
JP1 Version 11

Job Management: Getting Started (Scripting
Language)

Overview and User's Guide

3021-3-B31(E)

Notices

■ Relevant program products
P-8112-B1BL JP1/Advanced Shell 11-00 (for Red Hat Enterprise Linux Server 6 (64-bit x86_64), Red Hat Enterprise
Linux Server 7 (64-bit x86_64), Oracle Linux 6 (x64), Oracle Linux 7, CentOS 6, CentOS 7, SUSE Linux 12)
P-2A12-B1BL JP1/Advanced Shell 11-00 (for Windows 10, Windows Server 2012, Windows 8, Windows 7, Windows
Server 2008)

This manual describes JP1/Advanced Shell, which is included in "Script language" as a subcategory of JP1 products.
This manual does not describe JP1/Script.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade
Law, and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI, Job Management Partner 1, JP1 are either trademarks or registered trademarks of Hitachi, Ltd. in Japan
and other countries.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

Job Management: Getting Started (Scripting Language) 2

■ Issued
Jan. 2016: 3021-3-B31(E)

■ Copyright
All Rights Reserved. Copyright (C) 2016, Hitachi, Ltd.

Job Management: Getting Started (Scripting Language) 3

Preface

■ What you can do with JP1/Advanced Shell
This section describes what can be done with JP1/Advanced Shell.

Purposes of JP1/Advanced Shell
JP1/Advanced Shell is a product for improving development productivity and the operational efficiency of batch
applications. It enables you to efficiently create and execute job definition scripts (shell scripts) for batch jobs.

JP1/Advanced Shell has the features described below.

Inheriting assets between the OSs of batch applications
• Using existing assets

You can use shell scripts created in a UNIX environment to develop job definition scripts in a Windows
environment.
Because the job definition scripts used in JP1/Advanced Shell employ language specifications that have standard
shell compatibility, it is easy to learn the language and migrate from existing shell scripts.

• Cross-platform support
Cross-platform means applicability to multiple OS bases. This feature enables you to use cross-platform functions.

• You can execute job definition scripts developed in a Windows environment in both Windows and UNIX
environments.

• You can use UNIX-compatible commands in both Windows and UNIX environments.

Expediting the configuration of batch applications
• Controlling job execution

JP1/Advanced Shell extends job definition scripts so that you can automate and concisely code processes that are
used repetitiously in batch applications.
You can reduce the volume of coding in job definition scripts and improve readability and maintainability of job
definition scripts by doing the following:

• Specifying job step execution conditions

• Using variables that are valid in job steps

• Outputting error messages and setting return codes when batch jobs terminate with errors

• In the event a batch job terminates with an error, automatically terminating child processes forcibly and deleting
temporary files used by the batch job

• Using an editor to develop job definition scripts (development environment)
In the development environment, you can use the JP1/Advanced Shell Editor (a dedicated editor with debugging
functions) of the Graphical User Interface (GUI) to develop and debug job definition scripts.

• You can execute job definition scripts in job steps, and set breakpoints.

• You can accumulate coverage information for job definition scripts.

The following figure shows the JP1/Advanced Shell Editor window.

Job Management: Getting Started (Scripting Language) 4

JP1/Advanced Shell Editor window

• Efficient file allocation and postprocessing
You can automate and concisely code processes, such as checking for regular files, and allocating and deleting
temporary files.

• You can automatically allocate temporary files during batch job execution and delete them once the batch job
has terminated.

• You can check for regular files during batch job execution and perform appropriate postprocessing on files
depending on job step or job processing results.

Improving serviceability and maintainability by central management of batch job execution results
Maintainability of batch applications can be improved by automatically outputting job execution logs in the event of
an error and managing such logs centrally.

In conventional open systems, management of batch job execution results is complicated because the results are not
stored at one central location. JP1/Advanced Shell enables you to collect batch job execution results on a spool as job
execution logs, and to manage them centrally. By using JP1/AJS - View, you can execute batch jobs on a periodic basis
and reference the results by automatically executing job definition scripts.

Each job's execution results are output to a spool job directory under the spool directory. The following figure illustrates
central management of batch job execution results.

Job Management: Getting Started (Scripting Language) 5

Central management of batch job execution results

For details about the output contents of the job execution logs, see 4.2.1 Job execution log.

Example of application to a business operation
You can apply JP1/Advanced Shell to the following type of business operation.

In the case of an operation that involves many transactions in an online system during the daytime and totaling of the
transactions at night, you can develop and execute batch jobs that obtain totals, including sales figures, number of
products sold, and inventory updates. You can also develop and execute batch jobs for obtaining rolling totals, such
as daily, monthly, and term-end processing, as well as batch jobs that have specific purposes and that are used for
special occasions.

The following figure shows an example of JP1/Advanced Shell operation (for obtaining daily operation totals)

Job Management: Getting Started (Scripting Language) 6

Example of JP1/Advanced Shell operation (obtaining daily operation totals)

To run JP1/Advanced Shell:

1. Start daily operation and perform transactions involving products.

2. The open infrastructure product updates the various sales data.

3. Daily operation ends and JP1/AJS issues instructions to execute job definition scripts automatically at specified
times.

4. JP1/Advanced Shell executes job definition scripts to process the various sales data.

5. JP1/Advanced Shell outputs the execution results of the job definition scripts.

6. The manager can obtain information, including totals and changes in product sales, based on the execution results.

■ What is explained in this manual
This manual describes the basic way to set up and operate JP1/Advanced Shell. The purpose of this manual is to help
the readers understand the concept of JP1/Advanced Shell and the basic way to use it.

This manual is intended for the following persons:

• Those who are considering installation of JP1/Advanced Shell

• Those who want to briefly understand the concept of JP1/Advanced Shell and get a feel for its operation, from
setup to operation.

JP1/Advanced Shell consists of the following products:

• JP1/Advanced Shell (script execution base for batch operation)

• JP1/Advanced Shell - Developer (script execution base for batch jobs)

Job Management: Getting Started (Scripting Language) 7

The basic guide provides information about JP1/Advanced Shell.

This manual assumes that the system configuration shown below is used. For operations in any other configuration,
see the description of system configurations in the manual JP1/Advanced Shell.

The following describes the role of each system component:

• A batch operation server automatically executes job definition scripts, or allows users to manually execute them.

• An operation management server manages executed jobs.

• An operation management terminal displays job execution results by using JP1/AJS - View, and defines job
definition scripts that are to be automatically executed.

■ How to read this manual
In addition to this basic guide, you can use the JP1/Advanced Shell manual JP1/Advanced Shell . This manual provides
details about the system configuration setup and operation procedures which are not covered in the basic guide, and
reference information such as commands and messages.

This manual describes the procedures for Windows and for Linux separately. In the description of a UNIX environment,
replace "UNIX" with "Linux" except for "UNIX-compatible commands" and "UNIX jobs", which can be used as they
are because they are function names.

A reference to another manual is written as follows: For details about something, see topic-title in the manual-name.
Using topic-title as a keyword, search for the relevant section in the target manual.

Some windows in this manual might differ from the windows of your product because of improvements made without
prior notice.

Job Management: Getting Started (Scripting Language) 8

Contents

Notices 2

Preface 4

1 Installing JP1/Advanced Shell and prerequisite products 11
1.1 Procedure for installing JP1/Advanced Shell and prerequisite products 12

1.1.1 Installation procedure (for Windows) 12

1.1.2 Installation procedure (for Linux) 12

1.2 Preparations before installation 13

1.2.1 Prerequisite OSs 13

1.2.2 Memory and disk space required for installation 13

1.2.3 Setting the language for the prerequisite OS 13

1.2.4 Confirming the files that can be used in JP1/Advanced Shell 13

1.2.5 Checking the local time setting 15

1.3 Installing the prerequisite products 17

1.3.1 Installing JP1/AJS and related products 17

1.4 Installing JP1/Advanced Shell 18

1.4.1 Installing JP1/Advanced Shell (in Windows) 18

1.4.2 Installing JP1/Advanced Shell(to Linux) 18

2 Setting up an environment for JP1/Advanced Shell 20
2.1 Specifying the environment files 21

2.1.1 Specifying the system environment files 21

2.1.2 Specifying the job environment files 21

2.1.3 Creating required directories 22

2.1.4 Specifying settings for using UNIX-compatible commands 24

2.1.5 Setting up the shell for starting jobs from JP1/AJS (in Linux) 25

2.1.6 Defining files to be started as child jobs 25

2.1.7 Outputting the contents of the job execution log by job type 26

2.1.8 Defining job execution results and log output information 28

2.1.9 Defining the return codes of extended script commands 32

2.1.10 Performing user-specific postprocessing when a job is terminated forcibly 32

2.2 Specifying environment variables 34

2.2.1 Defining the return code in the event of an unresumable error in a job 34

3 Defining jobs in JP1/AJS 36
3.1 Defining jobs in JP1/AJS 37

3.1.1 Defining and executing a jobnet 37

Job Management: Getting Started (Scripting Language) 9

3.1.2 Defining batch jobs as PC jobs 39

3.1.3 Defining batch jobs as UNIX jobs 41

4 Executing batch jobs and checking execution results 44
4.1 Executing batch jobs 45

4.1.1 Procedure for executing batch jobs 45

4.1.2 Executing batch jobs 45

4.2 Checking batch job execution results 49

4.2.1 Job execution log 49

4.2.2 Checking batch job execution results 49

4.2.3 Deleting spool jobs 52

4.3 Forcibly terminating batch jobs 54

4.3.1 Forcibly terminating child or descendant processes 55

4.3.2 Notes about operations including Ctrl+C (in Linux) 55

Appendixes 56
A Advanced Use 57

B Reference Material for This Manual 58

B.1 Related publications 58

B.2 Abbreviations for Microsoft product names 58

B.3 Conventions: Fonts and symbols 59

B.4 Conventions: The JP1/Advanced Shell installation folder in Windows 60

B.5 Conventions: common application data folder 61

B.6 Conventions: Shared documents folder 61

B.7 Conventions: Windows menu names used in the manual 61

B.8 Conventions: Directory names 61

B.9 Abbreviations for product names 61

B.10 Conventions: Units (such as KB, MB, GB, and TB) 62

C Glossary 63

Index 71

Job Management: Getting Started (Scripting Language) 10

This section describes how to install JP1/Advanced Shell and prerequisite products.

1 Installing JP1/Advanced Shell and prerequisite
products

Job Management: Getting Started (Scripting Language) 11

1.1 Procedure for installing JP1/Advanced Shell and prerequisite
products

The following describes the procedure for installing JP1/Advanced Shell and prerequisite products.

1.1.1 Installation procedure (for Windows)
The following describes the procedure for installing JP1/Advanced Shell and related prerequisite products in a Windows
environment.

1. Install and set up the required products on the operation management server.

2. Install and set up the required products on the operation management console.

3. Install and set up the required products on the batch operation server.

4. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.

1.1.2 Installation procedure (for Linux)
The following describes the procedure for installing JP1/Advanced Shell and related prerequisite products in a Linux
environment.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

2. Install and set up the required products on the operation management console in a Windows environment.

3. Install and set up the required products on the batch operation server.

4. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 12

1.2 Preparations before installation

The following describes the preparations required before installing JP1/Advanced Shell and related products.

1.2.1 Prerequisite OSs
• Red Hat Enterprise Linux Server 6 (64-bit x86_64)

• Red Hat Enterprise Linux Server 7 (64-bit x86_64)

• Oracle Linux 6 (x64)

• Oracle Linux 7

• CentOS 6 (x64)

• CentOS 7

• SUSE Linux 12

• Windows Server 2008

• Windows 7

• Windows 8

• Windows Server 2012

• Windows 10

1.2.2 Memory and disk space required for installation
A specific formula must be used to calculate the amount of memory and disk space required for installing JP1/Advanced
Shell. For details, see the description in Memory and Disk Space Requirements in the manual JP1/Advanced Shell.

1.2.3 Setting the language for the prerequisite OS
The table below lists the language settings and encoding supported by JP1/Advanced Shell for each OS. Make sure that
the language and encoding for files used in JP1/Advanced Shell match the language and encoding for the environment
in which JP1/Advanced Shell runs. If they do not match, characters might be garbled or I/O data might be invalid.

Table 1-1: Language settings and encoding for each OS

OS Language setting Encoding

Windows The system locale setting is not
Japanese (Japan).

-

Linux The value of the LANG
environment variable is C.

C

1.2.4 Confirming the files that can be used in JP1/Advanced Shell
The following lists the files that are used in JP1/Advanced Shell, and provides notes on specifying files and paths.

