [-run {normal|abnormal|always}]
 [-onError {cont|stop}]

... processing in the job step... (job step normal block)

 [#-adsh_step_error]

 [... processing at the time of a job step error... (job step error block)]

#-adsh_step_end

Description
This command groups a portion of the job definition script into a job step. A job step is a set of commands assembled
into a group. A maximum of 4,095 job step definitions can be specified.

For details about how to use job steps, see 5.8.3 Defining job steps.

For details about determining whether the commands executed within job steps terminate normally or result in an error,
see 5.8.8 Return codes of jobs, job steps, and commands.

For details about handling errors in job steps, see 5.8.10 Processing in the event of an error during job execution.

Arguments

job-step-name
~<environment variable name>((1 to 31 bytes))
Specifies a name for the job step, which will serve as one way of identifying the job step. The specified job step
name will be displayed in messages, such as in the job execution log, and will also be used as part of file names
created by JP1/Advanced Shell.
Job step names can be duplicated within a job.

-successRCreturn-code-definition[,return-code-definition]...
Specifies definitions for the return codes from commands that execute in the job step normal block that will be
considered to signify normal termination of the command. If you specify multiple return code definitions delimited
by the comma (,), normal termination will be assumed if any of the definitions is satisfied.
If a command to be executed in the step normal block receives a signal and terminates, its termination will still be
regarded as an error termination, regardless of this specification. A command executed within a step normal block
might have returned a return code that does not match the return code of the command defined with the successRC
attribute. Nevertheless, if the command matches the command name specified by the #-adsh_rc_ignore
command, the specification by the #-adsh_rc_ignore command takes precedence regardless of the value
specified for the successRC attribute.

return-code-definition
~<unsigned integer>((0 to 255))

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1019

You can specify a maximum of eight return code definitions.
- return-code
Terminate normally when the return code that is returned matches the specified return code.
- return-code-1:return-code-2
Terminate normally when the return code that is returned is in the range of the specified return codes, inclusive.
- return-code:
Terminate normally when the return code that is returned is equal to or greater than the specified return code.
- :return-code
Terminate normally when the return code that is returned is less than the specified return code.

-stepVarshell-variable-name[,shell-variable-name ...]
Specifies shell variables that are to be valid only within the job step. You can specify a maximum of 32 shell variable
names delimited by the comma (,).

• shell-variable-name
~<environment variable name>((1 to 255 bytes))
Specifies the name of a shell variable that is to be valid only within the job step. You cannot specify names of
function information arrays or the ADSH_RC_EXTERNAL shell variable.

-run{normal|abnormal|always}
Specifies whether execution of the job step is to depend on the status of preceding job steps and commands in the
job definition script. If this specification is omitted, normal is assumed.

• normal
Execute the job step only if no earlier job step terminated with an error and no command in the previous portion
of the job definition script terminated with an error.

• abnormal
Execute the job step even if an earlier job step terminated with an error or a command in the previous portion
of the job definition script terminated with an error.

• always
Always execute the job step, regardless of the results of earlier job steps or the preceding portion of the job
definition script.

-onError{cont|stop}
Specifies whether branching to the job step error block is to occur when a command in the job step normal block
terminates with an error. When stop is specified, processing branches to the job step error block, and the subsequent
portion of the job definition script in the job step normal block is not executed. When cont is specified, branching
does not occur, and the subsequent portion of the job definition script in the job step normal block is executed. If
this specification is omitted, stop is assumed.

• cont
Execute the subsequent portion of the job definition script in the job step normal block.

• stop
Execute the portion of the job definition script in the job step error block, without executing the subsequent
portion of the job definition script in the job step normal block.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1020

Return codes

For #-adsh_step_start and #-adsh_step_error
Return code Meaning

0 Normal termination

1 Error termination

For #-adsh_step_end
Return code Meaning

Return code of the last command that executed in the job step
normal block

Job step terminated normally.

Job step terminated with an error.

Argument to the exit command Executed the exit command with an argument specified within the job step
error block and terminated.

1 #-adsh_step_end itself terminated with an error.

Note:
You cannot use an environment setting parameter to change the return code when a job step that contains the
#-adsh_step_end command terminates normally or when a job step terminates with an error.

Notes
• If you specify a job step within the block of a control statement (if, for, while, until, or case), you must

specify #-adsh_step_start through #-adsh_step_end within the same block; if you violate this rule, a
syntax error will occur before execution.

• Do not define a job step within the block of a for, while, or until statement. If there is an external script
expansion in such a block, the external script cannot include a job step. If it does, a pre-execution syntax error will
result.

• You can define a job step within the block of an if or case statement. However, you cannot then specify abnormal
or always in the run attribute.

• A job step cannot be defined inside another job step.

• If the command that executed last in a block terminates normally with a non-zero return code because of the
specification of the #-adsh_rc_ignore command, the return code for the job step might be non-zero even
though the job step terminates normally.
Job definition script

 #-adsh_rc_ignore cmdA
 #-adsh_step_start S1 -onError cont
 cmdA #rc=4 command
 cmdA #rc=4 command
 #-adsh_step_end

Execution log

 KNAX6117-I Execution of the command /home/hitachi/bin/cmdA (line=3) finished.
exit status=4 execution time=0.001s CPU time=0.000s
 KNAX6117-I Execution of the command /home/hitachi/bin/cmdA (line=4) finished.
exit status=4 execution time=0.001s CPU time=0.000s
 KNAX6597-I ADSH152257.S1 step succeeded. exit status=4 execution time=0.005s
CPU time=0.000s

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1021

• When a batch job is interrupted and the KNAX6584-I message is output, the successRC attribute will not have
been applied to the command that executed last.

• When you define a function in a job step normal block or job step error block, you can use the defined function even
if the job step is skipped using the run attribute.

• Error evaluation of function and commands in function and definition of successRC attribute according to the
CMDRC_CMDGRP_CHECK are as follows:

Specification of
CMDRC_CMDGRP_CHECK
parameter

Target Availability of
definition

Details

FUNCTION Function Y Error of the job step is evaluated based on the
return code and definition of the successRC
attribute of function.

Commands in the function N Error of the job step is not evaluated based on the
return code of the commands within the function
and the function is always considered to be
normally terminated. Therefore, commands in the
function are not included in the error evaluation
of the job step and definition of successRC
attribute.

NONE or no specification of
parameter

Function N Error of the job step is not evaluated based on the
return code of the function so that the function is
not included in the error evaluation of the job step
and definition of successRC attribute.

Commands in the function Y Error of the job step is evaluated based on the
return code and definition of the successRC
attribute of the commands within the function.

Legend:
Y: The value of the return code that evaluates that the target is normally terminated with the successRC attribute
can be defined.
N: The value of the return code that evaluates that the target is normally terminated with the successRC
attribute cannot be defined.

Examples
• An error results if #-adsh_step_start is specified within the block of an if control statement and the

corresponding #-adsh_step_end is specified outside the block.

if [[$a = $b]]; then
 #-adsh_step_start S1
fi
 #-adsh_step_end

• An error results if you define a job step in the block of a while control statement.

while [[$a = $b]] do
 #-adsh_step_start S1
 #-adsh_step_end
done

• Define a job step in the block of an if control statement.

if [[$a = $b]]; then
 #-adsh_step_start S1

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1022

 #-adsh_step_end
fi

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1023

9.6 Script control statements

Script control statements are used in job definition scripts.

A job definition script uses the results of conditional expressions in the control statements to determine the processing
that is to be executed. You can specify any number of spaces or tab characters (including none) before the reserved
words and processing instructions that constitute the control statements.

9.6.1 case statement (chooses from multiple processing paths)

Syntax

case expression in
 pattern-1)processing-a
 ;;
 pattern-2)processing-b
 ;;
 ...
 *)processing-x
 ;;
esac

Summary
This control statement determines the processing to be executed, based on finding a match with a specified character
string (expression).

Description
The in keyword indicates the beginning of the types of processing defined in the case statement, and esac indicates
the end of the case statement. When the specified expression matches a specified pattern, the processing described
between the right parenthesis ()) and the double semicolons (;;) is executed. Multiple patterns can be specified, with
the double semicolons (;;) serving as the delimiter between patterns. The pattern specified as an asterisk (*) is for the
default processing when no match is detected with any of the other patterns. The matching of expression to the patterns
is conducted in the order in which the patterns are specified. If expression matches multiple patterns, the processing
prescribed for the first match is executed.

You can specify a left curly bracket ({) instead of in, and you can specify a right curly bracket (}) instead of esac. If
you use in, you must also use esac; if you use {, you must also use }. If these specifications are not paired in this
way, the syntax will be invalid and the control statement will terminate with an error.

A regular expression with wildcards can be specified in pattern.

Examples
• The ;; indicating the end of a pattern can be specified on the same line as the processing.

case $cnt in
 0)
 echo "cnt is ZERO" ;;
 *)
 echo "cnt is not ZERO" ;;
esac

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1024

• If the last command in a pattern is an extended script command, add a linefeed to prevent ;; from being interpreted
as an argument of the extended script command.

case $cnt in
 0)
 #-adsh_step_start STEP01
 echo "cnt is ZERO"
 #-adsh_step_end ;; <--Error. Specify linefeed before ;;.
 *)
 #-adsh_step_start STEP01
 echo "cnt is not ZERO"
 #-adsh_step_end
 ;;
esac

9.6.2 for statement (repeats the same processing)

Syntax 1

for variable [in wordlists]
do
 processing
done

Syntax 2

for variable [in wordlists];do
 processing
done

Summary
This control statement repeats the same processing while incrementing a value.

Description
This statement begins with for, followed by do, and ends with done. The number of times the loop is executed is
determined by the number of elements in wordlists. The processing described between do and done is executed while
variable is successively assigned to each element of wordlists, starting from the left. After all the elements of wordlists
have been assigned, the for statement terminates.

The elements of wordlists are delimited by a whitespace and identified as element-1 element-2 ...element-n.

When a variable is specified in wordlists, even if the value of the specified variable changes between do and done, the
value assigned to the variable in the for statement remains unchanged.

If $@ is specified for wordlists, the arguments to the job definition script are used as the values of wordlists. Omitting
in wordlists is the same as specifying $@ for wordlists (in $@).

You can specify a left curly bracket ({) instead of do, and you can specify a right curly bracket (}) instead of done.
If you use do, you must also use done; if you use {, you must also use }. If these specifications are not paired in this
way, the syntax will be invalid and the control statement will terminate with an error.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1025

If you specify a semicolon (;) immediately after wordlists, you can continue specifying the statement on the same line.

Example
• Iterate through three values, displaying each in turn.

for num in 1 2 3
do
 echo "num is $num"
done

9.6.3 if statement (branches conditionally)

Syntax 1

if condition-1
then
 processing-a
 [elif condition-2
then
 processing-b]
 [else
 processing-c]
fi

Syntax 2

if condition-1;then
 processing-a
 [elif condition-2; then
 processing-b]
 [else
 processing-c]
fi

Summary
This control statement controls branching based on whether the result of a specified condition is true (0) or false (non-
zero).

Description
This statement begins with if and ends with fi. A condition can be any command or a group of commands combined
by using operators such as &&, ||, (), and { }. If the return code from the command or the command group is 0,
execution proceeds to the then clause; if the return code is non-zero, execution proceeds to the else or elif clause.

The elif and else clauses can be omitted, while then and fi must always be specified. Multiple elif clauses
can be specified. If the statement is missing any of if, then, or fi, the syntax is invalid and the statement will terminate
with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1026

Example
• Display the result of comparing a value to 3.

if [[$num -eq 3]]
then
 echo "num = 3"
elif [[$num -lt 3]]
then
 echo "num < 3"
else
 echo "num > 3"
fi

9.6.4 until statement (loops until a condition is true)

Syntax 1

until condition
do
 processing
done

Syntax 2

until condition;do
 processing
done

Summary
This control statement executes specified processing repeatedly until a specified condition becomes true.

Description
This statement begins with until, followed by do, and ends with done. A condition can be any command or a group
of commands combined using operators such as &&, ||, (), and { }. The processing described between do and
done is performed repeatedly until the return code from executing the command or the command group specified as
the condition becomes 0. To exit from the until statement, there must be a change created by the processing described
between do and done such that the condition becomes satisfied. If the condition is already satisfied when the until
statement begins, the statement terminates without executing the specified processing.

do and done cannot be omitted. Without a matching pair of do and done, the syntax is invalid and the statement will
terminate with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

Example
• Display numbers in a loop from 0 until the value 10 is reached.

num=0
until [[$num -eq 10]]
do

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1027

 echo "num is $num"
 ((num+=1))
done

9.6.5 while statement (loops while a condition is true)

Syntax 1

while condition
do
 processing
done

Syntax 2

while condition;do
 processing
done

Summary
This control statement executes specified processing repeatedly as long as a specified condition is true.

Description
This statement begins with while, followed by do, and ends with done. A condition can be any command or a group
of commands combined using operators such as &&, ||, (), and { }. The processing described between do and
done is performed repeatedly as long as the return code from executing the command or the command group specified
as the condition is 0. To exit from the while statement, there must be a change created by the processing described
between do and done such that the condition ceases to be true.

do and done cannot be omitted. Without a matching pair of do and done, the syntax is invalid and the statement will
terminate with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

Example
• Repeat display while the value of num is in the range of 0 to 9:

num=0
while [[$num -ne 10]]
do
 echo "num is $num"
 ((num+=1))
done

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1028

9.7 Reserved script commands

The reserved script commands can be used as reserved words in job definition scripts.

9.7.1 time command (displays the time used to execute a command)

Syntax

time [-p] [command]

Description
This command outputs to the standard error output the amount of time it took to execute a command.

Specifies the command whose execution time is to be output to the standard error output. If command is omitted, the
shell's execution time is output. The output formats are as follows.

• When command is specified

command-name command-execution-time command-name user-CPU-time command-name
system-CPU-time

In Windows, the CPU times of grandchild processes are not included in the command's user CPU time and system
CPU time.

• When command is omitted

user-CPU-time-of-shell# system-CPU-time-of-shell#

#: Includes CPU time of processes launched from the shell.
In Windows, the CPU times of grandchild processes are not included in the shell's user CPU time and system CPU
time.

Arguments

-p
Specifies that the amounts of execution time, user CPU time, and system CPU time are to be output, each on a
separate line.

command
Specifies the name of the command whose execution time and CPU time are to be output.

Return codes
Return code Meaning

Return code of the specified command:
0 when no command is specified.

Normal termination

Notes
• The results of the time command cannot be redirected to a file other than the standard error output.

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1029

• The execution results of this command are not output to the job execution log. Note also that this command does
not identify whether the job or job step terminated normally or with an error. Refer instead to the execution time
that was output to the standard error output and to the execution results of the command that was called.

Example
• Output a command's execution time and CPU time.

Contents of the job definition script

time date

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Thu Jul 7 11:06:38 JST 2011

Contents of the STDERR file of the execution job

******** JOB SCOPE STDERR ********
 0.01s real 0.00s user 0.00s system

9. Job Definition Script Commands and Control Statements

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1030

This section explains the description formats and details of the script development parts.

10 Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1031

10.1 Description format of script development parts

The description format of script development parts is as follows:

∆0Part-name [∆1option]...[∆1option][∆1operand]

• First specify options, and then specify operands. Operands includes option names, option values, and any arguments
that can be specified in the command. If an operand is specified before an option, the command assumes that all
items specified are operands.

• Specify an option in the format -option-name [∆1-value]. Multiple options can be specified in any order.

• Options with no value can be specified consecutively (example: -a -b -c and -abc are treated as being the same). If
you specify options consecutively, you can specify a value for the last option (example: in -abc xyz, xyz is the value
of the -c option).

• If an invalid option is specified or a specified value is outside the permitted range of values, an error results.

Multibyte characters cannot be used for names of options.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1032

10.2 List of script development parts

A list of script development parts is shown in the following table.

Table 10-1: List of script development parts

Classification Parts name Function overview

Variable action getArrayIndex This command gets an index based on the value of array

isEmptyVar This command determines null characters of variables

isInitVar This command determines initialization of variable

sortArray This command sorts data of array

Action of character string deleteSpace This command obtains the character string that blank is deleted

getStrLen This command gets the number of characters of character string

getStrPos This command gets the position of character string

isLowerStr This command determines half-width lowercase character of the
character string

isUpperStr This command determines half-width uppercase character of the
character string

Operation of numerical value isNumericStr This command determines numerical value.

Operation of date cmpDate This command compares date.

getCalcDate This command gets the calculated date.

getDate This command gets the current date.

getDateDiff This command gets the number of elapsed days.

getDay This command gets day from date.

getHour This command gets hour from time.

getMinute This command gets minute from time.

getMonth This command gets month from date.

getSecond This command gets second from time.

getTime This command gets the current time.

getWeekday This command gets weekday from date.

getYear This command gets year from date.

isLeapYear This command determines leap years.

File directory action getFileMTime This command gets date and time of file.

getFileSize This command gets size of file.

isDir This command determines existence of directory.

isEmptyDir This command determines existence of contents of directory.

isFileOrDir This command determines existence of file directory.

isNormalFile This command determines existence of regular file.

CSV action arrayToCsv This command outputs a value of two-dimensional array to CSV data

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1033

Classification Parts name Function overview

CSV action convCsvSep This command converts the delimiter of CSV data.

csvToArray This command stores CSV data in the two-dimensional array.

getCsvColumn This command gets column in consideration of blank line of CSV data.

searchCsvColumn This command gets a record with the search for specific column of CSV
data.

JSON action getJsonValue This command gets the value corresponding to the name of JSON data.

XML action getXmlAttrValue This command gets the attribute value of elements of XML data.

getXmlDecl This command gets the XML declaration

getXmlElem This command gets contents of elements of XML data

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1034

10.3 Script development parts

Script development parts are job definition scripts in the function format provided by JP1/Advanced Shell. General-
purpose processes for such as the acquisition of a character string where blanks have been deleted, acquisition of the
date and the number of days elapsed, and acquisition of the file size can be brought up as a function.

Script development parts are stored in the following location:

For the execution environment of Windows:

• Installation-folder\JP1ASE\parts\en

• Installation-folder\JP1ASE\parts\ja

For the development environment of Windows:

• Installation-folder\JP1ASD\parts\en

• Installation-folder\JP1ASD\parts\ja

For the execution environment of UNIX:

• /opt/jp1as/parts/en

• /opt/jp1as/parts/ja

Comments in English are included in the script development parts in the en directory. Comments in Japanese are included
in the script development parts in the ja directory. Only the comments are different as the functions are the same.

The encoding of the files of the provided script development parts is as follows:

Table 10-2: Encoding of the files of the script development parts

OS Encoding

Linux UTF-8

AIX

HP-UX

Solaris

Windows SJIS

For detailed procedures for using these script development parts, see 2.6.22 Preparation for using script development
parts.

Behavior when script development parts are modified cannot be guaranteed.

10.3.1 getArrayIndex (gets an index based on the value of array)

Syntax

getArrayIndex [-d element-number] array-name character-string

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1035

Description
This command searches for the character string from the array specified for argument and returns the index of the first
fully matched array. This command searches for elements from the 0th element in the array sequentially.

Arguments

-d element-number
This command searches for the character string from the two-dimensional array corresponding to the specified
element number.

array-name
Specify the name of array from which index is obtained.

character-string
This command specifies the character string to be searched.

Output to the standard output
Character string that indicates index.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching character string is not found, the command terminates with an error.

• A value ranging from 0 to 65535 can be specified for the element-number of argument, but whether the character
string can be specified is not verified.

• Do not specify an array name starting with "adsh" for the array-name argument. If you specify such an array name,
it might conflict with the name of another variable used within the part and produce invalid output.

• The character string that can be specified for array-name is the same as character string that can be used as variable
name. However, whether the character string can be specified is not verified.

Examples

set -A input Tokyo Yokohama Fukuoka Nagoya
getArrayIndex input Tokyo # "0" is output.
getArrayIndex input Yokohama # "1" is output.

set -D input { Osaka Fukuoka Nagoya } { Tokyo Yokohama Chiba }
getArrayIndex -d 0 input Osaka # "0" is output.
getArrayIndex -d 1 input Chiba # "2" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1036

10.3.2 isEmptyVar (evaluates to a null variable)

Syntax

isEmptyVar variable-name

Description
This command evaluates whether a value of variable is substituted for variable.

If either of the following conditions is met, 1 is output:

• Variable is not defined

• A variable is not substituted in variable

• A blank character string is substituted in variable

This command outputs 0.

• A variable with not less than one character is substituted in variable

Arguments

variable-name
This command specifies a variable name to be determined.
If you specify the array, specify the array including element number (example: array[1]).

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• Do not specify a variable name starting with "adsh" for the variable-name argument. If you specify such a variable

name, it might conflict with the name of another variable used within the part and produce invalid output.

• The character string that can be specified for variable-name is the same as character string that can be used as variable
name. However, whether the character string can be specified is not verified.

Examples

typeset var1
isEmptyVar var1 # "1" is output.
var1=""
isEmptyVar var1 # "1" is output.
var1=100
isEmptyVar var1 # "0" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1037

#If variable var1 is null, return 1.
result=$(isEmptyVar var1)
if [[$result -eq 1]]; then
 return 1
fi

10.3.3 isInitVar (evaluates initialization of variable)

Syntax

isInitVar variable-name

Description
This command evaluates whether a value is substituted for variable.

If either of the following conditions is met, 1 is output:

• A blank character string is substituted in variable

• A variable with not less than one character is substituted in variable

If either of the following conditions is met, 0 is output:

• Variable is not defined

• A variable is not substituted in variable

Arguments

variable-name
This command specifies a variable name to be determined.
If you specify the array, specify the array including element number (example: array[1]).

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• Do not specify a variable name starting with "adsh" for the variable-name argument. If you specify such a variable

name, it might conflict with the name of another variable used within the part and produce invalid output.

• The character string that can be specified for variable-name is the same as character string that can be used as variable
name. However, whether the character string can be specified is not verified.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1038

Examples

typeset var1
isInitVar var1 # "0" is output.
var1=""
isInitVar var1 # "1" is output.
var1=100
isInitVar var1 # "1" is output.

If variable var1 is not initialized, return 1.
result=$(isInitVar var1)
if [[$result -eq 0]]; then
 return 1
fi

10.3.4 sortArray (sorts array data)

Syntax

sortArray [-d element-number] [-n] [-r] array-name-1 array-name-2

Description
This command sorts the value of the array specified for argument. Characters contained in the value are case-sensitive.

Arguments

-d element-number
This command sorts the value of two-dimensional array corresponding to the specified element number. To sort
values of all two-dimensional array elements, specify "@" for the element number. If you specify "@", the values of
elements in each array corresponding to the first element number of two-dimensional array are sorted. For example,
if the two-dimensional array is 2 x 3, sort a value of elements among array[0][0], array[0][1] and
array[0][2] and sort a value of elements among array[1][0], array[1][1] and array[1][2].
If you do not specify this option, interpret the array as one-dimensional array and sort the array.

-n
This command interprets the leading value character string as numerical values and sorts values.

-r
This command specifies sorting in descending order.
If you specify this option, the default is sorting in ascending order.

array-name-1
This command specifies the array names to be sorted.

array-name-2
This command specifies the name of array in which sorted data is stored.

Output to the standard output
None

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1039

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If values in the array to be sorted contain line breaks, arrays are not sorted correctly.

• If the arrays to be sorted have elements that do not have any value, the element is deleted and arrays are sorted.

• Although you can specify "@" or a value ranging from 0 to 65535 for the element number of argument, but whether
the character string can be specified is not verified.

• Do not specify an array name starting with "adsh" for the array-name 1 or array-name 2 argument. If you specify
such an array name, it might conflict with the name of another variable used within the part and produce invalid
output.

• The character string that can be specified for array-name-1 and array-name-2 are the same as character string that
can be used as variable name. However, whether the character string can be specified is not checked.

Examples

set -A input Tokyo Yokohama Fukuoka Nagoya
sortArray input output
echo "${output[@]}" # "Fukuoka Nagoya Tokyo Yokohama" is output.

set -A input Tokyo Yokohama Fukuoka Nagoya
sortArray -r input output
echo "${output[@]}" # "Yokohama Tokyo Nagoya Fukuoka" is output.

set -A input -- -3 70 -50 8 100
sortArray -n input output
echo "${output[@]}" # "-50 -3 8 70 100" is output.

set -D input { Osaka Fukuoka Nagoya } { Tokyo Yokohama Chiba }
sortArray -d 1 input output
echo "${output[0][@]}" # "Osaka Fukuoka Nagoya" is output.
echo "${output[1][@]}" # "Chiba Tokyo Yokohama" is output.

set -D input { Osaka Fukuoka Nagoya } { Tokyo Yokohama Chiba }
sortArray -d @ input output
echo "${output[0][@]}" # "Fukuoka Nagoya Osaka" is output.
echo "${output[1][@]}" # "Chiba Tokyo Yokohama" is output.

10.3.5 deleteSpace (gets the character string without space)

Syntax

deleteSpace [-a] [-l] [-r] character-string

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1040

Description
This command outputs the character string that space is deleted from the character string specified for argument. Space
is the character indicated with the regular expression [:space:]. Space includes half-width space and tab.

Arguments

-a
This command deletes all spaces included in the character string.

-l
This command deletes only the space at the beginning of the character string.

-r
This command deletes only the space at the end of the character string.

If you do not specify any options, spaces at the beginning and end of the character string are deleted. This is the same
behavior as when -l option and -r option are specified.

-If you specify the -a option with other option at the time, the -a option is prioritized.

character-string
This command specifies the character string from which space is deleted.

Output to the standard output
Character string that space is deleted.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

deleteSpace " ab cd " # "ab cd" is output.
deleteSpace -l " ab cd " # "ab cd " is output.
deleteSpace -r " ab cd " # " ab cd" is output.
deleteSpace -a " ab cd " # "abcd" is output.

10.3.6 getStrLen (gets the number of characters of character string)

Syntax

getStrLen character-string

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1041

Description
This command outputs the number of characters of the character string that is specified for argument. A line break
included in the character string is interpreted as a single character.

Arguments

character-string
This command specifies the character string from which the number of characters is obtained.

Output to the standard output
Character string indicating the number of characters.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

getStrLen abcdefg # "7" is output.

10.3.7 getStrPos (gets the position of character string)

Syntax

getStrPos character-string-1 character-string-2 [search-start-position]

Description
This command searches for the character string from the array specified for argument and outputs the position that is
fully matched first (number of characters from the beginning to the position). This command outputs 0 if no character
string is found.

The position from which search starts can be specified. If the search for the start position is omitted, search is started
from the beginning of the character string assuming that the search start position is 1.

Arguments

character-string-1
This command specifies the character string that position is obtained.

character-string-2
This command specifies the character string to be searched.

search-start-position
This command specifies the position from which the search starts.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1042

Output to the standard output
Character string indicating the number of characters.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
A value of not less than 1 can be specified for the search start position of argument, but whether the character string can
be specified is not verified.

Examples

getStrPos abcdefg c # "3" is output.
getStrPos abcdefg cd # "3" is output.
getStrPos abcdabcd c 2 # "3" is output. (Position of c that appears at the second
letter or later)
getStrPos abcdabcd c 4 # "7" is output. (Position of c that appears at the fourth
letter or later)
getStrPos abcdabcd cd # "3" is output.
getStrPos ABCDabcd cd # "7" is output.
getStrPos ab\tcd \t # "3" is output.

10.3.8 isLowerStr (evaluates half-width lowercase character of the
character string)

Syntax

isLowerStr character-string

Description
This command evaluates whether all character string specified for argument consists of half-width lowercase characters.

This command outputs 1 in the following cases:

• All characters are half-width lowercase characters

This command outputs 0.

• Character string contains a letter that is not a half-width lowercase character

Arguments

character-string
This command specifies the character string to be evaluated.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1043

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

isLowerStr abc # "1" is output.
isLowerStr ABC # "0" is output.
isLowerStr aBc # "0" is output.

Character string contains a letter that is not a half-width lowercase character,
return 1.
result=$(isLowerStr "$var1")
if [[$result -eq 0]]; then
 return 1
fi

10.3.9 isUpperStr (verifies half-width uppercase character of the
character string)

Syntax

isUpperStr character-string

Description
This command evaluates whether all character strings specified for argument consists of half-width uppercase characters.

This command outputs 1 in the following cases:

• All characters are half-width uppercase characters

This command outputs 0.

• Character string contains a letter that is not a half-width uppercase character

Arguments

character-string
This command specifies the character string to be evaluated.

Output to the standard output
1 or 0.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1044

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

isUpperStr ABC # "1" is output.
isUpperStr abc # "0" is output.
isUpperStr AbC # "0" is output.

Character string contains a letter that is not a half-width uppercase character,
return 1.
result=$(isUpperStr "$var1")
if [[$result -eq 0]]; then
 return 1
fi

10.3.10 isNumericStr (evaluates numeric characters)

Syntax

isNumericStr character-string

Description
This command evaluates whether the character string specified for the argument can be evaluated as numeric characters.

Numeric characters have the following syntax (example: 123, -100, 001).

[-]<Numeric characters>+

This command outputs 1 in the following cases:

• The character string can be evaluated as numeric characters

This command outputs 0.

• The character string cannot be evaluated as numeric characters

Arguments

character-string
This command specifies the character string to be evaluated.

Output to the standard output
1 or 0.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1045

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

isNumericStr 123 # "1" is output.
isNumericStr -100 # "1" is output.
isNumericStr 001 # "1" is output.
isNumericStr +5 # "0" is output.
isNumericStr abc # "0" is output.

If the value of the variable var1 cannot be evaluated, return 1.
result=$(isNumericStr "$var1")
if [[$result -eq 0]]; then
 return 1
fi

10.3.11 cmpDate (compares date)

Syntax

cmpDate date1 {eq|ne|ge|gt|le|lt} date2

Description
This command compares 2 days specified for arguments.

This command outputs 1 in the following cases:

• Comparison result of date is true.

This command outputs 0.

• Comparison result of date is false.

Arguments

date1
This command specifies the character string indicating date.

date2
This command specifies the character string indicating date.

Syntax of date with absolute date in the date command can be specified for date (Example: yyyy/mm/dd, yyyy-mm-
dd, yyyymmdd, mm/dd/yyyy).

eq
This command determines that date 1 is equal to date 2.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1046

ne
This command determines that date 1 is not equal to date 2.

ge
This command determines that date 1 is not less than date 2.

gt
This command determines that date 1 is larger than date 2.

le
This command determines that date 1 is not greater than date 2.

lt
This command determines that date 1 is less than date 2.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for date1 and date2 is the same as that of the date format based on
absolute date with the date command, whether the character string can be specified is not verified.

Examples

cmpDate 2016/05/02 eq 2016/05/02 # "1" is output.
cmpDate 2016/05/02 ne 2016/05/02 # "0" is output.
cmpDate 20160505 ge 20160502 # "1" is output.
cmpDate 20160101 gt 20160502 # "0" is output.
cmpDate 20160505 le 20160502 # "0" is output.
cmpDate 20160101 lt 20160502 # "1" is output.

If the date indicated by the variable date1 is different from the date indicated
by date2, return 1.
result=$(cmpDate "$date1" ne "$date2")
if [[$result -eq 1]]; then
 return 1
fi

10.3.12 getCalcDate (gets the calculated date)

Syntax

getCalcDate date [+|-]number-of-years [+|-]number-of-months [+|-]number-of-days

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1047

Description
This command outputs the date calculated by calculating number-of-years, number-of-months, number-of-days
specified for argument to date specified for argument in the format yyyy/mm/dd.

Arguments

date
This command specifies the character string indicating date.

number-of-years
Specify a value not less than 0 that indicates number of years.

number-of-months
Specify a value not less than 0 that indicates number of months.

number-of-days
Specify a value not less than 0 indicating number of days.

Syntax of date can be specified with absolute date in the date command to date (Example: yyyy/mm/dd, yyyy-mm-
dd, yyyymmdd, mm/dd/yyyy).

Output to the standard output
Character string that indicates the calculated date.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If the date exceeds the last day of the month after calculating the number of days and number of months, the excess

is added to the next month and output.
For example, if you specify "2015/03/31 0 -1 0" for argument, 3 days exceeded from the last day "February 28,
2015" is added to the next month and "2015/03/03" is output.

• Although the character string that can be specified for date of argument is the same as that of the date format based
on absolute date with the date command, whether the character string can be specified is not verified.

• A value of not less than 0 can be specified for number of years, number of months and number of days for argument,
but whether the character string can be specified is not verified.

Examples

getCalcDate 2016/05/02 +1 -4 18 # "2017/01/20" is output.
getCalcDate 2016/05/02 0 -6 0 # "2015/11/02" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1048

10.3.13 getDate (gets the current date)

Syntax

getDate

Description
This command outputs the current date in the format yyyy/mm/dd.

Output to the standard output
The character string that indicates the current date.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

getDate # "2015/04/23" is output.

10.3.14 getDateDiff (gets the number of elapsed days)

Syntax

getDateDiff [-m|-y] date1 date2

Arguments

-m
This command outputs the difference of days in units of month.
For example, if date1 is May 10, 2016 and date2 is June 10, 2016, 1 is output. If date1 is May 10, 2016 and date2
is June 9, 2016, 0 is output.

-y
This command outputs the difference of days in units of date.
For example, if date1 is 5/10/2015 and date2 is 5/10/2016, 1 is output. If date1 is 5/10/2015 and date2 is 4/10/2016,
0 is output.
For a leap year, 366 days are interpreted as one year. For years other than a leap year, 365 days are interpreted as
one year.

If any of the aforementioned options is not specified, difference of days is output in units of days. If both of the
aforementioned options are specified, the command finishes with an error.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1049

date1
This command specifies the character string indicating date.

date2
This command specifies the character string indicating date.

Syntax of date can be specified with absolute date in the date command to date (Example: yyyy/mm/dd, yyyy-mm-dd,
yyyymmdd, mm/dd/yyyy).

Output to the standard output
Character string indicating the difference of date.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for date1 and date2 is the same as that of the date format based on
absolute date with the date command, whether the character string can be specified is not verified.

Examples

getDateDiff 2016/05/10 2016/06/10 # "31" is output.
getDateDiff -m 2016/05/10 2016/08/20 # "3" is output.
getDateDiff -y 2016/05/10 2018/06/10 # "2" is output.

Output the difference between the current date and the date indicated by variable
date 1.
getDateDiff $("${ADSH_DIR_CMD}date" +%Y%m%d) "$date1"

10.3.15 getDay (gets day from date)

Syntax

getDay [date]

Description
This command outputs the day of date specified for argument with 2-digit character (numeric characters) from 01 to
31. If the argument is omitted, the current date is assumed.

Arguments

date
This command specifies the character string indicating date.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1050

Syntax of date can be specified with absolute date in the date command to date (Example: yyyy/mm/dd, yyyy-mm-
dd, yyyymmdd, mm/dd/yyyy).

Output to the standard output
2-digit character string indicating day (numeric characters)

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for date is the same as that of the date format based on absolute date
with the date command, whether the character string can be specified is not verified.

Examples

getDay 2016/05/02 # "02" is output.

10.3.16 getHour (gets hour from time)

Syntax

getHour [time]

Description
This command outputs the hour of the time specified for the argument with a 2-digit character string (numerics) from
00 to 23. If this argument is omitted, the current time is assumed.

Arguments

time
This command specifies the character string indicating the time.
The syntax of the time with an absolute date in the date command can be specified for time (Example: hh:mm:ss,
hhmm).

Output to the standard output
2-digit character string that indicates the hour (numerics)

Return codes
Return code Meaning

0 Normal termination

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1051

Return code Meaning

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for the time is the same as that of the date format based on the absolute
date with the date command, whether the character string can be specified will not be verified.

Example

getHour 15:20:01 # "15" is output.

10.3.17 getMinute (gets minute from time)

Syntax

getMinute [time]

Description
This command outputs the minute of time specified for argument with 2-digit character (numeric characters) from 00
to 59. If this argument is omitted, the current time is assumed.

Arguments

time
This command specifies the character string that indicates time.

Syntax of time with absolute date in the date command can be specified for time (Example: hh:mm:ss, hhmm).

Output to the standard output
2-digit character string that indicates minute (numeric characters)

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for time is the same as that of the time format based on absolute date
with the date command, whether the character string can be specified is not verified.

Examples

getMinute15:20:01 # "20" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1052

10.3.18 getMonth (gets month from date)

Syntax

getMonth [date]

Description
This command outputs the month of the date specified for argument with 2-digit character string (numeric characters).
If the argument is omitted, the current date is assumed.

Arguments

date
This command specifies the character string indicating date.

You can specify a date by using an absolute date in the same syntax as when using the date command (examples:
yyyy/mm/dd, yyyy-mm-dd, yyyymmdd, mm/dd/yyyy).

Output to the standard output
2-digit character string indicating month (numeric characters)

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character strings that can be specified for the date are absolute dates as specified in the same syntax as
when using the date command, whether the character string is specifiable is not verified.

Examples

getMonth 2016/05/02 # "05" is output.

10.3.19 getSecond (gets second from time)

Syntax

getSecond [time]

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1053

Description
This command outputs the second of the time specified for argument with 2-digit character string (numeric characters).
Range of numeric characters varies depending on OS due to difference of support for leap second. If this argument is
omitted, the current time is assumed.

Arguments

time
This command specifies the character string that indicates time.

You can specify a time by using an absolute time in the same syntax as when using the date command (examples:
hh:mm:ss, hhmm).

Output to the standard output
2-digit character string that indicates seconds (numeric characters)

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for time is the same as that of the date format based on absolute date
with the date command, whether the character string can be specified is not verified.

Examples

getSecond 15:20:01 # "01" is output.

10.3.20 getTime (gets the current time)

Syntax

getTime

Description
This command outputs the current time in the format hh:mm:ss.

Output to the standard output
The character string that indicates the current time.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1054

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

getTime # "09:20:50" is output.

10.3.21 getWeekday (gets weekday from date)

Syntax

getWeekday [-l|-s] [date]

Description
This command outputs the day of date specified for argument with a character (numeric characters) or character string.
If date of argument is omitted, the current date is assumed.

Arguments

-l
This command outputs the character string indicating the official name of date.

-s
This command outputs the character string indicating the abbreviation name of date.

If any of the aforementioned options is not specified, one digit character from 0 (Sunday) to 6 (Saturday) is output. If
both of the aforementioned options are specified, the command finishes with an error.

Contents of each output follow behaviors of the date command in parts.

date
This command specifies the character string indicating date.

Format of date with absolute date in the date command can be specified for date(Example: yyyy/mm/dd, yyyy-mm-
dd, yyyymmdd, mm/dd/yyyy).

Output to the standard output
One-digit character (numeric characters) that indicates date or character string that indicates date.

Return codes
Return code Meaning

0 Normal termination

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1055

Return code Meaning

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for date is the same as that of the date format based on absolute date
with the date command, whether the character string can be specified is not verified.

Examples

getWeekday 2016/05/02 # "1" is output.
getWeekday -l 2016/05/02 # "Monday" is output.
getWeekday -s 2016/05/02 # "Mon" is output.

10.3.22 getYear (gets year from date)

Syntax

getYear [date]

Description
This command outputs the year of the date specified for argument with 4-digit character string (numeric characters). If
the argument is omitted, the current date is assumed.

Arguments

date
This command specifies the character string indicating date.
Syntax of date can be specified with absolute date in the date command to date (Example: yyyy/mm/dd, yyyy-
mm-dd, yyyymmdd, mm/dd/yyyy).

Output to the standard output
4-digit character string indicating hour (year).

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
Although the character string that can be specified for date is the same as that of the date format based on absolute date
with the date command, whether the character string can be specified is not verified.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1056

Examples

getYear 2016/05/02 # "2016" is output.

10.3.23 isLeapYear (evaluates to a leap year)

Syntax

isLeapYear year

Description
This command evaluates whether the year specified for the argument is a leap year.

This command outputs 1 in the following cases:

• This year is a leap year.

This command outputs 0.

• This year is not a leap year.

Arguments

year
This command specifies the character string indicating year.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
A value of more than 0 can be specified for year of argument, but whether the character string can be specified is not
verified.

Examples

isLeapYear 2016 # "1" is output.
isLeapYear 2015 # "0" is output.

#: If the value of variable var1 is a leap year, execute UAP1.
result=$(isLeapYear "$var1")
if [[$result -eq 1]]; then

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1057

 UAP1
fi

10.3.24 getFileMTime (gets date and time of file and directory)

Syntax

getFileMTime [-d] [-t] path-name

Description
This command outputs the modification date and modification time of the file or directory specified for argument.
Modification date is output in the format yyyy/mm/dd. Modification time is output in the format hh:mm:ss.

Arguments

-d
This command outputs the update date.

-t
This command outputs the update time.

If any of the aforementioned options is not specified or both of the aforementioned options are specified, modification
time and modification time are output with one line by using the space delimiter.

path-name
This option specifies the path name of the file or directory from which update date and update time are obtained.

Output to the standard output
This command outputs the modification date and modification time of the file or directory.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

getFileMTime log.txt # "2015/04/23 09:20:50" is output.
getFileMTime -d log.txt # "2015/04/23" is output.
getFileMTime -t log.txt # "09:20:50" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1058

10.3.25 getFileSize (gets size of file)

Syntax

getFileSize [-k|-m] path-name

Description
This command outputs the size of the file specified for argument.

Arguments

-k
This command outputs the size in kilobytes (1 kilobyte = 1024 bytes).

-m
This command outputs the size in megabytes (1 megabyte = 1048576 bytes).

If you do not specify any of the aforementioned options, the size is output in units of bytes. If both of the aforementioned
options are specified, the command finishes with an error.

This command outputs the size by truncating at the decimal point.

path-name
This command specifies the path name of the file from which size is obtained.

Output to the standard output
Character string indicating the size of file.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
In Windows, 0 is always output for the size of the directory.

In UNIX, 0 is always output for the size of device file.

Examples

getFileSize log.txt # "1279571" is output.
getFileSize -k log.txt # "1250" is output.
getFileSize -m log.txt # "2" is output.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1059

10.3.26 isDir (evaluates existence of directory)

Syntax

isDir directory-path-name

Description
This command evaluates whether the file specified for argument exists. File is not considered not to be directory.

This command outputs 1 in the following cases:

• Directory exists.

This command outputs 0.

• Directory does not exist.

Arguments

directory-path-name
This command specifies the path name of the directory to be evaluated.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

If the directory test exists and directory prog does not exist:
isDir test # "1" is output.
isDir prog # "0" is output.

If the directory dir1 does not exist, create dir1.
result=$(isDir dir1)
if [[$result -eq 0]]; then
 mkdir dir1
fi

10.3.27 isEmptyDir (evaluates existence of contents of directory)

Syntax

isEmptyDir directory-path-name

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1060

Description
This command verifies whether the file specified for argument is empty.

This command outputs 1 in the following cases:

• Directory is empty.

If either of the following conditions is met, 0 is output:

• The directory is not empty.

• Directory does not exist.

Arguments

directory-path-name
This command specifies the path name of the directory to be evaluated.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

If a file exists in the directory test and nothing exists in the directory tmp:
isEmptyDir test # "0" is output.
isEmptyDir tmp # "1" is output.

If the directory dir1 is empty, delete dir1.
result=$(isEmptyDir dir1)
if [[$result -eq 1]]; then
 rmdir dir1
fi

10.3.28 isFileOrDir (evaluates existence of File Directory)

Syntax

isFileOrDir path-name

Description
This command evaluates whether the file or directory specified for argument exists.

This command outputs 1 in the following cases:

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1061

• File or directory exists.

This command outputs 0.

• Neither file nor directory exists.

Arguments

path-name
This command specifies the path name of the file or directory to be evaluated.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

If the file log.txt exists and the file tmp.txt does not exist:
isFileOrDir log.txt # "1" is output.
isFileOrDir tmp.txt # "0" is output.

If the directory test exists and directory prog does not exist:
isFileOrDir test # "1" is output.
isFileOrDir prog # "0" is output.

If file/directory entry1 does not exist, return 1.
result=$(isFileOrDir entry1)
if [[$result -eq 0]]; then
 return 1
fi

10.3.29 isNormalFile (evaluates existence of a regular file)

Syntax

isNormalFile file-path-name

Description
This command verifies whether the regular file specified for argument exists. Directory is not considered not to be file.

This command outputs 1 in the following cases:

• The regular file exists.

This command outputs 0.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1062

• The regular file does not exist.

Arguments

file-path-name
This command specifies the path name of the file to be evaluated.

Output to the standard output
1 or 0.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

If the regular file log.txt exists and the regular file tmp.txt does not exist:
isNormalFile log.txt # "1" is output.
isNormalFile tmp.txt # "0" is output.

If the directory test exists and directory prog does not exist:
isNormalFile test # "0" is output.
isNormalFile prog # "0" is output.

If the regular file file1 does not exist, create file1.
result=$(isNormalFile file1)
if [[$result -eq 0]]; then
 touch file1
fi

10.3.30 arrayToCsv (outputs a value of two-dimensional array to CSV
data)

Syntax

arrayToCsv [-i] array-name

Description
This command outputs the two-dimensional array data specified for argument as CSV data. Each field of CSV data is
enclosed with double quotation marks. Examples of support of two-dimensional array data and contents of output are
as follows:

Data of two-dimensional array (array)

array[0][0]=name
array[0][1]=value
array[0][2]=id

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1063

array[1][0]=Yokohama
array[1][1]=200
array[1][2]=1
array[2][0]=Kawasaki
array[2][1]=100
array[2][2]=2

Contents if data of two-dimensional array (array) is output

"name","value","id"
"Yokohama","200","1"
"Kawasaki","100","2"

If a double quotation mark is included in data of two-dimensional array, increase one double quotation mark before
outputting data.

Example:

Data of two-dimensional array Data to be output

a"b"c "a""b""c"

Arguments

-i
If the field value is numerical value, no double quotation mark is provided when data is output.
Numerical values have the following syntax. Example: 123, -100, 001
[-]<Numeric characters>+

array-name
This command specifies a name of two-dimensional array that outputs data.

Output to the standard output
Two-dimensional array data in the CSV format.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• Do not specify an array name starting with "adsh" for the array-name argument. If you specify such an array name,

it might conflict with the name of another variable used within the part and produce invalid output.

• The character string that can be specified for array-name is the same as character string that can be used as variable
name. However, whether the character string can be specified is not verified.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1064

Examples

set -D array { name value id } { Yokohama 200 1 } { Kawasaki 100 2 }
arrayToCsv array
The following contents are output:
"name","value","id"
"Yokohama","200","1"
"Kawasaki","100","2"

set -D array { name value id } { Yokohama 200 1 } { Kawasaki 100 2 }
arrayToCsv -i array
The following contents are output:
"name","value","id"
"Yokohama",200,1
"Kawasaki",100,2

10.3.31 convCsvSep (converts the delimiter of CSV data)

Syntax

convCsvSep delimiter [file-path-name]

Description
This command converts the delimiter of the CSV file specified for argument into another delimiter.

Arguments

delimiter
This command specifies the delimiter of destination.

file-path-name
This command specifies the path of the CSV file. If you do not specify the file path name, input from the standard
input.
The size of CSV data that can be input is 100KB or less. If you input data larger than 100KB, the execution time of
the job may become longer.

Output to the standard output
CSV data after converting the delimiter.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Examples

CSV data (data.csv)
name,value,id
Yokohama,200,1

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1065

Kawasaki,100,2

convCsvSep : data.csv
The following message is output:
name:value:id
Yokohama:200:1
Kawasaki:100:2

10.3.32 csvToArray (stores the two-dimensional array of CSV data)

Syntax

csvToArray array-name [file-path-name]

Description
This command stores data of the CSV file specified for argument in the two-dimensional array. Specifically, this
command stores data delimited by comma as the value of each element of two-dimensional array. Example of support
of elements of CSV data and two-dimensional array is as follows:

CSV data(data.csv)
name,value,id
Yokohama,200,1
Kawasaki,100,2

support of elements of two-dimensional array(array) and CSV data (data.csv)
array[0][0]=name
array[0][1]=value
array[0][2]=id
array[1][0]=Yokohama
array[1][1]=200
array[1][2]=1
array[2][0]=Kawasaki
array[2][1]=100
array[2][2]=2

The double quotation marks that enclose the field of the CSV data are deleted and the file is stored. The double quotation
marks described consecutively in the field are interpreted as one double quotation mark and the file is stored.

Example:

CSV data Data stored in the two-dimensional array

"abc" abc

"a""b""c" a"b"c

Arguments

array-name
This command specifies the name of array in which data is stored.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1066

file-path-name
This command specifies the path of the CSV file. If you do not specify the file path name, input from the standard
input.
The size of CSV data that can be input is 100KB or less. If you input data larger than 100KB, the execution time of
the job may become longer.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• Do not specify an array name starting with "adsh" for the array-name argument. If you specify such an array name,

it might conflict with the name of another variable used within the part and produce invalid output.

• The character string that can be specified for array-name is the same as character string that can be used as variable
name. However, whether the character string can be specified is not verified.

Examples

CSV data(data.csv)
name,value,id
Yokohama,200,1
Kawasaki,100,2

Stores data of the CSV file in the two-dimensional array.
csvToArray array data.csv
echo "${array[1][0]}" # "Yokohama" is output.
echo "${array[1][1]}" # "200" is output.

Stores the data that the first line is deleted from the CSV file in two-
dimensional array.
"${ADSH_DIR_CMD}awk" '{if(FNR!=1){print $0}}' data.csv | csvToArray array
echo "${array[0][0]}" # "Yokohama" is output.
echo "${array[0][1]}" # "200" is output.

10.3.33 getCsvColumn (gets a column in consideration of blank line of
CSV data)

Syntax

getCsvColumn [-c column] [-d] [file-path-name]

Description
This command outputs the column of the CSV file specified for the argument.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1067

Arguments

-c column
This command outputs the data of the specified column. Specify a value not less than 1 for column. If this option
is not specified, data for all column is output.

-d
Delete a blank line and outputs data.

file-path-name
This command specifies the path of the CSV file. If you do not specify the file path name, input from the standard
input.
The size of CSV data that can be input is 100KB or less. If you input data larger than 100KB, the execution time of
the job may become longer.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
A value of more than 1 can be specified for column of argument, but whether the character string can be specified is
not verified.

Examples

CSV data(data.csv)
name,value,id

Yokohama,200,1
Kawasaki,100,2

Outputs data at the first column.
getCsvColumn -c 1 data.csv
#The following contents are output:
name

Yokohama
Kawasaki

#Outputs data that the blank line is deleted from the first column.
getCsvColumn -c 1 -d data.csv
The following contents are output:
name
Yokohama
Kawasaki

Outputs data that the blank line is deleted from the first line.
"${ADSH_DIR_CMD}awk" '{if(FNR!=1){print $0}}' data.csv | getCsvColumn -d
Outputs the following contents:
Yokohama,200,1
Kawasaki,100,2

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1068

10.3.34 searchCsvColumn (gets a record with the search for specific
column of CSV data)

Syntax

searchCsvColumn column character-string [file-path-name]

Description
This command searches for the value of field from the CSV file specified for argument and outputs all record containing
the matched field.

Arguments

column
This command searches for data for the specified column. If the matched field exists, the command outputs the
record containing the filed. Specify a value not less than 1 for the column.

character-string
This command specifies the field value to be searched. The extended regular expression can be used. To search for
data enclosed with double quotation marks, you need to specify the double quotation mark by escaping \.

file-path-name
This command specifies the path of the CSV file. If you do not specify the file path name, input from the standard
input.
The size of CSV data that can be input is 100KB or less. If you input data larger than 100KB, the execution time of
the job may become longer.

Output to the standard output
CSV data record.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching field is not found, the command terminates with an error.

• A value of more than 1 can be specified for column of argument, but whether the character string can be specified
is not verified.

Examples

CSV data(data.csv)
name,value,id
"Yokohama",200,100
"Kawasaki",100,200
"Tokyo",200,300

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1069

searchCsvColumn 2 200 data.csv
The following contents are output:
"Yokohama",200,100
"Tokyo",200,300

searchCsvColumn 1 \"Kawasaki\" data.csv
The following contents are output:
"Kawasaki",100,200

searchCsvColumn 3 1.* data.csv
The following contents are output:
"Yokohama",200,100

10.3.35 getJsonValue (gets a value corresponding to the name of JSON
data)

Syntax

getJsonValue [-e character-encoding] name [file-path-name]

Description
This command searches for element name from the XML file specified for argument and outputs values for all fully
matched names.

Arguments

-e character-encoding
Windows edition

Specifies the character encoding for JSON file. "SJIS" or "UTF8" can be specified. If you do not specify this
option, the character encoding is treated as UTF8.

UNIX edition
This command specifies the character encoding for JSON file in the format of value of the environment variable
LANG. For values that can be specified, see 2.2.4 Encoding used in JP1/Advanced Shell.
If you do not specify this option, assume that the character encoding is specified in the format of the value of
the LANG environment variable in the environment where JP1/Advanced Shell operates.
For example, if the JSON file with the character encoding UTF-8 in AIX is treated, specify "JA_JP" or
"JA_JP.UTF-8" for -e option.

name
This command specifies the name to be searched.

file-path-name
This command specifies the path of JSON file. If you do not specify the file path name, input from the standard
input.

Output to the standard output
Value that corresponds to JSON data.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1070

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching name is not found, the command terminates with an error.

• If the data having the same name is nested, output the value corresponding to the outermost name of data.
Examples: (test.json) : {"num":{"id":"0001","num":200}}
If the aforementioned data is searched by using num, {"id":"0001","num":200} is output. In this case, the value
(200) corresponding to the inner name of the data can be output by specifying the following:
getJsonValue num test.json | getJsonValue num

• This part creates a temporary file by using the adshmktemp command. Therefore, the temporary file might remain
when the command receives a forced termination request while the part is being executed. In this case, delete the
temporary file manually. Temporary file is created in the directory defined with the TEMP_FILE_DIR parameter
of the temporary file according to the following naming rule:

getJsonValue_job-ID_process-ID_time-information_file-sequence-number

Examples

JSON data (data.json)
{ "city": [
 { "name":"Yokohama", "id":"0001", "value":{ "A":200, "B":100 } },
 { "name":"Kawasaki", "id":"0002", "value":{ "A":100, "B":300 } }
]
}

getJsonValue name data.json
The following contents are output:
"Yokohama"
"Kawasaki"

getJsonValue -e SJIS value data.json
The following contents are output:
{ "A":200, "B":100 }
{ "A":100, "B":300 }

10.3.36 getXmlAttrValue (obtains an attribute value of elements of XML
data)

Syntax

getXmlAttrValue [-e character-encoding] element-name attribute-name [file-path-
name]

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1071

Description
This command searches for element name from the XML file specified for argument and outputs all fully matched
attribute values. Output is performed after deleting line breaks contained in attribute values.