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 13

(1) List of files used in JP1/Advanced Shell
The table below lists and describes the files that are used in JP1/Advanced Shell. To determine whether a file size can
exceed 2 GB, see the description in Files used in JP1/Advanced Shell in the manual JP1/Advanced Shell.

Table 1-2: Files used in JP1/Advanced Shell

File name (icon) Extension File contents

Job definition script file () .ash A job definition script. The user can assign any file name.

Environment file# .ase JP1/Advanced Shell environment settings.

System environment file .ase System environment settings.

Coverage information file .asc Coverage environment information for JP1/Advanced Shell.

Debugging information file .asd Debugging information used by the editor (development
environment)

System execution log# .log Log information that provides overall batch job execution logs for
the system administrator.

Trace information# .log JP1/Advanced Shell's internal trace logs.

Temporary file .tmp Temporary file used internally by the system.

Coverage display temporary file .txt Temporary file used in displaying coverage information. The
format of file name is as follows:
adshexec_view_job-definition-script-file-name_year-month-
date_hour-minute-second.txt

Start log (UNIX only) .log Log information that is collected when the user-reply
functionality's management daemon is started and stopped.

pid file (UNIX only) .pid File used by the user-reply functionality management daemon and
adshmdctl command.

Log of the application-execution agent
functionality# (Windows execution environment
only)

.log Internal log of the application-execution agent functionality.

#
You can collect these files by using the adshcollect command. For details about how to collect the files, see
the description in adshcollect command in the manual JP1/Advanced Shell.

Notes about specifying files and paths

• As the directory delimiter, you can use a backslash (\)# for Windows or a forward slash (/) for UNIX. If you use
other characters, the operation cannot be guaranteed.

• If you use a backslash (\) as the directory delimiter for UNIX, the character will not be recognized as the
directory delimiter and JP1/Advanced Shell will not operate correctly.

• If you use a forward slash (/) as the directory delimiter for Windows, the character might be recognized as
the directory delimiter. Note that, depending on how the forward slash is used, the character might not be
recognized as the directory delimiter and JP1/Advanced Shell might not operate correctly.

#:
A backslash (\) specified in a job definition script is considered an escape character. For this reason, you need
to specify two consecutive backslashes (\\) or enclose the character string that includes the backslash in single
quotation marks (').

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 14

• Do not use a file name that begins with a dot (.).

• The permitted maximum length for path names must comply with the specifications of the OS being used.

• The maximum file name length is 246 bytes (Windows only).

• Do not use reserved device names (such as CON, AUX, and NUL) for file names (Windows only).

• Do not use NTFS streams for file names (Windows only).

• Do not use the junction functionality (Windows only).

• You can use UNC names for file names and path names (example: \\computer-name\shared-name\file-
name); however, make sure that a path name specified in this format does not end with shared-name (or shared-
name\). The cd standard shell command does not support the UNC format. (Windows only)
UNC formats that can be used:
\\server\share\dir
\\10.111.222.33\share\dir
UNC formats that cannot be used:
\\server\share
\\10.111.222.33\share

• Do not use UNC names for the folder path names for traces, system execution logs, spool, and temporary files
(Windows only).

(2) Notes on file systems
Be careful when using JP1/Advanced Shell with either of the following file systems:

• NFS
Not supported.

• HSFS
When using HSFS, note the following:

• You cannot install JP1/Advanced Shell on HSFS.

• You cannot create a system execution log or traces on HSFS.

• If you use the user-reply functionality, you cannot specify a directory located on HSFS as the spool job directory.

• If you are using a version earlier than HSFS 07-00 and you want to use a UNIX-compatible command to reference
or update the files and directories on HSFS, you will need to specify NOCACHE for the HSFS system option
CPFS_CACHE_POLICY beforehand.

• If you are using HSFS 07-00 or later and you want to use a UNIX-compatible command to reference or update
the files and directories on HSFS, you will need to specify 0 for the HSFS system option
CPFS_COMPAT_LINKCNT beforehand. By default, 0 is specified for CPFS_COMPAT_LINKCNT.

1.2.5 Checking the local time setting
JP1/Advanced Shell obtains and outputs local time information by referencing environment variables. You must specify
the local time settings in the environment variables beforehand.

The commands provided by JP1/Advanced Shell output information according to the OS's time zone setting (Windows)
or the TZ environment variable (UNIX). Use one of the methods listed below to specify the TZ environment variable.

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 15

• JP1/AJS's job definition or environment variable definition

• System profile (/etc/profile)

• User profile ($HOME/.profile)

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 16

1.3 Installing the prerequisite products

This section describes how to install JP1/AJS products (prerequisite products) and related products.

1.3.1 Installing JP1/AJS and related products
The following table shows the JP1/AJS products and related products.

Table 1-3: JP1/AJS and related products

Server type Processing to be performed Programs

Same batch operation server as for JP1/Advanced Shell Executes job definition scripts from
JP1/AJS

JP1/Base
JP1/AJS - Agent#

Operation management server Manages jobs JP1/Base
JP1/AJS - Manager#

Operation management console (Windows only) Displays job execution results JP1/AJS - View

#
JP1/AJS - Agent is not needed when JP1/AJS - Manager is installed on the same server as JP1/Advanced Shell,
because JP1/AJS - Manager provides the JP1/AJS - Agent functions.

For details about how to install JP1/AJS and JP1/Base, see Job Management: Getting Started (Job Scheduler).

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 17

1.4 Installing JP1/Advanced Shell

This subsection describes how to install JP1/Advanced Shell. A user with an administrator role must perform installation.

1.4.1 Installing JP1/Advanced Shell (in Windows)
This subsection explains how to perform a new installation of JP1/Advanced Shell.

To perform a new installation:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

2. Terminate all programs.

3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Install JP1/Advanced Shell by entering required information as instructed by the installer.
The following information will be requested during installation:

• Product to be installed (JP1/Advanced Shell)

• Customer Information

• Destination Folder

5. When the Finish dialog box is displayed, click Finish.
Installation is completed.

1.4.2 Installing JP1/Advanced Shell(to Linux)
The following describes how to install JP1/Advanced Shell to Linux from a CD-ROM.

Note that the directory and file names on the CD-ROM might be different from what is shown here, depending on the
hardware environment. Use the ls command to check the file names and specify file names exactly as displayed.

To install JP1/Advanced Shell:

1. Specify the user permissions.
Log on as a superuser to the server on which JP1/Advanced Shell is to be installed. Alternatively, use the su command
to change the user permissions to superuser.

2. Terminate all programs.
If any existing JP1-series programs and JP1/Advanced Shell program are running, terminate them.

3. Place the medium that contains JP1/Advanced Shell.

4. Mount the CD-ROM device by executing the following command:

/bin/mount -r -o mode=0544 /dev/cdrom /cdrom

/cdrom is the mount point of the CD-ROM device special file. If there is no mount point directory, create one. Note
that the device special file name and mount point might differ depending on the environment.

5. Start the Hitachi Program Product Installer by executing the following command:
/cdrom/LINUX/setup /cdrom#

#: This example assumes /cdrom as the mount point.

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 18

The Hitachi Program Product Installer starts and the initial window is displayed.
The following is an example of the Hitachi Program Product Installer's initial window:

 Hitachi PP Installer 05-24

 L) List Installed Software.
 I) Install Software.
 D) Delete Software.
 Q) Quit.

 Select Procedure ===>

6. In the Hitachi Program Product Installer's initial window, enter I.
A list of programs that can be installed is displayed.

7. Select JP1/Advanced Shell, and then enter I.
JP1/Advanced Shell is installed. To select a program, move the cursor to the desired program, and then press the
space bar to select it.
The following shows an example of the Hitachi Program Product Installer's installation window:

 PP-No. VR PP-NAME
<@>001 P-8112-B1BL 1100 Advanced Shell
:
:
F) Forward B) Backward J) Down K) Up Space) Select/Unselect I) Install Q) Quit

<@> is displayed to the left of the selected program product. If you enter I following <@>, the following message
is displayed on the last line:

Install PP? (y: install, n: cancel)==>

If you enter y or Y, installation begins. If you enter n or N, installation is cancelled and the program product
installation window is displayed again.

8. When installation is completed successfully, enter Q.
The Hitachi Program Product Installer's initial window is displayed again.

Note that the following files are created during installation as installer's logs:

/opt/jp1as/instlog/ADSH_INST_LOG
/opt/jp1as/instlog/ADSH_INST_USERLOG

If the installer's log files are not created, possible causes are as follows:

• The installer's log files are not regular files.

• The user does not have write permission for the directory in which the installer's log files are to be created.

• A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

• "/opt" is not a directory.

• "/opt/jp1as" is not a directory.

• "/opt/jp1as/instlog" is not a directory.

1. Installing JP1/Advanced Shell and prerequisite products

Job Management: Getting Started (Scripting Language) 19

This section describes how to set up an environment for JP1/Advanced Shell.

2 Setting up an environment for JP1/Advanced
Shell

Job Management: Getting Started (Scripting Language) 20

2.1 Specifying the environment files

The two types of environment files are system environment files and job environment files. The supported parameters
are the same. The following table explains each type of file.

Table 2-1: Types of environment files

Type of environment file Description

System environment file An environment file of this type is common to all systems and is specified by the system administrator. This
environment file is used automatically when it is stored in the predefined directory.

Job environment file This environment file is specified for each job by the developer.Specify this file in the following cases:
• Environment file specified in the ADSH_ENV environment variable

Job controllers use the information defined in system environment files and job environment files.

All directories specified in parameters in a system environment file must exist. If you wish to change the default
directories, you must create the new directories beforehand.

If you have edited a system environment file in a UNIX environment, check that there are no errors by executing the
adshmdctl command with the conftest option specified.

The following subsections explain how to specify each environment file.

2.1.1 Specifying the system environment files
The system administrator creates and specifies the system environment files. The created system environment files take
effect when they are stored on the file paths specified in the following table.

Table 2-2: File names of system environment files

Environment File name of the system environment file

Windows (execution
environment)

common-application-data-folder\HITACHI\JP1AS\JP1ASE\conf\adshrc.ase

UNIX /opt/jp1as/conf/adshrc.ase

2.1.2 Specifying the job environment files
To use a job environment file to execute batch jobs, specify the file path in the ADSH_ENV environment variable. Use
the procedure described below to create and specify a job environment file.

To create and specify a job environment file:

1. Copy the sample.ase environment file sample data from the following directory to a desired directory and file:#

• Windows execution environment
installation-folder\JP1ASE\sample\sample.ase

• UNIX execution environment
/opt/jp1as/sample/sample.ase

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 21

2. Specify the required parameters in the copy of the job environment file.

3. Specify the path of the created job environment file in the ADSH_ENV environment variable so that the job
environment file can be used during batch job execution.
Use one of the following methods to specify the ADSH_ENV environment variable:

• OS setting (Windows only)

• System profile /etc/profile (UNIX only)

• User profile ($HOME/.profile) (UNIX only)

#
Do not use any of the following characters in a job environment file directory or file name: & () [] { } ^
= ; ! ' + , ` ~ # %. If any of these characters is used, JP1/Advanced Shell will not function normally.

2.1.3 Creating required directories
If you want to change the default settings for the directories required for execution after you have installed JP1/Advanced
Shell, you must create new directories, and then specify them in the environment files.

The directories required for JP1/Advanced Shell and the information to be specified are described below. The user who
will be running JP1/Advanced Shell must grant the required permissions to these directories.

• Directory for temporary files
Specify the directory in which the files to be used only within batch jobs are to be created temporarily.

• Directory for the spool
Specify the directory used to store job execution logs and program output data files.

• Directory for system execution logs
Specify the directory used to store batch job logs as system execution logs that are used by the system administrator
for monitoring execution of batch jobs.

• Directory for traces
Specify the directory used to store the statuses for troubleshooting purposes in the event of system failure.

The table below lists the directories required in JP1/Advanced Shell.

Table 2-3: Directories required in JP1/Advanced Shell

Directory Environment setting
parameter

Default directory or path Default permissions

Directory
for
temporary
files

TEMP_FILE_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\temp

• Execution environment (UNIX only)
/var/opt/jp1as/temp

CRWD (Windows)
1777 (UNIX)

Directory
for the
spool

SPOOL_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE
\spool

• Execution environment (UNIX only)
/var/opt/jp1as/spool

CRWD (Windows)
1777 (UNIX)

Directory
for system

LOG_DIR
LOG_FILE_CNT

• Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\log

CRWD (Windows)
0777 (UNIX)

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 22

Directory Environment setting
parameter

Default directory or path Default permissions

execution
logs

LOG_FILE_SIZE • Execution environment (UNIX only)
/opt/jp1as/log

CRWD (Windows)
0777 (UNIX)

Directory
for traces

TRACE_DIR
TRACE_FILE_CNT
TRACE_FILE_SIZE
TRACE_LEVEL

• Execution environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace

• Execution environment (UNIX only)
/opt/jp1as/trace

CRWD (Windows)
1777 (UNIX)

Legend:
The letters shown in the Default permissions column indicate the following Windows permissions:
C: Create, R: Read, W: Write, D: Delete

(1) Required permissions
This subsection describes the permissions required for the users who execute batch jobs.

(a) In Windows
Grant full control to the users who will be executing batch jobs.

(b) In UNIX
Grant to the users who will be executing batch jobs the file permissions shown below for each type of directory.

Table 2-4: File permissions for directories

Directory type Read permission (r) Write permission (w) Execution
permission (x)

Sticky bit (t)

Directory for temporary
files

R R R S

Directory for the spool R R R S

Directory for system
execution logs

R R R N

Directory for traces R R R S

Legend:
R: Specification is required.
S: Specify according to system operation guidelines.
N: Do not specify.

Specify the sticky bit for directories according to the system operation guidelines.

If no sticky bit is specified for a directory for which a user has write permission, that user can delete any file directly
under that directory.

If a sticky bit is specified for a directory, only the owner of the directory or files can delete any file directly under that
directory. No other user can delete these files even if the user has write permission for the directory.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 23

(2) File systems
Because the size of the spool might become large depending on the applications, we recommend that you create and
use a dedicated file system.

2.1.4 Specifying settings for using UNIX-compatible commands

(1) Definitions for using executable UNIX-compatible commands in
existing job definition scripts

If you will be using executable UNIX-compatible commands in existing job definition scripts, set the path to the directory
in which the UNIX-compatible commands are installed in the PATH environment variable. This method eliminates the
need for correcting the existing job definition scripts. If there is a command having the same name as a UNIX-compatible
command, you can always run the UNIX-compatible command in JP1/Advanced Shell's job definition scripts by
specifying the path at the beginning of the PATH environment variable value by using the export parameter in the
environment file.

Before you run your job definition scripts, make sure that the correct paths have been set in each environment in which
the job definition scripts are to be run.

(2) Preparations for using the script-format UNIX-compatible commands
(in Windows)

The script-format UNIX-compatible commands use sample script files provided by JP1/Advanced Shell.

Execute the script-format UNIX-compatible commands (such as chmod and su) according to the sample script file
provided by JP1/Advanced Shell.

To execute script-format UNIX-compatible commands:

1. Copy to a desired folder the files that you will be using of the sample script files stored at the following location:
installation-folder\JP1ASE\sample

2. Rename the copied files to applicable command names.
For example, rename sample script files script_chmod1 and script_su1 as chmod and su, respectively. If
you want to define a command that does nothing, copy sample script file script_0 and then rename it.

3. To specify only the file name of the sample script, not its absolute or relative path, do either of the following:

• Store the sample script to be run in the folder defined in the PATH environment variable.

• Add to the PATH environment variable the path of the folder containing the sample script that is to be run.

4. If necessary, define KNAX6831-I message output suppression.
If you do not want the KNAX6831-I message to be output after the sample script has run, specify the following
coding in the job environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6831-I

If you want to suppress output of the KNAX6831-I message for all job definition scripts in the system, specify the
above coding in the system environment file.

5. Run the job definition scripts.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 24

Run the job definition scripts by using the job environment file created in step 4. If you specified the definition in
the system environment file, the information specified in step 4 is imported automatically.

2.1.5 Setting up the shell for starting jobs from JP1/AJS (in Linux)
The table below shows the login shell used when jobs are started from JP1/AJS. Specify the settings so that the correct
login shell can be used.

OS type Login shell

Linux bash

Notes:
If the adshexec command is run as a child process of the login shell when a job is started from JP1/AJS and then
forced termination occurs, the login shell's processing might terminate before the adshexec command's job
execution results are passed to JP1/AJS. If this happens, the job execution results might not be applied to JP1/AJS
- View.
To avoid this, first (before starting) check the definitions in the login script file to verify that the login shell's process
is overwritten (such as by deleting the trap command specification).
For details about the definitions, see the manual Job Management Partner 1/Automatic Job Management System 3
Configuration Guide 1 or Job Management Partner 1/Automatic Job Management System 3 Troubleshooting.

2.1.6 Defining files to be started as child jobs
You can specify a job definition script as a command name in another job definition script. This enables you to run a
job definition script specified in the adshexec command as a JP1/Advanced Shell job. This feature is useful in the
following cases:

• Migrating a user's existing asset shell scripts from a UNIX environment to a Windows environment

• Executing an existing shell script that is run in the OS's shell in a UNIX environment as a JP1/Advanced Shell job
without rewriting its contents

Of the job definition scripts that are executed as descendant processes, those jobs that are executed by using specific
environment setting parameters are called child jobs. A job that is executed from JP1/AJS or a login shell and that is
not a child job is called a root job.

If you will be starting job definition script files as child jobs, you must specify in an environment file the conditions for
the files to be used. The following provides an overview of the environment setting parameters.

• CHILDJOB_EXT parameter
Defines the extension for a job definition script file that is to be executed as a child job.

• CHILDJOB_PGM parameter
Defines the path to be replaced so that a job definition script file is executed as a child job.

• CHILDJOB_SHEBANG parameter
Defines the path of the executable program of the job definition script file that is to be executed as a child job.

A job definition script file that you create that satisfies the default definition for the CHILDJOB_SHEBANG parameter
is run as a child job.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 25

Important note　
If you want to run both root and child jobs by using the same environment file parameters, do not change the
ADSH_ENV environment variable values or the contents of the environment files during job execution.

2.1.7 Outputting the contents of the job execution log by job type
What is output to the job execution log depends on the type of job that is executed, as described in the following
subsections.

(1) Destination and output contents of the job execution log when root
jobs are executed

This subsection explains the destination and output contents of the job execution log when root jobs are executed in
expansion output mode or minimum output mode (specified in the OUTPUT_MODE_ROOT parameter).

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Output to spool files.

Script image Output to spool files.

Destination of the standard output Output to the destination specified by either of the following methods:
• -s option in the adshexec command
• OUTPUT_STDOUT parameter in the environment file

Destination of the standard error
output

Output to spool files.

A spool job directory is created for each job.

After job execution, the contents of the job execution log, excluding the contents for the standard output, are output to
the standard error output.

(b) When the minimum output mode is selected
The following table describes the output contents of the job execution log when the minimum output mode is selected:

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to spool files.
Output of some messages is suppressed in the minimum output mode. For details regarding messages
that are suppressed, see Contents of output of job execution log for each job in JP1/Advanced Shell.Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.
Messages that are not subject to the suppression of the standard error output and the standard output
are output.
Also, messages for JOBLOG that are not subject to output suppression are output to the standard error
output.

Destination of the standard error
output

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 26

Note that the job execution log is not output to the standard error output when the job terminates.

(2) Destination and output contents of the job execution log when child
jobs are executed

The output destination and the output contents of the job execution log when executing the child jobs are separately
described for each the expansion output mode and the minimum output mode (specified with the
OUTPUT_MODE_CHILD parameter). This command indicates the output contents when the spool job of the child job
is being merged into the spool job of the root job. For details regarding output contents when deleting the spool job of
a child job, see Contents of output of job execution log for each job in JP1/Advanced Shell.

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG The child job is temporarily output to the file in the spool.
JOBLOG of the child job is merged into JOBLOG of root job when the child job finishes. The symbol
indicating the start of output ">>>>>> [JOBLOG] path-name" and the symbol indicating the end of
output "<<<<<< [JOBLOG] path-name" are output before and after JOBLOG of the child job.

Script image The child job is temporarily output to the file in the spool.
The script image of the child job is merged into the script image of the root job when the child job
finishes.

Destination of the standard output Output to the destination in effect when the process started.

Destination of the standard error
output

Output to the destination in effect when the process started.
The symbol indicating the start of output ">>>>>> [STDERR] path-name" and the symbol indicating
the end of output "<<<<<< [STDERR] path-name" are output before and after the standard error output
of a child job.

A spool job directory of the child job is created while a job is being executed, but the directory is deleted after the job
is executed.

In addition, the following header lines are not merged.

 Advanced Shell version-number

 [Information]
 Job ID : job-ID
 Spool directory : spool-job-directory-path
 Date : execution-date
 EnvFile(system) : environment-file-path (System environment file)
 EnvFile(job) : environment-file-path (Job environment file)
 Host name : host-name
 [Environment variable from Automatic Job Management System]
 environment-variables-passed-from-JP1/AJS

******** JOB CONTROLLER MESSAGE ********

(b) When the minimum output mode is selected
The following table describes the output destination of the job execution log when the minimum output mode is selected:

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 27

Message output destination Description

JOBLOG Messages that are not subject to the suppression are temporarily output to the file in the spool of the
child job.
When a message is output, JOBLOG of the child job is merged into JOBLOG of the root job and
symbols indicating the start of the output of JOBLOG ">>>>>> [JOBLOG] path name" and symbols
indicating the end of output "<<<<<< [JOBLOG] path name" are output before and after JOBLOG of
the child job.
If no messages have been output, JOBLOG of the child job is not merged into JOBLOG of the root
job.
Output of some messages is suppressed in the minimum output mode. For details regarding messages
that are suppressed, see Contents of output of job execution log for each job in JP1/Advanced Shell.

Script image Although messages are temporarily output to a file in the spool, these messages are not merged into
the script image of the root job.

Destination of the standard output Output to the destination in effect when the process started.
This command outputs messages that are not subject to suppression of the output for the standard
output.
Messages whose output is suppressed are not output.

Destination of the standard error
output

Output to the destination in effect when the process started.
This command outputs messages that are not subject to suppression of the output for the standard error
output. In addition, this command outputs messages that are not subject to suppression of the output
of JOBLOG.
Messages whose output is suppressed are not output.

Although a spool job directory of the child job is created, this directory will be deleted after executing the job.

2.1.8 Defining job execution results and log output information
Job execution results are output to the spool directory. You can reference some of the output information as job execution
logs. In the event of a problem, you can collect logs and investigate the cause of the problem. In the environment file,
define the output destination and contents of these logs.

The following table lists the types of log information that are output while JP1/Advanced Shell is running, and where
each type is stored.

Table 2-5: Log information output while running JP1/Advanced Shell and the storage locations for
the information

Log information Information that is output Storage location

Job execution log Log of batch jobs Under the spool root directory

System execution log Comprehensive JP1/Advanced Shell
execution log

Directory specified by the LOG_DIR parameter#in the
environment file

#
If the parameter is omitted, the default value is used.

The following subsections explain the spool output information and how to define output information for each log.

(1) Defining the spool output information
This subsection explains the spool-related parameters for each output information to be defined.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 28

(a) Determining whether the spool job creation suppression functionality is to be
used

The spool job creation suppression functionality enables you to prevent the spool directory's disk space usage from
increasing continually. It also eliminates the need to delete unneeded directories and files from the spool directory.

Use the SPOOLJOB_CREATE parameter to enable the spool job creation suppression functionality. For details, see the
description in SPOOLJOB_CREATE parameter in the manual JP1/Advanced Shell.

While using the spool job creation suppression functionality, the root job and child jobs will always operate in the
minimum output mode.

The spool directory is necessary even when the spool job creation suppression functionality is used.

(b) Defining the path name of the spool root directory
The following parameter is used for defining the path name of the spool root directory:

• SPOOL_DIR parameter: Defines the path name of the spool root directory.

(c) Changing the spool job directory or file permissions (UNIX only)
When a job is terminated, its execution results are output to the spool job directory created for that job. You can use the
following parameters to change the permissions for the directory or the files under that directory:

• PERMISSION_SPOOLJOB_DIR parameter
Specify this parameter to change permissions for the spool job directory.
The default is 700.

• PERMISSION_SPOOLJOB_FILE parameter
Specify this parameter to change permissions for the files under the spool job directory.
The default is 600 (in .DBG files, 666).

(d) Defining the standard output and standard error for spool jobs
When a job is executed, JP1/Advanced Shell's information messages, warning messages, and job execution logs are
output in addition to the job execution results. The standard output and the standard error output are output to files under
the spool job directory.