Arguments

-e character-encoding
Windows edition

This command specifies the character encoding for XML files. "SJS" or "UTF8" can be specified. If you do not
specify this option, the character encoding is treated as UTF8.

UNIX edition
This command specifies the character encoding for XML file with the syntax of value of the environment variable
LANG. For values that can be specified, see 2.2.4 Encoding used in JP1/Advanced Shell.
If you do not specify this option, assume that the character encoding is specified in the format of the value of
the LANG environment variable in the environment where JP1/Advanced Shell operates.
For example, if the XML file with the character encoding UTF-8 in AIX is treated, specify "JA_JP" or
"JA_JP.UTF-8" for -e option.

element-name
This command specifies the element name with attribute.

attribute-name
This command specifies the attribute name to be searched.

file-path-name
This command specifies the path of a XML file. If you do not specify the file path name, input from the standard
input.

Output to the standard output
Attribute values of elements of XML data.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching elements or attributes are not found, the command terminates with an error.

• If metacharacter in the regular expression is included in the element name or attribute name, specify the element
name by escaping with \.

Example:
This command is specified as follows when you search for the attribute name "id*" in the element name "name
+".

getXmlAttrValue 'name\+' 'id*' test.xml

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1072

• This part creates a temporary file by using the adshmktemp command. Therefore, the temporary file might remain
when the command receives a forced termination request while the part is being executed. In this case, delete the
temporary file manually. Temporary file is created in the directory defined with the TEMP_FILE_DIR parameter
of the temporary file according to the following naming rule:

getXmlAttrValue_job-ID_process-ID_time-information_file-sequence-number

Examples

XML data(data.xml)
<data>
 <city>
 <name id="0001" value="200">Yokohama</name>
 <name id="0002" value="100">Kawasaki</name>
 </city>
</data>

getXmlAttrValue name id data.xml
The following contents are output:
0001
0002

getXmlAttrValue -e SJIS name value data.xml
The following contents are output:
200
100

10.3.37 getXmlDecl (gets the XML declaration)

Syntax

getXmlDecl item-name [file-path-name]

Description
This command searches for XML declaration from the XML file specified for argument and outputs the value of the
specified item.

Arguments

item-name
This command specifies the item name of the XML declaration to be obtained.

file-path-name
This command specifies the path of a XML file. If you do not specify the file path name, input from the standard
input.

Output to the standard output
Value of the item of XML declaration

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1073

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching item is not found, the command terminates with an error.

• If the value of the matched item is null character string, the command terminates with an error.

Examples

XML data (data.xml)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<data>
…
</data>

getXmlDecl encoding data.xml # "UTF-8" is output.

10.3.38 getXmlElem (obtains contents of elements of XML data)

Syntax

getXmlElem [-e character-encoding] element-name [file-path-name]

Description
This command searches for an element name from the XML file specified for argument and outputs all fully matched
elements. Output is performed after deleting line breaks contained in elements.

Arguments

-e character-encoding
Windows edition

This command specifies the character encoding for XML file. "SJS" or "UTF8" can be specified. If you do not
specify this option, the character encoding is treated as UTF8.

UNIX edition
This command specifies the character encoding for XML file with the syntax of value of the environment variable
LANG. For values that can be specified, see 2.2.4 Encoding used in JP1/Advanced Shell.
If you do not specify this option, assume that the character encoding is specified in the format of the value of
the LANG environment variable in the environment where JP1/Advanced Shell operates.
For example, if the XML file with the character encoding UTF-8 in AIX is treated, specify "JA_JP" or
"JA_JP.UTF-8" for -e option.

element-name
This command specifies the element name to be searched.

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1074

file-path-name
This command specifies the path of a XML file. If you do not specify the file path name, input from the standard
input.

Output to the standard output
Contents of elements of XML data.

Return codes
Return code Meaning

0 Normal termination

Not less than 1 Termination with an error

Notes
• If matching elements are not found, the command terminates with an error.

• Contents of elements to be output include all described strings. Therefore, items including CDATA section are output.

• Description of entity reference including "&" included in contents of an element is output as it is.
If metacharacter in regular Expression is included in the element name, specify the element name by escaping with
\.

Example:
You need to specify as follows when you search for the element name "name+":

getXmlElem 'name\+' test.xml

• Contents of element cannot be output correctly if the element with the same name is nested.

Example:

<value><value>100</value></value>

However, if the nested element contains other elements, contents of the innermost element can be output as follows:

Example (tst.xml)

<value><name><value>100</value></name></value>

getXmlElem name test.xml | getXmlElem value

• This part creates a temporary file by using the adshmktemp command. Therefore, the temporary file might remain
when the command receives a forced termination request while the part is being executed. In this case, delete the
temporary file manually. Temporary file is created in the directory defined with the TEMP_FILE_DIR parameter
of the temporary file according to the following naming rule:

getXmlElem_job-ID_process-ID_time-information_file sequence number

Examples

XML data (data.xml)
<data>
 <city>
 <name id="0001">Yokohama</name>
 <name id="0002">Kawasaki</name>
 </city>

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1075

</data>

getXmlElem -e SJIS name data.xml
The following contents are output:
Yokohama
Kawasaki

XML data (data2.xml)
<name>
 <city>
 <name id="0001">Yokohama</name>
 <name id="0002">Kawasaki</name>
 </city>
</name>

getXmlElem city data2.xml | getXmlElem name
The following contents are output:
Yokohama
Kawasaki

10. Script development parts

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1076

This chapter describes troubleshooting, including how to respond when problems occur, the types
of log information, the troubleshooting information that needs to be collected, and how to collect it.

Part 5: Troubleshooting

11 Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1077

11.1 Response procedure

If you encounter a problem while running a job definition script in JP1/Advanced Shell, such as the script terminating
with an error, attempt to determine what caused the problem.

If a message was output, check its contents. For details about the corrective actions to be taken for each message, see
12. Messages. Then, take the following actions according to the cause indicated in the output message:

• Problem with the job definition script
If a message is output indicating a problem with the job definition script, do the following:

• Investigate and handle problems
Based on your investigation of the problem, modify the job definition script in the development environment,
and then verify the results in the debugger.

• Repeat the operation
Attempt to perform the operation again in the execution environment.

• Problem that requires contacting a system administrator
If a message is output indicating that you need to contact a system administrator, do the following:

• Collect information
Collect information that will be needed to investigate the cause of the problem, as described in 11.2 Information
needed when a problem occurs.

• Investigate the problem
Investigate the cause of the problem based on the collected information, and then narrow the scope of the problem
by isolating the conditions under which it occurs.

• Problem entering a response to a request for a user reply

• Investigate the problem and take corrective action
See 11.1.1 Corrective action when using the user-reply functionality to investigate the problem and take the
necessary corrective action.

11.1.1 Corrective action when using the user-reply functionality
Replies to reply-request messages are sent from JP1/IM - View. However, in the following cases, you cannot enter a
reply from JP1/IM - View.

Table 11-1: When you cannot enter a reply to a reply-waiting event

No. Circumstance Notification sent to the user

1 An error occurs in JP1/Advanced Shell when you enter a reply from JP1/IM,
and the reply's success or failure is unknown in JP1/IM.

Invalid data (or a similar message) is sent.

2 A backlog of reply-waiting events was cleared because the backlog exceeded
2,000 events.

JP1/IM - View displays the KAVB0551-E error
message.

3 JP1/IM has become unusable due to a communication failure or other
problem

None (JP1/IM - View is not available).

Because reply-request messages are managed in shared memory on the machine where JP1/Advanced Shell is installed,
a JP1/Advanced Shell administrator is able to use the following commands to check the status of reply-request messages
and to reply to reply-request messages.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1078

• Displaying a list of reply-request messages in reply-waiting status
The administrator uses the adshlsmsg command to display a list of reply-request messages from operators that
are in reply-waiting status. For details, see 8.3.11 adshlsmsg command (displays a list of reply-request messages
when a failure occurs) in 8.3 Shell operation commands.

• Replying to (manually) or canceling a reply-request message in reply-waiting status
The administrator uses the adshchmsg command to enter a reply to or cancel a reply-request message from an
operator that is in reply-waiting status. For details, see 8.3.3 adshchmsg command (replies manually to a reply-
request message when a failure occurs) in 8.3 Shell operation commands.

11.1.2 When the root job terminates before its child jobs terminate
If a child job that was executed from another child job is terminated abruptly from an intermediate job by a means such
as SIGKILL in UNIX or TerminateProcess in Windows, the root job might terminate without waiting for all its
child jobs to terminate. For this reason, do not execute an abrupt termination of this type. For details, see (4) Notes
about child jobs that are executed from another child job.

If this occurs, check the execution results of the related root job and its child jobs. For the child jobs other than the
abruptly terminated job, the spool job directory might remain even after an attempt to delete it. Even if it was deleted,
the contents of JOBLOG will have been output to the standard error output, so the log is not lost.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1079

11.2 Information needed when a problem occurs

The following table shows the information to be collected when a problem occurs.

Table 11-2: Information to be collected when a problem occurs

Category Contents What to collect

Logs Logs output by JP1/Advanced Shell System execution log, trace log, log of the application-execution agent
functionality [only for the Windows execution environment]

Error information Error information collected by the
system

Dump file (Windows only)
Core file (UNIX only)

Spool information Information for managing the spool The specified environment file and job ID file (either .jobid or
adsh.jobid)

Environment information System status Basic system information, process information, memory usage
information, file information, network usage, JP1 event information,
error logs, application-execution agent function information (only for
the Windows execution environment)

User-reply functionality's
management daemon
information (UNIX only)

Information related to start and end of
the user-reply functionality's
management daemon

Start log and pid file of the user-reply functionality's management
daemon

You can use JP1/Advanced Shell's adshcollect command to batch-collect the needed information. For details about
the adshcollect command, see 11.3 How to collect information.

The following sections provide details about the information that is needed in each of the above categories, with the
exception of environment information, which is omitted because it is product-specific.

11.2.1 Logs
The following table shows the logs to be collected.

Table 11-3: Logs to be collected

Type Contents Output destination

System execution log Entire execution log of JP1/Advanced
Shell

This is output as specified by the LOG_DIR parameter# in the
environment file.

Trace log JP1/Advanced Shell internal trace log This is output as specified by the TRACE_DIR parameter# in the
environment file.
Trace logs for custom jobs, the editor, and common commands are
output in accordance with system specifications.

Log of the application-
execution agent
functionality [only for
Windows execution
environment]

Log of the application-execution agent
functionality

The log is output to the shared document folder \Hitachi\JP1AS
\JP1ASE\appexec.

#
For default values of the parameters, see 11.3.1 adshcollect command (collects information).

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1080

11.2.2 Error information
The following table shows the error information to be collected. Error information is collected only when DUMP or
CORE is specified in the definition file for collecting maintenance information.

Table 11-4: Error information to be collected

Type Contents Output destination

Dump file (Windows
only)

Error information collected in the
Watson log and similar sources

This file is output when you run a debug tool such as Dr. Watson. In
the case of Dr. Watson, the default directory for output of the error
information is:
• common-application-data-folder\Microsoft\Dr Watson
\drwtsn32.log

Core file (UNIX only) Error information collected by the
system

When a process terminates with an error, this file is output by the
system to the directory specified in the system settings. If the directory
is not specified in the system settings, the file is output to the directory
that was current when adshexec started.

11.2.3 Spool information
The following table shows the spool information to be collected.

Table 11-5: Spool information to be collected

Type Contents Output destination

Environment file JP1/Advanced Shell definition
information

Path of the environment file created in the ADSH_ENV environment
variable
Environment file specified with the -e option of the adshcollect
command (the job environment file defined for Job environment file
in the Define Script Execution dialog box of a custom job or the job
environment file defined in the Job environment file of the Runtime
Environment Settings dialog box of the editor)

Files under the spool
directory

Batch job information output to the
spool

Job ID file (either .jobid or adsh.jobid)

11.2.4 User-reply functionality's management daemon information (UNIX
only)

The following table shows the user-reply functionality's management daemon information to be collected.

Table 11-6: User-reply functionality management daemon information to be collected

Type Contents Output destination

Start log User-reply functionality's management
daemon start log

The user-reply functionality's management daemon start log is output
to /opt/jp1as/system.
For details, see 2.6.8 Defining job execution results and log output
information.

pid file User-reply functionality's management
daemon pid file

The user-reply functionality's management daemon pid file is output
to /opt/jp1as/system.
The pid file corresponds to the following file name:

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1081

Type Contents Output destination

pid file User-reply functionality's management
daemon pid file

• User-reply functionality's management daemon on a physical host
adshmd.pid

• User-reply functionality's management daemon on a logical host
adshmd_logical-host-name.pid

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1082

11.3 How to collect information

If JP1/Advanced Shell terminates with an error or becomes unresponsive, the system administrator will require data
from core dumps (core files or dump files), logs, and other sources for purposes of investigating the cause of the failure.
You can use the adshcollect command to batch-collect this required information.

This section describes how to use the adshcollect command, how to set up a definition file for collecting
maintenance information, and how to set up an environment file. Note that the maintenance information (data) collected
by the adshcollect command might be different in Windows and UNIX.

11.3.1 adshcollect command (collects information)

Syntax

adshcollect maintenance-information-output-directory [-f definition-file-name]
 [-e environment-file-name] [-h logical-host-name]

Description
The adshcollect command enables batch-collection of the information required to investigate a failure.

To execute the adshcollect command, you start it from the command prompt in the case of Windows or from the
shell in the case of UNIX.

In order to collect error information in the event of a failure, this command must be executed with the permissions of
the executing user. However, to collect user-reply functionality information, it must be executed with an administrator
role.

1. Collect the environment file that was being used when the failure occurred. If the environment file has been modified
since the error occurred, reconstruct the environment file to match the operational environment at the time the failure
occurred. If no environment file was being used when the failure occurred, there is no need to collect one.

Note:
In the Windows edition, the adshcollect command might result in an error if an ampersand (&) is specified
in an environment file.
If an ampersand (&) is specified in the job environment file, make a copy of the job environment file and delete
the ampersand (&) from the copied file. In step 3, specify the copied job definition file in the -e option.
If an ampersand (&) is specified in the system environment file, make a backup by copying the system
environment file to another directory and then delete the ampersand (&).

2. Create a definition file.
For collecting a core file or dump file, create a definition file at any location. There is no need to create a definition
file except when a core file or dump file is required.

3. Execute the adshcollect command.
Specify the arguments described below and execute the adshcollect command. For notes on executing the
adshcollect command, see Notes, below.

Maintenance information output directory
Note the following points about the directory specified for the maintenance information:

 The output directory for the maintenance information must be writable, and it must have sufficient space.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1083

 It must also be a directory that is not being used in JP1/Advanced Shell.

Environment file name
Specify the path of the environment file collected in step 1 in the -e option or the ADSH_ENV environment
variable. This specification is required only if an environment file was collected in step 1.

Definition file name
Specify in the -f option the path of the definition file created in step 2. This specification is required only if a
definition file was created in step 2.

Logical host name
If the environment in which the failure occurred is a logical host, specify the logical host name in the -h option.
This specification is required only if the environment in which the failure occurred is a logical host.

Arguments

maintenance-information-output-directory
Windows only

The files containing maintenance information are output to a destination directory. The directory name is in the
following format:
ADSHyyyymmddhhmmss

 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time, in 24-hour local time, when the adshcollect command was started

Because Windows does not provide as a standard feature the equivalent of the UNIX tar command for handling
maintenance information, you must use a user compression tool to compress the files in a standard format (such
as ZIP or LZH).

UNIX only
Specifies a destination directory for the tar archive files of collected information. Any required temporary files
will also be created in this directory. The name of the archive file is in the following format:
ADSHyyyymmddhhmmss.tar

 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time, in 24-hour local time, when the adshcollect command was started

The disk space required for the compressed file containing maintenance information is as follows:
Size of system execution logs and trace logs + size of files specified in DUMP or CORE#

#
DUMP files in a Windows environment and CORE files in a UNIX environment.

-f definition-file-name
Specifies the name of the definition file that defines the maintenance information to be collected. You can specify
the definition file in terms of an absolute path or a path relative to the current directory. For the contents to be set
up, see Definition file and environment file settings, below.
Specification of a definition file name is optional. If definition-file-name is omitted, the DUMP or CORE maintenance
information will not be collected.

-e environment-file-name
Specifies an environment file when you want to specify a different file path from the one specified in the ADSH_ENV
environment variable. You can specify an absolute path or a path relative to the current directory.

• When this option is not specified
The file path specified in the ADSH_ENV environment variable is used for the environment file.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1084

• When this option and the ADSH_ENV environment variable are both not specified
Information is collected on the basis of the applicable settings in the system environment file.

• When this option and the ADSH_ENV environment variable are both not specified and there is no system
environment file
The default values for SPOOL_DIR, LOG_DIR, and TRACE_DIR are used.

-h logical-host-name
Specifies the name of the logical host where the error information is to be collected. The environment file is parsed
based on the specified logical host name.
If the -h option is specified but no logical host name is specified, the logical host name is obtained from the
JP1_HOSTNAME environment variable. If the JP1_HOSTNAME environment variable is not defined, the command
outputs usage information and terminates with an error. For details about the JP1_HOSTNAME environment
variable, see the JP1/Base User's Guide.

Definition file and environment file settings
Define the information to be collected in a definition file and define the output destination for the collected information
in an environment file.

• Defining the definition file
The definition file contains #-adsh_conf 1, followed by keywords and their values delimited by the space.
Specify all file names in terms of their absolute paths.
The table below shows the rules for keyword specifications in the definition file. Although all keywords are optional,
nothing other than keywords, including comments, is permitted in the definition file. Note that no wildcard characters
can be specified in any keyword value.

Table 11-7: Rules for keyword specifications in the definition file

Keyword Specification contents Specify more than
once

DUMP (Windows only) Specifies a dump file you want to collect, such as a Watson log. For details about
Watson logs, see the Windows documentation.
If there are any spaces in the path, enclose the path in double quotation marks.

Y
(maximum of 16)

CORE (UNIX only) Specifies a directory where core files can be found that need to be collected as error
information. Files under the specified directory that have core as part of their
name will be batch-collected.

Y

Legend:
Y: Can be specified.

• Defining the environment file
The table below shows the rules for keyword specifications in the environment file. All keywords are optional. If
no keyword is specified, the information described under Default path name in the table will be collected. Note that
no wildcard characters can be specified in any keyword value.

Table 11-8: Rules for keyword specifications in the environment file

Keyword
(environment
setting
parameter)

Specification contents Default path name Specify
more than
once

SPOOL_DIR Path name of the spool root directory# • In the execution environment
(Windows only)

N

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1085

Keyword
(environment
setting
parameter)

Specification contents Default path name Specify
more than
once

SPOOL_DIR Path name of the spool root directory# shared-documents-folder\Hitachi
\JP1AS\JP1ASE\spool

• In the development environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASD\spool

• In the execution environment (UNIX
only)
/var/opt/jp1as/spool

N

LOG_DIR Path name of the system execution log output directory# • In the execution environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASE\log

• In the development environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASD\log

• In the execution environment (UNIX
only)
/opt/jp1as/log

N

TRACE_DIR Path name of the trace log output directory# • In the execution environment
(Windows only)
common-application-data-folder
\Hitachi\JP1AS\JP1ASE
\trace

• In the development environment
(Windows only)
commmon-application-data-folder
\Hitachi\JP1AS\JP1ASD
\trace

• In the execution environment (UNIX
only)
/opt/jp1as/trace

N

Legend:
N: Cannot be specified.

#
In Windows, if there are spaces in the path, enclose the path in double quotation marks.

Example definition file and environment file specifications
• In Windows

The following is an example of specifying the definition file:

#-adsh_conf DUMP "C:\Program Files\Hitachi\JP1AS\JP1ASE\dump"

The following is an example of specifying the environment file:

#-adsh_conf SPOOL_DIR "C:\Documents and Settings\All Users\Documents\Hitachi\JP1AS
\JP1ASE\spool"
#-adsh_conf LOG_DIR "C:\Documents and Settings\All Users\Documents\Hitachi\JP1AS
\JP1ASE\log"

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1086

#-adsh_conf TRACE_DIR "C:\Documents and Settings\All Users\Application Data
\Hitachi\JP1AS\JP1ASE\trace"

• In UNIX
The following is an example of specifying the definition file:

#-adsh_conf CORE /home/user1/program1

The following is an example of specifying the environment file:

#-adsh_conf SPOOL_DIR /var/opt/jp1as/spool
#-adsh_conf LOG_DIR /opt/jp1as/log
#-adsh_conf TRACE_DIR /opt/jp1as/trace

List of files collected by the adshcollect command
The files collected by the adshcollect command and their maximum sizes are different in Windows and UNIX, as
shown in the following tables.

Table 11-9: Files collected by the adshcollect command and their maximum sizes (Windows only)

File type File name Maximum
size

Collected

Spool
management file

[SPOOL_DIR in the environment file#]\adsh.jobid About 1 KB Y

System
execution log
(JP1/Advanced
Shell)

[LOG_DIR in the environment file#]\AdshLog.log
[LOG_DIR in the environment file#]\AdshLog_n.log (where n is the log file count)

[LOG_FILE
_SIZE in the
environment
file] (n + 1)
(MB)

Y

[LOG_DIR in the environment file#]\AdshLog.conf About 1 KB Y

Execution log for
JP1/Advanced
Shell internal
processing

commmon-application-data-folder\Hitachi\JP1AS\JP1ASE\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

commmon-application-data-folder\Hitachi\JP1AS\misc\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

Trace log (JP1/
Advanced Shell)

[TRACE_DIR in the environment file#]\AdshTrace_[n].log (where n is the log file
count: fixed at 4)
Can be changed in the environment file.

[TRACE_FI
LE_SIZE in
the
environment
file] n
(MB)

Y

Trace log
(custom job)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASV\trace
\AdshTrace_1.log

1 MB Y

Trace log (editor) commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\adshedit
\trace\AdshTrace_1.log

1 MB Y

Trace log
(JP1/Advanced
Shell, JP1/
Advanced Shell -
Developer
common
commands)

commmon-application-data-folder\Hitachi\JP1AS\misc\trace
\AdshTrace_[n].log (where n is the log file count)

8 MB Y

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1087

File type File name Maximum
size

Collected

Trace log (editor-
specific features)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\adshedit
\trace\adshedit.txt

Depends on
user
environment
settings.

Y

Log of the
application-
execution agent
functionality
(only for the
execution
environment)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASE\appexec
\APPEXECAGENT.log
commmon-application-data-folder\Hitachi\JP1AS\JP1ASE\appexec
\APPEXECAGENT_n.log (where n is the log file count)

About 5 MB Y

Dump file Dump file in DUMP in the definition file Depends on
user
environment
settings.

O

Environment file File in the ADSH_ENV environment variable, or file specified in the -e option About 1 KB O

System
environment file

commmon-application-data-folder\Hitachi\JP1AS\product-name\conf
\adshrc.ase

About 1 KB O

Host name set in
the machine

system-root-folder\system32\drivers\etc\hosts Depends on
user
environment
settings.

Y

Service ports set
in the machine

system-root-folder\system32\drivers\etc\services Depends on
user
environment
settings.

Y

Environment
information file

ADSHTMPyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time when the adshcollect command was started

Depends on
user
environment
settings.

Y

Legend:
Y: Always collected by the adshcollect command.
O: Collected when the applicable adshcollect command option is specified.

#
You can change the setting in the environment file. For default value of path name, see the above table.

Table 11-10: Files collected by the adshcollect command and their maximum sizes (UNIX only)

File type File name Maximum size Collected

Spool [SPOOL_DIR in the environment file#]/.jobid About 1 KB Y

System execution log [LOG_DIR in the environment file#]/AdshLog.log
[LOG_DIR in the environment file#]/
AdshLog_[n].log (where n is the log file count)

[LOG_FILE_SIZE in the
environment file] (n + 1) (MB)

Y

[LOG_DIR in the environment file#]/AdshLog.conf About 1KB Y

Trace log [TRACE_DIR in the environment file#]/
AdshTrace_[n].log (where n is the log file count)

[TRACE_FILE_SIZE in the
environment file] n (MB)

Y

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1088

File type File name Maximum size Collected

Core file Core file in the CORE keyword that is collected in the
definition file

Depends on user environment settings O

User-reply functionality
management daemon
information

Start log and pid file under /opt/jp1as/system About 1 KB number of executing
user-reply functionality management
daemons

Y

Environment file File in the ADSH_ENV environment variable or file
specified in the -e option

About 1 KB O

System environment
file

/opt/jp1as/conf/adshrc.ase About 1 KB Y

Installed Hitachi
products

/etc/.hitachi/pplistd/pplistd Depends on user environment settings. Y

Environment variables • AIX or Linux
/etc/environment

• HP-UX
/etc/profile

• Solaris
/etc/skel/.profile

Depends on user environment settings. Y

Environment
information file

ADSHTMPyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command

was started
 hhmmss: Time when the adshcollect command

was started

Depends on user environment settings. Y

Tar logs ADSHTARyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command

was started
 hhmmss: Time when the adshcollect command

was started

About 1 KB Y

Legend:
Y: Always collected by the adshcollect command.
O: Collected when the applicable adshcollect command option is specified.

#
You can change the setting in the environment file. For default value of path name, see the above table.

Notes
• The maintenance information output directory must have adequate free space for the output files and temporary files

to be created there.

• The maintenance information output directory must be writable so that the output files and temporary files can be
created there.

• If the adshcollect command is forcibly terminated during execution, temporary files might still remain in the
maintenance information output directory. In such a case, you will have to delete the temporary files manually.

• (UNIX only) If you are using the user-reply functionality, execute the adshcollect command as a user with root
privileges. If you execute it as a user without root privileges, you will not be able to collect the user-reply functionality
information.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1089

• (Windows only) If you are using the user-reply functionality, execute the adshcollect command as a user with
Administrators permissions. If you execute it as a user without Administrators permissions, you will not be able to
collect the user-reply functionality information.

• Do not specify any of the following special characters in the path of an output directory for maintenance information,
environment file path, definition file path, path specified in SPOOL_DIR, LOG_DIR, or TRACE_DIR, DUMP path,
CORE path, or the current directory path for executing the adshcollect command:
& () [] { } ^ = ; ! ' + , ` ~ # %

• If you specify an option for any of the adshcollect command arguments maintenance-information-output-
directory, environment-file-name, definition-file-name, or logical-host-name, the option will be interpreted as the
directory or file name or logical host name.

11. Troubleshooting

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1090

This chapter lists the messages output by JP1/Advanced Shell and provides detailed information
about errors that might occur.

12 Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1091

12.1 Message format

This section explains the format of the messages that are issued by JP1/Advanced Shell.

12.1.1 Message output format
JP1/Advanced Shell issues messages in the following format:

KNAXnnnn-t message-text

• KNAX
Message prefix that identifies a message as having been issued by JP1/Advanced Shell.

• nnnn
Message number.

• t
Indicator of the type of message. The following table lists and explains the types.

Table 12-1: Types of messages

Type identifier Type Meaning

E Error • A failure that disables a library, command, or server function has occurred.
• Operation has been disabled because of an invalid definition or command argument.

W Warning Processing continues once this message has been output.

I Information Information for the user.

(1) Format of messages output to job execution logs
When messages are output to job execution logs, the time and job ID are added to the messages as follows:

time job-ID KNAXnnnn-t message-text

• time
Time the message was output, in the format hh:mm:ss.

• job-ID
Six-digit identifier of the job that issued the message. If the job ID consists of fewer than six digits, it is padded with
leading zeros to make it six digits in length.

(2) Format of messages output in a message dialog box or error window
Some messages are output in a message dialog box or an error window, as shown in the following example.

• Message dialog box

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1092

Figure 12-1: Message dialog box

A message dialog box contains an icon that indicates the type of message. The following table explains the icons
that are displayed in message dialog boxes.

Table 12-2: Icons displayed in message dialog boxes

Type Icon Meaning User's action

Information An event that needs to be reported to the user occurred during
processing.

Click OK.

Query An event requiring an action by the user has occurred. The
message asks the user to select one of two choices.

Select Yes or No.

Warning A warning event that needs to be reported to the user occurred
during processing. The message asks the use to select one of two
choices.

Select OK or Cancel.

Error An error occurred during processing. Click OK.

• Error window
Messages might be displayed in the error window shown in the following while you are using JP1/Advanced Shell
Editor.

Figure 12-2: Error window

12.1.2 Format of message explanations
The format of the message explanations in this chapter is shown in the following.

The italics font indicates a placeholder (variable) for the value that will actually be set in the message text. The notation
(Windows only) or (UNIX only) to the right of a message ID indicates that the message is displayed only in a Windows
or UNIX environment, respectively.

For details about the meaning of error-details described in a message text and the action to be taken, see 12.4 Details
of errors.

The messages are listed in order of message ID. The following shows an example of the message explanations:

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1093

message-ID [(Windows only)|(UNIX only)]
message-text
Explanation of the message

(S)
Indicates the system processing.

(O)
Indicates the action to be taken by the developer or operator when the message is output.

12.1.3 Assignment of message numbers
Messages are grouped by ranges of message numbers into broad subject categories. The following table lists the subject
categories of the ranges of message numbers (these are the numbers that follow JP1/Advanced Shell's message prefix
KNAX).

Table 12-3: Subject categories assigned to ranges of message numbers

Message numbers Subject category of messages

0001 through 0299 Basic job processing

0300 through 0399 Command arguments

0400 through 0699 Environment files

0700 through 0899 Job execution logs

1600 through 1899 Area allocation

1900 through 2199 Job step execution

2200 through 2499 Message processing

2500 through 2699 Messages related to data analysis

3000 through 3999 Daemons

4414 through 4429 Spool job manipulation

5300 through 5399 Adapter commands

5400 through 5499 User-reply commands

6000 through 6699 Batch job execution control

6700 through 6999 Cross-platform operability

7000 through 7199 Development environment

7200 through 7399 Application-execution agent functionality

7400 through 7599 User-reply functionality

7600 through 7799 JP1 program linkage functions

7800 through 7999 Common functions

9000 through 9999 License-related

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1094

12.2 Message output destinations

The table below lists the output destinations of the messages issued by JP1/Advanced Shell. This table shows the output
destinations of messages in the expansion output mode. For details about the output destinations of messages in the
simple output mode and the minimum output mode, see the explanations that follow the table.

Table 12-4:  Output destinations of messages issued by JP1/Advanced Shell (expansion output
mode)

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX0001-E N Y Y Y Y N

KNAX0004-I N N N Y N N

KNAX0030-E, KNAX0031-E N Y N N Y N

KNAX0091-I, KNAX0092-I N N Y Y N N

KNAX0098-I N Y Y Y N N

KNAX0101-E N Y Y Y Y N

KNAX0220-E N Y N Y N N

KNAX0235-E to KNAX0239-E N Y N Y Y N

KNAX0240-I N Y N Y#1 N N

KNAX0298-E to KNAX0299-E N Y Y Y Y N

KNAX0300-I N Y N N N N

KNAX0301-E N Y N N Y N

KNAX0302-E N Y N N Y Y#17

KNAX0303-E to KNAX0307-E N Y N N Y N

KNAX0308-E to KNAX0309-I N Y N N N N

KNAX0310-E N Y N N Y N

KNAX0311-E to KNAX0336-E N Y N N Y Y#17

KNAX0401-E to KNAX0702-E N Y N N Y N

KNAX0703-E N Y N Y Y N

KNAX0704-E to KNAX0708-E N Y N N Y N

KNAX0719-I N Y N N N N

KNAX0720-E to KNAX0723-E N Y N N Y N

KNAX0724-I N Y N N N N

KNAX0725-E N Y N N Y N

KNAX0726-I N Y N N N N

KNAX0727-E, KNAX0728-E N Y N N Y N

KNAX0800-E N Y N N Y N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1095

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX0801-E N Y N N N N

KNAX0802-E N Y N N Y N

KNAX0803-E N Y Y Y Y N

KNAX0804-E N Y N N Y N

KNAX0805-E N Y Y Y Y N

KNAX1600-I to KNAX1605-I N N Y N N N

KNAX1632-E N N Y N Y N

KNAX1871-E to KNAX1880-E N Y N N N N

KNAX1890-I N N Y N N N

KNAX1891-E to KNAX1892-E N N Y N G N

KNAX1893-W N N Y N N N

KNAX1910-E, KNAX1911-E N N Y Y Y N

KNAX2201-E to KNAX2205-E N Y N Y Y N

KNAX2206-E N Y N N Y N

KNAX2207-E N Y N Y Y N

KNAX2208-E to KNAX2213-E N Y N N Y N

KNAX2214-E, KNAX2400-E N Y N Y Y N

KNAX2499-E N Y N Y N N

KNAX2500-E N N Y Y G N

KNAX2501-E N N Y Y G N

KNAX3000-I Y Y#2, #3 N Y N N

KNAX3001-I N Y#2, #3 N Y N N

KNAX3002-E Y Y#2, #3 N Y N N

KNAX3003-E N Y#2, #3 N Y N N

KNAX3006-I N Y#2 N Y N N

KNAX3008-W, KNAX3009-E Y Y#2 N Y N N

KNAX3020-E to KNAX3029-E N Y#2 N Y N N

KNAX3261-I N N N Y N N

KNAX3400-I to KNAX3542-W N Y#2 N Y N N

KNAX3700-I to KNAX3799-I Y N N N N N

KNAX3998-E, KNAX3999-E N Y N N N N

KNAX4414-E to KNAX4429-E N Y#4 N N N N

KNAX5300-I to KNAX5372-E N Y#5 N Y N N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1096

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX5380-I, KNAX5381-I N N N Y N N

KNAX5396-I to KNAX5399-E N Y N N N N

KNAX5407-E to KNAX5499-E N Y N N N N

KNAX6000-E to KNAX6071-E N N Y N G N

KNAX6072-E N N Y N G N

KNAX6075-E to KNAX6099-E N N Y N G N

KNAX6100-E N Y N N G N

KNAX6110-I to KNAX6129-I N N Y Y N N

KNAX6130-E N Y Y Y N N

KNAX6134-E to KNAX6140-E N N Y N G N

KNAX6150-E N N Y Y G N

KNAX6151-E N N Y Y N N

KNAX6152-E N N Y Y Y N

KNAX6153-E N N Y Y Y N

KNAX6160-I N N Y Y N N

KNAX6161-I N N Y Y N N

KNAX6190-E N N Y Y G N

KNAX6191-E N N Y Y G N

KNAX6192-E N N Y Y G N

KNAX6193-E N N Y Y G N

KNAX6194-E N N Y Y G N

KNAX6200-I N Y Y Y Y N

KNAX6201-E N Y N N N N

KNAX6202-E to KNAX6208-E N Y N N Y N

KNAX6209-W N Y N N N N

KNAX6210-E to KNAX6215-E N Y N Y N N

KNAX6219-E N Y N Y Y N

KNAX6220-I to KNAX6222-I N Y N Y N N

KNAX6223-E to KNAX6241-E N Y N Y Y N

KNAX6242-I to KNAX6243-I N Y N Y N N

KNAX6244-E N Y N Y Y N

KNAX6290-E to KNAX6298-E N N N N Y N

KNAX6301-E to KNAX6303-E N Y N N Y N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1097

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX6304-E N N Y N Y N

KNAX6305-E N Y N N Y N

KNAX6306-E N N Y N Y N

KNAX6307-W N N Y N N N

KNAX6308-E, KNAX6309-E N N Y N Y N

KNAX6310-E to KNAX6319-E N N Y N G N

KNAX6320-E N N Y N Y N

KNAX6321-E N N Y N G N

KNAX6323-E N Y N N Y N

KNAX6324-E to KNAX6330-E N N Y N G N

KNAX6332-E N N Y N Y N

KNAX6333-E N N Y N G N

KNAX6340-E N N Y Y Y N

KNAX6341-E N N Y Y G N

KNAX6342-E N N Y Y Y N

KNAX6380-I N Y N N N N

KNAX6381-E N Y N N Y N

KNAX6382-I to KNAX6385-E N Y N N N N

KNAX6399-E, KNAX6400-E N N Y N Y N

KNAX6401-E N N Y N G N

KNAX6403-E N N Y N G N

KNAX6404-E N N Y N Y N

KNAX6405-E to KNAX6407-E N N Y N G N

KNAX6408-E N N Y N Y N

KNAX6409-I, KNAX6410-I N N Y N N N

KNAX6411-E to KNAX6413-E N N Y N Y N

KNAX6414-E N N Y N G N

KNAX6501-I N N Y Y N N

KNAX6502-I N N Y Y N N

KNAX6503-E N Y N N N N

KNAX6504-E N N Y N Y N

KNAX6507-I to KNAX6511-I N N Y Y N N

KNAX6512-I N Y N N N N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1098

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX6521-E, KNAX6522-E N N Y Y G N

KNAX6530-E, KNAX6531-E N N Y N G N

KNAX6540-I N N Y Y N N

KNAX6541-E, KNAX6542-E N N Y Y Y N

KNAX6551-E to KNAX6578-I N N Y Y N N

KNAX6580-E N N Y Y G N

KNAX6581-E N N Y Y Y N

KNAX6582-E N N Y Y N N

KNAX6583-E N N Y Y N N

KNAX6584-I to KNAX6586-E N N Y Y N N

KNAX6587-E N Y N Y N N

KNAX6588-E N Y N N N N

KNAX6589-W N N N Y N N

KNAX6590-E N N Y Y Y N

KNAX6591-E to KNAX6592-E N N Y Y N N

KNAX6593-E N Y Y Y Y N

KNAX6594-E N N Y Y N N

KNAX6595-E N N Y Y Y N

KNAX6596-E N Y Y Y Y N

KNAX6597-I N Y Y Y N N

KNAX6598-E, KNAX6599-E N N Y Y Y N

KNAX6600-E to KNAX6646-E N Y N Y N N

KNAX6701-W N N Y Y N N

KNAX6710-I N N Y N N N

KNAX6711-E, KNAX6712-E N N Y N G N

KNAX6713-E N N Y Y Y N

KNAX6714-E, KNAX6715-E N N Y N G N

KNAX6718-I N N Y N N N

KNAX6750-E to KNAX6753-E N Y N Y N N

KNAX6800-I#6, KNAX6801-I#6 N N N N N N

KNAX6803-I to KNAX6806-I N N Y N N N

KNAX6810-E to KNAX6812-E N N Y Y Y N

KNAX6813-E N N Y N G N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1099

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX6814-E, KNAX6815-E N N Y Y Y N

KNAX6830-I to KNAX6832-I N N Y Y N N

KNAX6996-E, KNAX6997-E N N Y Y Y N

KNAX6998-E N N Y Y G N

KNAX6999-E N N Y Y Y N

KNAX7000-E to KNAX7004-E N Y N Y Y N

KNAX7006-W to KNAX7009-I N Y N Y N N

KNAX7010-E N Y N Y Y N

KNAX7011-I, KNAX7012-W N Y N Y N N

KNAX7013-E, KNAX7014-E N Y N Y Y N

KNAX7015-W N Y N Y N N

KNAX7016-E, KNAX7017-E N Y N Y Y N

KNAX7018-I N Y N Y N N

KNAX7019-E to KNAX7022-E N Y N Y Y N

KNAX7023-I N Y N Y N N

KNAX7024-E N Y N Y Y N

KNAX7025-I N Y N Y N N

KNAX7026-E to KNAX7029-E N Y N Y Y N

KNAX7032-I to KNAX7034-I N Y N Y N N

KNAX7035-E N Y N Y Y N

KNAX7036-I, KNAX7037-I N Y N Y N N

KNAX7038-I N Y Y Y N N

KNAX7039-E, KNAX7040-E N Y N Y Y N

KNAX7043-I N Y N Y N N

KNAX7044-E to KNAX7046-E N Y N Y Y N

KNAX7047-I, KNAX7048-I N Y N Y N N

KNAX7049-E to KNAX7052-E N Y N Y Y N

KNAX7053-I N Y N Y N N

KNAX7054-E, KNAX7055-E N Y N Y Y N

KNAX7056-I, KNAX7057-I N Y Y Y N N

KNAX7058-I N Y N N N N

KNAX7062-E N Y N Y Y N

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1100

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX7063-I, KNAX7064-I N Y Y Y N N

KNAX7065-I to KNAX7067-I N Y N Y N N

KNAX7068-I N Y Y Y N N

KNAX7070-E N Y N Y Y N

KNAX7071-E, KNAX7072-E N Y N Y N N

KNAX7073-I N Y Y Y N N

KNAX7090-W N N N N Y N

KNAX7091-W N N N N Y N

KNAX7099-E, KNAX7101-E N Y Y Y Y N

KNAX7102-I, KNAX7103-I N N N Y N N

KNAX7104-E to KNAX7106-E N Y Y Y Y N

KNAX7107-I N N N Y N N

KNAX7108-E N Y Y Y Y N

KNAX7109-I N N N Y N N

KNAX7110-E N Y Y Y Y N

KNAX7111-I N N N Y N N

KNAX7112-E to KNAX7116-E N Y Y Y Y N

KNAX7117-I N N N Y N N

KNAX7118-E N N N N Y N

KNAX7119-E N Y Y Y Y N

KNAX7120-W N N N Y N N

KNAX7121-E to KNAX7125-E N Y Y Y Y N

KNAX7126-I, KNAX7127-E N Y Y Y N N

KNAX7128-E N Y N Y N N

KNAX7129-E N Y Y Y N N

KNAX7200-E to KNAX7203-W N N N N N Y#13

KNAX7204-E N Y#15 N N N Y#13

KNAX7205-E N N N N N Y#13, 14

KNAX7210-E to KNAX7217-E N N N N N Y#13

KNAX7221-E to KNAX7225-E N N N N N Y#14

KNAX7250-I to KNAX7253-I N N N N N Y#13

KNAX7254-E N Y#15 N N N Y#13, #16

KNAX7255-I N N N N N Y#13

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1101

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution
log

GUI#12 Others

KNAX7256-E to KNAX7259-W N Y N N N Y#13

KNAX7260-W to KNAX7262-I N N N N N Y#13

KNAX7263-E N N N N N Y#13

KNAX7264-I to KNAX7268-I N Y N N N Y#13

KNAX7269-E N N N N N Y#13

KNAX7270-E N Y N N N Y#13

KNAX7271-I N Y N N N N

KNAX7400-E to KNAX7402-E N N Y Y Y N

KNAX7403-E to KNAX7405-E N N Y Y G N

KNAX7408-E N N Y Y Y N

KNAX7420-E N Y N N N N

KNAX7450-I#7 N N N N N N

KNAX7451-I N N Y Y N N

KNAX7460-E to KNAX7465-W N N Y Y#8 N N

KNAX7470-I N N Y Y N N

KNAX7500-I to KNAX7509-I#7 N N N N N N

KNAX7550-I, KNAX7551-E#9 Y N N N N N

KNAX7552-E to KNAX7556-E#9 N N N N N N

KNAX7560-I, KNAX7561-E#9 Y N N N N N

KNAX7600-E to KNAX7773-E N N N N Y N

KNAX7800-I to KNAX7880-E Y N N N N N

KNAX7892-I to KNAX7897-E N Y N N N N

KNAX7900-I N N N N Y#10 N

KNAX7901-I N Y Y#11 Y#11 N N

KNAX7902-I N N Y Y N N

KNAX7999-I N Y N N N N

KNAX9000-E to KNAX9002-E N Y N N N N

Legend:
The following table describes the meaning of the columns under Output destinations of messages in the table above:

Column heading Output destination of messages Notes

stdout Standard output In the simple output mode and the minimum output
mode, output of messages for jobs during normal
execution and for child jobs during debugging are
handled as follows:

stderr Standard error output

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1102

Column heading Output destination of messages Notes

stderr Standard error output • Messages of message types I and W are not output.
• Messages of message type E are output to the

applicable output destinations and to JOBLOG.

Messages of message type E for root jobs during
debugging are also output to JOBLOG.

JOBLOG Job execution log • In the expansion output mode
During debugging, the same messages are also
output to the standard error output during job
execution.
In the case of child jobs, these messages are not
output to JOBLOG, but are output to the standard
error output when job execution is completed.

• In the simple output mode or the minimum output
mode
Messages of message type E are also output to the
standard error output.

System execution log System execution log Depending on the job's status during message output,
messages might not be output to this output destination.

GUI Message dialog box or error window None

Note that the following messages are also output in the simple output mode and the minimum output mode:

• KNAX0240-I (A message that indicates that the value of ADSH_JOBRC_FATAL has been applied. Output of
the message might be suppressed depending on the timing of the output.)

• KNAX0300-I (usage)

• KNAX0309-I (displays version information)

• Messages that are output when a signal is received (however, in the minimum output mode during normal
execution, part of the message that is output when a signal is received is suppressed)

• Messages other than those that are output to job execution logs during debugging (excluding KNAX0473-W)

G: GUI message that is output with a line number to a JP1/Advanced Shell Editor error window. If the line number
is omitted from the message, the message is not output.
Y: Output.
N: Not output.

#1
This message is output only during CUI debugging.

#2
Output to the start log.

#3
The following is output to syslog:

• Facility: LOG_USER
• Level: LOG_NOTICE

#4
While the log file specified in the argument of the adshhk command is open, the message is output to the specified
log file, not to the standard error output.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1103

#5
The adapter command's output is displayed in the JP1/IM - View window.

#6
Output to the script image file.

#7
JP1 events are issued.

#8
Output while the adshecho or adshread command is executing.

#9
Output to the event log.

#10
Displayed in the web browser that is started when Help is selected in the GUI.

#11
Not output to this destination during CUI or GUI debug execution.

#12
This message is not output from a child job to the GUI.

#13
This message is output to the log of the application-execution agent functionality.

#14
This message is output to the message box.

#15
This message is output when the adshappexec command is being used.

#16
This message is output to the message box when the adshappagent command is started.

#17
This message is output to the log of the application-execution agent functionality when the adshappagent
command is being used.

12.2.1 Notes about the row numbers that are output in messages
The following notes apply to the row numbers that are output in messages KNAX6000-E through KNAX6100-E,
KNAX6710-I through KNAX6712-E, and KNAX6998-E.

• If a command error occurs in a command substitution spanning multiple lines, the last line number in the command
substitution is displayed in the message as the erroneous line number.
Example:
If an error occurs in unset command in the following code, the erroneous line is shown as line number 3:

1: `unset
2: echo pwd
3: `

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1104

• If an error occurs during syntax analysis of an external script, the name of the job definition script that called the
external script is output in the error message as the job definition script file name. The line whose number is displayed
is the line in the job definition script where the external script was called.

• If a syntax or command error occurs while the trap command's action is running, the line number of the trap
command is displayed in the message as the erroneous line number.
Example 1:
This example spans multiple lines. The erroneous line is shown as line number 1.

1: trap 'pwd
2: unset
3: date' INT

Example 2:
This example calls a function. The erroneous line is shown as line number 4.

1: func1() {
2: unset
3: }
4: trap func1 INT

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1105

12.3 List of messages

This section explains the messages that are issued by JP1/Advanced Shell and how to handle them.

KNAX0001-E
Memory is insufficient. details=maintenance-information

A memory shortage occurred.

maintenance-information, which is displayed as eight hexadecimal characters, indicates the system's internal status.
This message is output to the error notification destinations. The message is output to only some of the destinations,
depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must check and, if necessary, revise the memory
estimation.

KNAX0004-I
Job ID=Advanced Shell-job-ID, JP1NBQSQueueName=environment-variable-value, scheduler job ID=scheduler-
job-number

This message displays the JP1/AJS job information and the JP1/Advanced Shell job ID for the batch job that has been
started.

Advanced Shell-job-ID
Job ID assigned to the batch job by the job controller

environment-variable-value
Value of the JP1NBQSQueueName environment variable in the batch job

scheduler-job-number
JP1 job number assigned to the batch job by JP1/AJS

(S)
Resumes processing.

KNAX0030-E (Windows only)
An error occurred while starting adshexec. function="function-name",error code=error-code,reason="error-
details"

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1106

An error occurred during job controller start processing. The message displays function-name, error-code, and error-
details.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
displayed function-name, error-code, and error-details, and then re-execute the batch job.

KNAX0031-E (Windows only)
An error occurred while completing adshexec process. function="function-name",error code=error-
code,reason="error-details"

An error occurred during job controller termination processing. The message displays function-name, error-code, and
error-details.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
displayed function-name, error-code, and error-details, and then re-execute the batch job.

KNAX0091-I
job-name The job started.

The batch job indicated by job-name has started.

(S)
Resumes processing.

KNAX0092-I
job-name.job-step-name step started.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name has started.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1107

KNAX0098-I
job-name The job ended. exit status=exit-status-code execution time=execution-time-in-seconds CPU time=CPU-
time-in-seconds

The batch job indicated by job-name has ended.

exit-status-code
Return code indicating the batch job execution results.
For details about the return code, see the description of the adshexec command's return codes.
If an error occurs during adshexec command postprocessing after this message was output, the return code
displayed in this message might not be the adshexec command's return code. The adshexec command's final
return code is output to KNAX7999-I.

execution-time-in-seconds
Total amount of time (in seconds) required for execution, from the beginning to the end of the batch job. This is a
reference value obtained by using the OS's API.

CPU-time-in-seconds
Total amount of CPU time (in seconds) used, from the beginning to the end of the batch job. This is a reference
value obtained by using the OS's API.

(S)
Resumes processing.

KNAX0101-E
job-name An error occurred during execution of the job.

An error occurring while the batch job indicated by job-name was running.

(S)
Resumes processing.

(O)
See the other messages output together with this message, eliminate the cause of the error, and then re-execute the
batch job.

KNAX0220-E
The environment variable "environment-variable-name" is not specified.

The environment variable indicated by environment-variable-name was not specified.

If environment-variable-name is JP1_HOSTNAME and the logical host name for a logical host operation was not
specified explicitly, the job might have been started from a system other than JP1/AJS.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1108

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

KNAX0235-E
The value specified for the environment variable "environment-variable-name" is invalid.

The value for the environment variable indicated by environment-variable-name is invalid.

environment-variable-name
Name of an environment variable

(S)
Terminates processing.

(O)
Check and, if necessary, revise the value of the environment variable. If the problem cannot be resolved, contact the
system administrator.

KNAX0236-E
The value specified for the environment variable "environment-variable-name" is too long.

The value set for the environment variable indicated by environment-variable-name is too long.

(S)
Terminates processing.

(O)
Re-evaluate the value set for the environment variable. If the problem cannot be resolved, contact the system
administrator.

KNAX0237-E
The value specified for the environment variable "environment-variable-name" is an empty string.

The value specified for the environment variable environment-variable-name is an empty string.

(S)
Terminates processing.

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1109

KNAX0238-E
The value specified for the environment variable "environment-variable-name" contains an invalid character.

The value set for the environment variable indicated by environment-variable-name contains an invalid character.

(S)
Terminates processing.

(O)
Re-evaluate the value set for the environment variable. If the problem cannot be resolved, contact the system
administrator.

KNAX0239-E
The value specified for the environment variable "environment-variable-name" is out of range.

The value set for the environment variable indicated by environment-variable-name is outside the permitted range.

(S)
Terminates processing.

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

KNAX0240-I
Environment variable name was applied. value=Environment variable value
The setting specified for the environment variable environment-variable-name was applied. value=environment-
variable-value

The setting of the environment variable indicated by environment-variable-name was applied.

environment-variable-value
Terminates processing.

(S)
Resumes processing.

KNAX0298-E
Failed to get the spool job name. reason="error-details"

Acquisition of the spool job name failed for the reason indicated by error-details. The previously acquired spool job
name or the JP1/Advanced Shell job name is used.

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1110

(O)
Check and, if necessary, revise the value of the ADSH_SPOOL_JOBNAME shell variable.

KNAX0299-E
An internal error occurred. details=maintenance-information

An internal conflict occurred during memory allocation.

This message is output to the error notification destinations. The message is output to only some of the destinations,
depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX0300-I
Usage: command-name command-argument

The command indicated by command-name and command-argument is invalid.

(S)
Terminates processing.

(O)
Specify the correct command and then execute it.

KNAX0301-E
No value is specified for the option "option-name".

The value specified for option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option.

KNAX0302-E
The option "option-name" is not a valid option.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1111

The specified option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option name.

KNAX0303-E
No script file name is specified.

No job definition script file name was specified.

(S)
Cancels processing.

(O)
Specify a job definition script file name, and then re-enter the command.

KNAX0305-E
The specified argument "argument" is invalid.

The command argument indicated by argument is invalid.

(S)
Cancels processing.

(O)
Specify the argument correctly, and then re-enter the command.

KNAX0306-E
The value specified for the option "option-name" is invalid.

The value of the option indicated by option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1112

KNAX0307-E
A required option is not specified.

A required option is missing.

(S)
Terminates processing.

(O)
Specify the required option, and then re-enter the command.

KNAX0308-E
The options "option-name-1" and "option-name-2" cannot be specified at the same time.

The options indicated by option-name-1 and option-name-2 are mutually exclusive.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

KNAX0309-I
The version of program-name is version.

The version of the command indicated by program-name is displayed in version.

(S)
Terminates processing.

KNAX0310-E
Too many operands are specified.

Too many operands are specified.

(S)
Cancels processing.

(O)
Specify the operand correctly.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1113

KNAX0311-E
One or more options or parameters required for command-name are not specified.

One or more options or parameters required for processing of the command indicated by command-name are missing.

(S)
Terminates processing.

(O)
Specify the required options or parameters, and then re-enter the command.

KNAX0336-E
The length of the value specified for the option "option-name" is invalid.

The size of the specified option name is not valid. Possible causes are as follows:

• The specified option name is too long.

• The size of the specified option name is 0.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

KNAX0401-E
Failed to open the environment file. reason="error-details"

An open error occurred on the environment file for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Based on the displayed error details, determine the cause of the error (such as permissions), and then correct the
error so that the environment file can be imported. If the problem cannot be resolved, contact the system
administrator.

KNAX0402-E
Failed to read the environment file. reason="error-details"

A read error occurred on the environment file for the reason indicated by error-details.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1114

(S)
Terminates processing.

(O)
Based on the displayed error details, determine the cause of the error (such as permissions), and then correct the
error so that the environment file can be imported. If the problem cannot be resolved, contact the system
administrator.

KNAX0403-E
The environment file name is too long.

The file name of the environment file is too long.

(S)
Terminates processing.

(O)
Check the specified environment file name for any error.

KNAX0406-E
An error occurred during collection of the host name. reason="error-details"

A host name acquisition error occurred for the reason indicated by error-details. In UNIX, this message might be
displayed when the length of the host name exceeds 255 characters.

(S)
Terminates processing.

(O)
Contact the system administrator to check the host name in the network.

KNAX0407-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

(S)
Terminates processing.

(O)
Check the file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1115

KNAX0410-E
An error occurred when parsing the environment file "file-name". For details, see the message output before this
one.