Specify the minimum output mode in the following parameter or command option to suppress output of the standard
output and the standard error output to files in the spool job directory, in situations such as when you are using only the
results of a job with another program.

• OUTPUT_MODE_ROOT parameter
Specify the expansion output mode or the minimum output mode for the root job.

• OUTPUT_MODE_CHILD parameter
Specify the expansion output mode or the minimum output mode for the child jobs.

• -m option of the adshexec command
Specify the expansion output mode or the minimum output mode for the jobs.

• -m option of the adshscripttool command
Specify the minimum output mode for the child jobs.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 29

If these parameters and option are omitted, expansion output mode is assumed, in which case the standard output and
the standard error are output to files under the spool job directory.

In the minimum output mode, information messages and warning messages of JP1/Advanced Shell are not output to
the standard output or the standard error output.Also, when jobs are terminated, job execution logs are not output to the
standard error output. In addition, in the minimum output mode, messages whose output is suppressed are not output
to the job execution logs under spool job directories.

For details regarding the differences in output messages among the expansion output mode and the minimum output
mode, see Suppressing output of information and warning messages to job execution logs in JP1/Advanced Shell.

(2) Defining the information to be output to the job execution log
This subsection explains information related to the job execution log that is to be specified during the environment setup.
For details about the information that is output to the job execution log, see 4.2.1 Job execution log.

(a) Defining the types of job execution logs to be output to the standard error
When a job is terminated, the information listed below is output as job execution logs to the standard error. The output
job execution logs are displayed on the terminal screen used when the adshexec command is executed, and in
JP1/AJS - View's Execution Results Details dialog box.

• JOBLOG file (Messages indicating the job's execution status, including command execution results and file
allocation results)

• Job definition script

• Contents of the standard error during job execution

To output only the contents of the standard error during job execution to the standard error, specify the parameter shown
in the following to limit the contents of job execution logs to be output:

• JOBEXECLOG_PRINT parameter

When the job has been executed in the minimum output mode, the job execution log will not be output to the standard
error output when the job finishes regardless of the specification of the JOBEXECLOG_PRINT parameter.

(3) Defining the information to be output to the system execution log
The system execution log provides system administrators with a comprehensive execution history of batch jobs.

The log information is output to AdshLog.log under the directory specified by the LOG_DIR parameter in the
environment file. The files are swapped (AdshLog_1.log, AdshLog_2.log, ..., AdshLog_N.log) according
to conditions (such as maximum file size) specified in parameter settings. Because a new system execution log file is
created when log files are swapped, the owner of each file will be the user at the time swapping occurs.

(a) Flow of output to the system execution log
The system execution log is the destination for log information about the batch jobs running in each job controller
process. You can specify in the environment files the output destination for the system execution log, as well as
parameters that control log file swapping (such as maximum file size and number of files). The following figure shows
the flow of output to the system execution log.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 30

Figure 2-1: Flow of output to the system execution log

The system execution log is created as follows.

• Messages to be output to the system execution log are collected and output in CSV format.
For details about the messages that are output, see the description in Message output destinations in the manual
JP1/Advanced Shell.

• In time, log file swapping is performed and a backup is created.

• Just before it exceeds the file size specified in the LOG_FILE_SIZE parameter in the environment file, the
current system execution log file is renamed so that it becomes a backup file, and a new system execution log
is created and message output continues to it.

• The file name of the backup will be AdshLog_N.log (where N is an integer). N is assigned a number in
ascending order from the newest backup, starting from 1.

• The maximum number of backups to be created is specified in the LOG_FILE_CNT parameter in the
environment file. When the number of backup files exceeds this value, the oldest backup file is deleted.

(b) Parameters required to output the system execution log
The following parameters are used for outputting system execution logs:

• LOG_DIR parameter: Defines the path name of the directory to which system execution logs are to be output.

• LOG_FILE_CNT parameter: Defines the number of files used for backing up system execution logs.

• LOG_FILE_SIZE parameter: Defines the file size for output of system execution logs.

If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE parameter
values specified by the last user who starts output of system execution logs take effect. Therefore, we recommend that
you use the same value for LOG_FILE_CNT and LOG_FILE_SIZE.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 31

(c) Contents of the system execution log
The following shows an example of a message output to the system execution log:

seqnum=1, date=2013-12-06T10:41:19.242+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0004-I, msg="Job ID=000006, JP1NBQSQueueName=, scheduler job ID="
seqnum=2, date=2013-12-06T10:41:19.250+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX0091-I, msg="JOB1 The job started."
seqnum=3, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7901-I, msg="The adshexec command will wait for all asynchronous processes
at the end of the job."
seqnum=4, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6, pid=2720,
msgid=KNAX7902-I, msg="The adshexec command will run in tty stdin mode."

The following table lists and explains the data items that are added in front of the message texts in the system execution
log:

Data items output to the
system execution log

Meaning

seqnum Message's serial number

date Output date and time (in the format yyyy-mm-ddThh:mm:ss.sssTZD)

pgmid Program ID
In a job controller, adshexec is output.

jobid Job ID

pid Process ID

msgid Message ID of the output message

msg Message text of the output message

2.1.9 Defining the return codes of extended script commands
The following parameters are used to change the default values for the return codes that indicate whether extended script
commands failed or were successful:

• ADSHCMD_RC_ERROR parameter: Defines the return code to be used to indicate that an extended script command
failed.

• ADSHCMD_RC_SUCCESS parameter: Defines the return code to be used to indicate that an extended script command
was successful.

For details, see the description in Return codes of extended script commands and handling of errors in the manual JP1/
Advanced Shell.

2.1.10 Performing user-specific postprocessing when a job is terminated
forcibly

JP1/Advanced Shell enables you to perform user-specific postprocessing when a forced termination request is received
from JP1/AJS by means of the UNIX SIGTERM signal or the Windows taskkill command (immediate termination
of process by a means such as TerminateProcess). This feature enables the user to enhance operational flexibility by

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 32

performing user-specific termination processing when a forced termination request is received. You must define the
TRAP_ACTION_SIGTERM environment setting parameter in order to perform user-specific postprocessing when a
forced termination request is received.

Note that the operand supported by the TRAP_ACTION_SIGTERM environment setting parameter is different between
the UNIX edition and the Windows edition. For details about the TRAP_ACTION_SIGTERM environment setting
parameter, see the description in TRAP_ACTION_SIGTERM parameter in the manual JP1/Advanced Shell.

The following shows an example:

Contents of the environment variable

#-adsh_conf TRAP_ACTION_SIGTERM TERM

Contents of the job definition script

#-adsh_job JOB01
trap "UAP_TERM" TERM
UAP01

 If a forced termination request is received while UAP01 is running, the job controller executes UAP_TERM,
performs postprocessing (such as deleting allocated files and forcibly terminating descendant processes), and then
terminates the job.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 33

2.2 Specifying environment variables

The table below lists and describes the environment variables supported by JP1/Advanced Shell.

Important note　
JP1/Advanced Shell sets and references shell and environment variables whose names begin with ADSH.
Therefore, do not use a shell variable or an environment variable whose name begins with ADSH for any purpose
other than those described in this manual.

Table 2-6: Environment variables supported by JP1/Advanced Shell

Environment variable
name

Information to be specified Timing of specification
when the value is set
automatically

Whether
a value
can be
specified

ADSH_ENV Job environment file name When the job starts as a custom
job

Yes#

ADSH_JOBRC_FATAL Job return code in the event of a fatal error that interrupts job
processing such as syntax errors.
For details about how to specify the environment variable, see
(1) ADSH_JOBRC_FATAL environment variable (specifies
the return code in the event of an unresumable error in jobs).

(Not specified automatically) Yes#

AJS_BJEX_STOP Interface used for forced termination from JP1/AJS. This
environment variable must be defined when JP1/Advanced
Shell batch jobs are defined in PC or UNIX jobs. Define the
environment variable in PC or UNIX job definitions, not in OS
settings.

When the job starts as a custom
job

Yes (Only
TERM is

permitted.)

#
If an environment variable is set within a job definition script or an environment file, the value of such an environment
variable is valid only for a child job or root job that is started from a job definition script.

For details about environment variables, see the description in Specifying environment variables in the manual JP1/
Advanced Shell.

2.2.1 Defining the return code in the event of an unresumable error in a
job

If a job is terminated due to an error, such as a memory shortage or a job definition script parsing error, the job controller's
return code is set to 1. You can change this return code to any value from 1 to 255 by setting a value in the
ADSH_JOBRC_FATAL environment variable.

For details about setting method and applicability of the ADSH_JOBRC_FATAL environment variable, see
ADSH_JOBRC_FATAL environment variable in JP1/Advanced Shell.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 34

(1) ADSH_JOBRC_FATAL environment variable (specifies the return code
in the event of an unresumable error in jobs)

The ADSH_JOBRC_FATAL environment variable is used to specify the job controller's return code in the event a job
becomes unresumable and is terminated with an error. The specified end code is applied to jobs that are executed by
using the adshexec command.

The following shows how to apply the value of this environment variable globally in the entire system:

• Windows
Define ADSH_JOBRC_FATAL as a system environment variable.

• UNIX
Specify the ADSH_JOBRC_FATAL environment variable setting in /etc/profile.

If this environment variable is not specified and a job terminates with an unresumable error, the controller's return code
is set to 1.

(a) Values permitted in the environment variable

termination-code ~<unsigned integer> ((1 to 255))
Specifies the return code to be set when a job cannot be resumed. If the value is padded with leading zeros such as
001, the leading zeros are deleted and the value is treated as being 1.

(b) Notes
• If the ADSH_JOBRC_FATAL environment variable is defined by using the export parameter in the environment

file or the ADSH_JOBRC_FATAL environment variable is defined or changed within a file or a job definition script
specified in the ENV shell variable, this functionality does not take effect within that job. The functionality takes
effect on another job that is started from that job.

• The ADSH_JOBRC_FATAL environment variable defines the final return codes for jobs. It does not affect the return
codes of individual commands and job steps.

• If any of the following values is set, the job terminates, without being executed, with an error with return code 255:
• Value consisting of four or more characters (example: 1234)

• Value outside the permitted range (example: 500)

• Non-numeric characters (example: 1A4, +8, 8.0)

• Value consisting of no character (null character string)

• Whether the ADSH_JOBRC_FATAL environment variable is applied in the event of an error depends on each job.
If an unresumable error occurs only within a root job or a child job, the ADSH_JOBRC_FATAL environment variable
will not be applied to any other root job or child job to change its return code.

2. Setting up an environment for JP1/Advanced Shell

Job Management: Getting Started (Scripting Language) 35

This section describes how to define jobs in JP1/AJS.

3 Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 36

3.1 Defining jobs in JP1/AJS

This section explains the specification of environment information when JP1/AJS is used.

You automate job execution in JP1/AJS by registering jobs into JP1/AJS - View. In JP1/AJS - View, the commands and
batch files that are used for operations are defined as jobs, and system operations are automated by associating the
execution order of those jobs.

JP1/AJS - View supports definitions for the following types of jobs:

• Custom jobs

• PC jobs (for Windows)

• UNIX jobs (for UNIX)

The basic guide describes how to define batch jobs as PC jobs or UNIX jobs.

For details about JP1/AJS - View, see the Job Management Partner 1/Automatic Job Management System 3 Operator's
Guide.

3.1.1 Defining and executing a jobnet
To automate job execution in JP1/AJS, you can define registered custom jobs, PC jobs (for Windows), or UNIX jobs
(for UNIX) into a jobnet in JP1/AJS - View, and then execute the jobnet. For details about JP1/AJS - View, see the
description of job definition in the Job Management Partner 1/Automatic Job Management System 3 Operator's Guide.

To define and execute a jobnet in JP1/AJS3 - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Job Management System.
The JP1/AJS3 - View - Login window is displayed.

2. To log in, specify your user name, password, and the host to connect.
The JP1/AJS3 - View window is displayed.

3. Select Edit, New, then Jobnet.
The Define Details - [Jobnet] dialog box is displayed.

4. Specify information including attributes of the jobnet, and then click the OK button.
Specify the appropriate information in Exec-agent according to the operating environment. This information can
be omitted. For details about the JP1/AJS items, see the applicable JP1/AJS manual.

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 37

The jobnet is created and displayed in the list area.

5. Double-click the created jobnet.
The Jobnet Editor window is displayed.

6. Select Exclusive edit so that no other user can access the job while you are defining and associating it.

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 38

7. Drag the required custom job, PC job, or UNIX job icon from the icon list to the map area. Drag the required custom
job, PC job, or UNIX job icon from the icon list to the map area.

The Define Details - [Custom Job], Define Details - [PC Job], or Define Details - [UNIX Job] dialog box is displayed.
The subsequent steps vary depending on whether you want to use PC jobs or UNIX jobs.
To use PC jobs, see 3.1.2 Defining batch jobs as PC jobs. To use UNIX jobs, see 3.1.3 Defining batch jobs as UNIX
jobs.

(1) Notes about jobnet definitions
• Run-time directory to be used when JP1/Advanced Shell's job controller is started from JP1/AJS

When JP1/Advanced Shell's job controller is started from JP1/AJS, the run-time directory is set to the one that is
used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job controller. For details about
the run-time directory that is used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job
controller, see the manual Job Management Partner 1/Automatic Job Management System 3 Configuration Guide
1. In the JP1/AJS manuals, the run-time directory is referred to as a work path (work directory).

• Environment variables to be used when JP1/Advanced Shell's job controller is started from JP1/AJS
Normally, when JP1/Advanced Shell's job controller for Windows is started from JP1/AJS, the system environment
variable settings are enabled when the JP1/AJS services are started and no user environment variables are loaded.
For details, see the applicable JP1/AJS manual.

• Connecting to an overseas version of JP1/AJS - Manager whose language is set to English
When connecting to an overseas version of JP1/AJS - Manager whose language is set to English, in the Define Script
Execution dialog box, in the definition information, use only ASCII alphanumeric characters.

3.1.2 Defining batch jobs as PC jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as PC jobs.

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 39

(1) When defining a batch job
• Executable file name

Specify the path of the adshexec command in Executable file name in the Definition tab in the Define Details
- [PC Job] dialog box or in sc="script-file-name" in the unit definition file.

installation-folder\JP1ASE\bin\adshexec.exe

• Parameters
Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters in the Definition tab in the Define Details - [PC Job] dialog box or in prm="parameter" in the unit
definition file.

• Environment variable
Specify the following details in Environment variables in the Definition tab in the Define Details - [PC Job]
dialog box or in env="environment-variable" in the unit definition file.

AJS_BJEX_STOP=TERM

The following figure provides an example specification of a batch job in JP1/Advanced Shell.

Figure 3-1: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 40

3.1.3 Defining batch jobs as UNIX jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as UNIX jobs.

• Script file name
Specify the path of the adshexec command in Script file name on the Definition tab in the Define Details -
[UNIX Job] dialog box or in sc="script-file-name" in the unit definition file:

/opt/jp1as/bin/adshexec

Alternatively, you can specify the path of the adshexec command following #! on the first line (example:
#!/opt/jp1as/bin/adshexec), and then specify the path of the job definition script file with execution
permissions granted:

Path of job definition script file

• Command statement
You can specify, as part of command text, the path of the adshexec command or path of the job definition script
file in the same way as for the script file name. Specify the path in Command statement on the Definition tab in
the Define Details - [UNIX Job] dialog box, or in te="command-text" in the unit definition file. If a job defined
in the command statement is terminated forcibly in JP1/AJS, the following restrictions apply.

• Depending on the timing at which forced termination is performed, you might not be able to reference the contents
of the job execution log or standard error output for the job from JP1/AJS - View. In this case, you can check
the contents of the job execution log in the spool job directory.

• Jobs with return code 143 are output to the job execution log. However, jobs with return code -1 can be
referenced from JP1/AJS - View.

• Parameters
Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters on the Definition tab in the Define Details - [UNIX Job] dialog box or in prm="parameter" in the
unit definition file.
If you specified a job definition script file name for the script file name, specify only the runtime parameters.

• Environment variables
Specify the following value in Environment variables on the Definition tab in the Define Details - [UNIX Job]
dialog box or in env="environment-variable" in the unit definition file:

AJS_BJEX_STOP=TERM

The following figure shows a specification example of a JP1/Advanced Shell batch job In this example, the adshexec
command is specified for "script file name" and job definition script file path is specified.

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 41

Figure 3-2: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying the adshexec command)

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 42

Figure 3-3: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog
box (when specifying a job definition script file path)

3. Defining jobs in JP1/AJS

Job Management: Getting Started (Scripting Language) 43

This section describes how to execute batch jobs and how to check batch job execution results.

4 Executing batch jobs and checking execution
results

Job Management: Getting Started (Scripting Language) 44

4.1 Executing batch jobs

This subsection describes the procedure for executing batch jobs (created in JP1/Advanced Shell) from JP1/AJS, and
describes each step.

4.1.1 Procedure for executing batch jobs
This subsection explains the general procedure for the operator's tasks when JP1/AJS is used to execute jobs.

(1) Defining jobs
To use JP1/AJS to execute jobs, you must define the jobs according to the procedure explained in 3.1.1 Defining and
executing a jobnet.

(2) Executing jobs
The three methods for using JP1/AJS to execute jobs are planned execution, fixed execution, and immediate execution.
For details about these three execution methods, see the Job Management Partner 1/Automatic Job Management System
3 Operator's Guide.

If you do not use JP1/AJS, you can execute jobs (job definition scripts) by entering commands from the command
prompt or shell.

(3) Monitoring a jobnet
In JP1/AJS, you start the jobnet monitor to check job execution status.

(4) Re-executing jobs
If you need to re-execute jobs, re-execute them from the JP1/AJS - View window.

4.1.2  Executing batch jobs
This subsection explains how to start JP1/Advanced Shell's batch job applications by using JP1/AJS from the execution
environment.

For details about using JP1/AJS for automation of batch job applications, see the applicable JP1/AJS manual. For details
about how to define and execute JP1/Advanced Shell jobs in jobnets, see 3.1.1 Defining and executing a jobnet.

When you automate batch job applications, you can reduce costs as well as run your system more securely with a smaller
staff. JP1/AJS is a product for automating standard batch job applications. JP1/AJS can also automate a combination
of complex batch job applications. Using JP1/Advanced Shell together with JP1/AJS operations provides the following
advantages:

• You can use the temporary file function to allocate files that are used temporarily and delete them when the job or
job step terminates.

• You can share job definitions among multiple applications by calling external scripts.

• You can achieve flexible job definitions by changing, adding, and deleting coding in job definition scripts.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 45

To use JP1/AJS to execute batch job applications automatically, you must define the following:

• Content and processing order of the batch job applications

• Schedule for executing the batch job applications or registration of events that trigger execution of the batch job
applications

The following figure provides an overview of using JP1/AJS to automate batch job applications. The numbers in the
figure correspond to the numbers in the explanation that follows.

Figure 4-1: Overview of using JP1/AJS to automate batch job applications

1. Registers the batch job application content and execution order, and the application schedule.

2. The batch application is executed automatically according to the registered schedule.

(1) Defining batch job applications and their execution order
Many applications are executed at a specified time in a specified order.

For example, totaling of sales slips is executed in the following order:

1. Extract data from the database.

2. Sort data.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 46

3. Output to printer.

Steps 1 through 3 can be automated as a job controller's job step by defining these steps in a job definition script file,
but the task of extracting data from the database at 12:00 cannot be automated. To define batch job applications and
their execution order in JP1/Advanced Shell and JP1/AJS, define in the job controller the series of steps that make up
the applications and then define the relationships among the definitions of the individual batch job applications and their
execution order as the JP1/AJS execution order or execution time.

If batch job applications are broken up into task units, such as commands, application programs, or job definition scripts,
JP1/AJS alone can achieve jobs equivalent to those that can be achieved by JP1/Advanced Shell. They are also called
jobs in JP1/AJS.

When batch job applications and execution orders are defined in JP1/Advanced Shell and JP1/AJS, the batch job
execution orders are defined by using jobnets in JP1/AJS.

The following figure shows a jobnet used when batch job applications and their execution order are defined in JP1/
Advanced Shell and JP1/AJS.

Figure 4-2: Jobnet used to define batch job applications and their execution order in JP1/Advanced
Shell and JP1/AJS

Explanation
The following explains the execution order of the batch jobs that are defined by using JP1/AJS jobnet.

• When batch job A terminates, batch job E is executed.

• When batch jobs A and B terminate, batch job C is executed.

• When batch job C terminates, batch jobs D and G are executed.

• When batch job B terminates, batch job F is executed.

(2) Defining the definition schedule of batch job applications and their
execution order

To automatically define a definition schedule for multiple batch job applications and their execution order, you need a
schedule definition that determines when this definition is to be executed.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 47

JP1/AJS's schedule definition contains such information as a calendar that specifies the company's business days and
holidays, the date and time execution is to begin, and an execution interval. Based on this definition, JP1/AJS determines
the execution schedule and automatically starts JP1/Advanced Shell's job execution on the specified date and time.

(3) Registering the timing of starting batch job applications
You can register an event, such as when a file is created or when some specific event occurs, as the timing for starting
a batch job application. If you have registered the required information, you can start a batch job application at a specified
time as well as whenever some specified event (such as creation of a file) occurs.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 48

4.2 Checking batch job execution results

You can check batch job execution results in the job execution log. This subsection describes what the job execution
log is, how to check the job execution log, and how to delete the job execution log.

4.2.1 Job execution log
The purpose of a job execution log is to notify users of the results of executing batch jobs. This log information, excluding
the contents for the standard output for user programs, is output to the files under the spool job directory and to the
standard error output when a job terminates. You can use JP1/AJS - View, among other methods, to view job execution
logs.

The following information is output to the job execution log:

• Start and end messages for batch jobs

• Start and end messages for job steps

• Contents of job definition scripts

• Results of executing commands

• Status and postprocessing results of files that have been prepared

• Standard output from user programs (stdout)#1

• Standard error output from user programs (stderr)#2

• Messages related to acquiring coverage information

#1
Output while the job is running to the standard output in effect at the time the job started if either of the conditions
listed below is satisfied.

• The -s option is specified in the adshexec command or PARENT is specified in the OUTPUT_STDOUT
parameter in the environment file.

• When the root job is the minimum output mode

#2
A root job running in minimum output mode outputs data to the standard error output in effect at the time the job
started, rather than to a file under the spool job directory.

The JOBLOG_SUPPRESS_MSG parameter can be set to suppress output to the JOBLOG file of some information
messages. For details about messages that can be specified, see the description in JOBLOG_SUPPRESS_MSG
parameter in the manual JP1/Advanced Shell.

4.2.2 Checking batch job execution results
In the spool root directory specified in the environment file, create a directory for each job and output job execution
results to that directory. Job execution logs and the files output by programs in job steps are output to the directory for
each job.

The following shows the structure of the spool directory:

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 49

The structure of the spool directory is shown below. Note that the description below only covers the directories and files
used in this manual. For details about the entire structure of the spool directory, see Outputting job execution results to
spool in the manual JP1/Advanced Shell.

spool-root-directory
|-lock-file
+-spool-job-directory
 +-JOBLOG#1
 +-JOBLOG_job-ID_sequence-number
 +-JOBLOG_number-giving-the-order-in-which-a-child-job-starts#2
 +-SCRIPT#1
 +-SCRIPT_number-giving-the-order-in-which-a-child-job-starts#2
 +-STDERR#1
 +-STDOUT#1
 +-step-number_step-name_STDOUT#1
 +-step-number_step-name_STDERR#1

#1
The contents of this file are also output to the job execution log. For details about what is output to the job execution
log, see 4.2.1 Job execution log.

#2
This is a temporary file created during job execution. The following explains the contents of such temporary files.

File name Description

JOBLOG_number-giving-the-order-
in-which-a-child-job-starts

Job execution log for a child job for merging that is output when MERGE (merging the
child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in the environment file

SCRIPT_number-giving-the-order-
in-which-a-child-job-starts

If a job is terminated immediately by SIGKILL in UNIX or TerminateProcess in Windows, these files might
remain in the spool job directory. When you delete spool directories, also delete these files.

The following subsections explain the files and directories that are not temporary files.

(1) spool-root-directory
The directory name is specified in the SPOOL_DIR parameter in the environment file.

(2) spool-job-directory
This directory has the job sequence number as its name and is created for each job. When the job terminates, the directory
is renamed to job-ID-job-name.

You can use the adshhk command to delete accumulated spool jobs. For details about the adshhk command, see
4.2.3 Deleting spool jobs.

When a job terminates, the spool job directory named with the job ID is renamed. If a directory exists with the same
name as the new directory, renaming will fail and the name of the spool job directory will remain as the job ID. Because
the job execution has been completed and the succeeding job can be executed, the job returns 0 as the return code. While
a directory named with the job ID remains, that job ID cannot be used and the directory cannot be deleted by using the
adshhk command.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 50

(3) JOBLOG
This is for job execution messages. Messages indicating the job's execution status, including command execution results
and file allocation results, are output to this directory.