A parsing error occurred in the environment file indicated by file-name. For details about the error, see the message
output before this message.

(S)
Terminates processing.

(O)
Correct the error in the environment file.

KNAX0411-E
Line size exceeds limits. line=line-number

The line indicated by line-number in the environment file is too long.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0431-E
A parameter name is invalid. line=line-number

An invalid parameter name was found on the line indicated by line-number in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0432-E
The value specified for the parameter "parameter-name" is invalid. line=line-number

An invalid value was found in the parameter indicated by line-number in the environment file.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1116

(O)
Check and, if necessary, revise the environment file.

KNAX0433-E
No value is specified for the parameter "parameter-name". line=line-number

No value was specified in the parameter indicated by line-number in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0434-E
The parameter "parameter-name" is specified multiple times. line=line-number

The parameter indicated by line-number is duplicated in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0435-E
The number of "parameter-name" parameters exceeds the limit. line=line-number

The number of times the indicated parameter on the line indicated by line-number was specified in the environment file
exceeds the maximum value.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0436-E
The value specified for the parameter "parameter-name" is too long. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file is too long.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1117

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0437-E
The value specified for the parameter "parameter-name" is out of range. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file is outside the permitted
range.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0438-E
The value specified for the parameter "parameter-name" contains an invalid character. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file contains an invalid
character.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0439-E
The path specified for the parameter "parameter-name" is not an absolute path. line=line-number

The file path indicated by parameter-name on the indicated line-number in the environment file is not an absolute path.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1118

KNAX0441-E
The directory specified for the parameter "parameter-name" does not exist. line=line-number

The directory specified in the indicated parameter on the line indicated by line-number in the environment file does not
exist.

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file, or check the operating environment.

KNAX0442-E
The value specified for the parameter "parameter-name" is not a directory. line=line-number

The value specified in the indicated parameter on the line indicated by line-number in the environment file is not a
directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0444-E
Too many operands are specified for the parameter "parameter-name". line=line-number

Too many operands were specified in the indicated parameter on the line indicated by line-number in the environment
file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0445-E
The default directory specified for the parameter "parameter-name" does not exist. directory="default-directory-
name"

There is no default directory.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1119

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0446-E
The default directory specified for the parameter "parameter-name" is not a directory. directory="default-directory-
name"

The default directory name is not a directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0449-E
The required directory "directory-name" does not exist.

The required directory indicated by directory-name is missing.

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file or the operating environment.

KNAX0450-E
The required directory "directory-name" is not a directory.

The required directory indicated by directory-name is not a directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file or the operating environment.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1120

KNAX0451-E (Windows only)
An error occurred during a request for the default directory. parameter name="parameter-name"

An error occurred while obtaining the default directory name.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0456-E (Windows only)
A value is specified multiple times for the parameter "parameter-name". line=line-number

The value specified as parameter-name is duplicated.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0458-E
The combination of parameters is invalid. line=line-number

The combination of parameters is invalid. Possible causes are as follows:

• The combination of phost_start and phost_end parameters is invalid.

• The combination of lhost_start and lhost_end parameters is invalid.

• The parameter specification order is invalid.

• A start parameter is specified, but no end parameter is specified.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0459-E
The operands are specified in the wrong order, or the same operand is specified multiple times.
parameter="parameter-name" line=line-number

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1121

The order in which the operands are specified is not correct or the same operand is specified more than once.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0471-E
The value specified for the parameter parameter-name in "file-name" is different from that specified in the system
environment file.

The value specified for the parameter-name parameter in the file-name environment file differs from the value specified
in the system environment file.

If the default value is specified in the system environment file, specifying a different value in the job environment file
results in an error. The system execution log and trace settings specified in the system environment file cannot be
changed.

If the value is not specified explicitly in the job environment file, no error results.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0472-E
An unexpected error occurred. (function="function-name", error details="error-details", maintenance
information=maintenance-information)

An unexpected error occurred during environment file analysis processing.

function-name
Internal function name

error-details
Character string indicating the nature of the error

maintenance-information
Maintenance code

(S)
Terminates processing.

(O)
Correct the error, and then re-execute the command. If the error cannot be corrected, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1122

KNAX0473-W
The parameter "parameter-name" is redundantly specified in environment-file-type.

A redundant parameter is specified in the file indicated by environment-file-type.

For details about the problems that might result, see the explanation for the particular parameter.

We recommend that you do not specify this parameter in the indicated type of environment file.

environment-file-type
Job environment file

(S)
Executes the processing.

(O)
If the problem needs to be eliminated, delete the corresponding parameter.

KNAX0474-E
The value "parameter-value" for the parameter "parameter-name" cannot be specified for the current execution
method of a batch job. filename="file-name"

The specified value is not permitted for the current job start method that is set in the environment file indicated by file-
name.

parameter-value
Parameter value that is not permitted

parameter-name
Name of the parameter resulting in the error

file-name
Environment file containing the parameter that resulted in the error

(S)
Terminates processing.

(O)
Check and, if necessary, revise the parameter specified in the environment file.

KNAX0700-E
A spool job directory could not be created. reason=error-details

A directory for the batch job cannot be created under the spool root directory.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1123

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool root
directory specified in the environment file or the spool directory itself.

KNAX0701-E
Failed to open the file "file-name". reason=error-details

An open error occurred on the file indicated by file-name in the spool job directory. Alternatively, an open error occurred
in the output console.

In the case of the output console, CONOUT$ is displayed for file-name.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0702-E
An I/O error occurred during an attempt to write to JOBLOG file. reason=error-details

A write error occurred in the job execution log file in the spool job directory.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0703-E
The file "file-name" does not exist.

The file indicated by file-name does not exist in the spool job directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the file name.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1124

KNAX0704-E
Failed to get the date.

Acquisition of the date failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX0706-E
Failed to create the file path "file-path". reason=error-details

Creation of file-path has failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0708-E
The number of JOBLOG files exceeded the limit.

The number of JOBLOG files allocated exceeded the limit. Possible causes are as follows:

• A large number of spool jobs remain in the spool directory, leaving few available job IDs.

• A large number of child jobs have been started in a job.

(S)
Terminates processing.

(O)
Delete unneeded spool jobs, and then re-execute the job. Or, check the job definition script to make sure that an
unnecessarily large number of child jobs have not been started.

KNAX0719-I
STEP. step number=step-number step name=step-name output destination=output-destination

Following this message, information-about-output-destination for the job step is displayed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1125

(S)
Resumes processing.

KNAX0720-E
Failed to open the job ID file. reason=error-details

An open error occurred in the job ID file.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0721-E
An I/O error related to the job ID file occurred. reason=error-details

An input/output error occurred on the job ID file.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0722-E
Failed to allocate a job ID.

Assignment of a job ID failed. This message might be displayed because no more spool job directories can be created.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
messages output before and after this message, and then re-execute the command. Alternatively, delete an unneeded
spool job directory, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1126

KNAX0723-E
Failed to lock the job ID file. reason=error-details

An attempt to lock the job ID file failed.

If an NFS directory is specified in the SPOOL_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the SPOOL_DIR parameter.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0724-I
The job ID was assigned. job ID=job-ID

The indicated job-ID was assigned.

This message is not output for a child job that was started with MERGE specified as the operand in the
SPOOLJOB_CHILDJOB parameter of the root job's environment file.

(S)
Resumes processing.

KNAX0725-E
An API error occurred. (API="API-name", reason="cause", maintenance information="maintenance-
information")

An error occurred in the API.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator.

KNAX0726-I
The child job ID was assigned. job ID=job-ID

A job ID has been assigned for a child job.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1127

(S)
Resumes processing.

KNAX0727-E
Failed to lock the file that manages the start order of child jobs. reason=error-details

An attempt to lock the file that manages the start order of child jobs failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0728-E
The format of the file that manages the start order of child jobs is invalid.

The format of the file that manages the start order of child jobs is not valid.

(S)
Terminates processing.

(O)
Check whether the file that manages the start order of child jobs has been updated illegally. If the problem cannot
be resolved, contact the system administrator.
The system administrator must check whether there is a problem in the spool job directory or with the files in the
spool job directory.

KNAX0800-E
Failed to create the {.sysout|sysout.ini} file. reason=error-details

An attempt to create a spool job management file failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1128

KNAX0801-E
Failed to lock the .sysout file. reason=error-details

An attempt to lock the spool job management file failed.

If an NFS directory is specified in the SPOOL_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the SPOOL_DIR parameter.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0802-E
Failed to open the {.sysout|sysout.ini} file. reason=error-details

An attempt to open the spool job management file failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0803-E
An I/O error related to the {.sysout|sysout.ini} file occurred. reason=error-details

An input/output error occurred in the spool job management file.

This message is output to the error notification destinations. The message might be output to only some of the
destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1129

KNAX0804-E
Failed to get the current time to use for STARTTIME in the {.sysout|sysout.ini} file.

Acquisition of the current time used for STARTTIME in the spool job management file failed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX0805-E
Failed to get the current time to use for ENDTIME in the {.sysout|sysout.ini} file.

Acquisition of the current time used for ENDTIME in the spool job management file failed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX1600-I
job-name Allocation of file(s) for a job started.

The file for the batch job indicated by job-name has been allocated.

(S)
Resumes processing.

KNAX1601-I
job-name.job-step-name Allocation of file(s) for a step started.

The file for the job step indicated by job-name and job-step-name has been allocated.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1130

KNAX1604-I
The file file-path was deleted.

The file indicated by file-path was deleted based on the value specified for postprocessing.

(S)
Resumes processing.

KNAX1605-I
Deletion of the file file-path failed. reason="error-details"

An attempt was made to delete file-path based on the value specified for postprocessing, but the error indicated by
error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Resumes processing.

KNAX1632-E
The value specified for the environment variable environment-variable-name is too long.

An attempt was made to set the environment variable whose name is indicated by environment-variable-name, but the
specified value exceeded the maximum permissible length in JP1/Advanced Shell.

(S)
Terminates processing.

(O)
Correct the environment variable value specified in the environment file, and then re-execute the batch job.

KNAX1871-E
command-name: Failed to normalize the file name. (function="function-name", reason="cause", maintenance
information="maintenance-information")

An error occurred while the command specified by command-name was normalizing the specified file path by converting
it to an absolute path.

If function-name is _fullpath, this message might be issued when the path name specified by the command is too
long (in this case, Invalid argument might be indicated for cause).

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1131

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The path contains one or
more invalid multibyte
characters

(UNIX only) The path name contains an invalid multibyte character. Correct the file path specified in
the command.

The path contains too
many components

(UNIX only) The path name contains more than 4,096 components. Correct the file path specified in
the command.

File name too long (UNIX only) After being converted to an absolute path, the size of the file path name exceeded the
maximum permissible length. Correct the file path specification.

error cause determined
from errno

• A memory shortage occurred.
• An error occurred while an API was being executed by the OS (error in getcwd or _fullpath).
• (Windows only) If function-name is _fullpath and cause is Invalid argument, the size of

the file path name after conversion to an absolute path might have exceeded the maximum
permissible length. In this case, correct the file path specified in the command.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on function-name and cause, and then re-execute the command. If the cause
of the error cannot be eliminated, contact the system administrator.

KNAX1872-E
command-name: The file path is invalid. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An error occurred while the file path specified by file-path was being checked during the processing of the command
indicated by command-name. Make sure that the file path specified in the command is usable.

cause
Cause of the error reported by the system

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.
If the cause of the error cannot be eliminated, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1132

KNAX1873-E
command-name: The specified file path is a directory. (file path="file-path", maintenance
information="maintenance-information")

The file path indicated by file-path specified by the command indicated by command-name is a directory. Specify a
normal file for the file path.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX1875-E
command-name: An error occurred. (reason="cause", maintenance information="maintenance-information")

An unexpected error occurred while the command indicated by command-name was being processed.

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The size of the buffer is
insufficient for storing the
path

(UNIX only) A shortage occurred in the buffer for storing path names.

An error occurred in the _time64
function

(Windows only) An error occurred in the process for determining the time.

An error occurred in the
clock_gettime function

(UNIX only) An error occurred in the process for determining the time.

An error occurred in the
nanosleep function

(UNIX only) An error occurred in the suspension process.

Invalid argument An invalid argument was specified.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1133

KNAX1877-E
command-name: An environment variable is invalid. (environment variable="environment-variable-name",
maintenance information="maintenance-information")

The environment variable indicated by environment-variable-name does not exist. Alternatively, the size of the character
string in the specified value is 0 bytes or less.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Check the job definition script to determine whether the applicable environment variable has been changed.
Alternatively, check whether the command was started by a process other than the job controller.
If the cause cannot be determined, contact the system administrator.

KNAX1878-E
command-name: An I/O error occurred. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An I/O error occurred in the allocation management file.

file-path
File path name of the allocation management file

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The file is not a regular file The file is not a regular file.

The file was replaced The file was replaced while it was being opened.

api-name error : error-details The error indicated by error-details occurred during the processing of the API indicated by
api-name.
error-details is the error information that is set by the API.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.
If the cause of the error cannot be determined, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1134

KNAX1879-E
command-name: The number of files exceeded the limit. (maintenance information="maintenance-information")

The maximum permissible number of files that can be registered, which is 64, was exceeded.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Modify the job definition script so that the number of files to be registered does not exceed the maximum.

KNAX1880-E
command-name: The command cannot be executed with the current setting of the environment setting parameter.
parameter="environment-setting-parameter"

The indicated command cannot be used with the current setting of the indicated environment setting parameter.

command-name
Command name

environment-setting-parameter
Environment setting parameter and value that caused this error

(S)
Terminates processing.

(O)
Do not execute this command. If you want to execute this command, check and revise the specified environment
setting parameter as necessary.

KNAX1890-I
The file was deallocated as "processing-value". path=file-path

The file indicated by file-path was released in accordance with the processing indicated by processing-value.

processing-value
One of the following values is displayed as the specified postprocessing for files during normal times or abnormal
times:

• del: Delete.

• keep: Do not delete.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1135

KNAX1891-E
An I/O error occurred during deallocation of the file. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An I/O error occurred in the allocation management file during postprocessing of the file.

file-path
File path name of the allocation management file

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The file is not a regular file The file is not a regular file.

The file was replaced The file was replaced while it was being opened.

api-name error : error-details The error indicated by error-details occurred during the processing of the API indicated by
api-name.
error-details is the error information that is set by the API.

maintenance-information
Internal information

(S)
Terminates the job.

(O)
Contact the system administrator.

KNAX1892-E
An error occurred during deallocation of the file. (reason="cause", maintenance information="maintenance-
information")

An unexpected error occurred.

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

An error occurred in the _time64
function

(Windows only) An error occurred in the process for determining the time.

An error occurred in the
clock_gettime function

(UNIX only) An error occurred in the process for determining the time.

An error occurred in the
nanosleep function

An error occurred in the suspension process.

maintenance-information
Internal information

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1136

(S)
Terminates the job.

(O)
Contact the system administrator.

KNAX1893-W
An invalid entry in the file was skipped. (file path="file-path", maintenance information="maintenance-
information")

The postprocessing of the adshfile command was skipped because an invalid entry existed in the allocation
management file. The postprocessing of the file specified by the adshfile command of the corresponding job might
not have been executed.

file-path
File path name of the allocation management file

maintenance-information
Internal information

(S)
Resumes processing.

(O)
If files specified to be deleted by the adshfile command remain, delete them manually if necessary.

KNAX1910-E
The CPU time is invalid.

The calculation result of C-Time is invalid.

(S)
Resumes the batch job using 0 as the time value for output to job execution logs.

(O)
Contact the system administrator.

KNAX1911-E
The execution time is invalid.

The calculation result of E-Time is invalid.

(S)
Resumes the batch job using 0 as the time value for output to job execution logs.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1137

(O)
Contact the system administrator.

KNAX2201-E
The message is too long. message number=message-number

Some of the text could not be output to the message indicated by message-number (number following KNAX) because
the text was too long.

(S)
Resumes processing.

(O)
Check the batch job processing for any problem. If necessary, correct the job definition script.

KNAX2202-E
Output to JOBLOG failed. message ID=message-ID

Output to the job execution log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the spool
job directory.

KNAX2204-E
Output to stdout failed. message ID=message-ID

Output to the standard output of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the
standard output.

KNAX2205-E
Output to stderr failed. message ID=message-ID

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1138

Output to the standard error output of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the
standard error output.

KNAX2206-E
The system execution log output failed. message ID=message-ID

Output to the system execution log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of system execution logs in the
environment file or the access permissions and disk status of the system execution log directory.

KNAX2207-E
Trace output failed. message ID=message-ID

Output to the trace log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

KNAX2208-E
System execution log initialization failed. code=maintenance-information, reason=error-cause

Initialization of the system execution log failed.

If an NFS directory is specified in the LOG_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the LOG_DIR parameter.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1139

(O)
Contact the system administrator. Check and, if necessary, correct the specification of system execution logs in the
environment file or the access permissions and disk status of the system execution log directory.

KNAX2209-E
Trace initialization failed. code=maintenance-information

Initialization of the trace log failed.

If an NFS directory is specified in the TRACE_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the TRACE_DIR parameter.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

KNAX2211-E
Trace settings for the file size or the number of files used are invalid.

The trace settings are invalid.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, revise the specification of traces in the environment file.

KNAX2213-E
The location specified for trace output is invalid.

The specified trace output destination is invalid.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1140

KNAX2214-E
Failed to get the current time.

Acquisition of the current time failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX2400-E
Output failed because initialization has not been completed. output location=output-location, message
ID=message-ID, destination=maintenance-information-1, set destination=maintenance-information-2

The message indicated by message-ID cannot be output because initialization has not been completed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX2499-E
Message number "message-number" is not defined.

The message indicated by message-number does not exist.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX2500-E
The number of arguments for the command-name command is invalid. [filename="file-name" line=line-number]

The number of arguments of the command indicated by the command-name is invalid.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1141

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX2501-E
An error occurred while the data was being parsed. [filename="file-name" line=line-number]

An error occurred during data analysis. The following causes are expected.

For CSV data
Double quotation marks are not closed.

For JSON data

• Format of input data does not match the format of JSON.

• Double quotation marks are not closed.

• A value that needs to be enclosed with double quotation marks is not enclosed with double quotation marks.

(S)
Continues processing.

(O)
Review the job definition script file or contents of data, and then correct the file and data.

KNAX3000-I
adshmd started.

The user-reply functionality's management daemon has started.

(S)
Resumes processing.

KNAX3001-I
adshmd stopped.

The user-reply functionality's management daemon has stopped.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1142

KNAX3002-E
An attempt to start adshmd failed.[detailed-message]

An attempt to start the user-reply functionality's management daemon failed.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence. In the case of output to syslog, the message text
for a message related to the user-reply functionality's management daemon (message number from 3000 through
3999) might be added to this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the user-reply functionality's management daemon.

KNAX3003-E
An error was detected with adshmd.[detailed-message]

The user-reply functionality's management daemon terminated with an error or an error occurred during its termination
processing. In the case of output to syslog, the message text for a message related to the user-reply functionality's
management daemon (message number from 3000 through 3999) might be added to this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the user-reply functionality's management daemon.

KNAX3006-I
adshmd will now start. (PID=process-ID, UID=user-ID, GID=group-ID, user name=user-name)

The user-reply functionality's management daemon has started.

(S)
Terminates processing.

KNAX3008-W
The old PID was process-ID.

This message displays the process ID (PID) used the last time the user-reply functionality's management daemon
terminated with an error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1143

(S)
Resumes processing.

KNAX3009-E
adshmd could not start because another instance is already running.

The user-reply functionality's management daemon is already running.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
If necessary, terminate the running user-reply functionality's management daemon, and then restart it.

KNAX3020-E
A file error occurred. (function=function-name, target=target-name, details=error-details)

A file manipulation error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3023-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1144

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3024-E
A signal error occurred. (function=function-name, target=target-name)

A signal error occurred in the user-reply functionality's management daemon.

function-name and target-name indicate the error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3025-E
A signal error occurred. (function=function-name, details=error-details)

A signal error occurred in the user-reply functionality's management daemon.

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3026-E
A signal error occurred. (function=function-name)

A signal error occurred in the user-reply functionality's management daemon.

function-name indicates the error information.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1145

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3027-E
A process error occurred. (function=function-name, target=target-name, details=error-details)

A processing error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.
function-name indicates the system's function name. Determine the cause of the error based on the system function's
error message.

KNAX3029-E
An error occurred in a system function. (function=function-name, details=error-details)

A system function error occurred in the user-reply functionality's management daemon.

function-name and error-details provide error information.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3261-I
adshmd received the signal signal-name.

The user-reply functionality's management daemon received the termination request signal indicated by signal-name.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1146

KNAX3400-I
The parameters specified in the environment file were correct.

Checking of the environment file was completed successfully.

(S)
Resumes processing.

KNAX3402-E
One or more parameters specified in the environment file were incorrect.

An error occurred while checking the environment file.

For details about the error, see the message that was output before this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error.

KNAX3508-I
A response request was canceled. (job ID=job-ID, line=line-number, host name=host-name)

The user-reply functionality's management daemon canceled the reply-request message that was initiated by the
adshread command.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the user-reply functionality's management daemon is running

(S)
Resumes processing.

KNAX3522-E
A shared memory error occurred. (function=function-name, details=error-details)

A shared memory error occurred in the user-reply functionality's management daemon.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1147

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.
function-name indicates the system's function name. Determine the cause of the error based on the system function's
error message.

KNAX3542-W
The shared memory object or named semaphore already exists, and will be initialized for reuse. ({Named semaphore
| Shared memory object})

The existing shared memory or semaphore will be initialized and used because the -f option was specified for the user-
reply functionality's management daemon.

target-name indicates a shared memory object or a named semaphore.

(S)
Initializes the existing shared memory or semaphore, and then resumes processing.

KNAX3700-I
The adshmd will now start.

The user-reply functionality's management daemon will now start.

(S)
Resumes processing.

KNAX3701-I
The adshmd will now stop.

The user-reply functionality's management daemon will now stop.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1148

KNAX3703-E
The adshmd is not running.

The user-reply functionality's management daemon is not running.

(S)
Terminates processing.

(O)
Check if the user-reply functionality's management daemon is running.

KNAX3709-E
The adshmd could not start because another one is already running.

The user-reply functionality's management daemon is already running.

(S)
Terminates processing.

(O)
If necessary, terminate the running user-reply functionality management daemon, and then restart it.

KNAX3710-I
The adshmd is running.

The user-reply functionality's management daemon is running.

(S)
Terminates processing.

KNAX3711-I
The adshmd is not running.

The user-reply functionality's management daemon is not running.

(S)
Terminates processing.

KNAX3799-I
Usage command-name [-h LogicalHostName] {start [reuse]|stop|status|conftest [EnvironFile]|help}

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1149

This message displays the usage of the adshmdctl command.

(S)
Terminates processing.

KNAX3998-E
An error occurred during adshmd signal handler processing.

The signal handler terminated with an error in the user-reply functionality's management daemon.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX3999-E
The adshmd ended abnormally because of an unexpected exception.

The user-reply functionality's management daemon terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX4414-E
The size of the specified spool directory path is invalid. filename="file-name" line=line-number

The length of the path name for a specified spool directory is invalid.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Performs the specified processing in the next line.

(O)
Check that the spool directory name specified in the target list file is correct, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1150

KNAX4415-E
The data format is incorrect. filename="file-name" line=line-number

The format of the target list file is invalid. Or, a number of days is not specified in the command's argument or in the
target list file.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Performs the specified processing in the next line.

(O)
Check and, if necessary, revise the specification in the target list file, or specify a number of days in the command's
argument.

KNAX4416-E
A line exceeds the maximum line size. filename="file-name" line=line-number

A line in the target list file exceeds the permitted maximum length.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Cancels processing.

(O)
Check and, if necessary, revise the specification in the target list file.

KNAX4417-E
A file was unexpectedly modified. filename="file-name"

The file entities differ before and after the file was opened.

file-name
File name

(S)
Cancels processing the corresponding file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1151

(O)
Check the file for any error.

KNAX4418-E
The file "file-name" is not a regular file.

The indicated file is not a regular file.

file-name
File name

(S)
Cancels processing the corresponding file.

(O)
Check the file for any error.

KNAX4419-E
An I/O error occurred. path="path-name" error="error-details"

An input or output error occurred in the file.

path-name:
Path name

One of the reasons why this message is output is that there is a file under the spool directory that cannot be recognized
by JP1/Advanced Shell, such as a user-created file or directory.

(S)
Cancels processing the corresponding path.

(O)
Check the corresponding path for any error.

KNAX4420-E
A fatal error occurred. error information="error-details, internal-information"

An unexpected error occurred (an open error in a log file or trace file, or an error during time processing).

(S)
Cancels spool job processing if the error occurred during spool job processing; otherwise, terminates the command.

(O)
Check the operating environment for any problem.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1152

KNAX4422-E
A required operand is not specified. Correct syntax: {target-list-file | report-file | log-file}

A mandatory operand is missing in the command.

target-list-file
Target list file

report-file
Report file

log-file
Log file

(S)
Terminates the command.

(O)
Specify the mandatory operand, and then re-execute the command.

KNAX4423-E
The number of days is specified incorrectly.

The format of the number of days specification in the command is invalid.

(S)
Terminates the command.

(O)
Specify the number of days in the correct format, and then re-execute the command.

KNAX4424-E
The spool job was not deleted because the start date for job execution could not be obtained. path="spool-job-
directory-name"

The spool job was not deleted because the date the batch job is to start cannot be determined. The file used to manage
the spool job might be corrupted.

spool-job-directory-name
Name of the erroneous spool job directory

(S)
Resumes processing without deleting the corresponding spool job.

(O)
If necessary, delete the corresponding spool job manually.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1153

KNAX4425-E
The spool directory is being used by another program. path="spool-directory-name"

The spool directory indicated by spool-job-directory-name cannot be processed because it is being used by another
program.

(S)
Resumes processing without processing the corresponding spool job.

(O)
Wait a while, check that the corresponding spool directory is not being used by another program, and then re-execute
the command.

KNAX4427-W
An invalid spool job directory was skipped.

An invalid spool directory was found and that directory was skipped.

The name of the spool job directory for a completed job is not in one of the following formats:

• job-ID-spool-job-name

• job-ID-

This message is displayed when the spool directory contains a directory or a file with an invalid name, such as one of
the following:

• The name consists of fewer than six bytes.

• Byte 7 in the name is not a hyphen (-).

These requirements do not apply to a file managed by JP1/Advanced Shell (.jobid in UNIX and adsh.jobid in
Windows). They are also not applicable to a name consisting of a job ID only (name length is six bytes) because such
a job is currently executing.

(S)
Continues processing.

(O)
Delete any invalid directory or file manually.

KNAX4428-I
A spool job was removed. path="path-name"

The spool job was deleted.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1154

path-name
Name of the spool job directory

(S)
Continues processing.

KNAX4429-E
An error occurred.

An error occurred during command execution.

(S)
Continues processing.

(O)
Determine the nature of the error by checking the message output to the log file, report file, or standard error output.
If necessary, correct the error, and then re-execute the command.

KNAX5300-I
Usage: command-name [-jbspglogicalhost LogicalHostName]

An argument in the adapter command is invalid.

(S)
Terminates processing.

KNAX5301-E
No value is specified for the option "option-name".

A specified option value in the adapter command is invalid.

option-name
Option name in the adapter command

(S)
Terminates processing.

KNAX5305-E
The specified argument "argument" is invalid.

An invalid argument was specified in the adapter command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1155

argument
Name of the adapter command's option.

(S)
Terminates processing.

KNAX5308-E
An API error occurred. (maintenance information=maintenance-information, details=error-details)

An API error occurred in the adapter command.

maintenance-information and error-details provide error information.

(S)
Terminates processing.

(O)
If maintenance-information is sem_open, one of the following environment errors might have occurred:

• The user-reply functionality's management daemon or service is not running.
Start the user-reply functionality's management daemon or service.
If the reason the user-reply functionality's management daemon or service is not running is known, resolve the
problem, and then restart the user-reply functionality's management daemon or service.
If the cause is not known, contact the system administrator.

• The user-reply functionality's management service has not been registered (in Windows).
Use the service registration procedure to register the user-reply functionality's management service, and then
start the service.
If the service cannot be registered or has been registered but will not start and the reason is known, resolve the
problem, and then register or start the service.
If the reason preventing the service from being registered or running is not known, contact the system
administrator.

If maintenance-information is not sem_open, contact the system administrator.

KNAX5309-E
An internal error occurred.

An internal error occurred.

(S)
Terminates processing.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1156

KNAX5323-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the adapter command.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5340-E
You do not have permission to execute the command command-name.

The user does not have execution permissions for the adapter command.

This command must be executed by a user with Administrators permissions.

(S)
Terminates processing.

(O)
The adapter command is a program that is started from JP1/Base's plug-in service. If this message is displayed when
the adapter command was started as a plug-in service, check and, if necessary, revise the JP1/Base settings.

KNAX5350-E
The request header is invalid.

The request header that was passed to the adapter command is invalid.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5360-E
The request data is invalid.

The request data that was passed to the adapter command is invalid.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1157

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5361-E
Failed to get the identifier.

Acquisition of the identifier in the request data that was passed to the adapter command failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5362-E
The response contains one or more non-ASCII characters.

The data entered as a reply from the Enter Replies window in JP1/IM - View contains non-ASCII characters.

(S)
Terminates processing.

(O)
Specify an ASCII character string as the reply, and then re-enter the reply.

KNAX5371-E
The userreply function is busy.

JP1/Advanced Shell processing is busy.

(S)
Terminates processing.

(O)
Wait a while, and then reply to the reply-request message again.

KNAX5372-E
The message is not found.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1158

There is no reply-request message. Possible reasons are as follows:

• The user-reply functionality's management daemon or service is not running.

• The logical host settings in JP1/Base are not valid.

When a response to a message was entered by proxy with the adshchmsg command, this message might be displayed
depending on the timing. If this is the case, no action is needed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5380-I
The following data was received: received-data

The user-reply functionality received a message from JP1.

(S)
Resumes processing.

KNAX5381-I
The following information was sent: sent-data

The user-reply functionality sent a message to JP1.

(S)
Resumes processing.

KNAX5396-I
adshuserreply.adapter completed because signal is detected.

The adapter command received a termination signal and terminated.

(S)
Terminates processing.

KNAX5397-I
Signal handler processing completed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1159

The adapter command received a signal.

(S)
Terminates processing.

(O)
The core has been output. Contact the system administrator.

KNAX5398-E
An error occurred during adshuserreply.adapter signal handler processing.

The adapter command received a signal, but an error occurred in the signal handler processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5399-E
The adshuserreply.adapter ended abnormally because of an unexpected exception.

The adapter command terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5407-E
Non-ASCII character is found in a response.

Non-ASCII characters are specified in the -r option (response) of the adshchmsg command.

(S)
Terminates processing.

(O)
Specify an ASCII character string in the -r option of the adshchmsg command, and then re-enter the response.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1160

KNAX5409-E
No valid response request was found.

An attempt was made to cancel the reply-request message or to enter a reply to the reply-request message whose number
was specified in the -n option in the adshchmsg command, but the specified reply-request message was not found.

(S)
Terminates processing.

(O)
Check the following:

• Whether the correct reply-request message number was specified in the -n option.

• Whether the reply-request message number specified in the -n option is displayed by executing the adshlsmsg
command.

If the correct number was specified but it is not displayed by executing the adshlsmsg command, a reply might
have already been entered.

KNAX5410-E
An API error occurred. (maintenance information=maintenance-information, details=error-details)

An API error occurred in the adshchmsg or adshlsmsg command.

maintenance-information and error-details provide error information.

(S)
Terminates processing.

(O)
If maintenance-information is sem_open, one of the following environment errors might have occurred:

• The user-reply functionality's management daemon or service is not running.
Start the user-reply functionality's management daemon or service.
If the reason the user-reply functionality's management daemon or service is not running is known, resolve the
problem, and then restart the user-reply functionality's management daemon or service.
If the cause is not known, contact the system administrator.

• The user-reply functionality's management service has not been registered (in Windows).
Use the service registration procedure to register the user-reply functionality's management service, and then
start the service.
If the service cannot be registered or has been registered but will not start and the reason is known, resolve the
problem, and then register or start the service.
If the reason preventing the service from being registered or running is not known, contact the system
administrator.

If maintenance-information is not sem_open, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1161

KNAX5423-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5424-E
A signal error occurred. (function=function-name, target=target-name)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name and target-name provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5425-E
A signal error occurred. (function=function-name, details=error-details)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5426-E
A signal error occurred. (function=function-name)

A signal error occurred in the adshchmsg or adshlsmsg command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1162

function-name provides error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5429-E
An internal error occurred. (maintenance-information)

An internal error occurred in the adshchmsg or adshlsmsg command.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5440-E
You do not have permission to execute the command command-name.

The user does not have execution permissions for the command indicated by command-name.

This command must be executed by a user with Administrators permissions.

(S)
Terminates processing.

(O)
Have a user with Administrators permissions execute the command.

KNAX5498-E
An error occurred during command-name signal handler processing.

An error occurred in the adshchmsg or adshlsmsg command during signal handler processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1163

KNAX5499-E
The command-name ended abnormally because of an unexpected exception.

The adshchmsg or adshlsmsg command terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6000-E
The built-in command "command-name" is not supported. [filename="file-name" line=line-number]

The specified built-in command is not supported in JP1/Advanced Shell.

command-name
Name of the built-in command that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the erroneous line and correct the job definition script.

KNAX6001-E
The shell option "shell-option-name" is not supported. [filename="file-name" line=line-number]

The specified shell option is not supported in JP1/Advanced Shell.

shell-option-name
Name of the shell option that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1164

(O)
Check the erroneous line and correct the job definition script.

KNAX6002-E
The shell variable "shell-variable-name" cannot be specified. [filename="file-name" line=line-number]

The specified shell variable name is not supported in JP1/Advanced Shell.

shell-variable-name
Name of the shell variable that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the erroneous shell variable name.

KNAX6003-E
The variable "variable-name" is not an identifier. [filename="file-name" line=line-number]

The specified variable name contains invalid characters.

variable-name
Variable name determined to be invalid

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command, regular built-in command, or the typeset command
that resulted in the error; otherwise, terminates processing.

(O)
Correct the variable name resulting in the error.

KNAX6004-E
The specified value "invalid-value" is invalid. [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1165

The cause might be one of the following:

• An attempt was made to assign characters to an integer-type variable.

• An argument requires a numeric value, but characters were specified.

• The specified numeric value is invalid.

invalid-value
Value determined to be invalid or a non-numeric value

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continue processing if an error occurred at locations other than extended shell command, regular built-in
command and typeset command. Other than that, terminate processing.

(O)
If an assignment expression resulted in the error, check the value or the attributes of the variable to be assigned, and
then correct the job definition script as necessary. If a command resulted in the error, check the specified argument
values, and then correct the job definition script.

KNAX6005-E
Too many arguments are specified. [filename="file-name" line=line-number]

Too many arguments were specified in the command.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the command argument that resulted in the error, and then correct the job definition script.

KNAX6006-E
A substitution is specified incorrectly. [filename="file-name" line=line-number]

The specified substitution is invalid. Or, a character string that is not part of the current directory path name is specified
as an argument in the cd command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1166

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was the cd command that resulted in the error; otherwise, terminates processing.

(O)
Check the variable or command substitution or argument specification that resulted in the error, and then correct the
job definition script.

KNAX6007-E
The subscript of the array "array-name" is out of range.[filename="file-name" line=line-number]

The number of array elements is out of range.

array-name
Specified array name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script so that the array element number that is specified is in the range from 0 through
65535.
When TYPE_A or TYPE_B is specified in the VAR_SHELL_FUNCINFO environment setting parameter, the
function nesting level exceeds the maximum number of array elements. Either specify NONE in the
VAR_SHELL_FUNCINFO environment setting parameter or correct the job definition script.

KNAX6008-E
The variable "variable-name" is read-only. [filename="file-name" line=line-number]

An attempt was made to assign a value to a read-only variable.

variable-name
Specified variable name

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1167

line-number
Line number in the job definition script file where the error occurred

(S)
Sets the command's return code and continues processing when any of the following commands has resulted in the
error:

• Extended shell command

• Regular built-in command

• typeset command
If your specification was attempting to assign a value to a variable that is defined as an array without specifying
an element number while the attribute of that variable has been set to read-only by the typeset command, the
assignment processing that resulted in this error is not performed. However, in the case of an assignment
expression, the system sets return code 0 and continues processing.

Otherwise, terminates processing.

(O)
Check the attribute or name of the variable that resulted in the error, and then correct the job definition script.

KNAX6009-E
The option "option" is invalid. [filename="file-name" line=line-number]

An invalid option was specified in the command.

option
Option specified in the command

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command, regular built-in command, or the typeset command
that resulted in the error; otherwise, terminates processing.

(O)
Check the option specified in the command, and then correct the job definition script.

KNAX6010-E
The option "shell-option" is invalid. [filename="file-name" line=line-number]

An invalid shell option was specified in the set command.

option
Specified shell option

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1168

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the option specified in the set command, and then correct the job definition script.

KNAX6011-E
The signal number or signal name "signal-information" is invalid. [filename="file-name" line=line-number]

An invalid signal number or signal name was specified.

signal-number-or-name
Specified signal number or signal name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the signal number or signal name specified in the command, and then correct the job definition script.

KNAX6012-E
The mask "mask" is invalid. [filename="file-name" line=line-number]

An invalid mask was specified.

mask
Specified mask

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1169

(O)
Check the mask specified in the command, and then correct the job definition script.

KNAX6013-E
The value of an upper limit could not be changed. error details=error-details [filename="file-name" line=line-
number]

The maximum value could not be changed because the error indicated by error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6014-E
No value is set for the specified variable "variable-name". [filename="file-name" line=line-number]

A variable for which no value has been set was specified while the nounset shell option was enabled.

variable-name
Specified variable name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Evaluate whether the nounset shell option is required. If it is required, correct the job definition script so that a
value is assigned when the variable is used.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1170

KNAX6015-E
No argument is specified. [filename="file-name" line=line-number]

A built-in command requires an argument, but the command was executed with no argument specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the command specification resulting in the error, and then correct the job definition script.

KNAX6016-E
The option "option" requires an argument. [filename="file-name" line=line-number]

The command was executed with no option value specified.

option
Specified option

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continue processing if an error occurred at locations other than extended shell command and regular built-
in command. Other than that, terminate processing.

(O)
Check the command specification resulting in the error, and then correct the job definition script.

KNAX6017-E
A syntax error occurred in a statement item ("item-name"). [file name="file-name" line=line-number]

The specified control statement is not valid.

item-name
Word determined to constitute a syntax error

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1171

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

KNAX6018-E
A required part ("item-name") of a statement is not present. [filename="file-name" line=line-number]

A correspondence between words is invalid in a control statement.

item-name
Word determined to constitute a syntax error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6019-E
EOF was unexpectedly reached during syntax analysis. [filename="file-name" line=line-number]

A specified control statement is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1172

KNAX6020-E
The specified directory path "directory-path" is invalid. [filename="file-name" line=line-number]

An invalid directory path was specified.

directory-path
Specified directory path

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Correct the job definition script.

KNAX6021-E
Too many instances of "<<" are specified. [filename="file-name" line=line-number]

A redirect specification is invalid in a here document.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6022-E
Too many redirections are specified. [filename="file-name" line=line-number]

Too many redirections are specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1173

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6023-W
The {break|continue} command cannot be executed in this context. [filename="file-name" line=line-number]

The break or continue command was executed outside a loop.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6024-E
The name specified for the function "function-name" is invalid. [filename="file-name" line=line-number]

An invalid function name was specified in a function definition.

function-name
Specified function name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6025-E
"file-name, command-name, or function-name" was not found. [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1174

A specified file-name, command-name, or function-name cannot be identified.

file-name, command-name, or function-name
Unidentifiable name that was specified for a file name, command name, or function name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates the processing if it was a . (dot) command that resulted in the error; otherwise, continues processing.

(O)
Check for an error in the specified file name, command name, or function name, and then correct the job definition
script.

KNAX6026-E
The command "command-name" cannot be executed. reason=error-details [filename="file-name" line=line-
number]

The specified command could not be executed because the error indicated by error-details occurred.

command-name
Specified command name

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without executing the specified command.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6027-W
The value specified in the {break|continue} command is greater than the number of nested loops (nested-loop-
count). [filename="file-name" line=line-number]

The value specified in the argument of the break or continue command is greater than the number of nesting loops.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1175

nested-loop-count
Number of nesting loops when control is to exit the looped processing (break command) or when the looped
processing is to be canceled and control returned to the beginning (continue command)

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Executes the break or continue command as many times as there are nesting loops, and then continues
processing.

(O)
Check the argument specified in the break or continue command, and then correct the job definition script.

KNAX6028-E
The command "command-name" is not a built-in command. [filename="file-name" line=line-number]

The command specified in the builtin command is not a built-in command.

command-name
Specified command name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the argument specified in the builtin command, and then correct the job definition script.

KNAX6029-E
A coprocess is already being executed. [filename="file-name" line=line-number]

A background process is already running.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1176

(O)
Correct the job definition script.

KNAX6030-E
The directory cannot be changed. directory=directory-path details=error-details [filename="file-name" line=line-
number]

The directory cannot be changed.

directory-path-name
Specified directory path name

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6031-E
The shell variable HOME is not set. [filename="file-name" line=line-number]

The directory cannot be changed because the HOME shell variable has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Specify the home directory in the HOME shell variable, and then re-execute the job definition script.

KNAX6032-E
The shell variable OLDPWD is not set. [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1177

The directory cannot be changed because the OLDPWD shell variable has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Correct the job definition script.

KNAX6033-E
The current directory could not be identified. [filename="file-name" line=line-number]

The directory cannot be changed because the current directory cannot be identified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Re-execute the job definition script.

KNAX6034-E
No coprocess exists. [filename="file-name" line=line-number]

The job definition script was executed without a background process.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1178

KNAX6035-E
The specified file descriptor "file-descriptor" is invalid. reason=error-details [filename="file-name" line=line-
number]

An invalid file descriptor was specified.

file-descriptor
Specified file descriptor

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6036-E
The value specified for the process ID ("process-ID") is invalid. [filename="file-name" line=line-number]

A specified process ID is invalid.

process-ID
Specified process ID

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing in the case of a regular built-in command; terminates the processing in the case of a special
built-in command.

(O)
Correct the job definition script.

KNAX6037-E
The getopts command was executed without a required option. [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1179

The getopts command was executed with no option specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6038-E
The getopts command was executed without the required name argument. [filename="file-name" line=line-
number]

The getopts command was executed with name omitted.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6039-E
The shift command was executed with more arguments specified than were specified in the command line.
[filename="file-name" line=line-number]

The shift command was executed while the number of specified arguments was greater than the number of arguments
in the command line.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1180

(O)
Check the number of arguments specified in the shift command or the number of arguments in the command line,
and correct the job definition script if necessary.

KNAX6040-E
A "]" character is missing. [filename="file-name" line=line-number]

A right square bracket (]) is missing.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

KNAX6041-E
The specified test command or conditional expression is invalid. [filename="file-name" line=line-number]

There is an error in the specified test command or in a conditional expression.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes the processing in the case of the test command; terminates the processing in the case of a conditional
expression.

(O)
Correct the job definition script.

KNAX6042-E
The expression contains a read-only variable. [filename="file-name" line=line-number]

A read-only variable is specified in an arithmetic expression.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1181

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without processing the arithmetic expression.

(O)
Check the attribute of the variable specified in the arithmetic expression, and then correct the job definition script.

KNAX6043-W
The command to execute in another process is not specified. [filename="file-name" line=line-number]

A command to be executed in another process has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6044-E
The function definition file "function-name" was not found in the FPATH directory. [filename="file-name"
line=line-number]

No directory is specified in the FPATH shell variable. Or, no function definition file for the directory specified in the
FPATH shell variable was found.

function-name
Function name

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check if the directory containing the function definition file is specified in the FPATH shell variable.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1182

If the directory is specified, check if the name of the function whose execution was attempted is correct and whether
the directory specified in the FPATH shell variable contains the function definition file for the function that is to be
executed.

KNAX6045-E
The function definition file "function-name" cannot be opened. [filename="file-name" line=line-number]

A function definition file cannot be opened.

function-name
Function name

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check the directory specified in the FPATH shell variable and the permissions for the function definition file of the
function that is to be executed.

KNAX6046-E
The function "function-name" is not defined in the function definition file "function-definition-file-name".
[filename="file-name" line=line-number]

The indicated function is not defined in the function definition file.

function-name
Function name

function-definition-file-name
Name of the function definition file in which the function that is to be executed is defined

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check and, if necessary, correct the name of the function to be executed or the function name defined in the function
definition file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1183

KNAX6047-E
The value specified for the upper limit ("maximum-value") is invalid. [filename="file-name" line=line-number]

A specified maximum value is invalid.

maximum-value
Specified option

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value.

(O)
Correct the job definition script.

KNAX6048-E
Failed to set or modify the upper limit of a system resource. [filename="file-name" line=line-number]

An error occurred before the hard limit for resources was changed by the ulimit command. This message is issued
in one of the following cases:

• The user has the permission needed to change the hard limit, but specified a value not permitted by the system.

• The user does not have the permission needed to change the hard limit, and specified a value that exceeded the set
hard limit.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value. Note, however, that depending on the resource to
be changed, the execution environment or OS might set a different value if a value not permitted by the system is
specified.

(O)
Take the corrective action required for the cause of the error as described below, and then re-execute the job definition
script:

• When the user has the permission needed to change the hard limit, but specified a value not permitted by the
system
Change the argument of the ulimit command to a value permitted by the system.

• When the user does not have the permission needed to change the hard limit, and specified a value that exceeded
the set hard limit

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1184

Grant to the executing user the administrator permission and change the argument of the ulimit command to
a value permitted by the system. Note that the administrator permission is not required to reduce the hard limit.

KNAX6049-E
You cannot modify the resource specified in the ulimit command. [filename="file-name" line=line-number]

The resource specified in the ulimit command cannot be changed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value.

(O)
Correct the job definition script.

KNAX6050-E
The variable "variable-name" is null or has not been defined. [filename="file-name" line=line-number]

The variable specified for variable substitution has not been created or has no value set in it.

variable-name
Specified variable name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the variable name specified for variable substitution, and, if necessary, correct the job definition script.

KNAX6051-E
The specified redirection character "redirection-character" is invalid. [filename="file-name" line=line-number]

redirect-character specified in command substitution is invalid.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1185

redirection-character
Specified redirect character

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6052-E
The input file "input-file-name" cannot be opened. [filename="file-name" line=line-number]

The input file specified in command substitution cannot be opened.

input-file-name
Specified input file name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6053-E
Pipe creation failed. [filename="file-name" line=line-number]

Pipe creation failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1186

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. Also, check if too many files are open in the job definition script. If there is a specification error, correct it
and then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6054-E
Process creation failed.[details=maintenance-information][filename="file-name" line=line-number]

Process creation failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. If there is a specification error, correct it and then re-execute the job definition script.
If the problem is still unresolved after re-execution, possible causes are as follows:

• The path of the executable file cannot be found.

• The executable file is not a regular file.

• The user does not have the permission to search the components of the executable file.

• The path name of the executable file is too long.

• There are too many arguments in the executable file, or a specified argument is invalid.

• The specified file is not executable.

• Too many symbolic links were found while the path names of the executable files were being converted.

• The total number of processes that can be executed exceeds the system's maximum.

• There is inadequate swapping area or physical memory for creating a new process.

• There are too many files to be opened.

Correct the applicable cause listed above, and then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6055-E
Failed to send the signal. PID=process-ID signal number=signal-number reason=error-details [filename="file-
name" line=line-number]

Transmission of a signal with the specified process-ID failed because the error indicated by error-details occurred.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1187

process-ID
Specified process ID

signal-number
Signal number whose transmission failed

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6056-W
The specified process ID "process-ID" is invalid and will be ignored. [filename="file-name" line=line-number]

A specified process ID was ignored because it was not valid.

process-ID
Specified process ID

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6057-E
Memory could not be allocated because of insufficient memory. [filename="file-name" line=line-number]

A memory shortage occurred.

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1188

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must check and, if necessary, revise the memory
estimation.

KNAX6058-E
The maximum recursion count for the shell variable ("shell-variable-name") exceeds the limit. [filename="file-
name" line=line-number]

Processing was stopped because the permitted maximum recursive conversion count was exceeded for the following
shell variable:

• Permitted recursive conversion count for a variable specified in offset when shell variables are referenced: 1,024

• Permitted recursive conversion count for a variable specified in length when shell variables are referenced: 1,025

shell-variable-name
Name of the variable resulting in the circular or recursive reference

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Because a circular or recursive reference specification has been made for the specified variable, check and revise
the value of the variable as necessary.

KNAX6059-E
Too many files are open in the script. [filename="file-name" line=line-number]

Too many files are open in the job definition script.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1189

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. Also check if too many files are open in the job definition script. If there is a specification error, correct it and
then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6061-E
Creation of the here document failed. [filename="file-name" line=line-number]

Creation of a here document failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6062-E
The temporary file could not be {created|opened|deleted}. temporary filename=temporary-file-name reason=error-
details [filename="file-name" line=line-number]

A temporary file cannot be created, opened, or deleted because the error indicated by error-details occurred.

temporary-file-name
Name of temporary file to be created

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing. However, if it was the here document processing that resulted in the error, the system
continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1190

KNAX6063-E
Failed to write to the file target-file-name. reason=error-details [filename="file-name" line=line-number]

A write error occurred in the indicated file because the error indicated by error-details occurred.

target-file-name
Name of the file into which data was to be written

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6064-E
Failed to create the temporary variable "variable-name-or-arithmetic-expression" in the expression.
[filename="file-name" line=line-number]

Creation of a variable to be used temporarily in an arithmetic expression failed.

variable-name
Name of the variable contained in the arithmetic expression that resulted in the error

arithmetic-expression
Arithmetic expression resulting in the error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1191

KNAX6065-E
The expression contains an invalid variable or expression "variable-name-or-arithmetic-expression".
[filename="file-name" line=line-number]

An invalid variable was used in an arithmetic expression.

variable-name
Name of the variable contained in the arithmetic expression that resulted in the error

arithmetic-expression
Arithmetic expression resulting in the error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation resulting in an error.

(O)
Correct the job definition script.

KNAX6066-E
The expression syntax is invalid. [filename="file-name" line=line-number]

The format of an arithmetic expression is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6067-E
A divisor in the expression is zero. [filename="file-name" line=line-number]

A divide-by-zero error occurred.

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1192

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6068-E
A negative value is specified for an exponent. [filename="file-name" line=line-number]

A negative value was specified as the exponent for the arithmetic operator (**).

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6070-E
No more jobs need to be waited on for completion.[filename="file-name" line=line-number]

There is no job to be executed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6071-E
The current directory could not be identified. reason=error-details [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1193

The current directory cannot be identified because the error indicated by error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6072-E
A required option is not specified.[filename="file-name" line=line-number]

A required option is missing.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continue processing if an error occurred at locations other than extended shell command and regular built-in
command. Other than that, terminate processing.

(O)
Check the command option that resulted in the error and correct the job definition script.

KNAX6075-E
Redirection by using redirection-character failed. reason=error-details [filename="file-name" line=line-number]

The file ID cannot be copied by using dup because the error indicated by error-details occurred.

redirection-character
Specified redirect character

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1194

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6076-E
Arguments for the getopts command were altered while the command was running.[filename="file-name"
line=line-number]

The contents of an argument were changed during execution of the getopts command.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Check the indicated line in the job definition script where the error occurred for any specification error. If there is
a specification error, correct it and then re-execute the job definition script.

KNAX6077-E
An invalid option is specified. [filename="file-name" line=line-number]

A specified option is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1195

KNAX6078-E
Closing quotation marks are missing. [filename="file-name" line=line-number]

The correspondence of quotation marks is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6079-E
The label "label" specified in the here document was not found. [filename="file-name" line=line-number]

The label specified in the here document was not found.

label
Label specified in the here document

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6080-E
The file descriptor for the file target-file-name could not be duplicated. reason=error-details [filename="file-
name" line=line-number]

A file ID cannot be copied because the error indicated by error-details occurred.

target-file-name
Name of the file resulting in the file ID duplication error

error-details
Details of the error. This is an error information string representation for errno.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1196

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6081-E
The file target-file-name could not be opened. reason=error-details [filename="file-name" line=line-number]

An open error occurred in a file because the error indicated by error-details occurred.

target-file-name
Name of the file resulting in the file open error

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6082-E
The file target-file-name could not be created. reason=error-details [filename="file-name" line=line-number]

File creation failed because the error indicated by error-details occurred.

target-file-name
Name of the file that resulted in the creation error

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1197

line-number
Line number in the job definition script file where the error occurred

(S)
Continue processing if an error occurred at locations other than extended shell command and regular built-
in command. Other than that, terminate processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6085-E
The trap cannot be set to the specified signal "signal-number-or-name". [filename="file-name" line=line-number]

A trap cannot be set for a specified signal.

signal-number-or-name
Specified signal number or signal name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check and correct the signal number or signal name specified in the trap command.

KNAX6097-E
The attribute of the specified extended shell variable "variable-name" cannot be changed. [filename="file-name"
line=line-number]

An attempt was made to change the attribute of an extended shell variable that cannot be changed.

variable-name
Name of the extended shell variable on which an attempt was made to change the attribute

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Terminates processing.

(O)
Take one of the following actions:

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1198

• Check the name of the variable resulting in the error or the affected attribute, and then correct the job definition
script.

• If the variable that generated the error is a function information array, change the value of the
VAR_SHELL_FUNCINFO environment setting parameter to NONE and then re-execute the command.

If the problem cannot be resolved when the job definition script is re-executed, contact the system administrator.

KNAX6098-E
An error occurred. reason=source-row-number, error-analysis-data [filename="file-name" line=line-number]

An error occurred.

source-row-number
Line number in the source where the error occurred

error-analysis-data
Error analysis information

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. If there is a specification error, correct it and then re-execute the job definition script. If the problem is still
unresolved after re-execution, contact the system administrator.

KNAX6099-E
An internal error occurred. reason=source-row-number, error-analysis-data [filename="file-name" line=line-
number]

An internal error occurred.

source-row-number
Line number in the source where the error occurred

error-analysis-data
Error analysis information

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1199

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6100-E
Execution of the command "command-name" failed. exit status=exit-status-code [file name="file-name" line=line-
number]

Execution of a command failed. When this message is displayed, the return code displayed in the KNAX7999-I message
is ignored and return-code displayed in this message is set as the job's return code.

command-name
Name of the command that failed to execute

exit-status-code
Job's return code

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on the KNAX6098-E message output immediately before this message, and
then re-execute the job definition script. If the problem is still unresolved after re-execution, contact the system
administrator.

KNAX6110-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1200

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6111-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6112-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1201

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6113-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6114-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1202

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6115-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6116-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1203

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6117-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6118-I
The function "function-name" (line=line-number) ended successfully. (exit status=exit-status-code, execution
time=execution-time-in-seconds, CPU time=CPU-time-in-seconds)

Function was normally terminated.

function-name
The name of the function that is executed.

line-number
Line number of the script in which the function is coded

exit-status-code
Return code of function

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1204

execution-time-in-seconds
Execution time of function (reference value obtained with the API of OS)

CPU-time-in-seconds
CPU time of function (reference value obtained with the API of OS)

(S)
Continues processing.

KNAX6119-I
The function "function-name" (line=line-number) ended. (exit status=exit-status-code, execution time=execution-
time-in-seconds, CPU time=CPU-time-in-seconds)

Function was terminated. This message is output if the function that successful and failed are not distinguished with the
return code.

function-name
The name of the function that is executed.

line-number
Line number of the script in which the function is coded

exit-status-code
Return code of function

execution-time-in-seconds
Execution time of function (reference value obtained with the API of OS)

CPU-time-in-seconds
CPU time of function (reference value obtained with the API of OS)

(S)
Continues processing.

KNAX6120-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1205

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6121-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6122-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1206

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6123-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1207

KNAX6124-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6125-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1208

(S)
Resumes processing.

KNAX6126-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6127-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1209

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6128-I
The function ended successfully. (function=function-name, functionality=functionality-name, exit status=exit-
status-code, execution time=execution-time-in-seconds, CPU time=CPU-time-in-seconds)

The function that was executed by the function indicated with functionality-name was normally terminated.

function-name
The name of the function that is executed.

functionality-name
Either of the following is output as the name of the functionality that executed the function.

• For the command substitution: Command substitution

• For the action of the trap command: Action of the trap command

exit-status-code
Return code of function

execution-time-in-seconds
Execution time of function (reference value obtained with the API of OS)

CPU-time-in-seconds
CPU time of function (reference value obtained with the API of OS)

(S)
Continues processing.

KNAX6129-I
The function ended. (function=function-name, functionality=functionality-name, exit status=exit-status-code,
execution time=execution-time-in-seconds, CPU time=CPU-time-in-seconds)

The function that was executed by the function indicated with functionality-name was terminated. This message is output
if the function that successful and failed are not distinguished with the return code.

function-name
The name of the function that is executed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1210

functionality-name
Either of the following is output as the name of the functionality that executed the function.

• For the command substitution: Command substitution

• For the action of the trap command: Action of the trap command

exit-status-code
Return code of function

execution-time-in-seconds
Execution time of function (reference value obtained with the API of OS)

CPU-time-in-seconds
CPU time of function (reference value obtained with the API of OS)

(S)
Continues processing.

KNAX6130-E
An I/O error related to an event file occurred. filename="event-file-path"

An I/O error occurred when job definition script operation information was output to the event file.

event-file-path
Path name of the event file resulting in the I/O error

(S)
Resumes processing.

(O)
Determine the cause of the I/O error by referencing the messages output before and after this message, and then
correct the error.

KNAX6134-E
The type of the variable "variable-name" specified for the command is invalid. [filename="file-name" line=line-
number]

Type variable of the variable name is the type attribute that cannot be used with this command.

variable-name
Variable name

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1211

(O)
Review the variable name that an error occurred, and then correct the job definition script.

KNAX6135-E
One or more command operands are missing. [filename="file-name" line=line-number]

There is a lack of argument.

In adshvarconv, variable name, encoding before conversion and encoding after conversion are not specified.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the variable name that an error occurred, and then correct the job definition script.

KNAX6136-E
The combination of options is invalid. [filename="file-name" line=line-number]

Combination of command options is not correct.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the specification of command options, and then correct the job definition script.

KNAX6137-E
The length of the value is outside the valid range. [filename="file-name" line=line-number]

The length of value that is specified for the command is out of the range.

file-name
Job definition script file name

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1212

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the argument specification of command, and then correct the job definition script.

KNAX6138-E
The variable cannot be specified multiple times. [filename="file-name" line=line-number]

You cannot specify variables for multiple times (including when multiple elements are specified with the array).

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the argument specification of command, and then correct the job definition script.

KNAX6139-E (only for Windows)
The encoding is invalid. [filename="file-name" line=line-number]

Specified encoding is disabled.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the argument specification of command, and then correct the job definition script.

KNAX6140-E (only for Windows)
An unconvertible character exists. [filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1213

There is a character that cannot be converted at the time of code conversion.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Finishes the command.

(O)
Review the data before conversion, and then correct the job definition script.

KNAX6150-E
An error was reported to "error-notification-target-name". (exit status=exit-status-code, line line-number)

Error is reported to the job or job step. If the adshjoberr command reports an error, this message is output.

error-notification-target-name
Either of the following is output as the target to which an error is reported.

• If an error is reported to a job: Job

• If an error is reported to a job step: Job step

exit-status-code
Return code that is reported to a job or job step

line-number
Line number of the job definition script that reported an error

(S)
Behavior if this message is reported is as follows:

• If an error is reported within the job step, the subsequent process of the job step normal block is not executed
regardless of the onError attribute of the job step. Therefore, the job step finishes with an error or the job step
error block is executed.

• If an error is reported outside the job step, the job terminates with an error or the subsequent job step in which
the run attribute is abnormal or always is executed.

KNAX6151-E
An error was reported to "error-notification-target-name". (exit status=exit-status-code, functionality=function-
name)

Error is reported to the job or job step. If the adshjoberr command reports an error, this message is output.

error-notification-target-name
Either of the following is output as the target to which an error is reported:

• If an error is reported to a job: Job

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1214

• If an error is reported to a job step: Job step

exit-status-code
Return code that is reported to a job or job step

function-name
Either of the following is output as the name of the function that executed the command:

• For the command substitution: Command substitution

• For the action of the trap command: Action of the trap command

(S)
Behavior if this message is reported is as follows:

• If an error is reported within the job step, the subsequent process of the job step normal block is not executed
regardless of the onError attribute of the job step. Therefore, the job step finishes with an error or the job step
error block is executed.

• If an error is reported outside the job step, the job terminates with an error or the subsequent job step in which
the run attribute is abnormal or always is executed.

KNAX6152-E
adshjoberr: The specified command line is incorrect. (details=details)

Specification of the command line is not correct. details of the contents that are displayed in the message and their
meanings are as follows:

Contents of details display Meaning

The return code is not specified. The return code is not specified.

The value specified for the return code is out of the range. The value specified for the return code is out of the range.

A character other than a numeric character is specified for the return
code.

A character other than a numeric character is specified for the return
code.

Specification of argument is too many. Specification of argument is too many.

(S)
Continues processing.

(O)
Specify the command correctly, and then re-execute the command.

KNAX6153-E
The specification order for the command adshjoberr is incorrect.

The specification location of the adshjoberr command is invalid. Possible causes are as follows:

• The adshjoberr command specified in an .env file or initialization script file was executed.

• The adshjoberr command specified in a job step error block was executed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1215

(S)

• Terminates processing if the adshjoberr command specified in an .env file or initialization script file was
executed.

• Continues processing if the adshjoberr command specified in a job step error block was executed.

(O)
Correct the job definition script.

KNAX6160-I
Execution of the function (function-name, line number =number-of-lines) was interrupted.

Execution of a function was interrupted due to the following causes:

• Function and job definition script were terminated by executing the exit command in the function.

• Function and job definition script were terminated by executing the exec command in the function.

• In Windows, the function was terminated when the return command was executed in the action of the trap
command while the function was being executed.

function-name
The name of the function that is executed.

number-of-lines
Number of lines of the job definition script in which the function is described.

(S)
Interrupt processing.

(O)
If execution of a function is interrupted due to an error, remove the failure and re-execute the command.

KNAX6161-I
Execution of the function (function-name, functionality-name) was interrupted.

The function that was executed by the function indicated with functionality-name was interrupted due to the following
causes:

• Function and job definition script were terminated by executing the exit command in the function.

• Function and job definition script were terminated by executing the exec command in the function.

• In Windows, the function was terminated when the return command was executed in the action of the trap
command while the function was being executed.

function-name
The name of the function that is executed.

functionality-name
Either of the following is output as the name of the functionality that executed the function.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1216

• For the command substitution: Command substitution

• For an action of the trap command: Action of the trap command

(S)
Interrupt processing.

(O)
If execution of a function is interrupted due to an error, remove the failure and re-execute the command.

KNAX6180-E
adshjava: The command was incorrectly specified at the command line. details="details"

Specification of the command line is not correct. details of the contents that are displayed in the message and their
meanings are as follows:

Contents of details display Meaning

The batch server name is not specified. The batch server name is not specified.

The batch server name is too long. The batch server name is too long.

The schedule group name is not specified. The group name is not specified.

The schedule group name is too long. The group name is too long.

The option of option name is already specified. The option of option name is specified for multiple times.

The -grp option and -srv option cannot be specified simultaneously. The batch server name and group name cannot be specified
simultaneously.

The -java option is not specified. The -java option is nor specified.

The value for -java option is not specified. Nothing is specified after the -java option.

(S)
Terminates processing.

(O)
Specify the command correctly, and then re-execute the command.

KNAX6181-E
adshjava: An internal error occurred. details="details"

A fatal error occurred while the command was being executed. details of the contents that are displayed in the message
and their meanings are as follows:

Contents of details display Meaning

Execution environment is not correct. (Internal information) Execution environment is not correct such as adshexec is not
executed.

_time64 error(Internal information) An error occurred during the process for getting time.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1217

Contents of details display Meaning

clock_gettime error : Error information(Internal information) An error occurred during the process for getting time.

OpenMutex error : Error information(Internal information) An error occurred during the exclusion process.

WaitForSingleObject error:Error information(Internal information) An error occurred during the process for waiting for occurrence
of event.

CreateProcess error : Error information(Internal information) An error occurred when you create the process for executing the
cjexecjob command or cjkilljob command. This error
might occur if the setting of the path of the cjexecjob
command or cjkilljob command is wrong or a user who is
not authorized to execute this command executes this command.

WaitForMultipleObjects error: Error information(Internal information) An error occurred during the process for waiting for occurrence
of event.

GetExitCodeProcess error : Error information(Internal information) An error occurred during the process for getting the return code.

execvp error: Error information(Internal information) An error occurred when starting the cjexecjob command. This
error might occur if the cjexecjob command is not found or a
user who is not authorized to execute this command executes this
command.

fork error: Error information(Internal information) An error occurred when you create the process.

waitpid error:Error information(Internal information) An error occurred during the process for waiting for completion
of process.

SetConsoleCtrlHandler error : Error information(Internal information) Process for setting the handler failed.

setpgid error:Error information(Internal information) Changing the process group failed.

nanosleep error: Error information(Internal information) Delay process of processing failed.

SetEvent error: Error information(Internal information) Process for reporting a signal failed.

CreateEvent error: Error information(Internal information) Creation of an event object for reporting a signal failed.

(S)
Terminates processing.

(O)
Eliminate the failure and execute the command again.
If the failure cannot be identified or the failure cannot be eliminated, contact the system administrator.

KNAX6182-E
adshjava: A forced end process failed. "details" (error-number or exit-status-data)

A fatal error occurred while the process for forced termination was being executed. details of the contents that are
displayed in the message and their meanings and contents of the display of error-number or exit-status-data are as
follows:

Contents of details display Meaning Contents of the display of error-
number or exit-status-data

execvp error Activation of the cjkilljob command failed. This
error might occur if the cjkilljob command is not

Error number

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1218

Contents of details display Meaning Contents of the display of error-
number or exit-status-data

execvp error found or a user who is not authorized to execute this
command executes this command.

Error number

fork error Activation of the cjkilljob command failed. Error number

waitpid error The process for waiting the completion of the
cjkilljob command failed.

Error number

The process of the cjkilljob
command was terminated
abnormally

The process of the cjkilljob command was
terminated with an error due to a signal.

Termination status information

error-number
An error number in the hexadecimal character string is displayed. See the errno definition file (errno.h) of UNIX
for error number.

exit-status-data
Termination status information that is reported when the process finishes with the hexadecimal character string is
displayed.

(S)
Terminates processing.

(O)
Contact the system administrator. Stop Java batch applications by executing the cjkilljob command.

KNAX6183-E
adshjava: The command command-name was terminated abnormally. exit status data="exit-status-code"
internal data= <internal-data>

The command indicated by command-name is terminated with an error.

exit-status-code
Termination status information that is reported when the process finishes

(S)
Terminates processing.

(O)
Contact the system administrator. When necessary, stop Java batch applications by executing the cjkilljob
command.

KNAX6189-I
adshjava: A batch application job ID was assigned. job ID="<job-ID>"

The job ID of a Java batch application that is used by uCosminexus Application Server was assigned.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1219

(S)
Continues processing.

KNAX6190-E
The number of arguments for the command-name command is invalid. [filename="file-name" line=line-number]

The length of the argument indicated with the command-name is invalid.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6191-E
An argument for the command-name command contains one or more invalid characters. [filename="file-name"
line=line-number]

An invalid character is included in argument of the command indicated by command-name.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6192-E
The length of an argument for the command-name command is invalid. [filename="file-name" line=line-number]

The length of the variable indicated with the command-name command is invalid.

file-name
Job definition script file name

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1220

line-number
Line number of the job definition script file that an error occurred

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6193-E
The number of temporary file path names exceeded the limit. [filename="file-name" line=line-number]

The upper limit of the temporary file path names that can be assigned exceeded.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6194-E
The length of a temporary file path name exceeded the maximum length supported by the OS. [filename="file-
name" line=line-number]

The length of the temporary file path exceeded the maximum length that is allowed by OS.

file-name
Job definition script file name

line-number
Line number of the job definition script file that an error occurred

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6200-I
Usage: command-name command-argument

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1221

This message displays the syntax of the command arguments for the command indicated by command-name.

(S)
Terminates processing.

KNAX6201-E
No value is specified for the option "option-name".

No value is specified for the option indicated by option-name.

(S)
Terminates processing.

(O)
Specify a value for the displayed option.

KNAX6202-E
The specified option "option-name" is invalid.

An unknown option name, indicated by option-name, was specified.

(S)
Terminates processing.

(O)
Specify the correct option.

KNAX6203-E
The specified option value "option-value" is invalid.

An option value that was specified is invalid. option-value indicates the specified option value.

(S)
Terminates processing.

(O)
Specify the correct value for the option.

KNAX6204-E
The option "option-name" is specified concurrently with an option that it cannot be specified with.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1222

The option indicated by option-name cannot be specified together with some other mutually exclusive option.

(S)
Terminates processing.

(O)
Specify the correct combination of options.

KNAX6206-E
No asc file name is specified as a command argument.

No asc file is specified in the command's argument.

(S)
Terminates processing.

(O)
Specify an asc file in the command's argument.

KNAX6207-E
Too many options are specified.

The command has too many arguments.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

KNAX6208-E
One or more operands are missing.

There are not enough arguments in the command.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1223

KNAX6209-W
The specified line number range falls outside of the actual range for script line numbers.

A specified range of line numbers is not within the range of line numbers constituting the job definition script.

(S)
Interprets the specified range of line numbers as described below and resumes processing:

• If the start line number is outside the range of line numbers in the job definition script, the system ignores the
invalid range specification.

• If the start line number is within the range of line numbers in the job definition script but the end line number
is outside the range of line numbers in the job definition script, the system assumes the largest line number in
the job definition script as the end line number.

If there are no valid ranges of lines as a result of ignoring the invalid range specification, the system outputs only
the header information at the top. Neither the job definition script nor the coverage information is output.

(O)
Specify the correct line numbers.

KNAX6210-E
Failed to open the asc file "file-name". reason="error-details"

An open error occurred on the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file open error, correct the error, and then re-execute the command.
In Windows, No such file or directory is displayed for error-details if a directory containing the
directory separator (\) is specified at the end of the path name for the asc file in the adshexec command. In this
case, specify a file name, not the directory.

KNAX6211-E
Failed to lock the asc file "file-name". reason="error-details"

The asc file indicated by file-name cannot be locked.

error-details displays the nature of the file lock error.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1224

(S)
Terminates processing.

(O)
Determine the cause of the asc file lock error, correct the error, and then re-execute the command. Most often, an
asc file lock error occurs because another program is using the asc file.

KNAX6212-E
Failed to read the asc file "file-name". reason="error-details"

A read error occurred in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file read error, correct the error, and then re-execute the command.

KNAX6213-E
The format of the asc file "file-name" is invalid. details=maintenance-information

A format error was detected in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Delete the asc file indicated by file-name and collect new coverage information. Check if the asc file was updated
illegally. If this is not the problem but the same event recurs, save the indicated asc file and contact the product
provider.

KNAX6214-E
Failed to update the asc file "file-name". reason="error-details"

An updating error occurred in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1225

(S)
Terminates processing.

(O)
Determine the cause of the asc file read error, correct the error, and then re-execute the command.

KNAX6215-E
Failed to unlock the asc file "file-name". reason="error-details"

An error occurred when an attempt was made to unlock the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file unlock error, correct the error, and then re-execute the command.

KNAX6219-E
The script "job-definition-script-name" and the asc file "asc-file-name" contain different script data.

The coverage information cannot be accumulated in the asc file indicated by asc-file-name because the following job
definition scripts are not the same:

• Job definition script indicated by job-definition-script-name

• Job definition script used to collect the coverage information in the asc file indicated by asc-file-name

(S)
Terminates processing.

(O)
Take one of the following actions:

1. When accumulating the coverage information in the asc file indicated by asc-file-name
Use the job definition script file used to collect the coverage information in the asc file indicated by asc-file-
name.

2. When not accumulating the coverage information in the asc file indicated by asc-file-name
If the coverage information in the asc file indicated by asc-file-name is not needed, specify the -f option in
the adshexec command. The existing coverage information will be discarded and new coverage information
will be stored (during the initial accumulation).
If you need the coverage information in the asc file indicated by asc-file-name, specify the output asc file with
the -o option in the adshexec command. Check that the specified asc file does not already exist at the output
destination.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1226

KNAX6220-I
The two asc files will now be merged. output file="file-name"

Coverage information merge processing has started.

file-name indicates the name of the asc file that will store the merge results.

(S)
Resumes processing.

KNAX6221-I
Base file="file-name-1", file to be merged="file-name-2"

file-name-1 indicates the base asc file.

file-name-2 indicates the merge asc file.

(S)
Resumes processing.

KNAX6222-I
The two asc files have been merged. output file="asc-file-name"

Coverage information merge processing has finished.

asc-file-name indicates the name of the asc file containing the merged results.

(S)
Resumes processing.

KNAX6223-E
The two asc files "file-name-1" and "file-name-2" contain different script data.

The job definition scripts used to collect coverage information differ between asc files file-name-1 and file-name-2.

file-name-1 indicates the base asc file.

file-name-2 indicates the merge asc file.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1227

(O)
Specify in the adshcvmerg command as the base and merge asc files asc files obtained by using the same job
definition script.

KNAX6225-E
An internal error occurred. details=maintenance-information

An internal conflict was detected during processing.

(S)
Terminates processing.

(O)
Contact the product provider and provide the displayed maintenance-information.

KNAX6226-E
The number of nested control statements exceeded the limit.

There are too many nesting levels in control statements.

(S)
Terminates processing.

(O)
If you need to collect coverage information, edit the job definition script to avoid too many nesting levels in control
statements.

KNAX6227-E
The version "version-number" in the asc file is not supported by this command.

An asc file's version number is not supported by the command.

version indicates the version number.

(S)
Terminates processing.

(O)
Specify an asc file whose version is supported by the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1228

KNAX6228-E
Failed to get time information. reason="error-details"

An error occurred while obtaining the date and time.

(S)
Terminates processing.

(O)
Determine the cause of the date and time acquisition error, and then take appropriate action. The time function is
used to obtain the date and time.

KNAX6229-E
Failed to get information about the file "file-name". reason="error-details"

An error occurred while obtaining information about the file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Check the cause of the file information acquisition error, and then correct the error. This error often occurs when
the user does not have the permission to access the file.

KNAX6231-E
The asc file to be merged is the same file as the base asc file.

The merge asc file is the same as the base asc file.

(S)
Terminates processing.

(O)
Specify different merge and base asc files whose coverage information is to be merged.

KNAX6232-E
Failed to get the user name.

The name of the user executing the command cannot be obtained.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1229

(S)
Terminates processing.

(O)
Determine why the name of the user executing the command cannot be obtained, and then correct the error. In UNIX,
the name of the user executing the /etc/passwd command might not be registered.

KNAX6233-E
The file "file-name" already exists.

The file indicated by file-name already exists.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Rename or delete the file, inasmuch as the processing cannot be performed because the file indicated by file-name
already exists.

KNAX6236-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Check the type of the file indicated by file-name.

KNAX6237-E
The path of the file-type is the same as that of the script file.

The path name of the job definition script file is the same as the path name of an asc file (including an asc file created
by the command).

file-type
asc file whose path name is the same as the path name of the job definition script file:

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1230

• "asc file": The path name of an omitted or specified asc file is the same as the path name of the job
definition script file.

• "temporary asc file": The path name of a temporary asc file is the same as the path name of the job
definition script file.

• "backup asc file": The path name of a backup asc file is the same as the path name of the job definition
script file.

(S)
Terminates processing.

(O)
Specify the path name of the asc file explicitly so that it differs from the path name of the job definition script file.
If the path name of the asc file was already specified explicitly, change the explicitly specified path name so that
it differs from the path name of the job definition script file.

KNAX6238-E
Failed to rename the asc file "file-name". reason="error-details"

An error occurred while renaming the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file renaming error, and then correct the error. The write-protect settings or access
permissions for the file indicated by file-name might have been changed during command execution.

KNAX6239-E
Failed to remove the asc file "file-name". reason="error-details"

An error occurred while deleting the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file deletion error, and then correct the error. The file indicated by file-name might
be write-protected or it might have been created during command execution file with no access permission.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1231

KNAX6240-E
Failed to set the access position in the asc file "file-name". reason="error-details"

An error occurred while positioning the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file positioning error, and then correct the error.

KNAX6241-E
The input asc file is the same as the output asc file.

The same files were specified in the adshcvmerg command for the output file and an input asc file (base or merge
asc file).

(S)
Terminates processing.

(O)
Specify for the output asc file a different file than that of either input asc file.

KNAX6242-I
The asc file "file-name" was updated.

The coverage information in an asc file was updated by the adshexec command. file-name indicates the path name
of the updated asc file.

(S)
Resumes processing.

KNAX6243-I
The asc file "file-name" was restored from a backed-up asc file.

An asc file was restored from its backup asc file by the adshexec command. file-name indicates the path name of
the restored asc file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1232

(S)
Resumes processing.

KNAX6244-E
Failed to truncate the asc file "file-name". reason="error-details"

An error occurred while initializing the asc file indicated by file-name.

In Windows, the error occurred in the _chsize function.

In UNIX, the error occurred in the ftruncate function.

(S)
Terminates processing.

(O)
Determine the cause of the asc file initialization error, and then correct the error.

KNAX6290-E
The settings of the coverage view program are invalid. details code=maintenance-information

The settings for the program used to start the display program are invalid.

(S)
Terminates processing.

(O)
Contact the product provider and provide the maintenance-information.

KNAX6291-E
Startup of the coverage view program failed. error details=error-details

Startup of the coverage information display program failed. error-details provide the reason for the startup error.

(S)
Terminates processing.

(O)
Determine the cause of the startup error, and then correct the error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1233

KNAX6292-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

(S)
Terminates processing.

(O)
Check the type of file indicated by file-name.

KNAX6293-E
Failed to get information about the file "file-name". reason="error-details"

An error occurred while obtaining information about the file indicated by file-name.

(S)
Terminates processing.

(O)
Determine the cause of the file information acquisition error, and then correct the error. The cause most often is that
the user does not have the permission to access the file.

KNAX6294-E
Failed to open the file "file-name" used by the coverage view program. reason="error-detail"

An open error occurred in a file used by the coverage information display program.

(S)
Terminates processing.

(O)
Determine the cause of the open error in the file used by the coverage information display program, correct the error,
and then display the coverage information.

KNAX6295-E
Failed to execute the coverage view program. (reason=error-details)

Execution of the coverage display program failed for the reason indicated by error-details.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1234

(O)
Eliminate the cause of the error, and then re-execute the command. If the problem cannot be resolved, contact the
system administrator.

KNAX6296-E
Failed to update the file "file-name" used by the coverage view program. reason="error-detail"

An error occurred while updating the file indicated by file-name that is used by the coverage information display program.

(S)
Terminates processing.

(O)
Determine the cause of the write error in the file that is used by the coverage information display program, correct
the error, and then re-execute the command.

KNAX6297-E
Failed to get the temporary directory. reason="error-details"

An error occurred while obtaining information about the temporary directory.

(S)
Terminates processing.

(O)
Determine the cause of the error in obtaining information about the temporary directory, and then correct the error.

KNAX6298-E
An error occurred during an attempt to view coverage. response code=error-details

An error occurred while displaying coverage information. For details about the information displayed as the return code,
see the description of the adshcvshow command's return value.

(S)
Terminates processing.

(O)
Determine the cause of the error in displaying coverage information, and then correct the error. The message issued
when the error occurred might be stored in the coverage information accumulation file.
If no job definition script has been executed, response code 6 is set. Display coverage information after you have
executed a job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1235

KNAX6301-E
The coverage option is specified in batch coverage mode.

When the coverage auto-acquisition functionality is enabled, specify the -t option and execute the adshexec
command.

(S)
Cancels execution.

(O)
Re-execute the batch job with the -t option omitted.

KNAX6302-E
The length of the asc file name exceeds the limit for the batch coverage function.

When the coverage auto-acquisition functionality is enabled, the length of the asc file to be used has exceeded the
upper limit.

If asc files are created in conformity with the asc file naming rules specified in the environment file, the created file
name exceeds the maximum length.

(S)
Cancels execution.

(O)
Check and, if necessary, revise the specification in the environment file and the name of the job definition script to
be executed.

KNAX6303-E
Failed to duplicate file descriptors. filename="file-name" error="error-details"

Duplication of the file ID of file-name failed.

file-name
File name of the job definition script

error-details
Details of the error

(S)
Cancels execution.

(O)
Eliminate the cause of the error, and then re-execute the batch job.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1236

KNAX6304-E
Initialization failed.

The job controller could not be initialized.

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

KNAX6305-E
The existence of the script file could not be verified. filename="file-name" error="error-details"

The existence of the job definition script file cannot be confirmed.

file-name
File name of the job definition script

error-details
Details of the error

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

KNAX6306-E
Failed to read the script file. filename="file-name" function=function-name error="error-details"

A read error occurred in the job definition script file.

file-name
File name of the job definition script

function-name
Name of the function resulting in the error

error-details
Details of the error

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1237

KNAX6307-W
A line was truncated because the limit on line length was exceeded. filename="file-name" line=line-number

A line exceeds the maximum length of a line of a job definition script that can be displayed. The line is displayed with
the excess part discarded.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Displays the line with the excess part discarded, and then resumes processing.

(O)
Correct the job definition script file.

KNAX6308-E
The script file is empty. filename="file-name"

The job definition script file is empty.

file-name
File name of the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script file.

KNAX6309-E
Failed to output SCRIPT file to the spool job directory. reason="error-details"

An output error occurred in the job definition script file in the spool.

error-details
Details of the error

(S)
Terminates processing.

(O)
Correct the job definition script file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1238

KNAX6310-E
The item "item-name" is incorrect. filename="file-name" line=line-number

The item indicated by item-name in an extended script command is invalid.

item-name
Name of an option or positional operand in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6311-E
The item "item-name" is not specified. filename="file-name" line=line-number

The item indicated by item-name is missing in an extended script command.

item-name
Name of an option or positional operand in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6312-E
The value specified for the option "option-name" is invalid. filename="file-name" line=line-number

An invalid value was specified for option-name in an extended script command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1239

option-name
Option name in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6313-E
The option "option-name" is specified multiple times. filename="file-name" line=line-number

The indicated option name is specified multiple times in an extended script command.

option-name
Option name in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6314-E
The expression "character-string" is incomplete. filename="file-name" line=line-number

The specification indicated by character-string is not complete in an extended script command. A paired double
quotation mark or single quotation mark might be missing, or there might be no escape character following a backslash
(\).

character-string
Specification in the extended script command

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1240

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6315-E
The order for the command "command-name" is incorrect. filename="file-name" line=line-number

The cause might be one of the following:

• The location of an extended script command is invalid.

• The combination of an extended script command and another command is invalid.

• An extended script command is not specified at the beginning.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.
If the error was detected during execution, rather than during syntax analysis, 0 might be displayed as the line
number. For example, this error might be detected during execution when an extended script command is used as a
command substitution format.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6316-E
An instruction exceeds the length limit. filename="file-name" line=line-number

The length of an extended script command exceeded the maximum.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1241

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6317-E
A continuation line is incorrectly specified. filename="file-name" line=line-number

The specification of a continuation line is invalid.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6318-E
An invalid instruction is specified. command="command-name" filename="file-name" line=line-number

An invalid extended script command name was specified.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1242

KNAX6319-E
The number of "item-name" specified exceeds the upper limit. filename="file-name" line=line-number

The maximum number of instances of the item indicated by item-name has already been reached.

item-name
Extended script command name, option name, or argument

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6320-E
An error occurred in the script file. filename="file-name" function=function-name error="error-details"

An error occurred in a job definition script file.

file-name
File name of the job definition script

function-name
Name of the function where the error occurred

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6321-E
The attribute "-run {abnormal|always}" cannot be specified in this location. file name="file-name" line=line-
number

A specified option is not permitted.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1243

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6323-E
The export parameter processing failed. line=line-number

A specified export parameter is invalid, or an environment variable cannot be specified.

line-number
Line number in the environment file

Following are the possible causes:

• The name or value of the environment variable exceeds the maximum length.
If you add paths to the PATH environment variable, make sure that the maximum length is not exceeded as a result
of paths being duplicated in child jobs.

• The name of the environment variable is invalid.

• A combination of \, ", or ' symbols is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6324-E
A file name could not be converted into an absolute path. initial filename="file-name-before-conversion"
error="error-details" filename="file-name" line=line-number

The file indicated by file-name-before-conversion cannot be converted to an absolute path.

file-name-before-conversion
File name before conversion

error-details
Details of the error

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1244

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6325-E
A block or function definition ended without finishing an internal job step. filename="file-name" line=line-number

The block or function definition ended before a job step within the block or function definition ended.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6326-E
The beginning of a job step is not defined. filename="file-name" line=line-number

There is no job step start definition.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1245

KNAX6327-E
Nested definitions are used to define a job step. filename="file-name" line=line-number

Job step definitions are nested.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6328-E
Nested definitions are used to define the command "command-name". filename="file-name" line=line-number

command-name definitions are nested.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6329-E
An instruction might have been altered partway. filename="file-name" line=line-number

An extended script command might have been changed during execution.

file-name
File name of the job definition script

line-number
Line number in the job definition script

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1246

(S)
Terminates processing.

(O)
Ensure that the job definition script will not change during execution, and then re-execute it.

KNAX6330-E
A script is called recursively. filename="file-name" line=line-number

A job definition script was called recursively.

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6332-E
The script finished without closing a job step.

The job definition script ended, but there is a job step that has not been closed.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6333-E
The existence of the file "file-name" could not be verified. error="error-details" filename="job-definition-script-
file-name" line=line-number

The existence of file-name cannot be confirmed.

error-details
Details of the error

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1247

job-definition-script-file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6380-I
A job name will be added to the spool job directory of the root job. spool job directory="spool-job-directory"

A job name will be added to the root job's spool-job-directory. This job name is a spool job name. The JP1/Advanced
Shell job name is used as the spool job name. However, if you specify a spool job name in the ADSH_SPOOL_JOBNAME
shell variable, the spool job name specified in this shell variable is used instead.

spool-job-directory
Spool job directory name after the change

(S)
Resumes processing.

KNAX6381-E
Failed to change the name of the spool job directory. error="error-details" job ID="job-ID" jobname=job-name

Renaming of the spool job directory failed. The spool job directory still has the job ID. Possible causes are as follows:

• A spool job directory with the new name already exists.

• In Windows, if a job that executes an external command to create a child process is terminated forcibly, this message
might be output with Permission denied displayed in place of error-details. This occurs when more than 255
non-child processes exist at the same time.

• The directory name contains forbidden characters.

• The directory name is too long.

error-details
Details of the error

job-ID
Job ID

job-name
The job name in JP1/Advanced Shell or the spool job name specified in the ADSH_SPOOL_JOBNAME shell variable

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1248

(S)
Resumes processing.

(O)
If you reference the spool job directory, reference the spool job directory indicated in the KNAX6382-I message
that is output at the same time.
If you want to delete the spool job directory, delete it manually without using the adshhk command.

KNAX6382-I
The spool job directory "spool-job-directory" will be used for storage because an attempt to change its name failed.

The spool job directory was stored as is because renaming of spool-job-directory failed.

spool-job-directory
Name of the spool job directory before renaming

(S)
Resumes processing.

KNAX6383-E (UNIX only)
Failed to modify permissions for a spool job. (path="path-name" function="function-name" error details="error-
details")

An attempt to modify the permission for the directory or file of the spool job indicated by path-name failed.

function-name
OS's API name

error-details
This is an error information string representation for errno.

(S)
Continues processing if function-name is chmod; otherwise, terminates processing.

(O)
Investigate the cause of the error and take the necessary corrective action. To modify the permission for the directory
or file of this spool job change, execute the chmod command.

KNAX6385-E
This extended script command cannot be used with the current environment setting parameter. command
name="command-name" parameter="environment-setting-parameter" filename="file-name" line=line-number

The indicated extended script command cannot be used with the current setting of the indicated environment setting
parameter.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1249

command-name
Name of the extended script command resulting in the error

environment-setting-parameter
Environment setting parameter and value that caused this error

file-name
Name of the job definition script file

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Do not execute this command. If you want to execute this command, check and revise the specified environment
setting parameter as necessary.

KNAX6340-E
adshcmdrc: The specified command line is incorrect. (details=details)

Specification of the command line is not correct. details of the contents that are displayed in the message and their
meanings are as follows:

Contents of details display Meaning

Command name is not specified. Command name is not specified.

Command name is too long. Command name is too long.

Null character is specified for the command name. Null character is specified for the command name.

Specification of the command name is invalid. Specification of the command name is invalid. The path of the command
might be specified.

Threshold value is not specified. Threshold value is not specified.

The value specified for threshold value is out of the range. The value specified for threshold value is out of the range.

A character other than a numeric character is specified for the
threshold value.

A character other than a numeric character is specified for the threshold
value.

Specification of argument is too many. Specification of argument is too many.

(S)
Continues processing.

(O)
Specify the command correctly, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1250

KNAX6341-E
The number of specified command name commands exceeds the upper limit. (line line-number)

The upper limit value that the number of types that the command specified with the command name was exceeded.

command name
Command name

line-number
Line number of job definition script

(S)
Continues processing.

(O)
Correct the job definition script file.

KNAX6342-E
The number of specified command-name commands exceeds the upper limit. (functionality=function-name)

command-name
Command name

function-name
Either of the following is output as the name of the function that executed the command:

• For the command substitution: Command substitution

• For the action of the trap command: Action of the trap command

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6399-E
A fatal error occurred. function=function-name, line=line-number

An unexpected error occurred.

function-name
Function name

line-number
Line number

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1251

(O)
Contact the system administrator.

KNAX6400-E
Failed to allocate the file "file-environment-variable-definition".

Allocation of the file indicated by file-environment-variable-definition failed.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6401-E
The file "file-environment-variable-definition" does not exist. file path=file-path

The file with the indicated file-path specified in file-environment-variable-definition does not exist.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6403-E
The temporary file ID "temporary-file-ID" is already defined.

A file has already been defined with the indicated temporary-file-identifier.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6404-E
Failed to create the environment variable "file-environment-variable-definition".

Creation of the environment variable indicated by file-environment-variable-definition failed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1252

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6405-E
The file "file-environment-variable-definition" does not exist.

The file indicated by file-environment-variable-definition does not exist.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6406-E
Failed to verify the file defined by "file-environment-variable-definition". reason="error-details"

The error indicated by error-details occurred when an attempt was made to use the stat function to check the file
indicated by file-environment-variable-definition.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6407-E
The directory "file-environment-variable-definition" already exists.

The directory indicated by file-environment-variable-definition already exists.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1253

KNAX6408-E
Failed to create the file "file-environment-variable-definition". reason="error-details"

The error indicated by error-details occurred when an attempt was made to create the file indicated by file-environment-
variable-definition.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6409-I
The file file-environment-variable-definition was allocated as "processing-value". path=file-path[(file-existence)]

The file indicated by file-path was allocated according to value-specified-for-processing in the file definition indicated
by file-environment-variable-definition-name.

processing-value
The following is displayed, depending on the command:

For the #-adsh_file or #-adsh_file_temp command
The value specified for -chk

For the #-adsh_spoolfile command
spoolfile

file-existence
This information is displayed only for a regular file. If the file exists, exist is displayed; if the file does not exist,
not exist is displayed.

(S)
Resumes processing.

KNAX6410-I
The file file-environment-variable-definition was deallocated as "processing-value". path=file-path

The file indicated by file-path was released according to processing-value in the file definition indicated by file-
environment-variable-definition.

processing-value
The following is displayed, depending on the command:

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1254

For the #-adsh_file or #-adsh_file_temp command
One of the following values is displayed as the specified postprocessing of files during normal times or abnormal
times:
- del: Delete.
- keep: Do not delete.

For the #-adsh_spoolfile command
spoolfile

(S)
Resumes processing.

KNAX6411-E
Failed to set the shell variable "file-environment-variable-definition". details=maintenance-information

Specification of the shell variable indicated by file-environment-variable-definition failed.

(S)
Terminates processing.

(O)
The shell variable indicated by file-environment-variable-definition-name might have the read-only attribute. Check
and, if necessary, revise the job definition script file. If there is no problem, contact the system administrator.

KNAX6412-E
Failed to get a shell variable. details=maintenance-information

Acquisition of a shell variable failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6413-E
The shell variable "file-environment-variable-definition" cannot be restored to a previous value.
details=maintenance-information

The shell variable indicated by file-environment-variable-definition cannot be restored to its original value, or the current
definition cannot be deleted because its original value was undefined.

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1255

(O)
Contact the system administrator.

KNAX6414-E
Failed to normalize the file name. API name=API-name reason="cause" details=maintenance-information
filename="script-file-name" line=line-number

An error occurred while the file path specified by the #adsh_file command, which is an extended script command,
was being normalized.

API-name
The name of the API in which the error occurred

cause
The following table explains the error details, the output contents, and their meanings:

No. Output content Meaning

1 Error information string representation for errno See the applicable UNIX or Windows documentation.

2 The path contains one or more invalid
multibyte characters

The path name contains an invalid multibyte character.

3 The path contains too many components The path name contains too many components (more than 4,096).

line-number
The line number in the script

script-file-name
The file name of the script file

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on cause. If the problem cannot be resolved, contact the system administrator.

KNAX6501-I
This job will execute the initialization script file "initialization-script-file-name".

The job will run the initialization script file indicated by initialization-script-file-name.

initialization-script-file-name
Name of initialization script file to be run

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1256

KNAX6502-I
Execution of the initialization script finished.

The initialization script ended.

(S)
Continues processing.

KNAX6503-E
The root job cannot be executed from the initialization script file.

An attempt to start the root job from the initialization script file failed.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the contents of the initialization script to remove the portion in which the root job
starts.

KNAX6504-E
The initialization script "initialization-script-file-name" could not be executed. reason="error-details"

The initialization script cannot run for the reason indicated by error-details.

initialization-script-file-name
The name of the initialization script file that could not run

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then rerun the command. If the problem cannot be
resolved, contact the system administrator.

KNAX6507-I
job-name.job-step-name step was skipped because of a run attribute.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name was skipped because a
condition specified in the run attribute in a job step definition command beginning with #-adsh_step was satisfied.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1257

KNAX6508-I
job-name.job-step-name step was skipped because a previous step or command ended abnormally.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name was skipped because the
preceding job step or command terminated with an error.

(S)
Resumes processing.

KNAX6509-I
job-name.job-step-name step was not executed because of script context.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name is not being executed
due to job definition script control (such as an if control statement).

(S)
Resumes processing.

KNAX6510-W
The job controller cannot set the shell variable shell-variable-name because it is read-only. filename="file-name"
line=line-number

An attempt was made by the job controller to set the shell variable indicated by shell-variable-name while the command
indicated by line-number in the file indicated by file-name was running, but the attempt failed because the variable has
the read-only attribute.

(S)
Resumes processing.

(O)
Check the job definition script and correct it if there is an error in the usage of the indicated shell variable.

KNAX6511-I
The value of the local shell variable PATH of the step will be passed in from outside the step. step=job-step-name

The PATH shell variable that is specified in the job step with the indicated job-step-name (and is in effect within the job
step) inherits a value from a PATH shell variable defined outside the job step.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1258

KNAX6512-I
The job controller was started by a custom job.

The job controller was started from a JP1/Advanced Shell custom job by JP1/AJS.

(S)
Resumes processing.

KNAX6521-E
The command command-name (line=line-number) failed. exit status=exit-status-code execution time=execution-
time-in-seconds CPU time=CPU-time-in-seconds

The command terminated with an error.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the job definition script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the erroneous command is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

Note that if the job needs to be canceled on the basis of command execution results, the system issues the
KNAX6584-I message and then terminates the processing without taking the above action.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6522-E
The command command-name (line=line-number) ended abnormally because it received a signal. exit status=exit-
status-code signal number=signal-number execution time=execution-time-in-seconds CPU time=CPU-time-in-
seconds

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1259

The command terminated with an error by signal.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the job definition script on which the command is specified

exit-status-code
Command's return code

signal-number
Signal number received by the command

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the command that terminated with an error is in a job step, the system performs the following
processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6530-E
The specified combination of options is invalid. filename="file-name" line=line-number

There is an error in the combination of an option and the option's value.

file-name
Name of the job definition script file

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1260

KNAX6531-E
The number of "item-name" exceeds the upper limit for the scope. filename="file-name" line=line-number

The number of instances of item-name exceeded the maximum.

item-name
Name of an extended script command

scope
job or step

file-name
Name of the job definition script file

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6540-I
A command group executed by another process (line=line-number) succeeded. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated normally.

lines-count
Number of lines in the job definition script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed

execution-time-in-seconds
Execution time of the executed job definition script. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
CPU time of the executed job definition script. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6541-E
A command group executed by another process (line=line-number) failed. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated with an error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1261

line-number
Number of lines in the script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6542-E
A command group executed by another process (line=line-number) ended abnormally because it received a signal.
exit status=exit-status-code signal number=signal-number execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated with an error by signal.

line-number
Number of lines in the job definition script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed in another process

signal-number
Signal number received by the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1262

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6551-E
Execution of the command command-name for the function function-name failed. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

A command executed by the function indicated by function-name terminated with an error.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the erroneous command is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

Note that if the batch job needs to be canceled on the basis of command execution results, the system issues the
KNAX6584-I message and then terminates the processing without taking the above action.

(O)
Check the command's execution results, and then eliminate the cause of the error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1263

KNAX6552-E
The command command-name for the function function-name ended abnormally because it received a signal. exit
status=exit-status-code signal number=signal-number execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

A command executed by the function indicated by function-name terminated with an error by signal.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Command's return code

signal-number
Signal number received by the command

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the command that terminated with an error is in a job step, the system performs the following
processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6560-I
A command group executed by another process for the function function-name succeeded. exit status=exit-status-
code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated normally.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1264

trap action: Action of the trap command

exit-status-code
Return code of the executed job definition script

execution-time-in-seconds
Execution time of the executed job definition script. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
CPU time of the executed job definition script. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6561-E
A command group executed by another process for the function function-name failed. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated with an error.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Return code of the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1265

KNAX6562-E
A command group executed by another process for the function function-name ended abnormally because it
received a signal. exit status=exit-status-code signal number=signal-number execution time=execution-time-in-
seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated with an error by signal reception.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Return code of the job definition script that executed in another process

signal-number
Signal number received by the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6571-I
The child job child-job-name started. parent job=parent-process-job-name parent job ID=parent-process-job-ID

The child job indicated by child-job-name has been started from the job indicated by parent-process-job-name and
parent-process-job-ID.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1266

KNAX6572-I
The child job child-job-name will use the job environment file "job-environment-file".

The child job indicated by child-job-name is using the job environment file indicated by job-environment-file.

(S)
Resumes processing.

KNAX6578-I
The child job child-job-name ended. exit status=exit-status-code execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

The child job indicated by child-job-name has ended.

exit-status-code
Return code indicating the child job's execution results
For details about the return code, see the description of the return codes for the adshexec command.
If an error occurs during adshexec command postprocessing after this message was output, the return code
indicated in this message might differ from the adshexec command's return code. The adshexec command's
final return code is output to the parent job's JOBLOG.

execution-time-in-seconds
Total execution time from start to end of the child job (in seconds). This is a reference value obtained by using the
OS's API.

CPU-time-in-seconds
Total CPU time from start to end of the child job (in seconds). This is a reference value obtained by using the OS's
API.

(S)
Resumes processing.

KNAX6580-E
The function "function-name" (line=line-number) ended with an error. (exit status=exit-status-code, execution
time=execution-time-in-seconds, CPU time=CPU-time-in-seconds)

Function was terminated with an error.

function-name
The name of the function that is executed.

line-number
Line number of the job definition script in which the function is coded

exit-status-code
Return code of function

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1267

execution-time-in-seconds
Execution time of function. This is the reference value that was obtained by using API of OS.

CPU-time-in-seconds
CPU time of the function. This is the reference value that was obtained by using API of OS.

(S)
Continues processing. Behavior of the function that became an error within the job step is as follows:

• The subsequent process of the job step normal block is not executed if stop is configured for onError attribute
of the job step. In this case, the job step error block is executed.

• The subsequent process of the job step normal block is executed if cont is configured for onError attribute of
the job step.

(O)
Check the result of the function and then eliminate the cause of the error.

KNAX6581-E
The function ended with an error. (function=function-name, functionality=functionality-name, exit status=exit-
status-code, execution time=execution-time-in-seconds, CPU time=CPU-time-in-seconds)

The function that was executed by the functionality indicated with functionality-name was terminated with an error.

function-name
The name of the function that is executed.

functionality-name
Name of the functionality that executed the function. One of the following is output:

• Command substitution: Command substitution

• Action of the trap command: Action of the trap command

exit-status-code
Return code of function

execution-time-in-seconds
Execution time of function. This is the reference value that was obtained by using API of OS.

CPU-time-in-seconds
CPU time of the function. This is the reference value that was obtained by using API of OS.

(S)
Continues processing. Behavior of the function that became an error within the job step is as follows:

• The subsequent process of the job step normal block is not executed if stop is configured for onError attribute
of the job step. In this case, the job step error block is executed.

• The subsequent process of the job step normal block is executed if cont is configured for onError attribute of
the job step.

(O)
Check the result of the function and then eliminate the cause of the error.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1268

KNAX6582-E
Execution of the function (function-name, line number = number-of-lines) was interrupted.

Execution of a function was interrupted due to the following causes:

• The job controller received a signal while the function was being executed and the job controller terminated with
an error.

• The job controller terminated with an error when the job controller immediately terminates the process with
TerminateProcess while the function was being executed.

• The job controller received a control signal while the function was being executed and the job controller terminated
with an error.

• An error occurred in a special built-in command in a function, or an error occurred in the function that does not
allow the job controller to continue processing. This does not include errors of the typeset command, or errors
of the return command executed in the function or in an external script.

• The job definition script was terminated by the kill command of the CUI debugger while the function was being
executed.

• Debug was terminated by the quit command of the CUI debugger while the function was being executed.

• Debug was paused by the GUI debugger while the function was being executed.

function-name
The name of the function that is executed.

number-of-lines
Number of lines of the job definition script in which the function is described.

(S)
Interrupt processing.

(O)
If execution of a function is interrupted due to an error, remove the failure and re-execute the command.

KNAX6583-E
Execution of the function (function-name, functionality-name) was interrupted.

The function that was executed by the function indicated with function-name was interrupted due to the following causes:

• The job controller received a signal while the function was being executed and the job controller terminated with
an error.

• The job controller terminated with an error when the job controller immediately terminates the process with
TerminateProcess while the function was being executed.

• The job controller received a control signal while the function was being executed and the job controller terminated
with an error.

• An error occurred in a special built-in command in a function, or an error occurred in the function that does not
allow the job controller to continue processing. This does not include errors of the typeset command, or errors
of the return command executed in the function or in an external script.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1269

• The job definition script was terminated by the kill command of the CUI debugger while the function was being
executed.

• Debug was terminated by the quit command of the CUI debugger while the function was being executed.

• Debug was paused by the GUI debugger while the function was being executed.

function-name
The name of the function that is executed.

functionality-name
Either of the following is output as the name of the functionality that executed the function.

• For the command substitution: Command substitution

• For an action of the trap command: Action of the trap command

(S)
Interrupt processing.

(O)
If execution of a function is interrupted due to an error, remove the failure and re-execute the command.

KNAX6584-I
A job stopped because a command that terminates execution of the script was executed.

The batch job was stopped because the command for stopping execution of a job definition script was executed. No
more job steps or job definition scripts will be executed. Even job steps whose run attribute is abnormal or always
will not be executed.

Note that the specification in the #-adsh_rc_ignore command and the successRC attribute in the #-
adsh_step_start command do not take effect on the executed command.

This message is displayed in the following cases:

• The job definition script was terminated immediately by execution of the exit command.

• The job definition script was terminated immediately by execution of the return command outside the function
or the external script.

• The script was terminated by execution of the exec command with an executable command specified in its
argument.

• An error occurred in a special built-in command, or a non-recoverable error occurred in job controller processing
(this does not include errors that occur in the typeset command or errors that occur in the return command
executed in a function or external script).

(S)
Stops the batch job.

(O)
If the batch job was stopped due to an error, correct the error, and then re-execute the batch job.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1270

KNAX6585-I
A job stopped because the exit status of a step met the conditions specified by the #-adsh_job_stop command.

The batch job was stopped because the return code of a job step satisfied a condition specified in the #-
adsh_job_stop command.

(S)
Terminates processing.

(O)
If a problem has occurred, check the execution results of the job step, eliminate the cause of the error, and then re-
execute the batch job.

KNAX6586-E
A job stopped because an error occurred that prevented the script from continuing.

The batch job was stopped due to a non-resumable error during execution of a job definition script. No more job steps
or job definition scripts will be executed. Even job steps whose run attribute is abnormal or always will not be
executed.

(S)
Cancels job execution.

(O)
Eliminate the cause of the error, and then re-execute the job.

KNAX6587-E
The number of child jobs exceeded the limit.

The number of child jobs that were started has exceeded the maximum permissible number.

(S)
Terminates processing.

(O)
Modify the job definition script file so that the number of child jobs started in a root job (including child jobs started
from other child jobs) does not exceed 9,999,999.

KNAX6588-E
API error occurred. name=API-name, reason=error-details

The error indicated by error-details occurred in the API call indicated by API-name.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1271

(S)
Terminates processing.

(O)
Eliminate the cause of the error by checking the indicated reason and other messages output together with this
message. If the problem cannot be resolved, contact the system administrator.

KNAX6589-W
An API error occurred. Processing for the job will continue. API name=API-name, reason=cause,
details=maintenance-information

The error indicated by cause occurred while the API indicated by API-name was being invoked, but the job will continue.
Possible causes are as follows:

• If API-name is CreateFile, the adshexec command might have been executed in an environment in which
the standard input, standard output, or standard error output cannot be used.

• If API-name is isatty, the adshexec command might have been executed in an environment in which the
standard input cannot be used.

(S)
Resumes processing.

(O)
If no problem has occurred in the job operation, no action is required. If a problem has occurred in the job operation,
eliminate the cause of the error, and then re-execute the batch job. If the problem cannot be resolved, contact the
system administrator.

KNAX6590-E
An error occurred in the function function-name. details=maintenance-information

The function indicated by function-name failed.

function-name
Name of the function resulting in the error. One of the following is displayed:
get variable: Function related to acquisition of shell variables
set variable: Function related to setting shell variables
unset variable: Function related to deletion of shell variable settings
run external script: Function related to external scripts
set rc: Function related to job definition script return codes
open file: Function related to opening files

(S)
Resumes or terminates the processing depending on the function resulting in the error.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1272

KNAX6591-E
The job controller ended abnormally because it received a termination request signal. signal number=signal-number

The job controller was forcibly terminated because the termination request signal indicated by signal-number was
received during job execution.

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the job was forcibly terminated.

KNAX6592-E
The job controller ended abnormally because it received a termination request control signal. control type = control-
type

The job controller was forcibly terminated because the control signal indicated by control-type was received during job
execution. One of the following character strings is displayed for control-type:

• CTRL + C: A CTRL+C signal was received

• CTRL + BREAK: A CTRL+BREAK signal was received

• CLOSE EVENT: The user closed the console (CTRL+C was received)

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the job was forcibly terminated.

KNAX6593-E
The job controller received a termination request.

The job controller received a forced termination request.

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting file), and then terminates itself.

(O)
Check that the batch job was forcibly terminated.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1273

KNAX6594-E
The job controller ended abnormally because of the operation to terminate a process.

The job controller was forcibly terminated because of process termination processing (such as TerminateProcess).

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the batch job was forcibly terminated.

KNAX6595-E
An error occurred. reason=cause, details=maintenance-information

An error indicated by cause occurred due to one of the following factors:

• The specified location of the extended script command is invalid.

• An internal error occurred.

(S)
Terminates processing.

(O)
Confirm the specified location of the extended script command and then correct the job definition script. If there is
no problem in the specified location of the extended script command, contact the system administrator.

KNAX6596-E
job-name.job-step-name step failed. exit status=exit-status-code execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

The job step terminated with an error.

job-name
Job name

job-step-name
Job step name

exit-status-code
Job step's return code

execution-time-in-seconds
Job step's execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Job step's CPU time. This is a reference value obtained by using the OS's API.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1274

(S)
Resumes the processing and executes only those subsequent job steps whose run attribute is abnormal or
always. However, the system terminates the shell in the following cases:

• The KNAX6584-I message was issued because a command for terminating the job definition script was
executed.

• Anther error resulting in termination of the job definition script occurred.

(O)
Check the execution results for each command in the job step, and then eliminate the cause of the error.