(4) JOBLOG_job-ID_sequence-number
This is the job execution log for a child job.

This file is created only when a child job is specified with the minimum output mode by using one of the following
methods when starting the child job:

• Specifying MINIMUM with the -m option in the adshexec command

• Specifying MINIMUM with the -m option in the adshscripttool command

• Specifying MINIMUM in the OUTPUT_MODE_CHILD parameter

This file is not created when MERGE (merging the child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter.

(5) SCRIPT
This is for script image files. The contents of the first job definition script started and the contents of external job
definition script files specified in the #-adsh_script command are output to this directory. External job definition
script files specified using other methods, such as the . (dot) command, are not output to this directory. When you want
to output the contents of job definition scripts as logs, you must use the #-adsh_script command.

If MERGE is specified in the SPOOLJOB_CHILDJOB parameter when the root job is run in the expansion output mode
and the child job is run in the minimum output mode, the child job's SCRIPT is not merged into the root job's
SCRIPT.For details, see the description in Merging a child job's spool job into the root job's spool job in the manual
JP1/Advanced Shell.

(6) STDERR
This is the standard error output for the job. This file is not created when the root job is specified with the minimum
output mode using one of the following methods when starting the root job:

• Specifying MINIMUM with the -m option in the adshexec command

• Specifying MINIMUM in the OUTPUT_MODE_ROOT parameter

The following header is output at the beginning of the file:

******** JOB SCOPE STDERR ********

(7) STDOUT
This is the standard output for the job. It is created when the -s option is specified in the adshexec command or
SPOOL is specified in the OUTPUT_STDOUT parameter in the environment file. This file is not created when the root
job is specified with the minimum output mode using one of the following methods when starting the root job:

• Specifying MINIMUM with the -m option in the adshexec command

• Specifying MINIMUM in the OUTPUT_MODE_ROOT parameter

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 51

The following header is output at the beginning of the file:

******** JOB SCOPE STDOUT ********

(8) step-number_step-name_STDOUT
If job steps are defined, this is the standard output within the corresponding job step. If the job step name consists of
more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This standard output is created when the -s option is specified in the adshexec command or SPOOL is specified in
the OUTPUT_STDOUT parameter in the environment file. This file is not created when the root job is specified with
the minimum output mode using one of the following methods when starting the root job:

• Specifying MINIMUM with the -m option in the adshexec command

• Specifying MINIMUM in the OUTPUT_MODE_ROOT parameter

(9) step-number_step-name_STDERR
If job steps are defined, this is the standard error output within the corresponding job step. If the job step name consists
of more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This file is not created when the root job is specified with the minimum output mode using one of the following methods
when starting the root job:

• Specifying MINIMUM with the -m option in the adshexec command

• Specifying MINIMUM in the OUTPUT_MODE_ROOT parameter

4.2.3 Deleting spool jobs
Spool jobs stored on a spool increase in size while they are stored in a spool directory. Therefore, make sure that you
periodically delete old spool jobs to free up disk space.

• How to delete spool jobs
To delete spool jobs, enter the adshhk command below. For details about how to specify the adshhk command,
see the description in adshhk command in the manual JP1/Advanced Shell.

adshhk target-list-file-name report-file-name log-file-name [number-of-days]

Before you execute the adshhk command, specify in the file indicated as target-list-file-name the necessary
information, including the name of the spool directory that contains the spool jobs to be deleted.
The adshhk command's execution results are output to the file whose name is specified in report-file-name. The
execution results are also output to trace logs.
Error messages are output to the file whose name is specified in log-file-name.
Spool jobs that have existed for more than the number of days specified in number-of-days are deleted. For example,
if you specify 2, spool jobs that have existed for 2 or more days are deleted.

• Report file created by the adshhk command
When the adshhk command has executed, the execution results are output to a report file. In the following example
report file, the header information is output on the first line:

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 52

"jobid","jobname","rc","start date","end date","act","info","spool","target
days","execute date"
"000056","JOB001","1","2011/06/13 09:03:31","2011/06/13 09:03:31","delete","","C:
\Documents and Settings\All Users\Documents\Hitachi\jp1as\jp1ase
\spool","15","2011/06/30 18:19:58"
 :

Legend:
The first line of the execution results contains the headers listed below. The subsequent lines display the values
corresponding to the header items.

Header Meaning

jobid Job ID

jobname Job name

rc Job's return code

start date Job's execution start date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the debugging start date and time are output.

end date Job's termination date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the job termination date and time are not output.

act Applied action (keep: save, delete: delete, error: an error occurred during deletion processing)

info Detailed error information

spool Spool directory

target days Target days

execute date Command execution start date and time (in the format yyyy/mm/dd hh:mm:ss)

Important note　
If the spool directory contains any user-specified file or directory that was not created by JP1/Advanced
Shell, the adshhk command outputs a message such as KNAX4419-E, and then terminates.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 53

4.3 Forcibly terminating batch jobs

There are two ways to forcibly terminate a job:

• If the job was started from JP1/AJS, use JP1/AJS's forced termination procedure.
To be able to forcibly terminate from JP1/AJS a job for a job icon that was executed in Windows or UNIX, you must
have specified the AJS_BJEX_STOP=TERM environment variable beforehand. For details about jobs for job icons
that are run in Windows or UNIX, see 3.1.1 Defining and executing a jobnet.

• Send a termination request signal to the adshexec command's process. In Windows, you can use a command such
as taskkill to terminate the adshexec process.

When a job is forcibly terminated, the job controller forcibly terminates its child or descendant process that are executing.
For details, see 4.3.1 Forcibly terminating child or descendant processes.

After forcibly terminating the child or descendant process, the job controller performs postprocessing on the allocated
files, and then terminates the job without executing any subsequent job steps or commands. The job controller does not
execute a subsequent job step even if abnormal or always is specified in its run attribute. In UNIX, when a job is
forcibly terminated, the adshexec command terminates with an error by signal. For details about the job processing
in UNIX when SIGTERM is received, see the description in Processing when signals are received in the manual JP1/
Advanced Shell. For details about the job processing in Windows when jobs are forcibly terminated, see the description
in Job processing during forced termination in the manual JP1/Advanced Shell.

Important note　
In Windows, when the adshexec command is started, the adshexecsub command is also started, and when
the adshexec command is forcibly terminated, the adshexecsub command is also terminated. Therefore,
do not forcibly terminate the adshexecsub command. If an attempt is made to forcibly terminate the
adshexecsub command, the following events might occur:

• A descendant process that is executing might not terminate.

• Temporary files might remain in the system.

If these events occur, use the taskkill command or the task manager to forcibly terminate the descendant
process and delete the temporary files manually.

Important note　
Because JP1/Advanced Shell in a Windows environment uses job objects to forcibly terminate descendant
processes, note the following;

• A descendant process generated from JP1/Advanced Shell cannot be associated with a job object.

• If a process of JP1/Advanced Shell has already been associated with a job object, forced termination of the
job will not terminate the process generated by the child process of JP1/Advanced Shell.

Important note　
In Windows, if a job that executes an external command and generates a child process is terminated forcibly
and more than 255 processes that are at its grandchild or lower levels exist concurrently, the KNAX6381-E

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 54

message might be issued and renaming of the spool job directory might fail. Note the following three points
about this:

• To reference a spool job directory that has failed, use the directory name displayed in the immediately
following KNAX6382-I message that is issued.

• A spool job directory whose renaming has failed cannot be deleted by the adshhk command. If necessary,
delete it manually.

• In the case of a job that has failed in renaming a spool job directory in the execution environment, job
definition script operation information is not output by the adshevtout command.

4.3.1 Forcibly terminating child or descendant processes
If a job is forcibly terminated, the job controller forcibly terminates its child or descendant processes, and then terminates
the job.

4.3.2 Notes about operations including Ctrl+C (in Linux)
If a job is executed in the non-terminal input mode, operation such as Ctrl+C and Ctrl+\ might not be able to terminate
simultaneously the root job, child jobs, and other external commands that were started.# If you wish to forcibly terminate
these jobs and commands all at once, use the kill command to send a termination request signal such as SIGTERM
to the root job immediately under the login shell.

#
If a job is executed in the non-terminal input mode, the adshexec command's process and its child processes
belong to separate process groups. Therefore, if an operation such as Ctrl+C or Ctrl+\ is performed from the login
shell while the job is executing, SIGINT or SIGQUIT is sent only to the process group currently running in the
foreground.
The jobs and external commands running as descendant processes of the job that received the signal are forcibly
terminated, but those jobs and external commands running as higher processes, including the parent process, are not
forcibly terminated.

4. Executing batch jobs and checking execution results

Job Management: Getting Started (Scripting Language) 55

Appendixes

Job Management: Getting Started (Scripting Language) 56

A. Advanced Use

To use JP1/Advanced Shell more efficiently, see the manual JP1/Advanced Shell.

A. Advanced Use

Job Management: Getting Started (Scripting Language) 57

B. Reference Material for This Manual

This appendix provides reference information for reading the manual.

B.1 Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

JP1/Advanced Shell

• JP1 Version 11 JP1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide (3021-3-
B32(E))

JP1/AJS

• JP1 Version 11 Job Management: Getting Started (Job Scheduler) (3021-3-B11(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 System Design (Configuration) Guide (3021-3-
B13(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Configuration Guide (3021-3-B15(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Troubleshooting (3021-3-B17(E))

• JP1 Version 11 JP1/Automatic Job Management System 3 Operator's Guide (3021-3-B18(E))

B.2 Abbreviations for Microsoft product names
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Windows Server# Windows Server 2012 Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Standard

Windows# Windows 10 Windows(R) 10 Home(32-bit version)

Windows(R) 10 Pro(32-bit version)

Windows(R) 10 Enterprise(32-bit version)

Windows(R) 10 Home(64-bit version)

Windows(R) 10 Pro(64-bit version)

Windows(R) 10 Enterprise(64-bit version)

Windows 8 Windows(R) 8.1(32-bit version)

Windows(R) 8.1 Pro (32-bit version)

B. Reference Material for This Manual

Job Management: Getting Started (Scripting Language) 58

Abbreviation Full name or meaning

Windows# Windows 8 Windows(R) 8.1 Enterprise (32-bit version)

Windows(R) 8.1 (64-bit version)

Windows(R) 8.1 Pro (64-bit version)

Windows(R) 8.1 Enterprise (64-bit version)

Windows(R) 8 (32-bit version)

Windows(R) 8 Pro (32-bit version)

Windows(R) 8 Enterprise (32-bit version)

Windows(R) 8 (64-bit version)

Windows(R) 8 Pro (64-bit version)

Windows(R) 8 Enterprise (64-bit version)

Windows 7 Microsoft(R) Windows(R) 7 Enterprise

Microsoft(R) Windows(R) 7 Professional

Microsoft(R) Windows(R) 7 Ultimate

#: Windows Server and Windows are sometimes referred to collectively as Windows.

B.3 Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu options,
buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

underline The underline indicates the default value among two or more values enclosed in selection symbols.

The following table explains the symbols used by this manual in syntax explanations:

B. Reference Material for This Manual

Job Management: Getting Started (Scripting Language) 59

Symbol Convention

| A vertical bar separates multiple items, and has the meaning of OR. For example:
A|B|C means A, or B, or C.

{ } Curly brackets indicate that only one of the enclosed items is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] Square brackets indicate that the enclosed item or items are optional. A vertical bar is used to delimit multiple
items. For example:

Examples:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

< > Single angle brackets enclose the syntax element that must be used to specify an item.

+ The plus sign indicates that the immediately preceding item can be specified multiple times. It is also used to
indicate that the items before and after it are specified together.

Examples:
{A|B}+
Indicates that A or B can be specified multiple times in any order.
CR+LF
Indicates that the carriage return character (CR) and the linefeed character (LF) are specified together.

* The asterisk indicates that the immediately preceding item can be omitted or that it can be specified one or more
times.

Example:
{A|B}*
Indicates that A or B can be specified one or more times in any order or that A and B can both be omitted.

~ A swung dash indicates that the syntax element enclosed by the single angle brackets (< >), double angle brackets
(<< >>), or double parentheses ((())) that follow must be used to specify the item that precedes the swung
dash.

<< >> Double angle brackets enclose the default value for an item.

(()) Double parentheses enclose the permissible range of values that can be specified.

... An ellipsis indicates that the immediately preceding item can be repeated as many times as necessary. For
example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

Denotes a single-byte space.