KNAX6597-I
job-name.job-step-name step succeeded. exit status=exit-status-code execution time=execution-time-in-seconds
CPU time=CPU-time-in-seconds

The job step terminated normally.

job-name
Job name

job-step-name
Job step name

exit-status-code
Job step's return code

execution-time-in-seconds
Job step's execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Job step's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6598-E
An API error occurred. API name=API-name, reason=cause, details=maintenance-information

The error indicated by causes occurred in the API call indicated by API-name.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by checking the indicated reason and other messages output together with this
message. If the problem cannot be resolved, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1275

KNAX6599-E
An internal error occurred. reason=cause, details=maintenance-information

An internal error occurred due to the indicated cause.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6600-E
An error occurred in the function function-name([argument,...]). exit status=exit-status-code, error number=error-
number, internal information=maintenance-information

An error occurred in the function indicated by function-name.

function-name
Function resulting in the error (function provided by the platform)

argument
Function argument. This information might not be displayed.

exit-status-code
Function's return value

error-number
Value of the errno global variable that indicates the nature of the error. The value is a decimal number.

(S)
Whether the processing is resumed depends on the status. See the message that is output following this message.

(O)
Determine the cause of the error based on the information provided in the messages, and then correct the error.

KNAX6601-E
An internal error occurred. details=maintenance-information

An internal conflict was detected during processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1276

KNAX6602-E
An I/O error occurred during output to stdout.

An I/O error occurred during output to the stdout standard output.

(S)
Terminates processing.

(O)
Determine the cause of the I/O error at the standard output based on the messages output before and after this
message, and then resolve the problem.

KNAX6603-E
Failed to get the current date.

The current date could not be obtained.

(S)
Terminates processing.

(O)
Determine the cause of the error based on the messages output before and after this message, and then resolve the
problem.

KNAX6604-E (Windows only)
An error occurred in the function function-name([argument,...]). exit status=exit-status-code, last error
code=system-error-code, internal information=maintenance-information

An error occurred in the function indicated by function-name.

function-name
Name of the function resulting in the error (function provided by the platform)

argument
Function argument and information needed for investigating the error
This information might not always be displayed. Some arguments might not be displayed.

exit-status-code
Function's return value

system-error-code
Return value of LastError() that indicates the nature of the error

(S)
The processing depends on the messages output before and after this message.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1277

(O)
Determine the cause of the error based on the messages output before and after this message, and then resolve the
problem.

KNAX6605-E
Conversion of the date and time failed. date and time=date-and-time

An error occurred when the date and time were converted to internal representation.

date-and-time: Date and time that could not be converted to internal representation

(S)
Terminates processing.

(O)
Specify for interpretation by the command a date and time that falls within the following range (based on UTC):
1970-01-01 at 00:00:00 through 2038-01-19 at 03:14:07
Note that a date and time that is within this range might still result in an error depending on the platform being used.

KNAX6610-E
The specified option "option-name" is invalid.

An unknown option was specified.

option-name
Unknown option name

(S)
Terminates processing.

(O)
Specify the correct option.

KNAX6611-E
No value is specified for the option "option-name".

No value was specified for the option indicated by option-name.

(S)
Terminates processing.

(O)
Specify a value for the displayed option.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1278

KNAX6612-E
The value specified for the option "option-value" is invalid.

An option value is invalid.

option-value
Specified option value

(S)
Terminates processing.

(O)
Specify the correct value for the option.

KNAX6613-I
The start time is YYYY-MM-DD hh:mm:ss+hhmm.
OR
The start time is none.

YYYY-MM-DD hh:mm:ss+hhmm indicates the earliest job execution start date and time that was interpreted by the
command. +hhmm is the adjustment in hours and minutes between UTC and local time.

none means that the start date and time have not been specified.

(S)
Resumes processing.

KNAX6614-I
The end time is YYYY-MM-DD hh:mm:ss+hhmm.
OR
The end time is none.

YYYY-MM-DD hh:mm:ss+hhmm indicates the latest job execution start date and time that was interpreted by the
command. +hhmm is the adjustment in hours and minutes between UTC and local time.

none means that the end date and time have not been specified.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1279

KNAX6615-E
The time range is invalid. The start time is later than the end time.

The earliest and latest job execution start dates/times are reversed.

(S)
Terminates processing.

(O)
Specify the latest job execution start date and time (in the -e option in the adshevtout command) and the earliest
job execution start date and time (in the -s option in the adshevtout command) in such a manner that the former
is after the latter.

KNAX6616-E
Too many operands are specified.

There are too many arguments in the command.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

KNAX6632-E
The spool directory was not found. directory name="spool-directory-name"

The spool directory cannot be found.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check the spool directory specified in the environment file for any error.

KNAX6633-E
The spool directory could not be read. directory name="spool-directory-name"

The spool directory cannot be referenced.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1280

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check if the user executing the command has the permission to reference the spool directory.

KNAX6634-E
An error occurred during initialization of the adshevtout command.

An initialization error occurred in the adshevtout command.

(S)
Terminates processing.

(O)
Resolve the problem by referencing the message that was output before this message.

KNAX6635-E
Failed to lock the spool directory. directory name="spool-directory-name"

A lock error occurred on the spool directory.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check the following:

• The spool directory specified in the environment file is correct.

• The user has the access permission to reference or update the spool directory.

• A lock file can be created, referenced, or updated.

KNAX6636-E
The spool directory cannot be accessed because it is being accessed by another command. directory name="spool-
directory-name"

The spool could not be referenced because it was being accessed by another command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1281

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Re-execute the command when the adshhk command is not executing.

KNAX6640-I
An event file was skipped because you do not have permission to access it. file name="event-file-path-name"

Referencing of an event file was skipped because the user executing the command did not have the permission to
reference the event file.

event-file-path-name
Path name of the skipped event file

(S)
Resumes processing.

KNAX6644-E
An I/O error occurred during an attempt to read an event file. file name="event-file-path-name"

An I/O error occurred while reading an event file.

event-file-path-name
Path name of the event file resulting in the I/O error

(S)
Stops processing the event file resulting in the I/O error, and then processes another event file.

(O)
Determine the cause of the I/O error in the event file based on the messages output before and after this message,
and then resolve the problem.

KNAX6645-W
This command does not support the event file version. file name="event-file-path-name", event file
version=version-number

This command does not support the version of an event file.

event-file-path-name
Path name of the event file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1282

version-number
Version number of the event file

(S)
Processes another event file without referencing the displayed event file.

(O)
Execute the command that supports the JP1/Advanced Shell version used to create the event file.

KNAX6646-E
The event file is corrupted. file name="event-file-path-name"

An event file is corrupted.

event-file-path-name
Path name of the event file that has been determined to be corrupted

(S)
Stops processing the event file determined to be corrupted, and then processes another event file.

(O)
Make sure that the event file was not updated illegally. If the cause cannot be determined, contact the system
administrator.

KNAX6701-W
The job object is not available.

The job object cannot be used. The process created by a child process is not terminated by the TerminateProcess
function when the batch job is forcibly terminated.

(S)
Continues processing.

KNAX6710-I
The built-in command "command-name" [with the option "option-name"] is not supported on the current platform.
The command returned "return-value".[filename="file-name" line=line-number]

An attempt was made to execute a built-in command that is not supported by JP1/Advanced Shell on the current platform.
Another possibility is that an attempt was made to execute the trap command in an environment in which DISABLE
is specified in the TRAP_ACTION_SIGTERM environment setting parameter.

command-name
Name of the built-in command

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1283

option-name
Option name specified in the built-in command

return-value
Return value of the built-in command

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Continues the processing using the indicated return code as the return code of the built-in command.

KNAX6711-E
The built-in command "command-name" [with the option "option-name"] is not supported on the current platform.
The job failed.[filename="file-name" line=line-number]

An attempt was made to execute a built-in command that is not supported by JP1/Advanced Shell on the current platform.
Or, an attempt was made to execute a built-in command that specified an option that is not supported by JP1/Advanced
Shell on the current platform.

command-name
Name of the built-in command

option-name
Option name specified in the built-in command

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6712-E
The specified variable "shell-variable-name" cannot be exported because the current platform requires that its name
be composed entirely of capital letters.[filename="file-name" line=line-number]

A variable whose name is not in all uppercase letters cannot be exported on the current platform.

shell-variable-name
Name of the shell variable whose export was attempted

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1284

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the export command

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6713-E
The required directory "directory-name" does not exist.

A directory required in JP1/Advanced Shell on the current platform is missing.

directory-name
Name of the missing directory

(S)
Terminates processing.

(O)
Check and, if necessary, revise the setup procedure.

KNAX6714-E
Background execution is not supported.[filename="file-name" line=line-number]

Job definition scripts cannot be executed in the background on the current platform.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute a job definition script in the background

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6715-E
Subshell execution is not supported.[filename="file-name" line=line-number]

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1285

Job definition scripts cannot be executed in a subshell on the current platform.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute a job definition script in a subshell

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6718-I
The trap action was not set because an unsupported termination method was specified in the trap command.
[filename="file-name" line="line-number"]

The action was not set because an unsupported forced termination method was specified in the trap command.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Continues processing.

KNAX6750-E
The file or directory "path-name" does not exist.

The file or directory indicated by path-name does not exist.

(S)
Continues processing.

(O)
Make sure that the file or directory specified for path-name is correct.

KNAX6751-E
Failed to get ACL information. path="path-name", reason=cause, details=details

An attempt to acquire ACL information for the file or directory indicated by path-name failed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1286

(S)
Continues processing.

(O)
Make sure that the user who executes the adshscripttool command is the owner of the file or directory indicated
by path-name. If the user is not the owner, execute the command as the owner.

KNAX6752-E
The format of the mode is invalid.

The format of the mode specified in the -fmode option of the adshscripttool command was not valid.

(S)
Continues processing.

(O)
Correct the mode specification.

KNAX6753-E
adshscripttool: A command line error occurred. details="details"

The command line specification is not valid. The following table lists the details displayed in the message and their
meanings:

Details displayed Meaning

A required option is not specified A required option is not specified.

The path name is not specified No path name is specified.

The mode is not specified No mode is specified.

No value is specified for the -s option No value is specified for the -s option.

You cannot specify the -s option first The -s option was specified first (it cannot be specified first).

An invalid value is specified for the -s
option

The value specified for the -s option is invalid.

The path is specified more than once Multiple path names were specified (multiple path names cannot be
specified).

The mode is specified more than once Multiple modes were specified (multiple modes cannot be specified).

The specified path contains a null
character

An empty character string was specified for the path name.

The specified mode contains a null
character

An empty character string was specified for the mode.

The value specified for the -s option
contains a null character

An empty character string was specified as the value of the -s option.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1287

(S)
Continues processing.

(O)
Correct the command specification, and then re-execute it.

KNAX6800-I
The path matched the conversion rule.[filename="file-name" line=line-number] path converted="path-
name-1":"path-name-2"

The rule for converting path-name-1 to path-name-2 was satisfied.

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the path conversion rule

(S)
Continues processing.

KNAX6801-I
The path matched the conversion rule.[filename="file-name" line=line-number] shell variable handling
path="shell-variable-name"

The conversion rule using a shell variable that handles paths was satisfied.

shell-variable-name
Name of the shell variable that handles path names

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the path conversion rule

(S)
Continues processing.

KNAX6803-I
The access path matched the conversion rule.[filename="file-name" line=line-number] path converted="path-
name-1":"path-name-2"

The rule for converting path-name-1 to path-name-2 was satisfied.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1288

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the PATH_CONV_ACCESS parameter conversion rule

(S)
Continues processing.

KNAX6804-I
The command argument matched the conversion rule.[filename="file-name" line=line-number] argument
converted="argument-1":"argument-2"

The rule for converting argument-1 to argument-2 was satisfied.

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the COMMAND_CONV_ARG parameter conversion rule

(S)
Continues processing.

KNAX6805-I
The access path matched the conversion rule during execution of the function function-name. path
converted="path-name-1":"path-name-2"

When the function indicated by function-name was executing, the rule for converting path-name-1 to path-name-2 was
satisfied.

function-name
Name of the function satisfying the conversion rule. One of the following is displayed:

• command substitution: Command substitution function

• trap action: Action of the trap command

(S)
Continues processing.

KNAX6806-I
The command argument matched the conversion rule during execution of the function function-name. argument
converted="argument-1":"argument-2"

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1289

The rule for converting argument-1 to argument-2 was satisfied when the function indicated by function-name was
executed.

function-name
Name of the function satisfying the conversion rule. One of the following is displayed:

• command substitution: Command substitution function

• trap action: Action of the trap command

(S)
Continues processing.

KNAX6810-E
The character specified to delimit directories is invalid.

The directory separator specified in the PATH_CONV_ENABLE parameter is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6811-E
The character specified to delimit paths is invalid.

The path separator specified in the PATH_CONV_ENABLE parameter is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6812-E
An invalid path is specified. path="path-name"

The path specified in the PATH_CONV parameter is invalid.

path-name
Path name specified in the PATH_CONV parameter

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1290

(O)
Correct the environment file.

KNAX6813-E
A line exceeds the size limit.[filename="file-name" line=line-number]

The length of a line exceeded the maximum permitted for job definition scripts.

file-name
Name of the job definition script file

line-number
Line number of the line whose length exceeds the maximum

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script.

KNAX6814-E
An invalid argument is specified. argument="argument"

An argument specified in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter is invalid.

argument
Argument specified in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter that is invalid

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6815-E
No argument is specified.

An argument is missing in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter.

(S)
Terminates processing.

(O)
Correct the environment file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1291

KNAX6830-I
The command definition matched the rule specified by the environment settings parameter CHILDJOB_PGM.
command line="command-line"

The rule for replacing a child job's execution specified in the CHILDJOB_PGM parameter was satisfied. Alternatively,
a child job was executed by executing the adshscripttool -exec command.

command-line
Command line of the command to be replaced

(S)
Continues processing.

KNAX6831-I
The command definition matched the rule specified by the environment settings parameter
CHILDJOB_SHEBANG. script="script-name" shebang="shebang"

The rule for replacing a child job's execution specified in the CHILDJOB_SHEBANG parameter was satisfied.

script-name
File name of the script file that is to be executed as a child job

shebang
First line beginning with #! of the script file that is to be executed as a child job

(S)
Continues processing.

KNAX6832-I
The command definition matched the rule specified by the environment settings parameter CHILDJOB_EXT.
script="script-name"

The rule for replacing a child job's execution specified in the CHILDJOB_EXT parameter was satisfied.

script-name
File name of the script file that is to be executed as a child job

(S)
Continues processing.

KNAX6996-I
API error occurred. name=API-name, reason=reason

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1292

The error indicated by reason occurred in the API call indicated by API-name.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by checking the indicated reason and other messages output together with this
message. If the problem cannot be resolved, contact the system administrator.

KNAX6997-E
An API error occurred. API name=API-name reason=cause

The error indicated by causes occurred in the API call indicated by API-name.

If the API name is AssignProcessToJobObject and the cause is Access is denied., the job controller was
called from within the job definition script as a root job, not as a child job, or the job controller was called from a program
that uses job objects other than JP1/Advanced Shell.

(S)
Terminates processing. However, if the API name is AssignProcessToJobObject, the system continues
processing.

(O)

• When the job controller was called from within the job definition script as a root job, not as a child job
Call the job controller as a child job.

• When the job controller was called from a program that uses job objects other than JP1/Advanced Shell
When the job is terminated forcibly, the job controller terminates without forcibly terminating processes engaged
in grandchild processing. If there is no problem in the operation during forced termination processing including
the specifications of the program that calls the job controller, no action is needed. If there is a problem, contact
the system administrator.

• Other than the above
Eliminate the cause of the error by referencing the displayed cause. If the problem cannot be resolved, contact
the system administrator.

KNAX6998-E
Memory cannot be allocated.[filename="file-name" line=line-number]

A memory shortage occurred.

file-name
Name of the job definition script file

line-number
Line number of the line where the error occurred

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1293

(S)
Terminates processing.

(O)
Contact the system administrator, who must check and, if necessary, revise the memory estimation.

KNAX6999-E
An internal error occurred. reason="cause" details="maintenance-information"

An internal error occurred.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7000-E
The input character string is too long.

The input character string is too long.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the input character string, and then re-enter it.

KNAX7001-E
The specified command "command-name" does not exist.

The debugger command indicated by command-name does not exist.

(S)
Resumes processing.

(O)
Enter the correct command name.

KNAX7002-E
Too many arguments are specified.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1294

Too many arguments are specified.

(S)
Resumes processing.

(O)
Specify the correct arguments, and then re-execute the command.

KNAX7003-E
The command "command-name" does not take any arguments.

The debugger command indicated by command-name does not take arguments.

(S)
Resumes processing.

(O)
Specify the command correctly, and then re-execute it.

KNAX7004-E
The command "command-name" requires the argument (argument-details).

The debugger command indicated by command-name requires the argument indicated by argument-details.

(S)
Resumes processing.

(O)
Specify the command correctly, and then re-execute it.

KNAX7006-W
Are you sure you want to restart the script from the beginning? (y or n)

This message asks whether the job definition script is to be re-executed from the beginning.

(S)
Resumes processing.

(O)
To re-execute the job definition script, enter y; otherwise, enter n.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1295

KNAX7007-I
Execution of the following script will now start: path-name-of-job-definition-script arguments

Execution of the job definition script is starting.

(S)
Resumes processing.

KNAX7008-I
The script was not restarted.

The job definition script was not re-executed.

(S)
Resumes processing.

KNAX7009-I
Are you sure you want to stop the script being debugged? (y or n)

This message asks whether the job definition script being debugged is to be terminated.

(S)
Resumes processing.

(O)
To terminate the job definition script, enter y; otherwise, enter n.

KNAX7010-E
The script is not running.

The job definition script is not running.

(S)
Resumes processing.

(O)
Re-execute the command while the job definition script is running.

KNAX7011-I
The command "command-name" was not executed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1296

The debugger command indicated by command-name was not executed.

(S)
Resumes processing.

KNAX7012-W
The script is running. Are you sure you want to exit the debugger? (y or n)

This message asks whether the debugger is to be terminated while the job definition script is running.

(S)
Resumes processing.

(O)
To terminate the debugger, enter y; otherwise, enter n.

KNAX7013-E
The file "file-name" is not parsed.

The job definition script file indicated by file-name has not been parsed.

(S)
Resumes processing.

(O)
Specify the correct file name, and then re-execute the command. Or, use the #-adsh_script command to call
an external script within the job definition script file.

KNAX7014-E
The number of breakpoints and watchpoints exceeds the limit.

The number of breakpoints and watchpoints exceeded the maximum.

(S)
Resumes processing.

(O)
Restart the debugger, and then re-execute the command.

KNAX7015-W
The breakpoint cannot be set at line "line-number". The breakpoint will be set at the next available line.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1297

A breakpoint cannot be set on the line indicated by line-number. A breakpoint will be set at the next line at which a
breakpoint can be set.

(S)
Resumes processing.

KNAX7016-E
The breakpoint cannot be set at line "line-number". No next available line exists at which to set the breakpoint.

A breakpoint cannot be set on the line indicated by line-number. There are no more lines on which a breakpoint can be
set.

(S)
Resumes processing.

(O)
Specify the correct line number, and then re-execute the command.

KNAX7017-E
The file "file-name" does not exist.

The file indicated by file-name does not exist.

(S)
Resumes processing.

(O)
Specify the correct file name, and then re-execute the command.

KNAX7018-I
Breakpoint "breakpoint-number": filename="file-name" line=line-number

This message displays information about a breakpoint. The displayed file-name is a base name.

(S)
Resumes processing.

KNAX7019-E
Line "line-number" does not exist.

The line indicated by line-number does not exist.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1298

(S)
Resumes processing.

(O)
Specify the correct line number, and then re-execute the command. Or, move the line, and then re-execute the
command.

KNAX7020-E
The specified function "function-name" is not defined.

The function indicated by function-name is undefined.

(S)
Resumes processing.

(O)
Specify the correct function name, and then re-execute the command.

KNAX7021-E
The specified job step "job-step-name" is not defined.

The job step indicated by job-step-name is undefined.

(S)
Resumes processing.

(O)
Specify the correct job step name, and then re-execute the command.

KNAX7022-E
The specified variable "variable-name" is invalid.

The variable indicated by variable-name is invalid.

(S)
Resumes processing.

(O)
Specify the correct variable name, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1299

KNAX7023-I
Watchpoint "watchpoint-number": variable="variable-name"

This message displays information about a watchpoint.

(S)
Resumes processing.

KNAX7024-E
The specified range "number-range" is invalid.

The range of breakpoint and watchpoint numbers indicated by number-range is invalid.

(S)
Resumes processing.

(O)
Specify a valid range of numbers, and then re-execute the command.

KNAX7025-I
Are you sure you want to delete all breakpoints and watchpoints? (y or n)

This message asks whether all breakpoints and watchpoints are to be deleted.

(S)
Resumes processing.

(O)
To delete all breakpoints and watchpoints, enter y; otherwise, enter n.

KNAX7026-E
No breakpoints or watchpoints are defined.

Breakpoints and watchpoints cannot be deleted because no breakpoints or watchpoints have been set.

(S)
Resumes processing.

(O)
If necessary, re-execute the command when breakpoints and watchpoints have been set.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1300

KNAX7027-E
The breakpoint or watchpoint "number" is not defined.

The breakpoint or watchpoint indicated by number is not set.

(S)
Resumes processing.

(O)
Specify the correct number, and then re-execute the command.

KNAX7028-E
No breakpoints or watchpoints exist in the range "number-range".

There are no breakpoints or watchpoints in the range indicated by number-range.

(S)
Resumes processing.

(O)
Specify the correct range of numbers, and then re-execute the command.

KNAX7029-E
The specified argument "argument" is invalid.

The command argument indicated by argument is invalid.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the specified argument, and then re-execute the command.

KNAX7032-I
The script "job-definition-script-name" stopped running.

Execution stopped in the job definition script indicated by job-definition-script-name.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1301

KNAX7033-I
The external script "job-definition-script-name" stopped running.

Execution stopped in the external script indicated by job-definition-script-name.

(S)
Resumes processing.

KNAX7034-I
The script will continue.

Execution of the job definition script is underway.

(S)
Resumes processing.

KNAX7035-E
The debugger command "command-name" cannot be executed at the outermost level.

The debugger command indicated by command-name cannot be executed at the outermost location.

(S)
Resumes processing.

(O)
Re-execute the command while execution is stopped within the function.

KNAX7036-I
Execution will continue until the end of the current function.

Execution will continue until the end of the current function.

(S)
Resumes processing.

KNAX7037-I
Are you sure you want to exit the current function? (y or n)

This message asks whether the current function is to be terminated.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1302

(S)
Resumes processing.

(O)
To terminate the current function, enter y; otherwise, enter n.

KNAX7038-I
The signal "signal-name" will be sent to the script.

The signal indicated by signal-name is being sent to the job definition script.

(S)
Resumes processing.

KNAX7039-E
The specified signal number "signal-number" does not exist.

The signal indicated by signal-number does not exist.

(S)
Resumes processing.

(O)
Specify the correct signal number, and then re-execute the command.

KNAX7040-E
The specified signal "signal-name" does not exist.

The signal indicated by signal-name does not exist.

(S)
Resumes processing.

(O)
Specify the correct signal name, and then re-execute the command.

KNAX7043-I
The script stopped because the signal "signal-name" (Stop=Yes) was received.

The job definition script was stopped because the signal indicated by signal-name that stops a job definition script was
already received.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1303

(S)
Resumes processing.

KNAX7044-E
The debugger command "command-name" requires a subcommand.

The debugger command indicated by command-name requires a subcommand.

(S)
Resumes processing.

(O)
Specify a subcommand, and then re-execute the command.

KNAX7045-E
"command-name": The subcommand "subcommand-name" is invalid.

The indicated subcommand-name of the debugger command indicated by command-name is invalid.

(S)
Resumes processing.

(O)
Specify the correct subcommand name, and then re-execute the command.

KNAX7046-E
The specified variable "variable-name" is not defined.

The variable indicated by variable-name is undefined.

(S)
Resumes processing.

(O)
Specify the correct variable name, and then re-execute the command.

KNAX7047-I
No breakpoints or watchpoints are defined.

No breakpoints or watchpoints have been set.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1304

(S)
Resumes processing.

(O)
If necessary, re-execute the command after breakpoints or watchpoints have been set.

KNAX7048-I
Working directory: directory-path

The work directory was changed to the directory path shown as directory-path.

(S)
Resumes processing.

KNAX7049-E
The working directory cannot be changed. (reason=error-details)

The work directory could not be changed for the reason indicated by error-details.

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7050-E
An ampersand "&" cannot be specified in arguments for the command "command-name".

The ampersand (&) is not allowed in an argument of the debugger command indicated by command-name.

(S)
Resumes processing.

(O)
To use an ampersand (&) for a purpose other than background execution, specify \&.

KNAX7052-E
The type of the value to be assigned differs from that of the variable.

The type of variable differs from the type of value to be assigned.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1305

(S)
Resumes processing.

(O)
Check and, if necessary, revise the types of the variable and the value to be assigned, and then re-execute the
command.

KNAX7053-I
Usage: command-name argument

This message displays the usage of the debugger command indicated by command-name.

(S)
Resumes processing.

KNAX7054-E
The specified variable "variable-name" is read-only.

The variable indicated by variable-name is read-only.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the attribute of the variable, and then re-execute the command.

KNAX7055-E
A breakpoint has already been set at line "line-number".

A breakpoint has already been set at the line indicated by line-number.

(S)
Resumes processing.

(O)
If necessary, delete the breakpoint, and then re-execute the command. Or, specify a different line number, and then
re-execute the command.

KNAX7056-I
The value of the variable "variable-name" was changed to numeric-value.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1306

The value of the variable indicated by variable-name was changed to numeric-value.

numeric-value
Numeric value or variable value (numeric value) specified as the right-hand term of the assignment expression in
the set command

(S)
Resumes processing.

KNAX7057-I
The value of the variable "variable-name" was changed to "character-string".

The value of the variable indicated by variable-name was changed to character-string.

character-string
Character string or variable value (character string) specified as the right-hand term of the assignment expression
in the set command

(S)
Resumes processing.

KNAX7058-I
Debugger received signal "signal-name".

The debugger received the signal indicated by signal-name.

(S)
Resumes processing.

KNAX7062-E
No value is set for the specified variable "variable-name".

The variable indicated by variable-name has no value.

(S)
Resumes processing.

(O)
Specify a variable that has a value, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1307

KNAX7063-I
A request from the command "command-name" was received while the script was running.

The request of the command indicated by command-name was accepted while the job definition script was running.

(S)
Cancels the batch job.

(O)
If necessary, re-execute the command.

KNAX7064-I
A cancel request was received from the editor.

A cancellation request from the editor was accepted.

(S)
Cancels the batch job.

(O)
If necessary, re-execute the command.

KNAX7065-I
Job steps are not defined.

No job steps have been defined.

(S)
Resumes processing.

(O)
If necessary, define a job step in the job definition script, and then re-execute the command.

KNAX7066-I
Functions are not defined.

Functions are not defined.

(S)
Resumes processing.

(O)
If necessary, define a function in the job definition script, and then re-execute the command. Or, re-execute the
command after function definitions have taken effect.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1308

KNAX7067-I
Variables are not defined.

Variables are not defined.

(S)
Resumes processing.

(O)
If necessary, define a variable in the job definition script, and then re-execute the command. Or, re-execute the
command after variable definitions have taken effect.

KNAX7068-I
Commands will be skipped until the end of the function.

The commands will be skipped until the end of the function.

(S)
Resumes processing.

KNAX7070-E
A watchpoint has already been set for the variable "variable-name".

No new watchpoint can be set for the variable indicated by variable-name because a watchpoint has already been set.

(S)
Resumes processing.

(O)
If necessary, delete the watchpoint, and then re-execute the command. Or, specify a different variable name, and
then re-execute the command.

KNAX7071-E
A breakpoint cannot be set. reason=error-cause

No breakpoint can be set because execution of the job definition script was stopped by the debugger for the reason
indicated by cause-of-error.

error-cause
One of the following is output:

• trap action: A trap action stop occurred during execution

• EOF: Execution stopped at the end of the file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1309

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command. Or, specify an appropriate argument, and then
re-execute the command.

KNAX7072-E
A line cannot be listed. reason=error-cause

The contents of lines in the source file cannot be displayed because execution of the job definition script was stopped
by the debugger for the reason indicated by cause-of-error.

error-cause
One of the following is output:

• trap action: A trap action stop occurred during execution

• EOF: Execution stopped at the end of the file.

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command. Or, specify an appropriate argument, and then
re-execute the command.

KNAX7073-I
A request to execute a trap action was received from the editor. parameter value="parameter value"

A request to execute a trap action was received from the editor.

parameter value
Value specified in the TRAP_ACTION_SIGTERM environment setting parameter.
If DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting parameter or no action by the trap
command is defined, the trap command's action is not executed even when this message is issued.

(S)
Resumes processing.

KNAX7090-W
Information about one or more errors exceeds the limit and cannot be displayed.

One or more error information items cannot be displayed because the maximum number of items has been reached.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1310

(S)
Resumes processing.

(O)
Specify a variable name that has a value, and then re-execute the command.

KNAX7091-W
Information about one or more variables cannot be displayed because the size of the variables management area
exceeded the upper limit.

One or more pieces of error information cannot be displayed because the maximum limit has been exceeded.

(S)
Resumes processing.

KNAX7099-E
The debugger ended abnormally.

The debugger terminated with an error.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by referencing the other messages output together with this message, and then re-
execute the command. If the problem cannot be resolved, contact the system administrator.

KNAX7101-E
Failed to create the debugger child process. (reason=error-details)

The creation of a debugger child process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7102-I
The debugger child process was created. (PID=process-ID)

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1311

A debugger child process has been created.

(S)
Resumes processing.

KNAX7103-I
The debugger child process ended. (PID=process-ID)

A debugger child process ended.

(S)
Resumes processing.

KNAX7104-E
Failed to open a log file in the debugger.

An open error occurred in the log file while the job definition script was being run by the debugger.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command. If the problem cannot be resolved, contact the
system administrator.

KNAX7105-E
Failed to move to the debugger working directory. (reason=error-details)

The directory could not be changed to the debugger's work directory for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7106-E
Failed to move to the script working directory. (reason=error-details)

The directory could not be changed to the work directory for the job definition script for the reason indicated by error-
details.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1312

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7107-I
A signal was received during debugger command input.

A signal was received while a debugger command was being entered.

(S)
Terminates the processing if a signal for terminating the processing was received; continues the processing if a signal
for continuing the processing was received.

(O)
If necessary, re-execute the command.

KNAX7108-E
Debugger command input failed.

An input error occurred in a debugger command.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by referencing the other messages output together with this message, and then re-
execute the command.

KNAX7109-I
An EOF was input by the debugger command.

EOF was entered by the debugger command.

(S)
Terminates processing.

KNAX7110-E
Failed to open the DBG file "file-path". (reason=error-details)

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1313

An open error occurred in the file indicated by file-path for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7111-I
Parsing will now start for the DBG file "file-path".

Parsing of the file indicated by file-path is beginning.

(S)
Continues processing.

KNAX7112-E
The format of the DBG file "file-path" is invalid. details=maintenance-information

The format of the file indicated by file-path is invalid. The maintenance information provides the location of invalid
internal data and the cause of the error.

(S)
Terminates processing.

(O)
Re-execute the command. If necessary, contact the system administrator.

KNAX7113-E
Processing for the "API-name" API failed. (reason=error-details)

The processing indicated by OS's-API-name failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1314

KNAX7114-E
Failed to wait for the debugger child process. (reason=error-details)

Wait processing for a debugger child process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7115-E
Failed to execute the exec command process. (reason=error-details)

Execution of the exec command process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7116-E
Free disk space is low.

There is a shortage of free disk space.

(S)
Terminates processing.

(O)
Increase the available disk capacity, and then re-execute the command.

KNAX7117-I
Parsing of the DBG file "file-path" ended normally.

Parsing of the DBG file indicated by file-path has been completed.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1315

KNAX7118-E
Failed to create the console.

Console creation failed.

(S)
Terminates processing.

(O)
Re-execute the command. If the same error recurs, contact the system administrator.

KNAX7119-E
Failed to duplicate the file descriptor.

Duplication of a file descriptor failed.

(S)
Terminates processing.

(O)
Re-execute the command. If the same error recurs, contact the system administrator.

KNAX7120-W
A parent process received SIGCHLD, but the child process had no change.

The parent process received SIGCHLD, but its child process's status remains unchanged.

(S)
Resumes processing.

KNAX7121-E
Failed to create a process by using the exec command. (reason=error-details)

Creation of an exec command process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1316

KNAX7122-E
Failed to wait for a process created by the exec command. (reason=error-details)

Wait processing for the exec command process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7123-E
Failed to get the value of the variable "variable-name". details=maintenance-information

Acquisition of the value of the variable indicated by variable-name failed. If the attempt was to acquire the values of
all variables, <All variables> is displayed for variable-name.

This message might be output because there is a shortage of system memory.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7124-E
Failed to set the value of the variable "variable-name". details=maintenance-information

An attempt to set a value in the variable indicated by variable-name failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7125-E
Failed to get information about the function "function-name". details=maintenance-information

Acquisition of information about the function indicated by function-name failed. If the attempt was to acquire
information about all functions, <All functions> is displayed for function-name.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1317

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7126-I
Fault injection mode is set to {"on"|"off"}.

The fault injection mode was set.

• on
The fault injection mode was enabled.

• off
The fault injection mode was disabled.

(S)
Terminates processing.

KNAX7127-E
Fault injection mode could not be modified.

The attempt to reset the fault injection mode failed because the job definition script was resumed with the fault injection
mode already enabled.

(S)
Resumes processing.

(O)
Execute the job definition script all the way to its end, or re-execute it.

KNAX7128-E
Failed to remove the DBG file. (filename=file-path, reason=error-details)

The debugger's DBG file cannot be deleted for the reason indicated by error-details.

file-path
File path of the DBG file.

error-details
Details of the error

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1318

(O)
Delete the unneeded file with a command such as rm.

KNAX7129-E
The fault injection mode cannot be enabled.

When specifying FUNCTION for the CMDRC_CMDGRP_CHECK parameter, the fault injection mode cannot be
enabled in the function while the function is stopped.

(S)
Continue processing.

(O)
If necessary, enable the fault injection mode after the command is stopped outside the function.

KNAX7200-I
The application-execution agent program will now start. (user name=user-name, domain name=domain-name)

Starting the application-execution agent program.

user-name
Name of the user who started the adshappagent command

domain-name
Name of domain that started the adshappagent command

(S)
Continues processing.

KNAX7201-I
The application-execution agent program ended. (user name=user-name, domain name=domain-name)

The application-execution agent program finished.

user-name
Name of the user who started the adshappagent command

domain-name
Name of domain that started the adshappagent command

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1319

KNAX7203-W
The specified value (specified-value) of the registry (registry-value) is invalid. Processing is performed using the
default value.

The value specified for registry is invalid.

registry-value
Registry value at which an error occurred

specified-value
Specification value of registry

(S)
Assumes the default value and continues processing.

(O)
Review the specification value of registry.

KNAX7204-E
An error occurred while executing the command command-name. (API=function-name, error code=error-code)

An error occurred while you were executing the command indicated by command-name.

This message may be output if the right to "create a global object" is not enabled.

command name
Name of the command in which the error has occurred

function-name
Function name of OS that an error occurred

error-code
Error information

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command.
If the rights to "create a global object" is not enabled, enable the authority to "create a global object" and execute
the command again.
If the right to "create a global object" cannot be enabled due to security problems, a user who can enable the rights
to "create a global object" must use the application execution agent function.
If the cause of an error cannot be eliminated, contact the system administrator.

KNAX7205-E
The application-execution agent program is already running.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1320

The application-execution agent program has already been started.

(S)
Interrupts processing.

KNAX7210-E
Failed to start the executable application. (view name=view-name, error code=error-code)

Execution of the executable application executable application failed.

view-name
Name to be displayed of the executable application that execution was complete
If the name to be displayed is not specified, the executable application name is output.

error-code
Details of error

(S)
Continues processing.

(O)
Eliminate the cause of an error from the error code and re-execute the command.
An error might occur if the executable application that does not exist is specified or there is lack of authority to
execute the executable application. Check the storage folder of the executable application.
If the cause of an error cannot be eliminated, contact the system administrator.

KNAX7211-I
The process of the application-execution agent program will now start.

The processing of the application-execution agent program is started.

(S)
Continues processing.

KNAX7212-I
The process of the application-execution agent program will now end. (details=maintenance-information)

The process of the application-execution agent program is terminated.

maintenance-information
Identification information of process

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1321

KNAX7213-I
Execution of the executable application is complete. (view name=view-name, code=exit-status-code)

Execution of the executable application was terminated.

view-name
Name to be displayed of the executable application that execution was complete
If the name to be displayed is not specified, the executable application name is output.

exit-status-code
Return code of executable application that execution was complete

(S)
Continues processing.

KNAX7215-E
Failed to register the agent in the startup menu. (API=function-name, error code=error-code, user name=user-
name, domain name=domain-name

Startup registration failed.

function-name
Function name of OS that an error occurred

error-code
Error information

user-name
Name of the user who started the adshappagent command

domain-name
Name of domain that started the adshappagent command

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command. If the cause of
an error cannot be eliminated, contact the system administrator.

KNAX7216-E
Failed to unregister the agent from the startup menu. (API=function-name, error code=error-code, user name=user-
name, domain name=domain-name)

Startup cancellation failed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1322

function-name
Function name of OS that an error occurred

error-code
Error information

user-name
Name of the user who started the adshappagent command

domain-name
Name of domain that started the adshappagent command

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command. If the cause of
an error cannot be eliminated, contact the system administrator.

KNAX7217-E
Termination processing failed. (API=function-name, error code=error-code, user name=user-name, domain
name=domain-name)

Termination process of application-execution agent program failed.

function-name
Function name of OS that an error occurred

error-code
Error information

user-name
Name of the user who started the adshappagent command

domain-name
Name of domain that started the adshappagent command

(S)
Continues processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command. If the cause of
an error cannot be eliminated, contact the system administrator.

KNAX7221-E
Failed to register the agent in the startup menu.

Startup registration failed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1323

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from messages that are output to the log of the application-execution agent
functionality.

KNAX7222-E
Failed to unregister the agent from the startup menu.

Startup cancellation failed.

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from messages that are output to the log of the application-execution agent
functionality.

KNAX7223-E
Termination processing failed.

Termination process of application-execution agent program failed.

(S)
Continues processing.

(O)
Eliminate the cause of an error from messages that are output to the log of the application-execution agent
functionality.

KNAX7225-E
An error occurred while executing the command command-name.

An error occurred while you were executing the command indicated by command-name.

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from messages that are output to the log of the application-execution agent
functionality.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1324

KNAX7250-I
The GUI application execution command will now start. (user name=user-name, domain
name=domain-name)

Starting the GUI application execution command.

user-name
Name of the user who started the adshappexec command

domain-name
Name of the domain that started the adshappexec command

(S)
Continues processing.

KNAX7251-I
The GUI application execution command ended. (user name=user-name, domain name=domain-name)

The GUI application execution command was terminated.

user-name
Name of the user who started the adshappexec command

domain-name
Name of the domain that started the adshappexec command

(S)
Continues processing.

KNAX7254-E
Failed to acquire the name of the execution user. (API=function-name, error code=error-code)

Getting the execution user name failed.

function-name
Function name of OS that an error occurred

error-code
Error information

(S)
Interrupts processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command. If the cause of
an error cannot be eliminated, contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1325

KNAX7255-I
The application-execution agent program was not running. Startup of the application-execution agent program will
be rechecked.

The application-execution agent program was not started. Confirm the activation of the application-execution agent
program again.

(S)
Continues processing.

KNAX7256-E
The application-execution agent program was not running.

The application-execution agent program was not started.

(S)
Interrupts processing.

(O)
After you start the application-execution agent program again, re-execute the command.

KNAX7257-E
The adshappexec command was canceled.

The job controller accepted the forced termination so that the adshappexec command was canceled.

(S)
Terminates processing.

KNAX7258-E
The application-execution agent program ended.

The application-execution agent program finished.

(S)
Interrupts processing.

(O)
After you start the application-execution agent program again, re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1326

KNAX7259-W
The GUI application execution command does not wait for the executable application to finish.
viewname=name-to-be-displayed

The GUI application execution command may be terminated without waiting for termination of application
depending on specification related to start of process of executable application.

name-to-be-displayed
Name to be displayed of the executable application that execution was complete. If the name to be displayed is not
specified, the executable application name is output.

(S)
Interrupt processing.

(O)
Check specification related to start of process of executable application.
This message may be output if Excel itself has already been operated before executing the Excel file as an executable
application. In this case, run the executable application while Excel is not being run or adopt the operation in which
the -w option will not be used.

KNAX7260-W
Failed to acquire the execution ID of the JP1/AJS job.

Getting the job execution ID of JP1/AJS failed.

(S)
Sets "-----" and continues processing.

KNAX7261-I
The application-execution agent program will wait for an executable application to end. (details=maintenance-
information)

The application-execution agent program waits for the executable application to finish.

maintenance-information
Identification information of process

(S)
Continues processing.

KNAX7262-I
The application-execution agent program will not wait for the executable application to end. (details=maintenance-
information)

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1327

The application-execution agent program does not wait for the executable application to finish.

maintenance-information
Identification information of process

(S)
Continues processing.

KNAX7263-E
The application-execution agent program failed to end. (API=function-name, error code=error-code)

Termination of application-execution agent program failed.

function-name
Function name of OS that an error occurred

error-code
Error information

(S)
Continues processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command. If the cause of
an error cannot be eliminated, contact the system administrator.

KNAX7264-I
The executable application ended. (view name=view-name, code=exit-status-code, pid=process-identification-
number)

The executable application was terminated.

view-name
Name to be displayed of the executable application that execution was complete
If the name to be displayed is not specified, the executable application name is output.

exit-status-code
Return code of executable application that execution was complete

process-identification-number
Process ID of application-execution agent program

(S)
Continues processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1328

KNAX7268-I
The executable application started. (view name=view-name, pid=process-identification-number)

The executable application was started.

view-name
Name to be displayed of the executable application that execution was complete
If the name to be displayed is not specified, the executable application name is output.

process-identification-number
Process ID of application-execution agent program

(S)
Continues processing.

KNAX7269-E
Failed to output the contents of shared memory for the application-execution agent functionality. (API=function-
name, error code=error-code)

Failed to output the contents of shared memory for the application-execution agent functionality.

function-name
Function name of OS that an error occurred

error-code
Error information

(S)
Continues processing.

(O)
Eliminate the cause of an error from the function name and error code and re-execute the command.
If the cause of an error cannot be eliminated, contact the system administrator.

KNAX7270-E
The application-execution agent program was not running.

The application-execution agent program was not started.

(S)
Interrupts processing.

KNAX7271-I
Usage: command-name command-argument

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1329

Specification of command indicated by command-name and command-argument is not correct.

Example of contents of usage to be output

Usage of KNAX7271-I: adshappexec [-m] [-d work-folder] [-v view-name] {-w application-path-name | -n application-
path-name} [-- application-parameter...]

(S)
Interrupts processing.

(O)
Specify the command correctly, and then execute the command.

KNAX7400-E
The number of response messages exceeds the limit.

The number of reply-request messages output by the adshread command exceeded the maximum.

(S)
Repeats processing.

(O)
Check and, if necessary, revise the USERREPLY_WAIT_MAXCOUNT parameter value.

KNAX7402-E
An error occurred during shared memory processing. (error information=error-information,
function=maintenance-information)

An error occurred during shared memory manipulation while processing a reply-request message with the adshread
command.

error-information
Status code output by the API resulting in the error

maintenance-information
Name of the API resulting in the error

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 12.4.4 
Handling Error Information Displayed in the User-Reply Functionality.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1330

KNAX7403-E
The number of parameters is invalid. filename="file-name" line=line-number

The number of arguments in the adshecho or adshread command is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Correct the job definition script file.

KNAX7404-E
The type of the variable "variable-name" is invalid. filename="file-name" line=line-number

The variable specified in the adshread command is the numeric type.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Correct the job definition script file.

KNAX7405-E
The specified message is too long. filename="file-name" line=line-number

The event notification message specified in the adshecho command or the reply-request message specified in the
adshread command is too long.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1331

(O)
Correct the job definition script file.

KNAX7408-E
An internal error occurred. (details=maintenance-information)

An internal error occurred during adshecho or adshread command processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7420-E
The response contains a non-ASCII character. Re-enter the response.

A reply entered from the standard input contains non-ASCII characters.

(S)
Resumes processing.

(O)
Re-enter the reply using only ASCII characters.

KNAX7450-I
The job controller canceled the response request. (job ID=job-ID, line=line-number, host name=host-name)

The reply-request message handled by the adshread command was canceled because the job controller accepted a
forced termination request.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script that issued the adshread command

host-name
Name of the host on which the service or daemon is running

(S)
Terminates processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1332

KNAX7451-I
A response request was canceled. (job ID=job-ID, line=line-number, host name=host-name)

The reply-request message handled by the adshread command was canceled because the job controller accepted a
termination request.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

(S)
Terminates processing.

KNAX7460-E
An error occurred during event processing. (error information=error-information, function=maintenance-
information)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

maintenance-information
Name of the API resulting in the error

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 12.4.4 
Handling Error Information Displayed in the User-Reply Functionality.

KNAX7461-E
An error occurred during event processing. (error information=error-information, function=open_sender,
host=host-name)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1333

host-name
Host name of the batch operation server on which JP1/Advanced Shell is running

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 12.4.4 
Handling Error Information Displayed in the User-Reply Functionality.

KNAX7462-E
An error occurred during event processing. (error information=error-information, function=maintenance-
information, destination=destination-host-name, sequence no.=source-serial-number)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

maintenance-information
event_send (event transmission) or check_arrival (event arrival check)

destination-host-name,
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file. If the
HOSTNAME_JP1IM_MANAGER parameter is omitted, this is the name of the physical host of the batch operation
server on which JP1/Advanced Shell is running.

source-serial-number
Sequence number in the source database in JP1/Base

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 12.4.4 
Handling Error Information Displayed in the User-Reply Functionality.
Note that even though this message is displayed, the event might have arrived in JP1/IM - View. If a reply-waiting
event has arrived, manually release the accumulation of reply-waiting events.

KNAX7464-E
Transmission of a event failed. (function=check_arrival, destination=destination-host-name, sequence no.=source-
serial-number)

Transmission of a JP1 event from JP1/Base on the local host to JP1/Base on the host where JP1/IM - Manager is running
failed.

destination-host-name
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1334

source-serial-number
Sequence number in the source event database in JP1/Base

(S)
Resumes processing.

(O)
Check the following:

• Whether JP1/Base is installed on the host where JP1/IM - Manager is running

• Whether JP1/Base's event server is running on the host on which JP1/IM - Manager is running

• Whether JP1/Base connection is established between the local host and the host where JP1/IM - Manager is
running

Note that even though this message is displayed, the event might have arrived in JP1/IM - View. If a reply-waiting
event has arrived, manually release the accumulation of reply-waiting events.

KNAX7465-W
The event is being transferred. (function=check_arrival, destination=destination-host-name, sequence no.=source-
serial-number)

JP1/Base is transferring a JP1 event to the host specified in HOSTNAME_JP1IM_MANAGER.

destination-host-name
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file

source-serial-number
Sequence number in the source event database in JP1/Base

(S)
Resumes processing.

KNAX7470-I
Data flow control will now be performed. (wait time=wait-time)

Data flow control is being performed for issuance of JP1 events.

wait-time
Amount of time (in milliseconds) by which issuance of JP1 events is being delayed in order to control data flow

(S)
Resumes processing.

KNAX7500-I
adshmd started.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1335

The user-reply functionality's management daemon has started.

(S)
Resumes processing.

KNAX7501-I
adshmd stopped.

The user-reply functionality's management daemon has ended.

(S)
Resumes processing.

KNAX7502-E
An attempt to start adshmd failed.

Startup of the user-reply functionality's management daemon failed.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then restart the user-reply functionality's management daemon.

KNAX7503-E
An error occurred in adshmd.

An error occurred in the user-reply functionality's management daemon.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then restart the user-reply functionality's management daemon.

KNAX7508-I
program-name canceled the response request. (job ID=job-ID, line=line-number, host name=host-name)

A reply-request message handled by the adshread com was canceled.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1336

program-name
Name of the service or daemon that canceled the reply-request message

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

(S)
Resumes processing.

KNAX7509-I
The adshchmsg command canceled the response request. (job ID=job-ID, line=line-number, host name=host-
name)

The reply-request message with the reply-request message number specified in the -n option of the adshchmsg
command was canceled.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

(S)
Resumes processing.

KNAX7550-I
The service was installed successfully.

Registration of the AdshmSvcD or AdshmSvcE service was successful.

(S)
Resumes processing.

KNAX7551-E
Failed to install the service. (API=maintenance-information, error code=error-code)

Registration of the AdshmSvcD or AdshmSvcE service failed.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1337

(S)
Cancels processing.

(O)
If the cause of this error is that the AdshmSvcD or AdshmSvcE service has already been registered, ignore this
message.
If this message was issued at the time the adshmsvcd or adshmsvce command was executed, check and, if
necessary, correct the options because an invalid option might have been specified.
If neither of the above applies, contact the system administrator.

KNAX7552-E
An error occurred during initialization of the [AdshmSvcD|AdshmSvcE] service. (API=maintenance-
information, error code=error-code)

An error occurred while initializing the AdshmSvcD or AdshmSvcE service.

(S)
Cancels processing.

(O)
If the displayed maintenance information is jhs_env_conf_readConfig, check and, if necessary, revise the
system environment file because its contents might be invalid.
If the displayed maintenance information is not jhs_env_conf_readConfig or if the contents of the system
environment file are correct, contact the system administrator.

KNAX7553-E
The API "API-name" failed. (error code=error-code)

Creation or opening of Mutex failed during AdshmSvcD or AdshmSvcE service processing.

(S)
Cancels processing.

(O)
This error might occur because no user with an administrator role for the server is specified for the account used to
start the AdshmSvcD or AdshmSvcE service.
If this error was caused by a specification error, correct the error, and then re-execute the command; otherwise,
contact the system administrator.

KNAX7556-E
The logical host name is too long.

The logical host name specified for service registration is too long.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1338

(S)
Cancels the service's registration processing.

(O)
Specify the appropriate logical host name, and then re-execute the command.

KNAX7560-I
The service was set up successfully.

Setup of the AdshmSvcD or dshmSvcE service was successful.

(S)
Resumes processing.

KNAX7561-E
Setup of the service failed. (API=maintenance-information, error code=error-code)

Setup of the AdshmSvcD or AdshmSvcE service failed. This message might be output because user-reply functionality
settings are invalid.

(S)
Cancels processing.

(O)
Contact the system administrator, who must check and, if necessary, revise the settings of the user-reply functionality.

KNAX7600-E
Runtime environment for the custom job definition program is invalid.

The startup information for the custom job definition program started by JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Redefine the custom job because the custom job definition information might be invalid.

• Check that you are using the requisite version of JP1/AJS - View.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1339

KNAX7601-E
The format of the startup data is invalid.

The startup information for the custom job definition program started by JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Redefine the custom job because the custom job definition information might be invalid.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7602-E
Ensure that the Advanced Shell custom job is registered correctly.

Information specified during custom job registration into JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Check the custom job registration information.

• Re-install JP1/Advanced Shell - Custom Job to use a new definition program.

KNAX7603-E
The definition program of Advanced Shell is invalid.

The definition program settings specified during custom job registration into JP1/AJS - View are invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Check the definition program settings specified during custom job registration into JP1/AJS - View.

• Reinstall JP1/Advanced Shell - Custom Job to use a new definition program.

KNAX7604-E
An invalid character was entered in the definition-field-name field.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1340

An invalid character was entered in the field indicated by definition-item-name in the job definition window.

(S)
Cancels the processing and returns to the input window.

(O)
Delete the invalid character entered in the field indicated by definition-item-name.

KNAX7605-E
Enter a value in the definition-field-name field.

The required input field indicated by definition-field-name was omitted in the job definition window.

(S)
Cancels the processing and returns to the input window.

(O)
Enter a value in the field indicated by definition-item-name.

KNAX7606-E
The registered definition data is invalid.

The registered definition information is invalid.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• If you have used the ajsdefine command and JP1/AJS - Definition Assistant to define the job, check the
permitted types of characters and lengths of character strings, re-create the job, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7607-E
The definition data of Advanced Shell cannot be registered. (error code = error-code)

The job definition cannot be registered in JP1/AJS.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1341

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7608-E
The definition data of Advanced Shell cannot be registered. (error code = error-code, reason = error-details)

The job definition cannot be registered in JP1/AJS.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7609-E
The previously registered Advanced Shell definition data could not be collected. (error code = error-code)

The previous JP1/Advanced Shell definition information that was registered cannot be obtained.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7610-E
Failed to discard the input data. (reason = error-details)

Failed to discard the input data.

(S)
Cancels processing. The job definition has not been discarded.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1342

KNAX7611-E
A logical error occurred. (function ID = function-ID)

An internal logical error occurred in JP1/Advanced Shell definitions.

(S)
Cancels processing.

(O)
Contact the system administrator.

KNAX7750-E
A logical error occurred. (function ID = function-ID, reason = error-details)

An internal logical error occurred in message output processing.

(S)
Cancels processing.

(O)
Contact the system administrator.

KNAX7770-E
Startup of the help file failed. (error code = error-code)

Startup of the Help file failed.

(S)
Returns to the initial screen.

(O)
Check the return code of the ShellExecute function indicated by error-code, and take appropriate action.

KNAX7771-E
The help file was not found. (file name = file-name)

The Help file cannot be found.

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of the JP1/Advanced Shell - Custom Job.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1343

KNAX7772-E
Startup of the help file failed. (reason = error-details)

Startup of the Help file failed.

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of JP1/Advanced Shell - Custom Job.

KNAX7773-E
Startup of the help file failed.

Startup of the Help file failed.

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of JP1/Advanced Shell - Custom Job.

KNAX7800-I
adshcollect:RAS completed collection of file-name
collected-file-name
collected-file-name
...

A tar file (file-name) containing the indicated collected files was created.

(S)
Terminates processing.

(O)
Give the created file to the system administrator.

KNAX7801-I
adshcollect:RAS completed collection of file-name
collected-file-name
collected-file-name
...

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1344

The file indicated by file-name containing the indicated collected files was created.

(S)
Terminates processing.

(O)
Compress the created file with the user's compression tool, and then provide it to the system administrator.

KNAX7802-E
Usage: adshcollect Directory [-f FileName] [-e FileName] [-h LogicalHostName]
Directory : Specify output directory
-f FileName : Specify a config file
-e FileName : Specify an environment file
-h LogicalHostName : Specify a logical host

Option settings are invalid.

(S)
Terminates processing.

(O)
Specify the correct options, and then re-execute the command.

KNAX7803-E
adshcollect:RAS error:output-directory (Permission denied).

There is no access permission for output-directory.

(S)
Terminates processing.

(O)
Grant access permission for output-directory or specify another directory, and then re-execute the command.

KNAX7804-E
adshcollect:RAS error:output-directory (not found or not a directory).

output-directory does not exist or it is not a directory.

(S)
Terminates processing.

(O)
Specify the correct output destination, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1345

KNAX7805-E
adshcollect:RAS error:definition-file-name (not found or not a file).

definition-file-name does not exist or it is not a file.

(S)
Terminates processing.

(O)
Specify the correct definition file, and then re-execute the command.

KNAX7806-E
adshcollect:RAS error:definition-file-name (Permission denied).

There is no access permission for definition-file-name.

(S)
Terminates processing.

(O)
Set the access permission for the definition file, and then re-execute the command.

KNAX7807-E
adshcollect:RAS error:environment-file-name (not found or not a file).

environment-file-name does not exist or it is not a file.

(S)
Terminates processing.

(O)
Specify the correct environment file, and then re-execute the command.

KNAX7808-E
adshcollect:RAS error:environment-file-name (Permission denied).

There is no access permission for environment-file-name.

(S)
Terminates processing.

(O)
Set the access permission for the environment file, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1346

KNAX7809-E
adshcollect:RAS error:definition-file-name ("keyword" Syntax Error).

An invalid keyword was specified in definition-file-name.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

KNAX7810-E
adshcollect:RAS error:specified-value (not found or not a file).

specified-value for keyword does not exist in the definition file, or it is not a file.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

KNAX7811-W
adshcollect:RAS error:specified-value (Permission denied).

There is no access permission for specified-value for keyword in the definition file.

(S)
Continues processing.

(O)
Grant the access permission for the specified value or specify another value, and then re-execute the command.

KNAX7812-E
adshcollect:RAS error:specified-value (not found or not a directory).

specified-value does not exist in the definition file, or it is not a directory.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1347

KNAX7813-E
adshcollect:RAS error:specified-value (not found or not a directory).

specified-value for the required keyword does not exist in the environment file, or it is not a directory.

(S)
Terminates processing.

(O)
Specify the environment file correctly, and then re-execute the command.

KNAX7814-E
adshcollect:RAS error:specified-value (Permission denied).

There is no access permission for specified-value for keyword in the environment file.

(S)
Terminates processing.

(O)
Grant access permission for the specified value or specify another value, and then re-execute the command.

KNAX7880-E
Failed to "API-name". (reason=error-details)

OS's API processing failed for the reason indicated by error-details.

(S)
Terminates the processing if OS's-API-name is not dladdr; resumes the processing if it is dladdr.

(O)
If OS's-API-name is not dladdr, contact the system administrator. Eliminate the cause of the error, and then re-
execute the command.

KNAX7892-I
adshexec received abnormal signal.

A program error notification signal for the job controller was received.

(S)
Resumes processing.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1348

KNAX7893-I
adshexec received signal "signal-name".

The signal indicated by signal-name for the job controller was received. This message is output when the job controller
receives a signal required for execution control.

(S)
Resumes processing.

KNAX7894-E
adshexec is ended because of terminate request of second times.

The second SIGTERM signal for the job controller was received.

(S)
Terminates the job controller immediately. The system does not perform postprocessing, including deletion of
temporary files and postprocessing of files.

(O)
If necessary, perform postprocessing on the resources created by the batch job.

KNAX7895-E
adshexec ended abnormally.

The job controller terminated with an error.

(S)
Terminates the job controller immediately. The system does not perform postprocessing, including deletion of
temporary files and postprocessing of files.

(O)
If necessary, perform postprocessing on the resources created by the batch job.

KNAX7896-I
adshexec received terminate request.

A termination request for the job controller was received.

(S)
Performs postprocessing and then terminates the job controller. If this message was output while debug execution
was stopped, the system re-executes the job definition script, performs postprocessing, and then terminates the job
controller.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1349

KNAX7897-E
Fatal error occurred in maintenance-information.

A fatal error occurred in the adshexec command.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7900-I
The manual has not been installed.
Copy the HTML files and image files from the manual installation media.

The manual has not been copied from the manual installation medium to the installation directory.

(S)
Keeps the web browser open until the Close button is clicked.

(O)
Click the Close button to close the web browser, and then copy the manual from the manual installation medium to
the installation directory by following the procedure explained in the manual.

KNAX7901-I
The job controller will wait for all asynchronous processes at the end of the job.

The job controller places all asynchronous processes in wait status during job termination.

This message is not output for a child job that was started with MERGE specified for the SPOOLJOB_CHILDJOB
parameter of the root job's environment file.

(S)
Resumes processing.

KNAX7902-I
The job controller will run in input-mode.

The job controller will run in the mode indicated by input-mode.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1350

input-mode
Input mode of the job controller. One of the modes shown below is displayed. For details about the input modes,
see (2) Job input modes.

Displayed information Meaning

tty stdin mode Terminal input mode. The standard input is associated with the terminal.

non-tty stdin
mode

Non-terminal input mode. The standard input is not associated with the terminal.

(S)
Resumes processing.

KNAX7999-I
Advanced Shell ended. exit status=exit-status-code

The root job's job controller terminated the batch job with the return code indicated by exit-status-code.

(S)
Resumes processing.

KNAX9000-E
The validity period for a product expired. program=command-name

The license has expired.

command-name
The name of the command that caused the error

(S)
Terminates processing.

(O)
To continue using the program product, install a commercial version.

KNAX9001-E
Failed to authenticate the product. (command-name, internal-information)

License authentication failed.

command-name
The name of the command that caused the error

internal-information
Internal information that shows the error details

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1351

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX9002-E
An error occurred. detail=command-name, adshhlicauth error, rc=return-code

An unexpected error occurred during license authentication.

command-name
The name of the command that caused the error

return-code
Internal information that shows the error details

(S)
Terminates processing.

(O)
Contact the system administrator.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1352

12.4 Details of errors

This section explains the information that is displayed by error-details in Windows and UNIX message texts and that
is specific to JP1/Advanced Shell.

12.4.1 Details of errors (Windows)
The messages issued by JP1/Advanced Shell might contain information about the C run-time function and Win32(R)

API errors.

The table below lists and describes the causes of typical C run-time function errors that are most likely to occur in a
JP1/Advanced Shell environment (Windows) and the actions to be taken. For information about other errors that are
not listed in the table and Win32 API errors, see the documentation for the Windows being used.

Table 12-5: Causes of and actions in response to C run-time function errors (Windows)

Mnemonic Error details Cause Action

ENOENT No such file or
directory

The following causes are expected.
• The file or directory is not found.
• The nesting of the symbolic link is too

deep.

Take the following countermeasures:
• Check the existence of the file.
• Change the number of nests of the

symbolic link so that the upper limit of the
OS is not exceeded.

EIO Input/Output error An input/output error occurred. Take appropriate action according to the
Windows or hardware information.

ENXIO No such device or
address

There is no access permission for the file. Check if there is such a device or that the
device is enabled. If the device is disabled,
enable it. For other causes, check the
documentation for the Windows being used.

E2BIG Arg list too long There is a shortage of area for the processing
program's arguments or environment
variables.

Check the processing program's arguments.
Check and, if necessary, revise the
environment variables specified in
parameters such as export and the usage of
extended script commands in the file
management function, and then delete any
unneeded environment variable settings.

EAGAIN Resource
temporarily
unavailable

There are too many processes, or a temporary
memory shortage has occurred.

If the error recurs when the command is re-
executed, terminate unneeded processes.

ENOMEM Not enough space Possible causes are as follows:
• A new process cannot be created due to a

shortage of swap area or virtual memory.
• There are too many processes, or some

processes are using too much memory.

Take the following actions:
• If there is a shortage of swap area or

virtual memory, expand it. If the swap
area or virtual memory cannot be
expanded, terminate unneeded processes.

• If some processes are using too much
memory, evaluate whether they can be
terminated.

EACCES Permission denied Possible causes are as follows:
• The access permission is invalid.
• A file must be specified in an argument of

a JP1/Advanced Shell command, but a
directory was specified.

Take the following actions:
• Check if the file access permission is

correct.
• Check the argument of the JP1/Advanced

Shell command to determine whether a
directory is specified instead of a file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1353

Mnemonic Error details Cause Action

EACCES Permission denied • The extension of the file that is to be
executed as a command is not exe, bat,
cmd, or com.

• You accessed a symbolic link in which the
link destination of the symbolic link to a
file or the link destination of a symbolic
link to a directory is a normal file.

• If you specified the
CHILDJOB_SHEBANG parameter,
check the specified parameter value and
#! executable-program-path at the
beginning of the file whose execution was
attempted.

• When specifying the CHILDJOB_EXT
parameter, check the specification value
of the parameter and the extension of the
file to be executed.

• Check if the reference destination of the
symbolic link is correct.

EFAULT Bad address An attempt was made to write data into an
inaccessible area. The disk to which the data
is to be written might have been disconnected.

If disks are being switched during system
switchover, ignore this error message because
there is no problem.
If you disconnected the disk by mistake,
restore the corresponding file from its backup
or initialize the file first before using it.
If neither of the above applies, contact the
system administrator.

EEXIST File exists An attempt was made to create a file, but the
file already exists.

Rename the file and re-execute the command.
If the existing file is not needed, delete it and
re-execute the command.

EINVAL Invalid argument The following causes are expected.
• An error was detected in the memory

management information.
• The nesting of the symbolic link is too

deep.
• A user who does not have the

administrative role for creating symbolic
links attempted to create, copy, or move a
symbolic link.

• A user attempted to create, copy, or move
a symbolic link on or to a file system other
than NTFS.

Take the following countermeasures:
• Contact the system administrator.
• Change the number of nests of the

symbolic link so that the upper limit of the
OS is not exceeded.

• The operation must be executed as a user
having an administrative role for creating
symbolic links.

• Use NTFS when using a symbolic link.

ENFILE Too many open files
in system

The number of open files exceeded the
maximum.

Check the total number of files in use in the
system and close unneeded files.

EMFILE Too many open files Too many files are open in the corresponding
process.

Contact the system administrator.

EFBIG File too large The file size exceeded the system limit. Check and, if necessary, revise the size of a
file to be used.

ENOSPC No space left on
device

There is not enough free space in the file
system.

Allocate more free space.

12.4.2 Details of errors (UNIX)
The table below lists and describes the causes of typical errors that occur in a JP1/Advanced Shell environment and the
actions to take. For information about other errors that are not listed in the table, see the documentation for the UNIX
being used.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1354

This subsection describes only the errors that are most likely to occur in a JP1/Advanced Shell environment. For details
about other errors that are not described here, check the UNIX errno definition file (errno.h), which uses the
mnemonic corresponding to the error number (errno) displayed in the messages.

Table 12-6: Causes of and actions in response to the error details (UNIX)

Mnemonic Error details Cause Action

ENOENT No such file or
directory

Either of the following causes are expected.
• The file or directory is not found.
• The nesting of the symbolic link is too

deep.

Take the following countermeasures:
• Check the existence of the file.
• Change the number of nests of the

symbolic link so that the upper limit of the
OS is not exceeded.

EIO I/O error An input/output error occurred. Take appropriate action according to the
UNIX or hardware information.

ENXIO No such device or
address

There is no access permission for the file. Check if there is such a device or that the
device is enabled. If the device is disabled,
enable it. For other causes, check the
documentation of the UNIX being used.

E2BIG Arg list too long There is a shortage of area for the processing
program's arguments or environment
variables.

Check the processing program's arguments.
Check and, if necessary, revise the
environment variables specified in
parameters such as export and the usage of
extended script commands in the file
management function, and then delete
unneeded environment variable settings.

EAGAIN Resource
temporarily
unavailable

There are too many processes, or a temporary
memory shortage has occurred.

If the error recurs when the command is re-
executed, terminate unneeded processes.

ENOMEM Not enough space Possible causes are as follows:
• A new process cannot be created due to a

shortage of swap area or virtual memory.
• There are too many processes or some

processes are using too much memory.

Take the following actions:
• If there is a shortage of swap area or

virtual memory, expand it. If the swap
area or virtual memory cannot be
expanded, terminate unneeded processes.

• If some processes are using too much
memory, evaluate whether they can be
terminated.

EACCES Permission denied The access permission is invalid. Check if the file access permission is correct.

EFAULT Bad address An attempt was made to write data into an
inaccessible area. The disk to which data is to
be written might have been disconnected.

If disks are being switched during system
switchover, ignore this error message because
there is no problem.
If you disconnected the disk by mistake,
restore the corresponding file from its backup
or initialize the file first before using it.
If neither of the above applies, contact the
system administrator.

EEXIST File exists An attempt was made to create a file, but the
file already exists.

Rename the file, and then re-execute the
command. If the existing file is not needed,
delete it and re-execute the command.

EINVAL Invalid argument An error was detected in the memory
management information.

Contact the system administrator.

ENFILE File table overflow The number of open files exceeded the
maximum.

Increase in the UNIX kernel parameter the
maximum number of files that can be open in
the system (maxuproc nofiles).

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1355

Mnemonic Error details Cause Action

EMFILE Too many open files Too many files are open in the corresponding
process.

Increase in the UNIX kernel parameter the
maximum number of files that can be open in
a process (nofiles).

EFBIG File too large The file size exceeded the system limit. Check and, if necessary, revise the size of a
file to be used.

ENOSPC No space left on
device

There is not enough free space in the file
system.

Allocate more free space.

ENAMETOO
LONG

File name too long A file name is too long. Check and, if necessary, revise the file name
length.

12.4.3 Details of errors (specific to JP1/Advanced Shell)
The table below lists and describes the causes of and actions to be taken for the error details that are displayed specifically
by JP1/Advanced Shell.

Table 12-7: Causes of and actions in response to the error details (specific to JP1/Advanced Shell)

Message ID Error details Cause Action

KNAX4419-E A line exceeds
the maximum line
size

The size of a line exceeds the maximum. Check the size of the line and specify it
to not exceed the maximum.

KNAX4420-E The common
application data
folder cannot be
found

A common application data folder
cannot be found.

Check the execution environment for
any problem.

The shared
documents folder
cannot be found

A shared document folder cannot be
found.

Check the execution environment for
any problem.

KNAX6035-E The file
descriptor is
incorrectly
specified

A specified file descriptor is not a one-
digit number.

Check and, if necessary, revise the
specified file descriptor.

The file
descriptor cannot
be used

A specified file descriptor is for a closed
file or a file whose manipulation is
prohibited by another process.

Check if the file descriptor is open. If it
is open, check if its manipulation is being
prohibited by a means such as locking by
another process.

The file
descriptor is not
open for writing

An attempt was made to write to the file
descriptor of a closed file.

Check and, if necessary, revise the
specified file descriptor.

The file
descriptor is not
open for reading

An attempt was made to read the file
descriptor of a closed file.

Check and, if necessary, revise the
specified file descriptor.

No background
process exists

A file descriptor for a background
process was specified, but the
background process did not exist.

Check if the background process is
running or has already been terminated.

KNAX6305-E The file is not a
regular file

A specified file is not a regular file. Check and, if necessary, revise the
specified file.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1356

Message ID Error details Cause Action

KNAX6333-E The file is not a
regular file

A specified file is not a regular file. Check and, if necessary, revise the
specified file.

KNAX6588-E Error in signal
handler

An error occurred during signal handler
processing.

Check the execution environment for
any error.

12.4.4 Handling Error Information Displayed in the User-Reply
Functionality

This section explains the information output by the error messages listed below when the user-reply functionality is
used and describes the appropriate actions to be taken in response to the messages. When the adshcollect command
is used to collect user-reply functionality information, you must execute the command with the administrator permission.

• KNAX7402-E
• KNAX7460-E
• KNAX7461-E
• KNAX7462-E

(1) Error information displayed in the KNAX7402-E message and how to
respond to it

Table 12-8: Error information displayed in the KNAX7402-E message and how to respond to it

Error
number

Meaning Corrective action

1 An unimplemented API call
was made.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

2 An attempt to reference shared
memory failed.
The user-reply functionality's
management daemon or
service might not be running.

Operator
Check that the job environment file settings are correct. The SPOOL_DIR parameter cannot
be specified in a job environment file.
In addition, contact a user with an administrator role on the machine and confirm the
following:
• The user-reply functionality's management daemon or service is running
• The environment file settings are correct

User with an administrator role on the machine
Confirm the following:
• The user-reply functionality's management daemon or service is running
• The environment file settings are correct

The SPOOL_DIR parameter can be specified only in the system environment file; it
cannot be specified in a job environment file.

• The user-reply functionality's management daemon or service was restarted after changes
were made to the system environment file

If the problem persists, contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

3 The amount of unused memory
space is insufficient.

Contact a system administrator.
If you are a system administrator, re-estimate the amount of memory required.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1357

Error
number

Meaning Corrective action

4 An invalid argument was
passed.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

5 A data inconsistency was
detected.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

6 An unsupported character
encoding was specified.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

7 An underflow occurred. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

8 An overflow occurred. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

9 The order of API calls was not
valid.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

10 An inconsistency occurred in
the status of an internal object.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

11 Access to a resource was
denied.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

12 A specified file does not exist. Check that you have write permission for the log directories specified in the environment
file and the log files under them.

13 A file could not be opened. Check that you have write permission for the log directories specified in the environment
file and the log files under them.

14 Memory mapping could not be
created for a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

15 An error occurred in reading
from a file.

Check that you have read permission for the log directories specified in the environment file
and the log files under them.

16 An error occurred in writing to
a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

17 An error occurred in seek
processing on a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

18 An error occurred in flush
processing on a file.

Check that sure you have write permission for the log directories specified in the environment
file and the log files under them.

19 An error occurred in renaming
a file.

Check that sure you have write permission for the log directories specified in the environment
file and the log files under them.

20 An error occurred in copying a
file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

21 An error occurred in deleting a
file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

22 An attempt to create a
directory failed.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1358

Error
number

Meaning Corrective action

23 An interprocess lock failed. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

24 An attempt was made to use a
function that was disabled by
the user program.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

25 An attempted overwrite was
prohibited by the user
program.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

400 A parameter was not valid. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

404 A reply-request message was
deleted by the adshchmsg
command, or shared memory
could not be referenced.

If you are the operator, contact a user with an administrator role on the machine and check
the following:
• Whether the reply-request message was deleted by means of the -d option to the
adshchmsg command

• Whether the user-reply functionality's management daemon or service is running

If you are a user with an administrator role on the machine, check that the user-reply
functionality's management daemon or service is running. If the problem persists, contact a
system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

409 Reply-request messages from
the same PID were output.

The reply-request message might have been output simultaneously in multiple threads.
Check and, if necessary, revise the application.

503 The number of reply-waiting
events exceeded the
maximum.

Check and, if necessary, revise the value of the USERREPLY_WAIT_MAXCOUNT parameter.

(2) Error information displayed in the KNAX7460-E, KNAX7461-E, and
KNAX7462-E messages and how to respond to it

Table 12-9: Error information displayed in the KNAX7460-E, KNAX7461-E, and KNAX7462-E
messages and how to respond to it

Error
number

Meaning Corrective action

10 A parameter was not valid. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

11 The order is which functions
were issued was not valid.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

30 A specified attribute was
already registered.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

32 The maximum number of
extended event attributes that

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1359

Error
number

Meaning Corrective action

32 can be registered has been
exceeded.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

33 The total size of all extended
event attributes that can be
registered has been exceeded.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

40 A connection to the event
service could not be
established.

Check that the JP1/Base event service has started on the local host.

43 An input/output error
occurred.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

50 A JP1/Base library could not
be found.

Install JP1/Base and re-execute the job.

51 There is not enough memory. Contact a system administrator.
If you are a system administrator, re-estimate the amount of memory required.

52 The number of open files has
reached the maximum.

Contact a system administrator.
If you are a system administrator, re-estimate the number of FDs that can be opened.

60 A JP1 event has not been
initialized.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

70 A system error occurred. Contact a system administrator.
If you are a system administrator, collect information in accordance with 11.
Troubleshooting, and then find a workaround or take corrective action.

12. Messages

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1360

Appendixes

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1361

A. Coverage Information That Is Acquired

Coverage information includes C0 information and C1 information. The items for which coverage information is
acquired are described in the sections below.

Note that coverage information is not acquired for the following items:

• Conditional expressions

• Arithmetic operations

• Variables

A.1 Commands for which coverage information is acquired
The tables in this section show for the following types of commands the individual commands for which coverage
information is acquired:

• Standard shell commands

• Extended shell commands

• Extended script commands

• Commands other than the above

(1) Standard shell commands

(a) Special built-in commands
Table A-1: Special built-in commands for which coverage information is acquired

Item C0 C1

. (dot) command Y N

: (colon) command Y N

break command Y N

continue command Y N

eval command Y N

exec command Y N

exit command Y N

export command Y N

readonly command Y N

return command Y N

set command Y N

shift command Y N

trap command Y N

typeset command Y N

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1362

Item C0 C1

unset command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

(b) Regular built-in commands
Table A-2: Regular built-in commands for which coverage information is acquired

Item C0 C1

alias command Y N

builtin command Y N

cd command Y N

command Y N

echo command Y N

false command Y N

getopts command Y N

kill command Y N

let command Y N

print command Y N

pwd command Y N

read command Y N

test command Y N

times command Y N

true command Y N

ulimit command Y N

umask command Y N

unalias command Y N

wait command Y N

whence command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1363

(2) Extended shell commands
Table A-3: Extended shell commands for which coverage information is acquired

Item C0 C1

adshecho command Y N

adshread command Y N

adshscripttool command Y N

adshcmdrc command Y N

adshjoberr command Y N

adshvarconv command Y N

adshmktemp command Y N

adshparsecsv command Y N

adshparsejson command Y N

adshappexec command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

(3) Extended script commands
Table A-4: Extended script commands for which coverage information is acquired

Item C0 C1

#-adsh_file command Y N

#-adsh_file_temp command Y N

#-adsh_job command Y N

#-adsh_job_stop command Y N

#-adsh_path_var command Y N

#-adsh_rc_ignore command Y N

#-adsh_script command Y N

#-adsh_spoolfile command Y N

#-adsh_step_start command Y Y#1

#-adsh_step_error command Y Y#2

#-adsh_step_end command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1364

#1
For details about the C1 information that is displayed, see (e) #-adsh_step_start command.

#2
For details about the C1 information that is displayed, see (f) #-adsh_step_error command.

(4) Commands other than the above
The following table indicates whether coverage information is acquired for commands outside of JP1/Advanced Shell
(including OS commands and user-created commands).

Table A-5: Commands other than the above for which coverage information is acquired

Item C0 C1

Commands other than the above Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A.2 Control statements for which coverage information is acquired
The following table indicates for each control statement whether coverage information is acquired.

Table A-6: Control statements for which coverage information is acquired

Item C0 C1

if N Y

if condition Y N

then N N

elif N Y

elif condition Y N

else N Y

fi N C

for N Y

variable N N

in N N

wordlist N N

do N N

done N Y

while N Y

while condition Y N

until N Y

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1365

Item C0 C1

until condition Y N

case N N

expression N N

pattern) N Y

*) N Y

;; N N

esac N C

Legend:
Y: Coverage information is acquired and displayed.
C: Coverage information is acquired and displayed in the following cases:
fi: When the else clause is not specified
esac: When the * pattern is not specified. The * pattern is the default matching pattern for when none of the other
patterns in the case statement is matched.
N: No coverage information is acquired.

A.3 Functions for which coverage information is acquired
The following table indicates whether coverage information is acquired when a function is called. No coverage
information is acquired when a function is defined.

Table A-7: Function calls for which coverage information is acquired

Item C0 C1

Call of the function name Y N

Execution of the function N N

Execution of the function name N N

Execution of the () portion N N

Execution of processing starting with { N N

Execution of commands and control statements Y C

Execution of processing ending with } N N

Legend:
Y: Coverage information is acquired and displayed.
C: Coverage information is acquired and displayed when there is C1 information in the control statements that are
executed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1366

A.4 Metacharacters for which coverage information is acquired
Coverage information is acquired only for command separators, not for other uses of metacharacters. The following
table indicates the command separators for which coverage information is acquired.

Table A-8: Command separators for which coverage information is acquired

Item C0 C1

cmd_1;cmd_2 Y N

cmd_1&&cmd_2 Y N

cmd_1||cmd_2 Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

Note that no coverage information is acquired for metacharacters that are used for the following purposes:

• Comments

• Line continuations

• Variable substitutions

• Command substitutions

• File name substitutions

• Redirects

• Here documents

• Command groupings

• Other metacharacters

A.5 Shell variable operations for which coverage information is acquired
The following table shows the coverage information acquired when you assign a value to a shell variable.

Table A-9: Shell variable operations for which coverage information is acquired

Item C0 C1

shell-variable=value Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1367

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)

This section explains how to start the batch job of JP1/Advanced Shell by using the job scheduler other than JP1/AJS
in the execution environment.

For details about automation of the batch job operation by using a job scheduler other than JP1/AJS, see the manual for
the job scheduler.

If you start the batch job from JP1/AJS, JP1/Advanced Shell executes the process of the asshexec command and
child process in a different process group. This is because many functions of JP1/Advanced Shell are linked with JP1/
AJS.

Figure B-1: Process group that is started from JP1/AJS

If you start the batch job from a job scheduler other than JP1/AJS, process of the asshexec command and child process
are executed in the same process group.

Figure B-2: Process group that is started from a job scheduler other than JP1/AJS

With this, you can instantly finish the job with forced termination even if you stat a job from the job scheduler other
than JP1/AJS. However, some function functions of JP1/Advanced Shell that require link with JP1/AJS cannot be used.
For details, see B.3 Notes on starting from a job scheduler other than JP1/AJS.

B.1 Preparation for starting from the job scheduler other than JP1/AJS
(only for UNIX)

Execute the following actions if you start the batch job of JP1/Advanced Shell by using the job scheduler other than
JP1/AJS.

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1368

1. To define that the job scheduler to be used is other than JP1/AJS, define "OTHER" for the SCHEDULER_SELECT
environment parameter.

#-adsh_conf SCHEDULER_SELECT OTHER

2. The AJS_BJEX_STOP environment variable is the environment variable that is used for linking JP1/AJS and JP1/
Advanced Shell. Therefore, disable the definition if the AJS_BJEX_STOP environment variable is defined.

B.2 SCHEDULER_SELECT parameter (selects the job scheduler to be
used)

Syntax

#-adsh_conf SCHEDULER_SELECT {AJS | OTHER}

Description
Select the job scheduler to be used.

The job controller can execute a job from the job controller other than JP1/AJS. Some function provided by JP1/
Advanced Shell cannot be used. For functions that cannot be used and notes, see B.3 Notes on starting from a job
scheduler other than JP1/AJS.

To execute the job by using the job scheduler other than JP1/AJS, specify OTHER for the operand. To use JP1/AJS as
the job scheduler or not to use the job scheduler, specify AJS for the operand.

If specification of this parameter is omitted, the job controller operates under the assumption that AJS is specified.

Operand

AJS
Specify AJS if any of the following conditions is applied:

• JP1/AJS is used as job scheduler.

• Job scheduler is not used.

OTHER
To use the job scheduler other than JP1/AJS, specify OTHER for the operand.

Notes
• If you specify TERM for the value of the AJS_BJEX_STOP environment variable even if OTHER is specified for

the operand, use JP1/AJS. To specify OTHER for the operand, disable the definition of the AJS_BJEX_STOP
environment variable.

• You need to specify the same operand for root job and child job.

• If you define this parameter for both the system environment file and job environment file, definition of the job
environment file is enabled.

• If you define this parameter for the same host in the environment file for multiple times, a parameter error occurs.

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1369

B.3 Notes on starting from a job scheduler other than JP1/AJS
Note the following points when starting a batch job of JP1/Advanced Shell by using a job scheduler other than JP1/
AJS:

The SIGKILL signal is assumed to be sent when a job is forcibly terminated from a job scheduler other than JP1/AJS.
For the signal sent at the time of a forced termination, see the manual of the job scheduler.

• A post-process that is unique to a user at the time of forced termination cannot be executed even by defining the
environment setting parameter, TRAP_ACTION_SIGTERM.

• JP1/Advanced Shell might create a temporary file to execute a job. Specify with the environment setting parameter,
TEMP_FILE_DIR, the path of the directory in which the temporary file will be stored. Although the temporary file
is normally deleted, the temporary file might remain if a job that is running is forcibly terminated. In such case, the
file will need to be deleted manually.

• If a job that is running is forcibly terminated, files created with the #-adsh_file command, #-
adsh_file_temp command, #-adsh_spoolfile command, or adshfile command might remain. In such
case, the file will need to be deleted manually.

• If the adshread command is waiting for a reply of the reply-request message and the command forcibly terminated
from a job scheduler other than JP1/AJS, the information regarding the reply-request message might remain on the
shared memory and the reply-waiting event might remain on JP1/IM - View. In such case, you will need to either
cancel the reply-wait status of the reply-request message with the -d option of the adshchmsg command, or restart
the user-reply functionality management daemon or service.

• If the command is forcibly terminated from a job scheduler other than JP1/AJS while the adshjava command is
executing a batch application, the Java batch application might not be forcibly terminated and continue to be
executed.

• Items related to the operation information shown in Table B-1 are not extracted. Items related to the operation
information shown in Table B-1 are not extracted for the adshevtout command.

Table B-1: Items in the operation information that are not extracted and corresponding options of
the adshevtout command

Item name Corresponding adshevtout option Contents

Jp1ajsService -c Name of scheduler service of JP1/AJS

Jp1ajsJobName -g Job name of JP1/AJS

Jp1ajsExecId -k Execution ID of the job of JP1/AJS

Jp1ajsJobId -n Job number of JP1/AJS

Jp1ajsRootJobnet -r Root job net name of JP1/AJS

B. If you start from the job scheduler other than JP1/AJS (only for UNIX)

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1370

C. Modifications Made in Each Version

This section lists the modifications made in each version.

C.1 Changes in 11-01
• The following UNIX-compatible commands can be used:

• gunzip
• gzip
• printf

• A message ID for which output to the job execution log can be suppressed was added to the
JOBLOG_SUPPRESS_MSG parameter.

• The -z option was added to the tar command of the UNIX-compatible command.

• The following message was added: KNAX7091-W

C.2 Changes in 11-00
• Added the tar command.

• Added the specification of long option for cp command and mv command.

• Added the format specification code % to the date command.

• Added the description regarding the path conversion functionality.

• Added the methods for activating the batch job of JP1/Advanced Shell by using the job scheduler other than JP1/
AJS.

• Added the description of syntax requiring other process.

• Added the description regarding two-dimensional array.

• Added definition of activation method of external command.

• Changed the upper limit of the value that can be specified by the value of environment variable of the export
parameter.

• Added the description of Windows symbolic link.

• Made job definition available with the command statement of UNIX job.

• Provided shell script development parts.

• Explained the GUI program execution facility from JP1/AJS.

• Explained error determination of job step.

• Changed the interface.

• Added the shell script input support.

• Added the output destination of a message.

• Added the body text of messages.
KNAX7073-I

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1371

• Added messages.
KNAX2500-E, KNAX2501-E, KNAX6118-I, KNAX6119-I, KNAX6128-I, KNAX6129-I, KNAX6134-E,
KNAX6135-E, KNAX6136-E, KNAX6137-E, KNAX6138-E, KNAX6139-E, KNAX6140-E, KNAX6150-E,
KNAX6151-E, KNAX6152-E, KNAX6153-E, KNAX6190-E, KNAX6191-E, KNAX6192-E, KNAX6193-E,
KNAX6194-E, KNAX6340-E, KNAX6341-E, KNAX6342-E, KNAX6580-E, KNAX6581-E, KNAX6595-E,
KNAX6996-I, KNAX7200-I, KNAX7201-I, KNAX7203-W, KNAX7204-E, KNAX7205-E, KNAX7210-E,
KNAX7211-I, KNAX7212-I, KNAX7213-I, KNAX7215-E, KNAX7216-E, KNAX7217-E, KNAX7221-E,
KNAX7222-E, KNAX7223-E, KNAX7225-E, KNAX7250-I, KNAX7251-I, KNAX7254-E, KNAX7255-I,
KNAX7256-E, KNAX7258-E, KNAX7259-W, KNAX7260-W, KNAX7261-I, KNAX7262-I, KNAX7263-E,
KNAX7264-I, KNAX7268-I, KNAX7269-E, KNAX7270-E, KNAX7271-I

• Added description of messages.
KNAX6004-E, KNAX6016-E, KNAX6054-E, KNAX6072-E

C.3 Changes in 10-51
• Enabled execution of post-process that is unique to user when the job is forcibly terminated.

• Made the who command (script syntax) available with the UNIX-compatible command. In addition, changed
the file name of the sample script file of the chmod command and su command (only for Windows).

• Made the following UNIX-compatible commands available:

• dirname
• expand
• getopt
• stat

In addition, an option was added to the following UNIX-compatible command commands:

• cut
• date
• diff
• expr
• ls

• Made the setting that the spool job directory is not created when executing the job (spool job creation suppression
functionality) available. Accordingly added the environment setting parameter.

• SPOOLJOB_CREATE parameter

• Made the character encoding UTF-8 available in AIX and HP-UX.

• Made the long option formation option available for the following UNIX-compatible commands available:

• cut
• date
• diff
• ls

• Made the job definition script matching the default definition of the CHILDJOB_SHEBANG parameter execute as
a child job available. Accordingly, added the following functions:

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1372

• Added messages related to a child job to the suppression target message of the JOBLOG_SUPPRESS_MSG
parameter.

• Changed the execution method of a sample script file from the function format to child job format.

• Added the output mode (minimum output mode) that can suppress types of messages to be output to the minimum.
Added operand for the following environment setting parameters accordingly:

• OUTPUT_MODE_CHILD parameter

• OUTPUT_MODE_ROOT parameter

In addition, added options to the following commands:

• adshexec command

• adshscripttool command

• Changed the upper limit of the number of subscripts of the array from 1,023 to 65,535.

• Enabled direct description of shell in the adshexec command that executes a job.

• [Only for Windows] Made lower case letters available for the name of environment variable. Accordingly added
the environment setting parameter.

• VAR_ENV_NAME_LOWERCASE parameter

• Enabled to deploy the substring with variable substitution.

• Added the specification method that multiple array elements are created once.

• Enabled the job to store information of function being executed in the array (function information array). Accordingly
added the environment setting parameter.

• VAR_SHELL_FUNCINFO parameter

• Enabled specification of the unit of the length of the variable value to be substituted with the format of the variable
substitution format for the character string length of the variable value and number of elements of array. Accordingly
added the environment setting parameter.

• VAR_SHELL_GETLENGTH parameter

• Changed contents that are output as the job definition script file name if contents of the job are directly specified
for the -r option of the adshscripttool command.

• Added messages.
KNAX0235-E, KNAX0474-E, KNAX1880-E, KNAX6058-E, KNAX6072-E, KNAX6097-E, KNAX6385-E,
KNAX6718-I, KNAX7073-I, KNAX7128-E

• Changed the descriptions of messages.
KNAX0411-E, KNAX0441-E, KNAX0445-E, KNAX0449-E, KNAX1873-E, KNAX5407-E, KNAX6007-E,
KNAX6008-E, KNAX6022-E, KNAX6226-E, KNAX6241-E, KNAX6382-I, KNAX6710-I, KNAX6997-E,
KNAX7450-I, KNAX7451-I, KNAX7901-I, KNAX7902-I

• Changed the message text.
KNAX9000-E, KNAX9001-E

• Added the description to "Trap action" in the glossary.

C.4 Changes in 10-50
• Added Solaris 11 as an applicable OS.

• Made the following UNIX-compatible commands available:

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1373

• chmod
• su

Accordingly added the following extended shell command that supports the creation of job definition scripts (only
for Windows).

• adshscripttool
• Added support for dynamic control of files.

Accordingly added the following command:

• adshfile
• Made the following UNIX-compatible commands available:

• basename
• egrep
• paste
• touch
• which

In addition, added the -h option to the grep command in accordance with the addition of the egrep command.

• Made files exceeding 2GB partly available.

• In the Windows edition, made specification of file name and path name in the UNC format available (excluding
some commands and files).

• Added descriptions to the list of environment variables.

• Added the following functions for path conversion of job definition scripts.

• Made selection for conversion of the entire part not enclosed with quotation marks (') available (only for
Windows).

• Made conversion of relative path names available.

Accordingly added the environment setting parameter (only for Windows).

• PATH_CONV_RULE

• Added the following shell variable and made specification of the folder in which commands are stored with a variable
available.

• ADSH_DIR_BIN

• ADSH_DIR_CMD

• Made suppression of output to the standard output and standard error output for the spool job directory available
(simple output mode).
Accordingly added the environment setting parameter.

• OUTPUT_MODE_CHILD

• OUTPUT_MODE_ROOT

In addition, an option has been added for the adshexec command.

• Made merging of the job execution log of the child job into the job execution log of the root job available.
Accordingly added the environment setting parameter.

• SPOOLJOB_CHILDJOB

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1374

• Made the selection of whether the last command is executed by another process or the current process out of the
commands connected by the pipe "|" in UNIX edition available.
Accordingly added the environment setting parameter.

• PIPE_CMD_LAST

• Made the setting for making the shell option xtrace available with the asashexec command and JP1/Advanced
Shell editor available.
With this, output of the execution command and its argument to the standard error output without modifying the job
definition script has been made available.

• Made simulation of an error at the time of debugging available with the following method as a countermeasure for
cases when the C1 execution rate does not reach 100%.

• Added the menu Fault Injection Mode to the JP1/Advanced Shell editor in the Windows edition.

• Added the joberrmode command and the info status command in the UNIX edition.

• Made hexadecimal descriptions of the ASCII code available as escape characters.
In addition, the setting of the action when interpretation of an escape character is specified with the echo command
has been made available.
Accordingly added the environment setting parameter.

• ESCAPE_SEQ_ECHO_DEFAULT

• ESCAPE_SEQ_ECHO_HEX

• Added the power operator "**" to arithmetic operators.

• Made the setting that enables the threshold to become a normal end for the return code of the command available.
Accordingly added the environment setting parameter.

• CMDRC_THRESHOLD_DEFINE

• CMDRC_THRESHOLD_USE_PRESET

• Made available the determination of Windows OS by using the uname command even without Administrator
permissions. Accordingly added the -w option (only for Windows).

• Changed the output destination of messages.
KNAX6590-E, KNAX7400-E, KNAX7402-E, KNAX7403-E, KNAX7404-E, KNAX7405-E, KNAX7408-E

• Added messages.
KNAX0708-E, KNAX0725-E through KNAX0728-E, KNAX1871-E through KNAX1873-E, KNAX1875-E,
KNAX1877-E through KNAX1879-E, KNAX1890-I through KNAX1893-W, KNAX6056-W, KNAX6068-E,
KNAX6384-E, KNAX6572-I, KNAX6587-E, KNAX6750-E through KNAX6753-E, KNAX6759-E, KNAX7126-
I, KNAX7127-E

• Changed the descriptions of messages.
KNAX0336-E, KNAX0724-I, KNAX6048-E, KNAX6409-I, KNAX6410-I, KNAX6584-I, KNAX6830-I,
KNAX7901-I

These are changes that correspond to JP1/Advanced Shell 10-01 and JP1/Advanced Shell - Developer 10-01.

• Made available the definition of return codes for cases in which an error has occurred due to being unable to continue
the job.
Accordingly added the environment variable.

• ADSH_JOBRC_FATAL

• Changing of the directory of the spool job or file permission has been made available.
Accordingly added the environment setting parameter.

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1375

• PERMISSION_SPOOLJOB_DIR

• PERMISSION_SPOOLJOB_FILE

• Added functions that can limit output of messages to the standard error of the job execution log.
Accordingly added the environment setting parameter.

• JOBEXECLOG_PRINT

• Changed the output destination of messages.
KNAX0236-E, KNAX0238-E

• Added messages.
KNAX0237-E, KNAX0239-E, KNAX0240-I, KNAX0459-E, KNAX6383-E

C.5 Changes in 10-00-01
• Added Windows Server 2012 and Windows 8 as applicable OS.

• Added descriptions regarding operation in the cluster system.

C.6 Changes in 10-00
• Added descriptions for the HP-UX environment and Solaris environment in accordance with the addition of

applicable OS.

• Changed the description of the AIX environment in accordance with the change of applicable OS.

• Added the function for issuing the event notification message or reply-request message as a JP1 event and receiving
an reply linked with JP1/IM (user-reply functionality). Accordingly added descriptions regarding the logical host.
Added setting items to the following dialog boxes:

• [Define Execution] dialog box

• [Runtime Environment Settings] dialog box

In addition, the following parameters and commands were added:

• HOSTNAME_JP1IM_MANAGER parameter

• JOBLOG_SUPPRESS_MSG parameter

• USERREPLY_DEBUG_DESTINATION parameter

• USERREPLY_JP1EVENT_INTERVAL parameter

• USERREPLY_WAIT_MAXCOUNT parameter

• adshchmsg command

• adshlsmsg command

• adshmdctl command

• adshmsvce command

• adshmsvcd command

• adshecho command

• adshread command

• lhost_start parameter

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1376

• lhost_end parameter

• phost_start parameter

• phost_end parameter

• Added a system environment file. Accordingly changed the existing description of the "environment file" to "job
environment file".
In addition, changed "environment file" to the generic term of system environment file and job environment file.

• Changed the description of the export command that is set for the environment file to "export parameter".

• Added the function for defining the extension that is executed as a child job and the replacement of a path to the job
definition script file. Accordingly added the following parameters:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• Enabled output of the job definition script operation information (not applicable to JP1/Advanced Shell - Developer).
Accordingly, added the following parameters and commands:

• EVENT_COLLECT parameter

• adshevtout command

Changed the description of the spool job of the adshhk command in accordance with the addition of this function.

• Added messages.
KNAX0220-E, KNAX0410-E, KNAX0458-E, KNAX0471-E, KNAX0472-E, KNAX0473-W, KNAX3000-I,
KNAX3001-I, KNAX3002-E, KNAX3003-E, KNAX3006-I, KNAX3008-W, KNAX3009-E, KNAX3020-E,
KNAX3023-E, KNAX3024-E, KNAX3025-E, KNAX3026-E, KNAX3027-E, KNAX3029-E, KNAX3261-I,
KNAX3400-I, KNAX3402-E, KNAX3508-I, KNAX3522-E, KNAX3542-W, KNAX3700-I, KNAX3701-I,
KNAX3703-E, KNAX3709-E, KNAX3710-I, KNAX3711-I, KNAX3799-I, KNAX3998-E, KNAX3999-E,
KNAX4425-E, KNAX5300-I, KNAX5301-E, KNAX5305-E, KNAX5308-E, KNAX5309-E, KNAX5323-E,
KNAX5340-E, KNAX5350-E, KNAX5360-E, KNAX5361-E, KNAX5362-E, KNAX5371-E, KNAX5372-E,
KNAX5380-I, KNAX5381-I, KNAX5396-I, KNAX5397-I, KNAX5398-E, KNAX5399-E, KNAX5407-E,
KNAX5409-E, KNAX5410-E, KNAX5423-E, KNAX5424-E, KNAX5425-E, KNAX5426-E, KNAX5429-E,
KNAX5440-E, KNAX5498-E, KNAX5499-E, KNAX6045-E, KNAX6046-E, KNAX6100-E, KNAX6110-I,
KNAX6111-I, KNAX6112-I, KNAX6113-I, KNAX6114-I, KNAX6115-I, KNAX6116-I, KNAX6117-I,
KNAX6120-I, KNAX6121-I, KNAX6122-I, KNAX6123-I, KNAX6124-I, KNAX6125-I, KNAX6126-I,
KNAX6127-I, KNAX6130-E, KNAX6180-E, KNAX6181-E, KNAX6182-E, KNAX6183-E, KNAX6189-I,
KNAX6290-E, KNAX6291-E, KNAX6292-E, KNAX6293-E, KNAX6294-E, KNAX6295-E, KNAX6296-E,
KNAX6297-E, KNAX6298-E, KNAX6600-E, KNAX6601-E, KNAX6602-E, KNAX6603-E, KNAX6604-E,
KNAX6605-E, KNAX6610-E, KNAX6611-E, KNAX6612-E, KNAX6613-I, KNAX6614-I, KNAX6615-E,
KNAX6616-E, KNAX6632-E, KNAX6633-E, KNAX6634-E, KNAX6635-E, KNAX6636-E, KNAX6640-I,
KNAX6644-E, KNAX6645-W, KNAX6646-E, KNAX6830-I, KNAX6831-I, KNAX6832-I, KNAX7400-E,
KNAX7402-E, KNAX7403-E, KNAX7404-E, KNAX7405-E, KNAX7408-E, KNAX7420-E, KNAX7450-I,
KNAX7451-I, KNAX7460-E, KNAX7461-E, KNAX7462-E, KNAX7464-E, KNAX7465-W, KNAX7470-I,
KNAX7500-I, KNAX7501-I, KNAX7502-E, KNAX7503-E, KNAX7508-I, KNAX7509-I, KNAX7550-I,
KNAX7551-E, KNAX7552-E, KNAX7553-E, KNAX7554-E, KNAX7555-E, KNAX7556-E, KNAX7560-I,
KNAX7561-E, KNAX7582-E, KNAX7902-I

• Deleted messages.
KNAX6060-E, KNAX6520-I, KNAX6523-I, KNAX6550-I, KNAX6553-I, KNAX6716-W, KNAX6717-I

• Changed the descriptions of messages.
KNAX0020-E, KNAX0098-I, KNAX0406-E, KNAX0433-E, KNAX0700-E, KNAX0701-E, KNAX0702-E,
KNAX0706-E, KNAX0720-E, KNAX0721-E, KNAX0722-E, KNAX0723-E, KNAX0800-E, KNAX0801-E,
KNAX0802-E, KNAX0803-E, KNAX2202-E, KNAX2204-E, KNAX2205-E, KNAX2206-E, KNAX2207-E,

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1377

KNAX2208-E, KNAX2209-E, KNAX2213-E, KNAX6003-E, KNAX6007-E, KNAX6008-E, KNAX6009-E,
KNAX6035-E, KNAX6044-E, KNAX6054-E, KNAX6062-E, KNAX6209-W, KNAX6232-E, KNAX6323-E,
KNAX6578-I, KNAX6803-I, KNAX6804-I, KNAX6810-E, KNAX6811-E, KNAX6812-E, KNAX6814-E,
KNAX6815-E, KNAX7099-E, KNAX7101-E, KNAX7104-E, KNAX7113-E, KNAX7114-E, KNAX7115-E,
KNAX7121-E, KNAX7122-E, KNAX7123-E, KNAX7802-E, KNAX7901-I, KNAX7999-I

• Categorized the chapters of the manuals according to the contents of descriptions and added the edition to the titles.
The edition titles that were added and the chapters included in each edition are as follows:

Edition title Chapters included in edition

Chapter 1 Overview edition Chapter 1

Chapter 2 Building edition Chapter 2

Chapter 3 Operation edition Chapters 3 through 6

Chapter 4 Reference edition Chapters 7 through 9

Chapter 5 Troubleshooting edition Chapters 10 through 11

In addition, changed the titles of chapters in the manual as follows:

Chapter titles in the old version (3020-3-S35-30) Chapter titles in the new version (3021-3-133)

4. Operating the Editor 4. Creating a Job Definition Scripts (when using the editor) (only for
Windows)

5. Syntax of Job Definition Scripts 5. Syntax of Job Definition Scripts (when described with a shell)

7. Parameters and Commands Specified with the Environment
File

7. Parameters Specified with the Environment File

C.7 Changes in 09-51-01
• Added and changed the following description according to the addition of the function that converts the file path "/

dev/null" in the UNIX environment to "nul" in Windows and Linux.

• Added the PATH_CONV_ACCESS environment setting parameter (changed the ACCESS_PATH_CONV
parameter described in the previous version).

• Added the COMMAND_CONV_ARG environment setting parameter (changed the
COMMAND_CONV_ARG parameter described in the previous version).

• Made the CHILDJOB_SHEBANG parameter available in the Windows environment and Linux environment.

• Made the standard input and standard output of the job definition script available in Windows and Linux. Added
and changed the following description accordingly.

• Changed the definition of terminology and action of child job.

• Added the OUTPUT_STDOUT parameter.

• Added the -s option to the asshexec command ans made specification of the destination of the standard output
of the root job.

• Added the return code to the adshhk command.

• Deleted descriptions about the following functions because these functions are not provided:

• CHILDJOB_EXT parameter

• EXEC_FORMAT_EXT parameter

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1378

• Added messages.
KNAX0308-E, KNAX6571-I, KNAX6578-I, KNAX6594-E, KNAX6805-I, KNAX6806-I, KNAX7901-I

• Changed the descriptions of messages.
KNAX0098-I, KNAX4419-E, KNAX4427-W, KNAX6053-E, KNAX6054-E, KNAX6059-E, KNAX6380-I,
KNAX6803-I, KNAX6804-I, KNAX6814-E, KNAX6815-E, KNAX7999-I

C.8 Changes in 09-51
• Added descriptions for the examples of application.

• Added and changed the description of the following functions for making the job definition script available in
Windows and UNIX.

• Converting the file path when inputing and outputting a file

• Converting arguments when executing a command

Added the following environment setting parameters according to addition of the aforementioned functions.

• ACCESS_PATH_CONV parameter

• COMMAND_ARG_CONV parameter

• EXEC_FORMAT_EXT parameter

• Added descriptions for starting child jobs.
In addition, added the following environment setting parameters in accordance with support for child jobs.

• CHILDJOB_EXT parameter

• CHILDJOB_SHEBANG parameter

• Made available the display of coverage information from the editor during debugging.

• Added the following UNIX-compatible commands:
awk, cut, diff, expr, find, head, sed, sort, split, tail, uniq, wc

• Added and changed the following descriptions as JP1/Advanced Shell has been made to operate in an AIX
environment.

• Descriptions of prerequisite programs for the execution environment

• Description of the LANG environment variable

• Installation using the CD-ROM media

• Description of the shell variable ENV

• Descriptions of shell settings

• Mutual operation of coverage information across different platforms

• Behavior when receiving a signal

• Notes for the signal command

• Description of signal of the trap command

• Description of the .env file in the glossary.

• Added the following descriptions to the prerequisites.

• Encoding when using JP1/Advanced Shell

• Setting the local time

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1379

• Added the function for loading the shell variable ENV when starting the job controller. In addition, added the
following environment setting parameters in accordance with support for this.

• KSH_ENV_READ parameter

• Changed and added the following descriptions and usage examples for the syntax of job definition scripts.

• Referencing the value of a variable, array, function, metacharacter, variable replacement, file name replacement,
arithmetic expansion, redirect, pipe, execution as a separate process, and pattern matching

• Added descriptions regarding the return code of commands.

• Added the description of the behavior when an errors occurs while the job is being executed.

• Added notes for job definition scripts.

• Added and changed usage examples with the commands used while debugging.
set, cd

• Added and changed notes and usage examples with the following special built-in commands and reserved script
commands:
. (dot) command, : (colon) command, break command, continue command, eval command, exec
command, exit command, export command, readonly command, return command, set command,
shift command, trap command, typeset command, unset command, time command

• Added and changed notes and usage examples with the following regular built-in commands:
alias command, builtin command, cd command, command command, echo command, false command,
getopts command, kill command, let command, print command, pwd command, read command, test
command, times command, true command, ulimit command, umask command, unalias command, wait
command, whence command

• Added and changed the description of the output format of the job execution log that is output to the standard error
output.

• Added messages.
KNAX4427-W, KNAX6043-W, KNAX6290-E through KNAX6297-E, KNAX6513-W, KNAX6514-W,
KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6716-W, KNAX6717-I, KNAX6803-I, KNAX6804-I,
KNAX6814-E, KNAX6815-E, KNAX7897-E

• Added details of errors uniquely output by JP1/Advanced Shell.

• Changed the configuration of the manual as follows:

Chapter number before change (3020-3-S35-10) Chapter number after change (3020-3-S35-20)

4. Creating a Job Definition Script 4. Operating the Editor

5. Syntax of Job Definition Scripts

C.9 Changes in 9-50-01
• Added and changed the description of the function for acquiring the coverage information.

• Added the log folder to common application folder.

• Added notes for hard link, symbolic link and junction.

• Added remarks and notes regarding metacharacter.

• Added the following descriptions:

• If TRACE_FILE_CNT and TRACE_FILE_SIZE are changed with environment file

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1380

• If you reduce the number of surfaces of trace file and file size

• Added contents to be output to the description of SCRIPT.

• Changed "Stop Debug" to "Stop Script".

• Changed reserved words.

• Added the upper limit of input lines and the upper limit of number of characters to be input.

• Added the case where the name of a function is the same as that of another function.

• Added the description regarding the upper limit of input lines.

• Added the description that wildcard cannot be used with the test command.

• Changed the notes regarding specification of fd.

• Added the description regarding the return code of job step.

• Changed the description of the return code of the extended script command and return code.

• Changed notes regarding output of command result.

• Added notes regarding E-Time.

• Changed notes for the upper limit of breakpoint and watchpoint.

• Added the description regarding the path name of file.

• Changed description of commands.
. (dot) command, : (colon) command, builtin command, command command, eval command, exec
command, exit command, false command, kill command, let command, read command, return command,
test command, true command, unset command, wait command
#-adsh_path_var command, #-adsh_script command, #-adsh_step_start command, #-
adsh_step_error command, #-adsh_step_end command, time command

• Added and changed messages of coverage information.
KNAX6200-I, KNAX6201-E, KNAX6202-E to KNAX6208-E, KNAX6209-W, KNAX6210-E to KNAX6215-E,
KNAX6219-E, KNAX6220-I to KNAX6222-I, KNAX6223-E to KNAX6241-E, KNAX6242-I to KNAX6243-I

• Changed messages.
KNAX2201-E, KNAX6508-I, KNAX6523-I, KNAX6553-I, KNAX6584-I

C. Modifications Made in Each Version

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1381

D. Glossary

This glossary defines the terminology used in this manual.