0: Denotes zero or more spaces (spaces can be omitted).

1: Denotes one or more spaces (at least one space is required).

The following table explains the syntax elements used in this manual:

Syntax element Characters that can be specified

<unsigned integer> <numeric characters> +

B.4 Conventions: The JP1/Advanced Shell installation folder in Windows
In this manual, installation folder refers to the folder in which JP1/Advanced Shell has been installed, unless otherwise
stated. The following shows the installation folder when the product is installed with the default settings.

B. Reference Material for This Manual

Job Management: Getting Started (Scripting Language) 60

x86 environment:
system-drive:\Program Files\Hitachi\JP1AS

x64 environment:
system-drive:\Program Files(x86)\Hitachi\JP1AS

B.5 Conventions: common application data folder
The following shows the common application data folder used in this manual.

Windows 10, Windows Server 2012, Windows 8, Windows 7, or Windows Server 2008:
system drive:\ProgramData

B.6 Conventions: Shared documents folder
The following shows the shared documents folder used in this manual.

Windows 10, Windows Server 2012, Windows 8, Windows 7, or Windows Server 2008:
system drive:\Users\Public\Documents

B.7 Conventions: Windows menu names used in the manual
The Windows menu names used in this manual assume that you are using one of the following OSs:

Windows 7, Windows Server 2008

In Windows 10, Windows Server 2012, or Windows 8, no Start menu is displayed. Instead, you must use the Start
window, which can be opened from the lower left corner of the window.

B.8 Conventions: Directory names
This manual uses the term directory wherever possible as a generic term for what Windows calls a folder and UNIX
calls a directory.

In connection with this convention, this manual uses / as the directory delimiter. In Windows-specific cases, \ is used
as the folder delimiter.

B.9 Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

JP1/Advanced Shell JP1/Advanced Shell

JP1/AJS JP1/AJS3 JP1/Automatic Job Management System 3 - Agent

B. Reference Material for This Manual

Job Management: Getting Started (Scripting Language) 61

Abbreviation Full name or meaning

JP1/AJS JP1/AJS3 JP1/Automatic Job Management System 3 - Manager
JP1/Automatic Job Management System 3 - View

JP1/AJS - Agent JP1/AJS3 - Agent JP1/Automatic Job Management System 3 - Agent

JP1/AJS - Manager JP1/AJS3 - Manager JP1/Automatic Job Management System 3 - Manager

JP1/AJS - View JP1/AJS3 - View JP1/Automatic Job Management System 3 - View

UNIX Linux CentOS 6 CentOS 6

CentOS 7 CentOS 7

Oracle Linux 6 Oracle Linux(R) 6

Oracle Linux 7 Oracle Linux(R) 7

Red Hat Enterprise
Linux 6 (x64)

Red Hat Enterprise Linux Server 6(64-bit x86_64)

Red Hat Enterprise
Linux 7

Red Hat Enterprise Linux Server 7(64-bit x86_64)

SUSE Linux 12 SUSE Linux(R) Enterprise Server 12(x64)

B.10 Conventions: Units (such as KB, MB, GB, and TB)
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

B. Reference Material for This Manual

Job Management: Getting Started (Scripting Language) 62

C. Glossary

This glossary defines the terminology used in this manual.

.env file
A file in which are set the path names to the ENV environment variables and that is loaded when the shell starts.
You can use the KSH_ENV_READ environment setting parameter to specify whether this file is to be loaded.

argument
A generic term for an item that is specified following a command name. Multiple arguments are separated by a
delimiter on the command line or in a job definition script.

arithmetic operation
Any of the calculations performed using arithmetic operators in a job definition script. In an arithmetic operation,
the values assigned to variables are handled as numeric values.

base name
The portion of a file name excluding the .extension portion. For example, the base name of adshexec.exe, the
program for executing batch jobs, is adshexec.

batch job
A job executed by batch processing.

batch operation server
A server on which JP1/Advanced Shell is installed that is used to execute batch jobs. JP1/AJS - Agent or JP1/AJS
- Manager must be installed when JP1/AJS is used.

batch processing
The process of gathering collected data and transactions and processing them in bulk on a regular schedule, such as
every day, week, or month.

breakpoint
Coding that forces execution to stop and that is inserted into a job definition script in order to pause the processing
during development in order to check the operational status of the job definition script. The debugger interrupts the
processing at a breakpoint so that the developer can check the values of variables and registers at the time of the
interruption.

built-in command
This is a command built into the shell and can be executed by the shell itself. JP1/Advanced Shell provides standard
shell commands (standard shell commands and regular built-in commands) and extended shell commands. Special
built-in commands have the characteristic of terminating the shell executing the command when the syntax of the
command is wrong. Regular built-in commands continue processing without terminating the shell executing the
command even when the syntax of the command is wrong.

child job
A job whose job definition script is executed as a descendant process of the root job. Child jobs are executed in
accordance with one of the following parameter specifications or their default settings:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

child job execution log output file
The output file for the job execution log of a child job, which is created by the child job and output in the spool job
directory of the root job.

C. Glossary

Job Management: Getting Started (Scripting Language) 63

command
Generic name for any instruction that can be used in JP1/Advanced Shell. Commands are executed from the shell
or the command prompt, as well as from job definition scripts.

command grouping
Facility for executing multiple commands as a unit in JP1/Advanced Shell.

command line
The line displayed to the user for entering commands. In the Windows command prompt, input is entered after the
> on the command line. In the UNIX shell, input is entered after the % on the command line.

command prompt
The window in a Windows environment that requests that a command be entered.

command separator
The functionality that allows developers to write more than one command on a single line of a job definition script
in JP1/Advanced Shell.

conditional
A test that controls the processing branch that is to execute based on the results of a conditional expression in a
control statement in a job definition script.

conditional expression
A formula used in a job definition script that expresses a calculation using numeric comparisons, string comparisons,
file attributes, logical operators, and the ternary operator.

conditional parameter
Any of the parameters that are set in an environment file and that are specified in order to configure the environment
setting parameters and export parameters that are valid only in the physical host or in a specific logical host.

console
The terminal screen.

control statement
Same meaning as script control statement.

core dump
A source of maintenance information collected by a trace program and consisting of core files and dump files. When
a problem occurs, the contents of memory are saved to a file that can be used to assist with troubleshooting.

coverage information
Information that provides measurements in tests of the extent of coverage. The two types of coverage information
are C0, which is statement coverage information, and C1, which is branch coverage information. C0 measures the
ratio (%) of commands in a job definition script that execute, while C1 measures the ratio (%) of branches in a job
definition script that execute.

custom job
A predefined job for executing a task with a specific purpose in JP1/AJS. The custom job component for JP1/
Advanced Shell is required in order to take advantage of JP1/AJS's custom job functionality in JP1/Advanced Shell.

debug
The process of testing a job definition script created in the development environment or of investigating errors in a
script. To debug, you must launch the debugger.

debugger
A program for testing a job definition script created in the development environment and for investigating errors in
a script. In the Windows environment, the debugging functions of the JP1/Advanced Shell editor are used. In the
UNIX environment, the debugger is started by specifying the -d option in the adshexec command.

C. Glossary

Job Management: Getting Started (Scripting Language) 64

definition file
A file that defines the directories into which data for troubleshooting is to be collected.

development environment
An environment provided by JP1/Advanced Shell - Developer that supports development of job definition scripts
for batch processing.

dialog box
A window that asks the user to enter a response.

editor
A program for creating job definition scripts efficiently by taking advantage of a variety of features provided in the
development environment.

environment file
A file that contains environment information.

environment information
Information, such as environment variables and environment file parameters, that must be set before JP1/Advanced
Shell starts.

environment setting parameter
Any of the parameters that are set in an environment file for the purpose of defining the JP1/Advanced Shell execution
environment. These parameters are specified in the format #-adsh_conf parameter value.

environment variable
Any of the variables that contain various system settings that can be set by the user.

execution environment
The environment provided by JP1/Advanced Shell for execution of batch operations. JP1/Advanced Shell refers to
the execution environment in its narrow sense.

export parameter
A parameter that is set in the environment file and whose function is to set an environment variable when a command
starts.

extended script command
A command that is executed in a job definition script. Compared to normal shell script commands, these commands
offer the additional capability to control batch job execution. They are also referred to as job execution control
commands. In JP1/Advanced Shell, these commands start with #-adsh.

extended shell command
A built-in command that is internal to the shell and executed by the shell itself. Extended shell commands can be
used in job definition scripts.

extended shell variable
A shell variable with a special meaning that is provided by JP1/Advanced Shell.

external command
Any of the UNIX-compatible commands, OS-provided commands, user-created executable files, and other programs
that are not shell built-in commands.

fault injection mode
A mode used during debugging to simulate the occurrence of an error.
In UNIX, you enable or disable the fault injection mode with the joberrmode command. In Windows, you choose
the Fault Injection Mode menu item in the JP1/Advanced Shell editor.

C. Glossary

Job Management: Getting Started (Scripting Language) 65

file allocation
In JP1/Advanced Shell, such operations as registering postprocessing of files are referred to as file allocation.

file descriptor
A numeric identifier for distinguishing the different types of input and output in JP1/Advanced Shell. In JP1/
Advanced Shell, the standard output is assigned 1, the standard error output is assigned 2, and 3 through 9 can be
allocated and used for other purposes.

flow control
Functionality for controlling the event-issuance interval for JP1 events that are issued during execution of the
adshread and adshecho commands.

here document
A redirection functionality used in a job definition script by which standard input is generated with the job definition
script.

job controller
A program for controlling a job while the job is running. The adshexec command is the job controller.

job definition script file
A program file that defines a job that has been prepared as a job definition script.

job execution log
A collection of messages output by a job, including the start and end messages for the job and job steps. At the end
of a job, the contents of the job execution log are sent to the standard error output by the job controller.

job ID
An identification number (sequentially generated between 000001 and 999999) that is assigned to a job by JP1/
Advanced Shell at the time the job is executed. Each job is assigned a unique identifier, so that each job can be
identified individually on the basis of its job ID. Once job ID 999999 has been assigned, the next job is assigned
job ID 000001.

job information
Information associated with a job, such as the job name, job ID, and job step names.

jobnet
A set of jobs whose execution order is defined. Jobs within the jobnet execute automatically in the predefined order.
The jobnet is a functionality provided by JP1/AJS.

job scheduler
A product that performs job scheduling. It is part of a suite of products in JP1/Advanced Shell used to link to JP1/
AJS.

job step
A range of processing within a job defined in a job definition script that demarcates a unit of specific processing.
The job step is the smallest unit for performing a specific operation (task) in JP1/Advanced Shell. A job is made up
of a collection of job steps. Job steps are defined with the #-adsh_step_start, #-adsh_step_error
(optional), and #-adsh_step_end commands.

JP1/Advanced Shell
A product used to create and execute batch jobs from job definition scripts. JP1/Advanced Shell can be divided into
JP1/Advanced Shell and JP1/Advanced Shell - Developer. In this narrow sense, JP1/Advanced Shell refers to the
execution environment in which batch jobs are executed from job definition scripts. Batch jobs in both Windows
and UNIX can be run from the same job definition script.

JP1/Advanced Shell - Custom Job
A program for creating jobs that are custom-defined in the operation management console in JP1/Advanced Shell.

C. Glossary

Job Management: Getting Started (Scripting Language) 66

JP1/Advanced Shell - Developer
A product used for developing job definition scripts for batch jobs. This term also refers to the development
environment in which job definition scripts are developed.

JP1/AJS3
Abbreviation for JP1/Automatic Job Management System 3, which is the successor product to JP1/AJS2. By linking
JP1/Advanced Shell to JP1/AJS3, you can achieve distributed processing among multiple PCs.

log
Historical information that is output by the computer. Timestamps, messages, and similar items are output as logs.

long option
A type of option specified in command arguments. A long option begins with two consecutive hyphens (--) followed
by a character string.

metacharacter
A character (or character string) that has a special meaning in a job definition script.

operand
A type of command argument specified on the command line. An operand is a default command argument that is
specified in addition to option names and option values. Parameter values are also called operands.

option
In general, a pre-selected capability that is added to the instructions provided by a computer input device.
In JP1/Advanced Shell, a command argument consisting of one hyphen (-) followed by one character is called a
short option, and a command argument consisting of two consecutive hyphens (--) followed by a character string
is called a long option.
An argument specified immediately following an option is the option's value.

pipe
A functionality for linking the standard output of a previous command to the standard input of a subsequent
command.

program output data file
A file to which a user program can output its execution results. JP1/Advanced Shell creates the file name
automatically in order to consolidate the user program's output results with the system execution log.

quotation
Either the single quotation mark (') or the double quotation mark (").

redirection
Capability before a command in a job definition script is executed to change the input source for the information
needed to execute the command or the output destination for the execution results. Typically, the keyboard is assigned
as the standard input and the screen is assigned as the standard output, but redirection enables these assignments to
be changed.

regular built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a regular built-in command,
even if its command syntax is invalid, it does not exit the shell that is executing the command (see also special built-
in command).

regular file
A file used for input or output by a job definition script. Regular files might remain after the job finishes, or regular
files might be deleted during execution of the job. Regular files can be defined with the #-adsh_file command
or the adshfile command.

C. Glossary

Job Management: Getting Started (Scripting Language) 67

reply-request message
A message that asks the operator to enter a reply.

reply-waiting event
A JP1 event that provides notification of a reply-request message.

reserved script command
A command that can be used as a reserved word in a job definition script. An example is the time command.

return code
A code that is returned to report the execution result of a job definition script or a command.

root job
A job executed from JP1/AJS or a login shell that is not a child job.

script
A text file into which is assembled a series of commands that can be executed sequentially from the shell. A script
in JP1/Advanced Shell is called a job definition script, and they can be executed in both the Windows and UNIX
environments.

script control statement
A statement for managing commands in a job definition script. Examples include the if, for, while, until,
and case statements.

script file
A file in which a script that has been created is saved.

shell
A program that interprets instructions provided by a computer input device and passes them to the OS.

shell command
Generic name for any command used in JP1/Advanced Shell that is executed in the shell or from the command
prompt.

shell operation command
A command that is provided as an executable binary file or a shell script. The two types of shell operation commands
are those that can be used only in job definition scripts and those that can be used not only in job definition scripts
but from OS shells and the command prompt. The shell operation commands include the adshexec command
(executes batch jobs).

shell option
Any of the pre-selected capabilities that are added to the instructions provided by a computer input device to the
shell.

shell script
A text file into which you assemble a series of commands so that you can then execute those commands sequentially
from the shell. A shell script in JP1/Advanced Shell is referred to as a job definition script, and it can be executed
in both the Windows and UNIX environments.

shell variable
An area of memory assigned as a value in a job definition script. You can reference the value of a created variable.

short option
A type of option specified in command arguments. A short option begins with a hyphen (-) followed by one character.

signal
A mechanism in UNIX by which processes report to each other the occurrence of asynchronous events. For example,
a signal is sent when a job is forcibly terminated in JP1/Advanced Shell.

C. Glossary

Job Management: Getting Started (Scripting Language) 68

special built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a special built-in command,
if its command syntax is invalid, it exits the shell that is executing the command (see also regular built-in command).

spool
The location where JP1/Advanced Shell stores the execution results of jobs and job execution logs.

spool job
The execution results for each job created in the spool directory.

standard error output (stderr)
A stream to which a program outputs its error messages and other messages.

standard input (stdin)
A stream from which a program receives its input data.

standard output (stdout)
A stream to which a program outputs its data.

standard shell command
A built-in command that is internal to the shell and executed in a process in the shell itself. Standard shell commands
can be used in job definition scripts.

subshell
In a UNIX environment, a child process that has the same name as the job controller, is neither a root job nor a child
job, and is created temporarily automatically when an external command or a specific syntax is executed in a job
definition script.

symbolic link
A link that is implemented as a file that contains the actual file path.

system execution log
A log output by a job controller in JP1/Advanced Shell in order to facilitate integrated management of job execution
status by the system administrators. Log information from multiple job controllers can be output to a single log.

temporary file
A file whose use is transient during job execution. Temporary files are created by a job or job step, and they are
deleted automatically when the job terminates. Temporary files are defined with the #-adsh_file_temp
command.

trace log
Information collected to assist in investigating and resolving problems that occur in JP1/Advanced Shell.

trap action
An action that is defined in the trap command's action argument.

UNIX-compatible command
Any of the standard UNIX commands, such as the ls command, that can be used in JP1/Advanced Shell. These
commands can also be used in a Windows environment, which facilitates interoperability between UNIX and
Windows.

variable
A location or array in memory that is used to handle values in a job definition script. Examples of variables include
shell variables and environment variables.

watchpoint
A special breakpoint that stops a job definition script when the value of a variable or expression changes. A
watchpoint can be managed in the same way as any other type of breakpoint.

C. Glossary

Job Management: Getting Started (Scripting Language) 69

wildcard
A character, such as the asterisk (*) or the question mark (?), that can be specified as a stand-in for any character
or character string. The asterisk (*) represents any character string, and the question mark (?) represents any single
character.
In addition, you can use square brackets ([]) to obtain a match with any of the characters in the character string
enclosed in the square brackets. You can also use the hyphen (-) to separate values constituting a range, or the
exclamation mark (!) for a condition to be true when none of the characters enclosed in square brackets results in
a match. You can also use the comma (,) to assemble a comma-separated list of character strings, any one of which
can be selected.

C. Glossary

Job Management: Getting Started (Scripting Language) 70

Index

Symbols
.env file 63

A
ADSH_ENV [environment variable] 34
ADSH_JOBRC_FATAL (environment variable) 35

specifying return code in event of unresumable error
in jobs 35

ADSH_JOBRC_FATAL [environment variable] 34
AJS_BJEX_STOP [environment variable] 34
allocation management file 49
argument 63
arithmetic operation 63

B
base name 63
batch application

expediting configuration of 4
inheriting asset between OSs of 4

batch job 63
batch job application

defining 46
defining definition schedule of 47
defining definition schedule of execution order of 47
defining execution order of 46
overview of using JP1/AJS to automate 45
registering timing of starting 48
starting, by using JP1/AJS from execution
environment 45

batch job execution results
central management of 5
improving serviceability and maintainability by
central management of 5

batch operation server 63
batch processing 63
breakpoint 63
built-in command 63

C
checking the local time setting 15
child job 63

defining file to be started as 25
child job execution log output file 63

command 63
grouping 63

command line 63
command prompt 63
command separator 63
common application data folder 61
conditional 63
conditional expression 63
conditional parameter 63
confirming files that can be used in JP1/Advanced
Shell 13
console 63
control statement 63
conventions

abbreviations 61
directory names 61
fonts and symbols 59, 61
KB, MB, GB, and TB 62

core dump 63
coverage information 63
creating required directories 22
custom job 37, 63

D
debug 63
debugger 63
definition file 63
determining whether to use spool job creation
suppression functionality 29
development environment 63
dialog box 63

E
editor 63
environment file 63

specifying 21
environment information 63
environment setting parameter 63
environment variable 63
execution environment 63
expansion output mode 29
export parameter 63
extended script command 63

defining return code of 32

Job Management: Getting Started (Scripting Language) 71

extended shell command 63
extended shell variable 63
external command 63

F
fault injection mode 63
file allocation 63
file descriptor 63
flow control 63
font conventions 59

G
GB meaning 62

H
here document 63

I
installation procedure (for Linux) 12
installation procedure (for Windows) 12
installing JP1/Advanced Shell 18
installing JP1/Advanced Shell (in Windows) 18
installing JP1/Advanced Shell(to Linux) 18
installing prerequisite products 17

J
job

defining 45
executing 45
re-executing 45

job controller 63
job definition script 4
job definition script file 63
job environment file 21
job execution log 49, 63

outputting contents by job type 26
job ID 63
job information 63
job scheduler 63
job step 63
jobnet 46, 63

defining and executing 37
monitoring 45
used for defining batch job application and their
execution order in JP1/Advanced Shell and JP1/AJS

46

JP1/Advanced Shell 63
example of application to business operation 6
purposes of 4

JP1/Advanced Shell - Custom Job 63
JP1/Advanced Shell - Developer 63
JP1/AJS, specifying environment information for
(applicable when JP1/AJS is used) 37
JP1/AJS3 63

K
KB meaning 62

L
log 63
long option 63

M
MB meaning 62
memory and disk space requirements for installation13
metacharacter 63
minimum output mode 29

N
notes on file systems 15

O
operand 63
operator

tasks of 45
option 63

P
PC job 37
Performing user-specific postprocessing when a job is
terminated forcibly 32
pipe 63
preparation before installation 13
preparations for using script-format UNIX-compatible
commands (in Windows) 24
prerequisite OS 13
program output data file 63

Q
quotation 63

Job Management: Getting Started (Scripting Language) 72

R
redirection 63
reference material 58
regular built-in command 63
regular file 63
related publications 58
reply-request message 63
reply-waiting event 63
reserved script command 63
return code 63

in event of unresumable error in job, defining 34
in event of unresumable error in job, specifying 35

root job 63

S
script 63
script control statement 63
script file 63
Setting environment variables 34
setting language for prerequisite OS 13
shared documents folder 61
shell 63

setting up 25
shell command 63
shell operation command 63
shell option 63
shell script 4, 63
shell variable 63
short option 63
signal 63
special built-in command 63
specifying settings for using UNIX-compatible
commands 24
spool 22, 63

defining output information 28
outputting job execution result to 49

spool job 63
deleting 52

standard error output
stderr 63

standard input
stdin 63

standard output
stdout 63

standard shell command 63
subshell 63

symbol conventions 59
symbolic link 63
system environment file 21
system execution log 22, 63

T
TB meaning 62
temporary file 22, 63
trace 22
trace log 63
trap action 63

U
UNIX job 37
UNIX-compatible command 63

V
variable 63

W
watchpoint 63
wildcard 63

Job Management: Getting Started (Scripting Language) 73

	Job Management: Getting Started (Scripting Language)
	Notices
	Preface
	Contents
	1. Installing JP1/Advanced Shell and prerequisite products
	1.1 Procedure for installing JP1/Advanced Shell and prerequisite products
	1.1.1 Installation procedure (for Windows)
	1.1.2 Installation procedure (for Linux)

	1.2 Preparations before installation
	1.2.1 Prerequisite OSs
	1.2.2 Memory and disk space required for installation
	1.2.3 Setting the language for the prerequisite OS
	1.2.4 Confirming the files that can be used in JP1/Advanced Shell
	1.2.5 Checking the local time setting

	1.3 Installing the prerequisite products
	1.3.1 Installing JP1/AJS and related products

	1.4 Installing JP1/Advanced Shell
	1.4.1 Installing JP1/Advanced Shell (in Windows)
	1.4.2 Installing JP1/Advanced Shell(to Linux)

	2. Setting up an environment for JP1/Advanced Shell
	2.1 Specifying the environment files
	2.1.1 Specifying the system environment files
	2.1.2 Specifying the job environment files
	2.1.3 Creating required directories
	2.1.4 Specifying settings for using UNIX-compatible commands
	2.1.5 Setting up the shell for starting jobs from JP1/AJS (in Linux)
	2.1.6 Defining files to be started as child jobs
	2.1.7 Outputting the contents of the job execution log by job type
	2.1.8 Defining job execution results and log output information
	2.1.9 Defining the return codes of extended script commands
	2.1.10 Performing user-specific postprocessing when a job is terminated forcibly

	2.2 Specifying environment variables
	2.2.1 Defining the return code in the event of an unresumable error in a job

	3. Defining jobs in JP1/AJS
	3.1 Defining jobs in JP1/AJS
	3.1.1 Defining and executing a jobnet
	3.1.2 Defining batch jobs as PC jobs
	3.1.3 Defining batch jobs as UNIX jobs

	4. Executing batch jobs and checking execution results
	4.1 Executing batch jobs
	4.1.1 Procedure for executing batch jobs
	4.1.2  Executing batch jobs

	4.2 Checking batch job execution results
	4.2.1 Job execution log
	4.2.2 Checking batch job execution results
	4.2.3 Deleting spool jobs

	4.3 Forcibly terminating batch jobs
	4.3.1 Forcibly terminating child or descendant processes
	4.3.2 Notes about operations including Ctrl+C (in Linux)

	Appendixes
	A. Advanced Use
	B. Reference Material for This Manual
	B.1 Related publications
	B.2 Abbreviations for Microsoft product names
	B.3 Conventions: Fonts and symbols
	B.4 Conventions: The JP1/Advanced Shell installation folder in Windows
	B.5 Conventions: common application data folder
	B.6 Conventions: Shared documents folder
	B.7 Conventions: Windows menu names used in the manual
	B.8 Conventions: Directory names
	B.9 Abbreviations for product names
	B.10 Conventions: Units (such as KB, MB, GB, and TB)

	C. Glossary

	Index