.env file
A file in which are set the path names to the ENV environment variables and that is loaded when the shell starts.
You can use the KSH_ENV_READ environment setting parameter to specify whether this file is to be loaded.

application-execution agent functionality
This is a function for executing user-specified applications in the logon space of the user.

application-execution agent program
This is the program that operates for each user and resides for the purpose of executing executable applications. We
recommend registering the program in startup when using the application-execution agent functionality.

argument
A generic term for an item that is specified following a command name. Multiple arguments are separated by a
delimiter on the command line or in a job definition script.

arithmetic operation
Any of the calculations performed using arithmetic operators in a job definition script. In an arithmetic operation,
the values assigned to variables are handled as numeric values.

base name
The portion of a file name excluding the .extension portion. For example, the base name of adshexec.exe, the
program for executing batch jobs, is adshexec.

batch job
A job executed by batch processing.

batch operation server
A server on which JP1/Advanced Shell is installed that is used to execute batch jobs. JP1/AJS - Agent or JP1/AJS
- Manager must be installed when JP1/AJS is used.

batch processing
The process of gathering collected data and transactions and processing them in bulk on a regular schedule, such as
every day, week, or month.

breakpoint
Coding that forces execution to stop and that is inserted into a job definition script in order to pause the processing
during development in order to check the operational status of the job definition script. The debugger interrupts the
processing at a breakpoint so that the developer can check the values of variables and registers at the time of the
interruption.

built-in command
This is a command built into the shell and can be executed by the shell itself. JP1/Advanced Shell provides standard
shell commands (standard shell commands and regular built-in commands) and extended shell commands. Special
built-in commands have the characteristic of terminating the shell executing the command when the syntax of the
command is wrong. Regular built-in commands continue processing without terminating the shell executing the
command even when the syntax of the command is wrong.

child job
A job whose job definition script is executed as a descendant process of the root job. Child jobs are executed in
accordance with one of the following parameter specifications or their default settings:

• CHILDJOB_EXT parameter

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1382

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

child job execution log output file
The output file for the job execution log of a child job, which is created by the child job and output in the spool job
directory of the root job.

collective variable name
This is a term that refers to the method for collectively describing variable names for which a part of variable names
is the same.
Variable names are expressed with the following syntax:
[*][character string][*]
* represents a number of characters that is equal to or greater than 0.

command
Generic name for any instruction that can be used in JP1/Advanced Shell. Commands are executed from the shell
or the command prompt, as well as from job definition scripts.

command grouping
Facility for executing multiple commands as a unit in JP1/Advanced Shell.

command line
The line displayed to the user for entering commands. In the Windows command prompt, input is entered after the
> on the command line. In the UNIX shell, input is entered after the % on the command line.

command prompt
The window in a Windows environment that requests that a command be entered.

command separator
The functionality that allows developers to write more than one command on a single line of a job definition script
in JP1/Advanced Shell.

conditional
A test that controls the processing branch that is to execute based on the results of a conditional expression in a
control statement in a job definition script.

conditional expression
A formula used in a job definition script that expresses a calculation using numeric comparisons, string comparisons,
file attributes, logical operators, and the ternary operator.

conditional parameter
Any of the parameters that are set in an environment file and that are specified in order to configure the environment
setting parameters and export parameters that are valid only in the physical host or in a specific logical host.

console
The terminal screen.

control statement
Same meaning as script control statement.

core dump
A source of maintenance information collected by a trace program and consisting of core files and dump files.
When a problem occurs, the contents of memory are saved to a file that can be used to assist with troubleshooting.

coverage information
Information that provides measurements in tests of the extent of coverage. The two types of coverage information
are C0, which is statement coverage information, and C1, which is branch coverage information. C0 measures the

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1383

ratio (%) of commands in a job definition script that execute, while C1 measures the ratio (%) of branches in a job
definition script that execute.

custom job
A predefined job for executing a task with a specific purpose in JP1/AJS. The custom job component for JP1/
Advanced Shell is required in order to take advantage of JP1/AJS's custom job functionality in JP1/Advanced Shell.

debug
The process of testing a job definition script created in the development environment or of investigating errors in a
script. To debug, you must launch the debugger.

debugger
A program for testing a job definition script created in the development environment and for investigating errors in
a script. In the Windows environment, the debugging functions of the JP1/Advanced Shell editor are used. In the
UNIX environment, the debugger is started by specifying the -d option in the adshexec command.

definition file
A file that defines the directories into which data for troubleshooting is to be collected.

development environment
An environment provided by JP1/Advanced Shell - Developer that supports development of job definition scripts
for batch processing.

dialog box
A window that asks the user to enter a response.

editor
A program for creating job definition scripts efficiently by taking advantage of a variety of features provided in the
development environment.

environment file
A file that contains environment information.

environment information
Information, such as environment variables and environment file parameters, that must be set before JP1/Advanced
Shell starts.

environment setting parameter
Any of the parameters that are set in an environment file for the purpose of defining the JP1/Advanced Shell execution
environment. These parameters are specified in the format #-adsh_conf parameter value.

environment variable
Any of the variables that contain various system settings that can be set by the user.

executable application
This is the application (program) that is executed by the application-execution agent functionality.

execution environment
The environment provided by JP1/Advanced Shell for execution of batch operations. JP1/Advanced Shell refers to
the execution environment in its narrow sense.

export parameter
A parameter that is set in the environment file and whose function is to set an environment variable when a command
starts.

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1384

extended script command
A command that is executed in a job definition script. Compared to normal shell script commands, these commands
offer the additional capability to control batch job execution. They are also referred to as job execution control
commands. In JP1/Advanced Shell, these commands start with #-adsh.

extended shell command
A built-in command that is internal to the shell and executed by the shell itself. Extended shell commands can be
used in job definition scripts.

extended shell variable
A shell variable with a special meaning that is provided by JP1/Advanced Shell.

external command
Any of the UNIX-compatible commands, OS-provided commands, user-created executable files, and other programs
that are not shell built-in commands.

fault injection mode
A mode used during debugging to simulate the occurrence of an error.
In UNIX, you enable or disable the fault injection mode with the joberrmode command. In Windows, you choose
the Fault Injection Mode menu item in the JP1/Advanced Shell editor.

file allocation
In JP1/Advanced Shell, such operations as registering postprocessing of files are referred to as file allocation.

file descriptor
A numeric identifier for distinguishing different types of input and output in the job controller. In the job controller,
standard output is assigned 1, standard error output is assigned 2, and 3 to 9 can be allocated and used for other
purposes.

flow control
Functionality for controlling the event-issuance interval for JP1 events that are issued during execution of the
adshread and adshecho commands.

GUI application execution program
This is a program that reports to the application-execution agent program when using the application-execution
agent functionality. When executing an executable application from JP1/AJS, the executable file name of the PC
job or the execution program of a custom job is defined.

here document
A redirection functionality used in a job definition script by which standard input is generated with the job definition
script.

initialization script file
A script file that is executed for initialization purposes before the job controller executes a job definition script.

job controller
A program for controlling a job while the job is running. The adshexec command is the job controller.

job definition script file
A program file that defines a job that has been prepared as a job definition script.

job execution log
A collection of messages output by a job, including the start and end messages for the job and job steps. At the end
of a job, the contents of the job execution log are sent to the standard error output by the job controller.

job ID
An identification number (sequentially generated between 000001 and 999999) that is assigned to a job by JP1/
Advanced Shell at the time the job is executed. Each job is assigned a unique identifier, so that each job can be

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1385

identified individually on the basis of its job ID. Once job ID 999999 has been assigned, the next job is assigned
job ID 000001.

job information
Information associated with a job, such as the job name, job ID, and job step names.

job scheduler
A product that performs job scheduling. It is part of a suite of products in JP1/Advanced Shell used to link to JP1/
AJS.

job step
A range of processing within a job defined in a job definition script that demarcates a unit of specific processing.
The job step is the smallest unit for performing a specific operation (task) in JP1/Advanced Shell. A job is made up
of a collection of job steps. Job steps are defined with the #-adsh_step_start, #-adsh_step_error
(optional), and #-adsh_step_end commands.

jobnet
A set of jobs whose execution order is defined. Jobs within the jobnet execute automatically in the predefined order.
The jobnet is a functionality provided by JP1/AJS.

JP1/Advanced Shell
A product used to create and execute batch jobs from job definition scripts. JP1/Advanced Shell can be divided into
JP1/Advanced Shell and JP1/Advanced Shell - Developer. In this narrow sense, JP1/Advanced Shell refers to the
execution environment in which batch jobs are executed from job definition scripts. Batch jobs in both Windows
and UNIX can be run from the same job definition script.

JP1/Advanced Shell - Custom Job
A program for creating jobs that are custom-defined in the operation management console in JP1/Advanced Shell.

JP1/Advanced Shell - Developer
A product used for developing job definition scripts for batch jobs. This term also refers to the development
environment in which job definition scripts are developed.

JP1/AJS3
Abbreviation for JP1/Automatic Job Management System 3, which is the successor product to JP1/AJS2. By linking
JP1/Advanced Shell to JP1/AJS3, you can achieve distributed processing among multiple PCs.

log
Historical information that is output by the computer. Timestamps, messages, and similar items are output as logs.

long option
A type of option specified in command arguments. A long option begins with two consecutive hyphens (--) followed
by a character string.

metacharacter
A character (or character string) that has a special meaning in a job definition script.

operand
A type of command argument specified on the command line. An operand is a default command argument that is
specified in addition to option names and option values. Parameter values are also called operands.

option
In general, a pre-selected capability that is added to the instructions provided by a computer input device.
In JP1/Advanced Shell, a command argument consisting of one hyphen (-) followed by one character is called a
short option, and a command argument consisting of two consecutive hyphens (--) followed by a character string
is called a long option.
An argument specified immediately following an option is the option's value.

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1386

pipe
A functionality for linking the standard output of a previous command to the standard input of a subsequent
command.

program output data file
A file to which a user program can output its execution results. JP1/Advanced Shell creates the file name
automatically in order to centrally manage the output of the user program in the same manner as the job execution
log.

quotation
Either the single quotation mark (') or the double quotation mark (").

redirection
Capability before a command in a job definition script is executed to change the input source for the information
needed to execute the command or the output destination for the execution results. Typically, the keyboard is assigned
as the standard input and the screen is assigned as the standard output, but redirection enables these assignments to
be changed.

regular built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a regular built-in command,
even if its command syntax is invalid, it does not exit the shell that is executing the command (see also special built-
in command).

regular file
A file used for input or output by a job definition script. Regular files might remain after the job finishes, or regular
files might be deleted during execution of the job. Regular files can be defined with the #-adsh_file command
or the adshfile command.

reply-request message
A message that asks the operator to enter a reply.

reply-waiting event
A JP1 event that provides notification of a reply-request message.

reserved script command
A command that can be used as a reserved word in a job definition script. An example is the time command.

return code
A code that is returned to report the execution result of a job definition script or a command.

root job
A job executed from JP1/AJS or a login shell that is not a child job.

script
A text file into which is assembled a series of commands that can be executed sequentially from the shell. A script
in JP1/Advanced Shell is called a job definition script, and they can be executed in both the Windows and UNIX
environments.

script control statement
A statement for managing commands in a job definition script. Examples include the if, for, while, until,
and case statements.

script development parts
These are job definition scripts in the function syntax provided by JP1/Advanced Shell. General-purpose processes
for such as the acquisition of a character string where blanks have been deleted, acquisition of the date and the
number of days elapsed, and acquisition of the file size can be brought up as a function.

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1387

script file
A file in which a script that has been created is saved.

shell
A program that interprets instructions provided by a computer input device and passes them to the OS.

shell command
Generic name for any command used in JP1/Advanced Shell that is executed in the shell or from the command
prompt.

shell operation command
A command that is provided as an executable binary file or a shell script. The two types of shell operation commands
are those that can be used only in job definition scripts and those that can be used not only in job definition scripts
but from OS shells and the command prompt. The shell operation commands include the adshexec command
(executes batch jobs).

shell option
Any of the pre-selected capabilities that are added to the instructions provided by a computer input device to the
shell.

shell script
A text file into which you assemble a series of commands so that you can then execute those commands sequentially
from the shell. A shell script in JP1/Advanced Shell is referred to as a job definition script, and it can be executed
in both the Windows and UNIX environments.

shell variable
An area of memory assigned as a value in a job definition script. You can reference the value of a created variable.

short option
A type of option specified in command arguments. A short option begins with a hyphen (-) followed by one character.

signal
A mechanism in UNIX by which processes report to each other the occurrence of asynchronous events. For example,
a signal is sent when a job is forcibly terminated in JP1/Advanced Shell.

special built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a special built-in command,
if its command syntax is invalid, it exits the shell that is executing the command (see also regular built-in command).

spool
The location where JP1/Advanced Shell stores the execution results of jobs and job execution logs.

spool job
The execution results for each job created in the spool directory.

spool job name
A job name appended to the spool job directory name when the job terminates. The job name might appear on its
own when there is no potential for confusion with other job names.

standard error output (stderr)
A stream to which a program outputs its error messages and other messages.

standard input (stdin)
A stream from which a program receives its input data.

standard output (stdout)
A stream to which a program outputs its data.

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1388

standard shell command
A built-in command that is internal to the shell and executed in a process in the shell itself. Standard shell commands
can be used in job definition scripts.

subshell
In a UNIX environment, a child process that has the same name as the job controller, is neither a root job nor a child
job, and is created temporarily automatically when an external command or a specific syntax is executed in a job
definition script.

symbolic link
A link that is implemented as a file that contains the actual file path.

system execution log
A log output by a job controller in JP1/Advanced Shell in order to facilitate integrated management of job execution
status by the system administrators. Log information from multiple job controllers can be output to a single log.

temporary file
A file whose use is transient during job execution. Temporary files are created by a job or job step, and they are
deleted automatically when the job terminates. Temporary files are defined with the #-adsh_file_temp
command.

trace log
Information collected to assist in investigating and resolving problems that occur in JP1/Advanced Shell.

trap action
An action that is defined in the trap command's action argument.

UNIX-compatible command
Any of the standard UNIX commands, such as the ls command, that can be used in JP1/Advanced Shell. These
commands can also be used in a Windows environment, which facilitates interoperability between UNIX and
Windows.

variable
A location or array in memory that is used to handle values in a job definition script. Examples of variables include
shell variables and environment variables.

watchpoint
A special breakpoint that stops a job definition script when the value of a variable or expression changes. A
watchpoint can be managed in the same way as any other type of breakpoint.

wildcard
A character, such as the asterisk (*) or the question mark (?), that can be specified as a stand-in for any character
or character string. The asterisk (*) represents any character string, and the question mark (?) represents any single
character.
In addition, you can use square brackets ([]) to obtain a match with any of the characters in the character string
enclosed in the square brackets. You can also use the hyphen (-) to separate values constituting a range, or the
exclamation mark (!) for a condition to be true when none of the characters enclosed in square brackets results in
a match. You can also use the comma (,) to assemble a comma-separated list of character strings, any one of which
can be selected.

D. Glossary

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1389

Index

Symbols
_ (shell variable) 412
-

script_0 911
script_su1 912
shell variable 412

--
print command 948
set command 954
typeset command 966

--absolute-paths [tar command] 861
--all (ls command) 790
--almost-all (ls command) 790
--append [tar command] 861
--blocking-factor=blocking-factor [tar command] 861
--brief (diff command) 708
--bytes=list (cut command) 693
--characters=list (cut command) 693
--check-multi-byte [tr command] 878
--classify (ls command) 790
--cmdrc-threshold=threshold [xargs command] 893
--cmdrc0 [tar command] 861
--compatible=type [tar command] 861
--complement [tr command] 878
--context[=num-lines] (diff command) 708
--create [tar command] 861
--date=date-information-string (date option) 696
--delete [tr command] 878
--delimiter=delimiter (cut command) 693
--delimiter=delimiter [xargs command] 893
--dereference

ls command 790
stat command 850

--dereference [cp command] 691
--dereference [tar command] 861
--directory (ls command) 790
--directory=directory [tar command] 861
--exclude-from=file [tar command] 861
--exit [xargs command] 893
--extract [tar command] 861
--fields=list (cut command) 693
--file=archive [tar command] 861
--files-from=file [tar command] 861
--follow={yes | no} [ln command] 783

--force [cp command] 691
--force [ln command] 783
--format=across (ls command) 790
--format=commas (ls command) 790
--format=display-format (ls command) 790
--format=format (stat command) 850
--format=horizontal (ls command) 790
--format=long (ls command) 790
--format=single-column (ls command) 790
--format=verbose (ls command) 790
--format=vertical (ls command) 790
--full-time (ls command) 790
--get [tar command] 861
--hide-control-chars (ls command) 790
--human-readable (ls command) 790
--ignore-all-space (diff command) 708
--ignore-case (diff command) 708
--ignore-space-change (diff command) 708
--indicator-style=classify (ls command) 790
--indicator-style=file-type-style (ls command) 790
--indicator-style=slash (ls command) 790
--inode (ls command) 790
--interactive [cp command] 691
--interactive [ln command] 783
--label=label (diff command) 708
--list [tar command] 861
--logical [ln command] 783
--max-args=maximum-number-of-command-
arguments [xargs command] 893
--max-chars=maximum-command-line-length [xargs
command] 893
--name=program-name 743
--name=program-name [getopt command] 743
--no-dereference [cp command] 691
--no-dereference [ln command] 783
--no-exist-directory [ln command] 783
--no-exist-file [ln command] 783
--no-run-if-empty [xargs command] 893
--no-target-directory [ln command] 783
--null [xargs command] 893
--numeric-uid-gid (ls command) 790
--only-delimited (cut command) 693
--options=short-option-name (getopt command) 743
--output-delimiter (cut command) 693
--physical [ln command] 783

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1390

--preserve [cp command] 691
--preserve-permissions [tar command] 861
--quiet (getopt command) 743
--quiet-output (getopt command) 743
--recursive

diff command 708
ls command 790

--recursive [cp command] 691
--report-identical-files (diff command) 708
--reverse (ls command) 790
--same-permissions [tar command] 861
--side-by-side (diff command) 708
--size (ls command) 790
--sort=none (ls command) 790
--sort=size (ls command) 790
--sort=sort-key (ls command) 790
--sort=time (ls command) 790
--squeeze-repeats [tr command] 878
--suppress-common-lines (diff command) 708
--symbolic [ln command] 783
--tabs=tab-stop-list (expand command) 725
--target-directory = target-directory-name [ln
command] 783
--terse (stat command) 850
--text (diff command) 708
--time=access (ls command) 790
--time=atime (ls command) 790
--time=ctime (ls command) 790
--time=file-date-and-time-type (ls command) 790
--time=status (ls command) 790
--time=use (ls command) 790
--touch [tar command] 861
--truncate-set1 [tr command] 878
--unified[=num-lines] (diff command) 708
--universal (date command) 696
--unquoted (getopt command) 743
--update [cp command] 691
--update [tar command] 861
--utc (date command) 696
--verbose [ln command] 783
--verbose [tar command] 861
--width=output-width (diff command) 708
-0 [xargs command] 893
-1 (ls command) 790
-a

adshfile command 642
diff command 708

egrep command 722
grep command 747
ls command 790
sed command 823
set command 954
touch command 872
ulimit command 970
unalias command 974
uname command 882
which command 890

-A
ls command 790
set command 954

-a [gunzip command] 753
-a [gzip command] 760
-A number

egrep command 722
grep command 747

-a suffix-length (split command) 847
-abnormal (#-adsh_file command) 1009
-b

cat command 685
diff command 708
egrep command 722
grep command 747
sort command 837

-b [adshvarconv command] 1003
-b blocking-factor [tar command] 861
-b list (cut command) 693
-b num-blocks (tail command) 857
-b num-bytes (split command) 847
-B number

egrep command 722
grep command 747

-c
adshfile command 642
egrep command 722
grep command 747
ls command 790
sort command 837
touch command 872
ulimit command 970
uniq command 886
wc command 888

-C (ls command) 790
-c [adshappagent command] 618
-c [adshexec command] 637

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1391

-c [adshvarconv command] 1003
-c [gunzip command] 753
-c [gzip command] 760
-C [number]

egrep command 722
grep command 747

-c [tar command] 861
-c [tr command] 878
-c command-line (script_su1) 912
-C directory [tar command] 861
-c format (stat command) 850
-c JP1/AJS-schedule-service-name (adshevtout
command) 629
-c list (cut command) 693
-c num-bytes (tail command) 857
-C num-lines (diff command) 708
-chk

#-adsh_file command 1009
#-adsh_file_temp command 1011

-cnum-lines (diff command) 708
-d

adshchmsg command 623
adshecho command 984
adshevtout command 629
adshread command 992
find command 732
ls command 790
rm command 821
ulimit command 970
uniq command 886

-d [adshappexec command] 979
-d [adshexec command] 637
-d [gzip command] 760
-D [set command] 954
-d [tar command] 861
-d [tr command] 878
-d date-information-string (date command) 696
-d delimiter (cut command) 693
-d delimiter [xargs command] 893
-d list (paste command) 807
-d work-folder [adshappexec command] 620
-e

adshcollect command 1083
echo command 935

-E
echo command 935
egrep command 722

grep command 747
sed command 823

-e [adshparsecsv command] 989
-e [adshvarconv command] 1003
-e command (sed command) 823
-e job-execution-start-time-upper-bound (adshevtout
command) 629
-e pattern

egrep command 722
grep command 747

-exec (adshscripttool command) 995
-f

adshcollect command 1083
ls command 790
rm command 821
script_chmod1 903
script_chmod2 905
script_chmod3 907
set command 954
sort command 837
touch command 872
typeset command 966
ulimit command 970
unset command 975

-F (ls command) 790
-f [adshexec command] 637
-f [cp command] 691
-f [gunzip command] 753
-f [gzip command] 760
-f [ln command] 783
-f [mv command] 805
-f archive [tar command] 861
-F input-field-separator (awk command) 658
-f list (cut command) 693
-f pattern-file-path-name

egrep command 722
grep command 747

-f script-file-path-name
awk command 658
sed command 823

-fentry (adshscripttool command) 995
-fmode (adshscripttool command) 995
-fowner (adshscripttool command) 995
-G (grep command) 747
-g (ls command) 790
-g JP1/AJS-job-name (adshevtout command) 629
-grp schedule-group-name [adshjava command] 647

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1392

-h
adshcollect command 1083
egrep command 722
find command 732
grep command 747
ls command 790
script_chmod1 903
script_chmod2 905
script_chmod3 907

-H
find command 732
ulimit command 970

-H [cp command] 691
-h [tar command] 861
-h logical-host-name [adshexec command] 637
-h logical-host-name

adshchmsg command 623
adshevtout command 629
adshlsmsg command 652
adshmdctl command 653

-i
diff command 708
egrep command 722
grep command 747
ls command 790
rm command 821
typeset command 966

-I
egrep command 722
grep command 747

-i [adshvarconv command] 1003
-i [cp command] 691
-i [ln command] 783
-i [mv command] 805
-I file [tar command] 861
-i JP1/Advanced-Shell-job-ID (adshevtout command)

629
-id temporary-file-identifier (#-adsh_file_temp
command) 1011
-install

adshmsvcd command 655
adshmsvce command 656

-j spool-job-name (adshevtout command) 629
-java [adshjava command] 647
-k (ls command) 790
-k [gunzip command] 753
-k [gzip command] 760

-k JP1/AJS-job-execution-ID (adshevtout command)
629
-k start-position[, end-position] (sort command) 837
-l

cmp command 688
egrep command 722
grep command 747
ls command 790
typeset command 966
ulimit command 970
wc command 888

-L
egrep command 722
find command 732
grep command 747
ls command 790
pwd command 949
stat command 850
typeset command 966

-L [adshscripttool command] 995
-L [cp command] 691
-l [gunzip command] 753
-l [gzip command] 760
-L [ln command] 783
-L file [tar command] 861
-L label (diff command) 708
-l long-option-name (getopt command) 743
-l n1 [- [n2]] [, n3 [- [n4]]]... (adshcvshow command) 626
-l num-lines (split command) 847
-lhostname logical-host-name

adshmsvcd command 655
adshmsvce command 656

-longoptions=long-option-name (getopt command)743
-m

adshevtout command 629
adshscripttool command 995
ls command 790
sort command 837
touch command 872
ulimit command 970
uname command 882
wc command 888

-m [adshappexec command] 620, 979
-m [adshexec command] 637
-m [tar command] 861
-m permissions (mkdir command) 803

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1393

-n
adshfile command 642
cat command 685
cut command 693
echo command 935
egrep command 722
grep command 747
ls command 790
print command 948
sed command 823
sort command 837
ulimit command 970
uname command 882

-n [adshappexec command] 620, 979
-n [gunzip command] 753
-N [gunzip command] 753
-n [gzip command] 760
-N [gzip command] 760
-n [ln command] 783
-n JP1/AJS-job-number (adshevtout command) 629
-n maximum-number-of-command-arguments [xargs
command] 893
-n num-lines

head command 781
tail command 857

-n program-name (getopt command) 743
-n reply-request-message-number

adshchmsg command 623
adshlsmsg command 652

-normal
#-adsh_file command 1009
#-adsh_file_temp command 1011

-num-lines
head command 781
tail command 857

-o (set command) 954
-o [adshvarconv command] 1003
-o asc-file-path-name [adshexec command] 637
-o output-asc-file-path-name (adshcvmerg command)

625
-o output-path-name (sort command) 837
-o output-path-name [gunzip command] 753
-o output-path-name [gzip command] 760
-o short-analysis-option-name (getopt command) 743
-onError (#-adsh_step_start command, #-
adsh_step_error command, #-adsh_step_end
command) 1019

-p
alias command 928
command command 932
export command 941
ls command 790
mkdir command 803
print command 948
read command 950
readonly command 952
time command 1029
typeset command 966
ulimit command 970
whence command 977

-P
pwd command 949

-p [adshvarconv command] 1003
-p [cp command] 691
-P [cp command] 691
-P [ln command] 783
-p [tar command] 861
-P [tar command] 861
-p job-definition-script-file-path-name (adshevtout
command) 629
-pid (kill command) 945
-q

diff command 708
egrep command 722
getopt command 743
grep command 747
ls command 790

-Q (getopt command) 743
-q [adshappagent command] 618
-q [gunzip command] 753
-q [gzip command] 760
-r

adshscripttool command 995
diff command 708
egrep command 722
grep command 747
ls command 790
print command 948
read command 950
rm command 821
sed command 823
sort command 837
tail command 857
typeset command 966

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1394

uname command 882
-R

egrep command 722
grep command 747
ls command 790
rm command 821
script_chmod1 903
script_chmod2 905
script_chmod3 907
typeset command 966

-r [cp command] 691
-R [cp command] 691
-r [gunzip command] 753
-r [gzip command] 760
-r [tar command] 861
-r [xargs command] 893
-r command-line [adshexec command] 637
-r elapsed-seconds (date command) 696
-r JP1/AJS-root-jobnet-name (adshevtout command)

629
-r path-name (touch command) 872
-r reply (adshchmsg command) 623
-run (#-adsh_step_start command, #-adsh_step_error
command, #-adsh_step_end command) 1019
-s

adshcvshow command 626
adshfile command 642
adshscripttool command 995
cat command 685
cmp command 688
cut command 693
diff com 708
egrep command 722
grep command 747
kill command 945
ls command 790
paste command 807
ulimit command 970
uname command 882

-S
ls command 790
ulimit command 970
umask command 972

-s [adshexec command] 637
-s [ln command] 783
-s [tr command] 878

-s job-execution-start-time-lower-bound (adshevtout
command) 629
-s maximum-command-line-length [xargs command]
893
-S suffix [gunzip command] 753
-S suffix [gzip command] 760
-signame (kill command) 945
-signum (kill command) 945
-srv batch-server-name [adshjava command] 647
-stepVar shell-variable-name (#-adsh_step_start
command, #-adsh_step_error command, #-
adsh_step_end command) 1019
-successRC return-code-definition (#-adsh_step_start
command, #-adsh_step_error command, #-
adsh_step_end command) 1019
-t

adshevtout command 629
ls command 790
stat command 850
typeset command 966
ulimit command 970

-T (ls command) 790
-t [adshexec command] 637
-t [gunzip command] 753
-t [gzip command] 760
-T [ln command] 783
-t [tar command] 861
-t [tr command] 878
-t field-delimiter (sort command) 837
-T file [tar command] 861
-t tab-stop-list (expand command) 725
-t target-directory-name [ln command] 783
-T temporary-file-directory (sort command) 837
-t time (touch command) 872
-tab-stop-list (expand command) 725
-u

cat command 685
date command 696
getopt command 743
ls command 790
sed command 823
set command 954
sort command 837
typeset command 966
uniq command 886

-U
egrep command 722
grep command 747

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1395

-u [adshvarconv command] 1003
-u [cp command] 691
-u [mv command] 805
-u [num]

print command 948
read command 950

-u [tar command] 861
-u JP1/Advanced-Shell-execution-user-name
(adshevtout command) 629
-U num-lines (diff command) 708
-unum-lines (diff command) 708
-v

command command 932
egrep command 722
grep command 747
set command 954
uname command 882
whence command 977

-V (command command) 932
-v [adshappexec command] 979
-v [adshexec command] 637
-v [gunzip command] 753
-v [gzip command] 760
-v [ln command] 783
-v [tar command] 861
-V [tar command] 861
-v display-name [adshappexec command] 620
-v variable-name=variable-value (awk command) 658
-w

command command 932
diff command 708
egrep command 722
grep command 747
uname command 882
wc command 888

-w [adshappexec command] 620
-W output-width (diff command) 708
-x

alias command 928
egrep command 722
grep command 747
ls command 790
set command 954
typeset command 966

-x [adshexec command] 637
-x [tar command] 861
-x [xargs command] 893

-X file [tar command] 861
-y (diff command) 708
-z

adshevtout command 629
sort command 837

-Z (typeset command) 966
-z [tar command] 861
:command (expanding arguments) 926
! (shell variable) 412
? (shell variable) 412
. command (executing shell script) 925
.env file 414, 1382
(shell variable) 412
#-adsh_file command (specifying assignment and
postprocessing of regular files) 1009
#-adsh_file_temp command (assigning and
postprocessing temporary file) 1011
#-adsh_job command (declaring name for job) 1012
#-adsh_job_stop command (defining termination
conditions for job) 1012
#-adsh_path_var command (defining shell variables
for handling path names) 1013
#-adsh_rc_ignore command (defining commands to
always terminate normally) 1015
#-adsh_script command (calling external job definition
script file from job definition script that is running) 1016
#-adsh_spoolfile command (assigning program output
data file) 1018
#-adsh_step_end command (defining job step (end))

1019
#-adsh_step_error command (defining job step (error
processing)) 1019
#-adsh_step_start command (defining job step) 1019
+a (set command) 954
+A (set command) 954
+D [set command] 954
+f

set command 954
typeset command 966

+format (date command) 696
+i (typeset command) 966
+l (typeset command) 966
+L (typeset command) 966
+o (set command) 954
+p

alias command 928
typeset command 966

+r (typeset command) 966
+R (typeset command) 966

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1396

+t (typeset command) 966
+u

set command 954
typeset command 966

+v (set command) 954
+x

alias command 928
set command 954
typeset command 966

+Z (typeset command) 966
$ (shell variable) 412

A
acquired coverage information 1362
action (trap command) 960
action [trap command] 960, 963
active server 41
Administrators permissions 10
ADSH_AJS_AFEXECMV [environment variable] 82
ADSH_AJS_APPARG [environment variable] 82
ADSH_AJS_APPEXEC [environment variable] 82
ADSH_AJS_APPNAME [environment variable] 82
ADSH_AJS_ENVF [environment variable] 82
ADSH_AJS_GCHE [environment variable] 82
ADSH_AJS_LHOST [environment variable] 82
ADSH_AJS_MESOUT [environment variable] 82
ADSH_AJS_SCRF [environment variable] 82
ADSH_AJS_SHOWN [environment variable] 82
ADSH_AJS_WORKF [environment variable] 82
ADSH_CMD_ARGORDER [environment variable] 82
ADSH_CMDDATE_FORMAT [environment variable]
82
ADSH_CMDEXPR_LENGTH [environment variable]
82
ADSH_CMDLN_FOLLOW [environment variable] 82
ADSH_CMDLN_OPT_I_F [environment variable] 82
ADSH_CMDTAR_ROOTPATH [environment variable]

82
ADSH_DIR_BIN (shell variable) 412
ADSH_DIR_CMD (shell variable) 412
ADSH_ENV [environment variable] 82
ADSH_JOB_NAME [environment variable] 82
ADSH_JOBID [environment variable] 82
ADSH_JOBRC_FATAL (environment variable) 111

specifying return code in event of unresumable error
in jobs 111

ADSH_JOBRC_FATAL [environment variable] 82

ADSH_LANG [environment variable] 82
ADSH_LANG_JP1EVENT [environment variable] 82
ADSH_LINK_SUPPORT [environment variable] 82
ADSH_PARSER_LANG (shell variable) 414
ADSH_RC_EXTERNAL (shell variable) 419
ADSH_RC_STEPLAST (shell variable) 412
ADSH_RC_STEPMAX (shell variable) 412
ADSH_RC_STEPMIN (shell variable) 412
ADSH_SPOOL_JOBNAME (shell variable) 414
ADSH_STEP_NAME [environment variable] 82
ADSH_STEPRC_job-step-name (shell variable) 412
adshappagent command (application execution agent
start command) [only for Windows execution
environment] 618
adshappexec command (GUI application executable
command) (only for Windows execution environments)

979
adshappexec command (GUI application execution
command) [only for Windows development
environment and UNIX] 979
adshappexec command (GUI application execution
command) [only for Windows execution environment]

620
adshchmsg command (replying manually to reply-
request message when failure occurs) 623
ADSHCMD_RC_ERROR parameter (defining return
code to be used when extended script command fails)

535
ADSHCMD_RC_SUCCESS parameter (defining
return code to be used when extended script command
is successful) 535
adshcmdrc command (defining the return code
threshold of a command) 982
adshcollect command

collecting information 1083
files collected by 1083

adshcvmerg command (merging coverage
information) 625
adshcvshow command (displaying coverage
information) 626
adshecho command

handling termination with error 260
issuing specified event notification message as JP1
event 984

adshevtout command (outputting job definition script
operation information) 629
adshexec command

debugger 486
adshexec command (executing batch job) 637
adshfile command (specifying allocation and
postprocessing of regular files) 642

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1397

adshhk command (deleting spool jobs) 645
adshjava command (executes Java batch applications)
[only for Windows, Linux, AIX, and HP-UX] 647
adshjoberr command (reports an error to a job and job
step) 986
adshlsmsg command (displaying list of reply-request
messages when failure occurs) 652
adshmdctl command (starting and stopping user-reply
functionality management daemon) (UNIX only) 653
adshmktemp command (outputs a path name of
temporary file) 987
adshmsvcd command (registering user-reply
functionality management service in development
environment) (Windows only) 655
adshmsvce command (registering user-reply
functionality management service in execution
environment) (Windows only) 656
adshparsecsv command (analyzing CSV data) 989
adshparsejson command (analyzes JSON data) 990
adshread command

handling termination with error 260
issuing specified reply-request message as reply-
waiting event 992

adshscripttool command (supporting creation of job
definition scripts) (Windows only) 995
adshvarconv command (converts the value of a
variable) 1003
AJS_BJEX_STOP [environment variable] 82
alias command (defining aliases) 928
allocation management file 205
am i

script_0 913
script_who1 914

analysis-option (getopt command) 743
antivirus software, note on running 180
application-execution agent functionality 1382
application-execution agent program 1382
args

. command 925
builtin command 930
command command 932
echo command 935
eval command 938
exec command 939
getopts command 943
print command 948

argument 1382
:command 926
converting during command execution 94

script_0 911
argument-passed-to-the-main-method [adshjava
command] 647
argument-to-be-analyzed (getopt command) 743
arguments-of-executable-program (CHILDJOB_PGM
parameter) 538
arithmetic expansion 384
arithmetic operation 408, 1382

priority of 411
arithmetic operator 408
array 353

creating 354
referencing value of 362

array-name [adshparsecsv command] 989
arrayToCsv (outputs a value of two-dimensional array
to CSV data) 1063
ASC_FILE parameter (defining naming rule for
accumulation files) 536
asc-file-path-name (adshcvshow command) 626
assignment operator 409
AUTO (TRAP_ACTION_SIGTERM parameter) (UNIX
only) 593
awk command (performing text processing and pattern
matching) 658

B
backtrace, displaying (where command) 514
base name 1382
base-asc-file-path-name (adshcvmerg command) 625
basename command (extracting file name from path)

683
batch application

expediting configuration of 30
inheriting asset between OSs of 30

batch job 1382
executing 181
executing manually 57
executing, from JP1/AJS 56
procedure for executing automatically (working with
JP1/AJS) 35
specifying job definition script as command 195
specifying job definition script in argument of
adshexec command 195
starting 192
starting, by using command from execution
environment 195

batch job application
defining 193
defining definition schedule of 194

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1398

defining definition schedule of execution order of 194
defining execution order of 193
overview of using JP1/AJS to automate 192
registering timing of starting 195
starting, by using JP1/AJS from execution
environment 192

batch job execution results
central management of 31
improving serviceability and maintainability by
central management of 31

batch operation server 56, 1382
batch processing 1382
BATCH_CVR parameter (enabling coverage auto-
acquisition functionality) 537
bitwise logical operator 409
BLOCKSIZE [environment variable] 82
branch coverage 265
branch coverage information 265
break command

debugger 488
exiting from loop 929

breakpoint 1382
deleting (delete command) 492
displaying information about (info breakpoints
command) 500
removing (JP1/Advanced Shell Editor) 320
removing all (JP1/Advanced Shell Editor) 321
setting (break command) 488
setting (JP1/Advanced Shell Editor) 319
setting and releasing during debugging (JP1/
Advanced Shell Editor) 319

breakpoint area (JP1/Advanced Shell Editor) 307
built-in command 1382
built-in-variable-name=variable-value (awk command)

658
builtin command (executing built-in command) 930
BYTE (VAR_SHELL_GETLENGTH parameter) 603

C
C run-time function, cause of error and action 1353
C0 (statement coverage information) 265
C0 information 265
C1 (branch coverage information) 265
C1 information 265
called function name array 415
case statement (choosing from multiple processing
paths) 1024
cat command (outputting files to standard output) 685

cd command
changing current directory 931
debugger 517
new 931
old 931

CDPATH (shell variable) 414
CHARACTER (VAR_SHELL_GETLENGTH
parameter) 603
character string

replacing (JP1/Advanced Shell Editor) 317
searching for (JP1/Advanced Shell Editor) 316

character string comparison 403
character-string

basename command 683
dirname command 720

character-string-1 [tr command] 878
character-string-2 [tr command] 878
child job 182, 1382

defining file to be started as 95
how to execute 196
running job definition script as 196

child job execution log output file 1382
CHILDJOB_EXT parameter (defining extension for job
definition script files that are to be executed as child
jobs) 537
CHILDJOB_PGM parameter (defining program path
specification that is to be executed as descendent jobs)

538
CHILDJOB_SHEBANG parameter (defining
executable program path for job definition script files
that are to be executed as child jobs) 541
chmod command

changing file read-only attribute setting (enable or
disable) 903
disabling chmod commands specified in job
definition scripts 902
specifying permissions as numeric values 905
specifying permissions as symbols or numeric
values 907

client area (JP1/Advanced Shell Editor) 307
cluster configuration, running in 156
cluster operation

how to specify command during 163
notes about 164
prerequisite and scope of support for 156

cluster system, overview of operation in 41
CMDRC_CMDGRP_CHECK parameter (determines
an error of job and job step according to the return code
code of the function) 543

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1399

CMDRC_THRESHOLD_DEFINE parameter (defining
return code threshold for command) 543
CMDRC_THRESHOLD_USE_PRESET parameter
(defining threshold for return code of UNIX-compatible
command) 546
cmp command (comparing binary files) 688
cmpDate (compares date) 1046
collective variable name 1382
COLUMNS [environment variable] 82
command 1382

alias definition for 371
builtin command 930
command command 932
defining 425
description format 608, 916
eval command 938
exec command 939
for which coverage information is acquired 1362
grouping 387, 1382
sed command 823
that always terminates normally, defining 432
that terminates normally, defining 432
time command 1029
used during operation 607

command command (executing command) 932
command coverage 265
command execution result, notes about output of 451
command line 1382

specifying what is to be executed by job from 200
command line [adshappexec command] 979
command name [adshcmdrc command] 982
command prompt 1382
command separator 387, 1382
COMMAND_CONV_ARG parameter (defining rule for
converting argument in job definition scripts during
command execution) 549
command-argument-1 (COMMAND_CONV_ARG
parameter) 549
command-argument-2 (COMMAND_CONV_ARG
parameter) 549
command-name

#-adsh_rc_ignore command 1015
CMDRC_THRESHOLD_DEFINE parameter 543
which command 890

commands, list of 611, 921
comment 373
common application data folder 11
Common application data folder 50

COMPATIBLE_CMD_EXEC parameter (defines the
activation method of an external command) [only for
Windows] 552
COMPATIBLE_CMD_SUBSTITUTION parameter
(defines the behavior of command substitution) 553
conditional 400, 1382
conditional expression 401, 1382

defining handling of unsupported (Windows only) 97
priority of 411

conditional parameter 529, 605, 1382
conftest [environment-file-name] (adshmdctl
command) 653
console 341, 1382
CONSOLE (USERREPLY_DEBUG_DESTINATION
parameter) 597
CONT (TRAP_ACTION_SIGTERM parameter) (UNIX
only) 593
continue command

debugger 496
interrupting loop processing and returning to
beginning of loop 934

continuous execution, performing (continue command)
496

control statement 400, 1382
description format 916
for which coverage information is acquired 1365

control statements, list of 921
convCsvSep (converts the delimiter of CSV data) 1065
conventions

abbreviations 8
directory names 10
fonts and symbols 6, 10, 11
KB, MB, GB, and TB 11

copy-source [cp command] 691
copy-source-file-name [cp command] 691
copy-target-directory-name [cp command] 691
copy-target-file-name [cp command] 691
CORE (UNIX only) 1083
core dump 1382
coverage auto-acquisition functionality 105, 285
coverage information 1382

accumulating 270
accumulation methods 270
acquiring 265
collected in memory, displaying 284
displaying 272
displaying (info coverage command) 501
displaying (JP1/Advanced Shell Editor) 329

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1400

format of 270
how to accumulate 270
how to merge 285
initializing accumulated 272
managing 266
merging 285
overview of 265
that is acquired 1362
type of information to be merged 285
usage of 265

coverage information collection, enabling without
having to specify option during batch job execution 105
coverage information file (asc file) 265, 266
cp command (copying files or directories) 691
csvToArray (stores the two-dimensional array of CSV
data) 1066
CUI debugger 486
CURRENT (PIPE_CMD_LAST parameter) 584
CURRENT [CMDSUB_PROCESS parameter] 548
custom job 126, 1382

registering 126
cut command (outputting selected parts of lines to
standard output) 693

D
date command (displaying system date and time) 696
date-and-time (touch command) 872
debug 1382
debug execution (JP1/Advanced Shell Editor) 303
debug mode (JP1/Advanced Shell Editor) 303
Debug Toolbar (JP1/Advanced Shell Editor) 305
debugger 478, 1382

about 475
list of commands 480
starting 486
terminating (quit command) 486

debugging
executing one line at a time (not performing step-by-
step execution in function) (JP1/Advanced Shell
Editor) 325
executing one line at a time (performing step-by-step
execution in function) (JP1/Advanced Shell Editor)

324
executing through end of function (JP1/Advanced
Shell Editor) 326
JP1/Advanced Shell Editor 318
performing and canceling (JP1/Advanced Shell
Editor) 322

setting and releasing breakpoints during (JP1/
Advanced Shell Editor) 319
up to breakpoint (JP1/Advanced Shell Editor) 322
with CUI 477
with GUI 475

decrement operator 409
Defines the activation method of an external command

552
Defines the behavior of command substitution 553
Defines the shell variable that does not handle the path
name 573
Defines the shell variable that handles the path name)

580
defining

action of echo command when escape-character
option is omitted 554
destination for root job standard output 569
details of path conversion 569
environment variable 557
executable program path for job definition script files
that are to be executed as child jobs 541
execution processing for last command in pipe
(UNIX only) 584
extension for job definition script files that are to be
executed as child jobs 537
handling of unsupported conditional expression
(Windows only) 596
how spool job of child job is to be handled 587
job controller's action when forced termination
request is received 593
job execution log contents to be output to standard
error output when job terminates 560
message that is not to be output to job execution logs

562
naming rule for accumulation files 536
number of files to be used to back up system
execution logs 565
number of files to which traces are to be output 591
path conversion details when files are input and
output 571
path name of directory for storing temporary files 590
path name of directory to which system execution
logs are to be output 564
path name of directory to which traces are to be
output 590
permission for files under spool job directory (UNIX
only) 582
permission for spool job directory (UNIX only) 582
program path specification that is to be executed as
descendent jobs 538

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1401

return code threshold for command 543
return code to be used when extended script
command fails 535
return code to be used when extended script
command is successful 535
rule for converting argument in job definition scripts
during command execution 549
rule for converting file paths 574
set of parameters applicable only to physical host606
set of parameters applicable only to specified logical
host 605
size of file to which system execution logs are to be
output 565
size of file to which traces are output 592
spool root directory path name 586
threshold for return code of UNIX-compatible
command 546
trace output level 593
unit for lengths of variable values that are replaced
in format ${#variable} 603
whether ENV shell variable is to be read 563

defining file mode creation mask when job definition
script begins to run 595
defining whether initialization script file is to be read
and run when job controller starts 559
definition file 1382
definition-file-name (adshcollect command) 1083
DELETE [SPOOLJOB_CHILDJOB parameter] 587
delete command (debugger) 492
deleteSpace (gets the character string without space)

1040
destination [mv command] 805
destination-directory [mv command] 805
Determines an error of job and job step according to
the return code of the function) 543
determining whether to use spool job creation
suppression functionality 98
developer 34
development environment 1382

JP1/Advanced Shell - Developer 34
dialog box 1382
diff command (comparing two files) 708
directory

changing (cd command) 517
mkdir command 803
required for JP1/Advanced Shell, creating 117

directory-name (rmdir command) 822
directory-name-1 (diff command) 708
directory-name-2 (diff command) 708

directory-path (cd command) 931
directory-separator (PATH_CONV_ENABLE
parameter) 572
dirname command (retrieving character strings for
directory path names from path names) 720
DISABLE

CMDRC_THRESHOLD_USE_PRESET parameter
546

TRAP_ACTION_SIGTERM parameter 593
VAR_ENV_NAME_LOWERCASE parameter 599

Displays the information of the variable name handling
the path (info pathvars command) 503
DUMP (Windows only) 1083

E
echo command (outputting what is specified in
arguments to standard output) 935
edit mode (JP1/Advanced Shell Editor) 303
Edit Toolbar (JP1/Advanced Shell Editor) 305
editor 1382

setting up operating environment for (JP1/Advanced
Shell Editor) 312

egrep command (searching for characters in files) 722
ENABLE

CMDRC_THRESHOLD_USE_PRESET parameter
546

VAR_ENV_NAME_LOWERCASE parameter 599
enabling

coverage auto-acquisition functionality 537
path conversion functionality 572

ENV (shell variable) 414
loading files specified in 108

environment file 1382
parameter specified in 520
specification format of 521
specifying 87

environment information 1080, 1382
specifying 87
specifying for cluster operation 158
specifying in JP1/Base 155
specifying in JP1/IM - Manager 154

environment setting parameter 535, 1382
environment setting parameters, list of 523
environment variable 1382

for job information 424
environment-file-name (adshcollect command) 1083
environments, sharing among multiple 105
ERR (UNSUPPORT_TEST parameter) 596

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1402

error 1092
details of 1353
details of (specific to JP1/Advanced Shell) 1356
details of (UNIX) 1354
details of (Windows) 1353
during job execution 447
simulating (JP1/Advanced Shell Editor) 327

error information 1081
escape character 392
ESCAPE_SEQ_ECHO_DEFAULT parameter
(defining action of echo command when escape-
character option is omitted) 554
ESCAPE_SEQ_ECHO_HEX parameter (specifying
whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters)
555
eval command (concatenating arguments into
command and executing it) 938
EVENT_COLLECT parameter (specifying whether
operation information acquisition functionality is to be
enabled for job definition scripts) 556
event-notification-message (adshecho command) 984
exec command

debugger 518
executing command and exiting 939

executable application 1382
executed command and argument, outputting 243
Executing Java batch applications by using the
adshjava command provided by JP1/Advanced Shell
[only for Windows, Linux, AIX, and HP-UX] 203
executing user, executing programs with permissions
of 912
executing, batch job 182
Execution as a separate process 388
execution environment 1382

JP1/Advanced Shell 34
execution method 258
exit command (exiting shell) 940
expand command (replacing tab characters with
spaces) 725
expansion output mode 100
export command (exporting shell variables) 941
export parameter 528, 1382

defining environment variable 557
expr command (evaluating expression) 729
expr1 (expr command) 729
expr2 (expr command) 729
expression (expr command) 729

EXTENDED
OUTPUT_MODE_CHILD parameter 566
OUTPUT_MODE_ROOT parameter 567

extended script command 1009, 1382
defining return code of 105
description format for 918
executing 394
handling of error 439
return code of 439

extended script commands, list of 923
extended shell command 979, 1382

description format for 918
extended shell commands, list of 922
extended shell variable 412, 1382
extension (CHILDJOB_EXT parameter) 537
external command 1382

executing 394
return code of 441

external command, return code of (shell variable in
which to set) [Windows only] 419
external job definition script file, calling from executing
job definition script 437
external script 284
external-command-name [xargs command] 893
external-command's-argument [xargs command] 893

F
FALSE (UNSUPPORT_TEST parameter) 596
false command (returning 1 as the return code) 943
fault injection mode 284, 1382

enabling and disabling (joberrmode command) 507
file

allocating and postprocessing 454
large 63
path name 610
used in JP1/Advanced Shell 62

file allocation 1382
file attribute 404
file descriptor 385, 1382
file path, converting when files are input and output 92
file read-only attribute setting, changing (enable or
disable) 903
file-environment-variable

#-adsh_file command 1009
#-adsh_file_temp command 1011
#-adsh_spoolfile command 1018

file-naming-rule (ASC_FILE parameter) 536

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1403

file-path
#-adsh_file command 1009
adshfile command 642

file-size
LOG_FILE_SIZE parameter 565
TRACE_FILE_SIZE parameter 592

filename (. command) 925
find command (searching for files in directories) 732
finish command (debugger) 497
flow control 1382
Flow of processes when executing Java batch
applications by using a function of JP1/Advanced Shell
[only for Windows, Linux(R), AIX, and HP-UX] 36
Flow of processes when using the application-
execution agent functionality 38
font conventions 6
for statement (repeating same processing) 1025
forced termination, job processing during (Windows
only) 293
form (printf command) 816
FPATH (shell variable) 414
function 365

executing (finish command) 497
for which coverage information is acquired 1366
terminating (return command) 498

FUNCTION [CMDRC_CMDGRP_CHECK parameter]
543

function call line number array 415
Function character options [tar command] 861
function definition file 368
function definition script file name array 415
function information array 415

shell variable 412
function information, displaying (info functions
command) 502
Function modifier options [tar command] 861
function preload functionality 368

G
G (UNSUPPORT_TEST parameter) 596
GB meaning 11
general procedure 34
general user 34
getArrayIndex (gets an index based on the value of
array) 1035
getCalcDate (gets the calculated date) 1047
getCsvColumn (gets a column in consideration of blank
line of CSV data) 1067

getDate (gets the current date) 1049
getDateDiff (gets the number of elapsed days) 1049
getDay (gets day from date) 1050
getFileMTime (gets date and time of file and directory)

1058
getFileSize (gets size of file) 1059
getHour (gets hour from time) 1051
getJsonValue (gets a value corresponding to the name
of JSON data) 1070
getMinute (gets minute from time) 1052
getMonth (gets month from date) 1053
getopt command (analyzing command line options)743
GETOPT_COMPATIBLE [environment variable] 82
getopts command (parsing option arguments) 943
getSecond (gets second from time) 1053
getStrLen (gets the number of characters of character
string) 1041
getStrPos (gets the position of the character string)
1042
getTime (gets the current time) 1054
getWeekday (gets weekday from date) 1055
getXmlAttrValue (obtains an attribute value of elements
of XML data) 1071
getXmlDecl (gets the XML declaration) 1073
getXmlElem (obtains contents of elements of XML
data) 1074
getYear (gets year from date) 1056
grep command (searching for characters in files) 747
GUI application execution program 1382
GUI debugger, list of functions of 479
gunzip command (decompressing compressed files)
753
GZIP [environment variable] 82
gzip command (compressing files or decompressing
compressed files) 760

H
h (UNSUPPORT_TEST parameter) 596
head command (displaying first part of files) 781
help (adshmdctl command) 653
help command (debugger) 518
Help, displaying (help command) 518
here document 386, 1382
HOME (shell variable) 414
host-name-of-operation-management-server-on-
which-JP1/IM-Manager-is-running
(HOSTNAME_JP1IM_MANAGER parameter) 559
hostname command (displaying host name) 782

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1404

HOSTNAME_JP1IM_MANAGER parameter
(specifying operation management server on which
JP1/IM - Manager is running that is to be destination of
JP1 events) 559
HTML manual, installing 171

I
if statement (branching conditionally) 1026
IFS (shell variable) 414
increment operator 409
info breakpoints command (debugger) 500
info functions command (debugger) 502
info jobsteps command (debugger) 503
info pathvars command [debugging] 503
info signals command (debugger) 504
info status command (debugger) 505
info variables command (debugger) 506
information 1092

collecting (troubleshooting) 1078
how to collect 1083

INIT_SCRIPT_READ parameter (defines whether
initialization script file is to be read and run) 559
initialization script file 122, 1382
initialization script file, overview of 122
initialization script file, preparation for running 124
initialization script file, running 122
input and output redirection 384
input-file-path-name (sed command) 823
input-path-name

sort command 837
split command 847
uniq command 886

installation directory (UNIX only) 53
installation folder (Windows only) 49
installing

CD-ROM (UNIX only) 76
evaluations prior to 56
from CD-ROM (Windows only) 71
remote installation using JP1/Software Distribution
(Windows only) 70
UNIX only 75
Windows only 70

isDir (evaluates existence of directory) 1060
isEmptyDir (evaluates existence of contents in
directory) 1060
isEmptyVar (evaluates to a null variable) 1037
isFileOrDir (evaluates existence of File Directory) 1061
isInitVar (evaluates initialization of variable) 1038

isLeapYear (evaluates to a leap year) 1057
isLowerStr (evaluates half-width lowercase character
of the character string) 1043
isNormalFile (evaluates existence of a regular file)1062
isNumericStr (evaluates numeric characters) 1045
isUpperStr (half-width uppercase character of the
character string) 1044

J
Java-application-class-name [adshjava command] 647
Java-option [adshjava command] 647
job 182

cancellation by standard shell command 446
defining 182, 425
executing 182
forcibly terminating 287
how to forcibly terminate 287
re-executing 182
return code of 441

job controller 35, 1382
processing after batch job started 202

job definition script 30, 479
basic element of 344
command for restarting execution of 493
commands 915
control statements 915
creating 343
creating (JP1/Advanced Shell Editor) 312
debugging 474
disabling chmod commands specified in 902
disabling su commands specified in 911
disabling who commands specified in 913
editing existing (Windows only) (JP1/Advanced Shell
Editor) 330
executing 399
pausing 486
running (run command) 487
running as child job 196
saving (Windows only) (JP1/Advanced Shell Editor)

331
setting up execution environment for (JP1/Advanced
Shell Editor) 313
specifying as command 195
specifying in argument of adshexec command 195
supporting creation of (Windows only) 995
terminating (kill command) 487
whether execution can be stopped at elements of483

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1405

job definition script file 1382
example code of 472

job definition script operation information
collecting 245
outputting 245, 246, 629
outputting from different spool 248
that is output 257
using multiple OR conditions for output of 247

job end condition, defining 425
job environment file 87
job execution log 213, 1382

outputting contents by job type 213
suppressing output of information and warning
messages 210
suppressing output of specific information message
to 210

job execution result, outputting 204
job ID 1382
job information 1382
job input mode 183
job name, declaring 425
job scheduler 1382
job step 187, 1382

defining 425, 426
return code of 441

job step information, displaying (info jobsteps
command) 503
job-definition-script-file-name (#-adsh_script
command) 1016
job-definition-script-file-path-name

adshscripttool command 995
job-definition-script-file-path-name [adshexec
command] 637
job-ID 1092
job-name (#-adsh_job command) 1012
job-step-name (#-adsh_step_start command, #-
adsh_step_error command, #-adsh_step_end
command) 1019
joberrmode command (debugger) 507
JOBEXECLOG_PRINT parameter (defining job
execution log contents to be output to standard error
output when job terminates) 560
JOBLOG SCRIPT STDERR (JOBEXECLOG_PRINT
parameter) 560
JOBLOG_SUPPRESS_MSG parameter (defining
message that is not to be output to job execution logs)

562
jobnet 193, 1382

defining and executing 129

monitoring 182
used for defining batch job application and their
execution order in JP1/Advanced Shell and JP1/AJS

193
jobs, relationship between 184
JP1 environment, checking 117
JP1 event, issuing specified event notification
message as 984
JP1/Advanced Shell 1382

encoding used in 65
example of application to business operation 33
files used in 62
general procedure 34
installing (UNIX only) 75
installing (Windows only) 70
operation procedure 35
overall system configuration of 34
overview of 29
overview of functionality supported by 43
positioning for business application 35
preparation for using 48
purposes of 30
shell variables that are set by 412
shell variables that can be used in 414
specifying environment information for 87
uninstalling (UNIX only) 78
uninstalling (Windows only) 72

JP1/Advanced Shell - Custom Job 49, 1382
custom job definition program 56
installing 72
uninstalling 74

JP1/Advanced Shell - Developer 34, 1382
starting 302
terminating 302
using (Windows only) 301

JP1/Advanced Shell Editor
modes 303
operation 304

JP1/Advanced Shell Editor window 305
details of 332
menu in 307

JP1/AJS - View, registering custom jobs in 126
JP1/AJS environment, setting up 119
JP1/AJS, specifying environment information for
(applicable when JP1/AJS is used) 126
JP1/AJS3 1382
JP1/IM - View, relationship with user-reply functionality

258

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1406

JP1/Software Distribution
remote installation using (UNIX only) 75
remote installation using (Windows only) 70

JP1EVENT (USERREPLY_DEBUG_DESTINATION
parameter) 597

K
KB meaning 11
key operation (JP1/Advanced Shell Editor) 310
kill command

debugger 487
sending signal 945

KSH_ENV_READ parameter (defining whether ENV
shell variable is to be read) 563

L
L (UNSUPPORT_TEST parameter) 596
let command (evaluating values of arithmetic
expressions) 946
lhost_end parameter (defining set of parameters
applicable only to specified logical host) 605
lhost_start parameter (defining set of parameters
applicable only to specified logical host) 605
limit (ulimit command) 970
line continuation 373
line number area (JP1/Advanced Shell Editor) 306
LINENO (shell variable) 412
link-destination-path-name [ln command] 783
list (cut command) 693
list command (debugger) 516
ln command (creates a link file for a file or directory)783
local time setting 65
local variable in function 367
log 1080, 1382
LOG_DIR 1083
LOG_DIR parameter (defining path name of directory
to which system execution logs are to be output) 564
LOG_FILE_CNT parameter (defining number of files to
be used to back up system execution logs) 565
LOG_FILE_SIZE parameter (defining size of file to
which system execution logs are to be output) 565
log-file-name (adshhk command) 645
logical host 41

in non-cluster environment, settings for running 165
logical operation 406
logical-host-name

adshcollect command 1083
lhost_start and lhost_end parameters 605

login shell, starting (exec command) 518
login user information to logs, outputting 914
long option 1382

specification format for 609
ls command (listing contents of files or directories) 790

M
maintenance-information-output-directory (adshcollect
command) 1083
mask (umask command) 972
maximum-number-of-concurrent-reply-request-
messges-to-be-output
(USERREPLY_WAIT_MAXCOUNT parameter) 598
MB meaning 11
menu on menu bar (JP1/Advanced Shell Editor) 307
MERGE [SPOOLJOB_CHILDJOB parameter] 587
merge-asc-file-path-name (adshcvmerg command)
625
message 1091

format of explanation 1093
notes about row number that is output in 1104
output destination of 1095

message dialog box 1092
icon displayed in 1092

message format 1092
message ID 1093
message number 1092

assignment of 1094
subject categories of ranges of 1094

message output format 1092
window 339, 340
window (JP1/Advanced Shell editor) 307
message text 1093
message type 1092
message-ID (JOBLOG_SUPPRESS_MSG
parameter) 562
messages, list of 1106
metacharacter 371, 1382

for which coverage information is acquired 1367
other 387

method (trap command) 960
method [trap command] 963
MINIMUM

OUTPUT_MODE_CHILD parameter 566
OUTPUT_MODE_ROOT parameter 567

minimum output mode 100, 210

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1407

minimum-event-issuance-interval
(USERREPLY_JP1EVENT_INTERVAL parameter)
598
mkdir command (creating directories) 803
mode

adshscripttool command 995
script_0 902
script_chmod1 903
script_chmod2 905
script_chmod3 907

Modifications Made in Each Version 1371
mouse operation (JP1/Advanced Shell Editor) 310
mv command (moving files or directories) 805

N
n

break command 929
continue command 934
exit command 940
return command 953
shift command 957
typeset command 966

name
alias command 928
export command 941
getopts command 943
readonly command 952
set command 954
typeset command 966
unalias command 974
unset command 975
whence command 977

Name [adshparsejson command] 990
new installation 71, 73
next command (debugger) 494
NONE [CMDRC_CMDGRP_CHECK parameter] 543
notes on file systems 64
number-of-days (adshhk command) 645
number-of-files

LOG_FILE_CNT parameter 565
TRACE_FILE_CNT parameter 591

numeric value comparison 402

O
O (UNSUPPORT_TEST parameter) 596
Occupied disk amount 174
OLDPWD (shell variable) 412

operand 1382
operation information

format of 248
record in CSV format and output item 249
relationship between dates and times and time
zones in 247

operation management console 56
operation management server 56
operator 34

tasks of 182
opt (set command) 954
OPTARG (shell variable) 412
OPTIND (shell variable) 412
option 1382

getopt command 743
script_0 902

Options (Colors) dialog box 333
Options (Format) dialog box 332
optstr (getopts command) 943
OTHER (PIPE_CMD_LAST parameter) 584
OTHER [CMDSUB_PROCESS parameter] 548
OUTPUT_MODE_CHILD parameter (specifying
method for outputting execution results of child job)566
OUTPUT_MODE_ROOT parameter (specifying
method for outputting execution results of root job) 567
OUTPUT_STDOUT parameter (defining destination
for root job standard output) 569
output-path-name (uniq command) 886
overview of JP1/Advanced Shell 29
overwrite installation for upgrading 71, 73

P
parameter, specified in environment file 520
parameters, list of 523
PARENT

OUTPUT_STDOUT parameter 569
PARENT [adshexec command] 637
paste command (concatenating multiple files in lines)

807
PATH (shell variable) 414
path name, converting 89
PATH_CONV parameter (defining details of path
conversion) 569
PATH_CONV_ACCESS parameter (defining path
conversion details when files are input and output) 571
PATH_CONV_ENABLE parameter (enabling path
conversion functionality) 572

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1408

PATH_CONV_NOVAR parameter (defines the shell
variable that does not handle the path name) 573
PATH_CONV_RULE parameter (defining rule for
converting file paths) 574
PATH_CONV_VAR parameter (defines the shell
variable that handles the path name) 580
path-name

adshscripttool command 995
cat command 685
CHILDJOB_SHEBANG parameter 541
cut command 693
expand command 725
find command 732
head command 781
LOG_DIR parameter 564
ls command 790
paste command 807
rm command 821
script_0 902
script_chmod1 903
script_chmod2 905
script_chmod3 907
SPOOL_DIR parameter 586
stat command 850
tail command 857
TEMP_FILE_DIR parameter 590
touch command 872
TRACE_DIR parameter 590
wc command 888

path-name ...
egrep command 722
grep command 747

path-name-1
cmp command 688
diff command 708
PATH_CONV parameter 569
PATH_CONV_ACCESS parameter 571

path-name-2
cmp command 688
diff command 708
PATH_CONV parameter 569
PATH_CONV_ACCESS parameter 571

path-separator (PATH_CONV_ENABLE parameter)
572
pattern

egrep command 722
grep command 747

pattern matching 392

PC job 126
defining jobs as 140

Performing user-specific postprocessing when a job is
terminated forcibly 120
permission

PERMISSION_SPOOLJOB_DIR parameter 582
PERMISSION_SPOOLJOB_FILE parameter 582
specifying as numeric values 905
specifying as symbols or numeric values 907

PERMISSION_SPOOLJOB_DIR parameter (defining
permission for spool job directory) (UNIX only) 582
PERMISSION_SPOOLJOB_FILE parameter (defining
permission for files under spool job directory) (UNIX
only) 582
phost_end parameter (defining set of parameters
applicable only to physical host) 606
phost_start parameter (defining set of parameters
applicable only to physical host) 606
pid

kill command 945
wait command 976

pipe 386, 1382
defining process that will be executing last command
in (UNIX only) 108

PIPE_CMD_LAST parameter (defining execution
processing for last command in pipe) (UNIX only) 584
pipeline 386
pop-up menu

in debug mode (JP1/Advanced Shell Editor) 309
in edit mode (JP1/Advanced Shell Editor) 309
JP1/Advanced Shell Editor 309

positional parameter 372
POSIXLY_CORRECT [environment variable] 82
PPID (shell variable) 412
prefix (split command) 847
prefix [adshmktemp command] 987
Preparation for using script development parts 121
preparations for using the script-format UNIX-
compatible commands (Windows only) 96
prerequisite 258
prerequisite program 59
print command

debugger 514
outputting to standard output 948

printf command (converting form arguments according
to the form and outputting the results to the standard
output) 816

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1409

program
prerequisite and related program for custom job
definition program (Windows only) 61
prerequisite and related program for execution
environment 59
prerequisite and related program for execution
environment (Windows only) 60
required for each environment 59

program installation directory 49
program output data file 466, 1382

allocating and postprocessing 466
program-path-name (CHILDJOB_PGM parameter)
538
programs, list of 51, 54
PS4 (shell variable) 414
PWD (shell variable) 412
pwd command (outputting path of current directory)949

Q
query 1092
quit command (debugger) 486
quotation 1382

R
RANDOM (shell variable) 412
read command (reading from standard input and
storing input in variables) 950
readonly command (setting read-only attribute for
variables or displaying all read-only variables) 952
recovery installation, using same version 71, 73
redirection 384, 1382
Referencing and updating variable values while
debugging 327
Regarding the necessary amount of memory for
securing a large amount of an element of the array 365
regular built-in command 1382
regular file 185, 455, 1382

allocating and postprocessing 454
related program 59
related publications 11
remote installation using JP1/Software Distribution
(UNIX only) 75
REPLY (shell variable) 412
reply-request message 1382

replying manually to, when failure occurs 623
reply-request messages when failure occurs,
displaying list of 652
reply-request-message (adshread command) 992

reply-waiting event 1382
issuing specified reply-request message as 992

report-file-name (adshhk command) 645
Required memory amount 174
reserved script command 1382

description format for 920
reserved script commands, list of 924
reserved word 344
response procedure (troubleshooting) 1078
return code 1382

in event of unresumable error in job, defining 108
in event of unresumable error in job, specifying 111
of job, job step, and command 441

return command
debugger 498
returning from function or external script 953

return-code
ADSHCMD_RC_ERROR parameter 535
ADSHCMD_RC_SUCCESS parameter 535

return-code [adshjoberr command] 986
return-code-definition (#-adsh_job_stop command)
1012
rm command (removing files or directories) 821
rmdir command (removing empty directories) 822
root job 182, 1382

terminating before its child jobs terminate 1079
ruler (JP1/Advanced Shell Editor) 306
run command (debugger) 487
run-time parameters

adshscripttool command 995
script_su1 912

run-time-parameters [adshexec command] 637
Runtime Environment Settings dialog box 335

S
script 1382

awk command 658
script control statement 1024, 1382

description format for 920
script control statements, list of 923
script development parts 1031, 1382
script file 1382
script_0 902, 911, 913
script_chmod1 903
script_chmod2 905
script_chmod3 907
script_su1 912

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1410

script_who1 914
script-file-path-name (script_su1) 912
Search dialog box 338
search pattern (find command) 732
Search Toolbar (JP1/Advanced Shell Editor) 305
searchCsvColumn (gets a record with the search for
specific column of CSV data) 1069
SECONDS (shell variable) 412
seconds (sleep command) 837
sed command (replacing character strings in text) 823
selecting

whether function information arrays are used 601
whether spool job is to be created 589

SEQUENTIAL [Windows only] [PIPE_CMD_LAST
parameter] 584
sequential execution

performing (next command) 494
performing (step command) 494

set command
debugger 512
setting shell options, creating array, or displaying
variable values 954

shared documents folder 11, 50
shell 1382

setting up 117
SHELL (shell variable) 414
shell command 1382
shell operation command 611, 1382
shell operation commands, list of 611
shell option 421, 1382

that can be specified with adshexec command 423
that can be specified with set command 421

shell script 30, 1382
shell variable 412, 1382

displaying information about (info variables
command) 506
set by JP1/Advanced Shell 412
that can be used in JP1/Advanced Shell 414
that handles path name, defining 434

shell variable (in which to set return code of external
command) 419
Shell variable name [PATH_CONV_NOVAR
parameter] 573
shell variable name [PATH_CONV_VAR parameter]
580
shell variable operations for which coverage
information is acquired 1367
shell-variable-name (#-adsh_path_var command)
1013

shell-variable-name [adshvarconv command] 1003
shift command (shifting run-time parameters) 957
short option 1382

specification format for 608
signal 1382

processing when signal is received (UNIX only) 289
sending (signal command) 499
trap command 960

signal [trap command] 960
signal command (debugger) 499
signal information, displaying (info signals command)

504
signame (kill command) 945
signum (kill command) 945
SIMPLE

OUTPUT_MODE_CHILD parameter 566
OUTPUT_MODE_ROOT parameter 567

simple output mode 100, 210
skip-1 (cmp command) 688
skip-2 (cmp command) 688
sleep command (stopping for specified period of time)

837
sort command (sorting text files) 837
sortArray (sorts array data) 1039
source [mv command] 805
source file, displaying (list command) 516
special built-in command 1382
specifying

input source and destination of event notification and
reply-request messages during debug execution
(Windows only) 597
maximum number of concurrent reply-request
messages that can be output for physical or logical
host 598
method for outputting execution results of child job

566
method for outputting execution results of root job
567
minimum interval at which JP1 events are to be
issued 598
operation management server on which JP1/IM -
Manager is running that is to be destination of JP1
events 559
whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters

555
whether environment variable names in lowercase
letters are supported 599

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1411

whether operation information acquisition
functionality is to be enabled for job definition scripts

556
specifying definitions for using UNIX-compatible
commands 96
Specifying environment variables 82
split command (splitting file) 847
spool 117, 478, 1382

defining output information 98
outputting job execution result to 205

SPOOL
OUTPUT_STDOUT parameter 569

SPOOL [adshexec command] 637
spool information 1081
spool job 1382

deleting 263
spool job directory 478
spool job name 1382
spool job name, specifying 299
SPOOL_DIR 1083
SPOOL_DIR parameter (defining spool root directory
path name) 586
SPOOLJOB_CHILDJOB parameter (defining how
spool job of child job is to be handled) 587
SPOOLJOB_CREATE parameter (selecting whether
spool job is to be created) 589
standard error output

specifying destination of 204
stderr 1382

standard input
notes about 66
stdin 1382

standard output
specifying destination of 204
stdout 1382

standard shell command 925, 1382
description format for 917
job cancellation by 446

standard shell commands, list of 921
Standard Toolbar (JP1/Advanced Shell Editor) 305
standby server 41
start [reuse] (adshmdctl command) 653
stat command (outputting statuses of files and
directories to standard output) 850
statement coverage information 265
status

adshmdctl command 653
displaying (info status command) 505

status bar (JP1/Advanced Shell Editor) 307
STDERR (JOBEXECLOG_PRINT parameter) 560
step command (debugger) 494
stop (adshmdctl command) 653
string separator 373
su command

disabling su commands specified in job definition
scripts 911
executing programs with permissions of executing
user 912

subshell 1382
substitution 375
suffix (basename command) 683
symbol conventions 6
symbolic link 1382
syntax, checking (JP1/Advanced Shell Editor) 303, 314
system administrator 34
system configuration 56

executing batch job from JP1/AJS 56
executing batch job manually 57

system environment file 87
system execution log 117, 1382
system switchover 41

T
tail command (displaying last part of files) 857
tar command (storing the target path name in the
archive, and extracting and displaying the target path
name) 861
target [ln command] 783
target-list-file-name (adshhk command) 645
target-path-name (awk command) 658
target-path-name [gunzip command] 753
target-path-name [gzip command] 760
target-path-name [tar command] 861
TB meaning 11
TEMP_FILE_DIR parameter (defining path name of
directory for storing temporary files) 590
temporary coverage information file 268
temporary file 117, 185, 1382

allocating and postprocessing 464
TERM (TRAP_ACTION_SIGTERM parameter) 593
terminating, job forcibly 287
ternary operator 407
test command (determining value of conditional
expression) 958
threshold (CMDRC_THRESHOLD_DEFINE
parameter) 543

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1412

threshold [adshcmdrc command] 982
time (output message) 1092
time command (displaying time used to execute
command) 1029
times command (displaying amount of CPU time used
by shell) 959
TMPDIR (shell variable) 414
TMPDIR [environment variable] 82
toolbar (JP1/Advanced Shell Editor) 305
touch command (changing file's last access date and
time or modification date and time) 872
tr command (outputs character strings input from
standard input to standard output while replacing or
deleting characters on byte-by-byte basis) 878
trace 117

defining information to be output to 103
trace log 1382
trace mode 367
TRACE_DIR 1083
TRACE_DIR parameter (defining path name of
directory to which traces are to be output) 590
TRACE_FILE_CNT parameter (defining number of
files to which traces are to be output) 591
TRACE_FILE_SIZE parameter (defining size of file to
which traces are output) 592
TRACE_LEVEL parameter (defining trace output level)

593
trace-level (TRACE_LEVEL parameter) 593
trap action 1382
trap command (specifies the action when signals and
forced termination requests are received) 960
TRAP_ACTION_SIGTERM parameter (defining job
controller's action when forced termination request is
received) 593
troubleshooting 1077

information needed when problem occurs 1080
TRUE (UNSUPPORT_TEST parameter) 596
true command (returning 0 as return code) 965
type code 1092
typeset command (declaring explicitly attributes and
values of variables and functions) 966

U
ulimit command (setting limits on system resources)
970
umask command (setting access permissions for
creating new file) 972
UMASK_INHERIT parameter (defines file mode
creation mask when job definition script begins to run)
[only for UNIX] 595

unalias command (removing alias definitions) 974
uname command (displaying information about OS or
hardware) 882
uninstalling

UNIX only 75
Windows only 70

uniq command (removing duplicated lines from sorted
file) 886
UNIX job 126

defining jobs as 140
UNIX-compatible command 657, 1382

script format (Windows only) 902
specifying 398

UNIX-compatible commands, list of 612
unset command (unsetting variable values and
attributes) 975
UNSUPPORT_TEST parameter (defining handling of
unsupported conditional expression) (Windows only)
596
until statement (looping until condition is true) 1027
user-name

script_0 911
script_su1 912

user-reply functionality
after JP1/Advanced Shell has been installed (UNIX
only), setting up 150
after JP1/Advanced Shell has been installed
(Windows only), setting up 147
corrective action when using 1078
handling error information displayed in 1357
how to specify standard input and output as input
source and output destination of 259
notes 261
procedure for using 37
relationship with JP1/IM - View 258
setting up 117, 146
specifying environment file to use 146
using 258

user-reply functionality management daemon
information (UNIX only) 1081
user-reply functionality management daemon, starting
and stopping 653
user-reply functionality management service

registering in development environment 655
registering in execution environment 656

USERREPLY_DEBUG_DESTINATION parameter
(specifying input source and destination of event
notification and reply-request messages during debug
execution) 597

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1413

USERREPLY_JP1EVENT_INTERVAL parameter
(specifying minimum interval at which JP1 events are
to be issued) 598
USERREPLY_WAIT_MAXCOUNT parameter
(specifying maximum number of concurrent reply-
request messages that can be output for physical or
logical host) 598
Using hard links and symbolic links 66, 67

V
V10 [COMPATIBLE_CMD_EXEC parameter] 552
V10 [COMPATIBLE_CMD_SUBSTITUTION
parameter] 553
val (set command) 954
value

alias command 928
export command 941
readonly command 952
typeset command 966

VAR_ENV_NAME_LOWERCASE parameter
(specifying whether environment variable names in
lowercase letters are supported) (Windows only) 599
VAR_SHELL_FUNCINFO parameter (selecting
whether function information arrays are used) 601
VAR_SHELL_GETLENGTH parameter (defining unit
for lengths of variable values that are replaced in format
${#variable}) 603
variable 344, 1382

naming conventions for 344
referencing value of 347

variable value
displaying (print command) 514
setting (set command) 512

variable-name (adshread command) 992
varname (read command) 950
version information, displaying (UNIX only) 81

W
wait command (waiting for child processes to
complete) 976
warning 1092
watch command (debugger) 490
watchpoint 1382

deleting (delete command) 492
displaying information about (info breakpoints
command) 500
setting (watch command) 490

wc command (counting number of bytes, lines,
characters, and words in files) 888

whence command (displaying how character strings
would be interpreted if used as commands) 977
where command (debugger) 514
which command (obtaining paths of external
commands) 890
while statement (looping while condition is true) 1028
who command

disabling who commands specified in job definition
scripts 913
outputting login user information to logs 914

wildcard 374, 1382

X
xargs command (creates and runs command line) 893

JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1414

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan

	JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide
	Notices
	Summary of amendments
	Preface
	Contents
	Part 1: Overview
	1. Overview of JP1/Advanced Shell
	1.1 Purposes of JP1/Advanced Shell
	1.1.1 Inheriting assets between the OSs of batch applications
	1.1.2 Expediting the configuration of batch applications
	1.1.3 Improving serviceability and maintainability by central management of batch job execution results

	1.2 Example of application to a business operation
	1.3 General procedures
	1.3.1 Procedure for executing batch jobs automatically (working with JP1/AJS)
	1.3.2 Flow of processes when executing Java batch applications by using a function of JP1/Advanced Shell [only for Windows, Linux(R), AIX, and HP-UX]
	1.3.3 Procedure for using the user-reply functionality
	1.3.4 Flow of processes when using the application-execution agent functionality

	1.4 Overview of operation in a cluster system
	1.5 Overview of functionality

	Part 2: Setup
	2. Preparations for Using JP1/Advanced Shell
	2.1 Program installation directory
	2.1.1 Installation folder (Windows only)
	2.1.2 Installation directory (UNIX only)

	2.2 Evaluations prior to installation
	2.2.1 System configuration
	2.2.2 Programs required in each environment
	2.2.3 Files used in JP1/Advanced Shell
	2.2.4 Encoding used in JP1/Advanced Shell
	2.2.5 Local time settings
	2.2.6 Notes about standard input
	2.2.7 Using hard links and symbolic links

	2.3 Installing and uninstalling (Windows only)
	2.3.1 Installing JP1/Advanced Shell (Windows only)
	2.3.2 Uninstalling JP1/Advanced Shell (Windows only)
	2.3.3 Installing JP1/Advanced Shell - Custom Job
	2.3.4 Uninstalling JP1/Advanced Shell - Custom Job

	2.4 Installing and uninstalling (UNIX only)
	2.4.1 Installing JP1/Advanced Shell (UNIX only)
	2.4.2 Uninstalling JP1/Advanced Shell (UNIX only)
	2.4.3 Using Hitachi Program Product Installer to display version information (UNIX only)

	2.5 Specifying environment variables
	2.6 Specifying environment information for JP1/Advanced Shell
	2.6.1 Specifying the environment files
	2.6.2 Converting path names
	2.6.3 Converting file paths when files are input and output
	2.6.4 Converting arguments during command execution
	2.6.5 Defining files to be started as child jobs
	2.6.6 Specifying definitions for using UNIX-compatible commands
	2.6.7 Defining the handling of unsupported conditional expressions (Windows only)
	2.6.8 Defining job execution results and log output information
	2.6.9 Defining the return codes of extended script commands
	2.6.10 Sharing among multiple environments
	2.6.11 Enabling coverage information collection without having to specify the option during batch job execution
	2.6.12 Migrating job definition scripts from UNIX to Windows
	2.6.13 Loading the files specified in the ENV shell variable
	2.6.14 Defining the process that will be executing the last command in a pipe
	2.6.15 Defining the return code in the event of an unresumable error in a job
	2.6.16 Setting up the user-reply functionality
	2.6.17 Checking the JP1 environment (UNIX only)
	2.6.18 Setting up the shell (UNIX only)
	2.6.19 Creating the directories required for JP1/Advanced Shell
	2.6.20 Setting up a JP1/AJS environment
	2.6.21 Performing user-specific postprocessing when a job is terminated forcibly
	2.6.22 Preparation for using script development parts
	2.6.23 Running the initialization script file

	2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is used)
	2.7.1 Registering custom jobs in JP1/AJS - View
	2.7.2 Defining and executing a jobnet
	2.7.3 Defining jobs as PC or UNIX jobs

	2.8 Setting up the user-reply functionality
	2.8.1 Specifying the environment files to use the user-reply functionality
	2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (Windows only)
	2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (UNIX only)
	2.8.4 Specifying environment information in JP1/IM - Manager
	2.8.5 Specifying environment information in JP1/Base

	2.9 Running in a cluster configuration
	2.9.1 Prerequisites and scope of support for cluster operations
	2.9.2 Specifying environment information for cluster operation
	2.9.3 How to specify commands during cluster operation
	2.9.4 Notes about cluster operation
	2.9.5 Settings for running a logical host in a non-cluster environment

	2.10 Installing the HTML manual
	2.11 Setting the application-execution agent functionality [only for the Windows execution environment]
	2.12 Setting the file mode creation mask used when execution of a job definition script starts [for UNIX only]
	2.13 Required memory amount and occupied disk amount
	2.13.1 Virtual memory requirements
	2.13.2 Disk space requirements

	2.14 Note on running antivirus software

	Part 3: Operation
	3. Executing Batch Jobs
	3.1 Structure of jobs
	3.1.1 Operator's tasks in JP1/AJS jobs
	3.1.2 Jobs
	3.1.3 Job steps

	3.2 Starting batch jobs
	3.2.1 Starting jobs by using JP1/AJS from the execution environment
	3.2.2 Starting batch jobs by using commands from the execution environment
	3.2.3 Running job definition scripts as child jobs
	3.2.4 Specifying what is to be executed by a job from the command line
	3.2.5 Job controller processing after batch jobs have started

	3.3 Executing Java batch applications by using the adshjava command provided by JP1/Advanced Shell [only for Windows, Linux, AIX, and HP-UX]
	3.4 Outputting job execution results
	3.4.1 Specifying the destinations of the standard output and the standard error output
	3.4.2 Outputting job execution results to spool
	3.4.3 Suppressing output of specific information messages to job execution logs
	3.4.4 Suppressing output of information and warning messages to job execution logs

	3.5 Job execution log
	3.5.1 Outputting the contents of the job execution log by job type
	3.5.2 Output example of the job execution log (when the spool job of a child job is merged to the spool job of the root job)
	3.5.3 Examples of job execution log output(if you delete the spool job of a child job)
	3.5.4 Examples of job execution log output (when the simple output mode or the minimum output mode is selected)
	3.5.5 Examples of job execution log output (when only the standard error output is output)

	3.6 Outputting the executed commands and their arguments
	3.7 Outputting job definition script operation information
	3.7.1 Collecting job definition script operation information
	3.7.2 Outputting job definition script operation information
	3.7.3 Relationship between dates and times and time zones in the operation information
	3.7.4 Using multiple OR conditions for output of job definition script operation information
	3.7.5 Outputting job definition script operation information from different spools
	3.7.6 Format of operation information
	3.7.7 Operation information records in CSV format and output items
	3.7.8 Output items for operation information in CSV format
	3.7.9 Job definition script operation information that is output

	3.8 Using the user-reply functionality
	3.8.1 Prerequisites
	3.8.2 Execution method
	3.8.3 Relationship with JP1/IM - View
	3.8.4 How to specify the standard input and output as the input source and output destination of the user-reply functionality
	3.8.5 How to handle adshecho and adshread commands that terminate with an error
	3.8.6 Notes

	3.9 Deleting spool jobs
	3.10 Acquiring coverage information
	3.10.1 Overview of coverage information
	3.10.2 Managing coverage information
	3.10.3 Accumulating coverage information
	3.10.4 Displaying coverage information
	3.10.5 Merging coverage information
	3.10.6 Coverage auto-acquisition functionality

	3.11 Forcibly terminating jobs
	3.11.1 How to forcibly terminate jobs
	3.11.2 Processing when signals are received (UNIX only)
	3.11.3 Job processing during forced termination (Windows only)

	3.12 Using the application-execution agent functionality (only for the Windows execution environment)
	3.12.1 Prerequisites
	3.12.2 Execution methods
	3.12.3 Operation of the application execution agent
	3.12.4 Notes

	3.13 Specifying a spool job name
	3.13.1 Examples
	3.13.2 Notes

	4. Using JP1/Advanced Shell - Developer (Windows Only)
	4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows only)
	4.1.1 Starting JP1/Advanced Shell - Developer
	4.1.2 Terminating JP1/Advanced Shell - Developer

	4.2 JP1/Advanced Shell Editor modes (Windows only)
	4.2.1 Edit mode
	4.2.2 Debug mode

	4.3 JP1/Advanced Shell Editor operation (Windows only)
	4.3.1 JP1/Advanced Shell Editor window
	4.3.2 Menus in the JP1/Advanced Shell Editor window
	4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window

	4.4 Creating job definition scripts (Windows only)
	4.4.1 Creating job definition scripts
	4.4.2 Setting up an operating environment for the editor
	4.4.3 Setting up an execution environment for job definition scripts
	4.4.4 Checking syntax
	4.4.5 Searching for and replacing character strings
	4.4.6 Debugging
	4.4.7 Displaying coverage information

	4.5 Editing existing job definition scripts (Windows only)
	4.6 Saving job definition scripts (Windows only)
	4.7 Details of the JP1/Advanced Shell Editor window (Windows only)
	4.7.1 Options (Format) dialog box
	4.7.2 Options (Colors) dialog box
	4.7.3 Runtime Environment Settings dialog box
	4.7.4 Search dialog box
	4.7.5 Message output window
	4.7.6 Variable window
	4.7.7 Console

	5. Creating Job Definition Scripts
	5.1 Basic elements of job definition scripts
	5.1.1 Reserved words
	5.1.2 Variables
	5.1.3 Arrays
	5.1.4 Functions
	5.1.5 Command alias definitions
	5.1.6 Metacharacters
	5.1.7 Execution as a separate process
	5.1.8 Pattern matching
	5.1.9 Escape characters
	5.1.10 Specifying extended script commands
	5.1.11 Specifying external commands
	5.1.12 Specifying UNIX-compatible commands
	5.1.13 Specifying a shell for running job definition scripts and checking formats

	5.2 Conditionals
	5.2.1 Control statements
	5.2.2 Conditional expressions

	5.3 Arithmetic operations
	5.3.1 Arithmetic operators
	5.3.2 Increment and decrement operators
	5.3.3 Bitwise logical operators
	5.3.4 Assignment operators

	5.4 Priority of conditional and arithmetic operations
	5.5 Shell variables
	5.5.1 Shell variables set by JP1/Advanced Shell
	5.5.2 Shell variables whose values are set by the user
	5.5.3 Function information arrays
	5.5.4 Shell variable in which to set the return code of an external command [Windows only]

	5.6 Shell options
	5.6.1 Shell options that can be specified with the set command
	5.6.2 Shell options that can be specified with the adshexec command

	5.7 Environment variables for job information
	5.8 Defining jobs, job steps, and commands
	5.8.1 Declaring job names
	5.8.2 Defining the job end condition
	5.8.3 Defining job steps
	5.8.4 Defining commands that terminate normally
	5.8.5 Defining shell variables that handle path names
	5.8.6 Calling an external job definition script file from an executing job definition script
	5.8.7 Return codes of extended script commands and handling of errors
	5.8.8 Return codes of jobs, job steps, and commands
	5.8.9 Job cancellation by the standard shell commands
	5.8.10 Processing in the event of an error during job execution
	5.8.11 Notes about output of command execution results

	5.9 Allocating files and performing postprocessing
	5.9.1 Allocating regular files and performing postprocessing
	5.9.2 Allocating temporary files and performing postprocessing
	5.9.3 Allocating program output data files and performing postprocessing

	5.10 Converting the value of a shell variable
	5.10.1 Conversion using a path conversion rule
	5.10.2 Conversion using a character string
	5.10.3 Increase of \
	5.10.4 Code conversion of the value of a variable

	5.11 Example coding of a job definition script file

	6. Debugging Job Definition Scripts
	6.1 About the debugger
	6.1.1 Debugging with the GUI (Windows only)
	6.1.2 Debugging with the CUI (UNIX only)
	6.1.3 List of functions of the GUI debugger (Windows only)
	6.1.4 List of debugger commands (UNIX only)
	6.1.5 Whether execution can be stopped at the elements of a job definition script

	6.2 CUI debugger (UNIX only)
	6.2.1 Terminating the debugger (quit command)
	6.2.2 Running the job definition script (run command)
	6.2.3 Terminating the job definition script (kill command)
	6.2.4 Setting a breakpoint (break command)
	6.2.5 Setting a watchpoint (watch command)
	6.2.6 Deleting breakpoints and watchpoints (delete command)
	6.2.7 Commands for restarting execution of the job definition script
	6.2.8 Performing sequential execution (step and next commands)
	6.2.9 Performing continuous execution (continue command)
	6.2.10 Executing a function (finish command)
	6.2.11 Terminating a function (return command)
	6.2.12 Sending a signal (signal command)
	6.2.13 Displaying breakpoint and watchpoint information (info breakpoints command)
	6.2.14 Displaying coverage information (info coverage command)
	6.2.15 Displaying function information (info functions command)
	6.2.16 Displaying job step information (info jobsteps command)
	6.2.17 Displays the information of the variable name handling the path (info pathvars command)
	6.2.18 Displaying signal information (info signals command)
	6.2.19 Displaying the status (info status command)
	6.2.20 Displaying shell variable information (info variables command)
	6.2.21 Enabling and disabling the fault injection mode (joberrmode command)
	6.2.22 Setting a variable value (set command)
	6.2.23 Displaying a variable's value (print command)
	6.2.24 Displaying a backtrace (where command)
	6.2.25 Displaying the source file (list command)
	6.2.26 Changing the directory (cd command)
	6.2.27 Starting the login shell (exec command)
	6.2.28 Displaying Help (help command)

	Part 4: Reference
	7. Parameters Specified in the Environment Files
	7.1 Specification format of environment files
	7.1.1 Formats of parameters
	7.1.2 Specification format of comments

	7.2 Lists of parameters
	7.2.1 List of environment setting parameters
	7.2.2 export parameter
	7.2.3 Conditional parameters

	7.3 Environment setting parameters
	7.3.1 ADSHCMD_RC_ERROR parameter (defines the return code to be used when an extended script command fails)
	7.3.2 ADSHCMD_RC_SUCCESS parameter (defines the return code to be used when an extended script command is successful)
	7.3.3 ASC_FILE parameter (defines a naming rule for accumulation files)
	7.3.4 BATCH_CVR parameter (enables the coverage auto-acquisition functionality)
	7.3.5 CHILDJOB_EXT parameter (defines an extension for job definition script files that are to be executed as child jobs)
	7.3.6 CHILDJOB_PGM parameter (defines a program path specification that is to be executed as descendent jobs)
	7.3.7 CHILDJOB_SHEBANG parameter (defines an executable program path for job definition script files that are to be executed as child jobs)
	7.3.8 CMDRC_CMDGRP_CHECK parameter (determines an error of job and job step according to the return code of the function)
	7.3.9 CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a command)
	7.3.10 CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a UNIX-compatible command)
	7.3.11 CMDSUB_PROCESS parameter (defines the execution process of command substitution) [only for Windows]
	7.3.12 COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition scripts during command execution)
	7.3.13 COMPATIBLE_CMD_EXEC parameter (defines the activation method of an external command) [only for Windows]
	7.3.14 COMPATIBLE_CMDSUB parameter (defines the behavior of command substitution) [only for UNIX]
	7.3.15 ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when the escape-character option is omitted)
	7.3.16 ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in hexadecimal notation are to be interpreted as escape characters)
	7.3.17 EVENT_COLLECT parameter (specifies whether the operation information acquisition functionality is to be enabled for job definition scripts)
	7.3.18 export parameter (defines an environment variable)
	7.3.19 INIT_SCRIPT_READ parameter (defines whether the initialization script file is to be read and run)
	7.3.20 HOSTNAME_JP1IM_MANAGER parameter (specifies the operation management server on which JP1/IM - Manager is running that is to be the destination of JP1 events)
	7.3.21 JOBEXECLOG_PRINT parameter (defines the job execution log contents to be output to the standard error output when a job terminates)
	7.3.22 JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job execution logs)
	7.3.23 KSH_ENV_READ parameter (defines whether the ENV shell variable is to be read)
	7.3.24 LOG_DIR parameter (defines the path name of the directory to which system execution logs are to be output)
	7.3.25 LOG_FILE_CNT parameter (defines the number of files to be used to back up system execution logs)
	7.3.26 LOG_FILE_SIZE parameter (defines the size of a file to which system execution logs are to be output)
	7.3.27 OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of a child job)
	7.3.28 OUTPUT_MODE_ROOT parameter (specifies the method for outputting the execution results of a root job)
	7.3.29 OUTPUT_STDOUT parameter (defines the destination for the root job standard output)
	7.3.30 PATH_CONV parameter (defines the details of path conversion)
	7.3.31 PATH_CONV_ACCESS parameter (defines path conversion details when files are input and output)
	7.3.32 PATH_CONV_ENABLE parameter (enables the path conversion functionality)
	7.3.33 PATH_CONV_NOVAR parameter (defines the shell variable that does not handle the path name)
	7.3.34 PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only)
	7.3.35 PATH_CONV_VAR parameter (defines the shell variable that handles the path name)
	7.3.36 PERMISSION_SPOOLJOB_DIR parameter (defines permission for the spool job directory) (UNIX only)
	7.3.37 PERMISSION_SPOOLJOB_FILE parameter (defines permission for the files under the spool job directory) (UNIX only)
	7.3.38 PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe)
	7.3.39 SPOOL_DIR parameter (defines the spool root directory path name)
	7.3.40 SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job is to be handled)
	7.3.41 SPOOLJOB_CREATE parameter (selects whether a spool job is to be created)
	7.3.42 TEMP_FILE_DIR parameter (defines the path name of the directory for storing temporary files)
	7.3.43 TRACE_DIR parameter (defines the path name of the directory to which traces are to be output)
	7.3.44 TRACE_FILE_CNT parameter (defines the number of files to which traces are to be output)
	7.3.45 TRACE_FILE_SIZE parameter (defines the size of a file to which traces are output)
	7.3.46 TRACE_LEVEL parameter (defines a trace output level)
	7.3.47 TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced termination request is received)
	7.3.48 UMASK_INHERIT parameter (defines a file mode creation mask when the job definition script begins to run) [only for UNIX]
	7.3.49 UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression) (Windows only)
	7.3.50 USERREPLY_DEBUG_DESTINATION parameter (specifies the input source and the destination of event notification and reply-request messages during debug execution)
	7.3.51 USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1 events are to be issued)
	7.3.52 USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum number of concurrent reply-request messages that can be output for a physical or logical host)
	7.3.53 VAR_ENV_NAME_LOWERCASE parameter (specifies whether environment variable names in lowercase letters are supported) (Windows only)
	7.3.54 VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used)
	7.3.55 VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of variable values that are replaced in format ${#variable})

	7.4 Conditional parameters
	7.4.1 lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified logical host)
	7.4.2 phost_start and phost_end parameters (define a set of parameters applicable only to the physical host)

	8. Commands Used During Operations
	8.1 Command description format
	8.1.1 Command description format for shell operation commands and UNIX-compatible command (script format) (Windows only)
	8.1.2 Command description format for UNIX-compatible commands
	8.1.3 File path names

	8.2 List of commands
	8.2.1 List of shell operation commands
	8.2.2 List of UNIX-compatible commands

	8.3 Shell operation commands
	8.3.1 adshappagent command (application execution agent start command) [only for Windows execution environment]
	8.3.2 adshappexec command (GUI application execution command) [only for Windows execution environment]
	8.3.3 adshchmsg command (replies manually to a reply-request message when a failure occurs)
	8.3.4 adshcvmerg command (merges coverage information)
	8.3.5 adshcvshow command (displays coverage information)
	8.3.6 adshevtout command (outputs job definition script operation information)
	8.3.7 adshexec command (executes a batch job)
	8.3.8 adshfile command (specifies the allocation and postprocessing of regular files)
	8.3.9 adshhk command (deletes spool jobs)
	8.3.10 adshjava command (executes Java batch applications) [only for Windows, Linux, AIX, and HP-UX]
	8.3.11 adshlsmsg command (displays a list of reply-request messages when a failure occurs)
	8.3.12 adshmdctl command (starts and stops the user-reply functionality management daemon) (UNIX only)
	8.3.13 adshmsvcd command (registers the user-reply functionality management service in a development environment) (Windows only)
	8.3.14 adshmsvce command (registers the user-reply functionality management service in an execution environment) (Windows only)

	8.4 UNIX-compatible commands
	8.4.1 awk command (performs text processing and pattern matching)
	8.4.2 basename command (extracts a file name from a path)
	8.4.3 cat command (outputs files to the standard output)
	8.4.4 cmp command (compares binary files)
	8.4.5 cp command (copies files or directories)
	8.4.6 cut command (outputs selected parts of lines to the standard output)
	8.4.7 date command (displays the system date and time)
	8.4.8 diff command (compares two files)
	8.4.9 dirname command (retrieves character strings for directory path names from path names)
	8.4.10 egrep command (searches for characters in files)
	8.4.11 expand command (replaces tab characters with spaces)
	8.4.12 expr command (evaluates an expression)
	8.4.13 find command (searches for files in directories)
	8.4.14 getopt command (analyzes command line options)
	8.4.15 grep command (searches for characters in files)
	8.4.16 gunzip command (decompresses compressed files)
	8.4.17 gzip command (compresses files or decompresses compressed files)
	8.4.18 head command (displays the first part of files)
	8.4.19 hostname command (displays the host name)
	8.4.20 ln command (creates a link file for a file or directory)
	8.4.21 ls command (lists the contents of files or directories)
	8.4.22 mkdir command (creates directories)
	8.4.23 mv command (moves files or directories)
	8.4.24 paste command (concatenates multiple files in lines)
	8.4.25 printf command (converts form arguments according to the form and outputs the results to the standard output)
	8.4.26 rm command (removes files or directories)
	8.4.27 rmdir command (removes empty directories)
	8.4.28 sed command (replaces character strings in text)
	8.4.29 sleep command (stops for a specified period of time)
	8.4.30 sort command (sorts text files)
	8.4.31 split command (splits a file)
	8.4.32 stat command (outputs the statuses of files and directories to the standard output)
	8.4.33 tail command (displays the last part of files)
	8.4.34 tar command (stores the target path name in the archive and extracts/displays the target path name)
	8.4.35 touch command (changes a file's last access date and time or modification date and time)
	8.4.36 tr command (outputs character strings input from the standard input to the standard output while replacing or deleting characters on a byte-by-byte basis)
	8.4.37 uname command (displays information about the OS or hardware)
	8.4.38 uniq command (removes duplicated lines from a sorted file)
	8.4.39 wc command (counts the number of bytes, lines, characters, and words in files)
	8.4.40 which command (obtains the paths of external commands)
	8.4.41 xargs command (creates and runs a command line)

	8.5 UNIX-compatible commands (script format) (Windows only)
	8.5.1 chmod command (disables the chmod commands specified in job definition scripts)
	8.5.2 chmod command (changes the file read-only attribute setting (enable or disable))
	8.5.3 chmod command (specifies permissions as numeric values)
	8.5.4 chmod command (specifies permissions as symbols or numeric values)
	8.5.5 su command (disables the su commands specified in job definition scripts)
	8.5.6 su command (executes programs with the permissions of the executing user)
	8.5.7 who command (disables the who commands specified in job definition scripts)
	8.5.8 who command (outputs login user information to logs)

	9. Job Definition Script Commands and Control Statements
	9.1 Command and control statement description formats
	9.1.1 Standard shell command description format
	9.1.2 Extended shell command description format
	9.1.3 Extended script command description format
	9.1.4 Script control statement description format
	9.1.5 Reserved script command description format

	9.2 Lists of commands and control statements
	9.2.1 List of standard shell commands
	9.2.2 List of extended shell commands
	9.2.3 List of extended script commands
	9.2.4 List of script control statements
	9.2.5 List of reserved script commands

	9.3 Standard shell commands
	9.3.1 . command (executes a shell script)
	9.3.2 : command (expands arguments)
	9.3.3 alias command (defines aliases)
	9.3.4 break command (exits from a loop)
	9.3.5 builtin command (executes a built-in command)
	9.3.6 cd command (changes the current directory)
	9.3.7 command command (executes a command)
	9.3.8 continue command (interrupts loop processing and returns to the beginning of the loop)
	9.3.9 echo command (outputs what is specified in arguments to the standard output)
	9.3.10 eval command (concatenates arguments into a command and executes it)
	9.3.11 exec command (executes a command and exits)
	9.3.12 exit command (exits the shell)
	9.3.13 export command (exports shell variables)
	9.3.14 false command (returns 1 as the return code)
	9.3.15 getopts command (parses option arguments)
	9.3.16 kill command (sends a signal)
	9.3.17 let command (evaluates the values of arithmetic expressions)
	9.3.18 print command (outputs to the standard output)
	9.3.19 pwd command (outputs the path of the current directory)
	9.3.20 read command (reads from the standard input and stores the input in variables)
	9.3.21 readonly command (sets the read-only attribute for variables or displays all read-only variables)
	9.3.22 return command (returns from a function or an external script)
	9.3.23 set command (sets shell options, creates an array, or displays variable values)
	9.3.24 shift command (shifts the run-time parameters)
	9.3.25 test command (determines the value of a conditional expression)
	9.3.26 times command (displays the amount of CPU time used by the shell)
	9.3.27 trap command (specifies the action when signals and forced termination requests are received)
	9.3.28 true command (returns 0 as the return code)
	9.3.29 typeset command (declares explicitly the attributes and values of variables and functions)
	9.3.30 ulimit command (sets limits on system resources) (UNIX only)
	9.3.31 umask command (sets the access permissions for creating a new file) (UNIX only)
	9.3.32 unalias command (removes alias definitions)
	9.3.33 unset command (unsets variable values and attributes)
	9.3.34 wait command (waits for child processes to complete)
	9.3.35 whence command (displays how character strings would be interpreted if used as commands)

	9.4 Extended shell commands
	9.4.1 adshappexec command (GUI application executable command) (only for Windows execution environment)
	9.4.2 adshappexec command (GUI application execution command) [only for Windows development environment]
	9.4.3 adshcmdrc command (defining the return code threshold of a command)
	9.4.4 adshecho command (issues a specified event notification message as a JP1 event)
	9.4.5 adshjoberr command (reports an error to a job and job step)
	9.4.6 adshmktemp command (creates a file for which the file name is not duplicated)
	9.4.7 adshparsecsv command (analyzing CSV data)
	9.4.8 adshparsejson command (analyzes JSON data)
	9.4.9 adshread command (issues a specified reply-request message as a reply-waiting event)
	9.4.10 adshscripttool command (supports creation of job definition scripts) (Windows only)
	9.4.11 adshvarconv command (converts the value of a variable)

	9.5 Extended script commands
	9.5.1 #-adsh_file command (specifies assignment and postprocessing of regular files)
	9.5.2 #-adsh_file_temp command (assigns and postprocesses a temporary file)
	9.5.3 #-adsh_job command (declares a name for a job)
	9.5.4 #-adsh_job_stop command (defines termination conditions for a job)
	9.5.5 #-adsh_path_var command (defines shell variables for handling path names)
	9.5.6 #-adsh_rc_ignore command (defines commands to always terminate normally)
	9.5.7 #-adsh_script command (calls an external job definition script file from the job definition script that is running)
	9.5.8 #-adsh_spoolfile command (assigns a program output data file)
	9.5.9 #-adsh_step_start command, #-adsh_step_error command, #-adsh_step_end command (defines a job step)

	9.6 Script control statements
	9.6.1 case statement (chooses from multiple processing paths)
	9.6.2 for statement (repeats the same processing)
	9.6.3 if statement (branches conditionally)
	9.6.4 until statement (loops until a condition is true)
	9.6.5 while statement (loops while a condition is true)

	9.7 Reserved script commands
	9.7.1 time command (displays the time used to execute a command)

	10. Script development parts
	10.1 Description format of script development parts
	10.2 List of script development parts
	10.3 Script development parts
	10.3.1 getArrayIndex (gets an index based on the value of array)
	10.3.2 isEmptyVar (evaluates to a null variable)
	10.3.3 isInitVar (evaluates initialization of variable)
	10.3.4 sortArray (sorts array data)
	10.3.5 deleteSpace (gets the character string without space)
	10.3.6 getStrLen (gets the number of characters of character string)
	10.3.7 getStrPos (gets the position of character string)
	10.3.8 isLowerStr (evaluates half-width lowercase character of the character string)
	10.3.9 isUpperStr (verifies half-width uppercase character of the character string)
	10.3.10 isNumericStr (evaluates numeric characters)
	10.3.11 cmpDate (compares date)
	10.3.12 getCalcDate (gets the calculated date)
	10.3.13 getDate (gets the current date)
	10.3.14 getDateDiff (gets the number of elapsed days)
	10.3.15 getDay (gets day from date)
	10.3.16 getHour (gets hour from time)
	10.3.17 getMinute (gets minute from time)
	10.3.18 getMonth (gets month from date)
	10.3.19 getSecond (gets second from time)
	10.3.20 getTime (gets the current time)
	10.3.21 getWeekday (gets weekday from date)
	10.3.22 getYear (gets year from date)
	10.3.23 isLeapYear (evaluates to a leap year)
	10.3.24 getFileMTime (gets date and time of file and directory)
	10.3.25 getFileSize (gets size of file)
	10.3.26 isDir (evaluates existence of directory)
	10.3.27 isEmptyDir (evaluates existence of contents of directory)
	10.3.28 isFileOrDir (evaluates existence of File Directory)
	10.3.29 isNormalFile (evaluates existence of a regular file)
	10.3.30 arrayToCsv (outputs a value of two-dimensional array to CSV data)
	10.3.31 convCsvSep (converts the delimiter of CSV data)
	10.3.32 csvToArray (stores the two-dimensional array of CSV data)
	10.3.33 getCsvColumn (gets a column in consideration of blank line of CSV data)
	10.3.34 searchCsvColumn (gets a record with the search for specific column of CSV data)
	10.3.35 getJsonValue (gets a value corresponding to the name of JSON data)
	10.3.36 getXmlAttrValue (obtains an attribute value of elements of XML data)
	10.3.37 getXmlDecl (gets the XML declaration)
	10.3.38 getXmlElem (obtains contents of elements of XML data)

	Part 5: Troubleshooting
	11. Troubleshooting
	11.1 Response procedure
	11.1.1 Corrective action when using the user-reply functionality
	11.1.2 When the root job terminates before its child jobs terminate

	11.2 Information needed when a problem occurs
	11.2.1 Logs
	11.2.2 Error information
	11.2.3 Spool information
	11.2.4 User-reply functionality's management daemon information (UNIX only)

	11.3 How to collect information
	11.3.1 adshcollect command (collects information)

	12. Messages
	12.1 Message format
	12.1.1 Message output format
	12.1.2 Format of message explanations
	12.1.3 Assignment of message numbers

	12.2 Message output destinations
	12.2.1 Notes about the row numbers that are output in messages

	12.3 List of messages
	12.4 Details of errors
	12.4.1 Details of errors (Windows)
	12.4.2 Details of errors (UNIX)
	12.4.3 Details of errors (specific to JP1/Advanced Shell)
	12.4.4 Handling Error Information Displayed in the User-Reply Functionality

	Appendixes
	A. Coverage Information That Is Acquired
	A.1 Commands for which coverage information is acquired
	A.2 Control statements for which coverage information is acquired
	A.3 Functions for which coverage information is acquired
	A.4 Metacharacters for which coverage information is acquired
	A.5 Shell variable operations for which coverage information is acquired

	B. If you start from the job scheduler other than JP1/AJS (only for UNIX)
	B.1 Preparation for starting from the job scheduler other than JP1/AJS (only for UNIX)
	B.2 SCHEDULER_SELECT parameter (selects the job scheduler to be used)
	B.3 Notes on starting from a job scheduler other than JP1/AJS

	C. Modifications Made in Each Version
	C.1 Changes in 11-01
	C.2 Changes in 11-00
	C.3 Changes in 10-51
	C.4 Changes in 10-50
	C.5 Changes in 10-00-01
	C.6 Changes in 10-00
	C.7 Changes in 09-51-01
	C.8 Changes in 09-51
	C.9 Changes in 9-50-01

	D. Glossary

	Index

